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Figure 2: Estimation of 8B;j/38V by shooting a delta emis-
sion from source k.
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Figure 3: Estimation of 3B;/3nx by shooting a delta emis-
sion from source k.

by finite differences. A small “delta” emission, AE, is shot
from the variable emission light source as indicated in fig-
ure 1 and allowed to interreflect. The iterative shooting
operations are very rapid since the links representing the
form factors are precomputed during the baseline rendering.

The result of shooting a small amount of energy through
the network of links results in an effect on each element
radiosity, AB;, thus providing all the derivative estimates
AB;/AE. If the only free variables in the optimization are
light emissions, these influence factors need only be eval-
uated once, due to linearity. On the other hand, if any
spotlight directionality or element reflectance is allowed to
be variable, light emission influence factors must be updated
each iteration.

The partial derivative of the objective with respect to a
variable element reflectivity is handled in a similar fashion.
The element reflectivity pi is adjusted by a small delta Ap.
The effect on all other elements can be evaluated by “shoot-
ing” the unshot radiosity due to the change in reflectivity:
By Ap. As with light sources, several shooting iterations may
be necessary to account for multiple bounce effects. Once
convergence has been achieved, the effect of Ap on element
radiosity AB; is available and the influence factor estimate
ABj/Ap can be recorded.

Influence factors for spotlight directionality variables, V
and ng, are also approximated through finite differences.
For example, a small change, AV, can be made to the di-
rection vector Vi and the effect on each element radiosity
can be determined by a series of shooting steps. The first
shooting step, illustrated in figure 2, shoots a delta emission
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from the modified spotlight to all other elements. The delta
emission is determined according to the change in the direc-
tionality parameter, in this case, Ekm‘#(cos""(¢vk+1§v)~
cos™(¢,,)) where ¢y, is the angle between the original di-
rection vector of the light and the direction of the element
and ¢y, +av is the angle between the new spotlight direc-
tion vector and the direction of the element. Subsequent
shooting steps proceed in the normal fashion in order to
handle multiple bounce effects. The same technique can be
used when the distribution pattern parameter nx is changed
as illustrated in figure 3. In this case the radiosity cast is
Ek( n +123n+1 Cosn,‘(‘b‘,k)_ n2+1 COS""(¢vk)).

The cost functions that measure patterns of light or sub-
jective impressions are defined in terms of perception. The
partial derivatives of the functions examining lighting pat-
terns with respect to light emission Ey are:

9P;
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The partials of the subjective impressions are just a lin-
ear combination of the partial derivatives of forightness,
fnon—uniform, and fpert'pheral‘

The partials 3 Pj/9 Ex are derived by differentiating equa-
tion 2 giving,
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where o is the adaption level which can be approx-
imated by (Z' log10(Bi/10,000)A;)/ Z‘. Ai, 7 is aa *
logio(Bi/10,000) + bb, and ¢ is 0.4logio(Bi/10,000) —
In(10)(0.8cx + 2.6).

If the the adaptation level is assumed constant with re-
spect to a change in emission Ex, da/dE) = 0, otherwise

Joa A; 9B,
0Ex ~ B,;In(10) 3_,(Ai) 0Ex

3.4 Optimization

The optimization process uses the BFGS algorithm, which
evaluates the objective function and gradient at a current
step in the design space in order to compute a search di-
rection. Once a search direction is derived, a line search
is performed in this direction. Each step in the line search
involves a reevaluation of the objective function, hence a
reevaluation of the element radiosities which are displayed,
allowing the user to watch the progress of the optimization.
This process is repeated until the system has converged to
a minimum.

BUNGIE - EXHIBIT 1018 - PART 2 OF 4




4 Experiences and Results

The first implementation of the Radioptimization system al-
Jowed an objective function based only on photometric mea-
sures and did not take into account the psychophysical prop-
erties of lighting. The system could successfully optimize
lighting but required quite a bit of unintuitive “tweaking”
of the objective function weights in order to achieve light-
ing that had the right subjective appearance. These early
experiences led to the investigation of the psychophysical
objective functions.

Figure 6 shows the effects that the subjective impressions
have on an optimization. The top image constrains the table
to have a small amount of illumination while conserving en-
ergy and creating an overall impression of visual clarity. To
improve efficiency the optimization was run at a low resolu-
tion on a simplified model, without the chairs and television
set. The optimization process took 1 minute and 21 seconds
on an IBM Model 550 RISC System 6000. The bottom im-
age has the same design goals as the top image except that
it tries to elicit an impression of privateness. This optimiza-
tion took 2 minutes and 11 seconds.

It took two or three hours of performing design iterations
before developing an intuitive “feel” for the optimization
process and the effects of the weights on the objective func-
tion. One of the problems with the design cycle is that there
may be local minima of the specified objective that are vi-
sually unattractive. For example, in addition to the design
goals mentioned above for figure 6, we needed to add an
additional constraint limiting the illumination of the ceil-
ing because pointing the lights directly at the ceiling was an
optimal way of increasing the overall brightness of the room.

One drawback of the system at this point is that it is not
fast enough to allow a highly interactive feedback cycle for
complex models. However since the system allows a designer
to think in terms of their own design goals, it requires fewer
design iterations to achieve the desired result.

5 Conclusions

This paper has presented a new method of designing illumi-
nation in a computer simulated environment, based on goal
directed modeling. A library of functions were developed
that approximate a room’s success in meeting certain light-
ing design goals such as minimizing energy or evoking an im-
pression of privacy. The objective functions were developed
through an experiment in which subjects ordered a set of im-
ages according to a particular impression. Processing this
data with INDSCAL, showed a correlation between quanti-
tative lighting patterns and subjective measures of visually
clarity, pleasantness, and privacy. Once the lighting design
goals have been set, the software system searches the space
of lighting configurations for the illumination pattern that
“best” meets the design specifications. The system absorbs
much of the burden for searching the design space allow-
ing the user to focus on the goals of the illumination design
rather than the intricate details of a complete illumination
specification. ,
The radioptimization system explores only one possi-
ble path in the application of optimization techniques to
image synthesis design problems. Constrained optimiza-
tion techniques may be more suitable than the uncon-
strained penalty method technique used here when the de-
sign goals must be satisfied precisely. Discrete optimization
methods may be appropriate in some instances, for exam-
ple when emissivities are constrained to a finite set, e.g.
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{60 Watts ,100 Watts ,---}. Geometric properties of the
model, such as the position of the lights or the size and po-
sition of the windows, could be allowed as free variables.

More general image synthesis methods could be applied to .

account for non-diffuse effects such as glare.
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Abstract

We develop a radiance formulation for discrete three point transport,
and a new measure and description of reflectance: area reflectance.
This formulation and associated reflectance allow an estimate of er-
ror in the computation of radiance across triples of surface elements,
and lead directly to a hierarchical refinement algorithm for global
illumination.

We have implemented and analyzed this algorithm over surfaces
exhibiting glossy specular and diffuse reflection. Theoretical growth
in light transport computation is shown to be O(n+k?) for sufficient
refinement, where n is the number of elements at the finest level
of subdivision over an environment consisting of k input polygonal
patches — this growth is exhibited in experimental trials. Naive
application of three point transport would require computation over
O(n®) element-triple interactions.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism.

Key Words: adaptive meshing, global illumination, radiosity, ray
tracing.

1 Introduction

A major open problem in image synthesis is the efficient solution of
the rendering equation. Radiosity methods have been quite success-
ful over environments containing surfaces that exhibit only diffuse
reflection. Unfortunately, very few materials are purely Lamber-
tian reflectors, and efficient solution techniques have not yet been
developed for more general specular or glossy reflection functions.

The rendering equation is an integral equation, and the solutions
to complicated integral equations are generally obtained using either
Monte Carlo or finite element techniques. Monte Carlo algorithms
sometimes go under the name of distributed or stochastic ray tracing
and are the most commonly employed in computer graphics (e.g.
see [4, 5,9, 12, 16]). Monte Carlo techniques have the advantage
that they are easy to implement and can be used for complicated
geometries and reflection functions. Unfortunately, their disadvan-
tage is that they are notoriously inefficient. The second approach,
the finite element method, has been very successfully applied to
the rendering equation under the radiosity assumption, but has only
begun to be employed in the general case, and with limited success.
For example, Immel et al. [8] discretized radiance into a lattice of
cubical environment maps, and solved the resulting system. More
recently, Sillion et al. {13] used a mesh of spherical harmonic func-
tions to represent radiance, and solved the resulting system using a
shooting algorithm.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
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There are many ways to parameterize the rendering equation, and
each leads to a different choice of basis functions. In the transport
theory community two techniques are common: directional sub-
division (the method of discrete ordinates or Sy ), and spherical
harmonics (Pn). These two techniques roughly correspond to the
methods of Immel et al. and Sillion et al., although many interest-
ing variations are possible. Our approach is somewhat different, and
based on Kajiya’s original formulation of the rendering equation [9].
Under this formulation, the rendering equation is expressed in terms
of three point transport. That is, the kernel of the integral expresses
the transport of light from a point on the source to a point on the
receiver, via a point on a reflector. Given this formulation, the three
point rendering equation can be discretized over pairs of elements
to form a linear system of equations. Solving this system yields the
radiance transported between elements. Note that this approach is
very similar to the radiosity formulation.

The problem with finite element methods is that the matrix of
interactions is very large for interesting environments. For a given
environment of k input polygonal patches containing n elements
at the finest level of refinement, the three point discretization that
we are proposing generates an n® matrix of interactions. However,
in this paper we show that we can accurately approximate the n3

reflectance matrix with O(n + k%) blocks, in a way very similar
to our recent hierarchical radiosity algorithm [7]. In that paper we
showed how the n? form factor matrix could be approximated with
O(n + k?) blocks, resulting in a very efficient algorithm in both
space and time. Although the results presented in this paper are
preliminary, we believe a hierarchical finite element approach along
these lines will ultimately lead to a fast, efficient algorithm.

In the following section we describe our application of the fi-
nite element element method to the three point rendering equation,
yielding a radiance formulation for discrete transport. In Section 3
we present a simple adaptive refinement algorithm for computation
over this formulation, and the iterative solution technique employed
for the actual calculation of transport. In Section 4 we discuss our
implementation of the algorithm over glossy reflection, and in Sec-
tion 5 we present some experiments and results. An appendix to
this paper contains details of our error analysis for discrete transport
under the glossy model.

2 Discrete Three Point Transport

The algorithm presented in this paper operates through two func-
tions: refinement of the environment to form a hierarchy of discrete
interactions, patches and elements, and the actual computation of
illumination over this hierarchy.

In this section we develop the basis for both discretization and
transport. We derive a radiance formulation for three point transport,
and a new measure and description of reflectance, area reflectance.
This radiance formulation and associated reflectance provide a natu-
ral criterion for discretization under illumination and reflection, and
allow both the computation of radiance across triples of individual
surface elements, and the expression and computation of all light
transport over all surfaces.
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Figure 1: Geometry of Reflection

2.1 A Radiance Formulation for Three Point
Transport

When computing and imaging illumination within an environment,
we are interested in the transport of light from surface to surface —
itis this interaction of surfaces that characterizes illumination, in the
absence of participatory media. Reflection within an environment
may thus be naturally expressed over triples of surfaces. Consider
surfaces A, A', and A" (Figure 1) — we will examine the transport
of light incident at A’ originating at A and reflected toward A",

Let w} and w!. be the solid angles subtended at point =’ by A and
A", respectively. Consider differential solid angles at &} and &, —
by definition of the bidirectional reflectance-distribution function
(BRDF), f, [11], the radiance L(,) along ¢, due to illumination
through solid angle wy} is:

1@ = [ 5@,)5(@h cos
w!
Integrating this expression over w}, and introducing cos 6, we have:

/ L(@,) cos brdw, =

r

/ / Fr (@}, &L L(G]) cos 6 cos 6,.duw dw;,
We may then reparameterize over A and A" to yield:
/ L(zl,zll)G(zl,zll)dle —
AII

/ fe(z,2', 2" ) L(z, 2 )G (z,2")G (2, 2" )dz" dx
A A'I

where 0 o
cos 8, cos 6}
G(z,z') = —,z—:x;‘—z—’v(x,z')

where v(z,z') is 1 if points z, ', are mutually visible, and 0
otherwise. Note that G is very similar to a differential form factor.

We integrate over A’, thus introducing all three areas into the
formulation:

// L(z',2")G(z', 2" )dz"dz’ = '6))
AI AII
/ / fr(z, 2, 2" ) L(2,2")G(z,2")G (z', 2" )dz" dz' dx
A AI AII

We may now rewrite the equation in discrete form. Let A; and Ay
be subareas of A’ and A" such that L(z’, ') is nearly constant over
their surfaces. The left side of equation (1) may then be rewritten,
bringing radiance out of the integral as L;:

L,‘ik/ / G(IL‘,, :c")d.'l:"d:c' = TFLJ'kAjF}k
Aj; JAL
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Figure 2: A Reflection Product

by definition of the diffuse form factor, Fj.

‘We may similarly discretize A as A;, and rewrite the right side
of equation (1) as:

L.:j/ / fr(z,2',2")G(z,2")G(z', 2" )dz" dz'dz =
A; JA; VA
ZﬂLajAeFinijk

where R,y is defined such that
TA;Fi;Rijr =

/ / fr(z, 2, 2"G(z,2")G(z', ") dz" dz' d
A; A]’ Ag

Note that, by the symmetry of f, and G:
A;FijRijr = ApFij Ricji
We thus have:

wLikAjFje = = Z L;; Ar Fij R

=7 Z Li; A; Fk Riji
by the reciprocity of form factors, and thus:
L, = ZLinkji

The three dimensional character of Ry ;; over indices ¢, j, k leads
naturally to a three dimensional matrix formulation for the above
system. Consider a product over ann X n X n Rg;; “matrix” and
ann X n X 1 L;; matrix producing an n X n x 1 matrix of reflected
radiances, as shown in Figure 2. Note that the Ry ;; matrix is of size
O(n®) — the hierarchical method discussed in subsequent sections
of this paper addresses more tractable representation of this matrix.

Taking into account emission, we have derived a radiance for-
mulation for three point transport:

Ljr = Ejx + Z Li;Ryji ¥)

This formulation states that:

The radiance at Area j in the direction of Area k is equal
to the radiance emitted by j in the direction of k, plus,
for every Area 1, the radiance at i in the direction of j
multiplied by the area reflectance Ryj:.

Note that equation (2) is very similar to the radiosity formulation:

B; = E; +p; ZBiF,-a

1




2.2 Area Reflectance

The quantity Ry ;; has a natural and satisfying physical significance
—itis an expression of refiectance over areas A;, A;, and Ag.

Consider the fraction of the radiant flux transported from A;
incident to A; that is reflected in the direction of area Ax:

fA- fA i fAk fr (:E, $’, $”)L($, z')G(.’IZ, zl)G(zly :IJ”)d.'z:"dz'dz
ivAj
Jui Ju; U, )G, 2')da do
4 2

If we assume that incident radiance is uniform and isotropic over
both w! (as induced by A;) and A;, we may divide through by
L(z,z"), yielding;
P(Ai, Aj ’ Ak) =
fA‘ fA,- fAk fr(z,z',2")G(z,2')G(z', 2" )dz" dz' dz
fA; fAj G(z,z')dz'dz

We define p(A:, Aj, Ax) to be area reflectance. Note that area
reflectance is similar to biconical reflectance [11], save that it is also
integrated over the reflecting surface.

By definition of R;jx:
Riji = p(Ai, Aj, Ak)
Conservation of energy over reflection, and the reciprocity rela-

tion derived for R;;x above, constitute fundamental properties of
area reflectance:

1. Y Rijr <1, for fixed i, j.
k
2. A;F;j Ry = Ak FrjRiji.

where equality is achieved in property 1 over complete enclosures
and perfect reflectivity.

2.3 Evaluation of R;j;

In this section we examine the evaluation of Ry ;; over given patches
Ai, Aj, Ax.
Recall:

fap i, Lo (&2 )G (a",2)G (e 7)dods'do”
] i
fAk fA,- G(z",z")dz'dz"

Riji =

We assume that discrete areas A;, A;j, Ay are of small enough
scale that f. and G are relatively constant over their surfaces. Then:
Sk;iGr;Gji ArAj Ai

GrjAr4;
= Si;iGjiA;
where S is the discretized value of fr, Sijx = Skji = Sepo;a;-

Note that the average value of G(z',z) over A; and A; is
wF;;/A; — we thus estimate Gj; A; by wFj;, and compute Ry;:
as:

Ryji = wF;iSkjs

In practice, it will not be possible to compute the exact values
of Fj; and Sk;; over A;, A;, Ax. We assume that we are able to
estimate these values, along with error bounds for each estimation.
Let AF;; and ASy;; be error estimates for computed Fj; and Sk,
;espectively. We then have an estimate for area reflectance in the
ornm:

Riji = m(Fji+ AF;i)(Skji + ASkji)
= 7(F;iSkji + AFjiSkji + ASkjiFji + AF;:ASk;:)
~ w(F;:Skji + AF;iSkji + ASy;: Fji)

Assuming AFj; < Fji, ASkji < Skji, we have neglected the last
term and estimate the error in Riji as 7(AF;:Sk;: + ASy;: Fj:).

Ry =
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In general, and as is shown for glossy reflection in Section 4,
the accuracy of estimators for Fj; and Si;; is dependent on the
size of the patches over which reflectance is computed, relative
to their distance apart. As relative size decreases, so does error in
computation, leading directly to the adaptive refinement strategy for
illumination presented in Section 3 below.

3 Algorithms for Three Point Transport

3.1 Introduction

Recall equation (2):

Lk = Ejx + z Lij Ryji

This equation suggests both a solution strategy for radiance under
three point transport, and a natural representation for illumination
within the solution system.

We may interpret equation (2) as a gathering iteration similar to
that employed for radiosity under diffuse reflection: the radiance
Ly at patch A; in the direction of patch Ay, is found by gathering
radiances L;; in the direction of A; at patches A;. We may solve
for transport by gathering radiance for each L;x, and successively
iterating to capture all significant re-reflection.

We are left with the question of what structure we are gathering
over and iterating upon. Note that all illumination is expressed
as the radiance at a given patch in the direction of another — it
is these patch-patch interactions that form the primary structure
within the solution system. All operation is over interactions: both
the representation and transport of radiance, and the iteration and
solution for illumination.

Consider the following structure:

typedef struct _interaction {

Patch *from;
Patch *to;

Color L;
Color Lg;

List *gather;
struct _interaction *nw, *sw, *se, *ne;

} Interaction;

A given interaction 1j is defined by two patches 1j->fromand
ij->to, and represents the radiance at £rom in the direction of
to. This radiance is stored within the interaction as attribute L.
Lg is radiance gathered during the current solution iteration from
interactions contained in the list gathexr. Subinteractions nw, sw,
se, ne are the children of ij, induced by subdivision over either
from or to. The structure assumes quadtree refinement, leaving
northwest, southwest, southeast, and northeast descendants.

In the following sections we will present an algorithm for the
refinement and computation of illumination over a hierarchy of
interactions. The algorithm will operate by refining pairs of inter-
actions 7, jk (suchthat ij->to == jk->£from),to ensure that
computed reflectance across the interaction pairs, and associated
patch triples, satisfies user specified error bounds. If a given in-
teraction pair zj, jk is satisfactory, the interactions are linked to
record that radiance may be gathered from 75 to jk, otherwise one
or both interactions are subdivided and refinement applied to their
descendants.

After refinement, a gathering iteration may be carried out, each
interaction gathering radiance from interactions to which it has been
linked. The gathered radiances are then distributed within each re-
ceiving interaction hierarchy, and subsequent iterations computed
until satisfactory convergence has been achieved.

Note that, within this system, the eye may be regarded as simply
another object with which patches may interact. The radiance along
interactions to the eye provides the resulting view.
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3.2 Adaptive Refinement

Consider the following procedure:

Refine(Interaction *ij, Interaction *jk,
float Feps, float Seps, float Aeps)

float feps, seps;

feps = GeometryErrorEstimate(ij);
seps = ReflectionErrorEstimate(ij, jk);

if (feps < Feps && seps < Seps)
Link(ij, jk):

else if (seps >= Seps) {
switch(SubdivS(ij, jk, Aeps)) {
case PATCH_I:

Refine(ij-»>nw, jk, Seps, Feps, Aeps);
Refine(ij~>sw, jk, Seps, Feps, Aeps);
Refine(ij->se, jk, Seps, Feps, Aeps);
Refine(ij->ne, jk, Seps, Feps, Aeps);

break;

case PATCH_J:
/* refine over children of ij and jk */
case PATCH_K:

/* refine over children of jk */
case NONE:
Link(ij, jk);
}
else {

switch(SubdivG(ij, jk, Aeps)) {

/* feps >= Feps */

/* refine over children, or link, as */
/* directed by PATCH_I, J, K, or NONE. */

}
}

}

This procedure computes over pairs of interactions, and associated
patch triples, subdividing and recursively refining if estimated error
exceeds user specified bounds, linking the interactions for gathering
if the bounds are satisfied, or if no further subdivision is possible.
Feps and Seps are the bounds for geometric and reflection error,
respectively; Aeps specifies the minimum area a patch may possess
and still be subdivided. GeometryErrorEstimate and Re-
flectionErrorEstimate provide estimations for 7 A Fj;Sk;;
and 7ASy;; Fji.

Subdivs and SubdivG control refinement for reflection and
geometry error, respectively. Both routines select a patch for refine-
ment, subdividing the patch and associated interaction(s) if required.
An identifier for the selected patch is returned — if no patch may
be subdivided, then NONE is passed back. Note that a given in-
teraction/patch may be refined against many different interactions
within the system, and thus may have already been subdivided when
selected by a Subdiv routine — in this case, the routine simply
returns the proper identifier.

The Subdiv routines should select for refinement patches that
are of large size relative to their distance from their partner(s) in the
transport triple. Form factor estimation is a convenient criterion for
the determination of such patches — a large differential to area form
factor Fy,, indicates that patch q is of large relative size. Care must
be taken in subdivision, however, to ensure that each interaction is
always subdivided in the same way for all refinements involving
that interaction.

The Subdiv routines thus choose for refinement the patch of
size at least Aeps that is of greatest form factor within 75 and/or jk
that will not induce multiple sets of children over either interaction.
If patch p; is of greatest form factor over both ¢j and jk, and of
area greater than Aeps, then it is chosen for refinement (Figure 3 at
middle). Otherwise, if p; is selected over one interaction, but p; or
pr is selected over the other, then the “outside” patch is chosen for
refinement. Given two selected outside patches, Subdivs selects
the one of greater form factor relative to p;; SubdivG selects p;
OVer Pk, as px has no direct effect on geometric accuracy. Note,
however, that even under Subdivg, if only p; and p;. are allowed
subdivision, px will be selected, although with further subdivision
the triple will eventually balance sufficiently to allow refinement
over p;.
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Figure 3: Refinement and Subdivision

3.3 Gathering Radiance

Gathering radiance over interactions may be written as a simple
procedure:

Gather {(Interaction *jk)
¢ Interaction *ij;
if (jk) (
jk->Lg = 0;
ForAllElements(ij, jk->gather)
jk->Lg += ij->L * Reflectance(ij, jk);:

Gather (jk->nw) ;
Gather (jk->sw);
Gather(jk->se);
) Gather (jk->ne) ;
}
We gather radiance into jk->Lg rather than directly into jk->L
to avoid the necessity of a push/pull with every invocation of the
procedure (see Section 3.4). The solution method is thus simple
Jacobi iteration, as opposed to Gauss-Seidel, as the hierarchical
structureimposes simultaneous rather than successive displacement.

3.4 Radiance within a Hierarchy

A gathering iteration results in received radiance scattered through-
out each interaction hierarchy. This gathered radiance must be dis-
tributed and accounted for over all ancestors and descendants of
each receiving interaction, in order to maintain the consistency and
correctness of the hierarchical representation of radiance between
patches.

We employ a distribution algorithm similar to that presented in
[7] for radiosity over patch/element hierarchies: gathered radiance
is “pushed” to the leaf interactions within each hierarchy to ensure
propagation to all descendants, and then “pulled” and distributed
back up from the leaves through all higher level interactions to
their common ancestor at the root. As is shown in [2], radiance
may be pushed unchanged within the interaction hierarchy, and area
averaged as it is pulled from child to parent.

4 Application over Glossy Reflection

In this section we discuss our implementation of the above algo-
rithms over glossy reflection.

4.1 The Reflection Function

We employ a highly simplified Torrance-Sparrow [15] model for
our glossy reflection function:
2~y _ K+2 cos*On
fol@i,é5,) = 81 cosf; cos b,

This function incorporates the facet distribution function cos” 6.,
developed by Blinn [3], normalized for projected facet area under

sh(B;,Or)
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Figure 5: C;, C»r, and Cy,

[10]. Angle 8,,, is that made to the mean surface normal by &y, the
microfacet mirror orientation normal lying halfway between &; and
Dr.

Function sh(6;, 8,) expresses self-shadowing over microfacets
— for near specular surfaces, such self-shadowing or masking does
not become critical until relatively high 8; or 8, [6]. The imple-
mented system thus simply clamps sh from 1 to 0 when §; or 8,
exceeds a preset Opoung nNear the horizon. This scheme serves as a
crude approximation to the shadowing function; however, a better
strategy would be to employ a much fuller tabulation of the func-
tion, incorporated into the error analysis presented below. A more
complete discussion of shadowing and conservation of energy over
fq is presented in [2].

4.2 Error Estimation

Recall the general expression for error derived in Section 2.3:
w(AF5Skji + ASk;iFj:)

In implementation we have estimated the form factor Fj; by Fu;;,
the form factor from a differential area at A; to a disk of area A;
centered at A;, as was employed in [7]. As discussed in [7], the
relative error in this estimate is proportional to the estimate itself.
In our implementation we have thus estimated absolute error AF};

as at most proportional to Fdzj,-.A brief discussion of relative and
absolute error over hierarchical methods is presented in [2].

We now consider the error estimate ASk;j;. As discussed in the
appendix to this paper, we may compute bounding cones C;, C,,
and C,;,, over all possible incident, reflected, and mirror orientation
directions induced at A; by A; and Ay (Figures 4 and 5 — these
figures are discussed more fully in the appendix). We may then
compute maximum and minimum cos” ,,,, cos 8;, cos 8, over these
cones, and estimate error by interval width. The full expression for
estimated error over transport is given in the appendix.

43 Clamping and Visibility

Evaluation of glossy reflectance over three surface areas, as required
by the gather iteration, may be difficult, particularly if surface sub-
division has been limited by Aeps rather than satisfaction of error
bounds, and if «, the facet distribution exponent, has high value. In
this case we must estimate the integral of a spikey function over a
relatively broad area.

Our solution is to band limit the BRDF in a fashion similar to
that presented by Amanatides [1]. We employ the cone estimation
techniques of the previous section to determine if the BRDF varies
significantly over the given patches — if this variance exceeds
a set bound, we “roughen” the reflecting surface, lowering & to
broaden the resulting reflection over the estimated cones. We then
renormalize the resulting blurred function, as described in [1], to

= || 2

Figure 6: Geometric Configurations V

prevent amplification of its low frequency components. We note
that the resulting antialiasing is relatively aggressive, significantly
dimming or eliminating reflections requiring overmuch blurring.

In implementation, we have computed visibility via jittered ray
casting and inheritance similar to that of [7], storing visibility data
in interactions as it is computed.

5 Results

5.1 Growth in Transport

We have measured the growth in transport triples (linked interac-
tions) versus 7, the maximum number of elements at the finest level
of subdivision, over parallel, perpendicular, and “oriented” patches
(Figure 7). The corresponding geometries are shown in Figure 6.
The graphs show linear or near linear behavior over each range —
the graph of triples vs. n for the perpendicular case is slightly con-
cave over the lower data points, but subsides to linear with further
refinement.

In previous work [7] on hierarchical refinement for radiosity, it
was shown that for error estimate proportional to Fg;;, and sufficient
refinement, each subpatch may only interact with other patches
in a limited local neighborhood. As discussed in [7], each patch
may thus participate in at most c interactions, for some constant
¢ independent of n and k. Adaptive refinement thus generates at
most O(n) transport interactions, We will show a similar bound for
discrete three point transport under glossy reflection.

Recall that the estimate for error in computed transport is pro-
portional to AFj; Sk;; + ASy;i Fj;. Our argoment depends on two
assumptions:

1. We may bound both ASk;; and Sy ;; by some Smax.

As discussed below, the lower this Smax, the smaller the magni-
tude of the leading coefficient underling the resulting bound.

Note that our argument thus does not apply to perfect specular
reflection, as the corresponding BRDF incorporates the Dirac delta
function [11]. Equivalently, the argument does not hold over f, for
& = oo (inducing mirror reflection), as we can not provide a finite
bound for S in this case.

For finite x, however, the desired bound over glossy reflection is
achieved by:

K+2

max(cos” 0, ) max(sec #;) max(sec 6,)

The maxima over the secant terms are bounded by microfacet self-
shadowing.

2. AF;; and Fj; within our error estimate are at most proportional
to Fyjs.

Recall that we estimate Fj; as Fy;:, and AFj; as Fj;, thus
satisfying this assumption.

Given these assumptions, estimated error is at most proportional
to Smax F. dji.

We may now show O(n) growth, for sufficient refinement. Con-
sider refinement over interaction 5 under an error estimate at worst
proportional to Smax Fu;;. The error estimate is thus proportional to
Fy;;, and therefore, for sufficient refinement, there are at most O(n)
such interactions, as discussed in [7].

Consider now an error satisfied link from 7 to an interaction jk.
For sufficient refinement under our subdivision scheme, we may
assume that form factors Fi;, Fji, Fji, Frj over p;, p;, and px are
roughly equal. Furthermore, these satisfying form factors depend
only on ;che error estimate, reflection function, and error bounds, not
onn ork.
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Figure 7: Triples vs. N over Geometry. Error bounds e = 0.1. Glossy exponent & = 25. For oriented case e = 0.005.
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Figure 8: Triples vs. NV over «. The graph is over parallel polygons
for which the error bounds and interpolygon distance have been
doubled.

At worst the above form factors are such that Fi«Smax < Eps,
where Eps is the most restrictive error bound. Note that, as stated
above, F\.. depends only on the error estimate, reflection function
(ie. Smax), and error bounds. Only some constant number of such
form factors may be fitted over the directional hemisphere above p;,
and thus 77 may only be linked to some constant number of interac-
tions jk. The total number of linked interactions, and corresponding
transport triples, is thus O(n).

Note that the above argument, although it establishes the desired
bound, may overstate the potential for links at a given interaction.
For a given 77, much of the directional reflection into the hemisphere
over p; may not achieve Smax, and may even be of maximum 0.
That is, the analysis ignores the modulation between the paired error
and value terms within the error estimate.

As x increases in magnitude, the corresponding bound Smax must
increase as well. We may thus expect greater growth in transport
computation with higher specular exponent, as shown in Figure 8.
Within this graph, growth is superlinear for k = 500, though further
trials over a higher range of n = 500. .. 2000 have shown that the
rate subsides to linear as n increases, allowing sufficient refinement
for the local neighborhood property to obtain.

Finally, we note that under specular reflection each element is
reflected across every other element perfectly, and to a first approx-
imatjon is visible from a constant number of other elements in the
environment (at least in the case of a convex enclosed room; the
analysis is complicated by occlusion and certain worst case align-
ments). Thus, the number of interactions is at least O(nz) — we
conjecture that it is no worse than this bound.

5.2 Illumination and Refinement

Figure 9 shows illumination and meshing over surfaces of varying
glossiness (specular exponent). Within each image, the reflecting
surface is perpendicular to the diamond shaped light source, and
we see the resulting reflection in the direction of the eye. Note
the conformation of meshing to the highlight over each surface.
The “stretched” nature of the highlight along the axis to the eye
is characteristic of Torrance-Sparrow reflection over fairly oblique
angles, and accounts for the increased sensitivity of meshing along
this axis. The rightmost three images in the figure show the meshing
from above. The illumination shown in these images is somewhat
unusual - it shows the reflection to the eye as though it had been
painted on the reflecting surface, and then viewed from a different
location, directly above. The images in Figure 11 show similar
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Figure 10: Meshing for glossy and diffuse reflection

Figure 9

Max Elements 4160

Max Triples 262144 |

Computed patches 1 triples time
x =25 790 593 6706 (2.6%) 22s
x =100 1290 968 24214 (9.2%) 8.0s
x =500 874 656 12106 (4.6%) 4.1s
Figure 10

Max Elements 16448

Max Triples 1048576

Computed patches  elements triples time
x =500 1578 | 1184 | 7834 (0.75%) | 50s
Figure 12

Max Elements 15153-!

Max Triples 222385209344

Computed patches 1 triples time
x =500 6479 | 4866 | 70995 (0.00003%) | 3ml3s

Table 1: Image Statistics

eye/offset views for the reflection of a garish checkerboard.

The image in Figure 10 shows contrasting illumination and mesh-
ing induced by diffuse and glossy reflection. Note the distinct mesh-
ing for each highlight. Glossy reflection is at a less oblique angle,
and thus both the highlight and meshing exhibit less distortion in
the direction of the eye.

Note that these scenes are extremely simple — application to
more complex environments is still very expensive, despite the em-
ployment of hierarchical methods. Motivated by the work of Smits
et al. [14] in hierarchical radiosity, we are currently experimenting
with importance and radiance weighting over three point transport
— preliminary results of this work are shown in Figure 12. The
given environment contains four reflectors: the broad face of each
of the three “slabs” and the top of the central cube. In addition to
the reflections seen in the slabs, note the play of light originating at
the lamp at left, reflected off the cube top, and over the upper part
of the green wall at right. Total potential transport triples over this
environment at the finest level of subdivision is just over 222 billion
— our system, under importance and radiance weighting, employs
70,995, a reduction to 3 hundred-thousandths of 1 percent.

Table 1 provides further statistics for the images. Timings are
given for a Silicon Graphics indigo workstation with a single 50
MHz R4000 processor. The image shown in Figure 12 was generated
after seven complete iterations (gathers to all interactions), and total
time just over three minutes.
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6 Discussion

Recall the matrix formulation shown in Figure 2. For any n of
reasonable size, the resulting n® matrix will be unmanageable —

we have shown, however, that for sufficient refinement the n® entries
in the matrix may be approximated to within user specified bounds
by O(n) subblocks. The gather and push/pull procedures described
in preceding sections allow manipulation and solution over this
representation. As discussed in [2], the resulting system may be
shown to converge.

Growth in transport is more accurately described as O(n + k%),
where k is the number of input polygonal patches within the en-

vironment, as opposed to elements. The k% term is generated by
the initial examination of all polygon triples for reflection, and is
subsumed by n as the number of elements increases. As the number
of polygons in an environment grows, however, the k3 term will
become prohibitively large. As discussed in [14] with respect to the
related problem under hierarchical radiosity, the capability to cluster
as well as refine polygons would reduce the difficulty of unneces-
sary initial interactions. Clustering is arguably the most important
open problem in the computation of global illumination.

The hierarchical approach described in this paper was derived by
writing the rendering equation in a three point transport formulation.
Another option would be to parameterize radiance by position and
direction — we believe that a similar hierarchical approach could
be employed with the method of discrete ordinates or spherical
harmonics.

Finally, we note that, similarly to other algorithms for hierar-
chical illumination [7, 14], the algorithm described in this paper
bounds estimated error over individual transport computations. As
discussed in [14], bounding estimated error over individual trans-
port does not easily or necessarily provide a rigorous bound for
overall error in the solution. An analysis and means of computing
such a bound over hierarchical illumination remains an interesting
open problem.
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Appendix: Error Analysis
Recall the error expression derived in Section 2.3:
m(AF;:Skji + ASkjiFyi)
In implementation, we have divided ASi;; into separate compo-
nents for each subfactor of f,. We thus have:

2 Y 1
”: (AFj; ——" 4 Acos™ 8m Fj;

i cos f; cos 0 cos §; cos Oy
K
[4
+ Asecé, Fji gos Im )

cos;

cos™ 6
Asect;Fy; To:n
In implementation, the refinement procedure of Section 3.2 takes
an additional argument, Ceps, against which the two estimates of
error in reciprocal cosine are tested.

We are left with the computation of A sec8;, Asec8,, and
A cos” 0,. The variance (and associated error) in these cosine terms
over given patches A;, A;, A is determined by the set of possible
@i, W, lying between the patches (we dispense with / notation in
this section).

Consider patches A;, and A; (Figure 4): we enclose these patches
in spheres S;, S; with centers c;, ¢;, and radii 5, r;, respectively.
For the moment we will assume that the interiors of S; and S; do
not intersect, and thus there exists a tangent cone lying between the
spheres.

Note that this cone is a right circular cone centered on the line
joining ¢; and c;. Consider the nappe containing S;: it may be
regarded as a cone of direction vectors centered about the vector
¢; — c;. We will call this vector cone C;. If p; and p; are any two
points on or in S;, S;, then the vector p; — p; lies within C;. C;
thus bounds the set of possible &;. We may characterize C; by the
angle a; defined by its axis, ¢; — ¢;, and boundary — cone C. and
angle - may be similarly defined over A; and Ay. If either pair of
spheres intersect, we set the corresponding o@ = 7. We may easily
compute maxima and minima for sec #; and sec @, given C; and
C., and may then compute error in estimation as (max — min)/2.

The cones C'; and C, centered about &J; and &, induce a similar
cone of variation about &, (Figure 5). Application of basic spherical
trigonometry yields [2]:

sin(a; /2) + sin(a, /2)
Gi O

@ < arcsin min( ,1.0)

Given o, , determination of max(cos® 8,, ), min(cos” 6,, ), and
thus A cos” 8,,, immediately follows.

Having computed these estimates and maxima, and incorporat-

ing the estimates for form factor computation, we may bound and
estimate error in transport as:

E%——z(Ffji max(cos”™ ) max(sec ;) max(sec 6, )+
A cos”™ 8, Fyj; max(sec ;) max(sec 0,)+
A sec aiFdji max(cos” #;) max(sec 0, )+
Asec 8y Fy;; max(cos™ 6;) max(sec 6;) )

It is this error measure that we employ in our implementation.




COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

On the Form Factor between Two Polygons

Peter Schroder

Pat Hanrahan

Department of Computer Science
Princeton University

Abstract

Form factors are used in radiosity to describe the fraction of dif-
fusely reflected light leaving one surface and arriving at another.
They are a fundamental geometric property used for computation.
Many special configurations admit closed form solutions. How-
ever, the important case of the form factor between two polygons
in three space has had no known closed form solution. We give
“such a solution for the case of general (planar, convex or concave,
possibly containing holes) polygons.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism — Radiosity; J.2 [Physical Sci-
ences and Engineering]: Engineering.

Additional Key Words and Phrases: Closed form solution; form factor;
polygons.

1 Introduction

When using the radiosity technique to create images the form
factor plays a central role. It describes the fraction of radia-
tion diffusely emitted from one surface reaching another surface.
The accurate computation of form factors is the central theme
in many recent papers. Goral et al. {4], who introduced radios-
ity to the computer graphics community, used numerical contour
integration to compute form factors between polygons. Cohen
and Greenberg [3] took visibility into account with their hemi-
cube algorithm. More recent hierarchical and adaptive algorithms
compute still more accurate form factors [10; 5]. Nishita and
Nakamae [8] and Baum et al. [2] have used an exact solution
for the form factor between a differential surface element and a
polygon. Most radiosity algorithms are restricted to polygonal
environments, and so a closed form solution for the form factor
between polygons is potentially of great utility.

The history of computing form factors is very long. A closed
form expression for the form factor between a differential surface
element and a polygon was found by Lambert in 1760 [7]. Lam-
bert proceeded to derive the form factor for a number of special
configurations among them the form factor between two perpen-
dicular rectangles sharing a common edge. He writes about the
latter derivation:

Although this task appears very simple its solution
is considerably more knotted than one would expect.
For it would be very easy to write down the differential
expression of fourth order, which one would need to
integrate four fold; but the highly laborious computa-
tion would fill even the most patient with disgust and
drive them away from the task.

Other workers have derived closed form solutions for the form
factors between many different geometric configurations and these
can be found in standard textbooks. However, we are not aware
of a closed form solution for the form factor between two general
polygons. Thus, this problem has remained open for over 230
years.
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In this paper we present a formula for the form factor integral
between two general polygons. The derivation of this formula
is quite involved, and the interested reader is referred to 9] for
a detailed derivation. The purpose of this paper is to bring this
result to the attention of the graphics community.

2 Closed fdrm solution

The form factor integral can be reduced to a double contour inte-
gral by two applications of Stokes’ theorem [6]

7TA1F12 = fAl fAzwdAszl

1712
i — P -
3 faA, faA2 In(7- 7) dZ; - 4T,
where 0, 6, are the angles between the normal vector of the
respective surface and a radius vector 7, which connects two points
on the surfaces. The above equation holds for all surfaces such

that every point on either surface sees the same contour of the
other surface.

In the case of polygons P, and P, the contour integral reduces
to a sum of double line integrals over all pairwise combinations
of edges

4mAp Fpp, = Y  cos LEiE; / / In(7 - 7 ds; dt;
B, B; E; JE;

Ignoring the factor cos ZE; E; we are left with the task of giving
a solution to integrals of the general form [ [ OC" In f(s,t)ds dt.
co and ¢; are the lengths of the edges over which a given double
contour integral is taken and f(s,t) = S +eist+t+cas+eat+cs
is the bi-quadratic form which arises from the expansion of the
dot product (see Table 2 for definitions of all variables). If the
two line segments lie in a common plane we can factor f(s,t)
into two bi-linear forms and a solution is readily obtained with
standard integration tables (see [9]). Lines in general position
lead to the following result:

c cg
/ / In f(s,t)dsdt
0o Jo

- [(s + 2)6(/(, 0 + THUC t))(s)}
s=0
—2cocy + ClaCis [71’(215:(5) + )M(®)
—i (L(—cir(s))() + L(—cis())(?)

s=cp

~Lien(&)O) - Leu)d) |

=0 =
=V @y
where k(s) € {—1,0, 1} according to the particular branchcut of

the complex logarithm choosen in L. The auxiliary functions G,
H, L, and M are given in Table 1.

3 An example

We have implemented our closed form solution in Mathemat-
ica [11] (this code is available from ps@princeton.edu). The
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Lo = ['F0 -7+ 0d = g | SR - g s (Lnguga s in (R ) 1n+y)
iy + i (52) L (29)]
My) = [0 -t)dt = L[4’ -+ 2y07 - D7 +In
G@) = ["Ingt)dt = L@Ingy) - 2y + dran~ LR
H(g)y) = [Ytlng(t)dt = <y21 A z%z-z‘) Ing(y) — U=t _ bd -1 <)

Table 1: Four auxiliary integrals needed in the solution. Notice that L(b)(y) uses the dilogarithm [1], Li,(z) =

oo

kg .
! z—z, ELIZ(Z) =

—"“%z—’. In G and H the argument ¢ is an arbitrary quadratic polynomial q(t) = at® + bt + ¢ and d = v/4ac — b2.

Co = ”EJ” eri—q/ ¢} —4cipciz
- - Cy3 = —————————
c = —2d;-d; Zei0
c —461001>z
. oo o
¢ = —2d; - (P — ;) cis = /eaci

s = 2d; - (Bi — Pi)
cs = I5: — psll°

C]0=4—C%

cis(s) = cic13 — 3 — 28

—cistq/ el —4leg(a)?

2iz16(9)

—ci15—4/ s —alergla)l?

2i&i6(9)

017(5) =

ci = 4eq — 2c103
013(5) =

Ciz = 405 — C%

Table 2: All expressions for two edges E;; with parameterization
Zi(t) = Pi + td; and T5(s) = p; + sd; (||di ] = D).

implementation requires some care because of the complexities of
the functions that are involved.

A simple example, which requires the full power of our for-
mula, concerns the form factor between two equal width rectangles
sharing an edge with an enclosing angle 6§ € [0, w]. The config-
uration is illustrated in Figure 1 together with the form factor as
a function of § for different aspect ratios / = £ (common edge
length b).

4 Conclusion

We have given a closed form solution for the form factor between
two general polygons. This solution is non-elementary since it

10 20 30 40 50 60 70 80 S0 100 110 120 130 140 150 160 170 180

Figure 1: Geometry for two rectangles sharing a common edge
with an enclosing angle of 8. The graphs show the form factor as
a function of @ for edge ratios | = £ of .2, .4, .6, .8, and 1.0.

164

involves the dilogarithm function. The principal value of our
solution is in determining exact answers for general polygonal
configurations. This can be used in practice for reference solutions
to check more efficient approximations. Baum et al. [2] have also
shown that the error in the computed solution can be reduced
significantly when using a closed form solution near singularities
of the integrand.

There has been a long history of computing closed form ex-
pressions for form factors starting with Lambert in 1760. The
literature lists many special cases for which closed form solu-
tions exist, but hitherto no solution had been given for general
polygonal configurations. The present paper closes this gap.

Acknowledgements

The first author would like to thank the Sci-Vis group at HLRZ for
their support. Other support came from Apple, Silicon Graphics
and the NSF (contract no. CCR 9207966).

