
This document was downloaded on May 22, 2015 at 14:41:01

Author(s) Smith, Douglas Bernard.; Streyle, Dale Gerard.

Title An inexpensive real-time interactive three-dimensional flight simulation system

Publisher

Issue Date 1987

URL http://hdl.handle.net/10945/22294

BUNGIE - EXHIBIT 1014

1.1

"mu-1"4: mum
L1:41.-‘14

.1. 111:!I.

 u. m amu—1M:- Inn-n 11a.

1.1. 1.11.11»-
1 :11 -11“.1111---
“'4‘: ‘4". ‘AWWW1IIA

11.11.1111...- 11 11-.
1‘11111-11111v1141uu-m1.1.. 1.1.11‘11” 11.1.1.-.11.Inq1-1u1 1

 I11; 1 ,1... ...»..111 1.1 .1
1 1.11 1:51.”.J1rzi. ..~ mwuo~n upunml unwed“1111‘1..11.1.11

1v...

 11,-";1-111 .1 1,... 1 1 111.541.; 11.41-11-wu'u-‘u. .- .111,11,111... 1-1...11. 1 mun-1. .11“

1.11111.-

1
w0u~|qm n.~-~u.~.l..a111u.u..111a“. 1..

1 - 111111111110111.

. 1 ”1“,.111111\ '4‘
I . 1' N < ~14. . A‘II. him} an:. . 1 11.11.41 .1. 1. 'i‘ 14.1... 111 11 1 1.1. 11-111.... 1111.11.11...

. . . . , 1.11.: 1.1. 111......

. .1 - . 1. 11.111.111.111... 1. 1111... . 11.1.1111 11.1.1. 1... 111.111.11.111.
. . . 1111 1,111,111,111)? Mun i.\-§~111b~un« ‘1v-1IH1~*5¢IU_au-n.unmud

- . 1" - 1.1 1 .1 11 32.111.111.-.111.1..1.1.11\1. . . .1.-.1 11-1 u~_..‘.11'... . . . 1,.,.1..-...11..squ 1-1“.. Menum'fi-u“.11 51.1.1.1...- 1 . . 1-.l‘ 1‘- u'u“ 11 ‘6. , . 11.

I . ~ ‘6 \1- -~1¢1§ N'IIV y~<
. 1. 1.. . 111111 1 .11....»meow-«11m-

. . - -. . . 1 '5' 1 M... 1 11.1“; 1.1111.» -1111! “my-11.11
. r . 1 1 . :11 1 . y 1 1 . .11 “1-- . 11 1111111111 1 £4111 11....- 1A. AWH‘a-ar.1.»1.1.1.. 1.1111. 1 1 1. . 1 . 1 1 11 1 . 1 .1 .1111\1.'1 . H ‘11._11r1.-1.-1.-1-4-e-

 11-:“11; 1.1 -1 1 8'1. .1; 11111111111 '1
 IMIWK. 1.. 15mm...1 1 .1 . 1. 1111-1

-11 1. ‘11111111

..111

11'1“1,11.

. 1 . . “:13”. .~1.::J..\,... .. - J _.,_ 1‘. . . y. ‘.;-“" ‘1’}:11. . - . 1.1. 411111- .
. . ~ 1.; 1:1?!- ~11

' 1 . ' '1 '

1
. 1 . . 1

. 1 1 . 1
‘ 1 1 1' 1 '. 1 1 1

. 1 1 1 1 1' 1 '1 1 1
' 1 ‘. . '1 ' . 1". ' ‘ 1

. 1 1 ' 1 '1' . . 1 1 . 1 . 1 . 1 ,,
. . 1 . w . 1 I -. . 1 :91,th1' . 1 . ' ‘ ' 1 1 ' . . 1' ‘ ' ' '. . , 1 . . 1 1 ' - '.

1 - . - 1 1 ' :-. . !. 1. . 1 1 . mv-w-n-v. ? 17m; .1 1 . 1 1. . «3111111,... 1111:1111.- . . 1 .. 1 111‘- 1 111 n-wmuww- .13 M
1 1 1 1 1 . 1 - _ 1' 1 -1 . 1 1 . 1 1 11.1I11‘11 1 11 'z-‘hnv‘v’vk-In- --- 1-1:“:

1 1. 1 . 1 1' . 1 . 1 1 1) 1. 1. 1,111- .11 1 ..1I1111n1mI "11'
. . . . 11 _ . 1 1 a

1 1 . ' ‘ 111111-111“. ,1
' ' ' ‘ - '11.1>1n1.1 ,,'$’.1. _ 1111111.,71w'1I1

1 . . 1 z . . 1.11 1 1.1111111111111111.1 1 1 1 1 1' 1 ""114 ,1111111 111.111W ”I”. _
n1 1 1, ‘ - $1133..w¥’111111..fi11.: 11-1-16‘01'. 1 I . . . 41.......“"'"“""“"“1 . . 11-1-1111 «11-1 uni-H—

‘ - . 1' . ' 11 1 1 1. 1 11 1 1 - 1 11.11 1, 11 1/ 111m- vm- aw1 . 1 1 1r 111I -1.. 11111111131411 I11. 11111115111711 1 1 1 1 1- .1. .1111 1111 . 11111-114111"
1 '. ‘ '. o ‘ ' 1 11» V’ ' 3:1'11 '1' .1 . ' ""11,111111-111......,11 1 1 - - 11+ 1.11'11 11.1.. 11-11111-91— 111-111. ..-—urn—- ' v 1 11 1111 n 11111111 111 11111111111'1111111—1...v - 1 - - 1 141M111 111— 1111- 1. W191..-“

. 1 r 1 1 1 1 1.11111”.- aminwmu:
. . 1 - 1.1-1.1.11vuéw1 I 111-1.

1 1 .1 1 11 1 r 1 .1 . -

. . r .' I . -I,1l1-
111 1 . 1. . .11 1 x 1vnw any-m

1 11 - ' a, - a 19:15... 2".. 1 .1 2:1 my;
' ‘ - - 1 - 1 1. 1 1. .11,I 1 .-

. 1 1 1 . 1 1 m and», 11mmMARX“! 1.111111111113'11111'1. "‘1 . .1 11 1;. mew «111111-1. 11111111111 ”-1.11 11-11-1111an .11 1111...,. 1 1 1 1 1 1 1- .11 nfl‘réufi 1.1 -v~.u111wu1-1~1-111-1<u'1m11-u~ auu—ci- ... 1 . . 4(1 111 -11111 1&1 Mn sum-mumnum- 1mm1m1111121mm. . 1 1 1 1 ‘I 14 1 1,11 1 ,1 -r--—\-~«un- 11.111111111111111. 1.1 1 1! .1 «11 .11. ”manna-1+I - 1 " 1.111111411111111”—. . - 1 1 1 .11....1...11.,1...111.
1' 1 1 1 1 1 1 1 Mummy“...—

. Im-mvummmumim 111-1111111111. 1 1 Irvmtvlhwflin‘ "1 111-111-1111- 111-1111
. 1-»:«11-Iww'mwrflvm Mon-pmh-wnI 1, nunuhrwmhphmwp-wwmm W— 11-111 1 . 1 1 1 1 wwmwwmnw-mnmmumm Ian-NM

1 . 1 . 51.11111111111mm-a1 ”1111.11111111 1-1 11111111,..1 1 1':-mm1¢~mp11..1111111owl-av- m-ni-uwmm-m m11 . 1 1 11 11119.. w Ywmur1-11I3Il1vaWm-mg—u. . 1 . 11mm- W111. 1111-111- «11.11.1111.
1 1 1 1 . 1111141111” "wick Mir—111 mu:. .. rvv'vwr-a 1» m~1~~un ww-

. =19; «wry-«11.1 11-11—14-191:1 . 1 .«1 W- 111-11111111111-11-111 1
1 .11. 11:... .01:- :1 111.111.11.111“... 111111-11...”1 1 111 1'“111 11 . 11....-.1111-1-w1111mw- 1 1. ’11., 11.1w 11-11111 man-rm "amp-11mm

1 . 1 -1 1411-11 1.11 A 111111.31.w 1-1 1~111111111111 o1. .— 1- - : («17‘1' 1 M nun-mu 1-1111111-11-1111111111-11
I 1311. 1 .11 1.11111 ~11 1 me-‘mwumfiwlr1mm-1ue4-m11m—11-11 1 1 a ' rm Hun-tum «nuwé1wm 11.11.111.11111-11'1111111-11111 w—w nut-bunny:— “Wyn-mm1. 11111.11 11m:- Md: 111mm mam-m‘ruvw 11-W1mm1—nm1‘1

1 - - ”new" Mina-NM» «Irm- u-v-Wm ..11 Mrdwmnm-W 11
~ 1 ' ' .. ' 1 2 . 1 ‘ 1- ~ 11:11”; va‘»:.:::;:‘:,;w:.-:.mtm=1.mm 1.137%... 7‘1"?“ ' "“"“"" ' ' "W"”

1 1 . - .1 11 .1111. .11. 11.11111... 1.1.11... “1.11%.,1mwwmfl-gmm
1 1 1 . 1 1 1. 11?"?1-12-1341 ~q 11111~WW11311MI d 111 ’11,- 1-1111-1111-1...“

1 11 I1 1 1 11114119111111 .1m 1111 art- 11.111111111111111‘1311111111 411..v 1 1 1- 11 1 ,wmm-m nut-.mmwr‘lfl 1‘”m“.1 1 1114 n-.-'.11-1111 m-Huwm-m 11m 1 - . 1w
. - 111 11... 111 1111.11. 111111.11111111111111me :14 n 1,11 .111 1.1-1.1. w .11.

. . 111111. 1 1111111. 1 111m» :fi-rwnnmlv 1 mww- 1111.11—«1-1-«1-1111'.‘ «1-111».-- ~ .' - hm nu 1111 Ina-M11"w. my rung; 1mm- m‘wM-wna-nnanu 1111111111111-W1u1 . A 1 1 1111M. m 1" «111 mopur u 1211.11.15.11 gunman...“- 1 ant! 1m» «mm-m 101M!" «1111' 111.111.1111?- 1.1111111.10 _r-1~ “\c‘n 10pm: 111—"... 10 mac-«2v.111. 11-4111 111-111-1111.: .11
whip-«1111.11. 1-151-111-1111.11—1111- v-q rm. nwwmw'u—u-

r—rm

.1...11..1...1... «...—11-.. m
. 1 11161111."1Y2; 1 1runnuniv mgr-wow"- .— 1- "awn-1 mam—m-. «I Might)!«1" 1 km"nun “23111111111 In: mama MM. ' 1'11;"”1 1 15, 'F'”r:;m'":31 '"'”mmmzx. "5""1 . 1,. 45:1”. «rm «ovum-«mm vi" u-gw"m "warm-mm”

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN INEXPENSIVE REAL-TIME

INTERACTIVE THREE-DIMENSIONAL
FLIGHT SIMULATION SYSTEM

by

Douglas Bernard Smith
Dale Gerard Streyle

June 1987

Thesis Advisor: M. J. Zyda

Approved for public release; distribution is unlimited.

T 23366**

unclassified
Cu«i r Y CLASSIFICATION OF ThiS PaGE

REPORT DOCUMENTATION PAGE

i REPORT SECURITY CLASSIFICATION

unclassified
lb RESTRICTIVE MARKINGS

i SECURITY Classification authority

i declassification /downgrading schedule

3 distribution/ AVAILABILITY Of report

Approved for public release;
distribution is unlimited.

PERFORMING ORGANIZATION REPORT NUM8ER(S) S MONITORING ORGANIZATION REPORT NUM8ER(S)

NAME OF PERFORMING ORGANIZATION

ival Postgraduate School

60 OFFICE SYMBOL
(if 4pphc*bl*)

52

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

AODRESS (Cry. Sttt*. and ZIP Cod*)

lo'nterey, California 93943-5000

7b ADDRESS (Cfy. Sfjf*. and ZlPCod*)

Monterey, California 93943-5000

NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(if applKsbi*)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AOORESS(C/ry. Sate, and ZIP Cod*) 10 SOURCE OF FUNOlNG NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK UNIT
ACCESSION NO

r
TL£ (/"C/U* Se"""y C,iU,ht'uon)

AN INEXPENSIVE REAL-TIME INTERACTIVE THREE
DIMENSIONAL FLIGHT SIMULATION SYSTEM

PERSONAL AuTmOR(S) _ . , _ _ „ , , „ , ^ , „ ,

Smith, Douglas Bernard and Streyle, Dale Gerard

i
type OF REPORT

ister's Thesis
l 3d T'ME COVERED
FROM TO

«4 DA« OL REPORT (Year, Month Day)
June

IS PAGE CO^NT
237

Supplementary notation

COSATi CODES
f ElD GROUP subgroup

18 SUBJECT TERMS (Continue on reverie if neceu*ry and identify by blo<k number)

flight simulation; DMA terrain data, computer
graphic terrain display

ABSTRACT (Continue on revert* if netemry jnd identify by block number)

I prototype flight simulator for the Fiber-Optically Guided Missile
'FOG-M) is presented. This prototype demonstrates the practicability and
reasibility of using low-cost graphics hardware to produce acceptable
;imulation of flight over terrain generated from Defense Mapping Agency
^DMA) digital elevation data. The flight simulator displays a dynamic,
spree-- dimensional , out - the-window view of the terrain In real-time while
'esponding to operator control inputs. The total system cost (software
md hardware) of the simulator is an order of magnitude less than most
"light simulation systems in current use.

S"R'3UTiON/ AVAILABILITY OF ABSTRACT
JuNCLASSiFiEQ/'UNL'MlTEP D SAME AS RPT D OTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

unclassified

rof.°Wic
P

fia
s

e
9
i
E

T.'
vTyAcla 22b TELEPHONE (Indud* Ares Code)

f408") 646-2305
22c OFFICE SYMBOL

Code 52Zk
FORM 1473,34ma« 33 APR edition may be uied until exhausted

All other editions are ooioiete
SECURITY CLASSIFICATION OF '

unclassii led
IS "AGi

Approved for public release; distribution is unlimited.

An Inexpensive Real-Time
Interactive Three—Dimensional

Flight Simulation System
by

Douglas Bernard Smith
Captain, United States Marine Corps

B. 3., Duke University, 1981

and

Dale Gerard Streyle

Lieutenant, United States Coast Guard

B. S., United States Coast Guard Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1987

ABSTRACT

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M)

is presented. This prototype demonstrates the practicability and feasibility of

using low-cost graphics hardware to produce acceptable simulation of flight over

terrain generated from Defense Mapping Agency (DMA) digital elevation data.

The flight simulator displays a dynamic, three-dimensional, out-the-window view

of the terrain in real-time while responding to operator control inputs. The total

system cost (software and hardware) of the simulator is an order of magnitude

less than most flight simulation systems in current use.

3

TABLE OF CONTENTS

I. INTRODUCTION 10

A. FOG-M 10

1. Background 10

2. Description 11

B. ASPECTS OF FLIGHT SIMULATION 12

1. Realism 13

2. Frame Update Speed 14

C. ORGANIZATION 15

II. COMPUTER SYSTEM 16

A. HARDWARE AND SYSTEM OVERVIEW 16

B. SOFTWARE 18

III. DIGITAL ELAVATION TERRAIN DATA 20

A. INTRODUCTION 20

B. COVERAGE 20

C. STRUCTURE 21

D. LOCATION 22

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL 25

A. COLORS 25

B. DRAWING 28

C. WRITEMASKS 29

1. Color Table 29

2. Bitplanes 29

3. Writemask Example 30

4. Writemasks in FOG-M 32

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION 34

A. REPRESENTATION DECISIONS 34

1. Polygons versus Patches 34

2. Resolution 36

3. Elevation Scaling 36

4. Shading and Texturing 38

a. Elevation Based Shading 38

b. Lambert's Cosine Law Shading 39

c. Gouraud Shading 41

d. Adding Texture 43

B. INTERNAL DATA STRUCTURES 44

VI. FLIGHT SIMULATION 46

A. OVERVIEW 46

B. UPDATING THE MISSILE'S POSITION 46

1. Case 1 - Operator Control 47

2. Case 2 - Locked Onto a Target 48

C. DETERMINING THE LINE OF SIGHT 50

D. DISPLAYING THE SCENE 52

1. Viewing Transformations 52

2. Determining Which Polygons to Draw 58

3. Hidden Surface Removal 60

E. SIMULATOR PERFORMANCE 65

VII. TARGET INTEGRATION 71

A. GENERAL 71

B. TARGET CREATION 72

1. The System Matrix 72

2. Target Transformations 74

C. ANIMATION 75

D. DISPLAY 76

VIII. CULTURAL FEATURE INTEGRATION 82

A. EXTERNAL DATA FILE FORMAT S2

B. CONSTRUCTION OF THE ROAD POLYGONS 83

C. INTERNAL ROAD-POLYGON STORAGE 87

IX. FOG-M SIMULATOR USER'S GUIDE 89

6

A. OVERVIEW 89

B. STARTING THE SIMULATION 89

C. PRELAUNCH CONTROLS 91

1. The Prelaunch Display 91

2. Selecting the Launch Position 95

3. Selecting the Target Position 95

4. Launching the Missile 96

D. IN-FLIGHT CONTROLS 96

1. The In-Flight Display 96

2. Controlling the Camera 99

3. Controlling the Missile Flight 99

4. Designating and Rejecting Targets 101

X. CONCLUSIONS AND RECOMMENDATIONS 103

A. LIMITATIONS 103

B. FUTURE RESEARCH AREAS 104

C. SUMMARY AND CONCLUSIONS 104

APPENDIX A - MODULE DESCRIPTIONS 106

APPENDIX B - SOURCE LISTINGS 128

LIST OF REFERENCES 233

INITIAL DISTRIBUTION LIST 235

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to a number of people who

supported this study. To our advisor, Dr. Michael Zyda, who provided us with

the knowledge and insight necessary to complete the project, and then stepped

back, allowing us the freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:

- MAJ Ron Ross, USA, for the original versions of the preiaunch &
make — database — e routines.

- LCDR Mike Oliver, USN, for enhancements to the tank image.

- Dr. Michael Zyda for the original version of the gammaramp routine.

- CAPT Gary W. Taylor, USMC, for the original version of the lightorient

routine.

- LCDR James Manley, USN, for the netV networking routines.

The authors would also like to note that the order of the names on the cover

is alphabetic, and has no other significance.

LT Streyle would like to personally thank his wife, Robin, for the tremendous

amount of patience and support provided during all phases of the project. By

taking care of the myriad of details involved in running a home with two children

and shuffling her and the family's schedule around the times I absolutely had to

work, she provided me the time necessary to fully pursue the project. I wouid

also like to thank my lovely daughter Sarah and son Timothy, who both let me

know when I had worked enough to "earn" another trip to the park to play.

8

CAPT Smith would like to thank his wife, Becky, and son, Timothy, for the

generous amounts of time and pleasures foregone in their support of this work.

Thanks also to my friend and co-author, who made this and many other projects

much easier and more enjoyable than they would otherwise have been.

9

I. INTRODUCTION

Flight simulation has been an important computer graphics application,

embracing a range of systems from a $32.00 program for a personal computer

[Ref. l] to special purpose machines costing millions of dollars [Ref. 2]. The

capabilities of these systems are spread across a range nearly as wide as their

costs, with great variances in speed (frames displayed per second), realism,

flexibility, and area of flight. We present here a system that is relatively

inexpensive, yet still fast enough to present a real-time three-dimensional view of

digitized terrain. We built this system on a commercially available, high-

performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400

Turbo. The IRIS system was selected because of its local availability and its

performance capabilities. The flight simulator presented here does not use the

natural color and shape of individual terrain elements (in order to achieve real-

time performance), but it is sufficiently realistic to provide the feeling of flight

and allow identification of the displayed terrain and targets.

A. FOG-M

1. Background

The project presented here was built in response to the United States

Army Combat Developments Experimentation Center's need to simulate the

10

operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3], but this missile

is also being considered for use by the United States Marine Corps [Ref. 4].

Simulation is necessary in order to test and evaluate the tactics, doctrine and

training requirements associated with the missile without the expense and danger

of actual firings during simulated combat field trials. The FOG-M is a generic

family of remotely-piloted, video-guided munitions, but for the purpose of this

prototype simulator, the weapons are all logically equivalent, and the entire

family is referred to as "the missile." In order to avoid security constraints, the

parameters and operational characteristics used in this work were not taken from

exact FOG-M specifications. The parameters and technical specifications are all

estimates, based on reasonableness and consistency with general, unclassified

descriptions of the FOG-M.

2. Description

The actual FOG-M missile is six inches in diameter, five and one-half feet

high, weighs eighty-three pounds, and costs about $20,000 [Ref. 4]. It has a video

camera mounted in its nose, which transmits a black-and-white picture back to

the operator's console (which consists of a television screen, a computer, and a

joystick) over the fiber-optic link. (The simulator display offers the user the choice

of either color or black-and-white; color is the default for the simulator despite the

operator view of the missile being black-and-white. The color compensates for

some of the loss in realism and identifiability inherent in a polygonal

representation of natural objects). Before launch, in normal operation, the missile

11

is given a general direction to a target and the altitude of the highest point within

its range. The simulator allows values in excess of FOG-M operational

capabilities for speed, range, and altitude above ground level (AGL), but the

default values of two hundred knots, ten kilometers, and one thousand meters are

characteristic of this type of missile. As soon as the missile is in position, it begins

transmitting video images. When launched, the missile rises to approximately

two hundred feet above the highest terrain point, and then levels off in horizontal

flight in the targeted direction. The operator controls the pan and tilt angle of

the camera with the joystick, and can dial in changes to the heading and altitude

of the missile. The operator also has the capability to zoom the camera's field of

view from eight degrees to fifty-five degrees, and to designate ("lock-on" to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators

provide sophisticated mock-ups of cockpits and controls and highly detailed out

the window views. By mounting the simulator on a moving platform, a true sense

of the physical feelings of acceleration and roll can be achieved. These systems

also cost, millions of dollars.

One of the first decisions that must be made when designing a flight simulator

is, "For what purpose will the simulator be used?" The answer to this question

drives most of the design decisions that have to be made. Since the purpose of

12

this project is to provide a simulation of the FOG-M missile as viewed from its

operator's console, it is felt that the most important items to model are the

simulated video display of the terrain and the actual operator controls. The

terrain should appear realistic enough that its major features are recognizable to a

person familiar with the area. The controls should allow for the same

functionality as the actual console. The simulator must, of course, also provide a

feeling that the missile is in motion over the terrain. The effectiveness of the

feeling of motion provided by a flight simulator can be largely measured by two

criteria: the realism of the displayed scene and the update rate of the display.

1. Realism

Many factors contribute to the perceived realism of a displayed natural

scene. Early attempts to quantitatively measure realism consisted of counting the

number of "edges" or lines that a scene contained. This later gave way to

counting the number of "faces" or polygons in a scene. Since each polygon was

colored in a single shade, it was felt that each polygon represented a single "bit"

of information in the scene. Therefore, the more polygons the scene contained,

the more "realistic" it was felt to be [Ref. 5:pp. 27-28].

The latest advances in computer graphics have also made this measure of

effectiveness obsolete. With the introduction of systems that are able to till

polygons with textured patterns, a single polygon can now contain thousands of

"bits" of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured

13

ones. Early textures consisted of superimposing things such as mathematical

noise functions or stripes on the polygons. More recent advances have allowed the

texture to be derived from digital photographs of a similar scene. For example,

polygons representing a part of terrain covering by meadow could be filled with a

digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

Since most currently available graphics workstations do not support the

use of texture filled polygons, the use of texture was deemed to be outside the

scope of the current project. Rather, the project's work concentrated on

determining how realistically a scene could be rendered in real-time incorporating

only the use of lighting and shading models along with terrain hidden-surface

algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator's performance is the speed

at which it is capable of displaying successive frames in a scene. The faster the

update rate, the more continuous the motion appears. As a reference, standard

motion picture film is projected at a rate of twenty-four frames per second.

Although the IRIS workstation is capable of displaying up to sixty frames per

second, the amount of computation that must be done between successive frames

in the simulation has limited the update rate to an average of three frames per

second. While this presents a less than smooth motion, it is felt to be adequate

for the purposes of the prototype.

14

C. ORGANIZATION

The above sections of this chapter have provided background on flight

simulation in general, and the missile whose flight is specifically being simulated.

Chapter II provides an overview of the hardware used in running the simulation.

The structure and content of the Defense Mapping Agency (DMA) Digital

Terrain Elevation Data (DTED) are discussed in Chapter III. Chapter IV

discusses the motivation behind and creation of the two-dimensional contour map

displays. Chapter V covers the storage and use of the DMA DTED to produce a

lighted and shaded three-dimensional polygonal terrain display. The mathematics

and process involved in simulating flight over the terrain are detailed in Chapter

VI. Chapter VII discusses the creation, insertion, animation, and designation of

targets. Chapter VIII covers the creation and drawing of cultural features.

Chapter IX contains a user's guide for operation of the FOG-M simulator.

Chapter X concludes with a discussion of limitations, future extensions and

research topics, and summarizes the research conducted. Narrative descriptions of

the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.

15

II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance

of this work lies in the speed with which it was developed, the display rate

achieved, and the realism and fidelity of the display in comparison to the cost of

the system that supports it. This project was technically feasible only because of

the capabilities and high performance of the IRIS (Integrated Raster Imaging

System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,

Incorporated. Others have also used the IRIS as a base on which to build flight

simulators [Ref. 6]. This low-cost ($50,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but

adds custom-built special purpose VLSI circuits and a pipelined design to provide

the graphics functions that are implemented in software on other comparably-

priced workstations. Conceptually, there three pipelined components in the IRIS

hardware: the applications /graphics processor, the Geometry Pipeline, and the

raster subsystem [Ref. 7:p. l-l]. The applications/graphics processor is a

conventional Motorola MC68020 processor running at 16.7 MHz. This processor

runs the applications program(s) within a UNIX System V operating system.

16

ETHERNET to Vax and other IRIS

32 bit 16.7 MHz Motorola MC68020 CPU

6 Megabytes of CPU Memory

32 1024x768 bitplanes of Display Memory

Hardware matrix multiplier & floating point accelerator

Hardware Gouraud shading, depth cueing & backface polygon removal

TM
12 pipelined custom VLSI Geometry Engines

16-bit Z-buffer for Hidden Surface Elimination

2 72 Megabyte Winchester Disk Drives

60 Hz non-interlaced 19" RGB high resolution monitor

83 key up-down encoded keyboard

3 button mouse

32-button and 8-dial valuator boxes

Unix System V

Ethernet zo VAX's

IRIS Graphics Library

Features of the IRIS Turbo 2400 Graphics Workstation

Figure 2.1

17

Applications either issue graphics commands in immediate mode, in which case

they are sent through the Geometry Pipeline immediately as individual graphics

primitives, or compile graphics commands into graphical objects, in which case

they are sent through the Geometry Pipeline as a single geometric entity when

explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user's world

coordinates, performs specified matrix transformations on them using the matrix

multiplier and floating point accelerator built into the hardware, and then clips

and scales the transformed coordinates into screen coordinates. The raster

subsystem takes the screen coordinates output by the Geometry Pipeline and

updates the bitplanes (display memory) to contain the lines, polygons, or

characters specified by the input coordinates. The raster subsystem also performs

polygon fill, shading, depth-cueing, and hidden surface removal. A conventional

video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for

ail of the IRIS system software. The IRIS Graphics Library, which provides both

high- and low-level graphics and utility commands, can be called in C,

FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the

18

pro forma choice for programming all parts of the FOG-M simulator. The IRIS

User's Guide [Ref. 7] breaks the Graphics Library commands into the following

twelve categories:

- Global State commands initialize the hardware and control global variables,

and are used mostly in FOG-M's init iris routine.

- Drawing Primitives are used throughout FOG-M. They create points, lines,

polygons, circles, arcs, and text strings.

- Coordinate Transformations specify mappings within and between user-

defined world coordinates and screen coordinates. These are used to move

targets and to simulate flight.

- Drawing Attribute commands specify textures and fonts. Although texture

would greatly improve the appearance of the terrain, the IRIS provided

textures are applied in the screen coordinate system, so they do not scale or

tilt to conform to the terrain, and produce a very artificial result.

- Display Mode and Color commands determine how the bitplanes are used

and what colors appear on the screen. These include the commands that set

double-buffering, establish writemasks, and define the color table.

- Input/ Output commands initialize and read the dials and mouse.

- Object Creation and Editing commands allow manipulation of complex

displays as a single entity. They are used in all FOG-M displays.

- Picking and Selecting commands are not used in FOG-M.

- Geometry Pipeline Feedback commands are not used in FOG-M.

- Curve and Surface commands draw complex curves and smooth surfaces.

Experiments with these produced more realistic terrain images, but not even

close to real-time, making flight animation impossible.

- Shading and Depth— cueing commands provide Gouraud shading of polygons

and intensities that vary with distance from the viewer.

- Textport commands define an area of the screen for text. They are not used

in FOG-M.

Also available on the system, and used by FOG-M, are the math library with

sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.

19

III. DIGITAL ELEVATION TERRAIN DATA

A. INTRODUCTION

Unlike other flight simulation systems, which may rely on manual creation of

the terrain [Ref. 8], the source data for the terrain in the FOG-M simulation is a

Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for

Fort Hunter-Liggett. California. The database is not Level 1 DTED. but rather a

DMA special product produced about 1980 at a higher resolution than normal

Level 1 DTED fRef. 9]. Level 1 DMA data contains elevation points spaced at

three arc-second intervals, or approximately every one hundred meters. The Fort

Hunter-Liggett special data contains points at twelve and one-half meter spacing,

which is eight times the resolution of Level 1 data.

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five

kilometers high, with 6400 data points per square kilometer. This area includes

most of Fort Hunter-Liggett plus some surrounding land, and is bounded by

latitudes 36 05' 00" (to the north) and 35 50' 00" (south) and longitudes

121 04' 30" (east) and 121 20' 30" (west). In terms of Universal Transverse

Mercator (UTM) coordinates, the area has easting (X) of 10SFQ41000 to

10SFQ77000 and northing (Y) of 10SFQ60000 to 10SFQ95000. The database

20

appears to be based on DMA forty foot interval contour map products, because

peaks tend to have flattened tops. This was confirmed both by a comparison of

surveyed instrumentation sites on or near peaks with their digital terrain values

[Ref. 10: pp. 1-2], and by a Bezier surface patch image of the data created locally.