References

[1] ABRAMOWITZ, M., AND STEGUN, 1. A. Handbook of Mathemat-
ical Functions, 9th ed. Dover Publications, 1970.

{2] BauM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. Im-
proving Radiosity Solutions Through the Use of Analytically Deter-
mined Form-Factors. Computer Graphics 23, 3 (July 1989), 325-
334.

[3] CoHEN, M. F., AND GREENBERG, D. P. The Hemi-Cube: A
Radiosity Solution for Complex Environments. Computer Graphics
19, 3 (July 1985), 31-40.

{4] GoraL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. Modelling the Interaction of Light between Diffuse
Surfaces. Computer Graphics 18, 3 (July 1984), 212-222.

[5] HAaNRAHAN, P., SALZMAN, D., AND AUPPERLE, L. A Rapid
Hierarchical Radiosity Algorithm. Computer Graphics 25, 4 (July
1991), 197-206.

{6] HErRMAN, R. A. A Treatise on Geometrical Optics. Cambridge
University Press, 1900.

{71 LAMBERT. Photometria sive de mensura et gradibus luminis, colo-
rum et umbrae. 1760. German translation by E. Anding in Ostwald’s
Klassiker der Exakten Wissenschaften, Vol. 31-33, Leipzig, 1892.

[8] NisHITA, T., AND NAKAMAE, E. Continuous Tone Representa-
tion of Three-Dimensional Objects Taking Account of Shadows and
Interreflection. Computer Graphics 19, 3 (July 1985), 23-30.

{9] SCHRODER, P., AND HANRAHAN, P. A Closed Form Expression
for the Form Factor between Two Polygons. Tech. Rep. CS-404-
93, Department of Computer Science, Princeton University, January
1993.

[10] WALLACE, J. R., ELMQUIST, K. A., AND HaINES, E. A. A Ray
Tracing Algorithm for Progressive Radiosity. Computer Graphics 23,
3 (July 1989), 315-324.

[11] WOLFRAM, S. Mathematica. Addison-Wesley, 1988.




COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

Reflection from Layered Surfaces due to Subsurface Scattering
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Abstract

The reflection of light from most materials consists of two ma-
jor terms: the specular and the diffuse. Specular reflection may
be modeled from first principles by considering a rough surface
consisting of perfect reflectors, or micro-facets. Diffuse reflection
- is generally considered to result from multiple scattering either
from a rough surface or from within a layer near the surface. Ac-
counting for diffuse reflection by Lambert’s Cosine Law, as is
universally done in computer graphics, is not a physical theory
based on first principles.

This paper presents a model for subsurface scattering in layered
surfaces in terms of one-dimensional linear transport theory. We
derive explicit formulas for backscattering and transmission that
can be directly incorporated in most rendering systems, and a gen-
eral Monte Carlo method that is easily added to a ray tracer. This
model is particularly appropriate for common layered materials
appearing in nature, such as biological tissues (e.g. skin, leaves,
etc.) or inorganic materials (e.g. snow, sand, paint, varnished or
dusty surfaces). As an application of the model, we simulate the
appearance of a face and a cluster of leaves from experimental
data describing their layer properties.

CR Categories and Subject Descriptors: [.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.
Additional Key Words and Phrases: Reflection models, integral
equations, Monte Carlo.

1 Motivation

An important goal of image synthesis research is to develop a
comprehensive shading model suitable for a wide range of ma-
terials. Recent research has concentrated on developing a model
of specular reflection from rough surfaces from first principles.
In particular, the micro-facet model first proposed by Bouguer
in 1759 [4], and developed further by Beckmann[1], Torrance &
Sparrow[26], and others, has been applied to computer graphics
by Blinn [2] and Cook & Torrance[8]. A still more comprehen-
sive version of the model was recently proposed by He et al[12].
These models have also been extended to handle anisotropic mi-
crofacets distributions[24, 5] and multiple scattering from complex
microscale geometries[28].

Another important component of surface reflection is, however,
diffuse reflection. Diffuse reflection in computer graphics has al-
most universally been modeled by Lambert’s Cosine Law. This
law states that the exiting radiance is isotropic, and proportional
to the surface irradiance, which for a light ray impinging on the
surface from a given direction depends on the cosine of the angle
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of incidence. Diffuse reflection is qualitatively explained as due to
subsurface scattering [18]: Light enters the material, is absorbed
and scattered, and eventually exits the material. In the process of
this subsurface interaction, light at different wavelengths is differ-
entially absorbed and scattered, and hence is filtered accounting
for the color of the material. Moreover, in the limit as the light ray
is scattered multiple times, it becomes isotropic, and hence the di-
rection in which it leaves the material is essentially random. This
qualitative explanation accounts for both the directional and col-
ormetric properties of diffuse materials. This explanation is also
motivated by an early proof that there cannot exist a micro-facet
distribution that causes equal reflection in all outgoing directions
independent of the incoming direction [10].

The above model of diffuse reflection is qualitative and not
very satisfying because it does not refer to any physical param-
eter of the material. Furthermore, there is no freedom to adjust
coefficients to account for subtle variations in reflection from dif-
ferent materials. However, it does contain the essential insight:
an important component of reflection can arise from subsurface
scattering. In this paper, we present a model of reflection of light
due to subsurface scattering in layered materials suitable for com-
puter graphics. The only other work in computer graphics to take
this approach is due to Blinn, who in a very early paper presented
a model for the reflection and transmission of light through thin
clouds of particles in order to model the rings of Saturn[2]. Our
model differs from Blinn’s in that it is based on one-dimensional
linear transport theory—a simplification of the general volume
rendering equation [19]— and hence is considerably more general
and powerful. Of course, Blinn was certainly aware of the trans-
port theory approach, but chose to present his model in a simpler
way based on probabilistic arguments.

In our model the relative contributions of surface and subsur-
face reflection are very sensitive to the Fresnel effect (which Blinn
did not consider). This is particularly important in biological tis-
sues which, because cells contain large quantities of water, are
translucent. A further prediction of the theory is that the sub-
surface reflectance term is not necessarily isotropic, but varies in
different directions. This arises because the subsurface scattering
by particles is predominantly in the forward direction. In fact, it
has long been known experimentally that very few materials are
ideal diffuse reflectors (for a nice survey of experiments pertaining
to this question, see [18]).

We formulate the model in the currently emerging standard
terminology for describing illumination in computer graphics [16,
11]. We also discuss efficient methods for implementation within
the context of standard rendering techniques. We also describe
how to construct materials with multiple thin layers. Finally, we
apply the model to two examples: skin and leaves. For these
examples, we build on experimental data collected in the last few
years, and provide pointers to the relevant literature.

Another goal of this paper is to point out the large amount of
recent work in the applied physics community in the application
of linear transport theory to modeling appearance.
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Figure 1: The geometry of scattering from a layered surface

(0, ¢;) | Angles of incidence (incoming)

(0r,dr) | Angles of reflection (outgoing)

(0+,6¢) | Angles of transmission
L(z,0,$) | Radiance [W / (m? sr)]

L; | Incident (incoming) radiance
L, | Reflected (outgoing) radiance
L; | Transmitted radiance
L, | forward-scattered radiance
L_ | backward-scattered radiance
fr(8:,¢::6-,4r) | BRDF
ft(0s, ¢4;6¢,¢¢) | BIDF

fT,s(oiy i3 0r, br)
ft,s(05, &35 6t, d¢)
Frv(6s, ¢i56r, dr)

Surface or boundary BRDF
Surface or boundary BTDF
Volume or subsurface BRDF

ft,w(0;, i;0:,¢4¢) | Volume or subsurface BTDF
n | Index of refraction

as(z;\) | Scattering cross section [mm~!]
oa(2z;\) | Absorption cross section [mm™!]
ot(z; \) | Total cross section (0t = 04 +0s) [mm™']

W | Albedo (W = %:-)‘
Layer thickness [mm)]
Scattering phase function ((6’, ¢') to (0, ¢))

d
p(2:8,6:,0",¢'; )

Table 1: Nomenclature

2 Reflection and Transmission due to Layered
Surfaces

As a starting point we will assume that the reflected radiance L,
from a surface has two components. One component arises due to
surface reflectance, the other component due to subsurface volume
scattering. (The notation used in this paper is collected in Table |
and shown diagramatically in Figure 1.)

Lr(ar, ¢r) = Lr,s(ery ¢r) + Lr,v(e‘ry d)'r‘)

where:
Ly, s - reflected radiance due to surface scattering
L. - reflected radiance due to volume or subsurface scattering

The models developed in this paper also predict the transmis-
sion through a layered surface. This is useful both for materials
made of multiple layers, as well as the transmission through thin
translucent surfaces when they are back illuminated. The transmit-
ted radiance has two components. The first component is called
the reduced intensity; this is the amount of incident light trans-
mitted through the layer without scattering inside the layer, but
accounting for absorption. The second is due to scattering in the
volume.

Lt (8¢, ¢¢) = Lri(Be, de) + L, v (Bt, d1)
where:

L,; - reduced intensity
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Figure 2: Fresnel transmission and reflection coefficients for a
ray leaving air (n = 1.0) and entering water (n = 1.33).

L, - transmitted radiance due to volume or subsurface scat-
tering

The bidirectional reflection-distribution function (BRDF) is de-
fined to the differential reflected radiance in the outgoing direction
per differential incident irradiance in the incoming direction [23].

L0, ¢r)
Li(ei, ¢l) cos 0,‘ dwi

The bidirectional transmission-distribution function (BTDF) has a
similar definition:

fe(0:, ¢4, 0¢,0:) =

[r(0i,9i:0-,00) =

L(6:, ¢¢)
Li(@i, ¢1) COs Gidwi

Since we have separated the reflected and transmitted light into
two components, the BRDF and BTDF also have two components.

fr = frs+fro
fo = fri+fto
If we assume a planar surface, then the radiance reflected from

and transmitted across the plane is given by the classic Fresnel
coefficients.

Lo (6r, 1)
Lo(®:, ¢0)

R™(ni, ne; 6;, i — 0r, ¢r)Li(65, di)
T"(ni, ne; 65, ¢i — b5, de)Li(Bi, d3)

1]

where

R'z(m,nt; 0;,0; — 0, ) R(n;, ne,cos8;, cos B;)

ng
2

n;

2
T2 (n:, e 02, i — B, br) T= %g(l - R)

where R and T are the Fresnel reflection formulae and are de-
scribed in the standard texts (e.g. Ishimura{l4]) and 6; is the
angle of transmission. Besides returning the amount of reflection
and transmission across the boundary, the functions R'? and T2,
as a side effect, compute the reflected and refracted angles from the
Reflection Law (8, = 6;) and Snell’s Law (n; sin ; = n¢sin6;).
Note also the factor of (n:/ n:)?) in the transmitted coefficient of
the above formula; this arises due to the change in differential
solid angle under refraction and is discussed in Ishimuraf{pp. 154-
155]. Plots of the Fresnel functions for the boundary between air
and water are shown in Figure 2.

In our model of reflection, the relative contributions of the sur-
face and subsurface terms are modulated by the Fresnel coeffi-
cients.

fT = Rfr,s + Tfr,u = Rfr,s + (] - R)fr,'u




Thus, an immediate prediction of the model is that reflection due to
subsurface scattering is high when Fresnel reflection is low, since
more light enters the surface layer. Notice in Figure 2 that the
percentage of transmission is very high for a quite wide range of
angles of incidence. Thus, the reflectance properties of materials
impregnated with water or oil (dielectrics with low indices of
refraction) are dominated by subsurface reflectance components at
near perpendicular angles of incidence, and surface components
at glancing angles of incidence.

Actually, light returning from the subsurface layers must refract
across the boundary again. Thus, it will be attenuated by yet an-
other Fresnel transmission factor. Recall that if light returns from
a media with a higher index of refraction, then total internal reflec-
tion may occur. All light with an incident angle greater than the
critical angle (6. = sin™' n;/n;) will not be transmitted across the
boundary. By assuming an isotropic distribution of returning light,
we can compute the percentage that will be transmitted and hence
considered reflected. This sets an upper bound on the subsurface
reflectance of 1 — (n; /nt)2 (remember, n: > n;). For example,
for an air-water boundary, the maximum subsurface reflectance is
approximately .44.

3 Description of Materials

The aim of this work is to simulate the appearance of natural ma-
terials such as human skin, plant leaves, snow, sand, paint, etc.
The surface of these materials is comprised of one or more layers
of material composed of a mixture of randomly distributed parti-
cles or inhomogeneities embedded in a translucent media. Particle
distributions can also exist, in which case the properties are the
material are given by the product of each particle’s properties
times the number of particles per unit volume.

The layers of such materials can be described by a set of macro-
scopic parameters as shown in the following table. Measurements
of these properties have been made for a large variety of natural
materials.

Symbol Property

n index of refraction

0o [mm™'] absorption cross section

os [mm™!] | scattering cross section

d [mm} depth or thickness

p(cos 7) scattering phase function

g mean cosine of phase function

e Index of Refraction
The materials considered are dielectrics where n is on the
order of the index of refraction of water (1.33).

e Absorption and scattering cross section

The intensity of the backscattered and transmitted light de-
pends on the absorption and scattering properties of the mate-
rial. The cross section may be interpreted as the probability
per unit length of an interaction of a particular type. The
total scattering cross section oy = 0, + 0g. The mean free
path is equal to the reciprocal of the total cross section. An
important quantity is the albedo, which equals W = o, /0%.
If the albedo is close to 1, the scattering cross section is
much greater than the absorption cross section, whereas if
the albedo is close to 0, absorption is much more likely than
scattering.

o Scattering phase function
The phase function, p(Z;0,$;0’,¢') represents the direc-
tional scattering from (', ¢") to (8, ¢) of the light incident
onto a particle. This function depends on the nature of the
scattering medium. The form of p is affected by the size,
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Figure 3: Henyey-Greenstein phase function for ¢ = —.3 and
g = .6

form and orientation of the suspended particles, the dielectric
properties of the particles, and the wavelength of the incident
light. The scattering of light from particles small compared
to the wavelength of light is given by the Rayleigh scatter-
ing formula, and the scattering due to dielectric spheres of
different radii by the Mie formula.
However, most materials contain distributions of particles
of many different sizes, so simple single particle phase func-
tions are not applicable. For this reason, we describe the ma-
terial phase function with the empirical formula, the Henyey-
Greenstein formulaf13].

1-¢*
4w (1 + g% — 2gcos j)¥/2
where j is the angle between the incoming and the outgoing
direction (if the phase function depends only on this an-
gle the scattering is symmetric about the incident direction).
The Henyey-Greenstein formula depends on a single param-
eter g, the mean cosine of the scattered light. The Henyey-
Greenstein phase function for different values of g is shown
in Figure 3. Note that if g = 0 the scattering is isotropic,
whereas positive ¢ indicates predominantly forward scatter-
ing and negative ¢ indicates predominantly backward scat-
tering.

pHG(COs j) =

In the model employed in this paper, material properties are
described macroscopically as averages over the underlying mi-
croscopic material property definitions. If the material is made
of several components, the resulting properties of the composite
materials can be computed by simple summation.

n
Oa = § Wi Ta,i
=1

Zwi 0s,: p(cos 7, g:)

2=}

osp(cosj,g) =

and so on. Here w; is the volume fraction of the volume occupied
by material <.

Another very important property of real materials is that the
properties randomly vary or fluctuate. Such fluctuations cause
variation in the appearance of natural surfaces. This type of fluc-
tuation is easy to model with a random noise function or a texture
map.

Optical propagation in random media has been studied in a va-
riety of applications, including blood oximetry, skin photometry,
plant physiology, remote sensing for canopies and snow, the paint
and paper industry, and oceanic and atmospheric propagation. For
many examples the macroscopic parameters have been measured
across many frequency bands. A major attempt of our work is the
simulation of the appearance of natural surfaces by using mea-
sured parameters to be inserted into the subsurface reflection and
transmission formulas. This approach is similar to the attempt of
Cook & Torrance [8] to simulate the appearance of metallic sur-
faces by using appropriate values for the refractive index and the
roughness parameters.

4 Light Transport Equations

Linear transport theory is a heuristic description of the propagation
of light in materials. Transport theory is an approximation to elec-
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tromagnetic scattering theory, and hence cannot predict diffrac-
tion, interference or quantum effects. In particular, the specular
reflection of light from rough surfaces whose height variation is
comparable in size to the wavelength of incident light requires
the full electromagnetic theory as is done in He et al[12]. A nice
discussion of the derivation of transport theory from electromag-
netism and the conditions under which it is valid is contained in
an recent article by Fante[9]. The applicability of transport theory,
however, has been verified by its application to a large class of
practical problems involving turbid materials, including inorganic
materials such as ponds, atmospheres, snow, sand and organic
materials such as human skin and plant tissue[14].

Transport theory models the distribution of light in a volume
by a linear integro-differential equation.

OL(E,0,9)
ds B

—ot(Z, 0, ¢)+0s/p(56';9, ¢:0', 4L, 0, ¢")do' dg/

This equation is easily derived by accounting for energy balance
within a differential volume element. It simply states that the
change in radiance along a particular infinitesimal direction ds
consists of two terms. The first term decreases the radiance due
to absorption and scattering. The second term accounts for light
scattered in the direction of ds from all other directions. Thus, it
equals the integral over all incoming directions.

For layered media, the assumption is made that all quantities
only depend on z and not on z and y. This assumption is valid if
the incoming illumination is reasonably constant over the region
of interest. It is also roughly equivalent to saying the reflected
light emanates from the same point upon which it hits the surface.
With this assumption, the above equation simplifies to

cosg 2L6:9) _
Oz

~0 (6, ) + 06 /p(z; 0,0:8',6") L(¢', &) db' d¢’

The above equation is an integro-differential equation. It can
be converted to an equivalent double integral equation, whose
solution is the same as the original integro-differential equation.

I(z;0,¢) =

cos 8

[ stz p("10,6:6"8') L(z"30" ¢") do’ 25

This is the basis of most current approaches to volume rendering.

The 1-dimensional linear transport equation must also satisfy
certain boundary conditions. This is most easily seen by consid-
ering the forward and the backward radiance separately.

L@, ¢) = L(0,)+ L-(r — 0,¢)

Where L. is energy propagating in the positive z direction, and
L_ in the negative direction. Note that L_ is defined to be a
function of of = — @, the angle between the backward direction
of propagation and the negative z axis. It is important to re-
member this convention when using formulas involving backward
radiances.

At the top boundary the forward radiance is related to the inci-
dent radiance.

Li(z=0;0",¢") = /ft,s(ei,¢i§el, &Y Li(0:, ¢:) dw;
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This simply states that the forward component of radiance entering
the volume at the boundary is due to light transmitted across the
surface. If we assume a planar surface and parallel incident rays,
then f: . equals the Fresnel transmission term times a §-function
that picks up the appropriate angle of incidence.

Li(z=0:0",¢") = T"*(ny, ne: 6s, ¢ — 0',¢")Li(0;, )

In the more general case of a rough surface, f; s is given by a
transmission coefficient times the probability that light will refract
in the desired direction.

The boundary conditions at the top let us formally state the
contribution to reflection due to subsurface scattering in terms of
the solution of the integral equation at the boundary z = 0.

Lr,u(ar, ¢1) = /ft,s(07 ¢’ H‘r, ¢7‘) L_(Z = O,H,(Z))dw

Assuming a planar surface, this integral simplifies to
Lew(6r, ¢r) = T" (01,1636, ¢ — 0r, $)L—(2 = 0,0, ¢)

Similar reasoning allows the transmitted radiance to be deter-
mined from the boundary conditions at the bottom boundary.

Lt,u(at, ot) = /ft,s(o, @56, dt) L.(z=d;6, @) dw

Once again, assuming a smooth surface,
Leo(8e, ¢0) = T (n2, 13,0, — 0p, de) Lu(z = d; 0, ¢)

Thus, the determination of the reflection functions has been
reduced to the computation of L_(z = 0) and L.(z = d)—the
solution of the one-dimensional transport equation.

5 Solving the Integral Equation

There are very few cases in which integro-differential equations
can be directly solved. The most famous solution is for the case of
isotropic scattering and was derived by Chandrasekhar[7, p. 124].
Even for this simple phase function the solution is anisotropic.

The classic way to solve such an equation is to write it in
terms of the Neumann series. Physically, this can be interpreted
as expanding the solution in terms of the radiance due to an integer
number of scattering events. That is,

L= i A
=0

where L is the direct radiance assuming no scattering, L‘" is the
radiance due to a single scattering event, and L is the radiance
due to 7 scattering events. Similar equations apply to the forward
and backward radiances, L and L.

The radiance due to the ¢ scattering events can be written using
the following recurrence.

L'%*(2,0,¢) =

7
z - fz Tt _d_z% ; ’
fo e Jo TR o (0,68 ¢ L0760 deo! B2

cos 8

This is the basis for most iterative approaches for numerically
calculating transport quantities.
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Figure 4: Solutions for f;; and f:lf, for different values of g and
T4. From left to right the phase function shifts from predominately
backward scattering (g = —0.3) to isotropic scattering (g = 0.0)
to forward scattering (g = 0.6). From top to bottom the optical
depth of the layer increases from 0.5 to 1.0 to 2.0.

5.1 First-Order Approximation

Another classic result in radiative transport, also derived by Chan-
drasekhar[7], is the analytic solution to the integral equation as-
suming only a single scattering event. As mentioned previously,
this is equivalent to the method described by Blinn but derived
using a completely different technique [2].

The Oth-order solution assumes that light is attenuated by the
scattering and absorption, but not scattered. The attenuated inci-
dent light is called the reduced intensity and equals

LSO)(z) — L+(Z - O)e—‘r/coso

‘r(z)=/ ordz
0

is called the optical depth. If o, is constant, then 74 = od.

Using the boundary conditions for incident and reflected light,
and also rewriting the above equation in terms of the angles of
incidence and reflection, we arrive at the following formula for
the Oth-order transmitted intensity

Here,

Lf:(?)v(ety @) = TR 574 Li(6:, ¢)

By substituting the Oth-order solution, or reduced intensity, into
the integral equation, the 1st-order solutions for forward and back-
ward scattering can be calculated. The details of this calculation
are described in Chandrasekhar and Ishimura and there is no need
to repeat them here.

Using the boundary conditions for incident and reflected light,
and also rewriting in terms of the angles of incidence and re-
flection, we arrive at the following formula for the backscattered
radiance:

(n
Lr,v('9n Pr) =
cos @ ; — s@; S @ g
WT’ITZIp(7"_91"¢r;0‘i'¢"?)?mj:_0;70r%§_9:“*6 Tgll/ cos 8;+1/ cos 8, ’)Li(giyfﬁi)

This general formula shows that the backscattered light intensity
depends on the Fresnel transmission coefficients, the albedo, the
layer depth, and the backward part of the scattering phase function.

&

\
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~

66 o
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Figure 5: Solutions for f. and f;. In the left column is the
surface specular reflection and in the middle is the subsurface
reflection and transmission. On the right is the sum of surface
and subsurface modulated by the Fresnel coefficients. From top
to bottom the angle of incidence increases from 10 to 40 to 65
degrees.

A special case of this equation is Seeliger’s Law, the first at-
tempt to model diffuse reflection from first principles[25]. Seel-
iger’s Law can be derived by assuming a semi-infinite layer
(14 = 0o) and ignoring Fresnel effects.
cos &;

Lr,v(eT'; ¢7') = m

Li(6:, ¢:)

At the boundary z = d, the forward scattered radiance is given
by
LY(0s,de) =

WTIZTZJp(gt»GSt;ei,¢i)ws;?,0cf“ - (e""d/“‘“ 8, 76—1“1/(:()4\ et)Li(gi)¢i)

For cos 8; = cos 8, the singular factors can be avoided by using
L’Hospital’s rule, yielding
Td

Lil,')u(eta ¢f) = WT]ZTZSP(et) ¢t, eta ¢f) ede/ cos O L,-(@t, ¢t)

cos 6

Figure 4 shows f., and f;, for various values of g and d.
Figure 5 shows the surface and subsurface components of the
reflection model for various angles of incidence. These reflection
and transmission distribution functions have several interesting
properties:

1. The reflection steadily increases as the layer becomes thicker;
in contrast, the transmission due to scattering increases to a
point, then begins to decrease because of further scattering
events.

2. Subsurface reflection and transmission can be predominately
backward or forward depending on the phase function.

3. As the angle of incidence becomes more glancing, the surface
scattering tends to dominate, causing both the reflection and
the transmission due to subsurface scattering to decrease.

4. Due to the Fresnel effect, the reflection goes to zero at the
horizons. Also, the reflection function appears “flattened”
relative to a hemicircle. Thus, reflection for near normal
angles of incidence varies less than Lambert’s Law predicts.

5. The distributions vary as a function of reflection direction.
Lambert’s Law predicts a constant reflectance in all direc-
tions (which would be drawn as a hemicircle in these dia-
grams).
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Figure 6: Determining first-order solutions for multiple layers.
On the left, the contribution to the first order solution for a single
layer. One the right, the contribution to the first order solution
due to reflectance off a single layer.
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The above formulas can be used to generate first-order solutions
for multiple layers. (This is shown diagrammatically in Figure 6.)
The total first-order scattering will be the sum of the first-order
scattering from each layer, weighted by the percentage of light
making it to the layer and returning from the layer. The percentage
of light making it to the layer is the product of the Oth-order
transmission functions (or reduced intensity) for a path through
the layers above the reflecting layer. Similarly, the percentage of
light leaving the entire layer after reflection is equal to the product
of the Oth-order transmission functions for the path taken on the
way out. Note that across each boundary the light may refract, and
thus change direction and be attenuated by the Fresnel coefficient,
but this is easy to handle. The process simplifies, of course, if
each layer has the same index of refraction, since no reflection
or change of direction occurs between layers. Given the above
formulas it is very easy to construct a procedure to perform this
calculation and we will make use of it in the results section.

The above formula can also be generalized to include reflection
from a boundary between layers. In many situations reflection can
only occur from the bottom layer. In this case, we add a single
term accounting for the reduced intensity to reach the lower bound-
ary, and also weight the returning light from that boundary. Such
a model is commonly employed to model the reflection of light
from a pool of water[15], and has been employed by Nishita and
Nakamae[22]. Further generalizations of this type are described
in Ishimura[14, p. 172].

6 Multiple Scattering

The above process of substituting the ith-order solution and then
computing the integral to arrive at the (i+1)th-order solution can
be repeated, but is very laborious. Note that subsequent integrals
now involve angular distributions, because, although the input ra-
diance is non-zero in only a single direction, the scattered radi-
ance essentially comes from the directional properties of the phase
function. Thus, this approach to solving the system analytically
quickly becomes intractable.

We have implemented a Monte-Carlo algorithm for computing
light transport in layered media. This algorithm is described in
Figure 7. A thorough discussion of the application of Monte Carlo
algorithms for layered media is discussed in the book [21], and
the techniques we are using are quite standard.

To investigate the effects of multiple scattering terms, we sim-
ulated a semi-infinite turbid media with different albedos. The re-
flectance was computed and when the particles returning from the
media are scored, we keep track of how many scattering events
they underwent. Figure 8 shows the results of this experiment.
The top curve is the total reflectance, and the lower curves rep-
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1 Initialize: A particle enters the layer at the origin. Initialize p'to the
origin and the direction & to the direction at which the ray enters
the layer. Set the weight w = 1.

2 Events: Repeat the following steps until the ray weight drops below
some threshold or the ray exits the layer.

2A Step: First, estimate the distance to the next interaction:

d=_ 8T
o

Where r in this and the following formulas is a uniformly
distributed random number between O and 1. Then, com-
pute the new position:

p=p+ds§
And, finally set the particle weight to

Js

w=w
05 +0g
Note: If d causes the particle to leave the layer, break from
the repeat loop and adjust the weight using the distance to
the boundary.
2B Scatter: First, estimate the cosine of the scattering angle for
the Henyey-Greenstein phase function using the following
formula.

1 2
29|
and cos ¢ and sin ¢ with ¢ = 27rr. Then, compute the new
direction:

. 1 -
cosj = == (1+¢° — (5 gy,

— g+2gr

(S.zcos ¢pcos @ — 5.y sing)/ sinb
(S.ycos¢cosf + 5.zsing)/sind
sin 6

o+
1]

5§ = Fcosj+tsing
Here, cos@ = 5.z and sinf = /1 — 5.22. Note: Care
must be taken if sin @ = 0.

3 Score: Divide the sphere into regions of equal solid angle and add
the weight of the particle to the weight associated with the bin
in which it is contained.

Figure 7: Basic Monte Carlo algorithm for layered media

resent scattering up to some order. Note that when the albedo
is high, implying that s >> o, the first order term is only a
small percentage of the total reflectance. However, as the albedo
decreases, corresponding to greater absorption, a few low-order
terms accurately approximate the reflectance. This effect can be
explained by recalling that each term in the Neumann series rep-
resenting the reflection is on the order of W*, and since W is
always less than one, the magnitude of higher-order terms quickly
goes to zero.

We have also computed the BRDF as a function of the angle of
reflection using our Monte Carlo algorithm for the same configu-
ration as described in the last experiment. The results are shown
in Figure 9. Recall that the 1st-order reflection due to a semi-
infinite media is given by Seeliger’s Law: cos 0;/(cos 8; +cos 6;).
The computed Ist-order BRDF matches the theoretical result quite
well. In this figure we also plot the total BRDF due to any num-
ber of scattering events, and the difference between the total and
the 1st-order BRDF. Note as in the previous experiment when the
albedo W is small, the BRDF is closely approximated by the 1st-
order term. However, note that the shape of the reflection function
is also largely determined by the shape of the 1st-order reflection,
which in turn is largely determined by the phase function. Fur-
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Figure 8: A plot of reflectance versus albedo for a semi-infinite
media. The top curve is the total reflectance (the total radiant
energy per unit area reflected divided by the incident irradiance).
The bottom curve is the reflectance assuming only a single scat-
tering event. Moving upward is a sequence of curves consisting
of additional terms corresponding to a single additional scatter-
ing event. The first 10 terms in the solution are shown; In our
simulations, we recorded terms involving thousands of scattering
events.

ther, observe that the difference between the 1st-order solution
and the full solution is approximately independent of the angle of
reflection. Thus, the sum of the higher order terms roughly obeys
Lambert’s Law. For this reason it is often convenient to divide
the subsurface reflection into two terms:

Lro(Or, ¢r) = LOr, ) + L™

where L™ is constant and represents the sum of all the multiple
scattering terms.

Finally, we have begun preliminary experiments where we in-
corporate a Monte Carlo subsurface ray tracer within a standard
ray tracer. When the global ray tracer calls the subsurface ray
tracer it attempts to estimate the BRDF and BTDF to a particular
light source. This is done by biasing the Monte Carlo procedure
to estimate the energy transported to the light. A simple method
to do this is to send a ray to the light at each scattering event, as
described in Carter and Cashwell[6]. This ray must be weighted
by the phase function and the attenuation caused by the traversal
through the media on the way to the light. If the albedo is less than
1, then only a few scattering events are important, and thus the
subsurface ray tracer consumes very little time on average (the
cost is proportional the the mean number of scattering events).
Also, since the subsurface ray tracer does not consider the global
environment when tracing its rays, the cost of subsurface Monte
Carlo simulation at every shading calculation is relatively low.
The advantage of this approach is that the BRDF’s do not have
to precomputed, and so if material parameters are varying across
the surface, the correct answer is still estimated correctly at each
point.

7 Results

The subsurface scattering models developed in this paper has been
tested on two common natural surfaces: human skin and plant
leaves. The goal of these experiments are twofold: First, to
compare our anisotropic diffuse reflection model with Lambertian
shading. Second, to attempt to simulate the optical appearance
from measured parameters. Our experiments are meant to be sug-
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0.06 —
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fr
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0.00 T T T 1 T T T 1
00 02 04 06 0.8 1.0 0.0 02 04 06 08 1.0

cosr cosr

Figure 9: Graphs of the BRDF (f,) as a function of the angle
of reflection for a semi-infinite slab with different albedos (on the
left W = 0.4 and on the right W = 0.8) and an angle of inci-
dence of 45°. The solid line is the theoretical BRDF as given
by Seeliger’s Law (the superimposed dashed line is the computed
Ist-order BRDF showing a good match). The top dashed curve
is the total computed BRDF; The bottom dotted curve is the dif-
ference between the total BRDF due to multiple scattering events
and the 1st-order BRDF.

Property Epidermis | Dermis | Pigment | Blood
n 1.37-1.5 1.37-1.5 | 1.37-1.5 | 1.37-1.5
o, [mm™'] | 3.8 0.3 32.6

os [mm™'] | 50.0 21.7 0.96

d [mm] 0.001-0.15 | 1-4

g 0.79 0.81 .79 .0

Table 2: Two Layer Skin Model Properties. Pigment coefficients
are mixed with epidermal coefficients to compute the properties
of the outer layer. Blood coefficients are mixed with dermal co-
efficients to compute the properties of the inner layer.

gestive of the power of this approach; we do not claim to have an
experimentally validated model.

7.1 Skin

Human skin can be modeled as two layers with almost homo-
geneous properties. Both layers are assumed to have the same
refractive index but a different density of randomly distributed
absorbers and scatterers. The outer epidermis essentially consists
of randomly sized tissue particles and imbedded pigment parti-
cles containing melanin. The pigment particles act as strongly
wavelength dependent absorbers causing a brown/black coloration
as their density increases. The inner dermis is considered to be
a composition of weakly absorbing and strongly scattering tissue
material and of blood which scatters light isotropically and has
strong absorption for the green and blue parts of the spectrum.
Experimental evidence also supports the hypothesis that light scat-
tering in the skin is anisotropic with significant forward scattering.
A comprehensive study of optical properties of human skin can
be found in van Gemert et al.[27]. The values chosen for our test
pictures are given in Table 2. We also add a thin outer layer of
oil that reflects light using the Torrance-Sparrow model of rough
surfaces.

A head data set was acquired using a medical MRI scanner.
Unfortunately, the ears and the chin were clipped in the process,
but enough of the head is visible to test our shading models. A
volume ray tracer was adapted to output the position and normal
vector of the skin layer for each pixel into a file, and this input
was used to evaluate the shading models described in this paper.

The influence of the various factors appearing in the subsur-
face reflection formula are shown on Plate 1. These pictures are
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A legitimate criticism of our work is that we did not directly
compare the predictions of our model with experiment. The pre-
dictions of our model and the influence of measured material pa-
rameters should be checked carefully. However, we believe that
this model has many applications in computer graphics even if
it does not perfectly predict measured reflection functions. The
metaphor of layered surfaces is very easy for users to understand
because is a natural way to describe phenomenologically the ap-
pearance of many materials. It also fits easily into most rendering
systems and can be implemented efficiently.

Finally, transport theory is a heuristic theory based on abstract-
ing microscopic parameters into statistical averages. Transport
theory is also the basis of the rendering equation, which is widely
viewed as the correct theoretical framework for global illumina-
tion calculations. In this paper we propose to model surface re-
flection from layered surfaces with transport theory. Thus, when
our reflectance model for layered surfaces is incorporated into a
ray tracer, there is a hierarchy of transport calculations being per-
formed. Within this hierarchy, the lower level transport equation
computes the reflectance for the higher level transport equation.
When performing this calculation, the lower level transport equa-
tion uses as its initial conditions the values from the higher level
transport solution. Thus the two levels are coupled in a very sim-
ple way. In fact, it is possible to reformulate transport theory
entirely in terms of reflection functions, the result is an integral
equation for the reflection function itself; in this formulation the
radiance does not appear at all. Coupling transport equations at
different levels of detail in this manner is a promising approach
to tackling the problem of constructing representations with many
different levels of detail as proposed by Kajiya[17].
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Display of The Earth Taking into Account Atmospheric Scattering
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Abstract

A method to display the earth as viewed from outer space
(or a spaceship) is proposed. The intention of the paper
is application to space flight simulators (e.g., reentry to
the atmosphere) and the simulation of surveys of the earth
(comparisons with observations from weather satellites and
weather simulations); it is not for geometric modeling of ter-
rains and/or clouds viewed from the ground, but for display-
ing the earth including the surface of the sea viewed from
outer space taking into account particles (air molecules and
aerosols) in the atmosphere and water molecules in the sea.

The major points of the algorithm proposed here are the
efficient calculation of optical length and sky light, with
lookup tables taking advantage of the facts that the earth
is spherical, and that sunlight is parallel.

CR Categories and Subject Descriptors:

1.3.3 [Computer Graphics)]:Picture/Image Generation
1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Key Words: Earth, Atmospheric Scattering, Optical
Length, Sky light, Color of Water, Photo-realism,
Radiative Transfer

1 INTRODUCTION

Research on image synthesis of realistic 3-D models is one
of the most popular fields these days. Displays of natural
scenes such as mountains, trees, sea, clouds have been at-
tractively rendered, and an image synthesis of the earth has
also been developed. Images of the earth are widely used
in movies or TV commercials, e.g., the CG library of earth
images[6] was recently released for use in this field. These
images, however, are focused on how to create attractive
images without any requirement of physical based accuracy.
However, physically-based images are required for the study
of the simulation of surveys of the earth, such as observation
from weather satellites in comparison to weather simulation,
and flight simulators in space. The color of the earth when
viewed from space varies according to the relationship be-
tween the view direction and the position of the sun. In the
famous words of the astronaut, “the earth was blue”. When
we observe the earth from relatively close to the atmosphere,
the atmosphere surrounding the earth appears as blue, and
the atmosphere near the boundary of the shadow due to the
sun appears red (i.e., sunset). The color of clouds also varies
according to the sun’s position. These phenomena are opti-
cal effects caused by particles in the atmosphere, and cannot
be ignored. The color of the surface of the sea is not uni-
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form, such as navy blue; it has various colors which depend
on incident light to the sea and absorption/scattering effects
due to water molecules.

This paper proposes an algorithm of physically-based im-
age synthesis of the earth viewed from space. The method
proposed here has the following advantages:

(1) Calculation of the spectrum of the earth viewed
through the atmosphere; the earth is illuminated by
direct sunlight and sky light affected by atmospheric
scattering.

(2) Calculation of the spectrum of the atmosphere taking
account of absorption/scattering due to particles in the
atmosphere.

(3) Calculation of the spectrum on the surface of the
sea taking into account radiative transfer of water
molecules.

The major parts in 1) and 2) are concerned with the calcu-
lation of optical length and sky light. For these calculations,
numerical integrations taking into account atmospheric scat-
tering are required, but they are effectively solved by using
several (various) lookup tables making good use of the facts
that the shape of the earth is a sphere and that sunlight is
a parallel light. For 3), we show that an analytical solution
is available instead of numerical integrations.

In the following sections, the basic idea of the lighting
model for rendering the color of the earth taking into ac-
count atmospheric scattering, rendering the color of clouds,
and spectrum calculation of the sea is described. Finally,
several examples are demonstrated in order to show the ef-
fectiveness of the method proposed here.

2 BASIC IDEAS

In order to render the earth, the following elements should
be taken into account: a geometric model of the earth, the
atmosphere (air molecules, aerosols), sea, clouds, and the
spectrum of the sunlight.

This paper discusses rendering an algorithm of the earth,
the atmosphere, sea, and clouds viewed from outer space
or various positions within the atmosphere; the following
optical characteristics should be considered:

(1) The color of the atmosphere: the atmosphere contains
air molecules and aerosols, and scattered sunlight from
those particles reaches the viewpoint; the intensity of
the light reaching the viewpoint is obtained by inte-
grating scattered light from every particle on the ray,
and the light scattered from the atmosphere around the
earth also reaches this viewpoint.

(2) The color of the earth’s surface: the earth is illumi-
nated by both direct sunlight and sky light. Sunlight
is absorbed when light passes through the atmosphere,
and sky light consists of light scattered by particles in
the air. On the way, passing through the atmosphere
the light is attenuated, and its spectrum changes.
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(3) The color of the sea: sunlight reaching the surface of
the sea is divided into reflected light at the surface and
light scattered from water molecules. Both of them pass
through the atmosphere and reach the viewpoint.

(4) The color of clouds: sunlight is scattered from particles
- of clouds, the scattered light is attenuated and reaches
the viewpoint.

These phenomena should be simulated as precisely as pos-
sible in the calculation of the spectrum of the earth and the
atmosphere. As we intend to concentrate on close views of
the earth, the bumped terrain model of the earth is used in-
stead of a simple sphere; the continents are modeled by 3D
fractals, and the sea is expressed by a sphere consisting of
some curved surfaces. Geometric models such as a spaceship
are also dealt with.

For hidden surface removal, the scanline algorithm for free
form surfaces developed by the authors is employed[11]; the
surfaces are expressed by Bézier surfaces.

3 MODELING OF THE EARTH

Even though we may use a modeling in which the earth
is treated as a sphere and the land is modeled by bump
mapping, we consider the earth as having two components,
land and sea: the sea consist of eight cubic Bézier patches,
and the land consists of a set of curved surfaces.

The land data is made by mapping small patches onto the
sphere, which are subdivided by using fractals after giving
the altitude data for each mesh point overlapped onto a
world map: the random midpoint displacement algorithm is
employed as a fractal.

A scanned image of the map is used as the texture of the
land. Therefore the color is not the real color of the earth.

4 SPECTRUM OF THE ATMO-
SPHERE

Previous work taking account scattering/absorption due to
particles include; a) the display of Saturn’s rings (reflective
ice particles){1], b) for light scattering from particles in the
air, shafts of light caused by spot lights[12], and light beams
passing through gaps in the clouds or through trees[8], c)
scattered light due to nonuniform density particles such as
clouds and smoke[12][4], d) sky color taking account atmo-
spheric scattering{5]. In this paper we focus our discussion
on the atmosphere. On this topic, Klassen{5] approximated
the atmosphere as multiple layers of plane-parallel atmo-
sphere with uniform density; however, this method results
in a large error near the horizon. We discuss here a spherical-
shell atmosphere with continuous variation of density in or-
der to improve accuracy. Though his method can only ren-
der the color of the sky viewed from a point on the earth,
the method discussed here can render the color of the atmo-
sphere viewed from space.

The color of the atmosphere is much influenced by the
spectrum of the sunlight, scattering/absorption effects due
to particles in the air, reflected light from the earth’s sur-
face, and the relationship between the sun’s position and the
viewpoint (and direction). The sunlight entering the atmo-
sphere is scattered/absorbed by air molecules and aerosol,
and ozone layers. The characteristics of scattering depend
on the size of particles in the atmosphere. Scattering by
small particles such as air molecules is called Rayleigh scat-
tering, and scattering by aerosols such as dust is called Mie
scattering. Light is attenuated by both scattering and ab-
sorption.
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sunlight

Figure 1: Intensity calculation for the ray intersecting only
with the atmosphere.

4.1 Assumptions for Spectrum Calculation

For the spectrum calculation, we use the following assump-
tions:

(1) The multiple scattering of light between air molecules
and aerosols in the atmosphere is ignored because of
its negligible values and large computational cost, so
only single scattering is considered. The interreflection
of light between the earth’s surface and particles in the
air is also neglected because of the same reasons.

(2) For visible wavelengths, absorption in the ozone layer
is negligible compared to absorption by air molecules
and aerosols.

(3) The density distributions of air molecules and aerosols
are taken into account; their densities vary exponen-
tially with altitude[16].

(4) It is assumed that light travels in a straight line even
though the actual path is curved due to the variation
of index of refraction with altitudes.

4.2 Atmospheric Scattering

Let’s consider scattering due to air molecules and aerosols.

First, single scattering due to air molecules is described.
The light reflected due to Rayleigh scattering, I, is generally
given by the following equation;

I(),8) = L(\)K pF(0)/)*
- 212(712 - 1)2

K IV (1)

where I, is the intensity of incident light, K is a constant

for the standard atmosphere (molecular density at sea level),
0 the scattering angle (see Fig. 1), F, the scattering phase
function indicating the directional characteristic of scatter-
ing ( given by 3/4(1+cos?(8))), X the wavelength of incident
light, n the index of refraction of the air, N; the molecular
number density of the standard atmosphere, and p the den-
sity ratio. p depends on the altitude & (p = 1 at sea level)
and is given by

p= ezp(;{—?), (2)

where Hy is a scale height (H, = 7994m), which corresponds
to the thickness of the atmosphere if the density were uni-
form.

Eq. (1) indicates that the intensity of scattering is in-
versely proportional to the 4th power of the wavelength.
Short wavelength light is very strongly attenuated by
traversing the atmosphere, but long wavelength light is
scarcely affected. This is why the sky appears blue in the
daytime. Conversely, at sunset or sunrise, the distance tra-
versed by the light increases, and the color of sky changes
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to red because of increased scattering of short wavelengths.
The attenuation coefficient 8 (i.e., the extinction ratio per
unit length) is given by

87&'3(11,2 - 1)2 41K
p= 3N, T (3)

As shown in Fig.1, the light reaching viewpoint P, can be
obtained as the remainder after scattering and absorption
due to air molecules along the path between P, and P,.
The light at P has been attenuated due to travel in the
atmosphere (PcP), and the light scattering from P is also
attenuated before reaching Py.

To calculate the attenuation caused by particles for light
of wavelength X traversing distance s, we use the optical
depth, which is obtained by integrating § of Eq. (3) along
the path s. Let’s denote the integration variable s and the
distance S, then the optical depth is given by

S S
t(S,A):/ ﬂ(s)p(s)ds:4:{{/ p(s)ds  (4)

Next, single scattering due to aerosols is described. Scat-
tering optics and the density distribution for aerosols differ
from air molecules; Eq. (4) is different, too. Because the size
range of particles of aerosols is very great, Mie scattering is
applied for the phase function in Eq. (1) which exhibits a
strong forward directivity. The Henyey-Greenstein function
is well known as a phase function. Recently, Cornette[18]
improved it, which gives a more reasonable physical expres-
sion:

3(1-g¢?%) (1 + cos’8)

F(0,9)= 22+ g%) (1 + g2 — 2gcosf)®/?’

(5)

where ¢ is an asymmetry factor and given by

2 4

-1/3 1/3
81u )z +z/,

I
9=3 3
5125 5 64 325 , . 1250 4.
z=gut v 7~ 35% t o)

’

where if ¢ = 0 then this function is equivalent to Rayleigh
scattering. u is determined by the atmospheric condition
(e.g., haze) and wavelength; u varies from 0.7 to 0.85(see
(18]).

Like the density distribution of air molecules, the density
of aerosols decreases exponentially with altitude, but the
rate of decrease is different from that of air molecules. The
density can be obtained by setting the scale height, H,, of
Eq. (2) to 1.2km[16].

4.3 Intensity Calculation due to Atmospheric
Scattering

Let’s discuss a ray from viewpoint P, to the earth, the light
reaching the viewpoint has the following three passes: a) the
ray passing through only the atmosphere, b) the ray inter-
secting with the earth, c) the ray passing through only space.
For c) intensity calculation is not required. The calculation
methods for a) and b) are described in the following.
4.3.1 Spectrum calculation for only the atmosphere
Let’s discuss light scattering due to air molecules on the
ray passing just through the atmosphere. The discussion
for aerosols is omitted because the optics is similar except
for 1/A* dependence. As shown in Fig.1, the light reaching
P, can be obtained as the remainder after scattering and
absorption due to air molecules along the intersection line

sunlight

atmosphere

viewpoint

Figure 2: Intensity calculation for the ray intersecting with
the earth.

between the ray and the atmosphere, PyP,. The intensity of
the light scattered at point P (at distance s from Py) in the
direction of Py, Ip, is obtained by Eq.(1). The light scattered
at P is attenuated before arriving at P,. The intensity of
the light arriving at P, Ip, can be obtained by setting the
integration interval to PP in Eq. (4) of optical depth, that
is

L) = LK F-(0)p57eop(~t(PP.,N),  (6)

where I, is the solar radiation at the top of the atmosphere,
and t(PP., ) the optical depth from the top of the atmo-
sphere to point P (I is the integration variable) and given
by

#(PP,,\) = / "B p(1)dl.

As the light scattering from P is also attenuated before
reaching P,, the intensity of the light reaching P,, I,,, can
be obtained by multiplying the attenuation by the intensity
at P, that is

I, () = Iy(A)exp(~t(PPq, A)). )

As the distance to the sun can be considered almost infinite,
the sunlight can be assumed to be a parallel beam. Thus
the scattering angle at every point along P, P can be con-
sidered constant. That is, I, reaching P, can be obtained
by integrating scattered light due to air molecules on Py Ps:

L)) = /Pb Tpu(N)ds

Pa

KF,(0) [P

= I'(A)T A p exp(—t(PPc, ) — t(PP,,X))d{8)

4.3.2 Spectrum calculation of the earth

Let’s consider the ray intersecting with the earth as shown
in Fig.2. The intensity scattered due to particles on the
path, P.Ps, can be obtained in the same manner as the
description in 4.3.1. When point P coincides with point P
(i.e., on the earth surface), the light reaching the viewpoint
is obtained by adding reflected light from the earth to the
light scattered due to molecules on P, P;. The intensity of
light reaching viewpoint P,, I,, is expressed by

I,(X) = L)) + I.(A)exp(=t(Pa Py, X)), (9)

where I, is the scattered light of Eq. (8). I, is reflected light
at the earth;the direct component of sunlight and ambient
light. The ambient light is mainly sky light. By considering
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viewpoint
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Figure 3: Calculation of sky light and shadow detection due
to the earth.

attenuation of sunlight reaching the earth surface, I, is given
by

L)) = r(A)(cosa Is(A) exp(—t(PePs, X)) + Lt y(\, @),

(10)
where r()) is the diffuse reflection of the earth, a the an-
gle between the normal vector of the earth and light vector
(sunlight), and I,., sky light. The direct component is small
at the region where « is large (i.e., nearby the boundary of
shadow) and tends to be reddish because of its long optical
length.

Sky light is scattered light due to particles in the atmo-
sphere. The radiance distribution of sky light can be ob-
tained by setting the viewpoint on the earth in Eq.(8). As
we are discussing the earth as viewed from space, shadows
caused by obstacles on the surface are ignored, even though
we take into account shadows due to the earth itself. That is,
fo;: shadow calculation, the earth is assumed to be a sphere
with a smooth surface. Sky light due to scattered light from
clouds is also ignored here. The illuminance at point Q on
the earth due to the whole sky is obtained by using the fol-
lowing method: let’s consider an element on a hemisphere
whose center is Q (see Fig.3), calculate the intensity at each
element on the hemisphere, and project each element onto
the.base of the hemisphere, then the illuminance is obtained
by integrating the intensity of each element by weighting its
projected area[13].

Isky is calculated as follows: as shown in Fig.3 (a), the
b.ase of the hemisphere is divided into a mesh. Let’s con-
sider point P;; on the hemisphere, which is mapped onto
the hemisphere of the mesh point p;; inversely, and calcu-
late the intensity in the direction of QP;;. The illuminance
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due to the whole sky is obtained by adding intensities at
every mesh point within the base circle of the hemisphere.
As shown in Fig. 3(a), the z-axis is set so that the sun exists
on the z — z plane; the region in the half circle (e.g., y > 0)
is enough to get I;iy because of symmetry.

The radiance distribution of the sky is determined by an-
gle a between the normal of the surface of the earth and
the direction of the sunlight. Even though the direction of
the sunlight is different at each point on the earth, the il-
luminance due to sky light (integrated values) at any point
with the same angle o has the same value (e.g., @ and Q'
in Fig.3). This means that the illuminance due to sky light
at arbitrary angle o can be obtained by linear interpolation
of a precalculated lookup table of I,ry. Note that Iy is
not zero at regions where there is no direct sunlight (a > 90
degrees, e.g., P, in Fig.3), so that I 3y for = 0 to a =110
degrees must be prepared in the lookup table.

4.3.3 Detection of shadow caused by the earth

As shown in Fig.3 (b), point P on the ray exists in the
shadow region caused by the earth (we refer to it as a shadow
volume), the scattered light in this region is zero because
there is no incident light. Therefore it is sufficient to consider
only attenuation in this region.

As the shadow volume is expressed by a cylinder, which
is obtained by sweeping the circle (i.e., the contour of the
earth viewed from the sun), the shadow segment on the ray
can be calculated as the intersection segment between the
cylinder and the ray.

4.3.4 Calculation of optical depth

The optical length of air molecules is calculated by numer-
ical integration of Eq. (4) ( in the case of aerosols, the den-
sity distribution and the extinction coefficient are different).
The optical length is calculated by trapezoidal integration of
sampled density. The optical length at sampling point P; on
the ray is obtained by adding the optical length of interval
P;_, P; to the optical length at P;_;. Therefore the integra-
tion of the optical depth should start from the viewpoint.
The optical length between the light source and point P; on
the ray is also required (e.g., PP. in Fig.1). This calculation
1s required at every sampling point on the ray; optimization
should be considered because of computational expense. We
use a lookup table to save on computation time.

The density distribution of particles in the atmosphere
varies exponentially with altitude. This means that the er-
rors in the numerical integration become large when it is
performed with a constant interval. Intervals which are in-
versely proportional to the density are desired; that is small
intervals for low altitude and long intervals for high altitude.
In order to realize this condition, the atmosphere is assumed
as multiple spherical-shells. The radius of each sphere is
set so that the difference in density between every adjacent
sphere is within a given value. As a result, the difference be-
tween the radii of the shell is small for low altitude, and is
large for high altitude, as shown in Fig.4. As Rayleigh scat-
tering governs the calculation of optical length, the radius
of each sphere is determined by the density distribution of
air molecules. Let’s consider N layers of spheres. The radius
is given by(see Fig. 4)

r; = Holog(pi) + R, pi=1.—i/N, (11)
where R is the radius of the earth. For z = N, ry is set
to the radius of the atmosphere. For aerosols, the scale
height is smaller than that for air molecules; aerosols mainly
exist at low altitude. Therefore aerosols exist in the dense
radii of shells; this fact assures the correctness of the above
mentioned algorithm.
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Figure 4: Calculation of optical depth.

The sampling points used in the integration are employed
as the intersection points between the ray (view sight or light
ray) and the multi-imaginary spheres and these intersection
are easily obtained. The density at every sampling point
is easily found from the lookup table indexed by the index
numbers of the sphere, which is easily get from the altitude
of the point.

The optical length between the sun and an arbitrary point
on the ray can easily be precalculated because the earth is
a sphere and sunlight is parallel light. As shown in Fig.4,
let’s consider a cylinder defined by sweeping the circle which
passes through the center of the earth and is perpendicular
to the light direction. Every optical length at the intersec-
tion (i.e. circle) between the cylinder and each one of the
multi-imaginary spheres is equal (e.g., P and P’ in figure).
The optical lengths at the intersection points between the
cylinders with radius C; and the spheres with radius r; is
calculated(e.g.,Po P in fig.) and are stored in the lookup ta-
ble. The optical depth at arbitrary point P on the ray is
easily calculated by linear interpolation, after the radius of
the cylinder including P and the radius of the sphere are cal-
culated. The lookup table here is 2D array: [ri, C;]. After
getting indeces ¢ and j from point P, the optical depth can
be obtained by linear interpolation from [r;, C;],[ris1,C)l,
[ris1, Cinal[rs, Cina].

As described above, the light intensity of one wavelength
reaching the viewpoint can be calculated by numerical in-
tegration with respect to pass length. Therefore the light
intensity in the range of visible wavelengths ( r, g, b in this
paper) can be calculated.

5 THE COLOR OF CLOUDS

Since the geometric modeling of clouds is not our main sub-
ject, we are displaying the earth as viewed from space, clouds
are simply modeled by applying 2D fractals. That is, the
density distribution of clouds is expressed by mapping the
fractal images of the necessary Mandelbrot set (0.39032+
0.23775i is used in this paper)[15]. To take into account
clouds with various altitudes, multiple imaginary spheres
are employed to map fractal images on them.

Their color is determined by the following two light paths.
One is on the light which passes through the atmosphere of
scattered light due to cloud particles, again passing through
the atmosphere, and reaches the viewpoint. Another one is
on the light which passes through the atmosphere, reflected
light at the earth’s surface is attenuated by cloud particles,
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Figure 5: Calculation of color of water surface.

again passing through the atmosphere. Multiple scattering
in clouds is ignored here.

The size of particles in clouds is larger than that of air
molecules or of aerosols. Light scattered by such large par-
ticles is little influenced by wavelength. ( However, the spec-
trum of incident sunlight onto clouds depends fairly strongly
on the sun position.) The light reflected from clouds depends
on the phase function ( the angle between the view vector
and light vector); the phase function is expressed by Eq.(5)
(see reference[18] on the value u). In the case of clouds not
being illuminated by the sunlight because of the shadow due
to the earth; the shadow detection is executed by using the
shadow volume described before. The shadows on the earth
due to clouds are ignored in this paper. In the near future,
a more precise model for clouds is slated in order to get im-
ages of the earth viewed from relatively close to the earth’s
surface.

6 COLOR OF THE SEA

Let’s consider the light reaching a viewpoint from the surface
of the sea, There are three paths (see Fig. 5): (1) reflected
light on the water surface, (2) scattered light due to particles
within the water leaving the water surface (3) attenuated
light passing through the sea after reaching the bottom of
water.

Calculation methods of the color of water have been de-
veloped by Max[8], Fournier[2], Ts’o[17], and Mastin[7] .
However their methods focused on (1) and shapes of waves,
and did not refer to (2)(scattered light due to particles in the
water). The method proposed here takes into account (1)
and (2). Furthermore the attenuation of the light passing
through the atmosphere is taken into account. For (3), the
light from the bottom of the sea can be neglected because
of the depth of the sea.

When the light is incident to the water surface, the light
path is divided into reflection and refraction. The relation
between the reflection and refraction on the water surface
obeys Fresnel’s law of reflection. Incident light is refracted
at the water surface; the relation between the incident angle
and reflection angle obeys Snell’s law. The refracted light
is scattered/absorbed by water molecules in the sea, and
reaches the viewpoint after refracting at the water surface
again. For this phenomena, Gordon and McCluney [3, 9]
proposed a quasi-single-scattering (QSS) model based on the
radiative transfer equation. However, in the model the sun’s
position is limited to the zenith. We improved upon this.
The light intensity transmitted in water, Ipg, is given by

o L(ATH8ii,8:0)Te(85:,050)8(5,))
IPQ(H::, 0;0, z) - n,’(COS 9.-0 + cos at.)c(A)[]_ - u)o(A)F(A)]
X(1 = ezp(—zc(A)[1 — wo(A)F(A)](secb;; + secbio)),
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(12)
where A is wave length, z the depth of the sea, §;; the angle
between the surface normal at point P and the direction of
the viewing direction, f;, the angle between the direction
of the zenith and the direction of incident sunlight, 8;, the
angle between the reverse direction of the zenith and the
sunlight after refraction, I;(A) the irradiance of sunlight just
above the water surface, n the refractive index of water, T;
and T, the transmittance of the incident light at point S
and P, respectively, ¢(A) the attenuation coefficient of light
which expresses the ratio of lost energy of light when the
light travels a unit length, § a volume scattering function
we the albedo of water , and F the fraction of the scattering
coeflicient in a forward direction. Data of 8, wo, and F used
in this paper is obtained from [10]. Eq. (12) shows that the
color of water depends on the depth, the incident angles and
viewing direction. The surface of the sea is not flat, and is
a spherical surface (i.e., the normal vector of each point on
the surface is different); the color of the sea varies according
to the position because the incident and viewing angles to
the surface normal at each position are different.

As described above, both the incident light to the sea and
the color (intensity) of the sea are attenuated by the atmo-
sphere. By using the same method as described in 4.3.2, this
effect can be calculated by taking into account two optical
lengths; from the sun to the surface and from the surface to
the viewpoint.

7 EXAMPLES

Fig. 6 shows an example of the color of the atmosphere.
The color of the earth is assumed to be black in order to
demonstrate the atmospheric color only. The position of
the sun is behind and to the left of the observation point.
Even though the earth is assumed to be a black body, it
looks blue, and the boundary of the earth is white.

Fig. 7 shows the images of the earth with texture-mapped
continents viewed from space; the location of the observa-
tion is at altitude 36,000 km, which corresponds to the al-
titude of the Japanese weather satellite called Himawari, at
135°E 0° N and the direction of the sun.is 70° E 20° N. In
Fig. (a), the color of the sea, direct sunlight, and sky light
are taken into account, but the attenuation from the earth
to the viewpoint is ignored(i.e., it corresponds to the color
when the observer stands on the earth). In Fig. (b), atmo-
spheric scattering /absorption is also taken into account (i.e.,
the color of the atmosphere is added). In Fig. (c), clouds
are added.

Figs. 8,9 show examples of the earth viewed from rela-
tively close-by; the viewpoint is at altitude 500km at 0° E
60° N. The direction of the sun in Fig. 8 is 0° E 20N, and
the directions of the sun in Fig. 9 are 200° E 20°N and 240°
E 15°N. Fig. 8 corresponds to noon(daytime), and Fig. 9
correspond to evening or dawn sky. In Fig. 9(b), one can
observe the shadow (the dark part in the red atmosphere)
due to the earth. The color of clouds changes to red due
to the change of color of direct sunlight. These examples
depict beautiful variations in color of the earth and the at-
mosphere. The space shuttle in the figure consists of 178
Bézier patches.

Let’s show the photographs taken by the first Japanese
astronaut aboard space shuttle, Dr. M. Mouri(NASDA), in
Fig.10 (altitude 300km, September, 1992). Fig.11 displays
the results of our simulation. One may observe differences
between the photos and the simulation results. One of the
reasons on Fig.11(a) may be due to the poor modeling of
clouds and lands. In Fig.(b) some horizontal layers(e.g.,
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orange color) are observed, one of them may be aerosols due
to explosion of Volcano in Philippine. These facts suggest
the necessity for further researching.

For hidden surface removal, the scanline algorithm for
curved surfaces [11) is employed, and for anti-aliasing the
multi-scanning algorithm[14) is employed. The calculation
was done on an IRIS Indigo Elan. The computation times
for Fig.7 (c) and Fig. 9 were 3.8 minutes and 12.0 minutes,
respectively(image size=500 x 490).

8 CONCLUSION

We have proposed an algorithm for physically-based image
synthesis of the earth viewed from space. As shown in the
examples, the proposed method gives us photo-realistic im-
ages taking into account the color of the earth, clouds, and
the sea. The advantages of the proposed method are as

follows:
(1) The spectrum of the surface of the earth is calculated
by taking into account direct sunlight and sky light as

affected by atmospheric scattering. )
(2) The spectrum of the atmosphere 1s calculated by taking

into account absorption/scattering due to particles in

the atmosphere.
(3) The spectrum on the surface of the sea is calcu-

lated by taking into account radiative transfer of water

molecules.
(4) The optical depth and illuminance due to sky light

are efficiently calculated by using several lookup tables
taking advantages of the facts that the earth is spherical
and that sunlight is parallel.
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ABSTRACT

A method is described for switching smoothly between
rendering algorithms as required by the amount of visible sur-
face detail. The result will be more realism with less com-
putation for displaying objects whose surface detail can be
described by one or more bump maps. The three render-
ing algorithms considered are a BRDF, bump-mapping, and
displacement-mapping. The bump-mapping has been modi-
fied to make it consistent with the other two. For a given
viewpoint, one of these algorithms will show a better trade-
off between quality, computation time, and aliasing than the
other two. The decision as to which algorithm is appropriate
is a function of distance, viewing angle, and the frequency of
bumps in the bump map.

CR. Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation; 1.3.5 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Keywords: animation, BRDF, bump map, displacement
map, rendering, surface detail, volume texture.

1. INTRODUCTION

Objects in animation are sometimes distant specks; at
other times a tiny part of one will fill the whole screen. If
these objects have rough surfaces, the same rendering algo-
rithm should not be used in both cases. Almost all real ma-
terials have a hierarchy of surface detail. We assume that the
macro-structure of all objects is described by parameterized
patches or a polygonal mesh. The micro-structure is then de-
scribed by one or more bump tables for each level of detail
below the geometrical, each giving bump height as a function
of the 2-D surface parameters. An alternative way to describe
the surface detail is through the use of volume textures to
specify bump height as a function of 3-D coordinates[10,12].
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The Bidirectional Reflection Distribution Function or
BRDF[13, 14, 6] captures the surface properties which are too
small to be visible. Most real surfaces are neither purely spec-
ular (mirror-like) nor purely diffuse, but rather somewhere in
between. To represent this non-trivial distribution of light re-
flectance a BRDF is used. It can be represented by a table
indexed by alighting direction and a viewing direction, to give
the reflectance as a function of these directions. The BRDF
used for this research is constructed from distributions of nor-
mals recorded from various views of a single displaced surface
patch.

Bump-mapping[2] is an inexpensive way to achieve a
good approximation to macroscopic surface roughness. The
parameterized surface is treated as smooth for the purpose of
visible surface determination, while the surface normals are
perturbed to a first order approximation of what the actual
bump normals would be.

The third algorithm, displacement-mapping[4, 5], is used
when any shortcut in computation will be noticeable to the
eye. Displacement-mapping is different in that the surface is
actually offset by the appropriate bump height so that the full
3-D geometry can be rendered. For purposes of maintaining
consistent shading, the same approximated normal is used to
shade the displaced surface as was used in the bump map.
However, now it is applied to the displaced surface rather
than to the flat parametric one.

Bump-mapping is good for economically rendering bumps
which can be described as a height field. Unfortunately it does
not account for occlusion. It is necessary to modify flat bump-
mapping so that it yields images statistically similar to images
produced by the other two methods. This revised procedure
will be termed ‘redistribution bump-mapping’ because it re-
distributes the normals in a way that is statistically similar
to those seen on the displaced surface viewed from a specific
direction.

The three methods are blended together so that the parts
of the scene which are close to the viewer, or close to the ex-
treme edge (silhouette), would be displacement-mapped, since
this is where missing detail would be noticed most. Smooth
silhouette edges are an artifact of bump mapping which is easy
to detect. Parts farther away, or whose normals are parallel
to the viewing direction, will be bump-mapped. When sur-
faces have microscopic material-specific qualities or are very
far from the viewer, they are rendered using a BRDF. More
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specifically, for a given scene, those features with a spatial
frequency higher than one half cycle per pixel (the Nyquist
limit) are considered in the BRDF. At the other end of the
spectrum, features that are large enough to cause noticeable
occlusion need to be displacement-mapped. The parts in
between are rendered with varying degrees of redistributed
bump-mapping. Most importantly, there is a smooth transi-
tion among the three. The effect is that the whole scene looks
as if it were displacement-mapped, when in fact much of it
was rendered with cheaper algorithms. Extending this con-
cept we can have high frequency rough surfaces on top of low
frequency rough surfaces, each bumpy level of detail having
three rendered representations.

In Figure 1 we see a teapot rendered in the four different
ways. All renderings are based on the same height function.
A major consideration for a smooth transitions among these is
the consistency of the shading between methods. The amount
of light emitted by a surface rendered with one method does
not necessarily equal that amount emitted by the same surface
rendered with another. Nor is the distribution of that light
necessarily equivalent. A key aspect of this research is the
determination of how the varying algorithms need to be mod-
ified in order to have their overall area-averaged light intensity
contributions consistent.

There are five reasons why the average reflected inten-
sity from a bump-mapped image is inconsistent with the re-
flected intensity from either the BRDF rendered image or
the displacement-mapped image of the same object. Usually
the BRDF is constructed under the assumption that the mi-
crofeatures of the surface are composed entirely of specular,
mirrored facets. Bump- and displacement-mapping contain
both specular and diffuse components. The easy solution to
this inconsistency is to include a diffuse component for each
microfacet when constructing the BRDF for the highest fre-
quency bumps. Usually there is an inconsistency between
bump- and displacement-mapping because actual surface dis-
placement creates a geometrically computed facet normal for
the shader while the perturbed normals for bump maps are
only approximations. As previously mentioned this is over-
come by using the approximated bump-mapped normals on
the displaced surface. The approximated bump normals also
vary more smoothly than the facet normals, especially with
our quadratic interpolation, which is smoother than Blinn’s
approximation[2]. Note that if a procedural displacement
function is employed, it is possible to compute the surface
normal analytically. Since the BRDF is constructed from a
displacement-mapped patch, the same inconsistency may arise
for it. Again the solution is remedied by using the bump nor-
mal for tabulating the BRDF. The most difficult consistency
problem is caused by occlusion. Occlusion, which is the hiding
of some bumps by others, can change the distribution of visible
surface normals. A solution is presented which redistributes
bump normals so they match a distribution of normals simi-
lar to one derived from displacement-mapping. Lastly, there
is the problem of consistency of shadowing. We have not yet
found a general solution for shadowing, so we draw our images
and compute our BRDF without it.

The concept of blending between methods is not new.
The difficulty in overcoming the intensity distribution incon-
sistencies is perhaps the main reason why there are few coded
examples. Kajiya[8] mentioned a hierarchy of scale which is
appropriate for modelling the complexity of nature. He states
that each level of detail contains the three subscales discussed
above. Westin et al.{14] describes these levels as the geometri-
cal, milliscale, and microscale. Perlin[11] proposed a method
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to shift between the BRDF and perturbed normals. Perlin’s
method does not include an explicit height table for determin-
ing the new normals, making displacement-mapping difficult.
Fournier[7] has presented a promising approach for filtering
normal maps by recording a discrete number of Phong peaks.

The software for each of the three algorithms described
in this paper has been combined according to the previously
discussed considerations. The result is an animation which ex-
plores a surface from changing distances and directions, show-
ing that there are no significant side effects while transitioning
between renderers. For more detail concerning the implemen-
tation refer to Becker[1].

2. BASIC ALGORITHMS

2.1 Bidirectional Reflection Distribution Functions

The BRDF is used to capture the microscopic reflectance
properties of a surface. The BRDF itself can be a table of re-
flectivities or it can be represented by a spherical harmonic
series approximation[3,14]. It is a function of either three or
four variables representing the polar and azimuthal angles of
the light rays. The polar angle is called § and it measures
the angle away from the normal. Its domain is [0, 7/2]. The
azimuthal angle is denoted by ¢ and has domain [0, 2x), with
0 and 27 both in the direction of the viewer. An isotropic
surface is one for which the emitted intensity does not vary as
the surface is rotated radially about its surface normal. If only
isotropic textures are used, then the arguments to the BRDF
reduce to the two polar viewing directions and the difference
in the azimuthal angle between the viewing and lighting di-
rections. In the most general anisotropic case, the BRDF is a
function of viewing direction and lighting directions, requiring
all four angles.

There are several different ways to construct a BRDF.
Cabral[3] constructed the BRDF directly from a bump map
using horizon tables. Westin et al[14] ray traced a general-
ized 3-D surface sample in order to calculate the intensities
for their BRDF. Our method uses normal distributions. They
are already required in order to create redistribution functions
for the new bump-mapping method. The same normal distri-
butions are used to create the BRDF. Fournier[7] has also
discussed normal distributions.

A normal distribution is obtained by tabulating sampled
normals from a projected displacement-mapped flat patch.
The range of normals is a hemisphere. The hemisphere can
be discretized into a finite number of (6, ¢x) bins. When
the displacement map is projected, each pixel of the projected
image represents a sample normal, and the count for the bin
containing that normal is incremented. If bump-mapping is
used to draw the flat patch, then the approximated normal
distribution is independent of §. However, when looking from
some direction with § > 0, self-occlusion may occur in the
displacement-mapped image. This occlusion is accounted for
by rendering the displacement-mapped geometry with a hard-
ware z-buffer, coding the normal directions into the pixel col-
ors. For grazing angles many potentially occluding patches

- may have to be rendered in order to get the occlusion cor-

rect on a single patch. The problem is solved by rendering a
single patch using parallel projection, and then using a block
read from the screen buffer to copy the patch to all the po-
sitions where it is needed, in a back to front ordering. In a
postprocess the sample normals are scanned in and the distri-
butions are created. These distributions will be used to find




the redistribution functions and to make the BRDF. The nor-
mal distributions are stored in a 3-D table. The first index
ijs the viewing polar angle 6. The second and third indices
are the O, ¢ angles specifying the normal direction. For
simplicity a table access is described by distr[fy, N], where
N = (0N, 6N-v), and ¢n_v denotes ¢y — ¢y. The differ-
ence between viewing and lighting ¢’s is denoted by ¢y _ . To
jmprove the statistics of the distribution, the patch is viewed
in many ¢y directions for each 0y . The result is normal dis-
tributions for each 8y which account for proper occlusion. To
use these distributions in constructing the BRDF, the algo-
rithm in Figure 2 is used.

for each level n from highest to lowest frequency
for each Gy
for each 0,
- for each ¢y _ o,
{H=(V+L)/|V+1
for each O
for each ¢ _v
if highest frequency BRDF
{ increment BRDF‘Z-“[GV ,0r,év_r] by
(L. N)distr™[8y, N]
increment BRDFJ, [0v,0L,év_L] by
(H - NYPhong distrm [y, N]
}

else
{ compute 6y,,87 and ¢}, _;
increment BRDFy; .. [6v,0L,év_L] by
 BRDFG7;10%,07, 6y _p)distr"[6y, N]
increment BRDFJ, . [0v,0r,¢v _1] by
BRDF3;M6Y, 0, 6 _1distr"[8y, N

Figure 2. The algorithm to compute the BRDF using a table
of normal distributions.

Note that there are two components to the BRDF, one
for the diffuse information and one for the specular. This way
the amount of diffusivity and specularity chosen can be used
as a parameter later. The 8}, and 6/ represent the angles
between the viewing or lighting direction and the bin normal
N, rather than with the flat surface patch normal. The angle
¢'V_ . is the difference between L and V when projected to
;he plane perpendicular to the bump normal. It is computed

Y
¢ = arctan((L - (N x z)), (L - (y x N)))

¢y = arctan((V - (N x 1)),(V - (y x N)))
¢v_r = mod((¢y — 67 +7),27) -7 6

where £ = (1,0,0) and y = (0,1,0) are the axis directions of
the bump table. This technique will give the same BRDF as if
the combined displacement maps were used, as long as there
is no correlation between the bumps at the different levels.

A smooth surface patch is rendered by interpolating the
BRDF trilinearly in the angles v,0r, and ¢y _y. The in-
dices for the table are computed from a local coordinate on
the patch surface. The smooth surface normal points in the
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direction of § = 0. The origin of the azimuthal angle is the
projection of the viewing direction onto the surface.

For a given patch parameterization, P(u,v), the par-
tial derivatives, P, = %%- and P, = %{-, are rarely the
same length (causing stretching), and not always perpendic-
ular (causing warping). For these reasons special care must
be taken when indexing the BRDF to determine an intensity.
The method for computing the difference in azimuthal angle
is as follows:

V,=[V-P,,V-P,,0
Ln=[L‘Pu7L'va0]

by_L = a.rccos(-l%} . T—%) (2)

The stretching will actually change the normal direc-
tions making the BRDF inaccurate. The BRDF would need
to be recalculated to yield a theoretically correct result, but
equation (2) does get the occlusion correct and gives nice
anisotropic highlight effects in places where they would be
expected.

2.2 Bump-Mapping

In Blinn’s bump-mapping[2], the surface is not actually
altered from its smooth parametric form, but it is shaded as
though it were.

Blinn used a bump height table B to calculate a linear
approximation to the bump normal at a point P on an object
surface. If P, and P, are the partial derivatives as above, the
unnormalized surface normal is N = 13,_‘ X 1-50‘ In the bump
map B, the partial derivatives By and B, at the interpolated
point corresponding to P can also be computed using finite
differences.

By = (Blu + ¢,v] — Blu —¢,9])/(2 % €) (3)
and By is similar. Each evaluation of B uses bilinear interpo-
lation.

Truncating insignificant terms, Blinn{2] has showed that
the new normalized normal is very close to
P N+ By(N x B,) = By(N x B,)

" |N + By(N x B,) - B,(N x B,) )

We have chosen to compute the bump map derivatives
by a quadratic rather than linear scheme. Mach bands are
eliminated by replacing Blinn’s linear formula by a C! partial
derivative formula, defined by taking the derivative of the C2
cubic B spline curve approximation to the bump heights as a
function of u or of v. Let du = u — [u], then

B, = (—du2/2+du-—-.5)B[l_u_| -1, v]+(3du2/2—2du)B[luJ, v]

+(—3du?/2 + du + .5)B[|u],v] + (du®/2) B[|u] + 2, ]

and B, is similar. Here each function evaluation requires only
a linear interpolation in v. This method uses the same eight
neighboring values in the height table as does (3), but with
quadratic rather than linear weights.
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The normals generated by this process do not lie in a dis-
tribution consistent with the other two algorithms. As pre-
viously discussed, N’ must be further modified so that on
average it will contribute to a normal distribution similar to
displacement-map normals. This new algorithm, redistribu-
tion bump-mapping, is described in detail in Section 3.

It should also be noted that Perlin’s volume textures[12],
with the improvement by Max and Becker[10], can be substi-
tuted for bump maps when computing height values. The
advantage of this is that there is no explicit parameterization
to be concerned with, and thus no stretching to cause sin-
gularities or anisotropy. If a square patch has an isotropic
texture mapped onto it, the texture becomes anisotropic as
soon as the patch is stretched unevenly. Many parameteri-
zations have singularities which lead to degenerate patches.
If anisotropy is undesirable, then volume textures should be
used. Perlin also used volume textures, and redistributed the
normals to make them gaussian (personal communication) in
his implementation of [11].

2.3 Displacement-Mapping

Displacement-mapping is the direct approach to render-
ing surface detail. For parameterized surfaces, each patch in
the object has a u and v parameterization. The u and v co-
ordinates are used as indices to look up height values in the
bump height table. The corresponding vertex is then dis-
placed along its normal vector by that height[4]. The normal
generated from the bump approximation is also used on the
displaced vertices. There is little loss of accuracy in doing
this, and continuity during the transition is assured. Occlu-
sion, the main problem with bump-mapping, is accounted for
automatically when the vertices are displaced.

Having multiple bump maps for many levels of detail
means the displaced bumps will be rendered with the BRDF
constructed from the next bump map of higher frequency. To
keep combined displacements consistent with BRDFs repre-
senting several combined bump maps, surface perturbations
for the i** level must be perpendicular to the (i — 1)t* dis-
placed surface. This means that for each vertex, P, and P,
vectors must be computed for each level of detail which has
been displaced. Since P, and P, are not necessarily perpen-
dicular it is recommended that the following formula be used
to compute them, given that the surface normal is N.

P,[level + 1] = Py[level] + Byflevel] N[level]

where By[i], By[i] are the i** bump map partial derivatives.
The equation for P, is similar.

3. REDISTRIBUTION BUMP-MAPPING

3.1 Normal Redistribution

The problem of eliminating inconsistencies between the
different rendering models lies at the heart of making smooth
transitions from one algorithm to another. Primarily we are
concerned with keeping the integral of intensities equal over a
small area on the surface while the rendering method changes.

Unfortunately, normals from bump-mapping do not yield
a distribution similar to that of displacement-mapping or the
BRDF. Since the polygon or patch itself is not displaced, it is
possible to see normals which ought to be hidden by occluding
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bumps. In order to overcome this problem a redistribution
function ¢ is created. This is a function which accepts as
input a normal generated by Blinn’s[2] bump approximation,
and outputs a normal which is statistically consistent with the
distribution used to form the BRDF.

Since the distribution of normals on a displacement-
mapped flat patch is different for each viewing angle, it is nec-
essary to have redistribution functions for each one. When the
viewing angle is vertical, the identity function is used. When
the viewing angle is just above the horizon, the redistribution
of bump normals is necessarily quite drastic. The effect is to
pull forward normals that might be facing away, and push up-
ward those that might be hidden. This new scheme for doing
bump-mapping might appropriately be termed redistribution
bump-mapping.

3.2 Redistribution Function Construction

Suppose a bumpy surface is viewed from a direction with
polar angle 8y. Let g denote the distribution of normals
distr(8, N) at this fixed 8y, computed as above from the dis-
placement map. Let f denote the distribution of normals in a
(non-displaced) bump-mapped image. Note that fis the same
as distr(0,N). If ¢ is the redistribution function described
above, then the requirement that ¢ take the distribution f to
the distribution g is that for any region R in the hemisphere
H of possible normals,

/ £(6, 8)dw = / 9(8, ¢)dw 5)
9(R) R

It is easier to explain how to specify ¢ in a 1-D case.
So suppose f(z) and g(z) are two distributions on [0, 1], such

that ) X
A f(z)da = A o(z)dz =1 (6)

The problem is to find ¢ : [0, 1] — [0, 1] such that

q(b) b
z)dzr = z)dz 7
L)f() l"’“ (1)

where @ and b € [0,1]. It is enough to guarantee that

Q)
/q f(z)dz:fg(z)d:z. (8)
0 o

Let
G(b) = ﬁg(:c)d:c
and
F@)= /f f(z)dz.
Then
G(b) = F(q(b)
hence

g(b) = F~H(G()). (®)

The redistribution function ¢ maps a point b so that the area
under the curve before b in g is equal to the area under the
curve before the point ¢(b) in f.
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The problem in 2-D can be handled similarly. One
method is to define 1-D redistribution functions separately
for 8 and ¢. This gives adequate results for most bump maps,
whose 8 and ¢ distributions are fairly independent. This in-
dependence assumption is confirmed by the animation. For a
more precise redistribution function, one can first redistribute
¢, and then for each fixed ¢, establish a separate redistribution
function for 8. For details see Becker[1).

4. TRANSITIONS

4.1 Partial Bump Displacement

For control of appearance and for smooth transitions we
want the ability to change the height of the bumps in the
bump map. This will alter the normal distribution and oc-
clusion information. By close consideration we can see that
the change can be accounted for without having to recalcu-
late the redistribution functions every time the bump heights
are altered. If the heights are multiplied by a factor ¢, then
the tangent of the angle between the bump normal and the
smooth surface normal should also change by a factor ¢; i.e.,
tan(fn,) = t-tan(6y). The normal, N = (y, ¢n), needs
to be replaced by N; = (arctan(t - tan(dy)), 4). In order to
keep the visibility information the same, the viewing angle,
8y, must be replaced with fy = arccot(cot(fy )/t). See dis-
cussion below concerning Figure 3.

The height of the bumps used to calculate the BRDF and

redistribution functions must be the same as that of the bumps.

being rendered. This is because the BRDF is changed in a
non-trivial way as the bump heights change. If we were only
concerned with bump- and displacement-mapping, we could
change the indexing on the redistribution functions to get the
occlusion correct for changing bump heights. Unfortunately
there is no easy way to re-index the BRDF to account for
scale changes. Between the BRDF and redistribution bump-
mapping, an intensity is computed for both methods. The
resulting intensity is an interpolation of the two.

For the transition between bump- and displacement-
mapping, intensity interpolation is not used, since it would
cause the bump shading (particularly the highlights) to cross-
dissolve rather than correctly ad just in position. As the bumps
go from no displacement to full displacement the surface nor-
mals do not change, since they are always represented by
Blinn’s bump normal. The visible subset of bump normals
does change, however, due to changing occlusion. Let disp be
the transition parameter which gives the fraction of the full
bump height. With disp = 0 all normals are seen, even those
on the back of bumps. With disp = 1, only the visible subset
of these normals are seen. In Figure 3 the segments of the vis-
ible surface are shown in bold. The redistribution of normals
takes normals from standard bump-mapping into this visible
subset. For partially displaced bumps there is a different sub-
set of visible normals, but there is a relationship between the
bump height and this subset which can be exploited to give
the necessary redistribution.

Different redistribution functions for varying heights are
not stored, only different functions for different viewing 8’s.
Fortunately the two are equivalent. For the fractional bump
height, disp, we can determine a new 8y for which the same
distribution of full height bump normals will be seen. Figure
3 shows that the distribution of normals for this partially dis-
Placed surface, viewed from 8y, is identical to the distribution
of visible normals for the fully displaced surface viewed from
Ow . The slope of the line V in Figure 3 is disp times the

slope of line W, so cot(fy ) = disp - cot(fw ) and the formula
for finding Gy is:

Bw = arccot(cot(fy )/dzsp).

&N

FAN)

—

Figure 3 Top: the non-displaced surface. Middle: surface
displaced by bump height fraction disp. Bottom: Fully displaced
surface.

The inverse redistribution function for §w is applied to
take the visible bump normal from the partially displaced
surface into a distribution similar to one from a flat bump-
mapped surface. Next the redistribution function for 8y is
applied to that normal to take it all the way forward to match
statistically a full displacement-mapped normal. Thus the
change from bump-mapping to displacement-mapping is done
through two table based function evaluations. Notice that as
the bumps decrease in height, the new viewing 8y approaches
vertical. This means that the inverse function needs to alter
the normals less in order to get them back to the bump-map
distribution.

4.2 Algorithm Selection Criterion

Now that it is known how to modify the algorithms
so that they will not deviate from a fundamental reflection
model, it must be decided when to apply which algorithm.
Clearly displacement-mapping should be applied when the
view is close, and the BRDF when the view is far. The re-
lationship is 1/d, where d is distance, since that is how the
projected size of an object relates to distance. Another vari-
able to consider is viewing angle, 8y . If f is the wavelength
of a feature then fcos(fy)/d is the wavelength of the pro-
jected feature (in the direction of maximum foreshortening),
and should be no smaller than two pixels. When the object is
close, we would like to see a rough silhouette; when it is far,
aliasing becomes a problem on the edge so use of the BRDF
is desirable. This implies that as the object moves away from
the viewer, the transition from displaced bumps to BRDF
will be far more rapid on the object silhouette than on that
area where the patch normal points toward the viewer. The
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threshold at which the switch occurs is determined by a con-
stant [). Summarizing these properties, we define a transition
parameter

T(d,0v) = (1/d - D)/(cos(by) +¢).  (10)

Here d is the distance from the viewpoint to the surface, 8y is
the angle between the viewing ray and the surface normal, and
D is dependent on individual bump maps. To avoid an instan-
taneous transition on the silhouette an ¢ is added to the cosine
term in the denominator. The constant D should be large if
the highest frequency component of the bump map is large.
Note that D controls where the function changes from posi-
tive to negative, and thus lies midway between displacement-
mapping and the BRDF. The formula for determining D is

D=c-freq-S

where freg is the highest frequency in the bump map and
S is the amount the v and v values are scaled. If S is large,
then the bump map will be repeated more times over the same
area, and the partial derivatives, P, and P,, are made shorter
by a factor of S. The constant ¢ controls computational ef-
fort by globally shifting the scene toward more BRDF or al-
ternatively more displacement. If shadows are included, the
shadow terminator should be treated just like the silhouette.
Areas far from the terminator are likely to be completely il-
luminated or shadowed, but on the terminator, displacement-
mapping will make the shadowing exact. The parameter given
by equation (10) determines the algorithm or algorithms used
for rendering. Let the threshold values for choice of renderer
be el < €2 <0< e3 <ed4. If T < el then use the BRDF, if
T > e4 then use displacement mapping, and if €2 < T < €3
use redistribution bump mapping. Values of T other than
these indicate regions where algorithms are blended. Values
of -1, -3, .3, and 1 respectively, were found to give good re-
sults.

4.3 Multiple Levels of Detail

With multiple levels of detail there are many more than
two possible transition points. Many other cases need to be
considered. The displacement-mapped image of the ith layer
is rendered using the BRDF for the (i — 1)** layer. As the
camera continues to zoom in, the BRDF will switch to bump-
mapping and then again to displacement-mapping.

Since each bump map has its own independent transi-
tion regions, some areas may have bump-mapping from two
or more different levels. Perlin [11] suggests that each set of
bumps be limited to a narrow range of frequencies. The result
of implementing two levels of detail is shown in Figure 4. The
bump map describing the surface detail is broken up into high
and low order band-limited frequencies. The low frequencies
compose the first level bump map and the high frequencies
compose the second level. The left half of Figure 4 is color
coded according to the algorithm used to render the most re-
fined level of detail visible. Hence one can see bumpy sections
colored yellow to indicate the BRDF from the next lower level
was used to render the displaced bumps.

5. RESULTS
5.1 Consistency Comparison

In Figure 5 we can see the four rendering methods com-
pared. The difference between the lighting and viewing ¢ is
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zero. Note that since the lighting and viewing directions are
in alignment the patch becomes brighter for grazing angles.
The rows are rendered with bump-mapping, redistribution
bump-mapping, BRDF, and displacement mapping respec-
tively. Note that redistribution bump-mapping is far more
consistent with the BRDF and displacement-mapping than
is ordinary bump-mapping. Figure 6 is a table which shows
quantitative results for viewing angles corresponding to those
shown in Figure 5.

Figure 5 Intensity comparisons. The lighting direction is
consistently 0 = 1r/4. The rows from top to bottom represent
bump-mapping, redistribution bump mapping, BRDF, and displace-
ment mapping.

8,=0 0, =n/6 6,=n/3 6, =419
Bump 128 129 129 129
Redistribution | 128 143 170 194
BRDF 129 146 172 192
Displacement { 128 146 175 194

Figure 6 Area averaged intensities for the diffuse component.

In Figure 7, a single flat patch is drawn in perspective.
Regions in the foreground are clearly displacement-mapped.
The middle region is redistribution bump-mapped, and the
furthest edge is almost completely shaded with the BRDF.
It should be apparent that there is no intensity inconsistency
between methods and that the transition is smooth.

5.2 Conclusions

Combining displacement-mapping, bump-mapping and a
BRDF into one algorithm makes it possible to explore great



scale changes, without changing the geometrical data base.
Using a series of bump maps we can generate a variety of
rough surfaces simulating different material properties. Ob-
jects in the scene will have a complex underlying structure
put only the minimum amount of effort necessary to give the
jmpression of complete geometrical representation will be ex-
pended. Current animations are restricted by the amount of
geometrically represented detail. If the view gets too close to a
feature, large drab polygons fill the display. With hierarchy of
detail, the polygon level need never be reached, no matter how
close the viewer gets. Even at intermediate and far distances
the light interacts with flat polygonal surfaces as if they were
truly composed of millions of smaller micro-polygons. As a
result the otherwise drab polygons become alive with texture
and interesting highlights. Those smaller micro-polygons may
actually get rendered, but only if the viewer zooms in much
closer.