C. STRUCTURE

The data is stored in an unformatted sequential file that is organized as a

stream of integers. Each integer (sixteen bits) represents both the vegetation code

and bald terrain elevation in feet at one sampling point, as illustrated in Figure

3.1 below.

bit:

Veg. Code

15 14 13

Bald Terrain Elevation

12 11 10 9876543210

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation, allowing a range

from zero to 8191 feet, although the highest point in the database is 3744 feet.

The three high-order (leftmost) bits specify one of eight vegetation codes, which

are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one

21

TABLE 3.1 DTED VEGETATION CODES

Code Description

Less than one meter

1 One to four meters

2 Four to eight meters

3 Eight to twelve meters

4 Twelve to twenty meters

5 Greater than twenty meters

6 No data available

7 Unused

square kilometer at a time, beginning with the lower left one kilometer grid square

(41,60), proceeding up the column to the upper left grid square (41,94), then

doing the next column from bottom to top (42,60 to 42,94) and so on; the upper

right one kilometer grid square (76,94) is the last one written. Within each one

kilometer grid square, the individual data points are written in the same pattern,

beginning with the lower left, doing each column from bottom to top, and doing

the columns from left to right. This file layout is summarized in Figure 3.2. The

position in the file of the elevation for a point expressed in five digit local UTM X

and Y coordinates is found as shown in Equation 3.1.

position = 35 * (integer (X/ 1000) - 41) + (integer (Y/ 1000) - 59) (3.1)

D. LOCATION

The complete DTED rile occupies 16,128,000 bytes of storage. Due to a local

shortage of available disk space, this file must permanently reside on the UNIX

VAX 11/785 system rather than on the IRIS system. The FOG-M simulator

22

23

tu0YaLel.1FDETD23erug.1F

23

presently operates on a ten kilometer square extract from this database. A

program on the VAX called make—database— e allows interactive specification

of the area and resolution desired, and produces an extract. This extract is sent

over the Ethernet to the IRIS to serve as the input for a FOG-M run. However, if

the data is sent directly, it is received with each pair of bytes swapped, so another

program, swapdma, is run on the VAX before transmittal. This program swaps

the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.

24

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL

The two-dimensional representation of the terrain was begun as the first

graphics portion of the system, in order to gain familiarity with the IRIS graphics

workstation and the Defense Mapping Agency (DMA) digital terrain elevation

data (DTED). Contour maps are the traditional approach to two-dimensional

terrain portrayal, and thus were the basis for the two-dimensional images of the

terrain generated here (Figure 4.1). Although these two-dimensional images are

not true contour maps, they are still referred to as such in this study because of

their close relation and common origin. The algorithms for determining and

drawing the forty foot contour lines found on a normal contour map seemed non-

trivial, so a simpler alternative was chosen. Each elevation datum is represented

by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code, and its intensity (or

shading) by its elevation. The intent was to use green for tiles with vegetation

and brown for tiles without vegetation. However, the DTED vegetation codes

lump together both "no vegetation" and "vegetation less than one meter high."

Brown tiles thus include both unvegetated areas (e.g. rock slabs, areas above the

25

26

hdaamwnad:.HSOOGOOHoudadafimHJV05¢me
26

treeline) and grasslands or meadows. This is significant in the Fort Hunter-

Liggett area, because most of the valleys are covered in grass, and all of the high

ground is below the treeline. The result is a map with brown valleys and green

ridgelines. While this was readily accepted as natural by most viewers, pilots

with a background in low-level flight found it awkward, and contrary to their

expectations (from flight charts) of green valleys and brown mountains. While

this might be significant in other flight simulation applications (particularly those

designed for pilots), the initial representation was deemed most appropriate for

the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.

High intensity (light) colors were used for higher elevations, and low intensity

(dark) colors for lower elevations. This was accepted as natural by almost all

viewers. The optimum number of intensities (shadings) to use in the map was

experimentally determined to be sixteen. A small power of two was desirable due

to the nature of the writemasks used to improve display speed. A large number of

colors provides greater elevation definition and prevents large masses of the same

color in areas where elevations change gradually. However, having too many

colors destroys the contour-map effect, since adjacent colors are so close that no

boundary is distinguishable between them. Eight shades each of green and brown

were used initially. The shift to sixteen shades of each produces a better looking

map. Due to the RGB (red, green, blue) nature of color creation on the IRIS, the

greens were still barely differentiable at thirty-two shades, but the browns (a

27

combination of mostly red, some green, and, in some shades, a trace of blue)

began to blend together.

To determine the elevations at which color shades should change (in order to

use the full range of shades), the maximum and minimum elevations of the

terrain section in use must be known. Rather than preprocess the data before each

run, these values are coded as constants in a header file. The equation for which

color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

elevation—MIN
index = base index + * # of shades (4.1)

MAX-MIN

Therefore, the fifteen points at which the shade changes are precalculated and

stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each

tile, and drawing it as a filled square. However, an increase in speed can be gained

by exploiting the structure of the data and the line drawing hardware of the IRIS.

The data is stiil processed a point at a time within each one kilometer column,

but no drawing is done until an elevation/shading breakpoint is reached. Then a

single line of one tile's width is drawn to color all tiles since the previous elevation

breakpoint.

28

C. WRITEMASKS

A more significant speed improvement (on the order of fifty per cent more

frames per second) was achieved with writemasks. Writemasks are a relatively

low-level hardware feature that can be used for many purposes. In the FOG-M

simulator, they are used to prevent the contour map from being overwritten.

This allows the map to be drawn only once into the bitplanes, and have it remain

on the screen without being re-drawn during each frame update. In order to

understand how writemasks work, one must understand the layout and use of the

IRIS's color table and bitplanes.

1. Color Table

The color table associates a particular binary number with a color.

When the display system asks what color some number is, the color table replies

with the intensities for the red, green and blue color guns that will produce the

color defined for the input number. This input number is referred to as a

colorindex. Thus the color displayed on the screen depends on the colorindex

associated with a given pixel, and the color associated with that colorindex in the

color table. Table 4.1 gives the color table entries that are the defaults on the

IRIS workstation.

2. Bitplanes

The colorindex that is associated with each pixel is stored in the display

memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit

29

TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS

Color
Colorindex

Decimal Binary

Black

Red
Green

Yellow

Blue

Magenta

Cyan
White

1

2

3

4

5

6

7

0000000000000000

0000000000000001

0000000000000010

0000000000000011

0000000000000100

0000000000000101

0000000000000110

0000000000000111

deep. When used in double-buffer mode (as in FOG-M), the IRIS uses sixteen

bitplanes (numbered to 15) for each buffer. The frontbuffer is the one whose

binary contents define the image being dispiayed. While the frontbuffer is being

displayed, the next image is created by issuing drawing commands which affect

only the backbuffer. Once a new image is completed in the backbuffer, the

buffers are swapped, so the backbuffer becomes the frontbuffer and is displayed.

The old frontbuffer becomes the backbuffer, and is then available for update.

3. Writemask Example

Consider the pixel at location (0,0) — the lower left corner of the screen.

The colorindex of that pixel is determined by sixteen bits: one from the lower left

corner of each bitplane. The display system reads rhose sixteen bits as a binary

number (the colorindex), and uses the color table to determine what color to

make that pixel. For example, using the default colors defined in Table 4.1 above,

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower-

30

left corners, since the value of the sixteen bit binary number 0000000000000000
2

is

zero. If the current color is set to magenta (color five, whose binary value has ones

in bits zero and two) and a drawing command is issued, bitplanes zero and two

are set to one, and all other bitplanes are set to zero, for every pixel covered by

the drawing command. These pixels will now be displayed as magenta, because

the colorindex constructed from the sixteen bitplanes will be 000000000000010

1

2

(5 10),
and the color table tells the display system that color 5

10
is magenta.

The previous example showed that a drawing command works by

placing ones in certain bitplanes, and zeroes in all of the rest, with the current

color specifying which bitplanes get which. A writemask tells each bitplane to

either allow or ignore the changes a drawing command says to make. In normal

double-buffered usage, the writemask is 1111111111111111
2

, meaning all sixteen

bitplanes should allow updates. Now suppose there is an image on the screen

which uses just the default eight colors. Bitplanes three through fifteen are all

zeroes, because all of the colors have colorindices with three or less binary digits,

which will be in bitplanes zero, one, and two. If the writemask is changed to

111111111111 1000
2

after drawing the image, those lower three bitplanes are

"frozen" and will not be changed by any drawing command. Setting the color to

black and clearing the screen will not change anything. The upper bitplanes will

be set to all zeroes, which they already were. The lower three bitplanes will be

told to reset to zero, but will not do it because they are protected by the

writemask.

31

Now suppose you want to draw a grey line on top of the image. The line

only needs one color, so it can be drawn in one bitplane. (Two bitplanes will allow

three more colors on top of the map, three bitplanes allow seven, etc.) The first

"free" bitplane is number three. Turning on a bit in this plane (and not turning

on any bits in higher planes) requires a colorindex in the range 1000
2
to 1111

2 (8 10

to 15
10

). Defining color eight in the color table as grey, making color eight the

current color, and then drawing the line is sufficient to get the image into the

bitplanes, but the display will not show the desired effect. If the image

underneath the line is black (i.e. bitplanes zero through two are all zeroes form

some pixels), the line will appear grey, as intended, for those pixels. However, if

the image underneath the line is red (i.e. the lower bitplanes contain 001
2),

the

composite colorindex retrieved by the display system is 000000000000100

1

2
or 9

10)

and since color nine is not defined in the color table, it appears as black. Thus

every colorindex that has bit three (because the line is in bitplane 3) set to one

(i.e. colorindices 1000
2
to 1111

25
or S

lQ
to 15

10) must be defined as grey in order to

produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-M is stored in the first six bitplanes

(numbered through o) ot' both buffers, which means sixty-four colors are

available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are

shades of green, and twenty-four are unused. The writemask defined as

SAVEMAP (C0
16

or 000000001 1000000
2
) allows things to be drawn on top of the

32

map in bitplanes six and seven. Colorindices 64 through 127 are all defined as

blue in the color table, so anything drawn in bitplane six appears on top of the

map in blue. Similarly, bitplane seven is used for red, with colorindices 128

through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not

having to re-draw the map each time the screen is updated. The cost is the use of

many more indices in the color table, which limits the number of colors available

for use on top of the map. For our simulation system, with only two colors

needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.

33

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the

terrain using parametric bi- cubic surface patches. A surface patch is simply a

smooth curved surface fitted to a set of data points. A discussion of the theory

and use of surface patches can be found in the IRIS User's Guide [Ref. 7:sec. 11-3]

and Hearn and Baker [Ref. ll:pp. 193-205]. It was quickly determined that it

would not be possible to use surface patches to represent the terrain and still

maintain a real-time update of the terrain during flight.

An alternate method of displaying a three-dimensional object is through

the use of a set of planar polygon surfaces that join at common edges to form the

terrain object. This method has the advantage of being much simpler, and

therefore faster, to generate and display. For this reason it was chosen for use in

the project.

Figure 5.1 shows the method of constructing the terrain surface as a set

of triangles. The term gridsquare is used in the remainder of the chapter to refer

to a set of two triangles with a common hypotenuse that form a square of the

terrain grid.

34

A
"GRID-
SQUARE"

North

t

East

View from above looking down on the terrain

-Terrain elevation points are connected
to form triangular polygons with common
edges

.

Figure 5.1 Polygonal Terrain Construction

35

2. Resolution

The special DMA data file used in this project contains elevation data

that is spaced at a twelve and one-half meter interval. One of the first questions

which had to be answered concerning the three-dimensional portrayal of this data

was, "In how fine a resolution can the data be displayed, while still allowing for a

sufficient frame update speed?" Early test runs showed that using the full twelve

and one-half meter resolution would be much too slow, although it provided an

excellent representation of the terrain. An adequate frame update rate

(approximately three to four frames per second) was achieved with a seventy-five

meter resolution or every sixth data point. Since this was an early test, displaying

terrain without any targets or cultural features, a one hundred meter resolution

was decided upon for use in the remainder of the project. This allowed for an

adequate "cushion" of processing time to complete the additional computations

that would be needed in the final product, while still providing an adequate

degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that

the hills did not give an appropriate appearance of height. Although this was a

subjective judgement, it was shared by most people who viewed the display and

compared it to aerial photographs of the area. Because of this, it was decided to

scale the elevations of the displayed points upward. Two approaches, linear

scaling and exponential scaling, were examined.

36

In the linear scaling approach, each elevation point was simply

multiplied by a scale factor as shown in Equation 5.1.

Elev = a * elev .. (5.1)new old. * '

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was

necessary to achieve the desired effect.

In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.

Elev = Elev* (5.2)new old v ;

This approach has the effect of exaggerating the higher elevations to a greater

degree than the lower ones. It was chosen as the approach for use in the project

based on subjective observations of the displays produced by the two methods.

The scaling factor, a, was chosen as 1.05. Using this factor produces the

equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the

minimum elevation contained in our area of interest.

Subsequent to the decision to use an exaggerated elevation scale,

research results were discovered which supported it. In a study conducted by the

U.S. Army Research Institute for the Behavioral and Social Sciences, observers

were asked to pick a computer generated line drawing that best matched actual

terrain. The line drawings had different exaggerations of the vertical (elevation)

scale. The overall ratios chosen by the four observers ranged from 1.25:1 to

37

1.50:1. The drawings presented to the observers had exaggeration ratios ranging

from 1:1 to 1.75:1. [Ref. 12]

4. Shading and Texturing

As explained above, each one hundred meter square of the terrain, a

"gridsquare," is represented by two triangles in three-space that share a common

diagonal edge. The process of applying colors to these polygons, shading, was the

next area of research in the project.

a. Elevation Based Shading

Three different shading algorithms were investigated. The first was

a simple algorithm where the shade of a polygon was a function of its elevation.

Higher elevations are shaded in lighter shades of green while lower elevations

receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

elev — Min Elev
color index = base index + = * f of shades (5.3)

Max Elev-Min Elev

The darkest green is stored in the base index color map location and the lightest

green in the baseindex + # of shades location. Although this approach works

well for two-dimensional contour maps (see Chapter IV), and is currently used in

another "low cost"' simulator [Ret. 6], it, did not appear to present a realistic view

of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.

38

b. Lambert's Cosine Law Shading

The second method of determining the shade for a polygon involved

the use of a point light source and Lambert's cosine law [Ref. ll:p. 278]. Let N
—>

be a unit normal vector to the polygon, and I be a unit vector in the direction of

—

>

-+ ...
the light source. The angle between N and L, $, is the angle of incidence.

Lambert's Law states that the intensity of the light reflected from the polygon is

proportional to cos $ (Equation 5.4).

/ a cos $ (5.4)

In order to use this law, the normal vector (iV), the light source vector (L), and

the angle between them (<£) must be known. N can be determined by taking the

—

»

—

»

—

»

cross product of vl and v2, where vl is a unit vector in the direction from vertex

B to vertex C of the polygon, and v2 is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).

N = vl x v2 (5.5)

With N and L available, cos $ can be computed as their dot product (Equation

5.7).

cos $ = .V • L (5.7)

Since the intensity is proportional to cos <fr, the appropriate color index to use can

be computed as

color index = min index + (# shades*cos $) (5-8)

39

Light Source

Figure 5.2 Lambert's Cosine Law

40

where min index is the color index of the lowest intensity green and

min index + # shades is the color index of the highest intensity green.

c. Gouraud Shading

The final shading model investigated involved the use of Gouraud

shading. The purpose of Gouraud shading is to provide a continuous transition of

shades across a polygon so that the shades at the edges of adjoining polygons

match. This in effect eliminates the visible boundary between polygons and

provides a smooth continuous surface. The Gouraud algorithm involves

interpolating to determine the intensity to be used at each pixel along a scan line,

and is illustrated in Figure 5.3 as reproduced from Hearn and Baker [Ref. ll:p.

290]. To use the algorithm, intensity values for each vertex of the polygon must

be known. In the project's implementation, the intensity at each vertex was

computed as the average of the intensity values for all the polygons meeting at

that vertex, where the individual polygon's intensity values were calculated using

Lambert's cosine law.

The use of this model posed two problems. First, even though the

IRIS supports Gouraud shading in its graphics library, its use increased the time

between frames to an unacceptable rate (approximately one and one-half to three

seconds between frames). Second, the smoothing of the algorithm worked too

well, resulting in terrain displays that lacked the necessary position cues to detect

motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.

41

Scan Line

For interpolated shading, the intensity value

at point 4 is determined from intensity values

at points 1 and 2, intensity at point 6 is

determined from values at points 2 and 3, and

intensifies at other points (such as 5) along

the scan line are interpolated between the

values at points 4 and 6.

Figure 5.3 The Gouraud Shading Algorithm

42

d. Adding Texture

Lambert's cosine law was chosen as the shading model for use in the

project, providing the most realistic display within the allowed computation time

constraints. However, a problem with its use is that the flat valleys, with little

variance in the surface normals of their polygons, produce large geographic areas

having a near constant shade. This results in a lack of motion cues in these areas

similar to that experienced with the Gouraud shading model. To remedy this

situation, a simple artificial texture, in the form of a checker board, was imposed

on the terrain. The checker board effect was implemented as follows. First, the

shades for the two triangles in each gridsquare were averaged, and this average

shade was used for both of them. This of course causes the visible boundary

between the triangles to disappear leaving a square shaded in a single color.

Second, two slightly offset color ramps were used with adjacent grid squares using

different ramps to compute their shades. One ramp is composed of green

intensities ranging from 255 to 50, while the other uses intensities ranging from

245 to 40. * This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence

of the color green.

43

B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to

display the terrain. The first is a five-dimensional array, savetriangle , that stores

the values of the coordinates for each triangle making up the terrain structure.

The second is a two-dimensional array savecolor that stores the color map indices

for each of the terrain's grid squares. The purpose and range of each of

savetriangle^ indices is shown in Table 5.1. For example,

savetriangle [3] [5] [l][l] [2] would contain the value of the Y coordinate (fifth

dimension = 2), of the second vertex (fourth dimension = 1), of the northern

triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SAVETRIANGLE ARRAY

Dimension
Index Range

Purpose
Start End

First 98 Grid square index in the Z direction.

is the southern most square, 98 is the

northern most.

Second 98 Grid square index in the X direction.

is the western most, 98 is the eastern

most.

Third 1 Triangle identifier within a grid square.

is the southern triangle. 1 is the

northern.

Fourth •> Vertex number of the triangle. is the

first vertex, 2 is the last.

Fifth 2 Coordinate identifier of the vertex. is

the X coordinate, 1 the Y coordinate

and 2 the Z coordinate.

44

Table 5.2 lists the purpose and ranges of each of savecolor's indices. For

example, savecolor [30] [10] contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.

TABLE 5.2 LAYOUT OF THE SAVECOLOR ARRAY

Dimension
Index Range

Purpose
Start End

First 98 Grid square index in the Z direction.

is the southern most square, 98 is the

northern most.

Second 98 Grid square index in the X direction.

is the western most, 98 is the eastern

most.

These two arrays contain all the information necessary to construct an image

of the terrain. The following chapter provides the details of using their data to

create a real-time, updated image of the terrain as it is seen from the FOG-M's

camera.

45

VI. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-

dimensional terrain from the provided elevation data. This chapter's purpose is

to explain the details of displaying this terrain in real time as it is seen through

the missile's camera.

The high level pseudocode for the main program's terrain display loop is

shown in Figure 6.1. Chapter VII explains the details of step two. The details of

steps one and six are explained in Appendix B under the procedures readcontrols

(for step one) and edit navbox and edit indbox (for step two). The remainder of

this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE'S POSITION

Determining the missile's new position can be broken into two cases:

[l] the missile is under operator control and its new position is a function of the

old position, the commanded direction of flight, the commanded altitude,

and the commanded speed.

[2] the missile is iocked onto a target and its new position is a function oi its old

position, the position of the desired target, and the commanded speed.

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile's flight. This means that the missile is able to

46

While missile is flying do

1) Read the values from the operator's controls

2) Determine new positions for all the targets

3) Determine the new position for the missile

4) Determine the position of where the camera is looking

5) Display the terrain as seen by the camera

6) Update the operator's control indicators

End while

Figure 6.1 Main Display Loop Pseudocode

instantaneously change heading, speed, and altitude. This assumption was made

only because of development time constraints. It is felt that the computations

necessary to more realistically model the dynamics of the flight can be done

without a serious degradation of the simulator's performance.

1. Case 1 - Operator Control

Under this case the missile's A", F, and Z coordinates are computed as

shown below.

ADist = Speed*ATime (6.1)

47

Where

- ADist is the distance traveled over the ground since the last position was

calculated.

- Speed is the missile's speed in feet per second and

- ATime is the elapsed time since the last position was calculated

Having calculated the distance the missile must move during this frame, the

missile's new coordinates (MX,MY,MZ) can be calculated as

MX = MX ,, + [cos(Dir .)
*ADist] (6.2)new old I V cmd> J V ")

MZ = MZ ,,-\sin(Dir .)*ADist] (6.3)new old I V cmd' > V I

MY = (Alt Y (6.4)new > cmd' V
w *^/

Where

- Dir . is the commanded heading in radians

- Alt . is the commanded altitude in feetcmd

- a is the altitude scaling factor (see Chapter V, Section A. 3).

2. Case 2 - Locked Onto a Target

In the case where the missile is locked onto a target, the missile's new

position is computed as follows. ADist is computed as in Equation 6.1. Next the

missile's heading is computed so as to steer it directly toward the target's

position:

Dir = arctan2(-[TZ-MZ\,[TX-MX]) (6.5)

48

Where

- Dir. . is the direction from the missile's position to the target's position

- TX is the X coordinate of the target's position

- TZ is the Z coordinate of the target's position

- MX is the X coordinate of the missile's position

- MZ is the Z coordinate of the missile's position

- arctan'2(a,b) is a function which returns the arctan

to 211, based on the sign of a and 6.

' a^

{ b)

in the range

Once Dir. . is known, the missile's new X and Z coordinates can be calculated as
tgt '

MX = MX ,. + [cos(Dir, ,) *ADist]new old I V tgt

'

J

MZ = MZ ,,-\sin(Dir. .) *ADist]new old l V tgt' '

(6.6)

(6.7)

Next the missile's altitude (MY) is adjusted a proportion of the total altitude

difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

'tgt
Dist

tat
=y/(TX-MX)* + {TZ-MZ)

ADist
MY =MY ,,-new old

-TY)
Dist

tgt A

(6.8)

(6.9)

Where

Dint, is the distance to the target measured along a horizontal plane.

MY and TY are the Y (altitude) coordinates of the missile and target,

respectively.

49

C. DETERMINING THE LINE OF SIGHT

Once the new position of the missile has been calculated, the next step in

displaying the terrain is to determine another point along the camera's line of

sight: the look-at position. This calculation is also broken into two cases based

on whether the missile is or is not locked onto a target (see Figure 6.2).

The case where the missile is locked on is trivial, the look-at position is

simply set to the coordinates of the locked-on target.

LX=TX (6.10)

LY=TY (6.11)

LZ=TZ (6.12)

Where LX, L Y, and LZ are the X, F, and Z coordinates of the look-at position.

This centers the target in the displayed three-dimensional scene.

When the missile is not locked onto a target, the camera's look-at position is

a function of the missile's position, the missile's heading, and the pan and tilt

angles of the camera. It is determined as follows

Dir
look

= Head
ms[

+Pan (6.13)

LX = MX+[cos(Dir
look

)*Dist
loJ (6.14)

LZ = MZ-\sin{Dir.)

x
Dist, .1 (6.15)

'- \ :ook> look* \

LY = MY+[Disthok *tan(2Y/t)] (6.16)

50

, TY, TZ)

Case 1 - Missile Locked on a Target

DIR = Heading + Pan
look

(LX, LY, LZ),

Dist
Loo Ac"

>-

(LX, LY, LZ)

Dist * tan (Tilt)
i-ooAc

Overhead View Side View

Case 2 - Missile Not Locked on Target

Figure 6.2 Determining the Camera's Look-at Position

51

Where

- Dir. , is the direction the camera is looking

- Pan is the pan angle of the camera

- Tilt is the tilt angle of the camera

- Dist, . is an arbitrary distance over the ground that the camera looks ahead.

Since the only purpose of LX, LY, and LZ is to determine a point along the

camera's line of sight, any positive number will be acceptable. A value of five

kilometers is currently used.

D. DISPLAYING THE SCENE

Once a line of sight has been determined, the next steps are to apply the

appropriate viewing transformations, draw the filled polygons that make up the

terrain, and add other items to the scene such as targets and roads.

1. Viewing Transformations

It is possible to project a three-dimensional object onto a two

dimensional viewing surface in two basic ways. In one method, the parallel

projection all the points of the object are projected along parallel lines. This has

the advantage of preserving the relative dimensions and angles within an object

and is used when accurate views of various sides of an object are needed such as

in architectural drawings. In the other method, the perspective projection, all

the points of an object are projected along lines that converge at a single point

called the Center of Projection. In this method, relative dimensions are not

preserved. Lines closer to the projection plane appear larger than those that are

more distant. The perspective projection provides a view of three-dimensional

52

objects that is more realistic, similar to that provided by the human eye or a

camera. Both these projections are illustrated in Figure 6.3. [Ref. ll:pp. 235-241]

Because of its more realistic presentation of the scene, a perspective

projection was used for the project's three-dimensional scenes. The IRIS's

graphics library provides a procedure called perspective which constructs the

necessary transformation matrix* to obtain a perspective projection. The matrix

is defined as [Ref. 7:p. C-2]

Perspective (fovy, aspect, near,far)

fovy
cot()

2

aspect

fovy
cot()

2

far + near

far — near

2x/arx near

far — near

-1

(6.17)

Where

- fovy is the field of view angle

- aspect is the aspect ratio, a ratio of the distance a viewer sees in the X
direction to the distance he sees in the Y direction. It is generally set to be

the same as the ratio of the width to the height of the viewport.

- near and far are the distances from the viewer to the near and far clipping

planes.

A knowledge of using transformation matrices to perform graphical operations is assumed

here. Hearn and Baker |Ref. ll:chaps. 11-12] provides excellent coverage of the subject.

53

Center
of -

Proj ection

Parallel Projection Perspective Projection

Perspective
Pro j ection

Proj ecti on

P I ane

;::::=- Center
of

Proj ection

Closer lines appear larger than more distant

lines of equal length.

Figure 6.3 Parallel and Perspective Projections

54

The perspective projection forms a view frustum as shown in Figure 6.4.

Any object within the frustum between the near and far clipping planes will be

displayed in the scene. Objects outside this view volume are clipped and

discarded.

Next, the frustum formed by the perspective projection must be

positioned along the camera's line of sight. This is accomplished by another

transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

- V , V , and V : the X, Y, and Z coordinates of the center of projection.

- P , P , and P : the X, Y, and Z coordinates of the look-at position.

- Twist, a right handed rotation of the scene about the line of sight.

The transformation matrix formed by lookat is actually the result of multiplying

four other transformation matrices [Ref. 7:p. C-2]

Lookat{V
x
,V

y
,V

g
,P

x
,P

y
,P

z
,Twist) =

Trans{-V
x
,-V -V

z
)xRot (0)x Rot

x
($)x Rot

z
(- Twist)

(6.18)

Where Trans(-V ,- V -V)

1

1

1

-V -V V 1

(6.19)

55

Clipping

Planes

Y

4

aspect =
dy

The perspective command defines a near and

far clipping plane, a field of view, and

an aspect, ratio .

Figure 6.4 The Perspective Command

56

Rot
y
(Q) =

cos(e) -sin{e)

10
sin(e) cos(e)

1

(6.20)

Rot (#) =

10
cos($) sm($)

-sm($) cos(<I>)

1

(6.21)

Rot (- Twist) =

cos(— Twist) sin{— Twist)

— .sm(— Twist) cos{— Twist)

10

1

(6.22)

And = sin

/

r.--V
X

•

1 n/CV-V) '+(**.--vy
(6.23)

$ = sin
-l

'

v -
y
P \

n/CV-vr)
f(P h(p

z
-
-y.r)

(6.24)

As can be seen, this transformation simply translates the center of projection to

the origin, then rotates the view frustum about X and Y axes to align with the

line of sight. Finally the twist angle is added with a rotation about the Z axis.

57

In the flight simulation, the twist angle is analogous to the "roll" angle of an

aircraft or missile. A value of zero is currently used, but other values could be

used if the roll of the missile during flight was added to the model.

2. Determining Which Polygons to Draw

After the correct viewing transformations have been applied, the

polygons that comprise the scene must be drawn. Although the IRIS will "clip"

polygons which lie outside the perspective projection's view volume, an increase in

frame update speed can be achieved by not attempting to draw those that

obviously lie outside. This is discussed further in the following section on

simulator performance.

The term view — bound is used to describe a north-south oriented

bounding box around those parts of the scene that are sent to the graphics

pipeline. The view-bound is described by the index of the northernmost,

southernmost, easternmost, and westernmost gridsquare to be drawn. It is

calculated by extending (if necessary) the line-of-sight vector until it intersects the

horizontal plane Y = Min elev, where Min elev is the minimum elevation value

of the terrain. The view — bound is calculated as being 20 gridsquares to the

north, south, east, and west of this intersection point. If the missile's X and Z

coordinates are not within the calculated view -bound, the bounds are extended to

include them. Figure 6.5 illustrates this construction.

58

Missile Position (MX, MY, MZ)

Look-at Position (LX, LY, LZ)

Horizontal Plane: Y = Min elevation

East View-bound

1) Line of sight vector is extended down
to intersect the minimum elevation plane .

2) View bound extends 20 gridsquares north,
south, east and west, of the intersection.

3) Bound is extended, if necessary to
include the missile's position.