5.3 Future Research

Shadowing is the main enhancement yet to be consid-
ered. One way to do the shadowing of displaced bumps is to
use the two-pass z-buffer method developed by Williams{15].
Horizon mapping[9] has been shown to generate shadows for
bump-mapped images. It will also work for redistribution
bump-mapping since the horizon is determined by the u and
v parameterization, not the normal. However, this may cause
a problem since the rendering is according to a redistributed
normal, and the shadows are according to the parameteriza-
tion. The shadowing may look inappropriate for the rendered
bumps. The shadowing for BRDFs can be done using hori-
zon mapping, as was demonstrated by Cabral[3]. Another
possibility is to use only the unshadowed normals from a dis-
placed, rendered, and shadowed flat patch to generate the
distributions for the BRDF and the redistribution function.
The result should be consistent in terms of average intensity,
but may not look qualitatively correct.

5.4 Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under contract No. W-7405-Eng-48.

BIBLIOGRAPHY

1. Becker, Barry, “Smooth Transitions Between Rendering
Algorithms During Animation”, Master’s thesis, Univer-
sity of California at Davis, Davis, CA, December, 1992.

2. Blinn, James F., “Models of Light Reflection for Com-
puter Synthesized Pictures”, Proceedings of SIGGRAPH
77, Computer Graphics, Vol. 11, No. 2, July, 1977,
pp192-198,

3. Cabral, Brian, Nelson Max, and Rebecca Springmeyer,
“Bidirectional Reflection Functions from Surface Bump
Maps”, Proceedings of SIGGRAPH '87, Computer Graph-
ics, Vol. 21, No. 4, July, 1987, pp273-281.

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

10.

11.

12.

13.

14,

15.

Cook, Robert L., “Shade Trees”, Proceedings of SIG-
GRAPH 84, Computer Graphics, Vol. 18, No. 3, July,
1984, pp223-231.

Cook, Robert L., Loren Carpenter, and Edwin Catmull,
“The Reyes Image Rendering Architecture”, Proceedings
of SIGGRAPH ’87, Computer Graphics, Vol. 21, No. 4,
July, 1987, pp95-102.

Cook, Robert L, and Kenneth Torrance,“A Reflectance
Model for Computer Graphics”,Proceedings of SIG-
GRAPH 81, Computer Graphics, Vol. 15, No. 3, Au-
gust, 1981, pp307-316.

Fournier, Alain, “Normal Distribution Functions and
Multiple Surfaces”,GI 92 Workshop on Local NNlumina-
tion, 1992, pp 45-52.

Kajiya, James, “Anisotropic Reflection Models”, Pro-
ceedings of SIGGRAPH °85, Computer Graphics, Vol.
19, No. 3, July, 1985, pp15-21.

Max, Nelson L., “Horizon Mapping: Shadows for Bump-
mapped Surfaces”, The Visual Computer, Springer-
Verlag, Vol. 4, No. 2, 1988, pp109-117.

Max, Nelson L., and Barry Becker, “Bump Shading for
Volume Textures”, to appear in IEEE Computer Graph-
ics and Applications, 1993.

Perlin, Kenneth, “A Unified Textural Reflectance Model”,
Advanced Image Synthesis course notes, Proceedings of
SIGGRAPH ’84, Computer Graphics, July, 1984.

Perlin, Kenneth, “An Image Synthesizer”, Proceedings
of SIGGRAPH ’85, Computer Graphics, Vol. 19, No. 3,
July, 1985, pp287-296.

Torrance, Kenneth, and Ephraim Sparrow, “Theory
for Off-Specular Reflection from Roughened Surfaces”,
Journal of the Optical Society of America, 57(9), 1967,
pp1105-1114.

Westin, Stephen H., James R. Arvo, and Kenneth E.
Torrance, “Predicting Reflectance Functions from Com-
plex Surfaces”, Proceedinigs of SIGGRAPH 92, Computer
Graphics, Vol. 26, No. 2, July, 1992.

Williams, Lance, “Casting Curved Shadows on Curved
Surfaces”, Proceedings of SIGGRAPH '78, Computer
Graphics, Vol. 12, No. 3, July, 1978, pp270-274.

189






COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

Linear Color Representations for Full Spectral Rendering

Mark S. Peercy
Department of Applied Physics
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Abstract

We present a general linear transform method for handling
full spectral information in computer graphics rendering. In
this framework, any spectral power distribution in a scene
'is described with respect to a set of fixed orthonormal basis
functions. The lighting computations follow simply from this
decision, and they can be viewed as a generalization of point
sampling. Because any basis functions can be chosen, they
can be tailored to the scenes that are to be rendered. We dis-
cuss efficient point sampling for scenes with smoothly vary-
ing spectra, and we present the use of characteristic vector
analysis to select sets of basis functions that deal efficiently
with irregular spectral power distributions. As an example
of this latter method, we render a scene illuminated with
fluorescent light.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation—-Display Al-
gorithms; 1.3.7 [Computer Graphics}]: Three-Dimensional
Graphics and Realism.

Additional Keywords: linear color representations, full
spectral rendering, linear models, tristimulus values.

1 Introduction

Accurate color rendering in computer graphics must ac-
count for the full spectral character of the lights and sur-
faces within a scene. The rendering procedure must pre-
serve enough spectral information to compute final values
for output to some display device, such as an RGB monitor.
However, one wishes to minimize the computational cost of
the rendering to reduce the time required to create an im-
age. Therefore, one desires efficient methods of handling full
spectral information during image synthesis.
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Some suggested techniques in dealing with full spectral in-
formation include the use of the tristimulus values for the
lights and surfaces [1], the use of polynomial representations
of spectra {16}, and the use of linear models of surfaces and
lights [20] [12]. The typical method employed is point sam-
pling of the surfaces and the lights at a given number of
wavelengths. These point samples are used in a numerical
integration method to compute approximate tristimulus val-
ues before being transformed to values appropriate for dis-
play. To minimize the total number of samples, one seeks an
efficient integration approximation; one approximation that
has been studied in various forms is Gaussian quadrature
[14) [19] [2].

In this paper, we consider a more general method for han-
dling full spectral information in synthetic image generation;
our technique is closely related to the use of linear models
presented in [20]. The principal idea is that we describe
the spectral power distribution of the light at every step of
the rendering procedure with respect to a single collection
of orthonormal basis functions. This formalism encompasses
point sampling, which uses delta functions as its basis func-
tions.

The constraint of describing all of the spectral power distri-
butions with respect to the basis functions is advantageous
for two reasons. First, it makes the rendering process com-
pletely linear. Therefore, this technique can be considered
a generalization of point sampling and can be readily incor-
porated into standard renderers. Second, one has the free-
dom to select any orthonormal set of basis functions. This
freedom can be exploited to increase the efficiency of the
rendering process.

The body of this paper is divided into two main sections. In
Section 2 we discuss the mathematical formalism of linear
color representations of the lights and surfaces, and in Sec-
tion 3 we address the problem of selecting appropriate basis
functions. In this latter section, we discuss Riemann sum-
mation for efficient point sampling in scenes with smoothly
varying spectra, and we present the use of characteristic vec-
tor analysis to provide efficient basis functions for scenes
with complex spectra.
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9 Linear Color Representations

During the rendering process, we demand that any spectral
power distribution in the scene be described by m orthonor-
mal basis functions E;(A);¢ = 1,...,m. By any distribution,
we mean not only the light coming directly from a light
source but also light that has been once, twice, or an arbi-
trary number of times reflected from surfaces in the scene.
In this section, we use this restriction to derive the color
representations of both the spectral power distributions and
the surfaces, and we discuss the transformation of this color
information to values appropriate for display.

2.1 Spectral Power Distributions

To obtain a representation for the spectral power distribu-
tions in a scene, we can project the spectral power distribu-
tion, I(A), of any light source onto the subspace spanned by
the basis functions;

I =) 6B, (1)
where
€ =/I(/\)Ei(/\)d/\. (2)
A

follows from the orthonormality condition. Thus, any light
within the scene can be described with the m elements ;.
These elements are simply the coefficients of the linear trans-
formation defined by the set of basis functions, so we refer
to this method as a general linear transform method.

2.2 Surface Reflectances

To obtain a representation for the surfaces, we project the
spectral power distribution of the light reflected from those
surfaces onto the set of basis functions (for clarity and with-
out loss of generality, we neglect transmission and attenu-
ation in this discussion). Lighting models typically divide
the reflected light into three terms: ambient, diffuse, and
specular (|6] discusses lighting models in detail); the spec-
tral power distribution of light reflected from a surface, I,,
is given by

L(2,A) = Ra(WIa(A) + Ga(@)Ra(N (V)
+ R, (2, A\ (N). (3)

Here, §2 denotes -a general dependence on the geometry of
the reflection, and A denotes a general dependence on wave-
length. I,(\) is the distribution of the ambient light, I,(\)
is the distribution of directional incoming light, and G4(f2)
is the diffuse geometry term. R,()\), Rq(A), and R.(2, A) are
the ambient, diffuse, and specular reflectances of the surface,
respectively. In general, the specular reflectance is a function
both of geometry and wavelength. However, empirical mod-
els often replace the specular reflectance with a separable
term, resulting in a piecewise separable lighting model

LX) = Ra(A)L(N) + Ga(Q)Ra(NL(N)
+ GL(Q)R. (N L (). (4)

As described in Section 2.1, the ambient light and directional
light are represented by their transform coeflicients,

m

I.()) = Ze':E,-(A) (5)

i=1
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L) =) B, (6)
i=1
By using Equations 5 and 6 in Equation 3, the spectral power
distribution reflected from a surface is

L(22) = ) ERaWE(N) + ) €} Ga(@)Ra(N) E:(3)
+) e R(LNE(N). (7)

To obtain the surface representations, we project this result
back onto the the basis functions as in Equation 1;

L(Q,) =) &E;(\). (8)
j=1
From Equation 2 and Equation 7,
€ = /IO(Q, A)E;(A)dA (9)
A

Y ORGE +Gu(Q) Y R+ RE(Q)e (10)
=1 =1 =1

where
R = / Ru (N E:(VE; (\)dA (11)

Ry = ARJ(A)Ei(A)Ej(A)dA (12)

R;(Q) = ARS(Q,A)Ei(A)Ej(A)dA. (13)

RY; is the projection onto the 4" basis function of the spec-
tral power distribution obtained from the reflection of the
it" basis function from the ambient reflectance of the sur-
face. R?j and R;; () are analogous terms for the diffuse and

specular reflections, respectively.

Writing Equation 10 in matrix form, we obtain

€1 a 6%
a
] o= ( . ) L
€m ) ) €m
RY, €1
Gd(9)< i . ) .
: . o
Q) - “
) . : (14)
: . e

In vector notation, this equation can be written
@ =R*E + G4(RS + R (QV)eS. (15)

This final equation reveals the mathematical formalism be-
hind the linear transform method. The spectral power dis-
tributions (f,(\),I,(A), and I,(2, \)) are represented by




— ——

column vectors of length m containing the transform co-
efficients (¢, €%, and €, respectively). Each component of
the surface reflectance (Ra()), Ra()), and R,(Q, \)) is repre-
sented by a single mxm matrix (R*, R?, and R*(f2), respec-
tively). The interaction of light with a surface component
assumes the form of simple matrix multiplication, convert-
ing the coefficients of the incoming light into the coefficients
of the outgoing light. This result is a generalization of the
point sampling case; with point samples, the surface matri-
ces are diagonal, and the matrix product multiplies respec-
tive sample values. Because this technique is linear, it can
be included without difficulty in standard renderers.

For the general lighting model case, the specular matrix is
a function of the geometry. Because the elements of the
surface matrices are obtained through integration over the
basis functions, this integration must be performed for each
geometry configuration. If, however, one uses a piecewise
separable lighting model, the geometry and wavelength de-
pendence separate in the specular term,

€ = R*@ + G4(Q)R*@ + G, (Q)R' &, (16)

and the three surface matrices, R*, R, and R*, can be pre-
computed.

The above discussion addresses only surface reflection, but
effects such as transmission and attenuation can be included
straightforwardly in this framework. As with the reflectance
components, these terms take the form of m x m matrices
that act on the coeflicients of the incoming light.

2.3 Conversion to RGB

The rendering algorithm determines the spectral contribu-
tions to a pixel by computing multiple reflection paths from
each of the light sources to the viewer. These contribu-
tions are transform coefficients, and by linearity they can
be combined to provide a final set of coefficients for that
pixel, €/;¢ = 1,...,m. Equation 1 gives the approximation
to the spectral power distribution arriving at the pixel,

p(/\ = Z €; Ez (17)

i=1
To compute appropriate values for display, one first com-
putes the tristimulus values, XY Z, for the pixel by integrat-

ing the final spectrum over the three color matching func-
tions [21]

X = / ), (A\)dA

/ zm: e T(A)Ei(N)dX
= iTm-ef (18)

/Zefgj(/\)Ei(/\)d/\

Tyie? (19)

v = / FOL (A

v

=1

/ Xm: € Z(\)Ei(\)d\

I

zZ= / 2O L,(A\)dA
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Z €Y (20)

In matrix form, this set of equations can be written

€
X Tzl T:Z Tt sz 6%
Y |=| Ty Ty -+ Tym .- (@D
Z T:l T:2 ctt T:m :
€
With & = (X, Y, Z)7, this equation yields
Z=Téb, (22)

The elements T.;, Ty:, and T-; of the matrix T are coeffi-
cients that result from integration of the i** basis function
over the three color matching functions. For point sampling,
these elements are modified based on the method of numeri-
cal integration. For example, common Riemann summation
over evenly spaced samples includes the distance between
the sample points [17], and Gaussian quadrature has its own
unique weights [5].

Assuming that an RG B display monitor is progerly gamma-
corrected [4], the color values, & = (R,G, B)’, of a given
pixel are computed from the tristimulus va.lues by applying
a 3x3 matrix, M, derived from the chromaticities of the
phosphors of the monitor [6]

¢ = Mz (23)
= MTeéb (24)
Ceb. (25)

Therefore, the RG B values can be obtained directly through
a linear transformation of the final coefficient values by a
3xm matrix C. Because this step is linear, it can be applied
at any time to the separate contributions to the final pixel
values.

3 Selection of Basis Functions

It is in the selection of the basis functions that the flexibility
of the general transform method is demonstrated. In this
section, we describe some factors that determine the effective
selection of basis functions, and we present two methods for
determining basis functions that are tailored to the spectral
power distributions in a scene. '

As mentioned in Section 2, the lighting model is a signifi-
cant influence on the choice of basis functions. If the light-
ing model is not piecewise separable, the surface matrices
must be computed for each geometry configuration, so the
most efficient basis functions are most likely point samples.
If, however, the lighting model is piecewise separable, we
have another consideration. The components of the surface
reflectances are represented by mxm matrices. Therefore,
the reflection of light from a surface requires, in general,
m? multiplies. If the basis functions are point samples,
though, the surface matrices are diagonal, and the reflec-
tion requires only m multiplies. Indeed, only m multiplies
are required for any set of non-overlapping basis functions.
Consequently, the computational intensiveness of the general
transform rises more rapidly than that of point sampling as
the number of basis functions increases.
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A third consideration when selecting basis functions is the
nature of the spectral power distributions in the scene to
be rendered. For smoothly varying distributions, point sam-
pling can be quite efficient, but for complicated spectra, a
set of general basis functions can be more appropriate. We
discuss each of these methods in the following sections.

3.1 Point Sampling

Point sampling is typically linked to a numerical integra-
tion method used in approximating the tristimulus integrals,
Equations 18-20. Gaussian quadrature, which is optimal for
integrating polynomials over general weighting functions (5],
has been applied to this problem [14] [19] [2]. If the spec-
tral power distributions are well described by lower order
polynomials, Gaussian quadrature can provide sufficient ac-
curacy with a small number of sample points; it was shown
in [14] that as few as four point samples are adequate for
many rendering applications.

Here, we discuss the use of simple Riemann summation for
approximating the tristimulus integrals. Rather than be-
ing efficient for polynomial functions, Riemann summation
is efficient when integrating functions that contain a small
number of Fourier coefficients.

Riemann Summation

Riemann summation is the sum over evenly spaced sample
values weighted by the distance between the sample wave-
lengths [17]. Given N + 2 evenly spaced sample points
A0s A1y .y AN41 separated by a distance AA = (Ay+1 —
Ao)/(N + 1) and a spectral power distribution I(\), Rie-
mann summation gives

N+1

X = (M (A)dA =~ AN T(A)T ()
[()() ;m()

N+1

Y = /g(,\)I(A)dA ~ AN Z FONI(OG) (26)
A i=
Wit

Z= [ ZVINdA~ AN Y 20 I(A).

=0

An appropriate choice of endpoints, Ao and Any41, is the
most closely spaced pair of wavelengths that can be cho-
sen such that the color matching functions at these wave-
lengths can be taken to be zero. We found that Ao = 400nm
and An41 = 700nm are often reasonable choices; truncation
at these limits results in errors significantly smaller than
those incurred by undersampling the spectra [17] [18]. Tak-
ing Z(Ao) = F(Ao) = Z2(Mo) = 0 and Z(An+1) = F(An4+1) =
Z(AN41) = 0, only the N interior points, A1, ..., An, need to
be preserved during the rendering process; the basis func-
tions for the spectral power distributions are given by delta
functions at these wavelengths.

With the endpoints of the integrands equal to zero, Riemann
summation with N points is exact for any linear combina-

tion of the first 2N + 2 Fourier functions 1, sin(27rk1\;\;1’\_)‘0 ),

A=) . A=A A=A
cos(27rm), aeey SZTL(?WNTI-\:l_—O)‘;), COS(27FNETIJ_’,\—O),
sin(2w(N + l)ﬁ%_?ro). Therefore, if the products of the
spectral power distributions with each of the color matching
functions are well described by a small number of Fourier co-
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Figure 1: Spectral power distribution of a fluorescent light

efficients, Riemann summation provides an efficient method
for integration. For the set of spectral power distributions
obtained from the Macbeth Color Checker [13] under CIE
Standard Illuminant C [21], Riemann summation with four
point samples at 460nm, 520nm, 580nm, and 640nm results
in an average error of less than 5% in the tristimulus values.
Rendering with these four sampling points is often sufficient;
if it is not, selecting five, six, or more evenly spaced samples
is straightforward.

3.2 General Basis Functions

For scenes with complicated spectral power distributions or
surface properties, naive point sampling is insufficient. One
notable example is the spectral power distribution of fluores-
cent light, which is ubiquitous in indoor scenes. Fluorescent
light, an example of which is shown in Figure 1 [21], is char-
acterized by narrow emission lines at several wavelengths, a
factor leading to aliasing with a small number of point sam-
ples. For these complicated cases, one would like to be able
to tailor the basis functions to the complex spectra. One
attempt in this direction is the use of abutting box func-
tions over the range of wavelengths whose widths are chosen
based on the spectra within the scene [7] [6]. Another tech-
nique for dealing with these scenes is hand-selecting the basis
functions using knowledge of the spectra in the scene. For
example, for fluorescent lights, one could ensure that point
samples were positioned at the emission lines.

Here, we present an alternative method for the selection of
basis functions, gaining insight from studies done on the con-
struction of linear models of surface reflectances and spectral
power distributions [3] [8] [9] [15] [12]. Most of these studies
have stressed the use of characteristic vector analysis or prin-
cipal component analysis to characterize lights and surfaces.
This technique can be applied to the rendering problem to
provide an automated method for selecting an efficient set
of basis functions.

Characteristic Vector Analysis

Given a set of spectral power distributions, characteristic
vector analysis computes an ordered set of functions such
that the first m functions are the “best” m functions for
approximating the distributions. Here, “best” is measured
in terms of least squared error between the actual and the
approximating spectra. Formally, for the approximation of
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the spectral power distribution.

m

IO &Y &E(N), (27)

=1

the basis functions, E;()), are computed such that the sum
of the approximation error over all of the lights in the set is
minimized

Err = \; / o) - Ze,.E,-,(A)]zd,\. (28)

In practice, this set can be determined by placing the repre-
sentative spectra in the columns of a matrix and performing
a singular value decomposition [10] [11].

The task is then to find a representative set of spectra on
which to perform the analysis. For the rendering problem,
the basis functions should describe any spectral power distri-
bution within the scene. The distributions contain contribu-
tions from the light sources themselves, from once-reflected
light, and from multiply-reflected light. Therefore, an ap-
propriate set of spectra is that set derived from possible in-
terreflections within the scene. Given the spectral power
distributions of the lights and the comporents of the surface
reflectances in a scene, one can construct a tree of possi-
ble interreflection spectra (disregarding any geometry). The
lights themselves would be included, and any number of re-
flections and interreflections could be included. The basis
functions computed from a characteristic vector analysis of
this set would then approximate these spectral power distri-
butions.

If the number of spectral power distributions to fit is too
large, this technique can become inefficient; the cost of com-
puting the basis functions may exceed the savings in ren-
dering time. Also, this method is inapplicable if one does
not know a priori the spectral character of the surfaces and
lights in the scene. However, for many scenes, this technique
can readily be applied.

3.3 Examples

To demonstrate the use of characteristic vector analysis in
selecting basis functions, we present two related examples.
Both examples use the fluorescent light in Figure 1 to show
the ability of this technique to handle complex spectra. In
the first example, we determine the efficiency in computing
the tristimulus values of a set of spectral power distributions,
and in the second, we render a simple scene.

Tristimnulus Values of Test Spectra

We select as sample spectra the twenty-four squares of the
Macbeth Color Checker under the fluorescent light. A set of
basis functions can be computed by performing a character-
istic vector analysis on the set of twenty-five spectral power
distributions given by the light itself and the light reflected
from the twenty-four samples. Figure 2 shows the first three
basis functions for this set; as can be seen, characteristic
vector analysis preserves the narrow peaks that are found in
the spectral power distribution of the light source.

From these basis functions, we compute the transform coef-
ficients of the fluorescent light with Equation 2. Assuming
only diffuse reflection and ignoring geometry, we use Equa-
tion 12 to compute a single matrix for each of the twenty-four
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Figure 2: First three basis functions computed with char-
acteristic vector analysis for fluorescent light reflected from
the twenty-four squares of the Macbeth Color Checker.
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Figure 3: Average CIE Lab Error for set of spectra as a
function of the number of multiplies per reflection for evenly
spaced point samples and for the general linear transform
computed with characteristic vector analysis.

surfaces in the color checker. The product of the vector of
coefficients with each of these matrices gives column vectors
containing the coefficients of the reflected light. From these
vectors, we compute the linear model approximation to the
tristimulus values of each of the twenty-four patches with
Equations 18-20. The average CIE Lab error in units of AE
[21] can then be calculated as a function of the number of
basis functions. For reference, we also compute this error
as a function of the number of evenly spaced point samples
for Riemann summation. To compare the two methods in
terms of their computational intensiveness, we plot in Fig-
ure 3 the errors as a function of the number of multiplies per
reflection.

The general linear model is significantly more efficient than
point sampling; the latter shows severe oscillations from the
sampling error in computing the narrow peaks in the flu-
orescent light. Clearly, the point sampling method should
(and would) be amended for the fluorescent light case. The
most natural method is to ensure point samples lie on the
narrow peaks and are weighted appropriately during the in-
tegration. This is tantamount to hand-selecting a general
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Figure 4: Four surface reflectances from the Macbeth Color
Checker used in the example image.

] First Busis
82y . Second Busis }
-------- Third Busis

450 500 550 600 650 700

Wavelength

Figure 5: First three basis functions of the general linear
model computed with characteristic vector analysis for the
example image.

linear model. Characteristic vector analysis is attractive be-
cause it matches most anomalies in the spectra without the
user being required to address each one distinctly.

Image Generation

‘We now apply characteristic vector analysis to select basis
functions for ray tracing of a simple scene under fluorescent
light. The four distinct surface reflectances in the scene are
taken from the Macbeth Color Checker and are shown in
Figure 4. To compute the basis functions, we perform a
characteristic vector analysis on the set of spectra consisting
of the light source itself, all single reflections, and all second
interreflections from the four surface samples; the first three
basis functions are shown in Figure 5. These functions are
used to compute the column vector of the light source and
the ambient, diffuse, and specular reflectance matrices for
each of the surfaces in the scene.

Figure 6 shows the resultant images for four different num-
bers of basis functions. The top left image in the figure dis-
plays the full resolution rendering of the scene computed at
one nanometer intervals. The two columns display the gen-
eral linear model and evenly spaced point sampling for the

196

same number of multiplies per reflection. The left column
shows the general model with 2, 3, 4, and 5 basis functions
from top to bottom, and the right column shows 4, 9, 16,
and 25 evenly spaced point samples from top to bottom.
The linear model based on characteristic vector analysis is
superior for all images; with just three basis functions, it is
virtually identical to the full resolution image.

5 Conclusions

We have presented a general description of the use of lin-
ear transform methods in synthetic image generation. This
formalism requires that all spectral power distributions be
described with respect to a set of orthonormal basis func-
tions. The spectral power distributions are represented by
column vectors, and the surfaces are described by matrices.
Reflection during the rendering procedure takes the form of
matrix multiplication. Because this process is linear, it al-
lows for easy implementation. In addition, this framework
guides the choice of basis functions for efficient rendering.

We have discussed two possibilities for the selection of the
basis functions, Riemann summation for efficient point sam-
pling and characteristic vector analysis of a representative
set of spectra in the scene. Point sampling based on Riemann
summation is effective when the spectral power distributions
in a scene are well described with low-order Fourier compo-
nents. The method based on characteristic vector analysis is
of comparable efficiency to point sampling techniques when
the scenes contain smoothly varying spectra, and it can be
significantly more efficient for scenes with complex spectra.
We demonstrated this by rendering a scene illuminated by
fluorescent light.

A promising direction of future work is the investigation of
basis functions that make the rendering procedure more ef-
ficient; the techniques in [12] are potentially useful to this
end. In addition, we have focussed in this paper on minimiz-
ing the cost of full spectral rendering, but the flexibility of
the general method might be useful for other issues in com-
puter graphics, such as texturing, that deal with spectral
information during rendering.
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ABSTRACT

We introduce a new approach for the computation of view-
" independent solutions to the diffuse global illumination problem in
polyhedral environments. The approach combines ideas from hier-
archical radiosity and discontinuity meshing to yield solutions that
are accurate both numerically and visually. First, we describe a
modified hierarchical radiosity algorithm that uses a discontinuity-
driven subdivision strategy to achieve better numerical accuracy and
faster convergence. Second, we present a new algorithm based on
discontinuity meshing that uses the hierarchical solution to recon-
struct an object-space approximation to the radiance function that is
visually accurate. Our results show significant improvements over
both hierarchical radiosity and discontinuity meshing algorithms.

CR Categories and Subject Descriptors: 1.3.3—[Computer
Graphics]: Picture/Image Generation; I.3.7—[Computer Graph-
ics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: diffuse reflector, discon-
tinuity meshing, global illumination, hierarchical radiosity, Mach
bands, photorealism, quadratic interpolation, radiance function, ra-
diosity, reconstruction, shadows, view-independence.

1 INTRODUCTION

Computing solutions to the global illumination problem is an essen-
tial part of photorealistic image synthesis. In this paper, we are in-
terested in computing view-independent (or object-space) solutions
for global illumination. Such solutions provide an approximation to
the radiance function across each surface in the environment. Once
a solution is computed, images from any viewpoint can be rendered
with a relatively small additional effort. These methods are particu-
larly attractive for applications such as architectural design, interior
design, lighting design, illumination engineering, and virtual real-
ity, in which the need for multiple views or walk-throughs of static
environments arises.

So far, most view-independent methods have been derived from
the radiosity method that was originally developed to solve radia-
tive heat transfer problems [23]. Computer graphics researchers
adopted this method to compute the global illumination of diffuse
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polyhedral environments [10, 7, 19]. Radiosity has been extended
and improved dramatically since, but there is still much to be done
before the method can become a useful tool for its intended users.

The goal of our research is to develop an efficient radiosity system
that satisfies the following requirements:

Objective (numerical) accuracy: Solutions produced by the sys-
tem should converge rapidly to the exact solution. This requirement
may seem obvious, however, in the computer graphics community
results of simulations are too often judged solely by their visual ap-
pearance.

Subjective (visual) accuracy: While visual appearance should not
be used to judge the objective accuracy of the simulation, it is still
very important, since the image is the final product. Clearly, ac-
curate visual appearance can be achieved through numerically ac-
curate simulation (if the underlying model is physically accurate.)
Unfortunately, experience has shown that the human visual system
is extremely sensitive to small perceptual errors that are difficult to
quantify. The simulated environments can be very complex and,
therefore, the computation of ultra-accurate solutions is generally
impractical. Thus, we must have means of producing visually ac-
ceptable images even from coarse solutions.

 Ease of control: (i) The system should be controllable by users who
are not necessarily familiar with its inner workings. Therefore, the
control parameters should be intuitive and small in number. (ii) In
many cases (such as early design stages) the user is interested in a
quick solution, even if not exceedingly accurate. At other times, one
might be willing to wait overnight for a reliable solution. Therefore,
the system should provide the user with the option to trade speed for
accuracy.

Most radiosity systems do not satisfy any of these requirements.
There are no error bounds on the solutions, because approximations
are often used without justifications regarding their impact on the
accuracy of the results. The resulting images typically exhibit many
visual artifacts such as Mach bands, light and shadow leaks, jagged
shadow boundaries, and missing shadows. Radiosity systems are
seldom user-friendly and require massive user intervention: typi-
cally, a time consuming trial-and-error process is required to pro-
duce an image that looks right. Baum et al. [1] and Haines [12]
provide good discussions of the various pitfalls of radiosity.

In this paper we present a new radiosity method, which comes
closer to satisfying our goals. The new method combines two re-
cently developed approaches: hierarchical radiosity [14] and dis-
continuity meshing [15, 18]. First, we present an improved hierar-
chical radiosity algorithm that uses a discontinuity-driven subdivi-
sion strategy to achieve better numerical accuracy and faster conver-
gence. Second, we describe a new algorithm based on discontinuity
meshing that uses the hierarchical solution to reconstruct a visually
accurate approximation to the radiance function. Thus, results of
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high visual quality can be obtained even from coarse global illumi-
nation simulations. Previous attempts to improve the visual quality
of radiosity solutions were described by Nishita and Nakamae [19],
Kok and Jansen [17], Chen et al. [4], and Reichert [20]. In all of
these cases, however, the improvement takes place in image space,
after the view and the resolution have been specified. Our method,
instead, operates entirely in object space, and the improved solution
is view-independent.

2 HIERARCHICAL RADIOSITY

The traditional radiosity approach [10, 7] discretizes the environ-
ment into n elements and solves a linear system of n equations,
where the radiosities of the elements are the unknowns. The most
serious drawback of this approach is the need to compute the O(n%)
coefficients of the linear system, corresponding to the interactions
(transfers of light energy) between pairs of elements. In addition to
the overwhelming computational complexity, most of these compu-
tations are performed to unnecessarily high accuracy, while some
are not sufficiently accurate.

Hierarchical radiosity (HR) [14] overcomes these problems by
decomposing the matrix of interactions into O(n) blocks, for a given
accuracy. These blocks correspond to interactions of roughly equal
magnitude, and the same computational effort is required for com-
puting each block. HR operates by constructing a hierarchical sub-
division of each input surface. Each node in the hierarchy repre-
sents some area on the surface. Two nodes are linked together if
the interaction between their corresponding areas can be computed
within the required accuracy; otherwise, the algorithm attempts to
link their children with each other. Each link corresponds to a block
in the interaction matrix.

HR has several important advantages: it is fast, the errors in its
approximations are bounded, and it is controlled by only two param-
eters: the error tolerance and the minimum node area. The smaller
the values of these parameters, the more accurate (and expensive)
the solution becomes. Thus, HR satisfies our goals of objective ac-
curacy and ease of control.

However, the HR algorithm still suffers from shadow leaks and
jagged shadow boundaries. This occurs because surfaces are sub-
divided regularly, not taking into account the geometry of the shad-
ows. HR uses point sampling to classify the inter-visibility between
two surfaces, so it is prone to missing smalil shadows altogether. Of
course, as the user-specified tolerance becomes smaller, the solution
becomes more accurate, and the visual artifacts decrease. Never-
theless, images of high visual quality can require solutions of pro-
hibitively high accuracy.

The number of links created by HR is O(n + m?) where n is the
final number of nodes and  is the number of input surfaces. As
the complexity of the environment increases, the m* term eventu-
ally becomes dominant, drastically reducing the efficiency of the
algorithm. As pointed out by Smits et al. [22], this problem could
be solved by grouping the input surfaces into higher level clusters.
This is an interesting research topic by itself, and it will not be pur-
sued in this paper.

3 DISCONTINUITY MESHING

Radiosity methods typically attempt to approximate the radiance
function with constant elements and use linear interpolation to dis-
play the result. The actual radiance function, however, is neither
piecewise constant nor piecewise linear. It is usually smooth, ex-
cept along certain curves across which discontinuities in value or in
derivatives of various order may occur. Discontinuities in radiance
functions are discussed in detail elsewhere [16, 15, 18]; what fol-
lows is a brief summary of the various types of discontinuity and
their causes.
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The most significant discontinuities are discontinuities in the ra-
diance function itself (denoted D°). They occur along curves of con-
tact or intersection between surfaces. Discontinuities in the first and
the second derivatives (D' and D?, respectively) occur along curves
of intersection between surfaces in the environment and critical sur-
faces corresponding to qualitative changes in visibility, or visual
events. Visual events in polyhedral environments can be classified
into two types [9]: EV events defined by the interaction of an edge
and a vertex, where the critical surface is a planar wedge; and EEE
events defined by the interaction of three edges, where the critical
surface is a part of a quadric. Discontinuities of higher than second
order are also possible [16].

Discontinuities are very important both numerically and visually:
all the boundaries separating unoccluded, penumbra, and umbra re-
gions correspond to various discontinuities. When a discontinuity
curve crosses a mesh element, the approximation to the radiance
function over that element becomes less accurate. The resulting
errors usually correspond to the most visually distracting artifacts
in radiosity images. The traditional radiosity approach uses adap-
tive subdivision [8] to reduce these errors, however there are several
problems with this approach. First, the user must specify an initial
mesh that is sufficiently dense, or features will be lost. Second, the
shape of the mesh is determined by the geometry of the surface be-
ing meshed, and the discontinuities are not resolved exactly. As a
result, many small elements are created as the method attempts to
converge to shadow boundaries. Furthermore, although the result-
ing solution may be of adequate visual quality for some views, arti-
facts may become visible as the view changes (e.g., when we zoom
in on a surface.)

Discontinuity meshing (DM) algorithms compute the location
of certain discontinuities and represent them explicitly, as bound-
aries, in the mesh. This leads to solutions which are both numeri-
cally and visually more accurate. Another advantage is that higher
order elements can be used much more effectively in conjunction
with discontinuity meshes [16]. Several algorithms have been de-
scribed that use the idea of discontinuity meshing to various extents
[1, 3,6, 15].

Recently, a progressive radiosity DM algorithm was described
by the authors [18]. The meshing in this algorithm is automatic.
Using analytical visibility and form factor computations followed
by quadratic interpolation it has produced radiosity solutions of im-
pressive visual accuracy. This algorithm was also shown to be nu-
merically accurate [24].

However, this method is too expensive for computing converged
solutions of complex environment and only offers limited user con-
trol in trading off speed for accuracy. The main reason for this is
that all energy transfers are computed very accurately, regardless of
their magnitude.

4 A COMBINED APPROACH

Hierarchical radiosity and discontinuity meshing seem to comple-
ment each other in their strengths and weaknesses: HR is fast, but
the visual appearance of the results can be disappointing; DM, on
the other hand, has produced visually accurate results, but so far
it has been too expensive for simulation of complex environments.
This observation motivated us to look for ways of merging the two
methods. Our investigation resulted in the following two-pass ap-
proach:

The global pass uses a modified HR algorithm to compute a ra-
diosity solution within a prespecified tolerance. Instead of regular
quadtree subdivision, the modified algorithm subdivides surfaces
along discontinuity segments. This improves the numerical accu-
racy and results in faster convergence.
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Figure 1: The structure of the new radiosity system
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The local pass uses DM and quadratic interpolation to refine the
approximation to the radiance function locally on each surface in
the environment. Thus, the solution computed by the global pass is
transformed into a more visually accurate form.

‘When the computation is arranged in this way the simulation be-
comes more efficient. The global pass need not be concerned with
visual accuracy. This eliminates the need to maintain a topolog-
ically connected mesh, to prevent T-vertices, or to use extremely
fine subdivision around shadow boundaries, since this has little ef-
fect on the global distribution of light in the environment. The local
pass, on the other hand, can create as many elements as necessary
for a high quality reconstruction of the radiance function, without
overburdening the global illumination simulation. As a result, it is
possible to produce images of high visual accuracy even from quick
simulations.

To test our approach we have implemented a new radiosity sys-
tem whose overall structure is shown in Figure 1. The global and
the local passes are discussed in detail in the next two sections. In
the rest of this section we briefly describe the remaining parts.

The initial linking stage creates for each input polygon a list of
links to all the polygons that are visible from it. For each link it

is determined whether the two polygons are completely or partially.

visible to each other. This creates a starting point for the global pass,
which proceeds to refine these links as needed. We test visibility
between two polygons using a combination of shaft-culling [13] and
the ray-tracing algorithm that Hanrahan ez al. [14] used.

The discontinuity location stage computes the location of all the
D’ discontinuities, since these are typically responsible for the most
severe errors (both numerically and visually.) In most environments
the direct illumination by primary light sources is responsible for
the most perceptible illumination details. Therefore, all of the D'
and D? discontinuities caused by EV events involving the primary
light sources are computed as well. The computed discontinuities
are henceforth collectively referred to as primary discontinuities.

EEE events are more difficult to handle because their correspond-
ing critical surfaces are curved, rather than planar. However, the
resulting discontinuities always lie within penumbra regions, and
never define the outer boundaries of a shadow. For these reasons,
we excluded EEE events from our current implementation.

We described the discontinuity location algorithm in a previous
paper [18]. Tampieri [24] provides a more detailed description of
this algorithm. Heckbert [15] and Teller [25] describe alternative
algorithms for locating discontinuities. Teller’s algorithm is the only
one capable of handling EEE events.

5 THE GLOBAL PASS

In order to understand how the accuracy of HR can be improved, we
must examine its sources of error. Consider two nodes s and r linked
together by the HR algorithm. Let B,(x) denote the actual radiosity
due to node s at point x on node r. The algorithm approximates this
radiosity by a constant function

Bs(x) ~ Bys = PerF vsVrs

where p; is the reflectivity of node r; B; is the average radiosity of
node s; F,; is the form factor from r to s; and Vi is the inter-visibility

e R e

factor between r and s (the visible fraction of the area of s, averaged
over r).

We are interested in bounding the error between the computed
and the actual radiosities

E;= sup iBrx(x) - B\r.\" (1)
x€r

To that end, we define the following upper and lower bounds:

min __ : max
B " = infres Bi(x) B = sup, . B(x)
min . max
Fis " =infre, Frs Fr™ =sup, . Fi
in : ax
Ve = infre, Vi Vit = Sup,¢, Vs

where B;(x) is the radiosity at point x on s; Fy; is the form factor from
point x to s; and V,; is the fraction of the area of s visible from x.
Clearly, both B,s(x) and B/, lie in the interval

[y, g B py|
Therefore, the error E,; is bounded by the width of the interval
Ex < pr (BIVFRSVES - BUUEDOVIT) @)
Three main factors affect the magnitude of the error:
1. the variation of the radiosity on the source node s
2. the variation of the form factor across the receiver node r

3. the variation in the visibility of the source from the receiver

Therefore, if we find the potential error in the transfer of light energy
from s to r too large, we can try to reduce the error by reducing
any of these factors. For instance, subdividing the receiving node
will reduce the variation of the form factor. Subdividing the source
will reduce the variation of the radiosity on the source. Subdividing
either of the two may reduce the variation in the visibility.

Unfortunately, errors due to visibility are more difficult to han-
dle than errors of the other two types. If the two nodes are com-
pletely visible to each other, the error usually decreases rapidly as
the nodes are subdivided. When the two nodes are completely oc-
cluded from each other no light energy transfer occurs, and the error
is zero. Partial visibility, on the other hand, often results in very fine
subdivisions, primarily because of loose bounds on the variation in
visibility between two finite areas. In HR, visibility is estimated by
casting a number of rays between the two nodes. Thus, if partial
visibility is detected, all we know is that the actual visibility is in
the interval (0, 1).

Clearly, it would be to our advantage to use a subdivision strategy
that would result in as many totally visible or totally occluded pairs,
as quickly as possible. Since discontinuity lines on the receiver cor-
respond to abrupt changes in the visibility of the sources [16, 18],
subdividing the receiver along these lines should quickly resolve
partial occlusion.

We have modified the HR algorithm to perform discontinuity-
driven subdivision instead of regular subdivision. There are two
main changes in the data structures used by the new algorithm: first,
we store with each node a list of all the discontinuity segments on the
corresponding polygon; second, we use a 2D binary space partition-
ing (BSP) tree [3] instead of a quadtree to represent the hierarchical
subdivision of each initial polygon, since BSP trees allow for subdi-
vision of polygons along arbitrarily oriented lines. Pseudocode for
subdividing a node is given in Figure 2.

When a node is subdivided we choose one of its discontinuity
segments and split the node using the corresponding line equation.
The segment is chosen such that the split is as balanced as possible.
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Boolean Subdivide(node)
if not IsLeaf(node) then
return TRUE
end if
if node.area < minNodeArea then
return FALSE
end if
if node.DSegments # NIL then
DSegment s «— ChooseBestSegment(node)
(left, right) «— SplitNode(node, s)
(leftList, rightList) «— SplitSegmentList(node, s)
else
(left, right) «— SplitEqual(node)
(leftList, rightList) <« (NIL,NIL)
end if
node.left «— CreateNode(left, leftList)
node.right «— CreateNode(right, rightList)
return TRUE

Figure 2: Pseudocode for the Subdivide routine

Priority is given to D° discontinuities over higher order ones, since
the former typically bound areas totally occluded from the rest of the
environment. The subdivision is completed by splitting the list of
segments into two new lists, one for each child. If no segments are
stored with the node, we split the node by connecting the midpoint
of the longest edge to a vertex or another midpoint chosen so that
the resulting children have roughly equal areas.

5.1 Results

Figure 4 demonstrates the improved hierarchical algorithm using
a simple environment illuminated by two small triangular light
sources. A 3D view of the environment is shown in image al. The
radiance function on the floor polygon is shown in image a2. Im-
age a3 shows the discontinuity segments on the floor. D’ discontinu-
ities are drawn inred; D! and D? discontinuities in yellow. Inrows b
and ¢, we compare the subdivision produced by the discontinuity-
driven algorithm to the one produced by regular subdivision. The
level of subdivision shown increases from left to right: the leftmost
pair shows the subdivision at level 2, then level 4, 6, and 8.

The new algorithm is much quicker to correctly separate regions
corresponding to complete occlusion, partial visibility, and com-
plete visibility. Already at subdivision level 4 (image b2), most
of the nodes can be classified as either totally visible or totally oc-
cluded with respect to each of the light sources. For these areas there
are no more visibility errors. At subdivision level 6 (image b3) all
of the discontinuities have been used, and the partially visible nodes
are now confined exactly to the areas of penumbra.

In order to compare the rates of convergence of the two strategies
we computed a set of approximations to the direct illumination on
the floor using a successively larger number of elements. Figure 3
shows the RMS and the maximum absolute errors versus the num-
ber of elements for the two strategies. These errors were computed
with respect to an analytical solution at the vertices of a 400 by 400
grid on the floor. All the values were scaled to set the maximum
brightness on the floor to 1.

Our algorithm converges faster in both error metrics. Note that
the convergence of the regular subdivision is particulaily poor in
the maximum absolute error metric. The reason is that there are
D° segments on the floor that are not aligned with the subdivision
axes. Thus, there are always elements that are partially covered by
the pyramid while the remaining part is brightly illuminated by the
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Figure 3: A comparison of errors between the two subdivision
strategies using log-log plots

light sources. The algorithm assigns a single constant value to each
such element, and this results in a large error there. Our algorithm,
on the other hand, resolves D° discontinuities and therefore does not
suffer from this problem.

In the RMS error metric regular subdivision does converge, be-
cause the elements that contain the errors become progressively
smaller, and this is accounted for by the metric; however, the con-
vergence is slower.

6 THE LOCAL PASS

The global pass results in a hierarchical solution that is essentially a
piecewise constant approximation to the radiance function on each .
polygon in the environment. Often, this approximation is quite
coarse. Now our goal is to convert this solution into a form more
suited for producing visually accurate images. To that end, we need
to locally refine the radiance approximation on each polygon.

Our experience with discontinuity meshing [18] has shown that
reproducing the discontinuities in the radiance function, while main-
taining a smooth approximation elsewhere is key to achieving visual
accuracy, especially when multiple views of the same solution are
to be rendered. Therefore, we construct a discontinuity mesh con-
taining the precomputed primary discontinuities for each polygon.
Mesh nodes are assigned radiance values using the hierarchical so-
lution. This mesh is then used for the shaded display of the en-
vironment. Thus, the local pass essentially performs an additional
light gathering operation over the environment. However, instead
of gathering to the nodes in the hierarchy, we gather to the elements
of the discontinuity mesh.

The discontinuity mesh is constructed using constrained Delau-
nay triangulation (CDT) [5]. The Delaunay triangulation (DT) of a
point set maximizes the minimum angle over all possible triangula-
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Spectrum Shade(node, x)

rad — 0
foreach | € node.links do
ff «— FormFactor(x,l.source)
v « Visibility(x,])
rad « rad+ff*v * l.source.radiosity
end for
if IsInterior(node) then
if Contains(node left, x) then
rad « rad + Shade(node.left, x)
else if Contains(node.right, x) then
rad «— rad + Shade(node.right,x)
else
rad — rad + 0.5 x (Shade(node.left, x)
+Shade(node.right, x))
end if
end if
return rad

Real Visibility(x, link)
case ShadingMethod in
B: v — link.visibility
C: v « RecomputeVisibility(x, link.source)
D: if IsPrimary(link.source) then
v +— Recompute Visibility(x, link.source)

else
v «— link.visibility
end if
end case
return v

Figure 5: Pseudocode for the Shade routine

6.1 Results

We compared methods A, B, C, and D using a simple model of a
square exhibit room displaying a modern sculpture illuminated by
two small square light sources.

Three global pass solutions of the exhibit room are shown at the
top row of Figure 6, in order of increasing accuracy starting from
the left. For each solution, the elements (leaf nodes) of the hierar-
chical subdivision are shown as flat shaded, outlined polygons. The
bottom row of the same figure shows the corresponding local pass
meshes. Table 1 reports statistics for both passes.

The results of the global pass were fed to the local pass four times,
once for each of the methods A, B, C, and D, yielding a total of
twelve radiosity solutions shown in Figure 7. Columns 1, 2, and 3
were computed respectively from the low, medium, and high accu-
racy global pass solutions shown in Figure 6. Each row corresponds
to a different shading strategy starting with method A for the top
TOW.

As demonstrated in the top row, method A is prone to visual ar-
tifacts: the shading on walls is flat or not sufficiently smooth; some
shadows are entirely missing (image A1), while others have incor-
rect boundaries. These artifacts are the result of interpolating ra-
diance values obtained by sampling the piecewise constant global
pass solution.

Method B reduces some of these artifacts. The appearance of
unoccluded areas is greatly improved, since accurate form factor
are recomputed at every interpolated point in the mesh. However,
the penumbra regions of the shadows cast by the sculpture are still
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Solution Accuracy

low [ medium [  high
input polygons 47 47 47
disc. segments 559 559 559
initial links 652 652 652
total links 720 1316 21805
total nodes 147 803 6041
total leaf nodes 97 425 . 3044
CDT elements 1538 2384 8177
shading calls 3799 5674 17984
initial linking 6 6 6
discontinuity comp. 1 1 1
hierarchical sol. 1 4 60
triangulation 0.53 0.81 2.78
method A 1 2 13
method B 6 10 80
method C 405 624 2633
method D 20 26 110

Table 1: Statistics for images in Figures 6 and 7. Timings are in
seconds for execution on an HP 9000/720 workstation,

incorrect and shadows are still missing from the coarse solution (im-
age B1.) The reason is that Method B still uses node-to-node visi-
bility factors to approximate node-to-point visibility.

As shown in row C, method C correctly reconstructs all of the
shadows. In particular, note the appearance of the shadows in the
coarse solution (image C1.) This method results in the best visual
accuracy we were able to obtain, given a global solution.

Method D yields results that are almost indistinguishable from
those given by method C. However, as can be seen from the tim-
ings reported in Table 1, method D takes only a fraction of the time
required by method C. In fact, it is not much more expensive than
method B.

When using methods C or D, little difference can be seen be-
tween the medium and high accuracy solutions (columns 2 and 3).
Although the latter solution is objectively more accurate, from a vi-
sual standpoint, the former solution is almost as good. If fact, it is
apparent that even very low accuracy global pass solutions can yield
results of reasonable visual quality when followed by a local pass
using method D (image D1.)

When comparing the computation times reported in Table 1, it
can be seen that the local pass is in most cases costlier than the global
pass. It may be argued that the time used by the local pass could be
better spent in further refinement of the subdivision hierarchy in the
global pass. One might expect that if the hierarchy were sufficiently
refined, even a very simple shading strategy would have sufficed for
visually accurate results. Figure 7, however, demonstrates that this
is not the case. Image D2, computed from the medium accuracy
global pass followed by method D for the local pass, is visually more
accurate than images A3 and B3; yet, it took considerably less time
to compute (38 versus 83 and 150 seconds, respectively.)

Another set of comparisons was made to illustrate the importance
of including discontinuity segments in the mesh for the local pass.
Figure 8 shows a view of the floor of the exhibit room. The top
row shows the mesh in wireframe with D° discontinuities in red and
D' and D? discontinuities in yellow. The bottom row shows the
shaded floor as reconstructed by the local pass. All images were
computed from the medium accuracy global pass solution shown in
image a2 of Figure 6 and all of them used method D in the local
pass. As can be seen from the top row of Figure 8, no discontinu-
ity segments were included in the left mesh, only DY discontinuities
were included in the middie mesh, and all the discontinuity seg-
ments were included in the right mesh.

When comparing the corresponding images in the bottom row,
the higher quality of the right image stands out. Image bl presents
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Radiosity Algorithm

HDMR l HR
initial linking 2:16:27 2:16:27
discontinuity computations 0:09:06 0:00:00
hierarchical solution 0:16:42 3:58:01
triangulation 0:00:21 0:00:16
shading computations 0:33:49 0:00:51
total time (hr:min:sec) 3:16:56 6:15:35
input polygons 1,688 1,688
discontinuity segments 18,664 0
initial links 165,814 165,814
links after culling 27,002 27,002
total links 39,056 161, 668
total nodes 5,778 35,454
total leaf nodes 3,733 18,571
avg. depth of hierarchy 1.31 2.04
CDT elements 41,090 41,284
shading calls 109, 885 101,208
recomputed form factors 3,609,941 0
recomputed visibility terms 128,705 0

Table 3: Statistics for the comparison of hierarchical discontinuity
meshing radiosity (HDMR) vs. hierarchical radiosity (HR) shown
in Figure 9. All timings are for execution on an HP 9000/720 work-
station.

Teller and Hanrahan [26].

We need to be able to compute tight bounds on the visibility be-
tween two partially occluded polygons. This would improve the ef-
ficiency of the global pass by eliminating unnecessary subdivision
in penumbral areas.

Choice of sources. Our algorithm is particularly effective for envi-
ronments with a few primary light sources that are responsible for
the most noticeable shadows. In general, however, primary light
sources do not dominate the illumination on all the surfaces in an
environment. Our algorithm should be extended to compute a set
of the most dominant sources, primary or secondary, with respect
to each receiving surface. This set should be used both for com-
puting the discontinuities on that surface and for determining when
visibility should be recomputed in the local pass.

Choice of discontinuities. Not all the discontinuities are equally
significant. In the global pass, for example, we should choose dis-
continuities that would resolve partial visibility most effectively,
rather than ones that split the node most evenly. In the local pass
we need to identify the discontinuities that are visually significant
and insert only these discontinuities into the mesh.
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Radiosity Algorithms Using Higher Order Finite Element Methods

Roy Troutman, Nelson L. Max

Lawrence Livermore National Laboratory

Abstract

Many of the current radiosity algorithms create a piecewise con-
stant approximation to the actual radiosity. Through interpolation
and extrapolation, a continuous solution is obtained. An accurate
solution is found by increasing the number of patches which describe
the scene. This has the effect of increasing the computation time as
well as the memory requirements. By using techniques found in the
finite element method, we can incorporate an interpolation function
directly into our form factor computation. We can then use less ele-
ments to achieve a more accurate solution. Two algorithms, derived
from the finite element method, are described and analyzed.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graph-
ics]: Picture/Image Generation - Display Algorithms. 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: finite elements, form-factor,
global illumination, radiosity.

1 Introduction

The traditional radiosity algorithm computes the form factors at
a collection of points [S]. There have been several techniques used
toenhance and speed up the algorithm. Cohen described an algorithm
which enabled more complex environments to be rendered by plac-
ing a half cube or “hemicube” at each evaluation point and sampling
through pixels on the hemicube surface [3]. We can improve the accu-
racy of the solution by increasing the resolution of the hemicube or
by analytically determining the form factors [1], [13]. Further
improvements can be made by producing a mesh which follows the
discontinuities introduced by shadow boundaries and surface inter-
sections [9], [10].

Rather than assuming the radiosity arrives from piecewise con-
stant patches, Max and Allison introduced an algorithm which
assumed a piecewise linear approximation [11]. This algorithm
works by placing an interpolation function directly into the form fac-
tor computation. Using this technique, a more accurate solution can
be obtained with less patches [9]. An extension to this algorithm is
to increase the order of the interpolation function to quadratic, cubic
oreven higher [16]. These interpolation functions are what the finite
element method refers to as basis functions [2].

2 Basis Functions

The details of the basis functions, elements and nodes can be found
in [2]. We will only give a brief overview to establish our terminol-

ogy.
2.1  Approximation Function

The finite element method associates a basis function for each of
the local nodes in a representative element. The basis function for a
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global node becomes acombination of basis functions defined on the
local nodes of all elements which contain the global node [2}, [9],

[14]. In this paper a node is “contained” or “in” an element if it is

on the boundary or interior of the element. Using the basis function
f; and radiosity B; associated with each node i, we can approximate
the radiosity ata point x in our environment as a linear combination
of the radiosities of each node or

Bx) = ¥ B; f(®) (EQ 1)

i=1
2.2 Element Construction

Due to its compatibility with triangulation and orientation inde-
pendence using Gouraud shading, we have chosen the triangle as our
element. We also need to concern ourselves with the connectivity of
this element. Our golution will be much more accurate if we align
our mesh to the D® and D' discontinuities as described by [9] and
[10]. We can obtain elements with fou continuity by using the same
nodes on the boundary of adjacent elements [2], [4]. By definition,
the C° elements can accurately model D" discontinuities. A D" dis-
continuity would result from surface intersection, discrete changes
in emissivity or discrete changes in reflectivity. These can be mod-
eled by aligning our edges to the discontinuities and duplicating the
nodes along the edge [9]. Higher order discontinuities could be mod-
eled by selectively enforcing higher derivative continuity across the
common edges between adjacent elements, but this is quite complex
[12] so we approximate them by using smaller elements.

3 Finite Element Methods

This section will give a very brief introduction to finite element
mathematics to provide us with modifications needed for the radi-
osity algorithm to incorporate higher order elements and the previ-
ously discussed basis functions.

3.1 Residual Error

We start by reiterating an equation from [8] which describes the
radiosity for all points in the environment

B(x) = E(x) +p(x)jdsx(x, s)B(s) (EQ2)
Q
where
c0s0.cos0.
x(x,s) = V(x,s) ‘2 J (EQ3)
nr

Exact solutions to (EQ 2) are known only in the simplest of geom-
etries [8]. The exact solution can be approximated using the linear
combination in (EQ 1). Traditional radiosity methods can be thought
of as having a constant basis function of f; (x) = 1 for all points x
inside patch i. These constant basis radiosity algorithms will not be
reiterated. The method introduced in [11] uses linear basis functions
centered on the vertices. We will be presenting algorithms forextend-
ing polynomial basis radiosity to higher order polynomials.

The traditional radiosity method assigns an emissivity and reflec-
tivity to each patch. We can enhance our radiosity algorithms by
claiming that the exact emissivity and reflectivity are also defined by
an approximation function similar to (EQ 1). This would allow us
to describe variations in emissivity and reflectivity up to the degree
of the basis function. For the sake of brevity, we will assume that the
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emissivity e, and reflectivity p, are constant across each individual
surface, k.

We can replace B(s) in (EQ 2) by our approximation function to
obtain an approximate solution for B(x). If our approximation is
good, then the approximate solution for B(x) and the value obtained
by applying (EQ 2) at point x should be close. If our approximate
solution is exact, the difference between these two approximations
will be zero. This gives us a measure of the accuracy of our approx-
imation and is defined as the residual error. More specifically, it is
expressed as

r(x) = E() +p( [dsx(x5)B(s)~B(x)  (EQ4)
Q

3.2 Method of Weighted Residuals

A general approximation technique is the method of weighted
residuals. This technique requires the residual errorto be orthogonal
toaset {wix)} of weighting functions over the domain Q. It was
shown in [8] that the resulting equations could be expressed in matrix
form as

[M-K]B = E ‘ (EQ 5)

where Bis a column vector containing the coefficients to our approx-
imation and

M = j dx w(x)f,;(x)
Q
K, = pk‘J;dx w; (x)‘{dsx(x, $);(5) (EQ 6)

E, = ekfdx w; (x)
Q

where k is the index of the surface supporting weight function w,.
4 Higher Order Algorithms

We have presented a set of interpolation functions in section 2 and
combined them with our radiosity integral using the finite element
method in section 3. This gave us a matrix equation where each com-
ponent of the matrix contained a weighting function. By replacing
the weights with different functions we obtain the point collocation
and Galerkin methods [8).

4.1 Point Collocation Method

The traditional gathering algorithm as well as the linear vertex
radiosity method introduced in [11] are examples of the point col-
location method. This method replaces the weighting function in (EQ
6) with the dirac delta [8]. This simplifies the M in (EQ 5) to be the
identity matrix and E to be a column vector containing the emis-
sivities at each node. The elements of K have the value

Kij = pkz!;dsx(xi’ s)_f", (s) (EQ7)

The contents of the integral describes a differential area to
weighted area form factor where the area is defined by the domain
of the basis associated with node j. We will call this a differential
area to basis form factor. This integral can be solved using the
approach specified in [11]. The pseudocode is as follows

Initialize F to 0

For each pixel A in hemicube
k = index of patch at
@ = point on surface of k
For each node j in patch k

Fij = F‘.j + _f}(Q)A’|

EndFor

EndFor
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4.2 Galerkin Method

The Galerkin method replaces the weighting functions with the
basis functions giving us the following definitions for the matrices
of (EQ 5).

M;; = [dx £,(0 ()
Q
K, = pkjdxfi(x)‘{dslc(x,s)j}(s) (EQ8)
Q

= ekfdxf (x)

We'll start by looking at the equation for M;;. We only need to
concern ourselves with the area where f; and f; are both non-zero.
This will only occur if an element can be 'found Which has the nodes
i and j on the boundary or interior. Clearly this occurs if i equals j.
We can easily compute M, . by considering only the elements which
contain node i and looking through that small set of elements for the
elements which also contain node j. We then integrate across these
elements individually and sum the results. The formula for 2-D
change of variables from the global triangle to the representative ele-
ment givesus the Jacobian determinant whichis the area of the global
element. Therefore, the integral across an element is the same as the
integral across the representative element multiplied by the area of
the element. The final result is a constant multiplied by the area of
the global element. The constant is dependent upon the relative posi-
tions of the local nodes corresponding to i and j. We can store these
constants in a matrix M_. This matrix is symmetrical, which is what
we would expect by looking at the equation. The local node numbers
fori and j correspond to the row and column of a location this matrix.

Solving for E; follows a similar path. In this case, we must inte-
grate across the domain of the basis function. We can form a vector
E_ which contains the integral of all of the local nodes across the
representative element. To compute E;, we look at each element
which has node i, use the local node number as an index into E_,
multiply that array element by the area and then add it to the curnent
value of E;. After we visit each element, we multiply our result by
the node emission e;.

Computing K. i is shghlly more involved. We know from (EQ 7
that the inner integral is a differential area to weighted area form fac-
tor. In the Galerkin case, the weighted area still corresponds to the
domain of a basis function, but the differential area corresponds to
some point x in the domain of f;. We will express this differential
area to basis form factor as F " Our equation simplifies to

K = p,[dx fOF, (EQ9)
Q

Thé contents of the integral describe a basis to basis form factor.
This integral is in a form that is appropriate for Gaussian quadrature
[2], [16]. The problem of computing X is now reduced to comput-
ing a set of form factors, adding the resilts multiplied by the appro-
priate weight and multiplying by the reflectivity.

Tocompute the basis to basis form factor with gaussian quadrature
we start by specifying the degree of precision [2]. This provides us
with a collection of gauss points on each element. We compute an
array of differential area to basis form factors FF (computed by the
algorithm in section 4.1) at each of the gauss points. This hemicube
will affect the basis to basis form factors associated with each node
inthe element. After we have completed computing the entire matrix
of form factors, we multiply each row by the reflectivity to obtain
K. This gives us the following algorithm
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Initialize F to 0
For each patch p
4, = area of patch p
For each gauss point [
Q, = global coordinate of point !
W, = weight assigned to point [
FF = array of ‘form factors computed at Q,
For each node I in p
For j = 1 to total number of nodes
Fij = F‘.j+ a,xw, X f{Qp) x FF(j)
Endfor
Endfor
Endfor
Endfor
The matrix M is very sparse. To avoid using an excessive amount
of memory due to random access, the matrix is computed one row
at a time, This requires us to visit a node and find the patches which
share this node. The winged edge data structure allows us to easily
determine adjacent elements. The algorithm for computing M and
E is as follows.

Initialize M and E to 0
For each node i
P = set of patches containing i
Por each patch pe P
a, = area of patch p
Jp= set of nodes in p
l; = local node number of node §
For each je J
l. = local node number of node j
= Myta,xM,1)
Endfor
E = E..+ap>(£c(i,-)
Endfor
Endfor
To solve for B, we multiply each row of the form factor matrix
by the reflectivities and solve the matrix using the Gauss-Seidel iter-

ation method.
5 Analysis

A quantitative measurement of the accuracy of our algorithms are
obtained by applying an error metric. We will apply this metric to
images generated by our collocation and Galerkin algorithms.

5.1 Error Metric

We determine the RMS radiosity reconstruction error by rendering
each surface individually at the same distance. Our reference image
was obtained by using quadratic basis elements on a discontinuity
meshed version of our scene and applying a hemicube with a reso-
lution of 314 x 314 x 157. Since 157 is a prime number, the chance
of a correlation with a lower resolution hemicube is reduced. The
floating point radiosity of each pixel is compared to the same pixel
ineach rendered surface of the reference. The error is measured using

(EQ 10)

where r; is the radiosity value at pixel i in the reference scene, e;
is the radiosity at pixel i in a test scene and n is the total number of
pixels occupied by a rendered image of every surface. Computing
the error in this manner reduces the chance of bias since it is improb-
able that any particular node in our scene will be on a pixel center.

5.2 Collocation Results

The collocation algorithm was implemented ona Cray YMP/C90.
Timing information was obtained using the Unix times function. The
computation time was considered to be the time spent executing the
code added to the time spent completing system calls. The total time

includes the time spent generating and solving the matrix. We do not
include /O times. We could not include the time spent generating
the mesh since some of the following meshes were generated by
hand. Because of its flexibility, Heckbert’s software z-buffer [7] was
used to project the environment onto the hemicube. Although the pro-
gram computed the radiosity for the red, green and blue components,
only the blue component was used to determine the error.

We start by analyzing the source of error in Figure 1. Most of the
error in this image is due to the shadow edges on the floor. By ren-
dering the radiosity of the floor as a 3-D shaded surface, we enhance
the radiosity discontinuities that would not be visible when the scene
isrendered as an image. Figure 1 also shows the radiosity of the floor
of the reference scene rendered in this manner. This gives us more
information about where errors occur as well as how close our
approximation is to a converged reference.

The reference image appeared to be extremely smooth. However,
when we looked at the floor rendered as a shaded surface, slight dis-
continuities due to hemicube aliasing were detected. These artifacts
are referred to as plaid patterns in [1] and [15]. When the edge of a
lightsource is parallel or at a 45 degree angle to the edge of the hemic-
ube, the amount of aliasing is greatly enhanced. In some scenes it
may be possible to determine an ideal rotation for the hemicube in
order to reduce aliasing, but when we introduce occlusion, the appar-
ent edge of a source changes. In general, we can reduce the chance
of a poor alignment by introducing a random rotation to the hemic-
ube. This gives a slightimprovement in terms of numerical error and
abig improvement in terms of visually perceptible error. To improve
our reference even further, we solved for the radiosity several times
and averaged the results.

We applied a uniform and discontinuity mesh to Figure 1. By
increasing the resolution of a mesh, the amount of computation time
increases as the error decreases. We did not have access to triangu-

lation software that would easily allow us to create a variable sized

discontinuity mesh. An interactive mesh generator called Maze [6]
was used to produce a set of quadrilaterals which were then split into
triangles. One of the goals used in producing this mesh was to limit
the number of slices or poorly formed elements. Once the mesh was
created, we were easily able to further subdivide the resulting trian-
gles to improve the accuracy of our solution.

Figure 2 shows the results of the algorithm when applied to the
scene shown in Figure 1 witha 100 x 100 x 50 hemicube. A log error
of less than -1.3 generated an image which was very difficult to dis-
tinguish from the reference. A log error of less than -1.6 generated
an image which could not be distinguished from the reference even
with high quality display devices. A log error of approximately -2
was mostly due to hemicube aliasing. Note that the linear and con-
stant uniform elements did not obtain these error levels in the time
frame shown. The effecton the form factors due to visibility changes
is basically quadratic, so we did not expect or see a great deal of
improvement in the cubic element over the quadratic element. Dis-
continuity meshing showed the most impressive results. The linear
discontinuity elements produced the same error as the best uniform
elements in half the time. The quadratic and cubic discontinuity ele-
ments produced an error level so small that further reduction could
only be obtained by increasing the resolution of the hemicube.

The collocation algorithm was applied to other simple scenes. In
some cases, even the higher order CDp elements did not conform well
to the radiosity solution along edges of high variance. These edges
can be found near dimly lit corners of a closed room.

5.3 Galerkin Results

The Galerkin method was also implemented on the Cray YMP/
C90. This method required only minor modifications to the existing
collocation algorithm. The program was implemented so that the
user could specify the number of degrees of precision. It was shown
in [14] that in the case of the uniform mesh, the optimal degrees of
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Galerkin Radiosity:
A Higher Order Solution Method for Global Illumination
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Abstract

This paper presents an alternative radiosity formulation using piecewise
smooth radiance functions that incorporates curved surfaces directly. Us-
ing the Galerkin integral equation technique as a mathematical foundation,
surface radiance functions are approximated by polynomials. This model
eliminates the need for a posteriori rendering interpolation, and allows the
direct use of non-planar parametric surfaces. Convergence problems due to
singularities in the radiosity kernel are analyzed and rectified, and sources
of approximation error are examined. The incorporation of a shadow mask-
ing technique vastly reduces the need for meshing and associated storage
space—accurate radiosity calculations can often be made with no meshing.
The technique is demonstrated on traditional radiosity scenes, as well as
environments with untessellated curved surfaces.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism; 1.3.3 [Computer Graphics]:
Picture/Image Generation.

Additional Keywords and Phrases: global illumination, radiosity, inte-
gral equations, Galerkin methods, curved surfaces, progressive refinement.

1 Introduction

The behavior of light interacting with a macroscopic environment is ex-
tremely complex. Despite considerable effort spent searching for a closed-
form solution to global illumination problems [10, 22}, it seems unlikely that
such an approach will be found. To produce computer-generated pictures in
areasonable amount of time, approximations must be used. Typical approx-
imation techniques include the use of direct lighting only, tessellation of the
simulated environment into polygonal surfaces, constant or linear shading
of surfaces, and sampling the intensity distribution at a limited number of
points.

Goral et al. [7] introduced the conventional radiosity approximations
to computer graphics, assuming surfaces have purely diffuse reflectance
distributions, and that finite regions on these surfaces have locally constant
radiosity values. Intensity variations across a surface are accounted for by
meshing it into a large number of smaller pieces.

Although these assumptions are effective, recent research has demon-
strated their limitations. Conventional radiosity techniques generally require
that objects be flat or polygonal [1, 7, 3], even though Wallace has demon-
strated [21] that radiosity transfers can be computed between non-planar
surfaces. Generating images with accurately placed shadows involves a
lengthy meshing process, whether surfaces are divided along arbitrary lines
[15, 2, 9] or along actual lines of shadow discontinuity [13, 12].

In finite element analysis, it is often possible to trade off a large num-
ber of lower-order elements for a smaller number of higher-order elements.
Sparrow [18] and Heckbert [10, 11] have successfully applied higher-order
radiosity techniques to special-case geometries. Max and Allison [14] ex-
plored some of the difficulties of using a linear elements in more general

how at Rhythin and Hues Studios, Inc., 910 North Sycamore Ave., Hollywood,
CA 90038. E-mail: hzatz@rhythm.comor hzatz@alumni.caltech.edu
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1993 ACM-0-89791-601-8/93/008/0213 $01.50

radiosity meshes. In this paper we reformulate the radiosity equations
with the goal of applying higher-order Galerkin techniques to more general
environments, paying particular attention to the difficulties caused by sin-
gularities and shadow discontinuities. Benefits of this approach include the
direct incorporation of curved surfaces into the solution technique, as well
as a significant memory savings due to a drastic reduction of mesh size.

The Galerkin method does have its disadvantages; dealing with shadows
and extremely bright light sources can be tricky, and computationally ex-
pensive singularities can appear in many places in a complex environment.
However, the use of higher-order functions to replace meshing provides a
different perspective on the difficulties of the global illumination problem,
avoiding some of the difficulties of conventional methods.

2 Background

The radiosity model of global illumination is based on the principle of energy
conservation. All light energy emitted within an enclosure is tracked as it
reflects off surfaces within that environment, until it dissipates into heat.
Conventional radiosity methods [1, 2, 3, 4, 7,9, 15, 217 generally simplify
the solution procedure by using the Constant Radiosity Assumption [20]—
the primary assumption that radiosity values are constant over finite regions,
and subsidiary assumptions that emittance, reflectivity, and surface normals
are also constant over finite regions. Unfortunately, this constant, polygonal
approach to the radiosity problem limits the solution accuracy. Conventional
radiosity methods attempt to compensate by increasing the mesh density,
assuming that the environment can be accurately approximated if enough
polygons. However, the number of polygons needed often exceeds the
memory and computational resources available.

Tampieri and Lischinski [20] further explain that the Constant Radios-
ity Assumption leads to fundamental errors in radiosity computations. A
solution computed on a tessellated surface can only be as accurate as the tes-
sellation. The Constant Radiosity Assumption also presents inconsistency
between its illumination and rendering phases. During the energy transfer
phase, radiosity is assumed constant across each polygon. However, radios-
ity renderings are made by sampling each polygon at a few points and then
interpolating brightness values between these points. Basic signal process-
ing shows that while interpolating a solution may make an image look more
accurate, all such interpolation can do is mask error by blurring the image.
A consistent radiosity solution must incorporate the interpolation into the
energy transfer calculations.

2.1 The Radiosity Integral Equation

In order to apply the appropriate mathematical tools to the solution of radios-
ity problems, it is convenient to express the radiosity equation in parametric
form. Parametrically, the key radiosity variables (radiosity, emittance, re-
flectivity, efc.) are represented as functions of two variables, (s, 1) or (u, v),
over each surface i or . By abstracting all the complexity of surface inter-
action into a single kernel function Kji(s, 1, u, v), the radiosity equation can
be written as an integral equation,

Bi(s, ) = Eds, t)+Z / / Ki(s, t, u, v)Bj(u, v)du dv, m
Vi

where the kernel function Kj(s,t,u,v) is the product of the double-
differential form factor F;_;(s, ¢, u, v), reflectivity p;(s, t), area 4;(s, ), and
visibility VIS;(s, #, u, v)

Kij(s, t,u,v) = pi(s, DFi (s, t, u, VIVIS;i(s, t, u, v)A4;(u, v). (2)
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The form factor and area functions can be further expanded in terms
of the functions describing surface geometry Xi(s, ¢} and normals #(s, #):

(Pi(s, 1) — i, v)) - (B, v) — Fi(s, 1)

Ficj(s,tu,v) = |75, 1) — Zw, V)¢
Ay = | F) 5 3)

3 Mathematical Background

The Galerkin method provides a method for solving integral equations in
terms of a basis set of non-constant functions across each surface. This sec-
tion provides the mathematical background necessary to apply the Galerkin
method to the radiosity equation.

3.1 Basis Set Projection

To approximate the radiosity distribution by a combination of functions, we
first need formal tools to manipulate an appropriate two-dimensional basis
set. We denote this basis set {7x(s, )|k = 0, 1,...}, where s and ¢ are the
parametric variables across a surface, and k specifies a particular function in
the set.

Just as geometric vectors have a dot product that projects one onto the
other, the inner product of two functions (s, f) and g(s, ¢) can be defined,

[
18w =/ J(s,Dgls, OWs, )ds d. 4
-1J-1
W(s, 1) is some weighting function that describes the importance of different
positions to the inner product. To apply the Galerkin method to radiosity,
we use an orthonormal set of basis functions, { 7;(s, ) }—a set designed so
that for a particular inner product weight function W(s, 1),

Vo (Tel Ty = du- ()

Finding the combination of orthonormal basis functions closest to some
particular function is relatively simple. Given that the radiosity function
over surface i is Bj(s, ), we define the coefficients Bf

Bf = (Bil Tayy - ©)
The original function can be approximated by the weighted sum,
Bis,n =y BITi(s,0. )
k

3.2 Legendre and Jacobi Polynomials

The Galerkin method is usuatly solved using an orthonormal polynomial
basis set, defined on the interval [—1, 1]. Legendre and Jacobi polynomials
are one-dimensional, orthonormal polynomials which can be combined into
a two-dimensional basis set by multiplying two polynomials in different
variables. We limit our analysis in the next two sections to polynomials of
one variable.

When the inner product has a weight function equal to one, the polyno-
mials formed are the Legendre polynomials. The unnormalized Legendre
polynomials are generated by a recursion rule [8],

Po(x) =1 Pitx)=x
(n+ 1Py (x) = (2n + 1xPu(x) — nPy— 1 (x). (8
The normalized Legendre polynomials are

Pn(-\") = “ n+ %PM(X) 9

Polynomial sets can also be created with non-constant inner product
weight functions W(x). Later in this paper (section 4.2), aset of polynomials
witl be needed with a weight function that has a multiple zero at its endpoints.

The Jacobi polynomials Pf""ﬁ) have such behavior, with the weight function,
W = =01+, (10)

where a and 3 are the degree of multiplicity.
The unnormalized Jacobi polynomials have a more complex recursion
rule than the Legendre polynomials [5]:

Pga.ﬁ)(x) =1 P(Ioz,ﬁ)(x) - a;ﬂ + 2+a2+£2x

(cv.3)_ plecfd)
a,fB) 4 X
Pfﬁl ) = T (I
)
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where
AP = Qnra+BriNed - +2ntat+f+2)
x@n+ o+ )P Px)
BP = 2An+a)n+P)2n+a+ f+2)P P
P = A+ D(nt+a+f+ )2+ a+tf) (12)

These polynomials can be normalized by the factor [8]:

Fin+t DINa+B+ 1 +n)atS+1+2n)
T(a+1+mT(B+ | +n)20+B+1

3.3 Quadrature Rules

An informative explanation of one-dimensional quadrature rules has been
compiled by Delves and Mohamed [6]. A condensed version is presented
here.

A quadrature rule is a method for approximating the integral of a function
by a weighted sum of function samples at particular points. Quadrature rules
can be used to approximate inner product integrals, like that in (4). Given a
fixed function WW(x) and another function f(x), we can choose points &; and
weights w; such that:

(13

h
/ SEWdr Y wif(E) (14

Quadrature rules can be designed to be exact for a certain class of func-
tions. The Gaussian quadrature rules, by computing optimal positions for
the N sample points &;, are exact for polynomials up to order 2N — 1. The
Gauss quadrature rule with weight function W(x) is closely tied to the set
of orthogonal polynomials with the same weight function.

To develop an N-point Gauss quadrature rule for the integral

I N
/ WS s~ Y wif(E), (1s)
al =1

start by choosing a set of orthogonal polynomials 7;(x) with the same weight
function W(x), and expressed in terms of recursion rules [17] so that;

T_1(x) =0, Tox) =1,
Tirt(¥) = (x = 8 ) Tilx) = 73, Tima (0)- (16)

Take these &; and -y; coefficients, and construct a tridiagonal symmetric
matrix:

s o, 0

T2 62 ( 1 7)
E W

0 w N

The eigenvalues of this matrix, which are also the roots of the polynomial
Tw(x), are the quadrature rule’s positions &;. The square of the first coef-
ficient of the /™ eigenvector is the quadrature weight w;. The eigenvectors
and eigenvalues for tridiagonal symmetric matrices can be found using QR
factorization {17].

To create the Gauss-Legendre rule of order V, exact for polynomials up
to degree 2N — 1, the -y; and &; coefficients are [22]:

2
8i+1 =0, i =1/—-————, 18
i+1 Yi+1 Qi+ D2i-1) (18)

and for general Jacobi polynomials P,(Q‘B):
5 (c+ BYB — c)
" Qitotf+2Q2itatf)
_ i+ a)(it+Plilat p+i) (19)
it (@Bt (a+Bro+t)atBr2i—1)

When using these quadrature rules to project a function into a basis set
using (6), it is important to use a sufficiently accurate quadrature rule. If
a one-dimensional polynomial basis set includes terms up to order n, the
projection integral (6) must be accurate up to order 2n—since the function
is represented as a polynomial of order n, the projection integrand will be a
polynomial of order 2n. Therefore, a one-dimensional Gaussian quadrature
rule must have at least N + | sample points to integrate accurately [6).
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Figure I: Conventional radiosity methods approximate a surface’s radiosity
by meshing it into a large number of constant intensity patches. Radiosity
is represented by height above the surface.

-4 Non-Constant Radiosity

Consider the effect of meshing a single surface into constant radiosity patches
(Figure 1). Although the radiosity is smooth on individual patches, combi-
nations describe a discontinuous, stair-step radiosity function. To produce
a smooth, consistent solution, we need to formulate radiosity in terms of
smooth functions across an entire surface, instead of disjoint patches on
parts of a surface.

Figure 2 shows a hypothetical decomposition of a radiosity function.
Constant, linear, and higher-order functions are combined to produce a
smooth approximation to the radiosity function. If the radiosity of every
surface were represented by a combination of these functions, the radiosity
problem would reduce to finding their relative weights.

To properly compute these proportions, we use a radiosity formulation
based on a linear combination of orthonormal basis functions {7(s, £)}.
Instead of radiosity values, we use radiosity coefficients {B8’'}—the relative
contribution of each function 7y(s, ). The full radiosity distribution on a
surface becomes the function

Buails,0= Y B'Ti(s, o). (20)
/

Functions on different surfaces must interact in a manner analogous
to the way conventional patches interact through form factors. Just as
conventional radiosity uses form factors to describe the interaction between
patches, here the kernel function Kj(s, ¢, u,v) from (1) details how energy
is transferred between functions on different surfaces. When two constant
functions on different surfaces interact, the kernel function interaction is
equivalent to a classical form factor. Other kernel functions describe higher-
order interactions.

4.1 The Galerkin Method

Given an orthonormal basis set, the Galerkin technique finds a good [6] fit to
the integral equation’s solution within that set. Heckbert [10, 11] suggested
that the Galerkin method and meshing could be used to solve the radiosity
integral equation in a plane. This and subsequent sections demonstrate how
it can be applied to three-dimensional radiosity.

Starting with the parametric radiosity equation (1),

B,-(s,()=E,-(s,!)+z / / Kys, t,u, vByu, vidudv,  (21)
J

expand the B;(u, v) term inside the integral in terms of the basis set { 7;(u, v)}
using (7). The B; coefficient can be moved outside of the integral, and the
summations over j and / can be combined to produce the equation

Bi(s, ) = Ei(s, 1) + Z Bj // Kij(s, t, u, v¥Ti(u, v)du dv. {22)
IN)

Now, take the inner product of both sides with the 4th basis set function
Ti(s, 1). Using bilinearity and the refation described in (6),

Bt =Ef+ Za}’ < // Kig(s, t, u, v)Ti(u, v)du dv
IR

Ti(s, 1)> - (23)
w

Figure 2: Higher-order radiosity approximates a surface’s radiosity by di-
viding it into several different smooth functions. These smooth functions
are scaled and combined to approximate the original radiosity distribution,

The inner product now depends only on known information; the kernel
function Kj; is a function of the environment, and { 7;(v, v)} is a precomputed
basis set. The result of that inner product is denoted K, the kernel matrix.
Evaluating this inner product is the most difficult part of a radiosity solution,
requiring four integrations—two explicit, and two in the inner product.
However, once the kernel matrix has been computed for each value of 7, /, £,
and /, the radiosity equation can be written as a matrix equation,

Bf - Ef = BK. 24)
il

Just as a conventional form factor matrix relates constant radiosities
on different elements, the kernel matrix relates radiosity functions across
different surfaces. The K}/, Bf and Ef values are analogous to classical form
factors, patch radiosities, and emittances, respectively. However, each of
these coefficients refers to some function representing part of the distribution
of radiosity across a surface, as opposed to a constant value across a surface.
Note also that even though (24) is written in terms of four indices, since the
surface indices i,/ and function indices k, { are independent of each other,
(24) is still a two-dimensional matrix equation.

This equation can be solved using any standard matrix technique, such
as Gaussian elimination, or progressive refinement techniques [4]. Cohen
et al's progressive refinement technique requires slight modification with
Galerkin radiosity, because the radiosity coefficients Bf may have negative
values. These negative values do not indicate negative energies; they are a
weight applied to the basis function. The shooting order should be based on
unshot magnitude:

M = |8l / / | Tiw, v)| dA;(u, v)du dv. 25)

4.2 Edge Singularities

Near the common edge of two non-coplanar surfaces, the double-differential
form factor approaches infinity as a pole of order two[22]. Although the
function still has a finite integral, the singularity can cause serious conver-
gence problems. [f the singularity is ignored, Galerkin solution methods
converge extremely slowly for a mediocre basis set, and may fail entirely
for a bad basis set.

To insure reasonable convergence, the basis set must compensate for the
singularity. In (23), the singularity appears inside the quadruple integral that
generates K,‘;’ . This integral also includes the inner product weight function
W(s, ). If the weight function W is chosen with zeroes of sufficiently high
multiplicity where the kernel function Kj; goes to infinity, the two features
can cancel and the integral will converge. Since the kernel singularity
grows as a pole of order two, the weight function should have zeroes of
multiplicity two at its edges. The Jacobi polynomial sets P2 and PZ:9)
(see section 3.2), have appropriate weight functions.

By using a hybrid Galerkin method, the edge singularities are cancelled.
For non-singular light transfers between surfaces that do not touch, a Leg-
endre basis set is used. For the few transfers that are singular, a basis set
of Jacobi polynomials is used, either P©2) or P:0) depending on the sin-
gularity’s location. After computing the K¥' coefficients and the associated
radiosity transferred in a singular shot, project this polynomial function in s
and ¢ is back into a Legendre basis set for storage. An empty box computed
with this hybrid method is shown in Figure 6.
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A 4

Figure 3. Surfaces A and B meet in a T-intersection; surface B divides
surface A into two regions along the line cd.

Because singularities can be produced at any non-parallel intersection,
geometries with T-intersections (the three-dimensional analog to Heckbert’s
T-comers [11]) like those in Figure 3 make singularities difficuit to han-
dle. Although such geometries could be handled by using a basis set with
a two-dimensional weight function containing a double zero in the mid-
dle of the surface along the curve of intersection, constructing such basis
sets would be relatively difficult even for polygonal surfaces. More effec-
tive approaches include subdividing significant T-intersections into distinct
singular intersections, or ignoring the singularity altogether when possible.

4.3 Computing the Energy Transfers

In order to generate radiosity solutions, entries in the kernel matrix (24) must
be computed. Each entry is computed by applying a quadrature rule (15)
to approximate the inner product of (23) for particular values of i,/, k and
. For non-singular energy transfers—those between surfaces that do not
share a common edge—the inner product weight function is unity, and the
quadrature rule is a Gauss-Legendre quadrature rule constructed with (17)
and (18). If the Gauss-Legendre quadrature points and weights are denoted

/. and w, respectively, then each kernel matrix element is approximated
by the summation,

K~ Y Kb vl by T )T kvt s
a,B,v,8
(26)
Since each kernel sample requires a full intersection test with the envi-
ronment, caching samples Ki,-(pﬂ;,p’ﬂ‘,pf;,p{;‘) or results of the associated
intersection tests can save significant CPU time, at the expense of additional
storage.

Singular energy transfers—those between two surfaces that meet in a
singular edge—require additional processing. Kernel matrix elements for a
singular transfer are computed using a Gauss-Jacobi quadrature rule match-
ing the Jacobi basis set. Once the quadrature rule’s points p/, and weights
w/, have been computed using (17) and (19), the kernel matrix elements can
be computed by the summation,

Km0 Koo st DT Wl YT 0 ol
a,B8,7.8
(27)
When this weighted sum is evaluated, the resulting matrix entries K’ f‘,’

are in terms of a Jacobi basis set, while the £% and B¥ values in storage
are in terms of a Legendre basis set. The Jacobi matrix entries must be

projected into the Legendre basis set before they can be combined with the
other coefficients. Since the K’ ’f;' coefficients are simply leading multipliers
for polynomials, they can be converted from Jacobi coefficients to Legendre
coefficients by expanding the Jacobi coefficients into an ordinary polynomiial
in s and 1, and then converting that polynomial back into a sum of Legendre
polynomials.

5 Shadow Discontinuities

As with any illumination algorithm, dealing with occlusions presents a
special challenge. The easiest way to deal with shadows is to let the basis
functions find a best fit. Unfortunately, shadows produce sharp edges which
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cannot be expressed in terms of a few polynomials. Attempting to model
such edges with a small polynomial basis set produces a fuzzy shadow with
ripples around it—the Gibbs behavior visible in Figure 7.

Shadow edges come from discontinuities in the radiosity function [10].
One way to remove these discontinuities is to mesh the environment along
curves of discontinuity {13, 12], a process which eliminates the occlusion dif-
ficulties of Galerkin radiosity. Unfortunately, discontinuity meshing meth-
ods magnify the number of surfaces in the scene, vastly increasing computa-
tion time. Even though shadows are primarily an interaction between a light
source and a receiving surface, subdividing the receiving surface to produce
accurate shadows complicates interactions with the rest of the environment.

5.1 Shadow Masking

To smooth the shadow discontinuities out of the radiosity distribution seen
by the Galerkin method, we propose using a shadow mask approximation.
For the majority of emitter-receiver pairs, where shadows do not have a
high-frequency effect on the solution, traditional visibility calculations can
be used. However, for a select group of emitter-receiver pairs, we move
the visibility term VIS;(s, ¢, u, v) out of the kernel function and integral in
equations (2) and (1), and replace it with anormalized shadow mask function
A’{/'4—_/‘(5» 0,

ff VISji(s, t, u, v)du dv

S dudv

This function approximates the fraction of the light originating from emitter
J that arrives at a particular location on receiving surface i. The shadow
mask is one where the emitter is fully visible, zero where the emitter is
fully occluded, and takes on intermediate values when the light is partially
occluded. It is essentially a texture map for painting the shadow onto the
receiving surface.

During the radiosity pass, if the energy transfer from emitter ; to receiver
i involves a shadow mask, the radiosity is accumulated without visibility
calculations in the special coefficients B, ; instead of BX. When light is
re-emitted from surface i’s basis functions, the kernel samples are multi-
plied by the shadow mask across surface /, restoring some of the occlusion
information. The radiosity across a surface, B;(s, #), becomes the combina-
tion of ordinary Galerkin basis functions and shadow mask-weighted basis
functions. If 4 represents all light sources casting a shadow on surface 7,

Bils, 0= BTals, 0+ ) Micals, 0B%,Thls, ).~ (29)
k hk

Micj(s.0)= (28)

By using coefficients Bf.‘ > radiosity in the shadow mask is maintained sep-
arately from radiosity coming from other parts of the environment. When a
receiving surface has shadow masks associated with it, every surface inter-
acts either with a shadow mask, or with the standard surface description—not
both.

In this implementation, shadow masks were computed from equation
(28) using multiple point-to-point visibility samples regularly spaced in the
parametric dimensions. Values of M;— (s, 1) were computed by linear in-
terpolation between these sample points. Shadow mask samples could con-
ceivably be taken along lines of discontinuity, or in some more complicated
non-regular structure to improve efficiency or accuracy.

Inallenvironments tested, even accounting for the time spent constructing
shadow masks, the time required to compute a radiosity solution using
shadow masks was significantly smaller than that for a full discontinuity
mesh. For the simple environment in Figure 8, the shadow mask was aregular
40 by 40 grid of sample points on the floor. Without Gibbs phenomena to
transfer energy into higher order basis functions as in Figure 7, the radiosity
pass actually required fewer shots and less time to converge than the non-
shadow masked version.

Since a shadow mask only adds one surface to the rows (but not the
columns) of the radiosity matrix for each associated emitter-receiver pair
in the environment, shadow masks add relatively little to radiosity solution
time compared to discontinuity meshing methods. Shadow masks can be
precomputed for portions of the environment where shadow details are ex-
pected to be significant. Furthermore, since shadow masks are defined in
parametric space, asingle implementation can cast shadows to and from any
type of surface.