Figure 6.5 Construction of the View-bound

59

3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden

surfaces from the scene. A hidden surface is simply a part of the scene that is

obscured by some object in the foreground, such as a valley that it hidden behind

a large hill.

The IRIS supports a method in hardware called Z- Buffering. In this

method, a buffer is maintained for each pixel position on the monitor and

contains the "depth" (transformed Z coordinate) of the part of the scene that

generated that pixel. Before drawing is started, the buffer is initialized to the

maximum depth value (the value of the far clipping plane) for each pixel position.

Before each new pixel is drawn, its depth is compared to the depth stored in the

buffer. If its depth is greater than the stored depth it is not drawn. If it is less

than the stored depth, it is drawn and its depth value replaces the value in the

buffer. This method could not be used in the project for two reasons. First, with

comparisons having to be made on a pixel-by-pixel basis, it slows down the frame

update rate to an unacceptable level. Second, the IRIS does not allow the use of

Z-buffering and double-buffering at the same time. Double-buffering is necessary

to implement the animation of the scenes.

Another common method of hidden surface removal is che painter's

algorithm. It derives its name from the way a painter would draw a scene on

canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm

60

in computer graphics means drawing the scene in an ordered fashion, such that

the most distant objects from the viewer are drawn first and those closest to the

viewer are drawn last. Since the gridsquares comprising the terrain form well

denned rows and columns, an efficient implementation of this algorithm is

possible. That implementation is described below.

The implementation can be thought of on a conceptual level as follows.

A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-

scanline. Gridsquares within the view-bound are drawn as they are intersected by

this scanline. The scanline is first positioned along the line-of-sight vector so that

it intersects the far corner gridsquare of the view-bound. After all the gridsquares

along the scanline have been drawn, it is moved one gridsquare closer to the view

position, along the line-of-sight vector, and the process is repeated. This

continues until all the gridsquares within the view-bound have been drawn.

Figure 6.6 illustrates this process.

From Figure 6.6, notice that each scanline passes through three

gridsquares in a column, shifts over a column, then passes through three

gridsquares in the next column. The number of gridsquares drawn in a column

(or row) before advancing to the next column (or row) can be determined by

computing the tangent of the acanline's direction. If the magnitude of the

tangent is greater than 1.0, scanlines will run and shift along columns of

gridsquares. If it is less than 1.0, scanlines will run and shift along rows of

gridsquares. The term .threshold is used in the remainder of the algorithm to

61

First_
Scanline

The Scanlines

30 19 10 4 1

31 20 11 5 2

32 21 12 6 3

33 22 13 7

34 23 14 8

35 24 15 9

36 25 16

37 26 17

38 27 18

39 28

1

140 291

Drawing Order of the Gridsquares From

the First 5 Scanlines

Figure 6.6 The Scanline Hidden Surface Algorithm

62

describe the number of gridsquares drawn before a shift of column (or row) takes

place. It is computed as

threshold =

nearest integer\ta.n{Dir
JJ

l
scan'

nearest integer [tBulDir))
V V scan''

-1

if tan(D?'r j
* scan'

1.0

(6.25)

if tan(Z)zr)
v scan'

<1.0

The pseudocode for implementing the algorithm is shown in Figure 6.7.

The case shown is for a line-of-sight direction that is in the first octant (between

n
and — radians). The algorithm for the other seven octants is similar, the

4

difference being the direction the scan line advances, and the direction it shifts

when the threshold is reached. Table 6.1 summarizes these parameters for all

eight octants.

TABLE 6.1 VARYING PARAMETERS FOR THE SCANLINE ALGORITHM
BASED ON THE OCTANT OF THE LOOK DIRECTION

Octant
Look Directions Scan Line Advances

When Threshold is Reached
From To From To

1 n/4 North South Shift one column East

2 n/4 n/2 East West Shift one row North

3 n/2 3n/2 West East Shift one row North

4 3n/2 n North South Shift one column West

5 n 5n/4 South North Shift one column West

6
!

5H/4 3II/2 West East, Shift one row South

i 3II/2 7II/4 Hias t West Shift one row South

8 7n/4 2n South North Shift one column East

Notice the step draw gridsquare[z index][x index] in the algorithm.

Since a gridsquare contains terrain, and can also contain roads and targets, an

63

Calculate the threshold value

count <-

start x index <— west view bound

start z index <— north_view_bound

While start z_index > south view bound do

z index <— start z index

x index <— start_x_index

while (x_index ^ east_view_bound) and (z index ^ south_view_bound) do

{ traverse a scanline }

draw gridsquarejz index] [x index]

z index — z mdex - 1 {move it one gridsquare south}

count *- count -I- 1

if count = threshold then

x index «- x index + 1 {move it one gridsquare east}

count <— { reset count}

endif

end while

{move on to next scanline: start it one gridsquare to the west}

start x <— start_x - 1

count «—

if (start_x < west_view_bound) then

start x <— west view bound

start z <— start z - threshold

endif

endwhile

Figure 6.7 Pseudocode for the First Octant Scanline Algorithm

ordering of these parts of the gridsquare must also take place. The two triangles

forming the terrain are drawn first, next any roads are drawn, and finally any

64

targets are drawn. The details of integrating the targets and roads into the scene

are covered in the following two chapters.

The resulting scene is shown in Figure 6.8, a photograph of the IRIS

monitor during the flight simulation. Note how the hidden surface removal allows

the foreground hills to naturally obscure the valleys behind them. Also note the

effect of the lighting model and texturing described in Chapter V.

E. SIMULATOR PERFORMANCE

Data collected while running the simulator shows that the average frame

update rate is approximately four frames per second. The Unix profile utility

was used to determine which procedures accounted for the majority of the

simulator's time usage. Table 6.2 shows the results for the top four routines.

TABLE 6.2 FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

16.9 polf Iris graphics library filled polygon routine.

13.7 display terrain Output 3-D scene with hidden surface removal.

8.7 malloc C language built in routine for dynamic

memory allocation.

4.5 gl findhash Low level Iris graphics library routine, used for

the hash tables associated with graphical

objects (Not user accessible).

The top two entries in Table 6.2 are directly involved with outputting polygons to

build the terrain image. It is therefore reasonable to believe that the frame

update rate depends heavily on the number of polygons that are passed to the

geometry engines.

65

66

8323.52?;2398wad;<mb95?;
66

Figure 6.9 is a scatterplot showing the frame update speed achieved when

various numbers of polygons were attempted to be drawn. The data was

generated by reading the system clock before each frame update and calculating

the number of polygons based on the view — bound that was used during that

frame. The graph clearly shows the effect the view-bound has on the frame

update rate. The next two entries, malloc and gl findhash, are traceable to the

making and deleting of the graphical objects that store the targets (this process is

explained in Chapter VII). As an experiment, the construction and deletion of

the targets' objects was removed from the simulation and the targets were simply

displayed in stationary positions. The profile results from the simulator run in

this configuration is shown in Table 6.3. Figure 6.10 is another scatterplot,

generated in the same manner as Figure 6.9, except that the simulator was run in

the stationary target configuration. Eliminating the dynamic memory

management associated with the target's graphical objects increased the average

frame update rate from 2.99 to 3.90 frames per second. Also, the maximum frame

update rate achieved doubled from 7.5 to 15.0 frames per second. This would

suggest that an area for further research is an improved algorithm for target

updating that does not involve dynamically allocating memory.

The fact that the frame update rate is so heavily dependent on the number of

polygons passed to the geometry engine suggests that a more sophisticated

method of determining the view-bound may pay off in increased performance.

For example, the present method does not take into account the field of view

67

I
o
o— o

CM
CO

—

<

05
o Oi
00 o
CM CM

• • *

o— o
T3 T) •

CO
CQ

a

bO
>>
(—

1

CO C •

CQ

GO u
CO

•

m • •

—
ga CQ m

• o H
CQ

c
u
CO

a
•

• m
• •

o— o
o
w

a,

H
CO

Xi

bO

.—1

a

CO

co

—
•

•

•
••1

•• •

. •••«•• 2 3H «»a HM » «

<4-l «H ••• • 1 o
o mu

53
Eh

2h

=*fc

— o
CO

>d • •••••• • •

<D Fh • •••,» •

a;

>
• *!•• • •

• • • i «•• •, • a ri

co

• •••• g» •
t • ••(M*t m Eh 05

>>

< • •••• ••• •
• •• • • •

o
o— o
CO

CO

• • • • ,

t. •

• • •

CO
CO

• • <: a
• •• •

CO >>
• | 2; ri
• • * • o

o— o
CM

a i—

i

•

•

• • a

•If. '

• • •

a,
CQ

•H
a Q

• <

• <

•
•

> •

> •

• •
• •

•
•

• • •
•

OB

CD

• •
• •

• • o CO

• • • o u

i
'

'

• •

•
•
•

•

1 !

I

• •

• •

1
« .

— o
rH

bO
•H

t 1 • t
'

•

i
1 :

• > •
» *

•

1 I
t

•

•

•
•

•

1 1 1 T 1 1 1 1

CO N 6

FRAMES PER

5

SECOND

<** CO CM rH

68

angle. It should be possible to bound the line-of-sight intersection point with less

than twenty grid squares when the field of view angle is small. However, any new

algorithm developed can not be so sophisticated that it negates the performance

increase by requiring intensive computations.

TABLE 6.3 FOG-M ROUTINES USING THE MOST CPU TIME
(WITH STATIONARY TARGETS)

% CPU Time Routine Name Purpose

23.9 polf Iris graphics library filled polygon routine.

22.3 display terrain Output 3-D scene with hidden surface removal.

5.5 color Iris graphics library routine which sets the

current drawing color.

4.1 line intersect2 Finds the intersection point of two lines. This

routine is used exclusively during the road

building process and therefore is not used at

all in the display loop.

4.0 poly Iris graphics library unfilled polygon routine.

Used during the display loop to outline the

road segments.

69

n o
COo

o 43
<0N
bfl

lO U
CM

05 O
CO o> >>

t>» • o M
<n co o

o
• • • CO

passed
second

•

—

o H

•H
43
d
+3

CO

45

c <0

o a
o
o
10

a
m

43
•H

rage

#
of

polyg

Average

frames

• *
•••
•

CO

a

•^ S >%

.3

« llll »
na«Mi

—
o
o
o

O
Ha

SH
a

Pu

Fh

IB

^3
0} ••«•*

2
>
<

o
o
o
CO

CO
CO CO

.•••» < >
!•• S. Ol,

•!!!r
:\\\\Z. CO 43

• • 1 »#** 2 ri

• •••
o
o
o
CM

a
a

43

.Inr
• • • i

a ri

cu

• • • 4fc D
i • • •

>>• 1

d
• 4

o i—

i

• <

• • <

— o
o CO

» t «

• •

> • H •H
• • • a
• •

• • •
• t •
• •

—
o

• • r-*

« •

* i
• •

t
• co

"*^
I | l l l 1

"7" Q)

CD tJ< CM O 00 CO * CN>
U

tH tH t-H

CO

PER

x

SECOND

bO
•H

70

VII. TARGET INTEGRATION

A. GENERAL

The primary targets of a FOG-M missile are tanks, helicopters, and

reinforced ground installations. The simulator is designed to handle many types

of targets, including various tanks and helicopters, but only a single type of tank

is currently implemented. The prototype simulator provides an Ethernet

networking capability to allow the input of actual target positions in real-time.

This simulates the input that would be received by a production simulator during

computerized mock combat field experiments. In its networking mode, the

simulator receives target position and orientation data from an interactive

program running on a different IRIS workstation. The target program, still in

testing and not detailed in this study, provides the capability to dynamically

insert and delete targets at any location, and to modify their speed and direction.

In the simulator's stand-alone mode, there are ten tanks defined by default that

criss-cross the ten kilometer square terrain area. These tank targets move at a

constant speed of fifteen knots and reverse direction when they reach one of "he

edges of the ten kiiometer terrain square. No automated path planning is

presently performed in either mode, so the tanks blithely traverse even the

71

steepest terrain. The default targets minimize this problem by traveling the length

of the valleys for the most part.

B. TARGET CREATION

Target creation is simplified through the use of graphical objects. The actual

image of a tank is denned initially by the tedious specification of the three

coordinates of each vertex of each of the polygons that comprise the tank (Figure

7.1). Using objects, this need only be done once, placed in an object, and then

referred to by a single name within each target object. Thus each target is

described by an object (the tank object) within another object (the target object).

In addition to the tank object, the target object also contains the transformation

commands that move the tank from the origin to its location on the terrain (a

translation) , and face it in the direction it is moving (a rotation).

1. The System Matrix

The rotation and translation commands work by modifying the system

matrix. The system matrix is a global data structure that is used to transform

coordinates from the three-dimensional world space into the two-dimensional

screen space. Each transformation can be performed as a series of computations

on individual X, Y , and Z coordinates, but the Transformations can also be

accomplished with a single matrix multiplication. The IRIS has a matrix

multiplier built into its hardware, so matrix operations are very efficient. At least

three transformations must be applied to every endpoint on the tank: a coordinate

72

78

II

s9nocSrota1um.1.S
Figure 7.1

sraling, a translation, and a rotation. Rather than do three separate matrix

multiplications, the three transformation matrices can be combined, so that all of

the transformations are accomplished in a single matrix multiplication. The

matrices are combined by applying each of them to the system matrix. Each

point is now completely transformed through a single multiplication with the

system matrix. When a new transformation is needed, the system matrix must be

reset by applying the inverses of the old transformations, or by copying the

original contents back into the system matrix. Two commands are provided with

the IRIS to support the latter method. Pushmatrix takes a copy of the system

matrix's current contents and saves it on the system stack. After the

transformations have been applied, and the drawing that used those

transformations has been completed, the system matrix is reset by calling

popmatrix, which retrieves the copy placed on the stack by pushmatrix and

restores the contents of the system matrix to the previously saved values.

2. Target Transformations

The tank is initially defined with its center interior at the origin

(coordinates (0,0,0)). While it is not important which point on or in the tank is

placed at the origin, it is crucial that the tank be defined somewhere around the

origin in order for the rotation command to have the desired effect. The original

direction of the tank is significant only to the extent that it must be known in

order to calculate the appropriate rotation to achieve a specified heading. The

tank in FOG-M faces to the right (zero radians mathematically, or a compass

74

heading of ninety degrees) initially. During target creation, dummy (zero valued)

rotation and translation commands are placed in the target object, to be updated

for display by a later editing of the object. Since all rotation and translation

commands affect the system matrix (as previously described) and are cumulative,

each target object must apply its transformations, be drawn, and then remove

those transformations so that latter drawing commands are not distorted. Within

each target object, the contents of the system matrix are saved with a pushmatrix

call, the appropriate rotation and translation commands are applied to the system

matrix (in reverse order, due to the nature of matrix multiplication), the target is

drawn by calling the tank object, and then popmatrix is called to reset the system

matrix.

C. ANIMATION

Animation of the targets is accomplished using the objects and

transformations described above. The targets must be moved slightly before

being redrawn in the next frame. This requires new (X, Y,Z) coordinates, from the

network or from local calculations. Then a global data structure is updated to

indicate when in the display algorithm the target should be drawn, and the

translation command in the target object is edited to provide the new coordinates.

As each frame is displayed, targets appear in slightly shifted positions, and give

the appearance of animated motion.

75

The calculation of new coordinates requires the maintenance of position,

speed, and direction data for each target. The total distance traveled between

screen updates is the product of the elapsed time (obtained from the IRIS's real-

time clock) and the target's speed, scaled so the units match. In the networking

version of the simulator this is done remotely; in the stand-alone version

everything must be maintained locally. The target's direction of travel is stored

in radians, and is measured using the standard mathematical convention as

opposed to a compass heading (Figure 7.2). This allows calculation of the the

appropriate east/west (AX) and north/south (AZ) movement as follows:

AX -cos (direction) * time * speed * scale factor (^-l)

AZ = —sm(direction) * time * speed * scale factor (7-2)

The new target (X,Z) position is the sum of the old position and the offsets

(AX,AZ) from Equations 7.1 and 7.2. Since all of the current targets are tanks,

their Y coordinates (altitude) should be taken from the height of the terrain

underneath the tank. This is obtained from the DTED interpolation routine

gnd level, which is called with the new (X,Z) coordinates as input parameters.

D. DISPLAY

Chapter Five explained the exploitation of the structure of the data and the

use of the painter's algorithm to solve the polygon ordering problem without

resorting to slower or more complicated schemes like Z-buffering or Binary Space

Partitioning [Ref. 13]. Targets cannot merely be drawn after the terrain because

76

TT/2

TT o (2TT)

3TT/2

Mathematical Convention

(Radians)

(360)

270 90

180

Compass Convention

(Degrees)

Figure 7.2 Direction Conventions

77

of the same ordering problem. Otherwise, targets appear in front of everything,

and it is impossible to simulate a target moving out of sight into the distance or

behind some terrain feature. The implementation of the target display algorithm

is greatly facilitated by the use of objects. Objects allow the grouping of drawing

commands into a subroutine-like package, which can be edited (effectively

allowing parameterization) and then displayed with a single command. A two-

dimensional array of object "names" (the object -name -array) is initialized so

each element of the array represents the target object to be drawn in the one

hundred meter square of terrain with the same indices. Since the C programming

language recognizes the value integer zero as FALSE, and anything else as TRUE,

this array does double duty as an array of booleans indicating the presence or

absence of a target object in a particular one hundred meter grid square. (No

target objects are given the "name" zero, which would indicate FALSE.) A list of

targets is used to reset this array to all zeroes before each screen update (i.e. only

those elements that contained targets need to be zeroed) so maintenance overhead

of the array is minimized. The new target positions are received over the

network, or are calculated, based on each target's position, speed, and direction,

plus the elapsed real-time since the last update. The appropriate object-name-

array indices are calculated from the new target position and the object.-name-

array is updated. If this is the first (or only) target in the designated one hundred

meter grid square, the update is accomplished by making a new object, and

setting the object-name-array element equal to the new object's integer "name."

78

If the array shows that some other target is already in that particular piece of

terrain (i.e. the object-name-array element is non-zero), the current target is just

added to the object specified by the "name" in the array. Once this has been

done for each target, this array is available for the display terrain module.

Display terrain checks the array as it draws each square of the terrain to see if

any targets should be drawn. If so, it calls the indicated target object just after it

has drawn the one hundred meter grid square on which the target (s) rests. Note

that this causes the target (s) to be drawn at the correct time for the painter's

algorithm. The correct place to draw the target still must be specified by the

transformation commands within the target object.

In some cases it is necessary to draw a target more than once. Targets that

straddle a one hundred meter grid square boundary must be drawn on top of both

(or possibly all four) grid squares in order to avoid being partially obscured by

whichever grid square is drawn last. (The target must be drawn immediately after

the grid square on which it rests to ensure that the target will be obscured when

it should be, by terrain drawn in the foreground.) Since the calculation of

boundary intersection involves several trigonometric functions and an allowance

for the distance between the center of the tank and its boundaries (which varies

with the direction of the tank), a simplifying algorithm is used. If the tank is close

enough to a boundary that the most distant part of the tank might cross the

boundary (see tanks A and B in Figure 7.3), the target object is also drawn after

the adjoining grid square(s).

79

-z

(-1,-1)

t

"CORNER"

'SIDE'

(-1,0)

(-1,+D

Grid Square with

(X,Z) offset

(0,-1) (+1,-1)

15' t

"MIDDLE" of grid square

containing tank

15'

Grid Square with

(X,Z) offset

(o,+i)

(Not drawn to scale)

(+1,0)

15'

+x,

(+i,+i)

Figure 7.3 - Boundary Conditions

80

The one hundred meter grid square is essentially divided into three areas:

the middle, its sides, and its corners. In the middle, the tank cannot overlap any

other grid square. On the sides, the tank may overlap one adjoining grid square,

and in the corners, the tank may overlap three adjoining grid squares. The

reference point on the tank (the position the X, Y, and Z coordinates refer to) is

located at the very center of the tank. The tank is thirty feet long, so the most

distant parts of the tank are within a fifteen foot radius of the tank's reference

point. The lines that mark the side and corner areas are thus fifteen feet inside the

borders of the grid square. Once the tank's reference point is within these areas,

it is potentially obscured by the later drawing of the adjacent grid square(s). It

might not be obscured if it is paralleling a side, for example, but the overhead of

drawing it twice (or even four times) when it does not need to be is smaller than

the overhead of the calculations to determine if the position and direction of the

tank have it actually crossing one or more edges.

The repeated drawing is accomplished by adding a "new" target to the array

of target objects. The "new" target object is drawn at the exact same location in

the three-dimensional terrain, but it is drawn after a different one hundred meter

grid square, so it will have different target object array indices, and be in a

separate target object, even though the two (or four) targets drawn will overwrite

each other and produce a single image.

81

VIII. CULTURAL FEATURE INTEGRATION

The addition of cultural features add much to the realism of the displayed

scene. They also provide valuable landmarks from which a person observing the

scene can geographically orient himself. This chapter covers the addition of one

type of cultural feature, roads, to the FOG-M simulation. Roads were chosen as

the first feature to add because of the special problems associated with their

implementation, the ease of extracting their locations from contour maps, and the

visual impact added to all parts of the scene due to their wide-ranging locations.

Three areas will be discussed: (1) the format of the external data file that contains

the road's locations, (2) the process of mapping the roads onto the existing

terrain, and (3) the integration of the roads into the terrain display loop.

A. EXTERNAL DATA FILE FORMAT

The data being used in the simulation was obtained by manually extracting

the roads' positions from a DMA Topographic Center (DMATC) contour map of

the area. Although this data is available in the DMA's Digital Feature Analysis

Data (DFAD) file, the software necessary to access it was not available. The road

data file's format is such that the DFAD data can be easily used when the access

software is developed.

82

Figure 8.1 shows a segment of the file containing data for two roads along

with a diagram showing their locations within the terrain. Each road entry is

composed of three parts. The first part is the width of the road in feet. Next is

an integer N, where TV is the number of data points used to digitize the road.

Third is a set N coordinate pairs, where each pair represents the location of a

digitized point along the road's centerline. The first coordinate of the pair is the

east-west location of the point. It is measured in feet from the western terrain

boundary. The second coordinate of the pair is the north-south location of the

point, measured in feet from the southern terrain boundary. All the data is stored

as ASCII text, which facilitates editing bf the data using any text editor. The

DFAD data file also contains road width information (in meters) and stores roads

as a series of digitized points. The major difference is that DFAD's points are

stored as latitudes and longitudes, which need to be converted before they can be

used in the simulation. [Ref. 9]

B. CONSTRUCTION OF THE ROAD POLYGONS

Knowing the width and centerline locations for the road, the next step is to

construct the polygons which represent it. Although, this seems like a simple

procedure, it is complicated by the fact that the road must follow the rise and fall

of the terrain. Also, in order for hidden surface elimination to occur, the road

must be divided at the gridsquare boundaries so that each piece can be drawn

along with its corresponding gridsquare. The result is that the road must be

83

35. 0-*

925.0
1100.0
2150.0
2510.0
2255.0
1670.0
1300.0
1490.0
50.0-^

9300.0
6495.0
5800 .

1100.0
2400 .

2950.0
4100.0
4700 .

4850 .

5250.0
7150.0-

Width of Road 1 (feet)

of Data Points

8 Data Points
(Measured in Feet from
Western and Southern
Terrain Boundaries)

4150.0
4150.0
2100.0

Width of Road 2

§ of Data Points

3 Data Points

File Format

7000

FEET

5000

3000

1000

Corresponding

Roads

Road 2

Road 1

T 1000 3000 5000 7000 9000

FEET
'

—

Western Terrain Boundary

Southern Terrain Boundary

Figure 8.1 External Data File Format

84

broken into many planar polygons, where each polygon is a portion of the road

that overlays one of the terrain triangles within a gridsquare. Figure 8.2

illustrates this division and defines some of the terms used in the description that

follows. The high level pseudocode for processing the road data and constructing

the planar polygons is shown in Figure 8.3. As the pseudocode shows, each road

is processed a segment at a time. For each segment

- The end points of the segment's left and right side are calculated. A look-

ahead to the next road segment is done, allowing the ends of adjacent

segments to be calculated so that they meet cleanly.

- A bounding box, which contains all the gridsquares intersected by the

segment, is constructed.

Next, for each gridsquare in the bounding box, the road segment is divided into

the road-polygons at the gridtriangle boundaries. Note that all the vertices of the

road-polygons fall into one of five types:

- The intersection of a segment's left side with the side of a gridtriangle.

- The intersection of a segment's right side with the side of a gridtriangle.

- A gridsquare's cornerpoint that is contained within the road segment.

- An endpoint of the left side of the road.

- An endpoint of the right side of the road.

The road polygon is constructed by finding all the above vertices which exist, and

ordering them counterclockwise. The counterclockwise ordering is necessary for

backface polygon removal to take place. The intersections only derine the X and

Z coordinates or the vertices. The Y (elevation) coordinate is found by

interpolating between the terrain's elevation at the three corners of the

corresponding gridtriangle.

85

n

:

tL\

GRID.

\ | \RQAI

v -4 po£Jyg

V WIDTH

) \ i
\y

on.. £\^. . L

\ \JR3jVNG]\ LEFf\
iGR

SQlTARE
s" ->

\

^j ^^r

Z- \: RIGH' SIDe\:

\bo
FOR.

JND±NG E

ROAD SE.

IOX \ !

3MENT \j
\

\

i \ i \ i

\
t
\!x ^ \ ROAD \ i

2NT\

,

_**;

&EGM]

\ \
nL ; \

. \'y J^\ \
v l

\
s \ xs\ \

*

\ \ '•

Figure 8.2 Constructing the Road Polygons

86

While more data in the road data file do

read width_of_road

read number_of_points

read segment's start coordinate pair (seg _start)

read segment's end coordinate pair (seg_end)

for i = 3 to number_of_points + 1 do

if i ^ number_of_points then

read the next segment's end coordinate pair (next_seg_end)

else

next segendx <— seg_end_x

next seg_end_z <— seg_end_z

endif

calculate the start and end points for the segment's left and right side

(left start, left end, right^start. right_end)

calculate a bounding box around the road segment

for each gridsquare within the bounding box do

Construct the polygon which overlays the gridsquare's northern triangle

Add the polygon to the road object associated with this gridsquare

Construct the polygon which overlays the gridsquare's southern triangle

Add the polygon to the road object associated with this gridsquare

right start *- right_end

endwhile

Figure 8.3 Pseudocode for Constructing Road Polygons

C. INTERNAL ROAD-POLYGON STORAGE

A global, two-dimensional array of graphicalobjects, named road, is used to

store the road polygons. Each entry in the array corresponds to the pieces of road

that lie within a gridsquare. An object is created when the first road-polygon is

constructed for a gridsquare, with subsequent road-polygons being inserted into

the already existing object. Since the roads are static in nature, the use of objects

87

does not present the dynamic memory allocation problems associated with their

use in storing targets (see the Simulator Performance Section of Chapter VI). As

each gridsquare of the terrain is drawn, a check is made to see if a road object

exists for that square. If one does exist, the associated road-polygons are drawn

immediately after the terrain. This insures that hidden surface elimination occurs

for the roads as well as the terrain. A photograph of terrain which includes some

sections of roads can be seen in Chapter VII, Figure 7.1).

88

IX. FOG-M SIMULATOR USER'S GUIDE

A. OVERVIEW

This section of the report is a user's guide to running the FOG-M simulator.

The simulator was built to be largely self documenting. Instructions are clearly-

displayed on the screen, including diagrams which serve as a reminder of the

functions of the various controls. A knowledge of the logon procedure for the

IRIS workstation and the basic commands of the UNIX operating system is

assumed.

B. STARTING THE SIMULATION

To start the simulation, logon to the IRIS workstation and use the UNIX cd

command to change to the directory containing the simulation. Currently the

simulation is in the directory /work/terrain. Therefore issue the command:

cd /work/terrain

Next, start execution of the simulation by typing the command fogm. A

welcome screen will appear on the display as shown in Figure 9.1. Pressing all

three of the mouse buttons simultaneously will stop the program and return

to the UNIX command level. This option of pressing all three buttons to exit is

available at any time during the execution of the program. Pressing the middle

mouse button advances the display to the next screen of instructions. When the

89

01
in
>-H

E
a
UJa z
HH a

Ul U 3o Eo 1—
1 <ru >- O _i

-i _l a a
UJ a _J u. r:2 t- <ru

w
m

1 05

I)

fa

90

GQOHUmOEUOHog039H.@OHUMflm.hhxmahmzohhammmzacm44¢mmmmmma...m=z~hzcuchzohhammmza:NAQG—nmmmmmzomhc43c—mAnlucm.NJHmchomomnu>44¢u~wncnmwm—LHIPcwmnouqmz

user has advanced through the welcome screen and the two instruction screens

(Figures 9.2 and 9.3) he is presented with a display showing a two-dimensional

contour map. This is the prelaunch phase of the simulation.

C. PRELAUNCH CONTROLS

The purpose of the prelaunch phase is to allow the user to designate a missile

launch position and a suspected target location position. In effect, the user

describes an initial flight path for the missile.

1. The Prelaunch Display

The prelaunch display is divided into three sections as shown in Figure

9.4. The upper right corner of the display contains an instruction box which

summarizes the functions of the mouse buttons for this phase. The lower right

corner contains a prelaunch statistics box. The meanings of the various items

within the statistics box are explained below. The majority of the display is

occupied by a two-dimensional contour map. Each of the square grids on the

contour map represents a one square kilometer area. The colors on the map can

be interpreted as follows. Green areas indicate terrain that is covered with

vegetation that is greater than one meter high. Brown areas indicate terrain

where the vegetation is less than one meter high. Within each of the color

categories, the elevation of the terrain is indicated by the intensity of the color,

with the brighter colors representing the higher elevations.

91

h-
r-

!/l LU
L3 >

& L3 X qa U1
h- _l a oQ <i LU L.Z at Ot ^ 01

<z
a.

LU
1—

<rz 9
X a Z ou X JI
z W oi UJ
X LU

X X
_l z
LU

X
a 01

zX 3 ss_l at H-(fc* at_ u X £lu01 z LU X
01 z

LU
a at u

isC LU 1— at a
in <r LU

Si
torn

Q _i t— at
LU 01 X UJ u
1— <x X X
-1 z 01

o
c §5X — 1—

(

>—
c <x fc * X
01

at
a.