Unfortunately, shadow masks also have significant disadvantages. By
moving the visibility term out of the radiosity equation’s integral, any corre-
lation between the emitter’s light distribution and the shape of the occluding
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-Figure 4: Average relative error for Galerkin radiosity transfers between two
parallel squares of width /, distance /, 0.3/, and 0.1/ apart.

surface is destroyed. Because of this, a shadow mask solution will not con-
verge to the “true” solution. Placement of the shadow masks is currently left
to the user; some criteria is needed for determining whether or not to use
shadow masks. Although shadow masks can be stored in a simple grid fash-
ion, such a grid may not produce the best results when used with a particular
quadrature rule. Finally, any attempt at increasing the spatial accuracy of
shadow masks can duplicate many of the difficulties of storing a mesh on a
surface.

However, there is a significant difference between increasing the density
of a mesh and increasing the density of a shadow mask—every element of a
mesh becomes another surface interacting with the environment, while even
the most complex shadow mask is still only part of one surface. Shadow
masks do facilitate the generation of approximate radiosity sotutions with
the Galerkin method, by smoothing out shadow discontinuities. Further
research may suggest ways to avoid their associated disadvantages.

6 Sources of Error

The principal cause of error is not using a large enough basis set; as more
basis functions are used, the Galerkin method produces a more accurate
solution. Improper treatment of shadows can also cause significant inac-
curacies in a Galerkin solution; if shadow discontinuities are ignored, they
produce Gibbs-behavior ripples, and if shadow masks are used, they intro-
duce approximation error. Additional errors come from inaccuracies in the
quadrature rule used to evaluate kernel matrix integrals, or from approximate
matrix solution techniques like progressive radiosity.

In this section, error analysis is provided at two different scales. At
the level of surface-to-surface energy transfer, Galerkin radiosity results are
examined for a few simple cases where comparison with an exact analyt-
ical solution is possible. At the level of picture generation, conventional
and Galerkin radiosity solutions are compared for a standard radiosity test
environment.

6.1 Energy Transfer Error

For the simple environment used by Sparrow’s variational radiosity solution
[ 18], a fourth-order sotution produced arelative error of less than one percent.
Using the method of this paper, error computations for a single energy
transfer between parallel and perpendicular squares produce similar levels
of accuracy. All comparisons in this section are made against an analytic
solution using the formulation of Sparcow and Cess [19). The relative error
metric used is

E= < ]BGaIerkm(S; 1) — Bexat($, ’)I > 1 (30)
AN

Bexact(s, 1)

where the error is evaluated on a 500 by 500 grid of sample points on the
receiving surface. Transmitting and receiving squares are the same size, and
are computed at the same solution order (although for numeric reasons, this
often produces the worst results [22]).

The simplest casc is for a radiosity transfer between parallel squares with
sides of length /, as shown in Figure 4. With the distance between the
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Figure 5; Average relative error for Galerkin radiosity transfers between two
adjacent perpendicular squares at acorner. The Jacobi basis set computation
produces significantly less error for this singular transfer than the Legendre
basts set.

squares equal to their size, the fourth-order transfer gives a relative error of
only 0.04%. Since the accuracy increases as the squares are placed farther
away with respect to their size, a fourth or fifth order transfer should produce
reasonable accuracy for computer graphics applications.

As the squares move closer, the relative error becomes much higher.
When the distance between the squares is reduced to one-tenth their width,
even a seventh order solution produces an average relative error of 16.9%.
Unfortunately, when surfaces are extremely close relative to their size, to
achieve reasonable accuracy, the surfaces must still be subdivided.

Experiments with perpendicular rectangles (Figure S) illustrate the im-
portance of proper treatment of singularities. Using a non-singular Legendre
basis set to compute the energy transfer produced large error even at high
order; a seventh order transfer produced a relative error of 33.2%. Using a
singular Jacobi basis set, results are much more accurate. Fourth and fifth
order transfers both produce about 1.4% relative error.

6.2 Comparison with Conventional Radiosity

Lischinski and Tampieri provided a reference solution to a two-box radiosity
environment. This solution was computed using the discontinuity meshing
techniques of [13], with adaptive integration using Wallace [2!] point-to-
point form factors. Individual triangles in the mesh were treated consistently
as quadratic elements, limiting error in their reference solution to a few
meshing artifacts, visible near the comers of the top wall. This solution is
used as a comparison baseline for images generated with Galerkin radiosity.

The order of a solution is the highest total polynomial order used as a ba-
sis function for the solution. A zeroth-order solution would be equivalent to
a conventional radiosity solution, with radiosity constant across a surface. A
first-order solution would have linear radiosity variation, a second-order so-
lution would have quadratic variation, and so on. Note that a basis function’s
order depends on the sum of the highest orders used in each dimension. Dif-
ferent surfaces in a solution can be different orders; a high order basis could
be used for large, visible areas, while a low order basis may be sufficient for
shadowed regions.

Figure 9 shows pictures of a simple test environment solved with different
solution orders. Shadows were created using a 20 by 20 grid shadow mask.
Notice how the floor appears smoother at higher order, even though no
post-processing interpolation was used to smooth the meshing. Meshing
(Figure 10) was only performed to eliminate T-intersections; the three boxes
and light were meshed to 26 polygons.

Figure 11 shows difference images between the different order Galerkin
solutions of the test environment and the reference solution. These images
were created by converting the Galerkin and conventional radiosity solution
images to black and white, and then computing the absolute value of the
intensity difference at each pixel. Dark regions of these images are where
the two solutions agree; bright regions are where the two solutions differ. The
Galerkin image was translated slightly before comparison, so that outlines
of the boxes and floors would be visible in the difference images. As would
be expected, the difference images get progressively darker as the solution
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Figure || Description CPU time | Shots
6 Empty box 54s 7

7 Box with single occluder | 59.7s 33

8 Shadow masked box 428s 22

12 Clay teapot 6.71h 53

Table 1: Timings for the shadow generation and radiosity pass combined for
various pictures computed with this algorithm. All timings are for an HP
9000/720 workstation.

order increases; the regions where the solution is least accurate tend to be
near singular edges.

In this particular test case, the method of [13] took about the same amount
of time as the highest-order Galerkin solution. However, the Galerkin
method only required 6.5 Megabytes of memory, compared to 75 Megabytes
for a more conventional, meshing approach. For all environments tested in
this paper, Galerkin and conventional radiosity methods tend to take about
the same amount of time to produce equivalent pictures. However, the
Galerkin radiosity technique’s lower memory usage is maintained in more
complex environments.

7 Results

The radiosity solution computed by this method is a list of basis set expansion
coefficients B¥ for each surface i and basis function k. The actual radiance at
a given point (s, ¢) on surface i is recovered from these coefficients using (7).
If shadow masks were used, the additional coefficients th are incorporated
with (29).

In this implementation, environments are rendered by a simple ray-
tracing/scanline technique. When a ray intersects a surface, that intersection
point is projected back into the surface’s parametric space, and the result is
used to compute a radiosity value for the appropriate pixel.

7.1 Curved Surfaces

Curved surfaces can be easily incorporated into Galerkin radiosity; the
kemnel term’s form factor as expressed in (3), includes surface normals
explicitly. To implement curved surfaces, replace the traditional constant
surface normal value with a function, computable at any parametric location.
Sample pictures are shown with bicubic patches (Figure 12) and other curved
surfaces (Figure 13). The Galerkin radiosity method was applied directly to
these environments; the curved surfaces were not tiled.

For comparison purposes, the teapot environment was also computed
using a commercially-available radiosity package [16]). This package uses
the point-sampling algorithm of Wallace et al. [21] to compute form factors,
but does not perform adaptive meshing. Since this radiosity package cannot
use bicubic patches directly, each of the teapot’s patches were tessellated
with a 20 by 20 grid. The radiosity solution took 6.2 hours, and over 54
megabytes of memory to compute; this simple forty-patch scene became a
relatively complex, eight thousand polygon environment. In contrast, the
Galerkin computation took 6.7 hours, but only required 3.9 megabytes of
memory during the radiosity pass. Over 90% of this computation time was
spent computing visibility samples.

The significant point of this comparison is that given approximately
equivalent amounts of time to produce a solution, conventional and Galerkin
methods produced similar results. But since Galerkin methods needn’t
maintain the detailed geometric structure of a mesh, they use significantly
less memory.

7.2 Parallelization

Galerkin radiosity environments are not meshed into large, complicated data
structures, so it is relatively easy to maintain copies of the environment in
memory on multiple hosts. Since each individual light transfer between
two surfaces depends only on the geometry and shadow masks, they can
be computed on independent machines. Such a parallelization scheme was
implemented, running concurrently on DECstations, HP 700’s and 800’s, and
on multiple processors of an Apollo DN10000. The image of Figure 13 was
computed in parallel on five DECstations and five HP 700°s as a background
process over two days.
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8 Conclusions

Using the Galerkin method, this paper has presented an alternative method
for producing radiosity simulations. Through special treatment of the ra-
diosity equation’s singularities and discontinuities, the Galerkin technique’s
dependency on smooth kernels can be overcome. Although the resulting
pictures are similar to those produced by conventional radiosity methods,
the method used to generate them is fundamentally different:

o The radiosity across a surface is represented as a smoothly varying
function. Pictures are rendered directly trom the radiosity solution,
without an additional blurring step.

e Adequately sampled curved surfaces can be used directly. Since
curved surfaces don’t need to be tessellated, they can be incorporated
into a scene cheaply. Issues of approximating a surface’s geometry
and approximating a surface’s radiosity are separated.

e Energy transfer error analysis shows that meshing is only essential
when two surfaces are extremely close to each other relative to their
size. Meshing is not needed to model variations in intensity across a
surface.

e By using shadow masks, the local details of shadow edge generation
are separated from the global issues of energy balance.

9 Deficiencies of the Method

As with any rendering algorithm, Galerkin radiosity has its own particular
disadvantages. Problems with the treatment of shadows are the most signif-
icant; if important shadows are missed, a solution will contain significant
Gibbs ringing behavior. It may not always be easy to determine ahead of
time where detailed shadow masking or meshing will be necessary, pos-
sibly requiring multiple solution attempts before all shadows are properly
accounted for.

Shadow masking is only a rough approximation to the true occlusion
behavior; it eliminates any correlation between variations in light source
intensity and the intensity of the shadow, virtually returning to the Constant
Radiosity Assumption for a shadow’s light source. Furthermore, the distri-
bution of the shadow mask sample points can have a significant impact on
the accuracy of the shadow they generate.

Higher order methods also have the potential to be computationally ex-
pensive. Because of the (N + 1)* samples required to transfer radiosity
between surfaces of order ¥, radiosity calculations can become extremely
expensive if too high a solution order is used. In general, an order of 4 or
5 is sufficient, but self-intersecting or highly curved surfaces may require a
higher-order solution.

The method does not mathematically guarantee radiosity continuity be-
tween adjacent coplanar surfaces. However, such surfaces appear much less
frequently in a shadow masked environment than in a meshed environment.
If such continuity is needed, it can be generated by using a high enough order
on the adjacent surfaces that the error on each surface is reduced until their
radiosity values along their common boundaries match visibly—usually 8
or 9 in our tests. ]

Finding all the singularities in a system can also be difficult. Environ-
ments usually have a large number of T-intersections (see Figure 3), each of
which could require a separate meshing step. Although T-intersections can
often be ignored, there’s always a risk that the ignored singularity will cause
the solution to fail to converge, requiring recomputation.

10 Future Work

Shadow masks are currently implemented using bilinear interpolation on a
simple grid of sample points. Many more efficient sampling schemes are
possible, such as adaptive quadtrees, or some method that directly computes
the location of shadow discontinuities. Additionally, some method should be
developed for automatically determining where shadow masks are needed.
Some generalization of shadow masks is needed to account for variations in
light source intensity.

A means for enforcing continuity between adjacent surfaces, possibly
by using some sort of modified patch/element method could lower the re-
quired solution order, and significantly accelerate the algorithm when such
surfaces are present. A method combining adaptive meshing and a low or-
der Galerkin solution might produce reasonable images rapidly. Extending
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Abstract

Radiosity methods have been shown to be an effective means
to solve the global illumination problem in Lambertian diffuse
environments. These methods approximate the radiosity integral
equation by projecting the unknown radiosity function into a set
. of basis functions with limited support resulting in a set of n
linear equations where n is the number of discrete elements in the
scene. Classical radiosity methods required the evaluation of n?
interaction coefficients. Efforts to reduce the number of required
coefficients without compromising error bounds have focused on
raising the order of the basis functions, meshing, accounting for
discontinuities, and on developing hierarchical approaches, which
have been shown to reduce the required interactions to O(n).

In this paper we show that the hierarchical radiosity formulation
is an instance of a more general set of methods based on wavelet
theory. This general framework offers a unified view of both
higher order element approaches to radiosity and the hierarchical
radiosity methods. After a discussion of the relevant theory, we
discuss a new set of linear time hierarchical algorithms based on
wavelets such as the multiwavelet family and a flatlet basis which
we introduce. Initial results of experimentation with these basis
sets are demonstrated and discussed.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism — Radiosity; G.1.9 [Numerical
Analysis]: Integral Equations — Fredholm equations.

Additional Key Words and Phrases: global illumination, wavelets, hi-
erarchical radiosity.

1 Introduction

In computer graphics, radiosity methods have been used to solve
the global illumination problem in environments consisting en-
tirely of Lambertian (diffuse) reflectors and emitters. The solution
is a radiosity function over the domain of the surfaces in the
scene. Classical radiosity [9, 6] (CR), derived from the radia-
tive heat transfer literature, approximates the radiosity function as
piecewise constant. An energy balance argument gives rise to a
linear system. This system has n? coefficients called form factors.
Here = is the number of discrete areas, or elements, over which
the radiosity function has been assumed to be constant. The form
factor describes the fraction of the energy leaving one element
and arriving at another. Typically, an iterative algorithm such as
Gauss-Seidel iteration [22] or progressive radiosity {5, 10] is used
to solve the system of linear equations for the radiosities.

An integral equation called the rendering equation was proposed
by Kajiya to model the global illumination problem [14]. He
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Figure 1: The space of projection methods for radiosity.

showed that CR is a particular approximation to this equation. By
casting the problem in this form, techniques developed for the
solution of integral equations [8] can be exploited to solve the
radiosity equation.

In particular, Heckbert [12, 13] has demonstrated that the lin-
ear system in radiosity can be derived by projecting the radiosity
integral into a finite dimensional function space. The CR algo-
rithm results from using the space of piecewise constant functions,
(i.e., projecting the function into a set of constant (or “box”) basis
functions). In general, a function can be projected into any finite
dimensional function space. A desirable finite dimensional space
is one that can represent the function accurately with as few terms
as possible. In his studies, Heckbert considered radiosity functions
that are piecewise linear. Zatz [25] has used Legendre polynomi-
als to arrive at solutions that are piecewise polynomial of higher
order. Other researchers have explored the use of higher order
bases in the mesh construction and reconstruction phases of the
algorithm [18] as well as discontinuity meshing [15, 13]. The use
of higher order bases, which we will refer to as galerkin radios-
ity (GR), has been shown to lower the number of basis functions
needed to obtain a particular level of accuracy, albeit at a higher
cost per basis.

A second avenue of research has attempted to lower the com-
putational complexity of solving the linear system which arises in
CR. Hanrahan et al. [11] presented-a hierarchical radiosity method
(HR) modeled after recent advances in n-body algorithms. HR ex-
ploits the fact that neighboring patches in the environment often
have similar form factors to distant patches. This reasoning is
extended to form a hierarchy of patches, (i.e., a hierarchy of basis
functions) in a straightforward manner.

While the methods using higher order bases try to exploit co-
herence in the illumination function, HR tries to exploit the co-
herence in the form factor itself, more precisely, in the kemel of
the radiosity integral. In particular, HR is based on approximating
the kernel as a constant function over intervals of varying sizes.
In places that the kernel varies slowly, large intervals are used.
Where the kernel varies quickly, smaller intervals are needed.
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Recently Beylkin et al. [3] made the observation that integral
operators satisfying very general smoothness conditions can be
approximated to any finite precision with only O(n) coefficients
when projected into a wavelet basis instead of the usual om?).
This remarkable result means that, in practice, integral equations
governed by smooth kernels lead to sparse matrices that can be
solved in linear time. Since the radiosity kernel is, in general,
a smooth function of the type required by this theorem, wavelet
methods can be used to obtain O(n) complexity radiosity algo-
rithms. We call this wavelet radiosity.

Hierarchical basis functions have been used before with finite-
element methods [24] and applied to problems such as surface
interpolation [23]. In those instances, hierarchical basis functions
were used to improve the condition number of the matrix. In
our context, the hierarchical basis functions (wavelets) are used
because many of the resulting matrix coefficients are small enough
to be ignored while still allowing for an accurate answer. In some
sense we are regarding the matrix as an image on which we are
able to perform lossy compression. Coefficients are negligible
because over many regions the kernel can be well approximated
by a low order polynomial.

The mathematical tools of wavelet analysis provide a general
framework offering a unified view of both higher order element
approaches to radiosity, and the hierarchical radiosity methods.
Figure 1 places earlier algorithms plus the new methods we inves-
tigate here into a matrix relating hierarchy versus the order of the
underlying basis. CR uses zero order polynomials, while GR uses

higher order polynomials (indicated by the arrow). The vertical -

axis represents the sparseness obtained by exploiting smoothness
of some order in the kernel. HR exploits “constant” smoothness
in the kernel. Within this context, we recognize HR as a first
order wavelet. Higher order wavelets can be used that result in
an even sparser matrix. One such family of higher order wavelets
is the multiwavelet family of [1] (M2 in Figure 1). We will
also introduce a new family of wavelets, which we have dubbed
Sflatlets (F,,3 in Figure 1) that require only low order quadrature
methods while maintaining most of the benefits of other wavelet
sets.

This paper proceeds with a review of projection methods
for solving integral equations followed by a discussion of re-
cent advances concerning the solution of integral equations using
wavelets. Finally we discuss our implementation and report ex-
perimental findings. Some of the more technical details of wavelet
projections, as well as a detailed analysis of the underlying math-
ematical framework, are described in [20].

2 The Radiosity Integral Equation

If all surfaces and emitters are Lambertian diffuse, the rendering
equation can be written as,

B(s1,82) =
cosfs cos 0:
E(s1, 52) + p(s1, 82) dtidty —————V5 B(t1, t2)

1
where B(sy,s2) gives the radloslty at a point specified by the
surface parameters s1, sz, E the emission, and p the reflectivity’.
The kernel of the integral,

cos 8 cos
k(s1, 82,11, t2) = p(st, S2)————— Vi
7rl,
is a function describing the geometric and visibility relationship
between two points in the domain; 8, and §; are the angles be-
tween the surface normals and the line between s and t; r,; is the

IThe reflectivity, p, is actually a function of wavelength. Without loss of gener-
ality, we will consider only a monochromatic world for the remainder of this paper.
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distance between the two points; V;: is 1 if point s is visible to
point t and 0 otherwise.

Over many large intervals, where  is large relative to the size
of the patches, the kernel is well represented by a low order poly-
nomial. Notable exceptions include the corners of the environment
where 2 goes to 0 and the kernel is singular, and shadow discon-
tinuities where the visibility switches abruptly from 0 to 1.

3 Projections

After a short review of function projections we will show how
projections can be used to find approximate solutions to integral
equations such as the radiosity equation. The ideas presented here
can be found in greater detail in [12, 25].

We begin by writing the approximation of a function B(s) in a
finite dimensional function space where all functions B(s) can be
expressed as a linear combination of n basis functions N;(s)

n
B(s) ~ B(s) = Z B;iNy(s)

i=1
where the B; are scalar coefficients with respect to the chosen
bases. For example, the space of piecewise constant functions is
spanned by a basis of translated “box™ functions, and the space
of piecewise linear functions is spanned by a basis of translated
“hat” functions.

To complete the approximation, we must find a way to derive
the coefficients. For this, we define an inner product of two func-
tions f(s) and g(s) as (f,g) = [ ds f(s)g(s). Two functions are
orthogonal iff (f, g) = 0. We then say that a function B(s) is the
orthogonal projection of B(s) into the finite dimensional function
space if (B — B, N;) =0 for all basis functions N;(s).

If the original basis functions are orthonormal we can find the
coefficients of a function B(s) with respect to the basis {N;} by
performing inner products

B(s)=) BiNi(s)= Y (B, N:)Ni(s)
In the case of bases which are not orthonormal we must use in-
ner products with the dual basis functions (see [20]) to find the
coefficients.
Using projection methods, instead of solvm% the integral equa-
tion (1), we solve the related integral equation

Be)=E@)+) < / dt k(s, )B(t), Ni(s)> Nis) @

In words, we operate on (integrate against the kemel) the pro-
jected function B(z). After having been operated on, the resulting
function generally no longer lies in the finite dimensional function
space, so the function is reprojected against the N;(s). B can be
obtained by solving the linear system

Ei+ Z B; K
J

/ds /dt k(s, t)N;(t)N;(s) 3)

B;

To compute the integrals K;; some form of numerical quadrature
or closed form solution [21] must be employed. If the basis func-
tions are piecewise constant, these integrals are related to the well
known form factors.

2 qrder to simplify the presentation we will write the radiosity function as having
one \{anable, and the kernel function as having two variables. In the text we will
explain what needs to be done for a 3D radiosity implementation.
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1t is important to remember that the projected equation is only
an approximation to the original integral equation. Projections
into different finite dimensional spaces will result in different ap-
proximations with differing amounts of error and different types of
error. In general the projection error is O(hP*!) where  is the res-
olution of the grid, and p the degree of the polynomial used which
favors higher order basis functions. Higher order basis functions
also result in smoother reconstructed radiosity solutions leading
to fewer visual artifacts. However, higher order basis functions
require more work to evaluate the associated inner products, pos-
sibly offsetting potential savings.

One set of choices for basis functions is given by the family of
functions called wavelets.

4 Wavelets

Wavelet theory is a rapidly developing field that has its roots in
pure mathematics [7] and signal processing [16]. Good introduc-
tions to the topic can be found in [17, 4]. In this section we review
some wavelet theory focusing on the relevant issues for radiosity.

Wavelets form hierarchical bases which can offer alternative
bases for familiar finite dimensional function spaces. The simplest
wavelet construction is the Haar construction shown in Figure 2.
In the upper left is a set of basis functions which span all piece-
wise constant functions at resolution 8 on the interval. Using the
operators g (pairwise differencing) and h (pairwise averaging) we
can construct another basis for the same space (upper right). Four
of these functions are just like the original basis, only wider, thus
we can repeat the construction (middle right). Repeating once
more we finally have a basis for the original space of functions
consisting of the overall average ¢ and the difference functions
1);,; from all the lower levels. The last set of functions is known
as the Haar wavelet basis. This construction is very similar to an
image pyramid that one might use for texture mapping. In such
a pyramid the image (function in our case) is represented at dif-
ferent levels of resolution by successive averaging steps. In the
Haar pyramid we only remember the overall average and all the
differences between successive levels of the pyramid.

The Haar basis is only the simplest example of an infinite family
of such constructions, however the basic principles are the same
for all wavelet bases. More formally we start with two functions
1(s) (sometimes called the detail function) and ¢(s) (the smooth
function) defined on the unit interval s € [0, 1]. Scales (or levels)
¢ and translates j of ¢(s) and 1(s) are expressed as

$i(s) = 2/74(2% — j)

Yii(s) = 2/792%s - )
with j = 0,...,2* — 1. According to this indexing, the function
¢i,; is just like the function ¢;_; except that ¢;_1,; is twice
as wide, and 1/ v/2 times as tall (the wider functions are shorter
so that (¢:,;, ¢;,x) remains constant independent of ). Similarly,
¢i,; is just like the function ¢ ;.1 except it is translated. To
create an n = 2% dimensional function space we construct an L
level hierarchy of functions that are scales and translates of ¢ and
% (Figure 2 illustrates L = 3). We obtain the wavelet basis for
the hierarchy by choosing only the detail shapes on all levels plus
the smooth shape on the top level, ¥ ;,2=0,...,L — 1 and ¢s.
Between levels there is the so called two-scale telationship

di-1,; = th—zj¢i,k
%

= Z k25 k

k

In words the ¢ functions at a given level can be linearly combined
to yield ¢ and 1 functions at the next coarser level. This combi-

'l[)i—l,j

“‘box’’ basis
], I
[ [ ;
[ LG ':
. 3 1
| /.

]
v

wavelet basis

Figure 2: Transformation of a piecewise constant basis into the
Haar wavelet basis.

nation can be expressed as a convolution with some sequences h
and g with the result subsampled by 2 (expressed by the factor 2
in the index “k — 25 of h and g). The sequences h and g can be
thought of as a low pass filter and high pass filter respectively.

The projection of an arbitrary function B(s) into a wavelet®
basis can be formally written as

B(s) = (B,go)go(s)+ D _(B,yus)isls) (@)

ij

Instead of computing all the above inner products, we can find
the coefficients efficiently by exploiting the two-scale relationship.
Given the projection of some arbitrary function B(s) with respect
to the lowest level basis ¢z ; the wavelet coefficients can be found
using a pyramid algorithm [16]. Each stage of this algorithm takes
a vector of coefficients and convolves it with the filters & and g,
returning the smooth and detail coefficients one level up

3o simplify the discussion we are assuming that we have an orthonormal wavelet
basis. We discuss the non orthonormal case in [20}.
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1
i,2j

[0
¥y
¢:, 2+1

2
¢i, 2j+1

Figure 3: The M; wavelet construction whose smooth shapes
are the first two Legendre polynomials. Both of the detail shapes
(lower right) have two vanishing moments.

XformUp( vector By, int 1)
for( j=0;5<2'/2;5++)
ByPI5] = 3, he—2; Bylkl:
ByPli] = 320, 9k—2 Byl
return (B;P, B:;”);

The entire one dimensional pyramid transform is then stated as

PyramidUp( vector By, . )
for(i=L;i>0;i——)
(B¢i-1,k' B'/J.'—l,k) = XformUp( B¢i,k i)
return (By,, By, ,,1=0,...,L—1);

If the h and g convolutions have constant width (with respect to
1) then each call to XformUp has cost linear in the length of
the array passed in. Since each successive call in Pyramidup
works on only the smooth half left by the previous call the overall
runtime to build the pyramid is O(n+ 3 + 7 + ...+ 1) = O(n).

A similar algorithm PyramidDown reverses this process using
XformDown for successive calls

XformDown( vector B;, vector By, int i)
for(j=0;7<2%2' j++)
B§e™ (4] =), hj—axBylkl + ), 952k Bylkl;

return Bg"“’" ;

Pyramidbown( Bg,, By, ,, 1=0,...,L —1)
for(i=0;i< L;i++ )
By, = Xformbown( By, .+ By, » 1 );
return By, , ;

A key property of wavelets essential to this work is that a suf-
ficiently smooth function B(s), when expressed in a wavelet ba-
sis (Equation 4) will have many small coefficients. By ignoring
these negligible coefficients we are left with a sparse, approximate
representation. The negligible coefficients occur because wavelet
functions have vanishing moments. We say that a function (s)
has M vanishing moments if

/dsw(s)s"=o, i=0,...,M—1

The Haar wavelet (Figure 2) has one vanishing moment, thus the
projection of a nearly constant function into the Haar basis will
have wavelet coefficients near 0. Similarly, if a wavelet basis
function has two vanishing moments, the projection of a linear
function will vanish. Figures 3 and 4 show examples of wavelets,
1), with two vanishing moments.

5 Wavelets In Higher Dimensions

Wavelet bases for functions of two or more variables are required
for radiosity. Our goal is to project the kernel, which is a four
dimensional function, into a basis set in which it has a sparse
representation.
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Figure 4: The F, wavelet construction. F; bases have two dif-
ferent detail shapes. Both of the detail shapes have two vanishing
moments.

k¢e Pi

recurse

A

Ty

k¢«;—\,¢i—1 k¢i—h¢i—l

k¢n¢i—1 k'ﬁ.‘-xﬂ/)i—l ki ribis

k¢i Wi

Figure 5: The 2D Pyramid Algorithm is applied to form factors
taken from the flatland radiosity environment consisting of two
parallel line segments. (Flatland [13] is radiosity in a plane). The
dot size indicates the magnitude of a given entry in the matrix.

An arbitrary function k(s,t) of two variables on a finite two
dimensional interval can be approximated by some function k(s, t)
that lies in a two variable finite dimensional function space. Given
a particular one dimensional wavelet, a 2D wavelet basis* is made
up of the functions

do(s)o(t)
1,5 (8) s, k()
1,5 (8) s, k(1)
&i,5 ()i, k(D)

where we only couple functions on the same scale z, where i =
0,...,L-1and 5,k=0,...,2" - 1.

The 2D wavelet coefficients may be obtained from the finest
resolution coefficients By, ;4. , using a 2D PyramidUp algo-
rithm. This algorithm begins with the By 4, , written in a 2D
matrix tableau. It then applies XformUp once to each row, fol-
lowed by an application of XformUp to each resulting column.
This procedure is applied recursively to the By, _, ;.6 _, , quar-

4 Another 2D wavelet basis could be constructed from the tensor product of a 1D
wavelet basis. The different forms of multidimensional wavelet bases are discussed
in 3, 20].
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Figure 6: To illustrate the sparseness of the kernel matrix we
transform the flatland radiosity matrix from Figure 5 into the 2D
Haar basis. Many of the coefficients are small in magnitude (small
dots).

Figure 7: We transform the same matrix into the J basis. Notice
that even more of the coefficients are negligible now.

ter (Figure 5). The construction of a 2D PyramidDown follows
analogously from the one dimensional PyramidDown.

This construction can be extended to functions of four variables
such as the kemel in 3D radiosity k(s1,t1, s2,t2). For this case,
there are sixteen combinations of ¢ and ¢ functions in four vari-
ables. The basis is made up of all fifteen combinations on the
same scale i which involve ¢ functions. The corresponding pyra-
mid transformation functions are constructed as in- the two dimen-
sional case by applying XEormUp and XformDown respectively
to each dimension in turn.

For this type of multidimensional wavelet basis Beylkin et
al. [3] show that for a given error tolerance, only O(n) coefficients
need to be used to attain the prescribed error tolerance in the re-
sults of our computations. Figures 6 and 7 visualize the sparseness
of a flatland radiosity kernel when written in two wavelet bases
with one and two vanishing moments respectively.

6 Radiosity with Wavelets

To obtain an efficient radiosity algorithm, we project the kemel
by taking inner products with the wavelet basis functions. The
coefficients of the kernel with respect to the basis are given by

k? = k.00

/ dt / ds k(s, t)¢o(s)¢o(t)

ke = ko, i / dt / ds k(s, )i, 5 ()i, k (@)

k?jk =k¢i,jv"/’i,k /dt /dSk(s:t)¢i,j($)¢i,k(t)

kZik = k¢i,j:¢i,k /dt /dS k(s,t)wi,j(3)¢i,k(t)
Because of the vanishing moment properties of the wavelets and
the smoothness properties of the kernel, many of these terms are
nearly zero.

A projected version of the integral operator can now be derived
by projecting the kernel itself. This derivation which we only
sketch here is described in greater detail in Beylkin et al. [3].
The k%, k” and k7 coefficients are used to represent the kernel
which has been approximated with respect to the wavelet basis.
Given this projection, after performing the necessary algebra, the
approximate operator can be written as

/ dt ks, t)B(t) =
B?k? os) + Z(Z Bk, (o)

Z(Z B8040 + Z(Z BY KT )%1,4(6)

&)
where
Bjk = Bj, =By, = / dt i, k(&) B(t)
By =Bs,, = / dt ¢i, k() B(1)
B =B, = / dt ¢o(t) B(t)

6.1 The Basic Algorithm

Equation 5 suggests the following three phase algorithm to ap-
proximate the kernel operating on a radiosity function.

Step 1 Pull: Obtain the n (n = number of bases of the radiosity
function) coefficients B and the n coefficients B? of the radiosity
function. If we are initially given the coefficients By, ;, the
2n needed coefficients can be obtained by calling a procedure
Pull which is just like Pyramidup except it returns both the
¢ and 9 coefficients. This step transforms n coefficients into 2n
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coefficients. A 1D Pull would then be

Pull( vector B¢L’,¢)
for(i=L;i>0;i1——)
(Bgi_t,pr By;_y ) = XformUp( By, » i )i
~ return (By, s By, ,, 1=0,...,L—1);

Step 2 Gather: Let the projected kernel operate on the projected
radiosity function. This means that we sum over the index k, and is
equivalent to a matrix multiply. Because of the vanishing moments
of the wavelet functions most of the n® kernel coefficients will
be near zero and may be ignored if the action of the kemnel is
desired to finite precision. The procedure Gather results in 2n
coefficients Gy, ; and Gy, ; that represent the resultant radiosity
function as a combination of ¢;,;(s) and 5 ;(s).

Step 3 Push: Reconstruction of the radiosity function using the
2n functions ¢;,;(s) and ;, ;(s) is done with the procedure Push
which is similar to PyramidDown but takes as arguments both
the ¢ and 1 coefficients. A 1D Push would then be

Push ( B¢i’k, B,/,i’k, 1=0,...,L-1)
for(i=0i< Lii++)

By, += Xformbown( By, ., By, , » 1 );
returan By, . ;

Wrapping this projected operator within a Jacobi iteration loop
results in the following algorithm

(k%,kP,k") = ProjectKernel();
B¢L,k = E¢L,k7
while( !converged )

G=0;

(Bdn‘,k' B"/’i,k) = Pull( B¢L,k )i

(Gg; ;+ Gy, ;) = Gather( By, ., By, ., k*, k%, K );

Gop, = Push( Gy, ;s Gy, ; )i
B¢L,k = G¢L,k +E¢L,k i
Display();

The push and pull can be done in O(n) (linear in the number of
elements) steps. The gather step (this is a complete gather sweep
which updates all of the entries) can be done in O(m) time where
m is the number of terms in the kernel expansion (matrix) that
are significant. We want m to be as small as possible. Wavelet
bases will lead to m = O(n) where the constant factor in O(rn)
decreases with the number of vanishing moments.

What remains is to project the kemel into the wavelet basis,
which may be done as follows

ProjectKernel()
ksp ;.01 x= Quadrature( k, ér,;, ér.k ):
k%, k%, k') = Pyramidup( kop 500603
where( (k%, k%, k") <€)
(k*, k%, k")=0;

6.2 The Top Down Approach

Unfortunately, this bottom up ProjectKernel is an expensive
implementation requiring quadratic time and space. The costs can
be dramatically cut by using an oracle which predicts which m of
the n? coefficients of the projected kernel are significant. Then,
these m values are computed directly by quadrature or symbolic
integration.

Assuming that the oracle can estimate the smoothness of the
kernel for a given region (vis-a-vis a given number of van-
ishing moments), an efficient top down recursive version of
ProjectKernel can be written as follows

226

ProjectKernel( i, patch p, patch q )
smooth = AskOracle( p, q ):
if( smooth ) return;
else

@ B8 Y
sk K sk B k)
= Quadrature( k, p, @ );

if( i == L-1 ) return;

else
ProjectKernel( i+l, left(p), left{(q) );
ProjectKernel( i+l, left(p), right(q) );

right(p), left(qg) );
right(p), right(q) );

i+l,
i+,

ProjectKernel (
ProjectKernel (

If the oracle finds the region under consideration sufficiently
smooth no more recursive calls need be executed, since the coef-
ficients at lower levels will be insignificant by assumption. The
function Quadrature() computes the projection of the kemel
function onto the basis functions at the given level.

6.3 3D Radiosity

In 3D radiosity B is a function of two variables so in the main
program we use a 2D Pull and a 2D Push respectively. k is a
function of four variables so in the bottom up ProjectKernel
we use a 4D PyramidUp function. In the top down approach
to ProjectKernel there are fifteen not three quadratures and
sixteen recursive calls for all combinations of four children of p
and q.

7 Implementation

The top down algorithm described above has been implemented by
extending the implementation of hierarchical radiosity described
in Hanrahan et al. [11)].

7.1 Choice of Basis

Two families of wavelets have been explored, multiwavelets [1]
and a family of wavelets that we call flatlets. Each of these fam-
ilies have members with any number of vanishing moments.

The construction of Mas (multiwavelet with M vanishing mo-
ments) begins with A smooth functions which are the first M
Legendre Polynomials, ¢™(s) = Lm(s), and M detail functions
1™ (s) that are piecewise polynomials of degree M — 1, and have
M vanishing moments. A hierarchy is then constructed from
these shapes. M is the Haar basis, however, for M greater than
I, Mas is technically speaking not a true wavelet since it begins
with a collection of ¢ and 1 functions instead of a single pair.

Multiwavelets form an orthonormal basis. Figure 3 shows the

basis functions for the M hierarchy. The two-scale relationship
for M> is expressed concisely as

2 0 2 0 ‘f’i,z;‘ d’t!—l,j

1 -v3 1 V3 1 020 | i
8l 0 -2 0 2 ||y | | ¥hu
1 \/3- -1 \/—3- %,2_7'1-1 %-1,_1'

Using this relationship the push and pull operations can be com-
puted using a binary tree, instead of as a subsampled vector convo-
lution. A node stores the four coefficients of the functions qﬁ}_w-,

g Yioyg %;_, ;. During a pull, a node computes the val-
ues of its coefficients as a linear combination of the qﬁ},zj, qﬁf‘zj

coefficients obtained from its left child, and the ¢>},2j 1 ¢,2-,2j+1 co-
efficients obtained from its right child. To represent the radiosity
function over a patch we need a 2D M basis for which we use




COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

a quad-tree where each node stores sixteen coefficients. During
a pull, a node computes its coefficients as a linear combination
of the sixteen ¢¢ coefficients from its children (four from each
child).

The flatlet basis Far is made up entirely of piecewise constant
functions. The ¢™ are M adjacent box functions, and the )™ are
M piecewise constant functions that have M vanishing moments.
Figure 4 shows the J, hierarchy.

For 2, the two-scale relationship is given by

11 0 O i 2 $io1g

1l 00 1 1 s | _ | P ©
V2| -13 -3 1 bi2im Yio1,j
-11 1 -1 ¢§,2j+l Vi Lj

The top two rows of the matrix in the above equation are chosen
to give us box functions twice as wide. The bottom two rows
are chosen to be orthogonal to constant and linear variation, (the
vectors [1,1,1,1], [0, 1,2, 31)°. For a discussion of a similar con-
struction see [2].

Both flatlets and multiwavelets can be constructed to have any
number of vanishing moments to increase the sparseness of the
integral operator representation. For both bases, the case M =1
reduces to the Haar basis. For M > 1 multiwavelets offer the
benefits of projecting into a higher order space, resulting in in-
creased convergence rates and smoother basis functions to repre-
sent the answer. These benefits come at the expense of higher
order quadratures necessary for the inner products. Flatlets for
M > 1 also offer accelerated convergence while the quadratures
remain equivalent to form factor computations for which there ex-
its a large body of literature and code, and for which some closed
form solutions are known. The final answer is still represented as
a piecewise constant function, albeit at the finest resolution ¢r,;.
Since the degree of the basis functions does not go up in the flatlet
case the width of support needs to be increased as M increases.

With multiwavelets and flatlets there is also a cost incurred by
increasing the number of vanishing moments. Larger M will result
in h and g filters with wider support. Thus any non-smoothness in
k(s,t), such as a shadow discontinuity, will fall under the support
of more basis functions. This increases the number of significant
terms in the integral operator.

SA technical detail concerns the fact that flatlets for M > 1 are not orthonormal
and thus require the dual basis functions to compute Pyramidup (see [20]).
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Figure 8: Two different oracles and the interaction patterns they
generate.

7.2 Pull, Push and Gather

Both multiwavelets and flatlets are instances of tree wavelets. A
tree wavelet has the property that the convolution sequences &
and g for two neighboring elements do not overlap. This property
allows us to organize all computations along a tree which does
not need to have uniform depth. Tree wavelets also allow for an-
other simplification. Since all necessary coefficients reside in the
immediate children of a node we can use the two-scale relation-
ship to store only the ¢¢ coefficients and need not represent the
&Y, Yo, and Yy coefficients explicitly. With this simplification
ProjectKernel is implemented as follows

ProjectKernel( i, patch p, patch q )

ParentLevelsmooth = AskOracle( p, q );

if( ParentLevelsmooth || i == L )
ks ¢ = Quadrature( k, p, q );
CreateLink( ks,4, P, Q );

else
ProjectKernel( i+l1l, left(p), left(q) ):
ProjectKernel( i+l1l, left(p), right(q) ):
ProjectKernel( i+l1, right(p), left(qg) ):
ProjectKernel( i+l, right(p), right(q) ):

In our implementation of radiosity using the M s and Far bases,
the radiosity function over each polygon is represented by By
coefficients that are stored in a quad-tree. Each node holds M?
By coefficients. Pulling and pushing are done in the quad-tree as
in [11] except that for different bases, we use different two-scale
relationships. The kemel is represented by its kg¢pgs coefficients
that are stored on links created between nodes of different poly-
gons’ quad-trees. Each such link caries M* interaction terms. For
the Far bases the interaction terms are still form factors, but for
M the coefficients on the links represent higher order inter-
actions which require quadrature computations of the appropriate
order. Gathering is done by moving B values across the links,
weighted by the k values on the link. In this context, HR can be
viewed as wavelet radiosity using the Haar basis.

7.3 Oracle

The oracle must decide whether the kemel is sufficiently smooth
over two patches in the environment i.e., resembles a polynomial
of degree M — 1 or less. If the kemel is smooth, all 1 terms
will (sufficiently) vanish and thus any work to evaluate the lower
interaction terms can be avoided.

The most accurate approach to measure the kemel smoothness
is to directly evaluate the integrals of the kernel against the
on this and all lower levels and verify that they are below the
required threshold. This is computationally too expensive and we
approximate this computation in the following way. The kemel
is sampled at the points required by a Gauss-Legendre quadra-
ture rule of the appropriate order and an interpolating polynomial
of degree M — 1 is constructed using Neville’s algorithm [22].
Given this interpolating polynomial kp we compute the L, error
f |kp ~ k| with a quadrature rule which places sample points in-
between the previously chosen points. If the value of this integral
is small we conclude that our current level of (smooth) approx-
imation matches the kemel function well and the AskOracle
function returns True. Note that the sample points for the inter-
polating polynomial are chosen so that they can be used directly in
the computation of the interaction link values. If the AskOracle
function returns False these samples are discarded. A less costly
approach could use geometric information, such as the size, ori-
entation, and distance between two patches. In effect this was
done in the original HR implementation. However for the Fas
and Mjps, M > 1 bases it is not immediately clear what the
corresponding geometric reasoning would be.
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It is important to realize that any such implementation of an
oracle will introduce errors due to its approximate nature. If the
oracle is not stringent enough, and necessary terms are neglected,
artifacts will appear in the image. Figure 8 shows two differ-
ent oracles and the interactions they force. Two successive levels
of interactions are shown (top to bottom). On the left is an or-
acle allowing patches close to the singularity (where the kernel
varies rapidly) to be linked (meaning no further subdivision will
be done). For this oracle the interaction patterns separate on the
lower level. On the right is a more stringent oracle which does not
allow singular interactions until patches have become very small.
As a result we do not see the separation.

As in [11] we use brightness refinement which means that the
stringency of the oracle is weighted by the brightness of the in-
volved patches. Also as in [11] a fast partial visibility test is
performed by using a constant number of jittered rays. If two
patches are partially occluded and there is sufficient energy being
transferred between the two patches the oracle returns False.

relative error

74 Quadrature 1 10 100 1000 10000 100000 1000000

interactions

AEREALLL e e e At |

If the oracle returns True, numerical integrations must be per-
formed to compute the kg¢g44 terms associated with the link to be Figure 9: Relative L; error as a function of the number of interac-
created. Our implementation uses Gauss-Legendre quadrature [22] tion links for the haar basis with A = %, %, %, é (top to bottom).
for this purpose. A Gauss-Legendre quadrature rule provides an The test configuration is depicted in the upper right comer.
accurate integration for polynomials up to order 2p — 1, where p

is the number of sample points. The order of the quadrature and 1.00000
the related number of sample points required depends on the sum
of the order of the wavelet bases, and the assumed order of the 1
kernel itself.

For the projection of the kemel against a flatlet basis, a two
point rule is used for each constant section of the basis function.
In the case of multiwavelets Mar, M > 1, M points are chosen
along each coordinate axis since we need to have a high enough
order of integration to account for the polynomial variance in
the kemel and the polynomial basis functions themselves. For
example, for M = 3 we compute coefficients when the kernel
varies apgroximately up to 24 by projecting onto basis functions
up to 2% order. Thus the integrand is approximately 4" order,
and we can use a three point Gauss rule.

The number of integrals which need to be computed for a link
is M*, however for all these integrals only a total of M* samples 0.00010
of the kernel function are required. Using precomputed weights,
these samples are combined to give all the desired integrals.

0.10000

v |

0.01000

relative error

0.00100 -}

We treat visibility following [11] by casting a constant number 0.00001 e — B
of jittered rays between two patches to estimate the fraction of ] 100 1000 ) 10000 100000
visibility. This is then used to attenuate the quantity returned by interactions
the Gauss-Legendre quadrature. This technique relies on the fact
that we always subdivide in the vicinity of a shadow discontinuity Figure 10: Relative L; error as a function of the number of
limiting errors due to the non-smooth nature of the kernel to a interactions for the wavelet bases M;, M, Ma, and My (top
small region. to bottom) using the same test configuration as in Figure 9. Here
When the two patches that are linked up are close to the singu- h= 3—‘2

larity in k, quadratures will encounter numerical difficulties if they
are not properly adapted to the singularity. In particular a Gauss-
Legendre rule will produce large errors and an adapted quadrature
rule is required. This phenomenon is not unique to wavelet ra-
diosity but applies to all GR methods. Special Gauss rules can be
designed for the particular singularity found in the radiosity ker-

sion to small enough patches at the singularity that the resulting
errors contribute very little to the overall error. Alternative con-
structions for singular transports are discussed in [19].

nel. Zatz [25] uses such custom rules and notes the need for an 8 Experimental Results

automatic decision procedure as to when to switch the type of in- . .

tegration. In our implementation of flatlets, we use a closed form In this section we present findings that compare how radiosity
solution for the form factor [21] whenever the patches border on behaves using different wavelet bases. We give results from the
the singularity. While this computation is expensive, it only needs analysis of a simple 3D configuration, for which we have an an-
to be invoked in a small fraction of interaction computations and alytic solution against which to check our results. We finish with
contributes little to overall runtime. For multiwavelets we have no an image of a full environment,

such closed form available. In this case the oracle forces subdivi- One test case used the configuration depicted in the inset in
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ment (Figure 14). This picture, as well as Figure 12, does not
use any postprocessing such as Gouraud shading. Instead the sur-
face brightness is computed directly from the basis functions and
associated coefficients.

9 Conclusion and Future Work

In this paper we have presented the basic theory of projections of
integral operators into hierarchical bases, and laid out the theoreti-
cal foundation of a new set of techniques involving wavelets. With
this in hand, we introduced a new set of linear time algorithms
we have called wavelet radiosity, and shown that the hierarchical
radiosity described by Hanrahan et al. was an instance of a first
order wavelet approach.

We have introduced a new family of wavelets, dubbed flatlets
and also experimented with a second family of wavelets, multi-
wavelets. Both lead to efficient algorithms. Future work includes
examining various wavelet bases which may have better proper-
ties than the multiwavelets and flatlets. For example the Coiflet
functions of [7, 3] allow for fast one point quadrature methods.
The tree wavelets that we implemented do not enforce any kind
of continuity at element boundaries, possibly leading to blocky
artifacts. Spline wavelets [4] might provide a basis which would
alleviate this.

While our initial implementation was limited to quadrilateral
polygons there is nothing in the underlying algorithms that pre-
vents the use of any surface whose parameter domain is rectilinear,
such as for example bicubic patches. The only change involves the
reparameterization (change of variable) in the coupling integrals.
It would be very desirable to design bases which work with trian-
gular domains since triangles are a common primitive in meshing
algorithms.

There are still fundamental questions that have yet to be ad-
dressed. We would like to gain a better understanding of how
wavelet expansions interact with the visibility term in the kemel.
It is also important to find methods that remain efficient when the
environment consists of a large number of small polygons.
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Hierarchical Z-Buffer Visibility

Ned Greene*

Abstract

An ideal visibility algorithm should a) quickly reject most of the
hidden geometry in a model and b) exploit the spatial and perhaps
temporal coherence of the images being generated. Ray casting
with spatial subdivision does well on criterion (a), but poorly on
criterion (b). Traditional Z-buffer scan conversion does well on
criterion (b), but poorly on criterion (a). Here we present a hi-
erarchical Z-buffer scan-conversion algorithm that does well on
both criteria. The method uses two hierarchical data structures, an
object-space octree and an image-space Z pyramid, to accelerate
scan conversion. The two hierarchical data structures make it pos-
sible to reject hidden geometry very rapidly while rendering visible
geometry with the speed of scan conversion. For animation, the
algorithm is also able to exploit temporal coherence. The method
is well suited to models with high depth complexity, achieving
orders of magnitude acceleration in some cases compared to ordi-
nary Z-buffer scan conversion.

CR Categories and Subject Descriptors: 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism - Hid-
den line/surface removal; J.6 [Computer-Aided Engineering]:
Computer-Aided 1.3.1 (Computer Graphics]: Hardware Architec-
ture - Graphics Processors

Additional Key Words and Phrases: Octree, Pyramid, Temporal
Coherence, Spatial Coherence, Z Buffer.

1 Introduction

Extremely complex geometric databases offer interesting chal-
lenges for visibility algorithms. Consider, for example, an interac-
tive walk-through of a detailed geometric database describing an
entire city, complete with vegetation, buildings, fumniture inside
the buildings and the contents of the furniture. Traditional visi-
bility algorithms running on currently available hardware cannot
come close to rendering scenes of this complexity at interactive
rates and it will be a long time before faster hardware alone will
suffice. In order to get the most out of available hardware, we need
faster algorithms that exploit properties of the visibility computa-
tion itself.

There are at least three types of coherence inherent in the visi-
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bility computation which can be exploited to accelerate a visibility
algorithm. The first is object-space coherence: in many cases a
single computation can resolve the visibility of a collection of
objects which are near each other in space. The second is image-
space coherence: in many cases a single computation can resolve
the visibility of an object covering a collection of pixels. The
third is temporal coherence: visibility information from one frame
can often be used to accelerate visibility computation for the next
frame. Here we present a visibility algorithm which exploits all
three of these types of coherence and sometimes achieves orders
of magnitude acceleration compared with traditional techniques.

The dominant algorithms in use today for visibility computa-
tions are Z-buffer scan conversion and ray-tracing. Since Z buffers
do not handle partially transparent surfaces well, we will restrict
the discussion to models consisting entirely of opaque surfaces.
For these models, only rays from the eye to the first surface are
relevant for "visibility, so the choice is between Z buffering and
ray-casting (ray-tracing with no secondary rays).

Traditional Z buffering makes reasonably good use of image-
space coherence in the course of scan conversion. Implementa-
tions usually do a set-up computation for each polygon and then an
incremental update for each pixel in the polygon. Since the incre-
mental update is typically much less computation than the set-up,
the savings from image-space coherence can be substantial. The
problem with the traditional Z-buffer approach is that it makes no
use at all of object-space or temporal coherence. Each polygon
is rendered independently, and no information is saved from prior
frames. For extremely complex environments like a model of a
city, this is very inefficient. A traditional Z-buffer algorithm, for
example, will have to take the time to render every polygon of ev-
ery object in every drawer of every desk in a building even if the
whole building cannot be seen, because the traditional algorithm
can resolve visibility only at the pixel level.

Traditional ray-tracing or ray-casting methods, on the other
hand, make use of object-space coherence by organizing the ob-
jects in some type of spatial subdivision. Rays from the eye are
propagated through the spatial subdivision until they hit the first
visible surface. Once a ray hits a visible surface, there is no need
to consider any of the surfaces in the spatial subdivisions further
down along the ray, so large portions of the geometry may never
have to be considered during rendering. This is an important im-
provement on Z buffering, but it makes no use of temporal or
image-space coherence. While ray-casting algorithms that exploit
temporal coherence have been explored, it seems extremely dif-
ficult to exploit image-space coherence in traditional ray casting
algorithms.

Here we present a visibility algorithm which combines the
strengths of both ray-casting and Z buffering. To exploit object-
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space coherence, we use an octree spatial subdivision of the type
commonly used to accelerate ray tracing. To exploit image-space
coherence, we augment traditional Z-buffer scan conversion with
an image-space Z pyramid that allows us to reject hidden geom-
etry very quickly. Finally, to exploit temporal coherence, we use
the geometry that was visible in the previous frame to construct a
starting point for the algorithm. The result is an algorithm which is
orders of magnitude faster than traditional ray-casting or Z buffer-
ing for some models we have tried. The algorithm is not difficult
to implement and works for arbitrary polygonal databases.

In section II, we survey the most relevant prior work on accel-
erating ray casting and scan conversion. In section III, we develop
the data structures used to exploit object-space, image-space and
temporal coherence. In section IV, we describe the implementation
and show results for some complex models containing hundreds
of millions of polygons.

2 Prior Work

There have been many attempts to accelerate traditional ray-tracing
and Z buffering techniques. Each of these attempts exploits some
aspect of the coherence inherent in the visibility computation it-
self. None of them, however, simultaneously exploits object-
space, image-space and temporal coherence.

The ray-tracing literature abounds with references to object-
space coherence. A variety of spatial subdivisions have been used
to exploit this coherence and they seem to work quite well (e.g.
[1, 2, 3, 4, 5]). Temporal coherence is much less commonly ex-
ploited in practice, but various techniques exist for special cases.
If all the objects are convex and remain stationary while the cam-
era moves, then there are constraints on the way visibility can
change[6] which a ray tracer might exploit. On the other hand,
if the camera is stationary, then rays which are unaffected by the
motion of objects can be detected and used from the previous
frame[7]. When interactivity is not an issue and sufficient mem-
ory is available, it can be feasible to render an entire animation
sequence at once using spacetime bounding boxes[8, 9]. While
these techniques make good use of object-space coherence and
sometimes exploit temporal coherence effectively, they unfortu-
nately make little or no use of image-space coherence since each
pixel is traced independently from its neighbors. There are heuris-
tic methods which construct estimates of the results of ray-tracing
a pixel from the results at nearby pixels (e.g. [10]), but there
seems to be no guaranteed algorithm which makes good use of
image-space coherence in ray tracing.

With Z-buffer methods (and scan conversion methods in gen-
eral) the problems are very different. Ordinary Z-buffer rendering
is usually implemented with an initial set-up computation for each
primitive followed by a scan-conversion phase in which the af-
fected pixels are incrementally updated. This already makes very
good use of image-space coherence, so the remaining challenge
with Z-buffer methods is to exploit object-space and temporal co-
herence effectively.

A simple method of using object-space coherence in Z-buffer
rendering is to use a spatial subdivision to cull the model to the
viewing frustum [11]. While this can provide substantial accelera-
tion, it exploits only a small portion of the object-space coherence
in models with high depth complexity. In architectural models,
for example, a great deal of geometry hidden behind walls may
lie within the viewing frustum.

In order to make use of more of the object-space coherence
in architectural models, Airey et. al. [12, 13] and subsequently
Teller and Sequin[15] proposed dividing models up into a set of
disjoint cells and precomputing the potentially visible set (PVS)
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of polygons from each cell. In order to render an image from
any viewpoint within a cell, only the polygons in the PVS need
be considered. These PVS schemes are the closest in spirit to the
visibility algorithm presented here since they attempt to make good
use of both object-space and image-space coherence. Nonetheless,
they suffer from some important limitations. Before they can be
used at all, they require an expensive precomputation step to de-
termine the PVS and a great deal of memory to store it. Teller
and Sequin, for example, report over 6 hours of precomputation
time on a 50 MIP machine to calculate S8Mb of PVS data needed
for a model of 250,000 polygons[15]. Perhaps more importantly,
the way these methods make use of cells may limit their appro-
priateness to architectural models. In order to achieve maximum
acceleration, the cells must be 3D regions of space which are al-
most entirely enclosed by occluding surfaces, so that most cells
are hidden from most other cells. For architectural models, this
often works well since the cells can be rooms, but for outdoor
scenes and more general settings, it is unclear whether or not PVS
methods are effective. In addition, the currently implemented al-
gorithms make very special use of axially-aligned polygons such
as flat walls in rectilinear architectural models. While the methods
can in principle be extended to use general 3D polygons for oc-
clusion, the necessary algorithms have much worse computational
complexity[15]. Finally, although the implementations prefetch
PVS data for nearby cells to avoid long latencies due to paging,
they cannot be said to exploit temporal coherence in the visibility
computation very effectively.

The algorithm presented here shares a great deal with the work
of Meagher[16] who used object-space octrees with image-space
quadtrees for rendering purposes. Meagher tried to display the
octree itself rather than using it to cull a polygonal database, so
his method is directly applicable to volume, rather than surface
models. Nonetheless his algorithm is one of the few to make use
of both object-space and image-space coherence. The algorithm
does not exploit temporal coherence.

3 Hierarchical Visibility

The hierarchical Z-buffer visibility algorithm uses an octree spa-
tial subdivision to exploit object-space coherence, a Z pyramid to
exploit image-space coherence, and a list of previously visible oc-
tree nodes to exploit temporal coherence. While the full value of
the algorithm is achieved by using all three of these together, the
object-space octree and the image-space Z pyramid can also be
used separately. Whether used separately or together, these data
structures make it possible to compute the same result as ordinary
Z buffering at less computational expense.

3.1 Object-space octree

Octrees have been used previously to accelerate ray tracing{5]
and rendering of volume data sets[16] with great effectiveness.
With some important modification, many of the principles of these
previous efforts can be applied to Z-buffer scan conversion. The
result is an algorithm which can accelerate Z buffering by orders
of magnitude for models with sufficient depth complexity.

In order to be precise about the octree algorithm, let us begin
with some simple definitions. We will say that a polygon is hidden
with respect to a Z buffer if no pixel of the polygon is closer to
the observer than the Z value already in the Z buffer. Similarly,
we will say that a cube is hidden with respect to a Z buffer if all
of its faces are hidden polygons. Finally, we will call a node of
the octree hidden if its associated cube is hidden. Note that these
definitions depend on the sampling of the Z buffer. A polygon
which is hidden at one Z-buffer resolution may not be hidden at
another.
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With these definitions, we can state the basic observation that
makes it possible to combine Z buffering with an octree spatial
subdivision: If a cube is hidden with respect to a Z buffer, then all
polygons fully contained in the cube are also hidden. What this
means is the following: if we scan convert the faces of an octree
cube and find that each pixel of the cube is behind the current
surface in the Z buffer, we can safely ignore all the geometry
contained in that cube.

From this observation, the basic algorithm is easy to construct.
We begin by placing the geometry into an octree, associating each
primitive with the smallest enclosing octree cube. Then we start
at the root node of the octree and render it using the following
recursive steps: First, we check to see if the octree cube intersects
the viewing frustum. If not, we are done. If the cube does intersect
the viewing frustum, we scan convert the faces of the cube to
determine whether or not the whole cube is hidden. If the cube is

_hidden, we are done. Otherwise, we scan convert any geometry
associated with the cube and then recursively render its children
in front-to-back order.

We can construct the octree with a simple recursive procedure.
Beginning with a root cube large enough to enclose the entire
model and the complete list of geometric primitives, we recur-
sively perform the following steps: If the number of primitives
is sufficiently small, we associate all of the primitives with the
cube and exit. Otherwise, we associate with the cube any primi-
tive which intersects at least one of three axis-aligned planes that
bisect the cube. We then subdivide the octree cube and call the
procedure recursively with each of the eight child cubes and the
portion of the geometry that fits entirely in that cube.

The basic rendering algorithm has some very interesting prop-
erties. First of all, it only renders geometry contained in octree
nodes which are not hidden. Some of the rendered polygons may
be hidden, but all of them are “nearly visible” in the following
sense: there is some place we could move the polygon where it
would be visible which is no further away than the length of the
diagonal of its containing octree cube. This is a big improvement
over merely culling to the viewing frustum. In addition, the algo-
rithm does not waste time on irrelevant portions of the octree since
it only visits octree nodes whose parents are not hidden. Finally,
the algorithm never visits an octree node more than once during
rendering. This stands in marked contrast to ray-tracing through
an octree where the root node is visited by every pixel and other
nodes may be visited tens of thousands of times. As a result of
these properties, the basic algorithm culls hidden geometry very
efficiently.

A weakness of the basic algorithm is that it associates some
small geometric primitives with very large cubes if the primitives
happen to intersect the planes which separate the cube’s children.
A small triangle which crosses the center of the root cube, for
example, will have to be rendered anytime the entire model is not
hidden. To avoid this behavior, there are two basic choices. One
alternative is to clip the problematic small polygons so they fit in
much smaller octree cells. This has the disadvantage of increasing
the number of primitives in the database. The other alternative is
to place some primitives in multiple octree cells. This is the one
we have chosen to implement. To do this, we modify the recursive
construction of the octree as follows. If we find that a primitive
intersects a cube’s dividing planes, but is small compared to the
cube, then we no longer associate the primitive with the whole
cube. Instead we associate it with all of the cube’s children that
the primitive intersects. Since some primitives are associated with
more than one octree node, we can encounter them more than once
during rendering. The first time we render them, we mark them
as rendered, so we can avoid rendering them more than once in a
given frame.

3.2 Image-space Z pyramid

The object-space octree allows us to cull large portions of the
model at the cost of scan-converting the faces of the octree cubes.
Since the cubes may occupy a large number of pixels in the im-
age, this scan conversion can be very expensive. To reduce the
cost of determining cube visibility, we use an image-space Z pyra-
mid. In many cases, the Z pyramid makes it possible to conclude
very quickly a large polygon is hidden, making it unnecessary to
examine the polygon pixel by pixel.

The basic idea of the Z pyramid is to use the original Z buffer as
the finest level in the pyramid and then combine four Z values at
each level into one Z value at the next coarser level by choosing the
farthest Z from the observer. Every entry in the pyramid therefore
represents the farthest Z for a square area of the Z buffer. At the
coarsest level of the pyramid there is a single Z value which is
the farthest Z from the observer in the whole image.

Maintaining the Z pyramid is an easy matter. Every time we
modify the Z buffer, we propagate the new Z value through to
coarser levels of the pyramid. As soon as we reach a level where
the entry in the pyramid is already as far away as the new Z value,
we can stop. .

In order to use the Z pyramid to test the visibility of a polygon,
we find the finest-level sample of the pyramid whose correspond-
ing image region covers the screen-space bounding box of the
polygon. If the nearest Z value of the polygon is farther away
than this sample in the Z pyramid, we know immediately that the
polygon is hidden. We use this basic test to determine the visi-
bility of octree cubes by testing their polygonal faces, and also to
test the visibility of model polygons.

While the basic Z-pyramid test can reject a substantial number
of polygons, it suffers from a similar difficulty to the basic octree
method. Because of the structure of the pyramid regions, a small
polygon covering the center of the image will be compared to the
Z value at the coarsest level of the pyramid. While the test is still
accurate in this case, it is not particularly powerful.

A definitive visibility test can be constructed by applying the
basic test recursively through the pyramid. When the basic test
fails to show that a polygon is hidden, we go to the next finer
level in the pyramid where the previous pyramid region is divided
into four quadrants. Here we attempt to prove that the polygon
is hidden in each of the quadrants it intersects. For each of these
quadrants, we compare the closest Z value of the polygon in the
quadrant to the value in the Z pyramid. If the Z-pyramid value
is closer, we know the polygon is hidden in the quadrant. If we
fail to prove that the primitive is hidden in one of the quadrants,
we go to the next finer level of the pyramid for that quadrant and
try again. Ultimately, we either prove that the entire polygon is
hidden, or we recurse down to the finest level of the pyramid and
find a visible pixel. If we find all visible pixels this way, we are
performing scan conversion hierarchically.

A potential difficulty with the definitive visibility test is that it
can be expensive to compute the closest Z value of the polygon in
a quadrant. An alternative is to compare the value in the pyramid
to the closest Z value of the entire polygon at each step of the
recursion. With this modification, the test is faster and easier to
implement, but no longer completely definitive. Ultimately, it will
either prove that the entire polygon is hidden, or recurse down to
the finest level of the pyramid and find a pixel it cannot prove is
hidden. Our current implementation uses this technique. When
the test fails to prove that a polygon is hidden, our implementa-
tion reverts to ordinary. scan conversion to establish the visibility
definitively.
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3.3 Temporal coherence list

Frequently, when we render an image of a complex model using
the object-space octree, only a small fraction of the octree cubes
are visible. If we render the next frame in an animation, most of
the cubes visible in the previous frame will probably still be visi-
ble. Some of the cubes visible in the last frame will become hidden
and some cubes hidden in the last frame will become visible, but
frame-to-frame coherence in most animations ensures that there
will be relatively few changes in cube visibility for most frames
(except scene changes and camera cuts). We exploit this fact in
a very simple way with the hierarchical visibility algorithm. We
maintain a list of the visible cubes from the previous frame, the
temporal coherence list, and simply render all of the geometry on
the list, marking the listed cubes as rendered, before commencing
the usual algorithm. We then take the resulting Z buffer and use it
to form the initial Z pyramid. If there is sufficient frame-to-frame
coherence, most of the visible geometry will already be rendered,
so the Z-pyramid test will be much more effective than when we
start from scratch. The Z-pyramid test will be able to prove with
less recursion that octree cubes and mode! polygons are hidden.
As we will see in section IV, this can accelerate the rendering pro-
cess substantially. After rendering the new frame, we update the
temporal coherence list by checking each of the cubes on the list
for visibility using the Z-pyramid test. This prevents the temporal
coherence list from growing too large over time.

One way of thinking about the temporal coherence strategy is
that we begin by guessing the final solution. If our guess is very
close to the actual solution, the hierarchical visibility algorithm
can use the Z pyramid to verify the portions of the guess which
are comrect much faster than it can construct them from scratch.
Only the portions of the image that it cannot verify as being correct
require further processing.

4 Implementation and Results

Qur initial implementation of the hierarchical visibility algorithm
is based on general purpose, portable C code and software scan
conversion. This implementation uses the object-space octree, the
image-space Z pyramid and the temporal coherence list. Even
for relatively simple models the pure software algorithm is faster
than traditional software Z buffering, and for complex models the
acceleration can be very large.

In order to test the algorithm, we constructed an office module
consisting of 15K polygons and then replicated the module in a
three dimensional grid. Each module includes a stairway with a
large open stairwell making it possible to see parts of the neigh-
boring floors. None of the office walls extends to the ceiling, so
from a high enough point in any of the cubicles, it is possible to
see parts of most of the other cubicles on the same floor.

For simple models with low depth complexity, the hierarchi-
cal visibility method can be expected to take somewhat longer
than traditional scan conversion due to the overhead of perform-
ing visibility tests on octree cubes and the cost of maintaining a Z
pyramid. To measure the algorithm’s overhead on simple models,
we rendered a single office module consisting of 15K polygons
at a viewpoint from which a high proportion of the model was
visible. Rendering time for a 512 by 512 image was 1.52 seconds
with the hierarchical visibility method and 1.30 seconds with tradi-
tional scan conversion, indicating a performance penalty of 17%.
When we rendered three instances of the model (45K polygons),
the running time was 3.05 seconds for both methods indicating that
this level of complexity was the breakeven point for this partic-
ular model. Hierarchical visibility rendered nine instances of the
same model (105K polygons) in 5.17 seconds, while traditional
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scan conversion took 7.16 seconds.

The chief value of the hierarchical visibility algorithm is, of
course, for scenes of much higher complexity. To illustrate the
point, we constructed a 33 by 33 by 33 replication of the of-
fice module which consists of 538 million polygons. The model
is shown rendered in figure 1. 59.7 million polygons lie in the
viewing frustum from this viewpoint, about one tenth of the entire
model. Using the hierarchical visibility method, the Z-pyramid
test was invoked on 1746 octree cubes and culled about 27% of
the polygons in the viewing frustum. The bounding boxes of 687
cubes were scan converted which culled nearly 73% of the model
polygons in the viewing frustum, leaving only 83.0K polygons of
which 41.2K were front facing (.000076 of the total model) to be
scan converted in software. On an SGI Crimson Elan, the entire
process took 6.45 seconds. Rendering this model using traditional
Z buffering on the Crimson Elan hardware took approximately one
hour and fifteen minutes. Rendering it in software on the Crimson
would probably take days.

The center left panel of figure 1 shows the depth complexity
processed by the algorithm for the image in the upper left. The
depth complexity displayed in this image is the number of times
each pixel was accessed in a box visibility test or in Z-buffer
polygon scan conversion. Note the bright regions cormresponding
to portions of the image where it is possible to see far into the
model; these are regions where the algorithm has to do the most
work. In this image, the average depth complexity due to box
scans is 7.23, and due to polygon scan-conversion is 2.48 for a
total of 9.71. The maximum depth complexity is 124. Dividing
the number of times the Z pyramid is accessed by the number of
pixels on the screen lets us assign a value of .43 for the “depth
complexity” of the Z-pyramid tests. Thus, the total average depth
complexity of Z-pyramid tests, box scans and polygon scans is
10.14. Note that this is not the depth complexity of the model
itself, but only the depth complexity of the hierarchical visibility
computation. Computing the true depth complexity of the scene
would require scan converting the entire model of 538 million
polygons in software, which we have not done. In the lower left of
figure 1, we show the viewing frustum and the octree subdivision.
The two long strings of finely divided boxes correspond to the
two brightest regions in the depth complexity image. Note that
the algorithm is able to prove that large octree nodes in the distance
are hidden. In the lower right, we show the Z pyramid for the
scene. Even at fairly coarse resolutions, the Z pyramid contains a
recognizeable representation of the major occluders in the scene.

The office environment of figure 1 was chosen in part because
it is a particularly difficult model for PVS methods. From every
office cubicle in this environment, there are points from which
almost every other cubicle on the same floor is visible. As a
result, if the cubicles were used as cells in a PVS method, the
potentially visible set for each cell would have to include nearly
all the cells on its floor and many on other floors. Since each
floor contains about 4 million polygons, the PVS methods would
probably have to render many more polygons than the hierarchical
method. In addition, the precomputation time for published PVS
methods would be prohibitive for a model of this complexity. This
model has 2000 times as many polygons as the model described by
Teller and Sequin[15] which required 6 hours of pre-processing.

Admittedly, the replication of a single cell in the model means
that it may not be a representative example, but it will be some
time before people use models of this complexity without a great
deal of instancing. The hierarchical visibility program we used for
this example makes use of the replication in only two ways. First,
the algorithm does not need to store half a billion polygons in main
memory. Second, the algorithm only needs to consider a single
cell in constructing the octree. These same simplifications would
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Fig. 3: Total time in seconds to render all windows as a func-
tion of the number of pixels on the side of each window.

apply to any complex model using a great deal of instancing.

Figure 2 shows the hierarchical visibility method applied to an
outdoor scene consisting of a terrain mesh with vegetation repli-
.cated on a two-dimensional grid. The model used for the lower
left image consists of 53 million polygons, but only about 25K
polygons are visible from this point of view. Most of the model
is hidden by the hill or is outside the viewing frustum. The corre-
sponding depth complexity image for hierarchical visibility com-
putations is shown at the top left. The algorithm works hardest
near the horizon where cube visibility is most difficult to establish.
This frame took 7 seconds to render with software scan conversion
on an SGI Crimson. In the lower right, we show a model consist-
ing of 5 million polygons. Even though the model is simpler than
the model in the lower left, the image is more complicated and
took longer to render because a much larger fraction of the model
is visible from this point of view. This image took 40 seconds to
render with software scan conversion on an SGI Crimson. The
average depth complexity for the scene is 7.27, but it reaches a
peak of 85 in the bright areas of the depth complexity image in the
upper right. These outdoor scenes have very different character-
istics from the building interiors shown in figure 1 and are poorly
suited to PVS methods because (a) very few of the polygons are
axis-aligned and (b) the cell-to-cell visibility is not nearly as lim-
ited as in an architectural interior. Nonetheless, the hierarchical
visibility algorithm continues to work effectively.

4.1 Parallelizability and Image-space coherence

We have made our hierarchical visibility implementation capable
of dividing the image into a grid of smaller windows, rendering
them individually and compositing them into a final image. The
performance of the algorithm as the window size is varied tells us
about the parallel performance of the algorithm and the extent to
which it makes use of image-space coherence. If, like most ray
tracers, the algorithm made no use of image-space coherence, we
could render each pixel separately at no extra cost. Then it would
be fully parallelizable. At the other extreme, if the algorithm
made the best possible use of image-space coherence, it would
render a sizeable region of pixels with only a small amount more
computation than required to render a single pixel. Then it would
be difficult to parallelize. Note that if we shrink the window
size down to a single pixel, the hierarchical visibility algorithm
becomes a ray caster using an octree subdivision.

Figure 3 graphs the rendering time for a frame from a walk-
through of the model shown in figure 1 as a function of the window
size. For window sizes from 32 by 32 on up, the curve is rela-
tively flat, indicating that the algorithm should parallelize fairly
well. For window sizes below 32 by 32, however, the slope of
the curve indicates that the time to render a window is almost
independent of the window size. The algorithm can, for example,
render a 32 by 32 region for only slightly more than four times the
computational expense of ray-casting a single pixel with this algo-
rithm. Comparing the single pixel window time to the time for the

whole image, we find that image-space coherence is responsible
for a factor of almost 300 in running time for this example.

4.2 Use of graphics hardware

In addition to the pure software implementation, we have at-
tempted to modify the algorithm to make the best possible use
of available commercial hardware graphics accelerators. This
raises some difficult challenges because the hierarchical visibil-
ity algorithm makes slightly different demands of scan-conversion
hardware than traditional Z buffering. In particular, the use of
octree object-space coherence depends on being able to determine
quickly whether any pixel of a polygon would be visible if it
were scan converted. Unfortunately, the commercial hardware
graphics pipelines we have examined are either unable to answer
this query at all, or take milliseconds to answer it. One would
certainly expect some delay in getting information back from a
graphics pipeline, but hardware designed with this type of query
in mind should be able to return a result in microseconds rather
than milliseconds.

We have implemented the object-space octree on a Kubota Pa-
cific Titan 3000 workstation with Denali GB graphics hardware.
The Denali supports an unusual graphics library call which deter-
mines whether or not any pixels in a set of polygons are visible
given the current Z buffer. We use this “Z query” feature to
determine the visibility of octree cubes. The cost of a Z query de-
pends on the screen size of the cube, and it can take up to several
milliseconds to determine whether or not a cube is visible. Our
implementation makes no use of the Z pyramid because the cost
of getting the required data to and from the Z buffer would exceed
any possible savings. On a walk-through of a version of the office
model with 1.9 million polygons, the Titan took an average of
.54 seconds per frame to render 512 by 512 images. Because of
the cost of doing the Z query, we only tested visibility of octree
cubes containing at least eight hundred polygons. Even so, 36.5%
of the running time was taken up by Z queries. If Z query were
faster, we could use it effectively on octree cubes containing many
fewer polygons and achieve substantial further acceleration. The
Titan implementation has not been fully optimized for the De-
nali hardware and makes no use of temporal coherence, so these
performance figures should be considered only suggestive of the
machine’s capabilities. )

The other implementation we have that makes use of graphics
hardware runs on SGI workstations. On these workstations, there
is no way to inquire whether or not a polygon is visible without
rendering it, so we use a hybrid hardware/software strategy. We
do the first frame of a sequence entirely with software. On the
second frame, we render everything on the temporal coherence list
with the hardware pipeline. Then we read the image and the Z
buffer from the hardware, form a Z pyramid and continue on in
software. With this implementation, on the models we have tried,
temporal coherence typically reduces the running time by a factor
of between 1.5 and 2.

In the course of a walk-through of our office model, we rendered
the frame in the upper left of figure 1 without temporal coherence,
and then the next frame shown in the upper right of figure 1 using
temporal coherence. The new polygons rendered in software are
shown in magenta for illustration. For the most part, these are
polygons that came into view as a result of panning the camera.
The center right shows the depth complexity of the hierarchical
computation for this frame. The image is much darker in most
regions because the algorithm has much less work to do given the
previous frame as a starting point. This temporal coherence frame
took 3.96 seconds to render on a Crimson Elan, as compared with
6.45 seconds to render the same frame without temporal coherence.
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Current graphics accelerators are not designed to support the
rapid feedback from the pipeline needed to realize the full poten-
tial of octree culling in the hierarchical visibility algorithm. Hard-
ware designed to take full advantage of the algorithm, however,
could make it possible to interact very effectively with extremely
complex environments as long as only a manageable number of
the polygons are visible from any point of view. The octree sub-
division, the Z pyramid and the temporal coherence strategy are
all suitable for hardware implementation.

5 Conclusion

As more and more complex models become commonplace in com-
puter graphics, it becomes increasingly important to exploit the
available coherence in the visibility computation. Here we present
an algorithm which combines the ability to profit from image-
space coherence of Z-buffer scan conversion with the ability of
ray tracing to avoid considering hidden geometry. It appears to be
the first practical algorithm which materially profits from object-
space, image-space and temporal coherence simultaneously. The
algorithm has been tested and shown to work effectively on indoor
and outdoor scenes with up to half a billion polygons.

The hierarchical visibility algorithm can make use of existing
graphics accelerators without modification. Small changes in the
design of graphics accelerators, however, would make a large dif-
ference in the performance of the algorithm. We hope that the
appeal of this algorithm will induce hardware designers to alter
future graphics hardware to facilitate hierarchical visibility com-
putations.
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Abstract

The most expensive geometric operation in image synthesis is
visibility determination. Classically this is solved with hidden
surface removal algorithms that render only the parts of the scene
visible from a point. Global illumination calculations, however,
may require information between any two points in the scene.
This paper describes global visibility algorithms that preprocess
polygon databases in order to accelerate visibility determination
during illumination calculations. These algorithms are sensitive to
the output complexity in visibility space; that is, how many pairs
of objects are mutually visible. Furthermore, the algorithms are
incremental so that they work well with progressive refinement
and hierarchical methods of image synthesis. The algorithms
are conservative, but exact; that is, when they return visibility
predicates they can be proved true. However sometimes they do not
return either totally visible or totally invisible, but partially visible,
even though in the same situation a better algorithm might return
the exact answer. In this paper we describe the algorithms and
their implementation, and show that, in a scene with low average
visual complexity, they can dramatically accelerate conventional
radiosity programs.

CR Categories and Subject Descriptors: 1.3.5 [Computa-
tional Geometry and Object Modeling): Geometric Algorithms,
Languages, and Systems; 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism — Radiosity; J.2 [Physical
Sciences and Engineering]: Engineering. '

Additional Key Words: Hidden surface removal, visibility space,
radiosity, global illumination, algorithmic triage.

1 Introduction

In the early days of image synthesis a central geometric problem
was hidden surface removal. With the advent of z-buffering,
modemn workstations can display pictures of 3D scenes containing
millions of polygons in real-time. However, such workstations have
limited shading capabilities because they make the assumption that
all light sources illuminate every object. One major thrust of
current research in image synthesis is to remove this restriction
so that the shading correctly accounts for the illumination incident
on every object. To do this every surface element must assess
what light sources, or more generally, what surfaces reflecting light
towards it, are visible to it. This type of illumination calculation is
termed global, in contrast to local, because the entire scene must
be analyzed to determine if there are any occluders interfering
with the transfer of light between objects. Collating such visibility
information is more difficult than determining merely what is
visible from a single vantage point, as is done in hidden surface
removal. For example, the fastest algorithm currently known for
computing a complete description of the interocclusion due to a
polyhedral object of n vertices can take O(n®Ig») time [9].

This paper describes global visibility algorithms that analyze the
entire visibility space, and are applicable to a range of illumination
problems. Here, we apply them to a hierarchical radiosity algorithm.
We have implemented several practical algorithms, and show that
they allow efficient global visibility calculations for scenes of low
visual complexity. The algorithms are based on three simple ideas:
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
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Visibility preprocessing. To compute what is visible from all
points on the surfaces of the objects being shaded, we preprocess
the scene to speed future visibility tests. For the purposes of
global illumination we need only consider all pairwise interactions
between objects. Preprocessing removes totally invisible pairs
from consideration, and accelerates later queries regarding visibility
between points on partially visible pairs.

Incremental visibility maintenance. The most efficient global
illumination algorithms operate iteratively based on error criteria.
Examples are hierarchical radiosity, where surfaces are subdivided
with respect to each other according to potential light transfers
between them [11], and progressive refinement methods where
light is transferred among surfaces in order of brightness [5]. Thus,
the visibility algorithms should be lazy and sensitive to required
precision. They should also allow refinement so that more precise
determinations can be made as needed.

Conservative triage. Both the preprocessing and maintenance
methods use conservative triage to avoid the combinatorial com-
plexity of exact visibility determination. We classify visibility into
three categories: totally INVISIBLE, totally VISIBLE, and PAR-
TIAL (partially visible). The classification is conservative in that
all interactions classified as INVISIBLE or VISIBLE are correct;
however, it is acceptable for the classification to return PARTIAL
when the correct result is either VISIBLE or INVISIBLE. This
allows us to forego complex analysis or “‘punt’’ if such analysis
will take too long to determine the exact answer. Of course, for
this to work we need either another visibility algorithm to complete
the analysis, or we must expect the situation to simplify eventually
(e.g., through subdivision).

The visibility algorithms presented here generalize previous
work on preprocessing environments for interactive walkthroughs.
In [24], an algorithm was given to preprocess a 2D environment
of axial line segments, such as floorplans. This was extended to
3D axial rectangles in [22]. This paper treats the case of convex
polygons in general position.

The global visibility algorithms described here have been imple-
mented with a global illumination system that computes radiosity
values for polygonal scenes [11]. The algorithm maintains a hierar-
chy of interactions between subdivided polygons at different levels
of detail. A key feature of the algorithm is that only O(k? + n)
interactions are ever examined (with & the number of input poly-
gons, and n the number of elements created by subdividing those
polygons). The hierarchical radiosity algorithm, as originally de-
signed, used pairwise visibility information between polygons. In
the original implementation, however, this visibility information
was inexact. Visibility status was determined by shooting a constant
number of rays between two polygons. If all of the rays reached
from one polygon to the other, the polygons were considered totally
visible, whereas if none of the rays reached, the polygons were
considered totally invisible. The conservative algorithms described
in this paper, in contrast, are provably more precise.

2 Overview

We present novel algorithms that subdivide space, construct a
conservative visibility graph over the polygons in a geometric
model, then maintain the correctness of the graph under recursive
subdivision of the polygons. In the context of the hierarchical
radiosity computation, this conservative visibility graph guarantees
that throughout the computation, all polygons that potentially
interact (e.g., exchange energy) will be known. The construction
and maintenance of the graph occurs in four stages.
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patch and the children of its counterpart are highly coherent. The
tube data structure exploits this coherence to perform efficient and
accurate visibility reclassification after subdivision.

Each child interaction’s blocker list is necessarily a subset of
the parent’s blocker list; we wish to efficiently, and incrementally,
determine the child tube’s blockers. We say that a blocker B
impinges on I(S, R) if it occludes S from R, and that B is
disjoint from I(S, R) if B can not cause occlusion. Whenever a
blocker list is discovered to be empty (i.e., to contain no impinging
blockers), complete visibility between the interacting patches will
be established, and no further visibility computations need be
done for any children of this interaction. Conversely, whenever the
blockerlist is discovered to be completely occluding, there can be no
energy transport between S and R, and the interaction is discarded
(alternatively, the culprit blocker(s) can be retained as ‘‘proof’’
that the patches cannot interact). Finally, when neither complete
visibility nor complete occlusion can be quickly determined, the
status of the child interaction remains partially visible.

6.1 Linespace

The tube structure efficiently encodes the set of all lines between
S and R, using a five-dimensional line representation known as
Plucker coordinates [20], or simply linespace. Lines in three
dimensions correspond to hyperplanes and points in linespace. Any
two 3D rays a and b can be oriented by considering their linespace
counterparts A, a 5D hyperplane, and I, a SD point (details of
the mapping can be found in [21]).

A ;
ﬁ Hb. /7 / \/)
Aa
Iy Aa Aa
50 R
/ /
*Ta/ b *Tch
/ /
a a a
side (3, b) < 0 side (a, b) =0 side (3, b) > 0

The signed distance of II; from A, determines the sense in
which the lines ‘‘go around’’ each other in 3D; if II, lies on Aq
the lines @ and b are coplanar. This ‘‘sidedness’’ property can be
used to represent the set of lines through a collection of convex
polygons. In practice, there is one caveat to using the linespace
representation [23]. The only portion of linespace corresponding
to 3D lines with real coefficients are those linespace points lying
on a 4D manifold known as the Plucker quadric [20]; all other
linespace points correspond to 3D lines with complex coefficients.
Fortunately, the algorithms used in this paper need never consider
the Plucker quadric, since they manipulate only lines known a
priori to have real coefficients.

Consider two convex polygons S and R, comprised of sets of
oriented edges Sk and Rk, respectively. For there to exist some line
L that stabs the interiors of S and R, II I, Must lie in the appropriate

signed halfspaces kx of the hyperplanes Ask and ARk .

. Thus, the set of all lines through S and R corresponds to the
Interior of a five-dimensional convex polytope Nyhy, [21]. Rather
than attempt to compute this polytope directly, we can manipulate
the vertices of its intersection with the Plucker quadric, which are
Comparatively easy to generate. Each such vertex corresponds to

a collection of four support lines from S and R, since four 5D
hyperplanes must intersect with the Plucker quadric to generate
each such vertex. These vertices must correspond to stabbing lines
tight on four edges of S and R in 3D; i.e., lines through a vertex of
S and a vertex of R (note that these lines necessarily have real 3D
coefficients). In our implementation, there are at most sixteen such
lines, since all patches are quadrilaterals.

There are several advantages to performing blocker analysis in
linespace. The data structure for a single blocker is constant size,
and for a single patch interaction is linear in the number of blockers.
The linespace analysis obviates complicated 3D topological and
numerical computations. The only operations required by the
linespace representation are mapping from 3D lines to 5D points
and hyperplanes, and computing inner products between points and
hyperplanes.

6.2 Incremental Blocker Maintenance

The tube data structure, and incremental visibility maintenance,
can now be fully described. Suppose patch R is subdivided against
patch S into child elements C(R) C R. The tube for S and each
Cr € C(R) stores S, Cr, and a constant number of linespace
points II(.S, R) whose convex hull conv(II(S, R)) includes the
set of all lines through S and Cr. Finally, each blocker in B(S, R)
is reclassified with respect to the child tube to produce B(S, Cr),
and the visibility status V' (S, Cr) of each interaction I(S, Cr)
is determined. As before, many instances of total invisibility,
partial visibility, and total visibility are discovered quickly. Other
situations are considered too complex to analyze completely, and
we ‘‘punt’’ and classify the interaction as partially visible (perhaps
causing further subdivision [11]).

PARTIAL VISIBLE PUNT

INVISIBLE

Figure 10: Performing 3D triage in SD linespace.

Consider an interaction (S, R) and a single potential blocker B
(Figure 10). We wish to determine, without extensive analysis,
whether all, none, or some of the lines through S and R stab the
blocker B. Respectively, this is equivalent to determining whether
conv(II(S, R)) lies entirely inside, is disjoint from, or has some
intersection with NgA(B), the set of lines through the blocker
(Figure 11). We exploit the fact that, in linespace, both sets of lines
are convex.

The points in II(S, R) are first classified with respect to the
blocker hyperplanes Ax(B). If all of the points lie inside the
Ax(B), then conv(II(S, R)) C ngAx(B), by convexity. B is
therefore completely occluding and V(S, R) is INVISIBLE. If
some of the points lie inside the Ax(B), and some lie outside, some
lines through S and R stab B, and V(S, R) is PARTIAL. If all
of the points lie outside some single Ax(B), V (S, R) is VISIBLE.
Finally, the complex case occurs when all of the points lie outside
all of the Ax(B). This does not guarantee total visibility, since
conv(II(S, R)) may still have some intersection with Ny A (B)
(this case is labeled PUNT in Figures 10 and 11); accordingly,
V (S, R) is classified as PARTIAL.

The logic for multiple blockers is straightforward; any single
blocker can cause V (S, R) to be INVISIBLE, but all blockers must
be disjoint in order for V (S, R) to be VISIBLE. Otherwise, any
impinging blocker causes V' (S, R) to become PARTIAL.

6.3 Evolution

Figure 12 depicts an example of blocker list evolution and incre-
mental reclassification of child interactions. White lines connecting
quadrilateral centroids represent VISIBLE interactions; green lines
represent PARTIAL interactions, and red lines represent the tube
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Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual Environments

Thomas A. Funkhouser and Carlo H. Séquin
University of California at Berkeley!

Abstract

We describe an adaptive display algorithm for interactive frame
rates during visualization of very complex virtual environments.
The algorithm relies upon a hierarchical model representation in
which objects are described at multiple levels of detail and can
be drawn with various rendering algorithms. The idea behind the
algorithm is to adjust image quality adaptively to maintain a uni-
form, user-specified target frame rate. We perform a constrained
optimization to choose a level of detail and rendering algorithm for
each potentially visible object in order to generate the “best” image
possible within the target frame time. Tests show that the algorithm
generates more uniform frame rates than other previously described
detail elision algorithms with little noticeable difference in image
quality during visualization of complex models.

CR Categories and Subject Descriptors:
[Computer Graphics]: 1.3.3 Picture/Image Generation — viewing
algorithms; 1.3.5 Computational Geometry and Object Modeling —
geometric algorithms, object hierarchies; 1.3.7 Three-Dimensional
Graphics and Realism — virtual reality.