Xa (S
w

_ at
<r h- _i X

L_ <x t—
on Ld <E
yj X 01 01 U gma t— at
h-t X >- UJ

201

=» U- t— t— <r Xo o a t-H LU
S z at z at LU
0. 3 X a HH X 01

LU a U. u atc 3t t— LU
3 Z> L3 <x z> 01 D>£ LU u 01
L3 3 LU Ot a •— zO X <X z X

S«0! Q — <r <_) at
Q. Z _J i—Z <X c u.C 3

1

3L
LU z u X

<J LU LU Z at LU 01
X -I LU a a. at

Lv I—
1

O
01

13 u. 01 LU

L_l 1— Z LU —i LU
X X o X <r X Z
h" a u (— u t- X

92

AHOmPHHJwHfiUflnfiUHrqumHMHnwmnnflnmOfifihm".mwOLHSQWfinH.pmxmOhmzohhzm“was:m44¢mmmmmma.uzznhzauDbzappzmumDD:uJQOH:mmmmm.amoumsfimJ_:z_ozacuammoanpzumoh¢umm2mmuu>mzcapJamaubnz:x:awhczummg:2D_uwmawhwzaquonamu«machmuhu~u~uu¢mNip.>h_z_UH>ozccmzmcuchuhiauuHAmuhzzz_.m—zomhcqzzmmpIUHJLmarkmamcumc4cmmzmumzh.ozzamuuzp20ugamzaum~mahcmumoMI.:DmL2mmmmazmcmmmbmzhmaZM—D:DDZHJIthIPDDozcIUZDi.ma—mmH:cuthDEHmcmun—30am:«uoomm:IucuNIH

ujcjaza a z ux
<r — in z X _ --. O X u uJ2J <r <r _ X UJ "-Eh-h-ZZ
•_|H-I<X t— QO-O h-h-U 3n u

intni-t« <xz i-l _J axo -<xoZ 3h-_J oo 1/13 U Qt:X-J<£M Z J UJ UJ O Oh-Oh- U s
<j~Ohh _ii— QMK JZh <xux

0-UDU3 <Xl- :> U 0.Xmm UK) CV Z OCCZ h-U X
uz .

is

otnin nQ ujoo UOCH-H— _JZLJU h-0_ 3>i- h- ^X X • y*
OUIUi-i O — -U^UCUI-®ZK OCX i ^ yi uj — z -ji

K-<<Il/l uu i. _ x U130JHM
O Q.I- z oz ou_il.o e -i*JC h- ox in<ru h-i <E JuJ

£f2
3i-j« 3<r CKO-in a. z> oou. oE3QI- Pj X X U h-UXU
Mwa;t/) UJO 3>0 h- h-

z3
to H UJ—

1

o n Oh-ZUOX

xo
<rzx OO UK ouzo.cuau hH l-H r»»-h- £¥_lh--1<XE

t—zU

i o:uz 3>l- ozu. OUh-O O
o<r x Oh no uj 1/>ZX0£>-U M l—
o o<i u<z UJ idmnh

= u

U.h-3—1 Em 3a. i->-
rnt- zrnin u uuumUU 1— O • OUin JlfllDJ

ata
XI- -z Pi mmCj UO Xh-_IQ-
h- UJUJ UJ h— h— 0£ 3>a:0 ULO •

UJ _i Ql Qh HI/lE OhEUlj>>--
XuzX
<I

_ nee*. urn tn —

>

EZ >- OXOKW3 t*>- Oh- • Oh— <Xh- h- z nzu i—
< cr> 0-<X~ •UTJZJUULO X h-tn Z 13Q.UOUtOUQ o_j xrnu o in i-i in h- h-i z

<z z uo U h— HUlH^lIO.US CtO£ zx<r h-HH OZ U
UJ
S
0.

CSS i— xuz <Xh-in a_ix
Eh- in uz <XZ"- uininuuuo

Sfiin
x <r z mo _IXO OhhuJZ zuanc u 25 jhaMddtnZXUh- _i <^§ •

<XQ._J Q.U 2uiS5£h -IX h-h- t— U Sa«i-au H-l(_) hSUZ uin • uj <r _ tu c 0.JZ X 3Z h-h- O 13 ->X OL3 U(v

o
i oujte X • M Qhh QflUUXtUJ
LdUXI- QJ <XZ ZQihlh- ouum_ih-oa h— in O-IO >-iua>-i h-Zh- U-Z
Q.-I Z t- 1-1 L.l3in x<xu o«s><IZmQ <I Uh- uu o unzuu w Eujzo uj UX<I ZiCi Z_|HHh-_lxo x>- ui—u M wh- i-c q H-iinin

in
in

i-Moua u. O u. XX uoa • 3uumuz—

i

OO-J uz u ut-az h-u
z z >- — a. h- OOh-Z o oouh-cx u

5
a.

uiucavl U t— i-iZX UUHJl/IUXE J JH XU1U Ohuo: OU hMMUl3hl i o htU h-<I OCJ h- u_o<xinh-o
Ol/lU, uoc u a uiHuuia

1 — Ot UJ •l-<X • oxz • 5 Ck£ O i— 1— Z— (MOO-CD NHHt— itijGm *• w uj _j n in hi

1

b

8
•H

h§

I

CO

CO

05

<0

93

I
£ z uj

1 Hi iM U.00 3
Z LUI— 0.

Z
>*

3
a
i—

ui
tn

S;,l|
: B•-»- - 3 ac

t- ui<r z
U Q_q op s _j

!-X
Ui

a
i—

Z
J2I "Z •- s *z

5 tnou tn? wt—z tn
a
t—

uj wo mao tot— an—5 Ulh-3 uT K3C at.

i— Ot Ldh- UJH-
<X DCS K3

Jj cm—i a.00 h- O.CD 0.03

m +

^ I"

r—

I

a,
en

•H
Q
8

0)

Pi

a,

fS

I
•H

94

2. Selecting the Launch Position

The launch position must be selected first. To select the launch position,

use the mouse to move the red arrow cursor to the desired location on the contour

map. As the cursor is moved, the UTM coordinates of the current cursor location

are shown in the Launch Position field of the statistics box. These coordinates

can be used when a more accurate selection of the launch position is required than

is obtainable from the contour map alone. When the cursor is in the desired

position, press the left mouse button to lock in that position. A blue circle will

appear on the contour map showing the position selected and the workstation will

"beep," confirming the selection. The launch position can be changed any time

before the launching of the missile by simply moving to the new desired location

and pressing the left mouse button.

3. Selecting the Target Position

The target position can only be selected after a launch position has been

set. After the launch position has been selected, moving the cursor over the

contour map produces the following effects:

- The UTM coordinates of the current cursor position are shown in the Target

Location field of the statistics box.

- A ''rubber band" line is drawn on the contour map from the launch position

to the current cursor location. This line represents the flight path the missile

would take if the current cursor position was selected as the target location.

- The direction and length of the flight path represented by the above line are

displayed in the statistics box in the Heading and Distance fields respectively.

Once the cursor is at the desired target location, press the right mouse button

95

to lock in the position. A red circle will appear on the contour map showing the

selected location and the workstation will ''beep," confirming the selection.

The missile is now ready for launch. The target location can be changed

any time before launch by simply moving the cursor to the desired new location

and pressing the right mouse button.

4. Launching the Missile

Launching can not take place until both a launch and target location

have been selected. If the launch and target locations selected are acceptable, the

missile is "launched" by pressing the middle mouse button.

If this is the initial launch of this execution of the program, a several

(three to four) minute delay will follow during which calculations are done to

construct the upcoming three-dimensional scenes. Again, this delay only occurs

during the first launch of any execution. Subsequent launches proceed with no

delay. During this delay, a countdown will appear in the bottom of the statistics

box. Launch occurs when the countdown reaches zero.

D. IN-FLIGHT CONTROLS

1. The In-Flight Display

After the missile is launched, the display changes to the in-night display

shown in Figure 9.5. The left side of the display contains:

- A three-dimensional view of the terrain as seen from the missile's camera.

- A slider bar scale along the bottom edge indicating the camera pan angle.

96

z
<rC

IrvjOOE 03h-|
«-*

| OldUlt-O | |_
—1

Irvioon h<c
| P

+

a
to

Q
P
•ft

Pu

97

- A slider bar scale along the left hand edge indicating the camera tilt angle.

- A box in the lower left corner containing either the word DESIGNATE or

REJECT. The word DESIGNATE in this box indicates that the missile is

not locked on to a target and is waiting for a command to designate one.

The word REJECT indicates that the missile is locked on to a target and is

waiting for a command to reject that target.

- Cross hairs used to sight the camera onto a target.

The upper right corner of the display contains a scaled copy of the contour map

seen in the prelaunch phase. The red arrow superimposed on the contour map

shows the missile's current position (the tail of the arrow) and its direction of

flight. The red rectangle on the map indicates that area of the terrain that is

currently being shown in the three-dimensional display.

The middle right section of the display contains four indicators which

show the following:

- The speed of the missile in knots.

- The direction the missile is traveling in degrees.

- The height of the missile above ground level (AGL) in feet.

- The height of the missile above mean sea level (MSL) in feet.

- A slider bar indicating the zoom setting of the camera in degrees.

The lower right section of the display contains a summary of the functions

performed by the mouse and dials. These are explained further below. The in-

flight phase continues until the missile impacts a designated target or all three

mouse buttons are pressed simultaneously (to stop the execution of the

simulation).

98

2. Controlling the Camera

The ranges and initial values of the camera's functions are shown in

Table 9.1. All of the camera's functions are controlled with the mouse.

- To pan the camera, move the mouse left or right as needed.

- To tilt the camera, move the mouse up or down as needed.

- To zoom in to a tighter field of view, press the left mouse button.

- To zoom out to a wider field of view, press the right mouse button.

3. Controlling the Missile Flight

The missile can be controlled by changing its direction, speed, and

altitude. The ranges and initial values of each of the flight parameters is shown

in Table 9.2. The missile flight parameters are controlled by using the dials on

the IRIS's button/dial box (see Figure 9.6). Dial zero (lower left) controls the

missile's direction, dial one (lower right) controls the missile's altitude, and dial

two (above dial zero) controls the missile's speed. Refer to the display's control

TABLE 9.1 CAMERA CONTROL RANGES AND INITIAL VALUES

Control
Range

Initial Value
Maximum Minimum

Pan
Tilt

Zoom

25 degrees right

25 degrees down
55 degrees

25 degrees left

15 degrees up

8 degrees

degrees

15 degrees down
55 degrees

TABLE 9.2 MISSILE CONTROL RANGES AND INITIAL VALUES

Control
Range

Initial Value
Maximum Minimum

Altitude

Speed

Direction

10,000 MSL
400 kts

359.9 degrees

200 AGL
kts

degrees

200 AGL
200 kts

From prelaunch

99

o o
6 7

o o

I DIR j I ALT
J

Figure 9.6 IRIS Dial Box Fuctions

100

summary box for a reminder of each dial's purpose and location during flight.

The controls are used as follows:

- Direction of flight - Turning dial zero clockwise turns the missile to the

right. Turning it counterclockwise turns it to the left. The missile will move

freely through the 360 degree mark so that, for example, turning the missile

right two degrees from a heading of 359 degrees will produce a heading of

001.

- Altitude - Turning dial one clockwise increases the missile's altitude up to

the maximum of 10,000 feet MSL. Turning the dial counterclockwise

decreases the missile's altitude. The simulator will not allow an altitude to

be selected that is less than 200 feet above ground level.

- Speed - Turning dial two clockwise increases the missile's speed, while

counterclockwise decreases the speed.

4. Designating and Rejecting Targets

The middle mouse button is used to designate (lock on to) and reject

(release the lock on) targets. When the missile is not locked on to a target the

word DESIGNATE will appear in the lower left corner of the display. To

designate a target, center the target within the cross hairs and press the middle

mouse button. In order for the missile to lock on, some portion of the target

must be in the center of the cross hairs. If the designation is successful, the

workstation will "beep" and word REJECT will appear in place of the word

DESIGNATE on the display. Once a target is designated the missile will

automatically adjust its heading and altitude to home in on the selected target.

An explosion is displayed after impact with the target occurs. The user is then

returned to the prelaunch phase of the simulation to begin another launch.

101

A locked on target can be rejected and missile flight control returned to

the user by pressing the middle mouse button any time before impact with the

target occurs. The workstation will respond with a "beep" and the

reject/designate box will again show the word DESIGNATE. The missile is now

ready to accept the designation of a new target.

102

X. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are several limitations to the flight simulator presented in this study.

First, a trade-off had to be made between resolution and frame update (display)

speed. Even though data was available at a resolution of twelve and one-half

meters, the simulator uses one hundred meter resolution in order to achieve an

acceptable frame update rate.

Second, the simulator's flight is confined to a ten kilometer square area. Any

ten kilometer square area of the DTED file can be used during a run of the

simulation, but the simulator must be exited before switching to a new area. This

limitation is not too restrictive for the current range of the FOG-M, but may be

inadequate if the range of the missile is increased as planned.

Third, road data is available in a format usable by the simulator for only one

10 kilometer square area. Since access routines were not developed for the DFAD

data file, roads must be digitized by hand.

Fourth, the simulator does not model any of the missile's flight dynamics. As

stated earlier, this limitation was imposed only because of development time

constraints. It is felt that the dynamics can be acceptably modeled without

adversely affecting the performance.

103

B. FUTURE RESEARCH AREAS

A follow-on to this project, which will provide more realistic targets and

allow viewing of the scene as seen from inside any of them, is currently underway

at the Naval Postgraduate School. The project's plans are to use the Ethernet to

allow several workstations to take part in the simulation simultaneously. Each

workstation will control one weapon (a target or the missile) and its monitor will

display the scene as viewed from that weapon.

Work is also underway at the Naval Postgraduate School in the use of

digitized photographic images on the IRIS. This work could possibly be

incorporated into the FOG-M project through the use of digitized target images,

digitized cultural features, or digitized textures for the terrains.

Another possible research area is the addition of various environmental effects

into the simulation. These include clouds, smoke, and rain, which affect the

camera's view by reducing visibility, and also dust, which aids the missile

operator in acquiring moving targets.

Much work could be done in the area of the missile's flight dynamics. The

goal would be to provide an acceptably accurate model without too much of a

sacrifice in speed.

C. SUMMARY AND CONCLUSIONS

The project has proven the practicality and feasibility of building a low-cost

flight simulator with commercial, off-the-shelf hardware. With a relatively small

104

investment of time and funds, a simulator with significant capabilities was

developed. As the speed and power of graphics hardware increases, even more

realistic displays at faster update rates will be possible.

105

APPENDIX A MODULE DESCRIPTIONS

BUILD ROAD.C
Input:

Output:

Side Effects:

Description:

None.

None.

Modifies the global array road , an array of graphical objects, where

each object contains the polygons representing the road in a

particular gridsquare.

Build road reads the file road width and centerline information

from the file Road. data and constructs polygons which represent

the road. The polygons are stored in the array of graphical objects

road. A more detailed discussion of building the roads is contained

in Chapter VIII.

BUILDTERRAIN.C
Input: None.

Output: None.

Side Effects: Buildttrrain modifies the global arrays savetriangle and gridcolor

.

Description: Buildttrrain reads terrain height information from the global array

gridpixel and constructs the terrain as a set of planar triangles.

The details of constructing the triangles and the format of the

savetriangle and gridcolor arrays can be found in Chapter VI.

COLORRAMP.C
Input:

Output:

Side Effects:

The inputs to colorramp are two booleans, greyscale and init. If

greyscale is TRUE, the terrain, sky, and target colortable entries

are defined in shades of grey to produce a black-and-white image.

If greyscale is FALSE, the terrain colors are green, the sky is blue,

and targets are brown. Init is set to TRUE when this routine is

initially called, so that every entry in the colortable is defined,

including those for terrain, sky, targets, and writemasked lines on

top of the contour maps. Should the display be switched between

color and black-and-white, only the terrain, sky, and target entries

need to be redefined, which is what happens when init is FALSE.

None.

Colorramp changes the system's colortable, and thus determines

the colors that appear on the display for the images drawn by

other routines.

106

Description: Colorramp is called by the main program fogm as part of the

initialization that takes place before the flying loop is entered. At

that point, greyscale is set to its default value (usually FALSE,
indicating color images) and init is TRUE. The readcontrols

routine also calls colorramp to toggle the display image between

color and black-and-white, based on the position of one of the

dials. This call is made with the desired value for greyscale and

with init FALSE. Colorramp uses the IRIS routine mapcolor to

directly update the colortable for the contour map colors, and calls

the user written routine gammaramp to define appropriately

shaded ranges of the greens and browns (or greys) used for the

terrain and targets.

COMPASS.C
Input: Compass takes as input a float, direction, which is an angle in

radians.

Output: Compass returns a float which is the compass direction in degrees

corresponding to the input direction.

Side Effects: None.

Description: The function Compass converts an radian angle measured using

the standard mathematical convention, and converts it to a degree

angle measured using the standard navigational convention.

DISP TERRAIN.C

Input: Display terrain takes eleven inputs: the X, Y, and Z, coordinates

of the missile position VX, VY, and VZ\ the X, F, and Z
coordinates of the camera's look-at position PX, PY, PZ; the field

of view angle (camera zoom value), FOVY; and the X and Z
ranges of gridsquares to be displayed, FIRST X, FIRST Z,

LAST X and LAST Z.

Output: None.

Side Effects: None.

Description: Disp terrain outputs a frame of the terrain scene to the monitor

using a hidden surface algorithm. The scene contains terrain,

roads, and targets. Details of the hidden surface algorithm can be

found in Chapter VI.

107

DIST TO LOS.C

Input: Dist to los takes seven inputs: the X, Y, and Z coordinates of the

start of a line segment; the X, Y, and Z coordinates of the end

point of a line segment; and three dimensional array, pt, which

contains the coordinates of a point.

Output: Dist to los returns a float which is the perpendicular distance

from the input point, pt, to the input line.

Side Effects: None.

Description: Function which computes the perpendicular distance from a point

to a line in three-space.

DO BOUNDARY.C
Input: Do boundary takes the following inputs:

- An integer Bound type which is interpreted as:

- a diagonal boundary

1 - a horizontal boundary

2 - a vertical boundary

- An integer which triangle that is interpreted as:

- the lower triangle of the gridsquare.

1 - the upper triangle of the gridsquare.

- The indices, xgrid and zgrid, of the gridsquare for which the road

is being constructed.

- The coordinates of the start point of the boundary stored in a

three dimensional array, bound start.

- The coordinates of the end point of the boundary stored in a

three dimensional array, bound end.

- The coordinates of the start point of the left side of the road

stored in a three dimensional array, left start.

- The coordinates of the end point of left side of the road stored in

a three dimensional array, left end.

- The coordinates of the start point of the right side of the road

stored in a three dimensional array, right start.

- The coordinates of the end point of right side of the road stored

in a three dimensional array, right end.

- A boolean, start corner flag, which is TRUE if the gridsquare

corner at the boundary's start is ALREADY in the road polygon

array, FALSE otherwise.

- A boolean, end corner flag, which is TRUE if the gridsquare

corner at the boundary's end is ALREADY in the road polygon

array, FALSE otherwise.

- The partially complete road polygon array, road poly.

108

- An integer, vertex cnt, that is the number of vertices currently in

the road poly array.

Output: Do boundary outputs the following:

- start corner flag (see Inputs for a description)

- end corner flag (see Inputs for a description)

- road poly, the road polygon array with the vertices along this

boundary added.

- vertex cnt (see Inputs for a description)

Side Effects: None.

Description: Do boundary's purpose is to find all the intersections of the road's

left and right sides with the input boundary of a gridtriangle. As

an intersection is found the point is put into a temporary array.

After all the intersections are found for the boundary the points in

the temporary array are sorted then added to the existing

road poly array. The order of the sorting is such that the resulting

road poly array will be ordered counterclockwise. See Chapter

VIII for a detailed description of building the roads.

EDIT INDBOX.C
Input: The inputs to edit indbox are the name of the indicator object, the

tags within that object for each of the indicators, and current

values for the following missile parameters: X, F, and Z position

coordinates, pan, tilt, and zoom angles, and designate /reject

status.

Output: None.

Side Effects: Since edit indbox changes the indicator object, it has the side

effect of changing the display when the indicator object is next

called and displayed.

Description: The indicator object is edited between each display frame so that

the heads-up display and the indicator box indicators show the

current values for the missile's speed, heading, altitude, camera

pan angle, camera tilt angle, camera field of view (zoom), and

designate/reject status. The input speed, heading, and MSL
altitude

(
Y position coordinate) are converted to strings for

display. AGL altitude is calculated as the difference between MSL
altitude and the elevation of the ground directly below the missile

as obtained from gnd level with the .Y and Z position coordinates

as input. The boolean designate determines whether

"DESIGNATE" or "REJECT" is printed in the lower left corner

of the terrain display. Finally, the positions of the tilt, pan, and

109

zoom indicators are calculated from the missile parameters. The
equations in the code have been simplified to avoid excess

computation; the derivations are given below.

The x screen coordinate of the zoom (field of view, or fov) indicator

is fixed. The y screen coordinate varies from 200 (at 8 fov) to 70

(at 55 fov). The input missile parameter zoom is in tenths of

degrees, and thus ranges from 80 to 550. The y coordinate is

determined from Equation A.l.

y = 200
zoom

10

200 - 70

55-8
(A.l)

zoom 0.2766 + 222.128

Likewise, the screen x coordinate of the tilt indicator is fixed, while

the y coordinate varies from 680 (at +25 tilt) to 50 (at —25 tilt).

The input missile parameter tilt is in radians, and is converted to

degrees by multiplying it with the RTOD (Radians TO Degrees)

constant from the header file fogm.h. The y coordinate of the tilt

indicator is calculated as shown in Equation A. 2.

y = 50 + (tilt *DTOR) + 25
680 - 50

25 25

(A.2)

tilt * 721.92682 + 365

The pan slider bar is horizontal, so the y coordinate is fixed, and

the x coordinate ranges from 120 (at -25 pan) to 750 (at +25

pan). Like tilt, the pan value is in radians and must be converted

to degrees. The pan indicator x coordinate is given by Equation

A.3.

x = 750 (pan * DTOR) + 25
750 - 120

25 25

(A.3)

pan * -721.92682 + 435

110

EXPLOSION.C

Input: None.

Output: None.

Side Effects: None.

Description: The explosion routine simulates the effect of a missile destroying a

target by rapidly flashing a succession of red, black, and yellow

screens. One buffer is kept black to pronounce the flash effect, and

the other buffer is alternately cleared to red, yellow, red, yellow,

and red. A short pause with a cleared, black screen is provided

before the routine exits.

FOGM.C
Input:

Output:

Side Effects:

Description:

Fogm is the name given to the main program in the simulator. It

has no parameters, but gets data from its header files and through

the readdata routine. Interactive input is also received vial the

readcontrols routine.

None.

None.

The fogm program consists of global variable declarations, local

variable declarations, system initializations, an active loop, and

some exit housekeeping. The initialization portion includes reading

in the DMA elevation data, making network connection (if in use),

setting the IRIS display configuration, defining the color table

entries, building all of the graphical objects used in the displays,

and computing the lighting and position of the polygons used to

produce the terrain image. Within the active loop is some

additional initializations and the flying loop. In the active loop

initializations, the dial and mouse controls are reset to their initial

defaults, and the display buffers are loaded with the images that

remain unchanged during flight simulation (the contour map and

the legend/instruction box). Control is then passed to the flying

loop, which produces the flight simulation images until either a

target is hit or the simulation exit command is received. If a target

was hit, an explosion is displayed and the pre-launch phase of

designating launch and target positions is re-entered. If all three

mouse buttons have been pressed, the display is cleared and

various system parameters are reset to provide a graceful exit from

the simulator.

Ill

The flying loop contains the subroutine calls that produce the

simulation of flight. First, the mouse and dials are checked for

control input. Then the targets', missile's, and lookat reference

point's positions are all updated based on the elapsed time since

the previous frame and the appropriate speeds. View bounds is

called to determine which one kilometer grid squares are in view,

and then the indicators are all updated to show the new control

values, missile statistics, and view area. The main display routine

then draws the appropriate sections of the terrain, plus cultural

features and targets where appropriate. Finally, the updated

indicator objects are drawn, and the display buffers are swapped to

display the newly created image.

GAMMARAMP.C
Input: The inputs to gammaramp are a correction factor, a color table

starting index, the number of color table entries (shades) to be

defined, red, green, and blue intensities for the brightest color to be

defined, and finally, red, green, and blue intensities for the darkest

color to be defined.

Output: None.

Side Effects: Gammaramp has the side effect of defining entries in the system

color table.

Description: Displayed colors do not correspond linearly to the numeric red,

green, and blue intensity values that are used to produce them. If a

range of colors (0 .. #colors-l) is defined in the straightforward way
with a uniform increment, the intensity of the n color (/) is

given by Equation A. 4, and the bright colors will appear more

widely spaced than the dark colors.

MaxI - Mini
I
n
= n * + Mini (A.4)

§ colors

Gammaramp avoids this by using a power function to increase

spacing between the dark colors' intensity values and to decrease

the intensity increment as the colors get brighter. The strength of

the correction is determined by a value 7, which is constant for a

given range, but must be experimentally determined for each range

that differs in color or number of colors. FOG-M uses a 7 value of

1.5. The intensity of the n color in a gammaramp created table is

given by Equation A. 5.

112

/ =
n

§ colors - 1
,

(MaxI - Mini) + Mini (A.5)

GET TGT POS.C

Input:

Output:

Side Effects:

Description:

The input to get tgt pos is a socket number for Ethernet

communication (if in use), a boolean indicating designate/reject

status, the index of the currently designated target, and the

"name" of the tank object.

Output is the new X, Y,Z position coordinates of the currently

designated target.

Get tgt pos updates several global data structures. It sets the

number of target images, updates the target position arrays, and

updates the array of target object names.

The primary purpose of get tgt pos is to move the targets in the

simulation. If the networking capability is in use, the target

positions for the next frame are received over the network. When
networking is not in use, targets are moved at a set speed of fifteen

knots, and reverse course when they reach the boundaries of the

ten kilometer square terrain area. As explained in Chapter VII, an

array of graphical objects is defined to match one object per one

hundred meter square of terrain, and this array is also used as

booleans to indicate the presence or absence of targets in the one

hundred meter grid square. Get tgt pos begins by removing each

target from this array. New target positions are calculated or

received over the network. If one of the targets has been "locked-

onto," its new position is returned to be used as the current aim

point for the missile. This is easily determined if networking is off

because the designated target's index remains the same and the

new position can be directly accessed. The index correspondence is

not guaranteed when networking, so the index of the new target

whose coordinates are closest to the old targeted point is used.

Targets that straddle a one hundred meter grid square boundary

must be drawn on top of both (or possibly all four) grid squares in

order to avoid being partially obscured by whichever square is

drawn last. (The target must be drawn immediately after the grid

square on which it rests to ensure that the target will be obscured

when it should be by terrain drawn in the foreground.) Since the

calculation of boundary intersection requires several trigonometric

functions plus an allowance for the distance between the center of

113

the tank and its boundaries (which varies with the direction of the

tank), a simplifying algorithm is used. If the tank is close enough

to a boundary that the most distant part of the tank might cross

the boundary, the target is also drawn after the adjoining grid

square(s) (see Figure 7.3). This is done by adding a "new" target

to the array of target objects. The "new" target object is drawn at

the exact same location in the three-dimensional terrain, but it is

drawn after a different one hundred meter grid square, so it will

have different target object array indices, and be in a separate

target object.

After all of the targets (originals and boundary copies) have

updated positions and target object array indices, objects are

added to the target object array as described in Chapter VII. This

array is then used by the terrain display routine to actually draw

the targets.

GND LEVEL.C

Input: Gnd level takes as inputs the X and Z coordinates of the point for

which the elevation is desired.

Output: Gnd level returns a float which is the elevation at point X and Z.

Side Effects: None.

Description: Gnd level computes, through interpolation, the scaled elevation of

any point within the terrain boundaries. A calculation is done to

determine which gridtriangle contains the point. Then, using the

known elevations at the vertices of the triangle, the elevation of the

point is found.

IN THIS POLY.C
Input: In this poly takes the following inputs:

- An array of points, polygon, which define a polygon. (Note: only

the X and Z coordinates of the points are used, the Y value is

ignored).

- An integer, num vertex, that is the number of vertices in

polygon.

- A point, pnt, that is to be tested. (Note: only the X and Z
coordinates of the point is used, the Y value is ignored).

Output: In this poly returns a boolean which is TRUE if pnt is inside the

polygon defined by polygon, FALSE otherwise.

114

Side Effects: None.

Description: In this poly is a function which tests whether a point is inside a

given polygon, where both the point and the polygon are in the XZ
plane. The algorithm used constructs a bounding box around the

polygon. If the point lies outside the bounding it obviously can

not be inside the polygon. If the point lies inside the bounding box

a further test is made. A line is constructed from a point outside

the bounding box to the point to be tested. Each of the edges of

the polygons are then tested to see if they intersect the constructed

line and a count is kept of the number that do intersect. The

point lies inside the polygon if and only if the constructed line

intersects an odd number of the polygon's edges.

INIT CTRLS.C

Input:

Output:

Side Effects:

Description:

Init ctrls takes as inputs the initial altitude of the missile, in feet;

the initial heading of the missile in degrees; and a boolean,

greyscale, which is TRUE if greyscaled terrain is to be displayed

and FALSE if color terrain is to be displayed.

Init ctrls has as outputs the initial pan angle of the camera in

radians; the initial tilt angle of the camera in radians, and the

initial zoom setting of the camera in tenths of a degree.

The MOUSEX, MOUSEY, DIALO, DIALl, DIAL2, and DIAL3
valuators are set as a result of calling this routine.

Init ctrls's purpose is to initialize the mouse and dial valuators

used for the operator controls. The initial altitude, heading, and

greyscale valuator settings are passed in as inputs. The pan, tilt,

and field of view settings are read from an "include" file and their

values passed back as outputs.