1 Introduction

Interactive computer graphics systems for visualization of realistic-
looking, three-dimensional models are useful for evaluation, design
and training in virtual environments, such as those found in archi-
tectural and mechanical CAD, flight simulation, and virtual reality.
These visualization systems display images of a three-dimensional
model on the screen of a computer workstation as seen from a sim-
ulated observer’s viewpoint under interactive control by a user. If
images are rendered smoothly and quickly enough, an illusion of
real-time exploration of a virtual environment can be achieved as
the simulated observer moves through the model.

zCompuler Science Division, Berkeley, CA 94720
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It is important for a visualization system to maintain an interactive
frame rate (e.g., a constant ten frames per second). If frame rates
are too slow, or too jerky, the interactive feel of the system is
greatly diminished [3]. However, realistic-looking models may
contain millions of polygons — far more than currently available
workstations can render at interactive frame rates. Furthermore,
the complexity of the portion of the model visible to the observer
can be highly variable. Tens of thousands of polygons might be
simultaneously visible from some observer viewpoints, whereas
just a few can be seen from others. Programs that simply render all
potentially visible polygons with some predetermined quality may
generate frames at highly variable rates, with no guaranteed upper
bound on any single frame time.

Using the UC Berkeley Building Walkthrough System [5] and a
model of Soda Hall, the future Computer Science Building at UC
Berkeley, as a test case, we have developed an adaptive algorithm
for interactive visualization that guarantees a user-specified target
frame rate. The idea behind the algorithm is to trade image quality
for interactivity in situations where the environment is too complex
to be rendered in full detail at the target frame rate. We perform a
constrained optimization that selects alevel of detail and arendering
algorithm with which to render each potentially visible object to
produce the “best” image possible within a user-specified target
frame time. In contrast to previous culling techniques, this algorithm
guarantees auniform, bounded frame rate, even during visualization
of very large, complex models.

2 Previous Work

2.1 Visibility Determination

In previous work, visibility algorithms have been described that
compute the portion of a model potentially visible from a given
observer viewpoint [1, 11]. These algorithms cull away large por-
tions of a model that are occluded from the observer’s viewpoint,
and thereby improve frame rates significantly. However, in very
detailed models, often more polygons are visible from certain ob-
server viewpoints than can be rendered in an interactive frame time.
Certainly, there is no upper bound on the complexity of the scene
visible from an observer’s viewpoint. For instance, consider walk-
ing through a very detailed model of a fully stocked department
store, or viewing an assembly of a complete airplane engine. In
our model of Soda Hall, there are some viewpoints from which an
observer can see more than eighty thousand polygons. Clearly, vis-
ibility processing alone is not sufficient to guarantee an interactive
frame rate.
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a fixed number of form-factor computations, compute those that
contribute most to the solution). If levels of detail representing “no
polygons at all” are allowed, this approach handles cases where the
target frame time is not long enough to render all potentially visible
objects even at the lowest level of detail. In such cases, only the most
“valuable” objects are rendered so that the frame time constraint is
not violated. Using this approach, it is possible to generate images
in a short, fixed amount of time, rather than waiting much longer
for images of the highest quality attainable.

For this approach to be successful, we need to find Cost and
Benefit heuristics that can be computed quickly and accurately. Un-
fortunately, Cost and Benefit heuristics for a specific object tuple
cannot be predicted with perfect accuracy, and may depend on other
object tuples rendered in the same image. A perfect Cost heuristic
may depend on the model and features of the graphics workstation,
the state of the graphics system, the state of the operating system,
and the state of other programs running on the machine. A per-
fect Benefit heuristic would consider occlusion and color of other
object tuples, human perception, and human understanding. We
cannot hope to quantify all of these complex factors in heuristics
that can be computed efficiently. However, using several simplify-
ing assumptions, we have developed approximate Cost and Benefit
heuristics that are both efficient to compute and accurate enough to
be useful.

4 Cost Heuristic

The Cost(O, L, R) heuristic is an estimate of the time required
to render object O with level of detail L and rendering algorithm
R. Of course, the actual rendering time for a set of polygons
depends on a number of complex factors, including the type and
features of the graphics workstation. However, using a model of a
generalized rendering system and several simplifying assumptions,
it is possible to develop an efficient, approximate Cost heuristic
that can be applied to a wide variety of workstations. Our model,
which is derived from the Graphics Library Programming Tools and
Techniques document from Silicon Graphics, Inc. [10], represents
the rendering system as a pipeline with the two functional stages
shown in Figure 2:

o Per Primitive: coordinate transformations, lighting calcula-
tions, clipping, etc.

o Per Pixel: rasterization, z-buffering, alpha blending, texture
mapping, etc.

e | 2| A | ey (U

Host Display

Figure 2: Two-stage model of the rendering pipeline.

Since separate stages of the pipeline run in parallel, and must
wait only if a subsequent stage is “backed up,” the throughput of
the pipeline is determined by the speed of the slowest stage - i.e.,
the bottleneck. If we assume that the host is able to send primitives
to the graphics subsystem faster than they can be rendered, and no
other operations are executing that affect the speed of any stage of
the graphics subsystem, we can model the time required to render
an object tuple as the maximum of the times taken by any of the
Stages.
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We model the time taken by the Per Primitive stage as a linear
combination of the number of polygons and vertices in an object
tuple, with coefficients that depend on the rendering algorithm and
machine used. Likewise, we assume that the time taken by the Per
Pixel stage is proportional to the number of pixels an object covers.
Our model for the time required to render an object tuple is:

Cost(0, L, R) = maz { C, Poly(0O, L) + Cy Vert(0, L) }

Cs Piz(0)

where O is the object, L is the level of detail, R is the rendering
algorithm, and C);, C; and C; are constant coefficients specificto a
rendering algorithm and machine.

For a particular rendering algorithm and machine, useful values
for these coefficients can be determined experimentally by rendering
sample objects with a wide variety of sizes and LODs, and graphing
measured rendering times versus the number of polygons, vertices
and pixels drawn. Figure 3a shows measured times for rendering
four different LODs of the chair shown in Figure 1 rendered with
flat-shading. The slope of the best fitting line through the data
points represents the time required per polygon during this test.
Using this technique, we have derived cost model coefficients for
our Silicon Graphics VGX 320 that are accurate within 10% at
the 95% confidence level. A comparison of actual and predicted
rendering times for a sample set of frames during an interactive
building walkthrough is shown in Figure 3b.

0.01 0.2
Estimate —
Actual ——
E o
: 2
- -
) )
0.00 0
0 Polygons 300 0 Frames 250

Figure 3: Cost model coefficients can be determined empirically.
The plot in (a) shows actual flat-shaded rendering times for four
LODs of a chair, and (b) shows a comparison of actual and es-
timated rendering times of frames during an interactive building
walkthrough.

5 Benefit Heuristic

The Benefit(O, L, R) heuristic is an estimate of the “contribution
to model perception” of rendering object O with level of detail L
and rendering algorithm R. Ideally, it predicts the amount and ac-
curacy of information conveyed to a user due to rendering an object
tuple. Of course, it is extremely difficult to accurately model hu-
man perception and understanding, so we have developed a simple,
easy-to-compute heuristic based on intuitive principles.

Our Benefit heuristic depends primarily on the size of an object
tuple in the final image. Intuitively, objects that appear larger to the
observer “contribute” more to the image (see Figure 4). Therefore,
the base value for our Benefit heuristic is simply an estimate of the
number of pixels covered by the object.

Our Benefit heuristic also depends on the “accuracy” of an object
tuple rendering. Intuitively, using a more detailed representation or
a more realistic rendering algorithm for an object generates a higher
quality image, and therefore conveys more accurate information to
the user. Conceptually, we evaluate the “accuracy” of an object
tuple rendering by comparison to an ideal image generated with an
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Figure 4: Objects that appear larger “contribute” more to the image.

ideal camera. For instance, consider generating a gray-level image
of a scene containing only a cylinder with a diffusely reflecting
Lambert surface illuminated by a single directional light source in
orthonormal projection. Figure 5a shows an intensity plot of a
sample scan-line of an ideal image generated for the cylinder.
First, consider approximating this ideal image with an image gen-
erated using a flat-shaded, polygonal representation for the cylinder.
Since a single color is assigned to all pixels covered by the same
polygon, a plot of pixel intensities across a scan-line of such an
image is a stair-function. If an 8-sided prism is used to represent
the cylinder, at most 4 distinct colors can appear in the image (one
for each front-facing polygon), so the resulting image does not ap-
proximate the ideal image very well at all, as shown in Figure 5b.
By comparison, if a 16-sided prism is used to represent the cylinder,
as many as 8 distinct colors can appear in the image, generating a
closer approximation to the ideal image, as shown in Figure 5c.
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Pixels Pixels
a) Ideal image. b) Flat-shaded 8-sided prism.

Prism -----
Ideal —

Intensity
Intensity

Pixels Pixels

c) Flat-shaded 16-sided prism. d) Gouraud-shaded 16-sided prism.

Figure 5: Plots of pixel intensity across a sample scan-line of images
generated using different representations and rendering algorithms
for a simple cylinder.

Next, consider using Gouraud shading for a polygonal represen-
tation. In Gouraud shading, intensities are interpolated between
vertices of polygons, so a plot of pixel intensities is a continuous,
piecewise-linear function. Figure 5d shows a plotof pixel intensities
across a scan line for a Gouraud shaded 16-sided prism. Compared
to the plot for the flat-shaded image (Figure 5b), the Gouraud shaded
image approximates the ideal image much more closely.

More complex representations (e.g., parametric or implicit sur-
faces) and rendering techniques (e.g., Phong shading, antialiasing
or 1ay tracing) could be used to approximate the ideal image even
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more closely. Based on this intuition, we assume that the “error,”
i.e., the difference from the ideal image, decreases with the number
of samples (e.g., rays/vertices/polygons) used to render an object tu-
ple, and is dependent on the type of interpolation method used (e.g.,
Gouraud/flat). We capture these effects in the Benefit heuristic by
multiplying by an “accuracy” factor:

BaseError

ACC‘uTaC:‘/(O, L, R) =1-FError=1- W

where Samples(L, R) is #pixels for ray tracing, or #vertices for
Gouraud shading, or #polygons for flat-shading (but never more
than #pixels); and m is an exponent dependent on the interpolation
method used (flat = 1, Gouraud = 2). The BaseError is arbitrarily
set to 0.5 to give a strong error for a curved surface represented
by a single flat polygon, but still account for a significantly higher
benefit than not rendering the surface at all.

In addition to the size and accuracy of an object tuple rendering,
our Benefit heuristic depends on on several other, more qualitative,
factors, some of which apply to a static image, while others apply
to sequences of images:

¢ Semantics: Some types of object may have inherent “im-
portance.” For instance, walls might be more important than
pencils to the user of a building walkthrough; and enemy robots
might be mostimportant to the user of a video game. We adjust
the Benefit of each object tuple by an amount proportional to
the inherent importance of its object type.

¢ Focus: Objects that appear in the portion of the screen at which
the user is looking might contribute more to the image than ones
in the periphery of the user’s view. Since we currently do not
track the user’s eye position, we simply assume that objects
appearing near the middle of the screen are more important
than ones near the side. We reduce the Benefi of each object
tuple by an amount proportional to its distance from the middle
of the screen.

¢ Motion Blur: Since objects that are moving quickly across the
screen appear blurred or can be seen for only a short amount of
time, the user may not be able to see them clearly. So we reduce
the Benefit of each object tuple by an amount proportional to
the ratio of the object’s apparent speed to the size of an average

polygon.

o Hysteresis: Rendering an object with different levels of detail
in successive frames may be bothersome to the user and may
reduce the quality of an image sequence. Therefore, we reduce
the Benefit of each object tuple by an amount proportional to
the difference in level of detail or rendering algorithm from the
ones used for the same object in the previous frame.

Each of these qualitative factors is represented by a multiplier
between 0.0 and 1.0 reflecting a possible reduction in object tuple
benefit. The overall Benefit heuristic is a product of all the afore-
mentioned factors:

Benefit(O, L, R) = Size(O) * Accuracy(O, L, R)*
Importance(O) * Focus(O) * Motion(O) x Hysteresis(O, L, R)

This Benefit heuristic is a simple experimental estimate of an ob-
ject tuple’s “contribution to model perception.” Greater Benefit is
assigned to object tuples that are larger (i.e., cover more pixels in
the image), more realistic-looking (i.e., rendered with higher lev-

els of detail, or better rendering algorithms), more important (i..,




semantically, or closer to the middle of the screen), and more apt
to blend with other images in a sequence (i.e., hysteresis). In our
ijmplementation, the user can manipulate the relative weighting of
these factors interactively using sliders on a control panel, and ob-
serve their effects in a real-time walkthrough. Therefore, although
our current Benefit heuristic is rather ad hoc, it is useful for exper-
jmentation until we are able to encode more accurate models for
human visual perception and understanding.

6 Optimization Algorithm

We use the Cost and Benefit heuristics described in the previous
sections to choose a set of object tuples to render each frame by
solving equation 1 in Section 3.

Unfortunately, this constrained optimization problem is NP-
complete. It is the Continuous Multiple Choice Knapsack Problem
[6, 7], a version of the well-known Knapsack Problem in which el-
ements are partitioned into candidate sets, and at most one element
from each candidate set may be placed in the knapsack at once. In
this case, the set S of object tuples rendered is the knapsack, the
object tuples are the elements to be placed into the knapsack, the
target frame time is the size of the knapsack, the sets of object tuples
representing the same object are the candidate sets, and the Cos? and
Benefit functions specify the “size” and “profit” of each element,
respectively. The problem is to select the object tuples that have
maximum cumulative benefit, but whose cumulative cost fits in the
target frame time, subject to the constraint that only one object tuple
representing each object may be selected.

We have implemented a simple, greedy approximation algorithm
for this problem that selects object tuples with the highest Value
(Benefit(0O, L, R)/ Cost(O, L, R)). Logically, we add object tu-
ples to S in descending order of Value until the maximum cost is
competely claimed. However, if an object tuple is added to S which
represents the same object as another object tuple already in S, only
the object tuple with the maximum benefit of the two is retained.
The merit of this approach can be explained intuitively by noting
that each subsequent portion of the frame time is used to render the
object tuple with the best available “bang for the buck.” It is easy
to show that a simple implementation of this greedy approach runs
in O(nlog n) time for n potentially visible objects, and produces a
solution that is at least half as good as the optimal solution [6].

Rather than computing and sorting the Benefit, Cost, and Value for
all possible object tuples during every frame, as would be required
by a naive implementation, we have implemented an incremental
optimization algorithm that takes advantage of the fact that there is
typically a large amount of coherence between successive frames.
The algorithm works as follows: At the start of the algorithm, an
object tuple is added to S for each potentially visible object. Initially,
each object is assigned the LOD and rendering algorithm chosen in
the previous frame, or the lowest LOD and rendering algorithm if
the object is newly visible. In each iteration of the optimization, the
algorithm first increments the accuracy attribute (LOD or rendering
algorithm) of the object that has the highest subsequent Value. It
then decrements the accuracy attributes of the object tuples with the
lowest current Value until the cumulative cost of all object tuples
in S is less than the target frame time. The algorithm terminates
when the same accuracy attribute of the same object tuple is both
incremented and decremented in the same iteration.

This incremental implementation finds an approximate solution
that is the same as found by the naive implementation if Values of
object tuples decrease monotonically as tuples are rendered with
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greater accuracy (i.e., there are diminishing returns with more com-
plex renderings). In any case, the worst-case running time for the
algorithm is O(nlog n). However, since the initial guess for the
LOD and rendering algorithm for each object is generated from the
previous frame, and there is often a large amount of coherence from
frame to frame, the algorithm completes in just a few iterations
on average. Moreover, computations are done in parallel with the
display of the previous frame on a separate processor in a pipelined
architecture; they do not increase the effective frame rate as long
as the time required for computation is not greater than the time
required for display.

7 Test Methods

To test whether this new cost/benefit optimization algorithm pro-
duces more uniform frame rates than previous LOD selection algo-
rithms, we ran a set of tests with our building walkthrough applica-
tion using four different LOD selection algorithms:

a) No Detail Elision: Each object is rendered at the highest LOD.

b) Static: Each object is rendered at the highest LOD for which
an average polygon covers at least 1024 pixels on the screen.

c) Feedback: Similar to Static test, except the size threshold for
LOD selection is updated in each frame by a feedback loop,
based on the difference between the time required to render
the previous frame and the target frame time of one-tenth of a
second.

d) Optimization: Each object is rendered at the LOD chosen by
the cost/benefit optimization algorithm described in Sections 3
and 6 in order to meet the target frame time of one-tenth of a
second. For comparison sake, the Benefit heuristic is limited
to consideration of object size in this test, i.e., all other Benefut
factors are set to 1.0.

All tests were performed on a Silicon Graphics VGX 320 work-
station with two 33MHz MIPS R3000 processors and 64MB of
memory. We used an eye-to-object visibility algorithm described in
[12] to determine a set of potentially visible objects to be rendered in
each frame. The application was configured as a two-stage pipeline
with one processor for visibility and LOD selection computations
and another separate processor for rendering. Timing statistics were
gathered using a 16 timer.

In each test, we used the sample observer path shown in Figure
6 through a model of an auditorium on the third floor of Soda Hall.
The model was chosen because it is complex enough to differenti-
ate the characteristics of various LOD selection algorithms (87,565
polygons), yet small enough to reside entirely in main memory so
as to eliminate the effects of memory managementin our tests. The
test path was chosen because it represents typical behavior of real
users of a building walkthrough system, and highlights the differ-
ences between various LOD selection algorithms. For instance, at
the observer viewpoint marked ‘A’, many complex objects are si-
multaneously visible, some of which are close and appear large to
the observer; at the viewpoint marked ‘B’, there are very few ob-
jects visible to the observer, most of which appear small; and at the
viewpoint marked 'C’, numerous complex objects become visible
suddenly as the observer spins around quickly. We refer to these
marked observer viewpoints in the analysis, as they are the view-
points at which the differences between the various LOD selection
algorithms are most pronounced.
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Discrete Groups and Visualization of Three-Dimensional Manifolds

Charlie Gunn
The Geometry Center, The University of Minnesota *

Abstract

We describe a software implementation for interactive visu-
alization of a wide class of discrete groups. In addition to
familiar Euclidean space, these groups act on the curved ge-
_ometries of hyperbolic and spherical space. We construct
easily computable models of our geometric spaces based on
projective geometry; and establish algorithms for visualiza-
tion of three-dimensional manifolds based upon the close
connection between discrete groups and manifolds. We de-
scribe an object-oriented implementation of these concepts,
and several novel visualization applications. As a visualiza-
tion tool, this software breaks new ground in two directions:
interactive exploration of curved spaces, and of topological
manifolds modeled on these spaces. It establishes a general-
ization of the application of projective geometry to computer
graphics, and lays the groundwork for visualization of spaces
of non-constant curvature.

CR Categories and Subject Descriptors: 1.3.3 [Pic-
ture/Image Generation] display algorithms 1.3.5 [Computa-
tional Geometry and Object Modeling Graphics]: geometric
algorithms, hierarchy and geometric transformations, 1.3.7
[Three dimensional Graphics and Realism] color, shading,
shadowing, and texture

Additional Key Words and Phrases: discrete group,
tessellation, quotient space, projective geometry, hyperbolic
geometry, spherical geometry, curvature, geodesic.

1 Discrete Groups

Symmetry, broadly speaking, implies a redundant supply of
information. A mirror image contains the same information
as the scene that it mirrors. The theory of discrete groups
has been developed over the past 100 years as a formaliza-
tion of the process of extracting a single copy of the infor-
mation present in symmetric configurations. The discrete
groups which we study here are groups of motions which act
on a geometric space, such as Euclidean space, to produce
tessellations by congruent non-overlapping cells. Familiar
examples include wallpaper patterns, and the interlocking
designs of M. C. Escher. We consider two simple examples
before introducing mathematical definitions.
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1.1 The circle and the line

When we evaluate the expression sin(27z) we are only inter-
ested in z mod 1, since sin is a periodic function: sin(2rz) =
sin(27(x + k)), where k is an integer. The set of all motions
of the real line R by integer amounts forms a group I', which
leaves invariant the function sin(2xz). We can form the quo-
tient R/T', which is the set of equivalence classes with respect
to this group. This quotient can be represented by the closed
interval [0, 1}, with the understanding that we identify the
two endpoints. But identifying the two endpoints yields a
circle. Once we know the values of sin(2xx) on the circle, we
can compute it for any other value y, simply by subtracting
or adding integers to y until the result lies in the range [0, 1).

In this example the discrete group I is the set of trans-
formations of R given by all translations £ — = + k , where
k is an integer. T is discrete since no non-trivial sequence in
T converges to the the identity element. The quotient of R
under this action is S?, the unit circle. We write R/T = S'.

1
Figure 1: The circle is the quotient of R by the integers.

I = [0,1) is a fundamental domain for this group action.
We can recover R from the fundamental domain and I': the

union
I
Ueel‘g

covers R without overlap.

‘We move into two dimensions to bring out other features
of the concepts introduced in this example.

1.2 The torus and the plane

Instead of R we now work with R®. Let I' be the group
of translations of R? generated by (z,y) — (¢ + 1,y) and
(z,y) = (x,y+1), that is, unit translations in the coordinate
directions. What is the quotient R?/T'? Instead of the unit
interval with its endpoints identified, we are led to a unit
square that has its edges identified in pairs. If we imagine
the square is made of rubber and that we can perform the
identifications by bending the square and gluing, we find
that the resulting surface is the torus T?. See Figure 2.
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Figure 2: Making a torus from a square

1.3 Algebra and geometry: the fundamental
group

A key element of this approach is the interplay of algebraic
and geometric viewpoints. To clarify this, we introduce the
fundamental group of a space, formed by taking all the closed
paths based at some point P in the space. We get a group
structure on this set: we can add paths by following one
and then the other, and subtract by going around the sec-
ond path in the reverse order. The zero-length path is the
identity element. If one path can be moved or deformed to
another path, the two paths correspond to the same group
element. It is easy to check that different P’s yield isomor-
phic groups. We say a space is stmply connected if every
closed path can be smoothly shrunk to a point, like a lasso,
without leaving the space. [Mun75] The fundamental group
of a simply connected space consists of just the identity ele-
ment. )

In the above example R? is simply connected; while T?,
the quotient, isn’t. When X is the quotient of a simply
connected space Y, we say that Y is the universal covering
space of X. The importance of simply connected spaces in
the study of discrete groups is due to a basic result of topol-
ogy that (subject to technical constraints which we will con-
sider satisfied) every space has a unique universal covering
space [Mun75]. So in considering group actions, we need
only consider actions on simply connected spaces.

The interplay of algebra and geometry reveals itself in
the fact that the fundamental group of the quotient, a purely
topological object, is isomorphic to the group of symmetries
T, which arises in a purely geometric context.

1.4 Inside versus Outside Views

In the cases we will consider, the universal covering space
X is a geometric space, that is, it comes equipped with a
metric that determines distance between points and angles
between tangent vectors. In this case we sometimes refer to
X as a model geometry. This metric allows us to compute
geodesics, or shortest paths, between points in the space
[Car76]. The quotient space inherits this metric. R? is the
universal covering space of T?: if we unroll T? onto R?, the
copies of the torus will cover the plane completely, without
overlap. We say these copies tessellate the plane. For some
purposes the rolled-up torus sitting in R? is useful, but to
gain the experience of what it is like to live inside the surface,
we are better served by examining the tessellation of the
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universal covering space produced by the group.

For example, if we want to make pictures of what an
inhabitant of T? sees, we will make them in R?: Light fol-
lows geodesics, which appear to be very complicated on the
rolled-up torus, but in R? are just ordinary straight lines. A
complicated closed path based at P which wraps around the
torus several times unrolls in the universal cover to be an
ordinary straight line connecting P and AP for some h € T.
See Figure 3. An immediate consequence of this is that an
observer on the torus based at P sees many copies of himself,
one for every closed geodesic on the surface passing through
P. See [Wee85] for a complete and elementary description
of this phenomenon. We say the rolled-up torus represents
the outsider’s view; while the unrolled view we term the in-
sider’s view, since it shows what someone living inside the
space would see. The importance of the insider’s view be-
comes more telling in three dimensional spaces, since to “roll
up” our fundamental domains requires four or more dimen-
sions. In this case the insider’s view becomes a practical
necessity.
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Figure 3: Outside and inside views of a complicated
torus path

When we try to perform the analogous construction for
the two-holed torus, instead of a square in the Euclidean
plane R?, we are led to a regular octagon in the hyperbolic
plane H?[FRC92]. We describe hyperbolic geometry in more
detail below.

1.5 Definition of discrete group

A discrete group is a subgroup I' of a continuous group G
such that there is a neighborhood U of the identity in G with
UNT =1, the identity element.

In the example of the torus above, the group I' acts on
R?. Such an action on a topological space X is called prop-
erly discontinuous if for every closed and bounded subset K
of X, the set of y € I" such that yK N K # ¢ is finite. In
the cases to be discussed here, I is discrete if and only if the
action of I is properly discontinuous.

If in addition the quotient space X/TI' is compact, we say
that I is a crystallographic, or crystal, group.

The group of the torus discussed in 1.2 above is a crys-
tallographic group, the simplest so-called wallpaper group.
There are exactly 17 wallpaper groups of the Euclidean
plane. See [Gun83] for a full discussion of this case and
the details of a computer implementation.

1.6 Dirichlet domains

Given a discrete group, there is a technique for constructing
a fundamental domain, known as a Dirichlet domain. We
define it now for future reference. Given a discrete group I'
acting on a space X and a point P € X, the orbit O(P) of P
under I'is |J g er9P. Then the Dirichlet domain with respect
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Figure 4: (235), (236) and (237) triangle groups tessellate 52, R%, and H?2.

to P is the set of points in X which are closer to P than to
any other point of O(P). We can be more precise. For each
Q@ € O(P), construct the perpendicular bisector M of the
segment PQ. Denote by Hq the half-space containing P
bounded by M. Then the Dirichlet domain Dp determined
by I'and P is

nQeO(P) Ho

In practice, for many of the groups the intersection can be
assumed to involve only finitely many Hg’'s. The resulting
polyhedron is convex. If a face F is determined by g € T,
then g~ ' F will be a congruent face F' determined by g~'.
This face pairing is used in the sequel. Note that, since Dp
depends upon P, there are potentially many different shapes
for the Dirichlet domain for a given group. [Bea83] Compu-
tational geometers may recognize that a Dirichlet domain
with respect to P is a Voronot cell with respect to the orbit
of P.

2 Non-Euclidean Geometries

In the examples above, the model geometry was Euclidean.
There are two other simply connected two-dimensional
spaces in addition to R? which can serve as our model ge-
ometries: the sphere S? and the hyperbolic plane H2. They
have geometries (to be described in more detail below) which
satisfy all the postulates of Euclidean geometry except for
the Parallel Postulate: Given a line L and a point P not
on L, there is a unique line M passing through P which is
parallel to L. The sphere has no parallel lines; while H?
has infinitely many for a given L and P. See {Cox65] for
an account of the discovery and development of these non-
Euclidean geometries.

An equivalent characterization of Euclidean, spherical,
and hyperbolic geometry is that the sum of the angles of a
triangle is, respectively, equal to, greater than, or less than,
7. Figure 4 shows tessellations of these three spaces by tri-
angles with angles (x/2,7/3,x/n), where n = (5,6, 7) yields
spherical, Euclidean, and hyperbolic space.

We now turn to demonstrating models for these three ge-
ometries which share a common root in projective geometry.
This will lead directly to techniques for visualizing discrete
groups which act on these spaces.

2.1 Projective geometry

Projective geometry is the geometry of lines without regard
to distance or measure. It was discovered at roughly the

same time as the the non-Euclidean geometries discussed
above; we show in the sequel how it can be considered to be
the fundamental geometry out of which the other geometries
arise.

The projective plane P? is gotten from the ordinary
plane by adjoining a line at infinity. Projective space P" can
be constructed in every dimension n by adjoining an n — 1
dimensional hyperplane at infinity. We assume the reader is
familiar with homogeneous coordinates for projective space
[Cox65]. The group of self-mappings of projective space P"
can then be represented via homogeneous coordinates as el-
ements of the matrix group PGL(R,n + 1), the projective
general linear group. This group consists of all invertible
matrices of dimension (n + 1) x (n + 1), where two matrices
are equivalent if one is a scalar multiple of the other [Cox87].
Much of the success of the approach described in this paper
is due to the circumstance that many computer graphics
rendering transformation pipelines support PGL(R,4).

2.2 From projective to metric geometry

Projective geometry does not include a notion of distance
or angle measure. However, every projective transformation
preserves a quantity known as the cross ratio . The cross
ratio is a function of four collinear points:

_(A-C)B-D)
MAB,CD) = F=00A=D)

Here the points are represented by a homogeneous coordi-
nate system on their common line; for convienience we can
assume this is ordinary Euclidean measure on the line. This
invariant has been used by Cayley to construct metric ge-
ometries on the foundation of projective geometry [Cay59).
First choose a homogeneous conic @ which is to be in-
variant. The conic is known as the Absolute for the associ-
ated geometry. The projective transformations preserving Q
form a subgroup H of the full projective group. Two given
points Py and P, determine a line, which intersects the conic
Q in a pair of points Ty and T, whose coordinates may be
complex numbers. Then define a distance function

d(Po,Pl) = KlogA(ToTl,PoPl) (1)

where the constant K is determined according to the nature
of @ in order to make the distance function real. Since the
cross ratio is a multiplicative function, use of the log function
yields an additive function. Measurement of angles between
lines Lo and L, proceeds in like manner, by determining
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the two tangent lines to @ which lie in the pencil of lines
determined by L¢ and L;.

This yields models for spherical, hyperbolic, and Eu-
clidean geometry which share the same straight lines; what
is different is how distance along them and between them is
measured. The subgroup H becomes the isometry group for
the metric geometry.

We will for simplicity’s sake work in two dimensions,
that is, with homogeneous coordinates (z,y,w), and con-
sider only distance measurement, not angle measurement.
All our results generalize directly to arbitrary higher dimen-
sion. Since the cases of spherical and hyperbolic geometry
are more straightforward, we begin with them.

2.2.1 Spherical geometry

For the spherical case, we choose @) to be the totally imag-
inary conic z2 + y* 4+ w? = 0. The proper choice for K is
/2. We can derive from Q an inner product between pairs
of points: if Py = (zo0,¥%,ws) and Py = (z,41,w1) then
Py.P, = z9z1 + yotn + wow:. Then (1) reduces to:

Py.P,
\/(Po.Po)(Pl.Pl))

This is the familiar measurement between points on the unit
sphere. Projective transformations which preserve Q consti-
tute the special orthogonal group SO(3), the group of rota-
tions of three-dimensional Euclidean space. Although it is
tempting to consider the familiar picture of S? sitting iso-
metrically in R?, it is more appropriate to think of the model
presented purely in terms of P2. In this model, to each point
of P? we assign two antipodal points of S2.

d(Po, P1) = arccos(

2.2.2 Hyperbolic geometry

For the hyperbolic case, we choose @ to be the totally real
conic #* + y* — w? = 0, a cone aligned with the w-axis.
The correct choice for K is 1. The derived inner product
of two points Pp = (zy, o, wos and P) = (21,41, w1) is then
Py. Py = zox1 +yoy1 —wowi, sometimes called the Minkowski
inner product. Our model for hyperbolic geometry will con-
sist of the interior of this cone, where P.P < 0. Then (1)
reduces to:

Po.P1

‘/(Po.Po)(Pl.Pl))

where Py and P lie in the interior of the cone. The isometry
group is SO(2,1), the so-called Minkowski group.

Consider the hyperboloid of two sheets H, defined by
the condition P.P = —1. Just as the unit sphere is a model
for spherical geometry, the upper sheet of H is a model for
hyperbolic geometry. The most convenient model for H? is
hidden within H. Consider the plane w = 1. It intersects
Q@ in a circle that bounds a disk D. We can project our
hyperboloid H onto D from the origin. This projection re-
spects the distance function defined above (it is, after all, a
projective invariant). Then D is a model of hyperbolic ge-
ometry, the so-called Klein or projective model. It is shown
in the right-most figure in Figure 4. In three dimensions,
this yields a model of H? as the interior of the unit ball in
R®. There are several other commonly used models of hy-
perbolic geometry, most notably the Poincaré or conformal
model [Bea83]. Our choice of the projective model here was
determined by the fact that it yields the correct results for
visualizing the insider’s view.

d( Py, P,) = arccosh(
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2.2.3 Euclidean geometry

Euclidean, or parabolic, geometry arises when apply a lim-
iting process to the conic e(z® + y*)+w? = 0. As ¢ = 0, the
expression for distance reduces to

d(Po, P) = /(20 — 21)* + (%0 — 11)?

where Py and P, have been dehomogenized. The isometry
group of this geometry E(2) is the semi-direct product of
S0(2), the circle, and R(2), the two-dimensional Euclidean
translation group.

2.3 Comments

This development in terms of projective geometry is given
fully in [Wo0022] and is due to Cayley and Klein. For a treat-
ment derived from the modern differential geometric view-
point see [Car76]; for an implementation description follow-
ing this viewpoint see [Gun92}.

To justify the use of the names spherical and hyperbolic
it is worthwhile to verify that the geometries induced by the
indicated metrics on the indicated subspaces in fact yield
geometries which behave correctly with respect to parallel
lines and sums of angles of triangles.

For a detailed discussion of how to construct isometries
of hyperbolic 3-space in the projective model discussed here
see [PG92).

The above results, stated for the two-dimensional case,
can be extended to arbitrary dimension.

3 Manifolds and Discrete Groups

An n-dimensional manifold, or n-manifold, is a topological
space X such that X is locally homeomorphic to R", that
is, every point of X has a neighborhood that can be mapped
1-1 and continuously onto a small ball in R". If in addition
we can realize X as the quotient of a geometric space M by
a discrete group, we say that X has a geometric structure
modeled on M. A related concept to that of manifold is
orbifold. An orbifold is like a manifold, but it may have
singular points where it is locally homeomorphic not to R*
but rather to the quotient of R" by a finite group. Orbifolds
arise, generally speaking, when the elements of the discrete
group have fixed points, such as rotations or reflections.

Initial work on the connection of discrete groups and
theory of manifolds was done by Henri Poincaré in the
1880’s. To this day much research in this field is driven by
the Poincaré Conjecture, which asserts that a closed, con-
nected, simply connected 3-dimensional manifold is home-
omorphic to the 3-dimensional sphere $*. This conjecture
is closely related to the classification problem: making a
list of all 3-manifolds. For example, in dimension 2, there
is a uniformization theorem which says that any closed 2-
dimensional manifold has a geometric structure modeled on
one of S?, R?, or H®. Recent work by Thurston and others
has shown that many (possibly all) 3-manifolds have essen-
tially unique geometric structures. That is, there are good
reasons to believe that to every 3-manifold there corresponds
an essentially unique discrete group [Thu82].

The geometric structures for 3-manifolds come from
eight model geometries: R®, S*, and H?® plus five additional
simply connected spaces. The additional five are not as nice
as the first three, since they are not isotropic: not all direc-
tions in space are the same. In any case, the most prevalent
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geometric structure is hyperbolic. For a description of these
eight geometries, see [Thu82], [Thuar]. The current soft-
ware implementation does not support these five additional
geometries,

In the discussion that follows, we will concentrate on the
insider’s, rather than the outsider’s, view of three dimen-
sional orbifolds. That is, we will look at the tessellations of
the simply connected space (Euclidean, hyperbolic, or spher-
ical) induced by discrete groups.

4 Software Implementation

4.1 OOGL

In order to visualize the spaces under consideration, we
have developed an implementation within an object-oriented
graphics library, OOGL. The generic OOGL class is Geom.
Subclasses include include geometric primitives such as
PolyList, Vect, Bezier, and Mesh; and organizational ob-

jects such as List and Inst (for instancing geometry). .

Methods with which Geoms come equipped include: Bound,
Create, Copy, Delete, Save, Load, Pick, and Draw .

An interactive viewer, Geomview [MLP*], has been con-
structed based upon OOGL. It supports viewing in the
three geometries discussed above: Euclidean, hyperbolic,
and spherical. This is possible since as noted above isome-
tries in the three geometries can be expressed as elements of
PGL(R,4). The underlying low-level graphics libraries (in
the case of OOGL, GL or Renderman ' ) support the use of
elements of PGL(R,4) for modeling and viewing transfor-
mations. This is a result of the fact that PGL(R,4) is the
smallest group which contains both the Euclidean isome-
tries and the perspective transformation. The visualization
task is also made easier by the fact that OOGL supports
4-dimensional vertices within all primitives. This provides a
base for creating geometric models in hyperbolic and spher-
ical space using homogeneous coordinates.

4.2 Shading

We have established how it is possible to implement non-
Euclidean isometries using standard projective transforma-
tions. We have not addressed the question of correct lighting
and shading of surfaces in these spaces. Indeed, the stan-
dard shading algorithms (in contrast to the standard trans-
formations) are implicitly Euclidean. In order to model the
behavior of light correctly in these non-Euclidean spaces,
it is necessary to provide customized shaders which replace
the default ones. This has been successfully achieved within
the Renderman shading language [Ups89],[Gun92]. Figure 5
shows a view inside hyperbolic space from the movie “Not
Knot”. Interactive software shaders for OOGL for hyper-
bolic and spherical space have also been written.

These custom shaders use the expressions for distance
and angle described in 2.2 to replace the Euclidean ones.
Additionally, the decay of light intensity as a function of
distance depends on the formula for the surface area of a
sphere in each space. That is, the amount of light falling
on an area element at distance d from a light source will be
inversely proportional to the total area of the sphere with
radius d. For example, in hyperbolic space light decays ex-
ponentially: the area of a sphere of radius r is given by

LGL is a trademark of Silicon Graphics, Inc.; and Renderman,
of Pixar.

ksinh(r) and sinh(r) = exp(r) for large r. The shaders used
to create figures 7 and 9 also involve a term to model fog.

5 The DiscreteGroup class

The DiscreteGroup class is a subclass of Geom. The minimal
dataincludes a set of generating isometries represented by el-
ements of PGL(R,4) and some geometric data, represented
by other OOGL objects. The DiscreteGroup class supports
the standard methods listed above, and other methods of its
own.

Because of the close connection to manifolds outlined in
Section 3, it can also be thought of as a Manifold class.
Many design decisions were made to support visualization
of the insider’s view of a manifold. From this point of view,
every element of the scene description belongs to the man-
ifold and hence should be tessellated by the group in the
process of creating the insider’s view. We have departed
from this philosophy in one important respect: we do not
tessellate the lights contained in the scene description. To
do so would have sacrificed interactivity for a questionable
increase in authenticity.

Points of interest among DiscreteGroup methods in-

clude:

5.1 File format

There is an ascii file format for loading and saving discrete
groups. This format supports the three geometries described
above, and includes lists of generators and group elements
and also geometric objects for display within the tessellation.

5.2 DiscreteGroupDraw

Each DiscreteGroup instance includes a list of group ele-
ments and a collection of other Geoms. The general algo-
rithm transforms each Geom by each group element and then
draws it. There are some subtleties. Most of these groups
are infinite, but we only compute and store a finite list of
elements at any time. One of the difficulties of navigating in
the tessellations produced by discrete groups is that normal
flight tends to wander to the edge of the computed tessel-
lation. To solve this problem, the DiscreteGroup object is
provided with an automatic centering mechanism. It detects
when the camera leaves the Dirichlet domain defined by the
group, and moves the camera by an isometry (determined by
the face-pairings), to stay within this central region. Note
that since lighting is not tessellated, lights must be defined
within the camera coordinate system in order that lighting
is invariant under this movement.

Another added feature is that there is a separate associ-
ated Geom which represents the camera, or observer. Before
being tessellated it is moved to the location of the camera,
which as described above is constrained to stay within the
Dirichlet domain. The observer then becomes aware of his
own movement in the space. This is an important feature
especially for detecting the singular locus of orbifolds. For
example, when the camera approaches a axis of symmetry
of order n in an orbifold, this fact is made clear by the ap-
proach of n—1 other copies of the camera to the same axis, a
symmetry which the geometry of the Dirichlet domain alone
may not reveal.
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5.3 DiscreteGroupEnum(int constraint() )

is a method for enumerating lists of group elements given
the generators. One such list is used by the draw routine:
it defines which copies of the fundamental domain to draw.
The constraint function accepts a single group element and
returns 0 or 1 according to whether it satisfies its criteria.
For example, a matrix may be rejected if it moves the origin
far, its determinant is small, or its expression as a word in the
generating elements is long. This enumeration software uses
software acceleration provided by the theory of automatic
groups [ECH'91], [Lev92] if an automatic structure has been
provided for the discrete group.

5.4 DiscreteGroupDirDom

creates a fundamental domain using the Dirichlet domain al-
gorithm described above. This is useful for exploring groups
for which no other geometry has been provided. For display
purposes, both a wire-frame of the full polyhedron and a
possibly scaled version with faces colored to reflect the face-
pairing identities are drawn. See Figure 9. The user can
deduce features of the group by examining the face-pairing
patterns, or by moving the distinguished point P.

6 Example applications

A variety of applications have been developed based on the
DiscreteGroup software class.

Maniview is short for Manifold Viewer. In the paradigm
of object-oriented software tools, it is essentially an Inspector
for the class DiscreteGroup . Maniview communicates with
Geomview via a two-way pipe. Geomview reads the descrip-
tion of the discrete group output by Maniview and displays
it. The user typically loads a discrete group into Maniview,
and then manipulates the discrete group via a set of con-
trol panels. These panels are grouped into: display settings,
enumeration of group elements, choice of fundamental tile,
and saving and loading various elements. A typical snapshot
of a Maniview session is shown in Figure 8.

One of the milestones in the theory of discrete groups was
the enumeration of the 230 crystal groups in three dimen-
sional Euclidean space at the end of the nineteenth century.
For a survey see [LM78],[Sch80]. eucsyms, an interactive
application which allows the exploration of these groups has
been developed by Olaf Holt at the Geometry Center, and
adapted to use the DiscreteGroup software. eucsyms is con-
nected by a two-way pipe with Maniview. Figure 6 shows a
view inside the symmetry group 3.

We have also hooked up Maniview to a powerful program
for computing hyperbolic structures on three dimensional
manifolds, snappea by Jeff Weeks [Wee93]. This is a popular
tool used by research topologists to construct and examine
three dimensional manifolds.

Geomview, Maniview, eucsyms, and snappea are all avail-
able via anonymous ftp from geom.umn.edu [128.101.25.35).
Some of the computation of the groups and geometrical mod-
els shown in the figures have been computed using a Math-
ematica > package developed at the Geometry Center, also
available via anonymous ftp from the same site.

ZMathematica is a trademark of Wolfram Research, Inc
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7 Example spaces

7.1 “Not Knot”

The mathematical animation “Not Knot” {GM91] pioneered
the visualization of the insider’s view of hyperbolic space. It
features one Euclidean orbifold (see Figure 7) and a series
of hyperbolic orbifolds converging to a hyperbolic manifold
that is the complement of the three linked circles known as
the Borromean rings. Figure 5 shows one of these orbifolds,
which tessellates H> with right-angled dodecahedra. One of
the six generators is a rotation of ¥ around the large red
axis. As a matrix this generator is:

—1.618033 1.618033 0 —2.058171
—1.618033 0 0 -1.272019
0 0 1. O

2.058171 -1.272019 0 2.618033

Note that all the non-zero entries are powers of the golden
ratio. This is an example of an arithmetic group and is of
particular mathematical interest.

The discrete groups underlying “Not Knot” have been
converted into the DiscreteGroup format. Now, viewers
interested in exploring the spaces depicted in “Not Knot”
can do so.

7.2 The Poincaré homology sphere

Possibly the most famous three dimensional spherical man-
ifold is the so-called Poincaré homology sphere. It arises
abstractly by identifying the opposite faces of a regular do-
decahedron with a twist of 7 /5. The tessellation of $* cor-
responding to this manifold consists of 120 regular dodeca-
hedra, which meet 3 around each edge, and is known as the
120-cell or dodecahedral honeycomb [Cox73]. In contrast
to the right-angled dodecahedron of hyperbolic space, these
dodecahedra have dihedral angles of 2=,

An inside view of this manifold appears in Figure 9. Note
that the largest dodecahedron, which completely fills the
view as if it surrounds the viewer, is also the farthest away.
This is a typical feature of life in spherical space; as objects
move away they decrease in size until they reach a maximum
distance of /2, then they begin to increase in size until they
reach the antipodal point of the viewer at a distance of =,
where they expand to fill completely the field of view, since
every geodesic leaving the observer also passes through the
antipodal point. Stereo viewing in spherical space would
place great strain on Euclidean trained eyes: when an object
is exactly at the equator, the lines of sight from an observer’s
eyes are parallel; as an object moves beyond the equator, the
observer must look "anti-crosseyed” at it.

8 Directions for further work

Common ancestry in projective geometry means that some
important procedures can be shared with traditional Eu-
clidean systems. However, there remain a host of computer
graphics issues related to modeling and animation in non-
Euclidean spaces to be addressed. Many geometric construc-
tions are very different. For example, consider a equidistant
curve, that is, the set of points equidistant from a line. In
the Euclidean plane an equidistant curve is a parallel line.
But equidistant curves in spherical and hyperbolic space are
not straight lines. What, then, is the proper generalization