INIT IRIS.C

Input: None.

Output: None.

Side Effects: Calling this routine sets the Iris attributes and configures the Iris.

Description: Init iris accomplishes the following: it puts the Iris into

doublebuffer mode, sets the chunksize (the minimum memory
increment used in objects), sets the monitor type to either NTSC
or HZ60, and enables backface polygon removal.

115

INIT TGTS.C

Input: None.

Output: None.

Side Effects: Init tgts always initializes the global target object array to all

zeros. If target data is not being received over the network,

init tgts also defines ten targets by setting initial values in the

global target counter, target position array, and target direction

array. An auxiliary function init tgt is used to perform the actual

update of the global arrays.

INTERP ELEV.C

Input: Interp elev takes three inputs, each an array of X, Y, and Z
coordinates, representing a point. One array is the start point of a

line, the second array is the end point of a line, and the third array

is a point along the line.

Output: Interp elev returns a float that is the elevation value of the point

along the line.

Side Effects: None.

Description: Interp elev returns a float which is the linear interpolation of the

Y (elevation) coordinate of the point along the line, based on the

elevations at the start and end points of the line.

LIGHT ORIENT.C

Input:

Output:

Side Effects:

Description:

Light orient takes as inputs the following:

- An array of coordinates for the polygon.

- An integer, num. coords, the number of coordinates in the

polygon.

- The X, Y, and Z coordinates of a point that is "behind" the

polygon (an interior point).

- The X, F, and Z coordinates of a light source.

- The minimum and maximum color map indices to be used for

this polygon.

Light orient returns the color map index of the color to use in

lighting this polygon. It also reorders the polygon array (if

necessary) so that the points are ordered counterclockwise.

None.

Light orient computes a lighting for a polygon based on Lambert's

cosine law, which states that the intensity of the light reflected

116

from an object is proportional to the eos($), where $ is the angle

of incidence of the light ray. (see Figure 5.2). Light orient also

orders the vertices of the polygon in a counterclockwise fashion so

that backface polygon removal can take place (see the module

description for npoly orient).

LINE INTER2.C

Input:

Output:

Side Effects:

Description:

Line inter2 takes the following inputs:

- An array containing the X and Z coordinates of the start point of

line one is ignored.)

- An array containing the X and Z coordinates of the end of

line one. (Note: a three element array is used, but the second, Y

coordinate, element is ignored.)

- An array containing the X, F, and Z coordinates of the start of

line two. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)

- An array containing the X, Y, and Z coordinates of the end of

line two. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)

Line inter2 returns as outputs:

- An array containing the X and Z coordinates of the intersection

of line one and line two. If the lines do not intersect these values

are undefined not considered in the calculation).

- An integer which can be interpreted as follows:

- the lines do not intersect.

1 - the lines intersect, but the intersection uses an

extension of at least one of the lines past its start or

end points.

2 - the lines intersect, and the intersection occurs

between the input start and end points of both lines.

None.

Line interl computes the point of intersection between two lines

in the XZ plane. The type of intersection, as explained above in

"Output" is also determined. Throughout the routine, three

element arrays are used for compatibility with other routines. The

second, F, coordinate is not considered in any of the calculations.

MAKEINDBOX.C
Input: None.

117

Output: Makeindbox returns a graphical object "name," tags for editing the

speed, direction, altitude, and designate/reject readouts, and tags

for editing the zoom, pan, and tilt indicators.

Side Effects: None.

Description: Makeindbox generates a graphical object that contains both the

indicator box in the middle of the displays on the right side of the

screen and the
uheads-up" display that is superimposed on the

terrain image (Figure 6.8). The object consists almost entirely of

straightforward line and character string drawing commands, but

there are two interesting points. First, within a single object, there

are two different coordinate systems: one for the indicators

superimposed on the terrain, and another for the separate indicator

box. This is accomplished with an ortho2 call for each coordinate

system, and by bracketing each ortho2 with pushmatrix and

popmatrix commands. Note that the heads-up display is truly

superimposed; it is specified in two-dimensional screen coordinates

as opposed to the three-dimensional terrain coordinates.

The second interesting aspect is the movement of the slider bar

indicators. Drawing the indicators as polygons would require a

sequence of pushmatrix, translate, and popmatrix calls for each

indicator, with movement achieved by editing the translate call. To
avoid all of this matrix movement and multiplication, the

"triangle'
1

of the indicator is actually an overlapped line that

"fills" the triangle by spiraling inwards. The line is drawn relative

to the indicated point, with each segment of the line specified as

offsets from that initial point, rather than as absolute coordinates

(Figure A.l). Movement of an indicator triangle defined in this

way is achieved by editing the parameters of a move2 call in the

object, which sets the current graphics drawing position to the

indicated point on the slider bar scale. Makeindbox is called once

by fogm before the flying loop is entered, and then the object is

edited (to update the indicator values) and called (to display it)

every frame.

MAKEINSTRBOX.C
Input: None.

Output: Makeinstrbox returns the name of an object to fogm.

Side Effects: None.

118

(0,+10)

(0,0)

(+10, -5)

(-10,0) (+5, +IO)

Indicator Fill using Line Segments

119

Description: Makeinstrbox creates the object that produces the display in the

lower right of the screen (Figure 6.8) during flight simulation. This

display contains the legend for the FOG-M controls and the flight

parameters they affect. Makeinstrbox is called once by fogm to

create the object, and then the object is called twice per flight to

put the image into each buffer. Note that writemasks are not

necessary as they are with makemap and makenavbox, because

nothing else writes to the instruction box portion of the screen

during flight. The image thus remains undisturbed in the bitplanes

despite the changes in other screen areas.

MAKEMAP.C
Input: The input to makemap is the globally defined array of elevation

and vegetation values, gridpixel.

Output: The output from makemap is a graphical object "name," which is

returned to fogm.

Side Effects: None.

Description: Makemap generates the object containing the contour map and

grid that appear full screen during the pre-launch phase, and

appear in the upper right corner of the screen during flight

simulation (Figure 4.1). The map is produced using the

methodology described in Chapter IV. Fogm calls the object

returned by drawcontour twice, in order to place the map image in

both buffers. The image is then protected from overwrite by a

writemask. Fogm also passes the object name to prelaunch, which

uses it in much the same way as fogm.

MAKESCREENS.C
Input: None.

Output: Makescreens returns an array of objects: instruction panel,

statistics box, flight path between launch and target endpoints,

and the three welcome screens, plus tags to update the statistics

and flight path.

Side Effects: None.

Description: Makescreens builds all of the objects (mostly screens of text) that

are used by prelaunch.

120

MAKETANK.C
Input: None.

Output: Maketank returns the name of an object containing a single tank,

drawn around the origin.

Side Effects: None.

Description: Maketank builds a object that consists solely of the drawing

commands to produce a single tank. The tank is thirty-two feet

long, ten feet high, and ten feet wide. Its center bottom is at the

origin (coordinates 0,0,0), with its left side on the plane Z = -5, its

back on the plane X = -15, its bottom on the plane Y = 0, and it

faces to the right along the positive x axis. For each of the twenty

polygon faces that make the tank, the X, Y, and Z coordinates of

each polygon vertex are stored in an array, passed to lightorient,

and then drawn with polf , the filled polygon drawing command.
Lightorient ensures the vertices are ordered counter-clockwise in

the array (with respect to an interior point) for backface polygon

removal, and then calculates the appropriate color for the polygon

using the same lighting model that is used for the terrain (see

Chapter V).

NEAREST TGT.C

Input: Nearest tgt takes as inputs the X, F, and Z coordinates of the

missile position, and the X, F, and Z coordinates of the camera's

look-at position. (The end points of the line of sight vector).

Output: Nearest tgt returns as output an integer, tgt idx, which is the

target index of the target that is closest to the line of sight vector.

Side Effects: None.

Description: For each of the existing targets, nearest tgt computes the distance

between the target and the line of sight vector. It returns the

index of the target that was found to be closest. In the case of two

targets which are the same distance apart, the highest index value

will be returned.

NPOLY ORIENT.C
Input: Npoly orient takes as input:

- An integer, num coords, that is the number of vertices in the

polygon.

- An array containing the coordinates of the polygon.

- The X, F, and Z coordinates of a point that is "behind" the

121

polygon (an "interior" point).

Output: Npoly orient returns as output an integer which is interpreted as:

1 - the vertices of the polygon are ordered clockwise.

2 - the vertices of the polygon are ordered

counterclockwise.

Side Effects: None.

Description: Npoly orient determines if the polygon is ordered clockwise or

counterclockwise by computing two points: one along the normal

vector and the other, the same distance from the polygon, but

along the vector in the direction opposite the normal. Next the

distance between these points and the "interior" point is

computed. If the "interior" point is closer to the point along the

normal vector, the polygon is ordered clockwise, otherwise the

polygon is ordered counterclockwise.

PRELAUNCH.C
Input: The input to prelaunch is two arrays. The first contains objects,

and the second contains tags for editing those objects.

Output: Prelaunch returns the X, Y, and Z coordinates of the missile's

designated launch position, and the initial direction of flight for the

missile. This direction is returned in both radians and compass

degrees (Figure 7.1).

Side Effects: None.

Description: Prelaunch first provides three screens of introductory information.

Each screen is an object defined by makescreens. After those, the

user is presented with a full screen contour map of the ten

kilometer by ten kilometer area available for overflight. Mouse-

selected points define the missile's initial position and direction of

flight, and are displayed on top of the map. The map is writemask

protected, so it is only drawn twice (once for each buffer) even

though the flight path is repeatedly drawn and erased on top of the

map. The flight path is made to act like a rubber band between

the launch and cursor positions by repeatedly editing of the

positions in the object containing the flight path line drawing

commands. Once the flight path is confirmed, the launch position

and heading are returned to the fogm program.

122

RANDNUM.

C

Input: Randnum uses the global random number seed.

Output: Randnum returns a floating point random number.

Side Effects: The global seed value used by randnum is updated during every

invocation.

Description: Randnum is a linear congruential pseudo-random number

generator. The algorithm is a modified version of the one given by

Sedgewick [Ref. 13]. It uses a a special piecewise multiplication

routine mult to preserve the low-order digits of the newly

generated seed even in case of overflow. The value returned is the

new seed, scaled to fall between zero and one, inclusive. The
random numbers are used in fogm to vary the point on the tank

that the missile aims for. This simulates the variance in impact

point that results from the optical homing of the real missile.

RANDSEED.

C

Input: Randseed takes a long integer as input.

Output: None.

Side Effects: Randseed updates the global random number seed value.

Description: The pseudo-random number generator implemented in randnum

always returns the same string of numbers when it starts with a

given seed value. Randseed provides the means to change that

initial seed value so that different program runs will have different

strings of "random" numbers.

READCONTROLS.C
Input: The inputs to readcontrols are the global X, Y, and Z random

offset values for the aim point on the target, the current

designate/reject status, and the black-and-white versus color

boolean greyscale.

Output: All of the user-commanded control values are output from

readcontrols: missile speed, heading and altitude, camera pan, tilt,

and zoom angles, plus designate/reject status, greyscale status.

Readcontrols also returns values for the booleans that control the

active and flying loops.

Side Effects: When a target is first designated, readcontrols calls randnum and

updates the global target aim offsets randx, randy, and randz.

123

Description: Readcontrols checks the status of all of the valuators that provide

input to the FOG-M simulator, and performs scaling, units

conversion, and immediate processing, as appropriate. It

determines whether to accept or reject a "designate" command,
based on the color index of the pixel at the center of the screen. (If

a tank is in the crosshairs, the color index will be from the tank's

color ramp, and a designate command will be accepted. Otherwise,

a designate command will be ignored.)

READDATA.C
Input: None.

Output: None.

Side Effects: Readdata fills the global array gridpixel.

Description: Readdata opens and reads the values from the terrain elevation

data file and stores the values in the gridpixel array. Note that the

elevation data file is arranged in a format as discussed in Chapter

III. The gridpixel array is arranged in straight rows and columns

analogous to the geographic positions of the data.

ROAD BOUNDS.C
Input: Road bounds takes as input the following:

- Three arrays (ptl, pt2 and pt3) containing the X and Z
coordinates of three points along the centerline of the road. The

line segment from ptl to pt2 defines the first segment of the road.

The segment from pt2 to pt3 defines the next segment of the road.

- A float, width, which is the width of the road in feet.

Output: Road bounds returns the following as outputs: - Four arrays

(left ptl, right ptl, left pt2, and right pt2) which contain the X
and Z coordinates of the first segment's left and right sides. The

left side runs from left ptl to left pt2 and the right side runs from

right ptl to right pt2.

- Four integers, first xgrid, first zgrid, last xgrid and last zgrid,

which are the indices of the bounding box surrounding the first

road segment (see Figure 8.2).

Side Effects: None.

Description: Given three points along the center line of the road, and the road's

width, road bounds computes the start and end coordinates for the

first segment's left and right sides. The end coordinates are

computed as the intersection of the first segment's left (or right)

124

side with the second segment's left (or right) side. This insures

that adjoining segments will meet cleanly. The second function of

road bounds is to compute a bounding box around the first road

segment. This box is defined as the row indices of the northern

and southern most gridsquares that the road segment intersects,

and the column indices of the eastern and western most gridsquares

that the road segment intersects (See Chapter VIII for a more

detailed discussion).

SORT ARRAY.C
Input:

Output:

Side Effects:

Description:

Sort array takes as inputs:

- An array of points, puts.

- An integer that is the number of entries in the puts array.

- A boolean, which is TRUE if the array should be sorted in

descending order, FALSE if the array should be sorted in ascending

order.

- The index number of the coordinate that is the sort key: for the

X coordinate, 1 for the Y coordinate, and 2 for the Z coordinate.

Sort array returns the array puts with the points sorted according

to the input parameters.

None.

Sort array performs a simple "bubble-sort" of the input points

according to the input parameters.

UP LOOK POS.C

Input:

Output:

Side Effects:

Description:

Up look pos takes the following as inputs:

- The heading of the missile in radians.

- The pan angle of the camera in radians.

- The tilt angle of the camera in radians.

- The X, F, and Z coordinates of the missile's position.

- The X, Y, and Z coordinates of the locked-on target (if any).

- A boolean which is TRUE if the missile is locked-on a target,

FALSE otherwise.

Up look pos returns as outputs the X, F, and Z coordinates of the

camera's look-at position.

None.

Up look position computes a point along the camera's line of

sight. If the missile is locked on a target, the look-at position is the

locked-on target's position. Otherwise it is any point along the

125

camera's line of sight. See Chapter VI and Figure 6.2 for a more
detailed discussion.

UP MSL POSIT.C

Input:

Output:

Side Effects:

Description:

Up msl posit takes as inputs:

- The heading of the missile in radians.

- The speed of the missile in knots.

- The X, Y, and Z coordinates of the missile's position.

- The A", Y, and Z coordinates of the locked-on target (if any).

- A boolean which is TRUE if the missile is locked-on a target,

FALSE otherwise.

Up msl posit returns as outputs:

- The new heading of the missile in radians, if it was changed to

track a locked-on target.

- The new heading of the missile in degrees measured in the

compass convention.

- A boolean which is TRUE if the missile is still flying (has not hit

a target), and FALSE if the missile has hit the target.

None.

Up msl posit calculates a new missile position for the next frame.

The new position is either based on the commanded direction,

speed, and altitude (when the missile is NOT locked onto a target),

or the commanded speed and the direction to the target (if the

missile is locked onto a target). For a detailed discussion of the

routine, see Chapter VI.

VIEW BOUNDS.C
Input: View bounds takes as inputs the X, Y, and Z coordinates of the

missile's position; the X, K, and Z coordinates of the camera's

look-at position; and the field of view (zoom) value.

Output: View bounds returns as outputs the row indices of the northern

and southern most gridsquares to be drawn, and the column

indices of the western and eastern most gridsquares to be drawn.

Side Effects: None.

Description: The purpose of view bounds is to construct a bounding box around

the gridsquares which are to be drawn. The box is constructed by

extending the line of sight vector down until it intersects the

minimum elevation plane. The view bounds extends 20

gridsquares north, south, east, and west of this intersection point.

126

If the missile's position is not within the bounds, the bounds are

extended to include the missile's position. For a more detailed

discussion, see Chapter VI and Figure 6.5

127

APPENDIX B SOURCE LISTINGS

BUILD ROAD

#include "stdio.h"

^include "fogm.h"

#include "files.h"

#include "gl.h"

#include "math.h"

#define X
#define Y 1

#define Z 2

#define DIAGONAL
#define HORIZONTAL 1

#define VERTICAL 2

#define LOWER
#define UPPER 1

build road()

{

extern Object road[99][99];

extern short gridpixel[100][l00j;

FILE *fp, *fopen();

float road width; /* road width if feet */

int num pts; /* number of data points

for the road seqment */

int segnum = 0;

char temp(l00];

int cnt, i, j;

int vertex cnt, num duplicates;

float gnd level();

float elev;

float ptl|3|, pt2[3], pt3[3|;

float nw corner[3], ne corner[3], sw corner(3J, se corner[3];

float right_ptl(3], right_pt2[3j;

float left_ptl[3], left_pt2(3];

float north bound, south bound, east bound, west bound;

float delta x, delta z;

float seg dir;

int ne flag, nw flag, se flag, sw flag;

int xgrid, zgrid;

int first xgrid, last xgrid, first zgrid, last zgrid;

float polyl[l0][3);

frontburTer(TRUE);

fp = fopen(ROAD FILEA");

128

while (fscanf(fp, "%e'\ fcroadwidth) != EOF) {

fscanf(fp, "%d", &num_pts);

fscanfjfp, "%e %e", &ptl(X], &ptl[Z]);

fscanfjfp, "%e %e", &pt2(X], &pt2(Zj);

delta_x = pt2[X] - ptl[X];

delta_z = pt2[Z) - ptl[Z);

seg dir = atan2(delta z, delta x);

left~ptl(X] = ptl[X] + (cos(seg"_dir + HALFPI)*road_width/2.0);

rightptljX] = ptl[X] + (cos(seg_dir - HALFPI)*road width/2.0);

left_ptl[Z] = ptl[Z] + (sin(seg_dir + HALFPI)*road width/2.0);

rightptljZ) = ptl[Z] + (sin(seg_dir- HALFPI) * road_width/2.0);

for (cnt = 3; cnt <= num pts + 1; ++cnt) {

if (cnt <= num pts) {

fscanf(fp, "%e %e", &ptS[X], &pt3[Z]);

}

else {

ptS[X] = pt2[X];

pt3[Z) = pt2|Zj;

}

/* print new road segment number on title screen */

segnum += 1;

pushmatrix();

ortho2(0.0, 1023.0, 0.0, 767.0);

viewport(0, 1023,0,767);

sprintf(temp, "Building road segment: %d%" , segnum);

color(BLUE);

rectf(780.0, 20.0, 1010.0, 30.0);

color(CYAN);

cmov2i(780, 20);

charstr(temp);

popmatrix();

/* determine the boundaries of this road segment */

road bounds(ptl, pt2, pt3, road width, left ptl, right ptl,

left_pt2, right pt2, &first xgrid,

&first_zgrid, &last xgrid, &last zgrid);

for (xgrid = first xgrid; xgrid <= last xgrid; ++xgrid){

for (zgrid = firstzgrid; zgrid <= last zgrid; ++zgrid){

neflag = F~ALSE;

nwflag = FALSE;
swflag = FALSE;
seflag = FALSE;
vertex cnt = -1;

east_bound = (float)(xgrid + 1) * FT 100M;

westbound = (float)(xgrid) * FT100M;
northbound = (float) (zgrid + 1) * FT100M;
southbound = (float) (zgrid) * FT100M;

sw_corner[X] = west bound:

sw_corner[Z] = south bound;

elev = gridpixellzgrid] [xgrid! & elev mask;

swcornerjY] = pow(elev, ALTSCALE);

129

se corner[X] = east bound;

se corner[Z] = south bound;

elev = gridpixel[zgridj[xgrid+ l] & elev mask;

se corner[Y] = pow(elev,ALTSCALE);

nw corner(X) = west bound;

nw corner[Zj = north bound;

elev = gridpixel[zgrid+l](xgrid] & elevmask;

nw cornerjY] = pow(elev,ALTSCALE);

ne cornerjX] = east bound;

ne cornerjZ] = north bound;

elev = gridpixel|zgrid+l][xgrid+l] & elev mask;

ne cornerjY] = pow(elev, ALTSCALE);

/'* determine points of intersection between the left and

right sides of the road and the eastern grid boundary

and add these points to the polygon vertex array */

do boundary(VERTICAL, UPPER, xgrid, zgrid, se corner, ne corner,

left ptl, left pt2, right ptl, right pt2, &se flag,

&ne flag, polyl, &vertex cnt);

/* determine points of intersection between the left and

right sides of the road and the northern grid boundary

and insert these points into the polygon vertex array */

do_boundary(HORIZONTAL, UPPER, xgrid, zgrid, necorner,

nw corner, left ptl, left pt2, right ptl,

right pt2, &ne flag, &nw flag, polyl, &vertex cnt);

/* determine points of intersection between the left and

right sides of the road and the diagonal and

insert these pointsinto the polygon vertex array */

do boundary(DIAGONAL, UPPER, xgrid, zgrid, nw corner, se corner,

leftptl, left pt2, right_ptl, right_pt2, &nw_flag,

<fcse flag, polyl, &vertex cnt);

/* remove duplicate entries from the polygon array */

num duplicates = 0;

for (i = 1; i <= vertex cnt; ++i) {

if ((polyl[i][0] == polyl[i-lj[0|) &&
(polyl[i][2] == polyl[i-l][2]j)

{

for (j = i; j < vertex cnt - num duplicates; ++j) {

polyl[j][0] = polyl[j+l]iOj"

polyl[j][l] = polyl[j+l](l]

polyl[j][2] = polyl[j+l][2j

}

num duplicates += 1;

}

}

vertex cnt -= num duplicates;

130

if (vertex cnt > 0) { /* add polygon to gridobject */

if (road[zgrid] [xgrid! != 0) {

editobj(road[zgrid|[xgrid]);

}

else {

road[zgrid])xgrid] = genobj();

makeobj(road[zgrid][xgrid]);

}

color(ROADGREY);
polf(vertex_cnt +1, &polyl[0][0j);

linewidth(3);

poly(vertex cnt + 1, &polyl[0][0]);

closeobj();

}

vertex cnt = -1;

ne flag~ = FALSE;
nwflag = FALSE;
sw'flag = FALSE;
seflag = FALSE;

/* determine points of intersection between the left and

right sides of the road and the southern grid boundary

and insert these points into the polgon vertex array */

do boundary(HORIZONTAL, LOWER, xgrid, zgrid, sw corner,

se corner, left ptl, left pt2, right ptl,

right pt2, &sw flag, &se flag, polyl, &vertex cnt);

/* determine points of intersection between the left and

right sides of the road and the diagonal and

add these points to the polygon vertex array */

do boundary(DIAGONAL, LOWER, xgrid, zgrid, se corner, nw corner,

leftptl, left_pt2, rightptl, right_pt2, &se_flag,

&nw flag, polyl, &vertex cnt);

/* determine points of intersection between the left and

right sides of the road and the western grid bound

and add these points to the polygon vertex array */

do boundary(VERTICAL, LOWER, xgrid, zgrid, nwcorner, swcorner,

left ptl, left pt2, right ptl, right pt2, &nw flag,

&sw flag, polyl, &vertex cnt);

/* remove duplicate entries from the polygon array */

num duplicates = 0;

for (i = 1; i <= vertex cnt; + + i) {

if ((polyl(i][0j == polyl[i-l][0]) &&
(polyl(i][2) == polyl[i-l][2]j) {

for (j = i; j < vertex cnt - numduplicates; ++j) {

polyl[j][0] - polyl[j + l][0]7

polyl[j][l] = polyl[j+ l][l];

131

polyl[j]2] = polyl[j + l][2];

}

num duplicates += 1;

}

}

vertex cnt -= num duplicates;

if (vertex cnt > 0) { /* add polygon to grid object */

if (road(zgrid](xgrid) != 0) {

editobj(road[zgridi[xgrid]);

}

else {

road[zgrid](xgrid] = genobj();

makeobj(road[zgrid][xgrid]);

}

color(ROADGREY);
polf(vertex_cnt +1, &polyl[0][0]);

linewidth(3);

poly(vertex cnt + 1, &polyl[0][0]);

closeobj();

}

}

}

rightptljX] = right_pt2[X];

right_ptl!Z] = right_pt2[Z];

left_ptl|Xj = left_pt2[Xj;

leftptl(Z) = left_pt2[Z];

ptl[X] = pt2(X];

ptljZ] = pt2[Z|;

pt2[X] = ptS[X];

pt2[Z]' = pt3[Z];

}

fclose(fp);

frontbunrer(FALSE);

}

132

BUILDTERRAIN

/* buildterrain.c - this function builds objects representing 1km grid squares

in 3-D, with each grid square generating 4 objects, identical except for

order of drawing /

^include "gl.h" /* get the graphics defs */

^include "device. h" /* get the graphics device defs */

^include "fogm.h" /* default constants */

^include "math.h" /* math function declarations */

buildterrain()

{

/* array of data points to build the terrain */

extern short gridpixel(lOOi[lOO];

extern float savetriangle[99i[99]|2][3][3j;

extern long gridcolor[99][99];

extern Object target[99][99];

extern float ground plane[4][3];

extern long gnd plane color;

float gnd planeht;

Coord trianglelj3][3j, triangle2[3](3j; /* polygon coordinates */

short xgrid, zgrid; /* indexes into the grid object array */

short endrow, endcol; /* miscellaneous indexes etc */

int row, col;

float ax,ay,az; /* interior point for use in the lightpoly function */

float lx,ly,lz; /* position of light source in lightpoly function */

/* min and max colormap indexes for lighting the poly */

long colormin, colormax;

/* color index to use returned by the lightpoly function */

long colortouse, colorl, color2;

char temp[50j; /* character string for countdown */

float x,y;

float gammacorr;

long rampamax, rampamin, rampbmax, rampbmin;

133

int startrow, startcol, coordidx, vertex;

lx = 500 * FT100M; /* direction of light source */

ly = 100000 * FT100M;
lz = ly;

frontbuffer(TRUE); /* write to front buffer */

/* compute color for ground plane polygon */

gndplaneht = pow((float)MIN, ALTSCALE);
ground_plane[0][0] = -NUMXGRIDS * FEETPERGRID;
ground plane[0)[l] = gnd plane ht;

ground"plane[0][2] = NUMZGRfDS * FEETPERGRID;

ground _plane[l][0] = 2.0 * NUMXGRIDS * FEETPERGRID;
ground_plane[l][l] = gndplane ht;

ground"plane[l][2J = NUMZGRI~DS * FEETPERGRID;

ground_planej2][0] = 2.0 * NUMXGRIDS * FEETPERGRID;
ground plane[2][l] = gnd plane ht;

ground~plane|2][2] = -2.0~* NUMZGRIDS * FEETPERGRID;

ground plane [8] [0] = -NUMXGRIDS * FEETPERGRID;
ground plane[3][l] = gnd plane ht;

ground~plane[3|[2] = -2.0~* NUMZGRIDS * FEETPERGRID;

lightorient(ground plane,4,0.0,0.0,0.0,lx,ly,lz,256,461, &gnd plane color);

/* compute coordinates and colors for triangles and store in global

variable savetriangle for later display */

for (col = 0; col < 99; ++col) {

/* print new countdown number on title screen */

pushmatrix();

ortho2(0.0, 1023.0, 0.0, 767.0);

viewport (0,1028,0,767);

sprintf(temp, "Countdown to launch: %d%", 98 - col);

color(BLUE);

rectf(780.0, 15.0, 1010.0, 30.0);

color(CYAN);

cmov2i(788, 20);

charstr(temp);

popmatrix();

for (row = 0; row < 99; ++row)
{

/* choose which color ramp to use so that a checker board

effect is acheived */

if ((row+col)%2){

colormin = 256;

colormax = 461;

134

}

else {

colormin = 462;

colormax = 667;

}

/* build the polygon */

trianglel[0][2] = (float)row * (-41.01) * 8.0;

trianglel[0][0] = (float)col * 41.01 * 8.0;

trianglel[0][lj = pow((float)(gridpixel[row][col]&elev_mask)

, ALTSCALE);

triangleljl][2] = (float)row * (-41.01) * 8.0;

trianglel[l][0] = (float) (col+l) * 41.01 * 8.0;

trianglel[l][l] = pow((float)(gridpixel[rowj[col+l]&elev mask)

,ALTSCALE);

trianglel|2][2] = (float) (row+ l) * (-41.01) * 8.0;

trianglel|2][0j = (float)col * 41.01 * 8.0;

trianglel[2][lj = pow((float)(gridpixel[row+ l][col]&elev mask)

,
ALTSCALE);

/* copy common vertex values for opposing triangle of grid */

for (vertex = 1; vertex < 3; ++vertex) {

triangle2[vertex][0] = trianglel [vertex] [0];

triangle2[vertex][l] = trianglel[vertex][lj;

triangle2[vertex)[2] = trianglel [vertex] [2];

}

/* change corner coordinate to form opposing triangle of grid */

triangle2[0][2j = (float)(row+ l) * (-41.01) * 8.0;

triangle2[0][0j = (float)(col+l) * 41.01 * 8.0;

triangle2[0][l] = pow((float)(gridpixel[row+l][colH-lj&elev mask)

, ALTSCALE) ;

/* compute an interior point for trianglel */

ax = trianglel[0][0] + 15.0;

ay = -10.0;

az = trianglel[0]]2] -15.0;

/* light and orient trianglel */

lightorient (triangle 1,3, ax, ay, az,lx,ly,lz,colormin, colormax, &colorl);

/* compute interior point for triangle2 */

ax = triangle2[0][0] - 15.0;

ay = -10.0;

az = triangle2[0][2] +15.0;

/* compute the light for and orient triangle2 */

lightorient (triangle2, 3, ax, ay, az,lx,ly,lz,colormin,colormax, &color2);

/* compute average color for the square */

135

colortouse = (colorl + color2) / 2;

/* save this triangles color and orientation */

for (vertex = 0; vertex < 3; + + vertex)

for (coordidx = 0; coordidx < 3; ++coordidx)
{

savetrianglejrow] [colj [0] [vertex] [coordidx] =

triangle 1 [vertex] [coordidx]

;

savetriangle[rowi [col] [l] [vertex] [coordidx] =

triangle2[vertex] [coordidx];

}

gridcolor[row][col] = colortouse;

}

}

frontbuffer(FALSE);

I

136

COLORRAMP

/* constructs the color ramps to be used for displaying the terrain.

If greyscale is true, constructs greyscale ramps, else it

constructs green ramps. */

^include "fogm.h" /* fogm constants */

colorramp (greyscale, init)

int greyscale, init;

{

int 1;

/* build two gamma corrected color ramps with slightly offset colors */

if (greyscale) {

gammaramp(l. 5, 256, 205, 255, 255,255, 50,50, 50)

gammarampjl.5,462,205,245,245,245,40,40,40)

gammaramp(l.5,668,180,235,235,235,30,30,30)

mapcolor(SKYBLUE,230, 230,230);

mapcolor(ROADGREY,35,35,35);

;
/* even terrain ramp */

;
/* odd terrain ramp */

;
/* tank ramp */

/* sky color */

}

else {

}

gammaramp(1.5,256,205,0,255,0,0,50,0);

gammarampjl. 5, 462, 205, 0,245,0, 0,40,0);

gammaramp(1.5,668,180,255,165,55,75,55,0);

mapcolor(SKYBLUE,200,200,255);

mapcolor(ROADGREY,35,35,35);

/* even terrain ramp */

/* odd terrain ramp */

/* tank ramp */

/* sky color */

if (init) {

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

mapcolor

(16,0,70,0);

(17,0,80,0);

(18,0,90,0);

(19,0,100,0)

(20,0,110,0)

(21,0,120,0)

(22,0,130,0)

(23,0,140,0)

(24,0,150,0)

(25,0,165,0)

(26,0,180,0)

(27,0,190,0)

(28,0,210,0)

(29,0,225,0)

(30,0,240,0)

(31,0,255,0)

(32,75,55,0)

(33,95,60,0)

(34,115,70,0);

(35,125,76,0);

/* set up colors for contour map */

137

mapcolor(36, 135, 83,0);

mapcolor(37, 145,90,0)

mapcolor(38, 155,97,0)

mapcolor(39, 165, 105,0);

mapcolor(40, 175, 110,0);

mapcolor(41, 185,113,0);

mapcolor(42, 190, 118,0);

mapcolor(43, 200, 127,0);

mapcolor(44,210,135,30);

mapcolor(45,225,145,35)

mapcolor(46, 240, 155,45)

mapcolor(47,255,165,55)

for (i=64; i<128; i+ +) mapcolor(i,0,0,255);

for (i=128; i<256; i++) mapcolor(i,255,0,0);

mapcolor(851, 0,150,0); /* set up colors for instruction box */

mapcolor(852, 255, 165,55);

mapcolor(853, 95,60,0);

mapcolor(854, 0,0,0); /* color for indicator box background*/

138

COMPASS

/* compute the compass heading in degrees of the input direction. */

^include "fogm.h" /* fogm constants */

float compass(direction)

double direction;

{

float compassdir;

compassdir = RTOD * direction;

if (compassdir <= 90.0)

compassdir = 90.0 - compassdir;

else

compassdir = 450.0 - compassdir;

return (compassdir);

139

DISPLAY TERRAIN

/* Compute which polygons need to be drawn to display the terrain and

output them in an order such that the polygons farthest from the viewer

are drawn first and those closest are drawn last.

Note: Eventhough this seems like a long routine, it is broken into 8

independent cases based on the direction the camera is looking.

If you understand one case the others are merely mirror images of the

algorighm for other octants. */

^include "fogm.h"

#include "math.h"

#include "gl.h"

display terrain(vx, vy, vz, px, py, pz, fovy,

firstxgrid, firstzgrid, lastxgrid, lastzgrid)

Coord vx, vy, vz, px, py, pz;

int fovy;

short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

{

extern float ground plane(4][3];

extern long gnd plane color;

extern Object road[99][99];

extern Object target [99] [99];

extern float savetriangle[99][99][2][3][3|;

extern long gridcolor[99][99];

double lookdir;

int threshold, count, startx, startz;

short xgrid, zgrid;

float tanval;

float y;

if (TV) viewport(0, 474,0, 474);

else viewport(0, 767, 0,767);

pushmatrixf);

color(SKYBLUE);

clear();

ortho2(0.0,1023.0, 0.0, 767.0); /* outline the screen */

color(BLACK);

recti(0,0,1023,767);

popmatrix();

pushmatrix();

perspective(fovy , 1 .0,0.0, 19500.0)

;

Iookat(vx,vy,vz,px,py,pz,0.0);

140

/* determine the direction of the line of sight */

lookdir = (double)atan2((float)(vz - pz), (float)(-(vx - px)));

if (lookdir < 0.0) lookdir += TWOPI;

/* lay down the ground plane */

color(gnd planecolor);

polf(4, groundplane);

/* put the grid objects through the geometry engine in an order

based on the lookdir. */

if (lookdir > SEVEN QTRPI)
{

/* 8th OCTANT */

threshold = (int)(tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = lastxgrid;

startz = firstzgrid;

while (startz < = lastzgrid)
{

zgrid = startz;

xgrid = startx;

while ((xgrid <= lastxgrid) && (zgrid <= lastzgrid)) {

color(gridcolor(zgrid] [xgrid]);

polf(3,&savetriangle[zgrid][xgridj(0][0|[0]);

polf(3,&savetriangle[zgrid][xgridj[l][0][0]);

if (road[zgrid][xgrid] != 0) callobj(road[zgrid]|xgrid]);

if (targetjxgridj [zgrid] != 0) callobj(target[xgrid][zgrid]);

/* check if tank should be drawn now */

zgrid += 1;

count += 1;

if (count >= threshold)
{

xgrid += 1;

count = 0;

}

}

startx -= 1;

count = 0;

if (startx < firstxgrid) {

startx = firstxgrid;

startz += threshold;

}

}

}

else if ((lookdir > THREE HALVESPI) && (lookdir <= SEVENQTRPI))
{

141

/* 7th OCTANT */

tanval = tan(lookdir+HALFPI);

if (tanval == 0.0)

threshold = 1000;

else

threshold = (int)((1.0/tanval) + 0.5);

count = 0;

startx = lastxgrid;

startz = firstzgrid;

while (startx >= firstxgrid) {

zgrid = startz;

xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid)) {

color(gridcolor[zgrid] [xgrid]);

polf(3, &savetriangle[zgrid] [xgrid] [0][0][0]);

polf(3,&savetriangle[zgrid] [xgrid] [l][0][0]);

if (road[zgrid];xgrid] != 0) callobj(road[zgrid][xgrid]);

if (target[xgrid][zgrid| != 0) callobj(target[xgrid][zgridj);

xgrid -= 1;

count += 1;

if (count >= threshold) {

zgrid -= 1;

count = 0;

}

}

startz += 1;

count = 0;

if (startz > lastzgrid) {

startz = lastzgrid;

startx -= threshold;

}

}

}

else if ((lookdir > FIVE QTR PI) && (lookdir <= THREE HALVES PI))

{

/* 6th OCTANT */

tanval = -tan(lookdir+HALFPI);

if (tanval == 0.0)

threshold = 1000;

else

threshold = (int)((l.0/tanval) + 0.5);

count = 0;

startx = firstxgrid;

startz = firstzgrid;

142

while (startx <= lastxgrid)
{

zgrid = startz;

xgrid = startx;

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid))
{

color(gridcolor[zgrid][xgridj);

polf(3,&savetriangle|zgrid]|xgrid][0|[0][0]);

polf(3,&savetriangle[zgrid] [xgrid] [l][0][0]);

if (road[zgrid][xgrid] != 0) callobj(road[zgrid] [xgrid]);

if (targetjxgrid] [zgrid] != 0) callobj(target(xgrid][zgrid]);

xgrid += 1;

count += 1;

if (count >= threshold) {

zgrid -= 1;

count = 0;

}

}

startz += 1;

count = 0;

if (startz > lastzgrid) {

startz = lastzgrid;

startx += threshold;

}

}

}

else if ((lookdir > PI) && (lookdir <= FIVE QTR PI))

{

/* 5th OCTANT */

threshold = (int)(-tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = firstxgrid;

startz = firstzgrid;

while (startz <= lastzgrid)
{

zgrid = startz;

xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid <= lastzgrid))
{

color(gridcolor[zgrid] [xgrid]);

polf(3,&savetriangle[zgrid]|xgrid][0j[0][0]);

polf(3,&savetriangle[zgrid][xgrid][l][0][0]);

if (roadjzgridj [xgrid] != 0) callobj(road[zgrid][xgrid]);

if (targetjxgrid] [zgrid] != 0) callobj(target[xgrid][zgridj);

zgrid += 1;

count += 1;

143

if (count >= threshold) {

xgrid -= 1;

count = 0;

}

}

startx += 1;

count = 0;

if (startx > lastxgrid) {

startx = lastxgrid;

startz += threshold;

}

}

}

else if ((lookdir > THREE QTR PI) && (lookdir <= PI))

{

/* 4th OCTANT */

threshold = (int)(tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = firstxgrid;

startz = lastzgrid;

while (startz >= firstzgrid)
{

zgrid = startz;

xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid))
{

color(gridcolorlzgridj jxgridj);

polf(3, &savetriangle! zgrid] [xgrid] [0][0|[0]);

polf(3,&savetriangle[zgrid][xgrid][l][0][0]);

if (road[zgrid][xgridj != 0) callobj(road|zgrid|[xgrid]);

if (target|xgrid] [zgrid] != 0) callobj(targetixgrid] [zgrid

zgrid -= 1;

count += 1;

if (count >= threshold)
{

xgrid -= 1;

count = 0;

}

}

startx += 1;

count = 0;

if (startx > lastxgrid) {

startx = lastxgrid;

startz -= threshold;

}

144

}

else if ((lookdir > HALFPI) && (lookdir <= THREE QTR PI))

{

/* 3rd OCTANT */

tanval = tan(lookdir+HALFPI);

if (tanval == 0.0)

threshold = 1000;

else

threshold = (int)((1.0/tanval) + 0.5);

count = 0;

startx = firstxgrid;

startz = lastzgrid;

while (startx <= lastxgrid) {

zgrid = startz;

xgrid = startx;

while ((xgrid <= lastxgrid) &&; (zgrid <= lastzgrid)) {

color(gridcolor [zgrid] [xgrid]);

polf(3, &savetriangle[zgrid] [xgrid] [0][0](0]);

polf(3,&savetriangle[zgrid]|xgrid][l][0][0j);

if (road[zgrid][xgridj != 0) callobj(road(zgrid][xgrid[);

if (targetixgrid] [zgrid] != 0) callobj(target[xgrid]]zgrid]);

xgrid += 1;

count += 1;

if (count >= threshold)
{

zgrid += 1;

count = 0;

}

startz -— 1;

count = 0;

if (startz < firstzgrid) {

startz = firstzgrid;

startx += threshold;

}

}

}

else if ((lookdir > QTR PI) && (lookdir <= HALFPI))

{

/* 2nd OCTANT */

tanval = -(tan(lookdir+HALFPI));

if (tanval == 0.0)

threshold = 1000;

else

threshold = (int)((1.0/tanval) + 0.5);

145

count = 0;

startx = lastxgrid;

startz = lastzgrid;

while (startx >= firstxgrid) {

zgrid = startz;

xgrid = startx;

while ((zgrid <= lastzgrid) &:& (xgrid >= firstxgrid))
{

color(gridcolor [zgrid] [xgrid]);

polf(3,&savetriangle[zgrid][xgrid][0][0][0]);

polf(3,&savetriangle[zgrid|[xgrid][l]|0](0]);

if (road[zgrid] [xgrid] != 0) callobj(road[zgrid][xgrid]);

if (targetjxgrid] [zgrid] != 0) callobj(target[xgrid][zgrid|);

xgrid -= 1;

count += 1;

if (count >= threshold) {

zgrid += 1;

count = 0;

}

}

startz -= 1;

count = 0;

if (startz < firstzgrid)
{

startz = firstzgrid;

startx -= threshold;

}

}

}

else if ((lookdir > = 0.0) && (lookdir <= QTR PI))

{

/* 1st OCTANT */

threshold = (int)(-tan(lookdir+HALFPl) + 0.5);

count = 0;

startx = lastxgrid;

startz = lastzgrid;

while (startz >= firstzgrid) {

zgrid = startz;

xgrid = startx;

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid))
{

color (gridcolor[zgrid] [xgrid]);

polf(3,&savetriangle[zgrid] [xgrid] [0][0][0]);

polf(3,&savetrianglejzgrid] [xgrid] [l][0][0]);

if (road[zgrid| [xgrid] != 0) callobj(road[zgridi[xgrid]);

146

if (target[xgrid)[zgrid] != 0) callobj(target(xgrid][zgridj);

zgrid -= 1;

count += 1;

if (count >= threshold) {

xgrid += 1;

count = 0;

}

}

startx -= 1;

count = 0;

if (startx < firstxgrid) {

startx = firstxgrid;

startz -= threshold;

}

}

}

popmatrix();

}

147

DIST TO LOS

#include "gl.h"

^include "math.h"

float dist to los(vx,vy,vz,px,py,pz, point)

/* compute the distance from the point "point" to the line of sight */

Coord vx,vy,vz,px,py,pz;

float point[3];

{

float a,b,c; /* direction numbers of line of sight */

float d,e,f;

float dist;

a = (float)(px - vx);

b = (float) (py - vy);

c = (float)(pz - vz);

d = point[0] - (float)vx;

e = point[lj - (float)vy;

f = point[2] - (float)vz;

dist = sqrt((up i(e*c - f*b,2) + up _i(f*a - d*c,2) + up_i(d*b - e*a,2))/

(up_i(a,2) + up_i(b,2) + up_i(c,2)));

return(dist);

148

DO BOUNDARY

#include "gl.h"

#include "math.h"

#include "stdio.h"

^include "fogm.h"

#define X
#define Y 1

#define Z 2

#define DIAGONAL
#define HORIZONTAL 1

#define VERTICAL 2

#define LOWER
#define UPPER 1

#define NONE
#define INTERSECT 1

#define PROPER 2

do boundary(bound type, which triangle, xgrid, zgrid,

bound start, bound end, left start,

left end, right start, right end, start corner flag,

end corner flag, polyl, vertex cnt)

int bound type, which triangle, xgrid. zgrid;

float bound start|3], bound end[3], left start[3j, left end[3],

right start[3], right end[3];

int *start corner flag, *end corner

float polyl(l0](3];

int *vertex cnt;

{

int test index, cnt, index;

float bound_right[3j, bound left[3], bound start edge[3],

bound end edge[3];

float vertex array[l0][3];

float road poly[l0j[3];

float grid_poly[l0][3];

int intersect cnt;

149

int intersect type, decending sort;

float upper bound, lower bound;

float gnd_level();

int in this poly();

intersect cnt = -1;

/* compute the verticies of the road segment currently

being worked on */

for (index = 0; index < 3; ++index) {

road_poly[0] (index) = left startfindex];

road poly jl] [index) = left end[index);

road_poly[2][indexj = right end[index);

road_poly[3l [index] = right start[index);

}

/* compute the verticies of the grid triangle associated with

this boundary */

grid_poly[0][X] = (float)(xgrid*FT_100M);

gridj>oly[0][Z] = (float)((zgrid+l)*FT_100M);

grid_poly[l][X] = (float)((xgrid+l)*FT_100M);

grid poly[l][Z] = (float) (zgrid*FT_100M);

if (whichtriangle == UPPER) {

"

gnd_poly[2)(X] = (float)((xgrid+l)*FT_100M);

grid_poly[2|iZ] = (float)((zgrid+l)*FT 100M);

}

else
{

grid_poly[2)[X] = (float)(xgrid*FT_100M);

grid_poly[2][Z] = (float)(zgrid*FT_100M);

}

if (boundtype == HORIZONTAL) {

test index = X;

}

else if (boundtype == VERTICAL) {

test index = Z;

}

else if (boundtype == DIAGONAL) {

test index = Z;

}

if (bound start [test index] < bound endjtest index!) {

lower bound = bound startitest index);

upper bound = bound end[test index);

}

else
{

lower bound = bound end|test index);

upper bound = bound startjtest index);

}

150

/* determine points of intersection between left and right sides

of the road and the boundary */

line intersect2(bound start, boundend, right start, rightend,

bound right, ^intersect type);

if (intersecttype == PROPER)
{

/* intersection lies on road line segment, add intersection

to array */

intersect cnt += 1;

vertex_array[intersect_cnt][X] = boundright(X);

vertex arrayjintersect cnt][Z] = bound rightjZj;

vertexarrayjintersectcntjjY] = gnd_level(bound_right[X],

-boundrightjZ]);

}

else if ((intersecttype == INTERSECT) <fc&

(in this poly(grid poly, 3, right start)) &&
(bound rightjtest index] > lower bound) &&
(bound rightjtest index] < upper bound)) {

/* intersection point is beyond the bound of the road's right

line segment, but the right start point is inside the polygon so

add the road's right start point to the vertex array */

intersect cnt += 1;

vertex arrayjintersect cnt]|X] = right startjX];

vertex arrayjintersect cnt]|Z] = right start[Zj;

vertex arrayjintersect cnt][Y] = gnd level(right startjX],

-right start[Zj);

}

else if ((intersect type == INTERSECT) &&
(in this_poly(grid poly, 3, right end)) &&
(bound rightjtest index] > lower bound) &&
(bound rightjtest index] < upper bound)) {

/* intersection point is beyond the bound of the road's right

line segment, but the right end point is inside the polygon so

add the road's right end point to the vertex array */

intersect cnt += 1;

vertexarrayjintersectcntjjX] = right endjXj;

vertexarrayjintersectcntjjZ] = right endjZ);

vertexarrayjintersectcntjjY] = gnd level(right endjX],

-right end[Z|);

}

line intersect2(bound_start, bound end, left start, left end,

bound left, ^intersect type);

if (intersecttype == PROPER) {

/* intersection lies on road line segment, add intersection

to array */

intersect cnt += 1;

vertexarrayjintersect cnt][X] = bound leftjX];

151

vertex array [intersect cnt][Z] = bound left[Z];

vertex array [intersect cnt][Y] = gnd level(bound left[X],

-bound left[Z[);

}

else if ((intersectjype == INTERSECT) &&
(in this poly(grid poly, 3, leftstart)) &&
(bound left[test index] > lower bound) &&
(bound left [test index] < upperbound)) {

/* intersection point is beyond the bound of the road's left

line segment, but the left start point is inside the polygon so

add the road's left start point to the vertex array */

intersect cnt += 1;

vertex arrayjintersect cnt][X] = left startjX];

vertex array[intersect cnt][Z] = left startjZ];

vertex array[intersect cnt][Y] = gnd level(left startjX],

-left_start[Z]);

}

else if ((intersecttype == INTERSECT) &&
(in this poly(grid poly, 3, left end)) &&
(bound left[test index] > lower bound) &&
(bound leftftest index] < upper bound)) {

/* intersection point is beyond the bound of the road's left

line segment, but the left end point is inside the polygon so

add the road's left end point to the vertex array */

intersect cnt += 1;

vertex array [intersect cnt][X] = left end[X];

vertex arrayjintersect cnt][Z] = left end[Z|;

vertex arrayjintersect cnt][Y] = gnd level(left end[X],

-left_end[Z]);

}

/* if either of the bound's end points fall within the bounds of the

road, add them to the array*/

if ((!*start corner flag) && (in_this_poly(road poly, 4, bound start))) {

/* put in start bound point */

*start corner flag = TRUE;
intersect_cnt += 1;

vertex array [intersect cntj[X) = bound start[X];

vertex array|intersect cnt][Z] = bound startjZ];

vertex arrayjintersect cnt][Yj = bound start[Y];

}

if ((!*end corner flag) && (in this poly(road poly, 4, bound end))) {

/* put in end bound point */

*end corner flag = TRUE;
intersect cnt += 1;

vertex arrayjintersect cnt][X] = bound end[X];

vertex arrayjintersect cntjjZ] = bound end[Z|;

vertex array[intersect cnt][Y] = bound endjY];

152

}

/* determine the point of intersection between the start and end

bound of the road and the grid boundary */

line intersect2(bound start, bound end, left start, right start,

bound start edge, ^intersect type);

if (intersectJype == PROPER) {

/* intersection lies on road line segment, add intersection

to array */

intersect cnt += 1;

vertex array [intersect cnt][X] = bound start edge[X);

vertex array [intersect cntj[Z] = bound start edge[Z[;

vertex array [intersect cnt][Y] = gnd level(bound start edge[X],

-bound start edge[Z|);

}

line intersect2(bound start, bound end, left end, right end,

bound end edge, ^intersect type);

if (intersect" type == PROPER) {

/* intersection lies on road line segment, add intersection

to array */

intersect cnt += 1;

vertex array [intersect cnt][X] = bound end edge[X];

vertex arrayjintersect cnt][Z] = bound end edge(Z);

vertex arrayjintersect cntj[Y] = gnd level(bound end edge[X],

-bound end edge[Z]);

}

/* put the points from the vertex array into the polyl array in

the proper order */

decending sort = (bound startjtest index] != lower bound);

sort array(vertex array, intersect cnt, decending sort, test index);

for (cnt = 0; cnt <= intersect cnt; ++cnt) {

*vertex cnt += 1;

polyl[*vertex cnt][X] = vertex array[cnt][X]

polyl[*vertex_cnt][Y] = vertex array[cnt][Y

polylj*vertex cnt][Z] = -vertex array[cnt][Z

153

EDIT INDBOX

/* update the control settings of the indicator box */

#include "fogm.h"

finclude "gl.h"

edit indbox(indbox, speedtag, headingtag, elevtag, altmsltag,

zoomtag, tilttag, pantag, desigtag, speed, compassdir,

vx, vy, vz, pan, tilt, zoom, designate)

Object indbox;

Tag speedtag, headingtag, elevtag, altmsltag, zoomtag, tilttag, pantag,

desigtag;

float speed, compassdir;

Coord vx, vy, vz;

double pan, tilt;

int designate;

int zoom;

{

char chspeed[5], chheading|5|, chelev[5
,
chaltmsl[5];

float gndlevelf);

float zoomtic, pantic, tilttic;

sprintf(chspeed,"%4. Of", speed); /* convert speed to string */

sprintf(chheading,"%3.Of, compassdir); /* convert heading to str */

sprintf(chelev,"%4.0f",vy - gnd_level(vx,vz)); /* convert elev AGL to str */

sprintf(chaltmsl,"%4.0f\vy); /* convert alt MSL to str */

/* compute new location for zoom, pan, and tilt indicators */

zoomtic = zoom * -0.2766 - 222.128;

tilttic = tilt * 721.92682 + 365.0;

pantic = pan * -721.92682 + 435.0;

editobj(indbox); /* update the indicator display */

objreplace(speedtag);

charstr(chspeed);

objreplace(headingtag);

charstr(chheading);

objreplace(elev tag);

charstr(chelev);

objreplace(altmsltag);

charstr(chaltmsl);

objreplace(zoom tag);

move2(28.0, zoomtic);

objreplace(tilttag);

154

move2(42.0,tilttic);

objreplace(pantag);

move2(pantic,27.0);

objreplace(desigtag);

cmov2i(designate ? 10 : 19,10);

charstr(designate ? "DESIGNATE" : "REJECT");
closeobj();

155

EDIT NAVBOX

#include "fogm.h"

#include "math.h"

#include "gl.h"

edit navbox(navbox, arrowtag, vx, vz, direction, firstxgrid, firstzgrid,

lastxgrid, lastzgrid)

Object navbox;

Tag arrowtag;

Coord vx, vz;

double direction;

short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

{

Coord arrowx, arrowy, larrowx, larrowy, rarrowx, rarrowy;

/* compute coordinates of arrow line segments for nav control box */

arrowx = vx + cos(direction) * 2.0 * FEETPERGRID;
arrowy = vz - sin(direction) * 2.0 * FEETPERGRID;
larrowx = arrowx + cos(direction - 2.3561945) * FEETPERGRID;
larrowy = arrowy - sin(direction - 2.3561945) * FEETPERGRID;
rarrowx = arrowx + cos(direction + 2.3561954) * FEETPERGRID;
rarrowy = arrowy - sin(direction + 2.3561945) * FEETPERGRID;

/* update the contour map display with new info */

editobj(navbox);

objreplace(arrowtag);

move2(vx,vz);

draw2(arrowx, arrowy);

draw2(larrowx, larrowy);

move2(arrowx, arrowy);

draw2(rarrowx, rarrowy);

rect(firstxgrid*FT_100M,-firstzgrid*FT_100M,

(lastxgrid + 1)*FT_100M, (-lastzgrid-l)*FT_100M);

closeobj();

156

EXPLOSION

#include "gl.h"

explosion()

{•

int i,j;

pushviewport();

viewport(0, 1023,0,767);

color(BLACK);

clearQ;

swapbuffers();

color(RED);

clear();

swapbuffersf);

swapbuffers();

color(YELLOW);

clear();

swapbuffers();

swapbuffers();

color(RED);

clear();

swapbuffers();

swapbuffers();

color(YELLOW);

clear();

swapbuffers();

swapbuffers();

color(RED);

clearf);

swapbuffers();

swapbuffersf);

for (i = 0; i < 100000; i++
)

for(j = 0;j < 10;j++]
popviewport();

157

FOGM (MAIN)

/* fogm.c — an IRIS-2400 program by Doug Smith & Dale Streyle

It reads in a 10km x 10km section of a terrain map, computes a lighting

and shading model for the terrain, and allows overflight */

^include "gl.h" /* get the graphics defs */

^include "device. h" /* get the graphics device defs */

^include "fogm.h" /* constants */

#include "math.h" /* math function declarations */

^include "get.h" /* monitor type include file */

#include "stdio.h"

^include "sys/signal.h" /* used for screen dump utility */

^include <sys/types.h> /* contains the time sturcture tms */

^include <sys/times.h> /* for time calls */

short gridpixel[l00]|100j; /* DMA elevation and vegatation data */

float savetriangle[99] [99] [2j [3] [3];

long gridcolorj99|[99];

Object road[99j[99];

Object target(99](99);

float ground plane[4][3];

long gnd plane color;

float tgt jk>s|MAX_TGTS][3];

short tgt_grid_idx[MAX_TGTS][2j;

short tgt dirMAX TGTS], tgt total = 0;

float randx, randy, randz; /* random offsets from tank reference point */

int framecnt;

float min elev, max elev;

Coord tankx, tanky, tankz;

float frames sec[l000ll2l;

main()

{

int greyscale = FALSE; /* FALSE = color, TRUE = greys */

int designate; /* boolean indicating desig/reject status */

int flying = TRLTE; /* boolean controlling flying loop */

int active = TRUE; /* boolean controlling main program loop

int nbyte, socket, connect client(); /* networking variables & subroutine */

158

struct tms timestruct; /* structure for real-time clock calls */

int tgt idx; /* index of designated target */

double direction; /* direction of travel in radians */

float speed; /* speed of travel in knots */

float compassdir; /* desired direction of travel in compass deg */

int fovy = 550; /* field of view in perspective command */

double pan = 0.0,

tilt = -15.0 * DTOR; /* pan and tilt angles */

/* contour map, indicator, instruction */

Object contour, navbox, indbox, instrbox;

Object tank, pre 1 obj'7];

Tag headingtag, elevtag, speedtag, zoomtag, arrowtag, tilttag, pantag;

Tag desigtag, altmsltag. pre 1 tag[6j;

Colorindex unmask;

Coord vx, vy, vz; /* viewer x y and z coordinates */

Coord px, py, pz; /* reference x y z coordinates for lookat */

Coord tgtx, tgty, tgtz; /* targeted position on tank */

float randseed(); /* random number generator initialization */

int frames = -1;

long seconds, lastseconds, totalseconds = 0;

int numpolys;

float elapsed;

int idx;

FILE *fopen(), *fp;

/* first and last x and z indexes of the grid objects to draw */

short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

readdataf); /* read the data file into the gridpixel array */

/* get socket number for networking */

/*if (NETWORKING) socket = connect_client("npscs-irisl",3); */

init iris(); /* initialize the iris */

unmask = (l<<getplanes()) - 1;

writemask (unmask);

randseed(times(×truct)); /* seed the random § generator */

159

init tgts(); /* define targets */

ScreenDump(SCREENDUMP); /* enable screen dumping */

billboard(); /* produce intro screen */

colorramp(greyscale,TRUE); /* build all color ramps */

makescreens(pre 1 obj, pre 1 tag); /* build objects for prelaunch */

makemap(&contour); /* build map object */

pre l_obj[CONTOUR] = contour;

prelaunch(&vx, &vy, &vz, ^direction, &compassdir,

&active, prelobj, preltag);

if (active) {

maketank(&tank); /* build object for a tank */

build road(); /* build the objects that comprise the roads */

/* process terrain data to build polygons and compute lighting */

buildterrain();

/* build object for the navigation display contour map */

drawnavbox(&navbox, &arrowtag);

/* build an object for the indicator box */

makeindbox(&indbox,& head ingtag,&elevtag,&altmsltag,&speed tag,

&zoomtag,&tilttag,&pantag,&desigtag);

makeinstrbox(&instrbox); /* build object for control instruction box */

} /* end of if (active) block */

while (active) {

framecnt = 0;

/* initialize the operator controls (mouse and dials) */

init controls(&pan, &tilt, &fovy, vy, greyscale, compassdir);

pushviewport();

viewport(0, 1023, 0,767);

color(SKYBLUE);

clear();

popviewport();

callobj(instrbox);

callobj(indbox);

editobj(contour);

objreplace(STARTTAG);

viewport(768, 1023,512,767);

160

closeobj();

callobj(contour);

swapbuffers();

callobj(instrbox);

callobj(contour);

editobj (contour);

objreplace(STARTTAG);

viewport(0, 768, 0,768);

closeobj();

flying = TRUE; /* missile is flying */

designate = TRUE; /* a target can be designated */

while(flying) {
/* until tgt is hit or 3-button exit */

/* get values from user contols (mouse and dials) */

read controls(&designate, &greyscale, &flying, &active,

&speed, ^direction, <fccompassdir, &vy,

&pan, &tilt, &fovy);

/* calculate which target was closest to the line of

sight */

if (Idesignate) {

nearest tgt(vx,vy,vz,px,py,pz,&tgt idx);

}

/* update targets' positions */

get tgt posit(socket, designate, tgt idx, &tgtx, &tgty, &tgtz, tank);

/* update missile position */

update missile posit(&direction, &compassdir, speed,

designate, tgtx, tgty, tgtz,

&vx, &vy, &vz, &flying):

/* update camera lookat position */

update look posit(direction, pan, tilt, vx, vy, vz,

tgtx, tgty, tgtz, designate, &px, &py, &pz);

/* determine which polygons need to be drawn */

view bounds(vx, vy, vz, px, py, pz, tilt, fovy,

(kfirstxgrid, &firstzgrid, &lastxgrid, &lastzgrid);

/* edit control display objects to reflect new values */

edit_navbox(navbox, arrowtag, vx, vz, direction, firstxgrid,

firstzgrid, lastxgrid, lastzgrid);

edit indbox(indbox, speedtag, headingtag, elevtag, altmsltag,

zoomtag, tilttag, pantag, desigtag, speed,

compassdir, vx, vy, vz, pan, tilt, fovy, designate);

/* display the 3-D view of the terrain as seen by

161

the camera */

display terrain(vx, vy, vz, px, py, pz, fovy,

firstxgrid, firstzgrid, lastxgrid, lastzgrid);

/* display the control boxes */

writemask(SAVEMAP);

callobj(navbox);

writemask(unmask);

callobj(indbox);

swapbuffers();

seconds = times(×truct);

numpolys = (lastxgrid - firstxgrid)*(lastzgrid-firstzgrid)*2;

elapsed = (float) (seconds - lastseconds)/60.0;

if ((frames >= 0) && (frames < 1000)){

frames sec [frames] [0] = (float)numpolys;

frames sec [frames] [l] = 1.0/elapsed;

}

totalseconds += (seconds-lastseconds);

if (totalseconds > 7200) {

compactify(); /* do garbage collection every 2 mins */

totalseconds = 0.0;

}

lastseconds = seconds;

frames += 1;

} /* end of flying loop */

if (active) { /* explode & restart */

explosion();

prelaunch(&vx, &vy, &vz, ^direction, &compassdir,

^active, pre 1 obj, pre 1 tag);

}

}
/* end of active loop */

/* write out performance stats */

fp = fopen("speed.data", "w");

if (frames > 999) frames = 999;

for (idx = 0; idx <= frames; ++idx) {

fprintf(fp,"%.2f %.2f0, frames_sec[idx][0], frames_sec[idx][l]);

}

162

/* gracefully exit */

if (NETWORKING) close(socket);

setmonitor(HZ60);

color(BLACK);

clear();

swapbuffers();

clearQ;

gexit();

textinit();

exit();

/* end of main */

163

FILES.H

/* These are the files which contain data for the terrain elevations

and roads */

#define TERRAIN FILE "/work/terrain/tenkmsq.dat"

#define ROAD FILE "/work/terrain/Road.data"

FOGM.H

^define elev mask Oxlfff /* mask to obtain elev value from datum */'

#define veg mask 0x0007 /* mask to obtain vegatation value from

shifted datum */

#define RD /* code for reading a file in "open" */

#define MAX 2800 /* max elev (ft) in contour map */

#define MIN 967 /* min elev (ft) in contour map */

#define SKYBLUE 4095 /* color index for sky color */

#define ROADGREY 850 /* color index for the road */

#define DELTAFOVY 50 /* field of view (zoom) increment of 5 deg */

#define PI 3.1415927

#defineTWOPI 6.2831853

#define HALFPI 1.5707963

#define THREE HALVES PI 4.7123889

#define QTR PI 0.7853982

#define THREE QTR PI 2.3561945

#define FIVE QTR PI 3.9269908

#define SEVEN QTR PI 5.4977871

#define RTOD 57.29578 /* radians to degrees conversion factor */

#define DTOR 0.0174533 /* degrees to radians conversion factor */

#define FPSTOKTS 35.525148 /* convert feet per 60th seconds to knots */

164

#define PANSENS 30.0 /* scale factors (sensitivity) for

navigaion controls (mouse and dials) */

#define SPEEDSENS 20

#define TILTSENS 50.0

#define DIRSENS 20.0

#define MAXLOOKDIST 32808.0 /* maximum distance that the camera can

look ahead in feet */

#define FEETPERGRID 3280.8 /* number of feet in 1000 meters */

^define ALTSCALE 1.05 /* altitude expansion factor, altitudes are

raised to this power to give an

exagerrated effect */

#define NUMXGRIDS 10 /* number of IK grid squares in the East-

West direction */

#define NUMZGRIDS 10 /* number of Ik grid squares in the North-

South direction */

#define FT10K 32808 /* number FT in lOKm */

#define FT100M 328.08 /* number FT in 100m */

#define GRID FACTOR 13.03781 /* conversion factor */

#define TV /* for SGI monitor, 1 for TV */

#define SCREENDUMP 1 /* 1 to enable screen dumping, otherwise */

#define NETWORKING /* 1 for target networking, otherwise */

^define INIT PAN /* initial, min and max pan angles in deg. */

#define MIN_PAN -25

#define MAXPAN 25

#define INITTILT -15 /* initial, min and max tilt angles in deg.*/

#define MINJTILT -25

#define MAX TILT 15

#define MAX ALT 17000 /* maximum altitude for missle */

#define MINALT /* minimum altitude for missle */

#define INITSPEED 200 /* init, min and max spd (kts) for missle */

#define MINSPEED
#define MAXSPEED 400

#define INITFOVY 550 /* initial field of view in tenth degrees */

165

^define CONTOUR
^define SCREEN1 1

#define SCREEN2 2

^define SCREEN3 3

#define INSTR 4

^define STATS 5

^define FLTPATH

#define LAUNCH
^define TARGET 1

#define DIR 2

#define HEAD 3

^define TGT 4

^define MISSILE 5

/* Indicies for array obj

/* Indicies for array tag

#denne MAX TGT COLOR 847

#define MINTGT COLOR 668

#define MAX TGTS 100

#define SAVEMAP OxOOCO

166

GAMMARAMP

/* This routine puts a gamma-corrected color ramp into the color map. */

^include <math.h>

gammaramp(gammaconst,firstcolor,ncolors,

brightred,brightgreen, bright blue,

darkred,darkgreen,darkblue)

float gammaconst; /* Strength of Gamma correction (try 1.0) */

long firstcolor; /* index number of the first color to set */

long ncolors; /* the number of colors to set */

long brightred,brightgreen,brightblue; /* the bright end of the ramp */

long darkred,darkgreen,darkblue; /* the dark end of the ramp */

{

long i; /* temp loop index */

float scl; /* scale factor for gamma correction */

long gcred.gcgreen,gcblue; /* gamma corrected colors */

for(i=0; i < ncolors; i + +)
/* for all colors...*/

{

/* compute the scale factor */

scl = pow ((float)i/(float)(ncolors- 1) , 1.0/gammaconst);

/* compute the gamma corrected colors */

gcred = scl * (brightred - darkred) + darkred;

gcgreen = scl * (brightgreen - darkgreen) + darkgreen;

gcblue = scl * (brightblue - darkblue) + darkblue;

mapcolor(firstcolor+i, gcred, gcgreen, gcblue); /* set the color */

167

GET TGT POS

/* get targets' positions from irisl if networking. Otherwise moves 10 targets

in straight lines, reversing when they hit an edge */

^include "fogm.h"

^include "gl.h"

#include "math.h"

^include <sys/types.h> /* contains the time sturcture tms */

^include <sys/times.h> /* for time calls */

get tgt posit(socket,designate, tgt idx,tgtx,tgty,tgtz,tank)

int socket, designate, tgt idx;

float *tgtx, *tgty, *tgtz;

Object tank;

i

extern float tgt_pos[MAX_TGTS][3];

extern float randx, randy, randz;

extern Object target[99]j99];

extern short tgt grid idxjMAX TGTS][2];

extern short tgttotal, tgt_dir[MAX_TGTS];

short i, tgt num;

int nbyte, addl();

float gnd level(), dir, dx, dz, distance;

long dist, d2;

static long seconds;

static long lastsec = -999; /* -999 is flag to indicate no value */

struct tms timestruct;

seconds = times(×truct);

if (lastsec == -999) /* compute distance targets move ahead */

distance = 0.0;

else

distance = (float)((15.0/FPS_TO_KTS)*(seconds - lastsec));

lastsec = seconds; /* save for next pass */

for (i = 0; i < tgt total; i++
) /* delete targets from old positions */

if (target[tgt_grid_idx[i][0]][tgt_grid_idx[i][l]]) {

delobj(target |tgt_grid_idx[i][0]] [tgt grid idx[i)[l]]);

targetjtgt_grid_idx[iJ[0]][tgt_grid_idx[i][l]] = 0;

}

if (NETWORKING) {

nbyte = read(socket, &tgt total, sizeof(tgt total));

for (i = 0; i < tgttotal; i++) {

nbyte = read(socket, &tgt grid idx[i][0], sizeof(short));

nbyte = read(socket, &tgt_grid_idx[i][l], sizeof(short));

168

nbyte = read(socket, &tgt_pos(i][0], sizeof(float));

nbyte = read(socket, &tgt pos[i][l], sizeof(float));

nbyte = readfsocket, &tgt pos(i][2], sizeof(float));

nbyte = read(socket, &tgt_dir[i], sizeof(short));

}

}

else {

tgttotal = 10;

for (i = 0; i < tgttotal; i++) {

dir = (float) (tgt_dir|i] / 10) * DTOR;
tgt pos[i][0j += cos(dir) * distance;

tgt pos[i][2] -= sin(dir) * distance;

tgt2grid_idx[i][0] = (short)(tgt_pos[i][0]/FT_100M);

tgt_grid_idx[i][l] = (short)(-tgt_pos[ij[2]/FT_100M);

if ((tgt_pos[i][0] > FT_10K)
||

(tgt_pos[i][0] < 0)) {

if (tgt_dir[i| > 1800) tgt_dir[i] -= 1800;

else tgt_dir[ij += 1800;

tgt_pos[i][l] = 0.0;

}

else if ((tgt_pos[ij[2] < -FT_10K)
||

(tgt_pos[i][2] > 0)) {

if (tgt_dir[i| > 1800) tgt_dir[i] -= 1800;

else tgt_dir!i] += 1800;

tgt_pos[i][lj = 0.0;

}

else tgt pos[i][l] = gnd level(tgt pos[i][0l, tgt pos[i][2]);

}

}

if (Idesignate) {

if (NETWORKING) {
/* find which target is designated */

dist = up_i((float)(tgtj)osjO][0] - *tgtx),2) +
up_i((float)(tgt_pos[0](2] - *tgtz),2);

tgt idx = 0;

for (i = 1; i < tgttotal; i+ +
) {

d2 = up_i((float)(tgt_pos[i][0] - *tgtx),2) +
up i((float)(tgt_pos(i)[2] - *tgtz),2);

if (d2 < dist) {

dist = d2;

tgt idx = (int)i;

}

}

}

*tgtx = tgt pos[tgt idxjjO] + randx;

*tgty = tgt pos|tgt idx][l] + randy;

*tgtz = tgt_pos[tgt_idx][2] + randz;

}

tgtnum = tgt total;

for (i = 0; i < tgt num; i+ +
) {

dx = tgt_pos[i][0] - (float)tgt_grid_idx[i][0] * FT100M;
dz = (float)(-tgt_grid_idx[ij[l]) * FT100M - tgt_pos[i][2];

if (dx < 15.0)

if (dz < 15.0) {

addl(i,-l,0);

169

addl(i,-l,-l);

addl(i,0,-l);

}

else if (dz > 313.0) {

addl(i,0,l);

addl(i,-l,l);

addl(i,-l,0);

}

else addl(i,-l,0);

else if (dx > 313.0)

if (dz < 15.0) {

addl(i,0,-l);

addl(i,l,-l);

addl(i,l,0);

}

else if (dz > 313.0) {

addl(i,l,0);

addl(i,l,l);

addl(i,0,l);

}

else addl(i,l,0);

else if (dz < 15.0) addl(i,0,-l);

else if (dz > 313.0) addl(i,0,l);

}

for (i = 0; i < tgt total; i+ +
) /* add targets to new positions */

if (target!tgt_grid_idx[i][0]][tgt_grid_idx[i][l]]) {

editobj(target(tgt grid idx[i][0]][tgt grid idx[i](l]]);

pushmatrix();

translate (t gt _posji|[0], tgt _pos[i][l], tgt _pos[i| [2]);

rotate(tgt_dir(i], 'Y');

callobj(tank);

popmatrix();

closeobj();

\

{

targetjtgt grid idx[ij[0]][tgt grid idx[i][l]] = genobj();

makeobj(targetjtgt grid idxji] [0]
]

[tgt grid idx[i][l]]);

pushmatrix();

translate(tgt pos[i][0],tgt pos[i][l],tgt pos[i][2J);

rotate(tgt_dir[i), 'Y');

callobj(tank);

popmatrix();

closeobj();

addl(tgt num,x,z)

short tgt num,x,z;

{

extern float tgt_pos[MAX_TGTS][3];

170

extern short tgt_grid_idx[MAX_TGTS][2];

extern short tgt total, tgt__dir|MAX_TGTS];

short i;

tgt pos[tgt total][0] = tgt posjtgt_num][0]; /* copy pos. for "new" tgt */

tgt posjtgt totaljjl] = tgt posjtgt numj[l]

tgt posjtgt total](2] = tgt pos[tgt num][2]

tgt dirjtgt total] = tgt dir[tgt num]; /* copy dir for "new" tgt */

tgt grid idx[tgt total](0] = tgt grid idx[tgt_num][0] + x; /* set pos in */

tgt grid idxjtgt total][l] = tgt grid idx[tgt_numj[l] + z; /* new grid sq */

for (i — 0; i < 2; i++
) { /* reset if new grid sq outside 10km square */

if (tgt grid idxjtgt total] [i] < 0) tgt grid idx(tgt total] [i] = 0;

if (tgt_grid_idxjtgt_total]jij > 98) tgt_grid_idx[tgt_total](i] = 98;

}

tgt total + +
;

171

GND LEVEL

^include "math.h"

^include "fogm.h"

#define X
#define Y 1

#define Z 2

float gnd level(vx, vz)

float vx, vz;

extern short gridpixel(lOO][lOO];

float interp elev();

float grid level();

float point(3], nw corner{3], ne corner[3], sw corner[3], se corner[3];

float intersect[3[;

float elev;

int xgrid, zgrid, intersect type;

/* determine which triangle the point falls in */

xgrid = (int)(vx/FT_100M);

zgrid = (int)(-vz/FT_100M);

if (xgrid < 0) xgrid = 0;

if (xgrid > 98) xgrid = 98;

if (zgrid < 0) zgrid = 0;

if (zgrid > 98) zgrid = 98;

point(X] = vx;

point[Z] = -vz;

nw corneriX] = (float) (xgrid*FT_100M);

nwcornerlZ] = (float)((zgrid + l)*FT_100M);

elev = gridpixel[zgrid+l][xgrid] & elev mask;

nw corner Y] = pow(elev, ALTSCALE);
swJcorner[Xj = (float) (xgrid*FT_100M);

swcornerjZl = (float) (zgrid*FT_100M);

elev = gridpixel[zgrid) [xgrid] & elev mask;

sw corner[Y] = pow(elev, ALTSCALE);
ne~corner[X) = (float)((xgrid+ l)*FT_100M);
ne_corner[Z] = (float)((zgrid+l)*FT_100M);

elev = gridpixel(zgrid+l](xgrid+l] & elev mask;

ne corner[Y] = pow(elev, ALTSCALE);
seJcorner[X] = (float)((xgrid+l)*FT_100M);

se_corner[Z] = (float)(zgrid*FT 100M);

elev = gridpixeljzgridj [xgrid + l) & elev mask;

se cornerjYj = pow(elev, ALTSCALE);

if (-vz < (nw cornerjZj - (vx - nw cornerfXj))) {

/* point is in the lower triangle */

/* find the point of intersection of a line through vx,vz

and the sw corner with the diagonal */

172

}

line intersect2(sw corner, point, nw corner, se corner, intersect,

^intersect type);

/* find the elevation of the intersection on the diagonal */

intersectjY] = interp elev(nw corner, se corner, intersect);

/* find the elevation of the point vx, vy */

return(interp elev(sw corner, intersect, point));

}

else {

/* point is in the upper triangle */

/* find the point of intersection of the diagonal with a line

through th ne corner and the point */

line intersect2(ne corner, point, nw corner, se corner, intersect,

&intersect type);

/* find the elevation of the intersection on the diagonal */

intersectjY] = interp elev(nw corner, se corner, intersect);

}

/* find the elevation of the point vx, vz */

returnfinterp elev(ne corner, intersect, point));

173

IN THIS POLY

#include "gl.h"

#define X
#define Y 1

#define Z 2

#define PROPER 2

int in this poly(polygon, num vertex, point)

float polygon[l0][3];

int num vertex;

float point[3];

{

int index;

int pt in, intersect type;

int num crossings;

float max x, max z, min x, min z;

float intersect [3];

float old intersect[3];

float start test line[3|;

maxx = polygon[0](X];

min x = polygon[0](X];

max z = polygon(0)[Z];

min z = polygon[0][Z];

for (index = 1; index < num vertex; ++ index) {

if (polygon[index][X] < min x) min x = polygon[index][X];

if (polygon[indexj[X] > max x) max x = polygonjindex][Xj;

if (polygon[index|jZ] < min z) min z = polygon[index][Z|;

if (polygon[index][Z] > max z) max z = polvgon[indexj[Z];

}

if ((pointjX] < max_x) && (pointjX] > min_x) && (pointjZj < max_z) &&
(pointjZ] > minz)) {

/* point may be polygon, test further by constructing a vertical line

from the point to a point outside the polygons bounds. Count the number

of times this line crosses a side of the polygon. If it crosses an

odd number of times the point is in the polygon, otherwise it is

outside the polygon */

start test line[X] = point(X|;

start test line[Z] = max z + 1000.0;

num crossings = 0;

old intersect [X] = -999.0;

174

}

old intersectjZ] = -999.0;

for (index = 0; index < numvertex -1; + ->-index) {

line intersect2(start test line, point, &polygon[index][0j,

&polygon[index+l][0], intersect, ^intersect type);

/* if a proper intersection exists and it is not the same point

as the previous intersection (i.e it didn't intersect a vertex),

then add one to the number of crossings */

if ((intersecttype == PROPER) && ((intersect(X] != oldintersectjX])

|

(intersectjZ] != old intersectjZ]))) numcrossings += 1;

old intersect[X] = intersect[X|;

old intersectjZ) = intersectjZ);

}

line_intersect2(start test line, point, & polygon]num vertex- 1][0],

&polygon(0][0), intersect, ^intersect type);

if (intersect type == PROPER) num crossings += 1;

/* if the number of crossings is even, the point was outside */

pt in = ((num crossings % 2) != 0);

return(pt in);

}

else {

return(FALSE);

}

175

INIT CTRLS

/* initialize the operator controls */

^include "fogm.h" /* fogm constants */

^include "device. h" /* graphics device definitions */

^include "gl.h" /* graphics routine definitions */

^include "math.h" /* math function definitions */

init controls(pan, tilt, fovy, alt, greyscale, compassdir)

double *pan; /* initial pan angle in radians */

double *tilt; /* initial tilt angle in radians */

int *fovy; /* initial field of view in tenths of degrees */

Coord alt; /* initial altitude of missile */

int greyscale; /* initial value of greyscale boolean */

float compassdir; /* initial compass direction */

<

*pan = INIT PAN * DTOR;
*tilt = INIT TILT * DTOR;
*fovy = INIT FOVY;

/* set initial, min, and max values for mouse & dials */

setvaluator(MOUSEX,(short)(INIT PAN*PANSENS),(short)(MIN _PAN*PANSENS),
(short)(MAX_PAN*PANSENS));

setvaluator(MOUSEY,(short)(INIT_TILT*TILTSENS),(short)(MIN_TILT*TILTSENS),

(short) (MAX TILT*TILTSENS));

setvaluator(DIALO,(short)(compassdir*DIRSENS), (short)(-360*DIRSENS),

(short)(720*DIRSENS));

setvaluator(DIAL4,(short)alt,MIN_ALT,MAX ALT);

setvaluator(DIAL2, (short)(INIT_SPEED*SPEEDSENS),

(short) (MIN_SPEED*SPEEDSENS),
(short)(MAX_SPEED*SPEEDSENS));

setvaluator(DIAL3, grey scale, 0,1);

176

INIT IRIS

/* Initialize the graphics environment for the iris workstation */

/
* graphics definitions */

/* monitor type definitions */

/* fogm constants */

include "gl.h"

include "get.h"

include "fogm.h"

in

{

it iris()

long chunk;

ginit();

doublebuffer();

chunk = 128;

chunksize(chunk);

gconfig();

if (TV) {

setmonitor(NTSC);

fontdef(l,"TV.font");

font(l);

}

else setmonitor(HZ60);

cursoff(); /* turn off the cursor

/* number of bytes be which objects

increment */

/* initialize the IRIS system */

/* put the IRIS into double buffer mode */

/* (means use the above command settings) */

/* choose tv or SGI monitor */

backface(TRUE);

color(BLACK);

clear();

swapbuffers();

/* turn on backface polygon removal */

177

INIT TGTS

#include "fogm.h"

#include "gl.h"

init tgts()

{

extern short tgt total;

extern Object taxget[99)(99];

short x, y;

int init tgt
()

;

for

if(

(x = 0; x < 99; x++) for (y = 0; y < 99; y+ +) target[x][y] = 0;

INETWORKING) {

tgt total = 10;

init

init

init

init

init

init

init

init

in

tgt

tgt

tgt

tgt

tgt

tgt

tgt

tgt

t tgt

init tgt

(0,9.8,3.5,1295)

(1,9.5,3.5,1295)

(2,9.4,3.1,1295)

(3,9.8,0.5,1800)

(4,9.5,0.0,1355)

(5,8.0,0.0,1445)

(6,4.0,0.0,1450)

(7,0.0,0.5.450);

(8,9.5,9.8,2700)

(9,9.8,8.5,1800)

init tgt (tgt num,xoffset,zoffset, direction)

short tgt num, direction;

float xoffset, zoffset;

I

extern short tgt dir[MAX TGTS];

extern float tgt pos[MAX_TGTS][3];

tgt posltgt_num]]0] = xoffset * FEETPERGRID;
tgt_pos(tgt_num](2] = -zoffset * FEETPERGRID;
tgt dirjtgt num] = direction;

178

INTERP ELEV

#include "math.h"

#define X
#define Y 1

#define Z 2

float interp elev(line start, line end, point)

float line start[3], line end[3], point[3];

{

long float line deltax, line deltaz, point deltax, point deltaz;

float line length, dist to point;

float interpolation;

line deltax = (long float)(line end[X] - line start[X]);

line deltaz = (long float)(line end[Z) - line start[Z]);

point deltax = (long float)(line start [X] - pointjX]);

point deltaz = (long float)(line_start[Z] - point[Z]);

line length = (float)hypot(linedeltax, line deltaz);

dist to point = (float)hypot(point deltax, point deltaz);

interpolation = line start[Y] + ((line end[Y] - line start[Yj) *

(dist to point/line length));

return (interpolation);

179

LIGHTORIENT

/* this is file lightorient.c */

/*

It is a routine that computes lighting for a polygon based

upon the angle between the Normal vector of the polygon

and the direction to the light source.

lightorient(xyz,ncoords,ax,ay,az,lx,ly,lz,colormin,colormax,colortouse)

xyz[][3] = floating coords of the polygon.

ncoords = number of coordinates.

ax,ay,az = interior point of the whole object. Used to determine

outward facing normal of the polygon. This is the same

point of reference that would be used for backface

polygon removal.

lx,ly,lz = vector pointing in direction of the light source.

colormin, colormax = indices used for the colors assigned to this

polygon. The user is responsible for setting

up the color ramp.

colortouse = returned color used to light the polygon.

Note: the routine also puts the polygons out ordered counterclockwise

with respect to the interior point for ease of backface polygon

removal.

7

^include <math.h>

^include <gl.h>

#define MAXCOORDS 80

#define PIDIV2 1.570796327

float txyz[MAXCOORDS][3j; /* temp coord hold */

lightorient(xyz, ncoords, ax, ay, az,lx,ly,lz,colormin,colormax,colortouse)

float xyz[j[3];

long ncoords;

180

float ax,ay,az; /* interior point of the whole object. */

float lx,ly,lz; /* direction to the light source */

long colormin,colormax; /* color min/max indices */

long *colortouse; /* color used to light the polygon (return value) */

{

long i,j; /* loop temps */

long npoly orient(); /* direction test function */

float vl[3],v2[3];

float normal[3];

float normalrnag;

float lightmag;

double dotprod;

float radians;

/* vectors used to compute

the polygon's normal */

/* the polygon's normal */

/* normal's magnitude */

/* magnitude of the light vector */

/* dot product of N and L */

/* angle between N and L */

/* check the number of coords in the input array */

if(ncoords > MAXCOORDS)
{

printf("LIGHTORIENT: too many coords passed to me! = %d0, ncoords);

exit(l);

}

/* orient the polygon so that its counterclockwise with respect

to the interior point */

if(npoly orient(ncoords,xyz,ax,ay,az) == 1)

{

/* the polygon is clockwise, reverse it. */

for(i=0; i < ncoords; i=i+l)

{

for(j=0;j < S;j=j+1)

{

txyz[i][jj = xyz[ncoords-i-l][j];

}

}

for(i=0; i < ncoords; ++ i)

for (j=0;j < 3; ++j)
xyz(i][j] = txyz[ij[j];

181

}

/* the coordinates are ordered counterclockwise in array xyz */

/* compute the normal vector for the polygon using the first

three vertices...*/

/* compute the first vector to use in the computation */

vl[0] = xyz[2][0) - xyz[l][0]

vl[l] = xyz[2][l] - xyz[l][l]

vl[2] = xyz[2][2] - xyz[l][2]

/* compute the second vector to use in computing the normal */

v2[0] = xys[0][0] - xyz(l][0]

v2[l] = xyz[0][l] - xyz[l][l]

v2[2] = xyz[0][2] - xyz[l][2]

/* the normal is vl x v2 */

normaljO] = vl[l]*v2[2] - vl(2]*v2[l];

normaljl] = vl[2]*v2[0] - vl[oj*v2[2J;

normal|2] = vl[0]*v2[l] - vl[l]*v2[0j;

/* compute the magnitude of the normal */

normalmag = sqrt((normal[0{*normal[0') + (normal[l]*normal[l))+
(normal} 2] *normal}2]));

/* check the magnitude of the normal */

if(normalmag == 0.0)

{

normalmag = 0.00001; /* a small number */

}

/* compute the light mag */

lightmag = sqrt((lx*lx) + (ly*ly) + (lz*lz));

if(lightmag == 0.0)

{

lightmag = 0.00001; /* a small number */

}

/* compute N . L (normal dot product with the light source direction) */

dotprod = (normal[0] * lx) + (normaljl] * ly) + (normalj2j * lz);

dotprod = dotprod/(lightmag*normalmag);

/* dotprod = cos(theta) of the angle between N and L.

Convert to angle in radians */

radians = acos(dotprod);

/* compute the color we should use */

if(-PIDIV2 <= radians && radians <= PIDIV2)

{

182

/* if the angle is negative, set to positive */

if(radians < 0.0)

{

radians = -radians;

}

colortouse = ((colormax-colormin)/PIDIV2)(PIDIV2-radians)+colormin;

}

else

{

*colortouse = colormin;

I

/* set the color */

color(*colortouse);

/* draw the poly */

/* polf(ncoords,txyz); */

183

LINE INTERSECT2

#include "gl.h"

#define X
#define Z 2

#define NONE
#define INTERSECT 1

#define PROPER 2

line intersect2(startl, endl, start2, end2, intersect,

intersect type)

float startlj3], endl(3j, start2[3], end2[3], intersect[3];

int *intersect type;

{

/* given two lines of the form z = mx + b and z = nx + c,

solving for x when the z's are equal gives x = (c-b)/(m-n).

Then solve for z using x in either of the above equations. */

float m,n,b,c;

float mini x, min2 x, maxl x, max2 x, mini z, min2 z, maxl z, max2 z;

*intersect_type = PROPER;

/* slope and z intercept of linel */

if (endl[X) != startl(Xj) {

m = (endlJZj - startl[Z))/(endl[X] - startl[X]);

b = ((startl[Zj - endl[Zj)/(endl[Xj - startl[Xj)) * startl[X] + startl[Z];

if (end2(Xj != start2[Xj) { /* both lines are non-vertical */

/* slope and z intercept of line2 */

n = (end2(Z] - start2[Zl)/(end2[X] - start2[X]);

c = ((start2[Zl - end2[Z])/(end2[X| - start2iX])) * start2[X] +
start2[Z];

if (m != n)
{

intersect(X) = (c-b)/(m-n);

intersectjZ] = m*intersect[X] + b;

}

else { /* both lines have equal slopes */

intersect type = NONE;

}

}

else {
/* linel is non-vertical, line2 is vertical */

intersect[X] = end2[Xj;

intersect[Z] = m*intersect[X) + b;

}

}

else {

184

if (end2[X] != start2[X]) {
/* linel is vertical, line2 is non-vertical*/

/* slope and z intercept of line2 */

n = (end2[Z) - start2[Z])/(end2[X] - start2[X|);

c = ((start2(Z] - end2[Z])/(end2[X] - start2[X])) * start2[X] +
start2[Zj;

intersect[X) = endl[X];

intersect[Z] = n*intersect[X] + c;

}

else { /* both lines are vertical */

*intersect_type = NONE;

}

}

if (*intersect_type != NONE) {

/* see if the intersection is proper, or if only the extensions of the

line segments intersect */

if (startl[X) < endl[X]) {

minlx = startl[X];

maxlx = endl[X];

}

else {

mini x = endl[X];

maxl x = startl[X];

}

if (startl(Z] < endl[Z]) {

mini z = startljZ];

maxl z = endljZ];

}

else {

mini z = endl[Z];

maxlz = startllZ];

}

if (start2|X] < end2jXj) {

min2 x = start2(X];

max2 x = end2[X);

}

else {

min2_x = end2[X];

max2_x = start2[X];

}

if (start2(Z] < end2|Z]) {

min2_z = start2[Z];

max2 z = end2[Zj;

}

else {

min2_z = end2[Z];

max2_z = start2[Z];

}

185

if ((intersect[X| <= maxl x) && (intersectjX] <= max2 x) &&
(intersectjX] >= minl_x) && (intersectjX] >= min2 x) &&
(intersectjZj <= maxl z) <fc& (intersect[Z] <= max2 z) &&
(intersectjZ] >= mini z) && (intersect[Z] >= min2 z)) {

* intersect type = PROPER;

}

else {

*intersect_type = INTERSECT;

}

}

}

186

MAKENAVBOX

/* drawnavbox.c - this function is called by the FOG-M missile simulator to

build an object on top of the contour map in the upper right-hand corner

of the screen. Navbox contains the direction arrow and view box in red. */

#include "gl.h"

^include "fogm.h"

^include "device.h"

drawnavbox(navbox, arrowtag)

Object *navbox;

Tag *arrowtag;

{

navbox = genobj(); / create the navigation contol and display object */

makeobj(* navbox);

if (TV) viewport(475,635, 323,474);

else viewport(768, 1023, 512, 767); /* upper right hand corner of screen */

pushmatrix(); /* draw arrow in feet coordinates */

ortho2(-10.0,10.0 + NUMXGRIDS*FEETPERGRID, -10.0,

-10.0 - NUMZGRIDS*FEETPERGRID);
color(BLACK);

clear();

color(l28);

*arrowtag = gentagQ;

maketag(* arrowtag)

;

move2(0. 0,0.0);

draw2(0. 0,0.0);

draw2(0. 0,0.0);

move2(0. 0,0.0);

draw2(0.0, 0.0);

rect(0.0, 0.0,0.0,0.0); /* view box */

popmatrix();

closeobj();

187

MAKEINDBOX

/* makeindbox.c is a function that creates an object that displays the control

idicators for the FOG-M missile simulation */

#include "gl.h"

^include "fogm.h"

makeindbox (ind box, head in g t ag,elevtag,altmsltag,speed tag,zoom tag, tilt tag,pantag,desigtag)

Object *indbox;

Tag *headingtag, *elevtag, *speedtag, *zoomtag, *tilttag, *pantag, *desigtag;

Tag *altmsltag;

{

*indbox = genobj();

makeobj(*indbox);

if (TV) viewport(475,635,162,322);

else viewport(768, 1023, 256, 511); /* middle box on side of screen */

pushmatrix();

ortho2(0. 0,255. 0,0. 0,255.0); /* use screen sized coordinates */

color(854); /* clear the window */

clear();

linewidth(2);

color(BLACK);

recti(0,0,255, 255); /* outline box */

color(YELLOW); /* print labels for readouts */

cmov2i(l0,240);

charstr("SPEED");

cmov2i(55,225);

charstr("kts");

cmov2i(90,240);

charstr("HEADING");

circ(140.0,232.0,3.0); /* "degree" symbol */

cmov2i(180,240);

charstr("Alt AGL"), /* AGL = above ground level */

cmov2i(225,225);

charstr("ft");

cmov2i(180,200);

charstr("Alt MSL"); /* MSL = mean sea level */

cmov2i(225,185);

charstr("ft");

cmov2i(50,130);

charstr("ZOOM");

move2i(45,200); /* draw slider bar frame */'

draw2i(25,200);

draw2i(25,70);

draw2i(45,70);

cmov2i(15,196);

188

charstr("8"); /* label slider bar values */

cmov2i(6,170);

charstr("15");

cmov2i(6,144);

charstr("25");

cmov2i(6,118);

charstr("35");

cmov2i(6,92);

charstr("45");

cmov2i(6,66);

charstr("55");

/* readouts in white... */

/* initialize to dummy values */

/* speed */

/* heading */

/* altitude above ground level */

color(WHITE);
cmov2i(l0,225);

*speedtag — gentag();

maketag(*speedtag);

charstr(" 200");

cmov2i(l08,225);

*headingtag = gentag();

maketag(*headingtag);

charstr(" 0");

cmov2i(l80,225);

*elevtag = gentag();

maketag(*elevtag);

charstr("1000");

cmov2i(l80,185);

*altmsltag = gentag();

maketag(*altmsltag);

charstr("1000");

color(RED);

*zoomtag= gentag();

maketag(* zoom tag);

move2(28.0,135.0);

rdr2(l0.0,5.0);

rdr2(0.0,-10.0);

rdr2(-10.0,5.0);

popmatrix();

if (TV) viewport(0, 474,0,474); /* reset for heads-up display */

else viewport(0, 767,0,767);

pushmatrix();

ortho2(0. 0,767. 0,0. 0,767.0); /* use screen sized coordinates */

color(WHITE);

/* altitude from mean sea level */

/* indicator for zoom slider bar */

189

if (TV) linewidth(2);

else linewidth(l);

/* draw center of crosshairs */rectfi(365,370,370,375)

rectfi(396,370,401,375)

rectfi(365, 391, 370,396)

rectfi(396,391,401,396)

move2i(0,383);

draw2i(360,383); /* draw crosshairs */

move2i(406,383);

draw2i(767,383);

move2i(383,0);

draw2i(383,365);

move2i(383,401);

draw2i(383,767);

linewidth(2);

move2i(30,50); /* draw TILT slider bar frame */

draw2i(40,50);

draw2i(40,680);

draw2i(30,680);

cmov2i(0,676);

charstr("+25"); /* label slider bar values */

cmov2i(0,613);

charstr(M +20");

move2i(30,617);

draw2i(40,617);

cmov2i(0,550);

charstr(" + 15");

move2i(30,554);

draw2i(40,554);

cmov2i(0,487);

charstr(" + 10");

move2i(30,491);

draw2i(40,491);

cmov2i(0,424);

charstr(" +5");

move2i(30,428);

draw2i(40,428);

cmov2i(0,361);

charstr(" 0");

move2i(30,365);

draw2i(40,365);

cmov2i(0,298);

charstr(" -5");

move2i(30,302);

draw2i(40,302);

cmov2i(0,235);

charstr("-10"j;

move2i(30,239);

draw2i(40,239);

190

cmov2i(0,172);

charstr("-15"j;

move2i(30,176);

draw2i(40,176);

cmov2i(0,109);

charstr("-20"j;

move2i(30,113);

draw2i(40,113);

cmov2i(0,46);

charstr(M-25 M
);

*tilttag = gentag();

maketag(*tilttag);

move2(42. 0,365.0);

rdr2(10.0,-5.0);

rdr2(0.0,10.0);

rdr2(-8.0,-4.0);

rdr2(6.0,-3.0);

rdr2(0.0, 4.0);

rdr2(-2.0,-1.0);

rdr2(1.0,-1.0);

/* indicator for TILT slider bar */

move2i(120,15);

draw2i(120,25);

draw2i(750,25);

draw2i(750,15);

cmov2i(l07,3);

charstr("-25"j;

cmov2i(170,3);

charstr("-20");

move2i(l83,15);

draw2i(183,25);

cmov2i(233,3);

charstr("-15");

move2i(246,15);

draw2i(246,25);

cmov2i(296,3);

charstr("-10"j;

move2i(309,15);

draw2i(309,25);

cmov2i(363,3);

charstr("-5");

move2i(372,15);

draw2i(372,25);

cmov2i(431,3);

charstr(M0");

move2i(435,15);

draw2i(435,25);

cmov2i(494,3);

charstr(" + 5");

move2i(498,15);

draw2i(498,25);

/* draw PAN slider bar frame */

/* label slider bar values

191

cmov2i(552,3);

charstr("+10")

move2i(561,15)

draw2i(561,25)

cmov2i(615,3);

charstr("+ 15")

move2i(624,15)

draw2i(624,25)

cmov2i(678,3);

charstr("+20")

move2i(687,15)

draw2i(687,25)

cmov2i(741,3);

charstr("+25")

*pantag = gentag();

maketag(*pantag);

move2(435. 0,27.0);

/* indicator for PAN slider bar */

rdr2

rdr2

rdr2

rdr2

rdr2

rdr2

rdr2

5.0,10.0);

-10.0, 0.0);

4.0,-8.0);

3.0, 6.0);

-4.0, 0.0);

1.0,-2.0);

1.0, 1.0);

move2i(0,30);

draw2i(100,30);

draw2i(l00,0);

*desigtag = gentag();

maketag(*desigtag);

cmov2i(10,10);

charstr('»DESIGNATE");

/* designate/reject box */

popmatrix();

closeobj();

192

MAKEINSTRBOX

/* makeinstrbox.c - this function builds an object that contains an instruction

summary for the FOG-M missile simulation */

#include "gl.h"

^include "fogm.h"

makeinstrbox(instrbox)

Object *instrbox;

{

*instrbox = genobjQ;

makeobj(*instrbox);

if (TV) viewport(475,635,0,16l);

else viewport(768, 1023,0,255); /* box is in lower right hand corner */

pushmatrix();

ortho2(0. 0,255. 0,0. 0,255.0); /* use screen-sized coordinates */

color(851);

clear();

linewidth(2);

color(852);

rectfi(10, 20,110,195);

rectfi(135, 80,245, 195);

color(BLACK);

recti(10,20,110,195);

recti(l35, 80,245, 195);

recti(0,0,255,255);

/* use a medium green

/* use light brown */

/* draw the mouse control box */

/* draw the dial control box */

/* outline controls */

7

color(BLACK);

cmov2i(60,230);

charstr("C ONTROL S")

cmov2i(37,200);

charstr("MOUSE");
cmov2i(l72,200);

charstr("DIALS");

cmov2i(25,60);

charstr("TILT");

move2i(70,62)

draw2i(75,55);

draw2i(75,75);

draw2i(70,68)

move2i(75,75);

draw2i(80,68)

move2i(75,55);

draw2i(80,62l

/* draw arrow */

193

cmov2i

charstr

move2i

draw2i(

draw2i(

draw2i(

move2i|

draw2i(

move2il

draw2i(

25,30);

"PAN")

;67,40);

60,35);

80,35);

73,40);

; 80,35);

73,30);

[60,35);

67,30);

color(853);

rectfi(20,85,40,185);

rectfi(50,85, 70,185);

rectfi(80,85,100,185)

color(BLACK);

recti(20, 85, 40,185);

recti(50,85.70,185):

recti(80,85,100.185);

/* draw arrow */

/* dark brown

/* draw mouse buttons

/* outline buttons

/* draw dials

/* outline dials

color(853);

circfi(l60,165,20)

circfi(160,110,20)

circfi(220,165,20)

circfi(220,110,20)

color(BLACK);

circi(l60,165,20);

circi(160,110,20);

circi(220, 165,20);

circi(220, 110,20);

color(WHITE);

cmov2i(147,160);

charstr) "SPD"); /* label dials */

cmov2i(147,106);

charstr("DIR");

cmov2i(207,106);

charstr("ALT");

cmov2i(207,160);

charstr("CLR");

*/

cmov2i(25,170);

charstr("Z"); /'

cmov2i(25,158);

charstr("0");

cmov2i(25,146);

charstr("0");

cmov2i(25,134);

charstif'M");

cmov2i(25,110);

charstr("I");

cmov2i(25,98);

charstr("N");

label mouse buttons */

194

cmov2i(55,170);

charstif'D");

cmov2i(55,158);

charstif'E");

cmov2i(55,146);

charstr("S");

cmov2i(55,134);

charstr("I");

cmov2i(55,122);

charstr("G");

cmov2i(85,170);

charstr("Z");

cmov2i(85,158);

charstr("0");

cmov2i(85,146);

charstr("0");

cmov2i(85,134);

charstr("M");

cmov2i(85,110);

charstr("0 M
);

cmov2i(85,98);

charstr(M
U*');

cmov2i(85,86);

charstr("T");

popmatrix();

closeobj();

195

MAKEMAP

/* makemap.c - this function is called by the FOG-M missile simulator to

build an object containing a contour map. The map is used for the full

screen display in prelaunch, and in the upper right corner of the flight

display in fogm. */

#include "gl.h"

^include "fogm.h"

^include "device. h"

makemap (con tour)

Object *contour;

{

short i, j, elev, length, lastcolor, breakpt[l5];

int colour;

extern short gridpixel[l00][l00]; /* terrain elevations & vegetation */

/* compute elevations where color changes should occur */

for (i = 1; i < 16; i+ +) breakpt[i-l] = (((MAX - MIN) / 16)
* i) + MIN;

contour = genobj(); / create the navigation contol and display object */

makeobj(* contour);

viewport(0, 767, 0,767);

pushmatrix();

ortho2(0. 0,100. 0,0. 0,100.0); /* use array index space */

color(BLACK);

clear();

lastcolor = BLACK;
linewidth(8);

raw column i 7for (i=0; i < 100; +-H) {
/* d

move2i(i,0); /* start at bottom of column

length = 0; /* # adjacent points of the same color */

for (j = 0; j < 100; + +j) {
/* for each row in column i */

elev = gridpixeljj] ji) & elev mask; /* mask off veg code

if (elev < breakptjO]) colour = 16; /* assign green colors

*/
/

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

else if (elev < breakpt

1]) colour = 17

2]) colour = 18

3]) colour = 19

4]) colour = 20

5]) colour = 21

6]) colour = 22

7]) colour = 23

8]) colour = 24

9]) colour = 25

10)) colour = 26;

11]) colour = 27;

12 colour = 28;

196

else if (elev < breakpt[13)) colour = 29;

else if (elev < breakptJH]) colour = 30;

else colour = 31;

/* if veg-code = (i.e. veg < 1 meter) shift to brown colors */

if (!((gridpixel[j][ij >> 13) & veg_mask)) colour += 16;

if (colour == lastcolor) length+ + ;
/* don't draw yet */

else {
/* draw now that color has changed */

color(lastcolor);

rdr2i(0, length);

lastcolor = colour; /* reset for new draw */

length = 1;

}

}
/* end for j */

color(colour); /* draw last (top) line */

rdr2i(0, length);

}
/* end for i */

if (!TV) {

color(BLACK); /* draw grid on top of map */

linewidth(l);

for (i = 10; i < 100; i+=10) { /* draw interior lines */

move2i(i,0); /* horizontals */

draw2i(i,100);

move2i(0,i); /* verticals */

draw2i(100,i);

}

}

linewidth(2); /* draw exterior border */

rect(0. 0,0. 0,100.0, 100.0);

popmatrix();

closeobjQ;

197

MAKESCREENS

/* makescreens.c - builds graphical objects for prelaunchs instructional

screens and readout boxes. */

^include "gl.h"

#include "device. h"

#include "fogm.h"

makescreens(obj,tag)

Object obj(7];

Tag tag[6];

{

obj[INSTR| = genobj();

makeobj(obj INSTR]);

if (TV) viewport(475,635, 239,474);

else viewport(767. 1023, 385, 767);

pushmatrix();

ortho2(0.0,255.0,0. 0,384.0);

color(CYAN);

clear();

color(BLUE);

rectfi(10,10,245,374);

color(WHITE);

/* object for pre-launch instructions */

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

popmatrix();

closeobj();

30,340);

"PRE-LAUNCH INSTRUCTIONS")
25,300);

"1. PRESS LEFT MOUSE");
52,285);

"BUTTON TO LOCK IN");

52,270);

"LAUNCH POSITION");

25,220);

"2. PRESS RIGHT MOUSE");
52,205);

"BUTTON TO LOCK IN");

52,190);

"TARGET LOCATION");
25,140);

"3. PRESS MIDDLE MOUSE");
52,125);

"BUTTON TO LAUNCH");
25, 75);

"4. PRESS ALL THREE");

52, 60);

"BUTTONS TO EXIT");

198

/* define object for displaying user input for missile launch

position and target location. Also displays computed heading

and distance to target */

obj [STATS] = genobj();

makeobj(obj [STATS]);

if (TV) viewport(475, 635, 0,238);

else viewport(767, 1023,0,384);

pushmatrix();

ortho2(0.0,255.0,0.0,384.0);

color(CYAN);

clearQ;

color(BLUE);

rectfi(l0,10,245,374);

color (WHITE);
cmov2i(30,340);

charstr("PRE-LAUNCH STATISTICS");

cmov2i(25,260);

charstr("LAUNCH POSITION: 10SFQ");

cmov2i(70,235);

charstr("X COORD: ");

cmov2i(70,220);

charstif'Y COORD: ");

cmov2i(170,235);

tag[LAUNCH] = gentag();

maketag(tag[LAUNCH]);

charstr(" ");

cmov2i(l70,220);

charstr(" ");

cmov2i(25,180);

charstr("TARGET LOCATION: 10SFQ");

cmov2i(70,155);

charstif'X COORD: ");

cmov2i(70,140);

charstif'Y COORD: ");

cmov2i(170,155);

tag[TARGET] = gentag();

maketag(tag[TARGET]);

charstr(" »);

cmov2i(l70,140);

charstr(" ");

cmov2i(25,100);

charstr("HEADING: ");

cmov2i(25,60);

charstr("DISTANCE: ");

cmov2i(l06,100);

tag[HEAD] = gentag();

maketag(tag[HEAD]);

charstr(" ");

cmov2i(115,60);

charstr(" ");

popmatrix();

199

closeobj();

/* define object for lines & circles showing flightpath on contour map */

obj[FLTPATH] = genobj();

makeobj(obj[FLTPATH]);

pushmatrix();

if (TV) viewport(0,474,0,474);

else viewport(0, 767,0,767);

ortho2(0.0,100.0,0.0,100.0);

color(BLACK);

clear();

color(64);

linewidth(3);

tag[MISSILE] = gentag();

maketag(tag[MISSILE]);

circf(0.0,0.0,0.0);

move2(0.0, 0.0, 0.0);

draw2(0.0, 0.0. 0.0);

color(l28);

tag[TGT] = gentag();

maketag(tag[TGT]);

circf(0.0.0.0,0.0);

popmatrix();

closeobj();

/* define object for displaying first screen of operator instructions */

obj[SCREENl] = genobj();

makeobj(obj[SCREENl]);

color(BLUE); /* set background color */

clearQ;

color(RED);

linewidth(lO);

recti(0,0,1023,767);

linewidth(l);

color(WHITE);
cmov2i(420,500);

charstr("WELCOME");
cmov2i(420,450);

charstr("TO THE");

cmov2i(320.400);

charstri" FIBER-OPTICALLY GUIDED MISSILE");

cmov2i(420,350);

charstr("(FOG-M)");

cmov2i(410,300);

charstr("SIMULATION");

cmov2i(310,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE...");

cmov2i(315,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobj();

200

/* define object for displaying second screen of operator instructions */

obj[SCREEN2] = genobj();

makeobj (obj JSCREEN2])

;

color(BLUE); /* set background color */

clear ();

linewidth(lO);

color(RED);

recti(0,0,1023,767);

linewidth(l);

color(WHITE);
cmov2i(210,600);

charstr("THE FOG-M PROGRAM PROVIDES A SIMULATED MISSILE LAUNCH AND");
cmov2i(210,575);

charstr("OUT-THE-WINDOW VIEW OF THE TERRAIN AS SEEN FROM THE OPERATOR'S'*);
cmov2i(210,550);

charstr("CONSOLE ON THE GROUND.");
cmov2i(210,500);

charstr("THE GENERAL AREA FOR THIS FLIGHT SIMULATION IS FT HUNTER LIGGETT");
cmov2i(210,475);

charstr("CALIFORNIA AND VICINITY.");

cmov2i(210,425);

charstr("THE SPECIFIC TEST AREA IS A 10 KILOMETER REGION DESIGNATED BY");

cmov2i(210,400);

charstr("UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID COORDINATES 10SFQ58.");

cmov2i(300,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE,");
cmov2i(305,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobj();

/* define object for displaying third screen of operator instructions */

obj[SCREEN3] = genobj();

makeobj (obj [SCREEN3]);

color(BLUE); /* set background color */

clearQ;

Hnewidth(lO);

color(RED);

recti(0,0, 1023, 767);

linewidth(l);

color(WHITE);

cmov2i(385,650);

charstr("PRE-LAUNCH ORIENTATION"
)

;

cmov2i(200,600);

charstr("l. WHEN THE PRE-LAUNCH PHASE OF THE FOG-M SIMULATION BEGINS, A");

cmov2i(200,585);

charstr("2-DIMENSIONAL CONTOUR MAP OF THE TEST AREA (UTM 10SFQ58) WILL BE");

cmov2i(200,570);

charstr("DISPLAYED ON THE OPERATOR CONSOLE. TWO CONTROL PANELS CONTAINING");
cmov2i(200,555);

charstr("PRE-LAUNCH INSTRUCTIONS AND CURRENT LAUNCH STATISTICS WILL ALSO");

201

cmov2i(200,540);

charstr("BE DISPLAYED.");
cmov2i(200,490);

charstr("2. THE OPERATOR WILL BE REQUIRED TO PROVIDE TWO CRITICAL DATA");
cmov2i(200,475);

charstif'ITEMS TO THE LAUNCH CONTROL SYSTEM; INITIAL LAUNCH POSITION AND");
cmov2i(200,460);

charstif'TARGET LOCATION.");
cmov2i(200,410);

charstr("3. TO DEFINE INITIAL LAUNCH POSITION, MOVE CURSOR OVER DESIRED");
cmov2i(200,395);

charstif'LOCATION (REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW THE");

cmov2i(200,380);

charstr("CURRENT UTM GRID COORDINATES). PRESS LEFT MOUSE BUTTON TO LOCK"),
cmov2i(200,365);

charstr("IN LAUNCH POSITION.");

cmov2i(200,315);

charstr("4. TO DEFINE TARGET LOCATION, MOVE CURSOR OVER DESIRED LOCATION");
cmov2i(200,300);

charstr("(REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW CURRENT UTM");
cmov2i(200,285);

charstr("GRID COORDINATES). PRESS RIGHT MOUSE BUTTON TO LOCK IN TARGET");
cmov2i(200.270);

charsuf'LOCATION. THE BLUE LINE DISPLAYS THE PROJECTED FLIGHT PATH. THE");

cmov2i(200,255);

charstif'MISSILE WILL FLY AT A CONSTANT VELOCITY AND HEADING. THE LAUNCH");
cmov2i(200,240);

charstr("STATISTICS CONTROL PANEL WILL DISPLAY COMPUTED MISSILE HEADING");
cmov2i(200,225);

charstr("IN DEGREES (0 DEGREES DUE NORTH)."),

cmov2i(240,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO MOVE INTO PRE-LAUNCH PHASE,");

cmov2i(326,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobjQ;

202

MAKETANK

#include "gl.h"

^include "fogm.h"

maketank(item)

Object *item;

{

long points = 4, bigpoints = 8;

float parray[8][3];

float lx,ly,lz;

long cmin = MINTGTCOLOR, cmax = MAX TGTCOLOR, cl;

lx = 400.0 * 41.01; /* direction of lightsource */

ly = 6000.0;

lz = 200.0 * (-41.01);

*item=genobj();

makeobj(*item);

/* draw right side of tank CCW */

n,
[0] = -10.0;

[0

U

parray

parray

parray

parray

parray

parray [l

parray [2

parray [2

parray [2

parray [3

parray [3

parray [3

parray [4

parray [4

parray[4

parray f 5

parray |

5

parray |

5

parray [6j[0

parray[6][l

parray [6] [2

parray [7] [0

parray[7][l

parray [7] [2

[0

1] = 6.0.

2] - -5.0;

0] = -15.0;

1] = 4.0;

2] = -5.0;

0] = -15.0;

1] = 2.0;

2] = -5.0;

0] = -10.0;
1 = 0.0;

= -5.0;

= 10.0;

= 0.0;

= -5.0;

= 15.0;

= 2.0;

= -5.0;

= 15.0;

- 4.0;

= -5.0;

= 10.0;

6.0

5.0;

ya.i i ay
[

i i — <j.u,

parray[7][2] = -5.0;

lightorient (parray, bigpoints, 0.0,0.0,0.0,lx,ly,lz, cmin,cmax, &cl);

color(cl);

203

polf(bigpoints,parray)

;

/* front of tank CW */

parray[0][0] = 15.0;

parray[0][l] = 5.0;

parray[0][2] = -5.0;

parray[ll[0] = 15.0;

parray[ljjlj = 3.0;

parray[l][2] = -5.0;

parray[2][0] = 15.0;

parray[2][l] = 3.0;

parray[2][2] = 5.0;

parray[3][0] = 15.0;

parray[3][l] = 5.0;

parray[3][2| = 5.0;

lightorient (parray, points,0.0,0.0,0.0,lxdy,lz,cmin,cmax,&cl);

color(cl);

polf(points,parray);

/* draw left side of tank CW */

parray[0][0] = 10.0;

parray[0][lj = 6.0;

parray[0l[2J = 5.0;

parrayjljjoj = 15.0;

parrayjljjlj = 4.0;

parray[l][2j = 5.0;

parray[2][0] = 15.0;

parray[2][l] = 2.0;

parray[2][2) = 5.0;

parray[3][0] = 10.0;

parray[3)jl] = 0.0;

parray[3][2] = 5.0;

parray[4][0] = -10.0;

parray[4][l] = 0.0;

parray[4][2] = 5.0;

parray{5][0] = -15.0;

parray[5][l] = 2.0;

parray[5][2] = 5.0;

parray[6](0] = -15.0;

parray[6][l] = 4.0;

parray[6][2] = 5.0;

parray[7l[0l = -10.0:

parrayiTIJll = 6.0;

parray|7![2l — 5.0;

lightorient(parray,bigpoincs,0.0,0.0,0.0,lx,iy,iz,cmin,cmax, lfcclJ

color(cl);

polf(bigpoints,parray);

/* back of tank CCW */

parray[0](0] = -15.0;

parray[0][l] = 4.0;

parray[0][2] = 5.0;

204

parray[l][0

parray[l][l

parray[l][2

parray[2][0

parray[2][l

parray[2][2

parray[3][0

parray[3)[l

parray[3][2

lightorient

color(cl);

polf(points, parray);

= -15.0;

= 2.0;

= 5.0;

= -15.0;

= 2.0;

= -5.0;

= -15.0;

= 4.0;

= -5.0;

parray,points, 0.0, 0.0, 0.0, be,ly,lz,cmin,cmax,&cl);

/* 7top middle of tank body CCW
parray[0][0] = -10.0;

parray[0][l] = 6.0;

parray [0] [2] = -5.0;

parray[l][0] = -10.0;

parray[ll[ll = 6.0;

parray[l][2] = 5.0;

parray[2][0] = 10.0;

parray[2][l] = 6.0;

parray[2][2] = 5.0;

parray [31 [0j = 10.0;

parray[3][l] = 6.0;

parray[3][2j = -5.0;

lightorient (parray, points, 0.0, 0.0, 0.0, be, ly,lz,cmin,cmax, &cl);

color(cl);

polf(points, parray)

;

/* top front of tank body CCW */

DarravfOllOl = 10.0:parray [0][

parray [0][

parray [0][

parray[l][

parray [l][

parray [l][

parray
[2]

[

parray [2] [

parray[2][2

parray[3][0

parray [3] [l

parray|3!|2) = -5.0;

lightonen t
(
parray. points,0. 0,0. 0,0.0,

color(cl);

polf(points, parray);

/* top back of tank body CCW */

parray[0][0] = -10.0;

parrayjojjl] = 6.0;

parray[0][2] = -5.0;

parray[l][0] =-15.0;

0] == 10.0;

1] = 6.0;

2] = -5.0;

0] = 10.0;

= 6.0;

= 5.0;

= 15.0;

= 4.0;

= 5.0;

= 15.0;

= 4.0:

= -5.0;

lx,iy,iz,cmin.crnax,&;cl)

205

parray[l](l] = 4.0;

parray[l][2] = -5.0;

parray [2|[0] = -15.0;

parray [2] [l] = 4.0;

parray[2][2] = 5.0;

parray [3j[0] = -10.0;

parray[3j[l] = 6.0;

parray[3][2] = 5.0;

lightorient (parray, points,0.0,0.0,0.0,Lx,ly,lz,cmin,cmax,&cl);

color(cl);

polf(points, parray)

;

/* bottom middle of tank CW*/
parray [0][0] = -10.0;

parrayjojjl] = 0.0;

parray [0] [2] = -5.0;

parray[l][0] = 10.0;

parray[l][l] = 0.0;

parray[lj[2l = -5.0;

parrayJ2J[0] = 10.0;

parray[2J[l] = 0.0;

parray[2J[2] = 5.0;

parray [3] [0] = -10.0:

parray J3i[lj = 0.0;

parray[3][2] = 5.0;

lightorient (parray, points, 0.0,0.0,0.0,lx,ly,lz,cmin,cmax,&:cl);

color(cl);

polf(points, parray)

;

/* bottom front of tank CW */

parray [0][0] = 10.0;

parray [0][l] = 0.0;

parray[0][2] = -5.0;

parray [l][0] = 15.0;

parray [l][l] = 2.0;

parray[l][2] = -5.0;

parray [2] [0] = 15.0;

parray[2][l) = 2.0;

parray[2][2] = 5.0;

parray [3] [0] = 10.0;

parray[3][l] = 0.0;

parray[3][2] = 5.0;

iightorient(parray. points. 0.0,0.0,0.0.1x.ly,lz,cmin,cmax.&;cl);

coior(cl);

polf(points, parray)

;

/* bottom back of tank CW */

parray[0][0] = -10.0;

parray [Ojjlj = 0.0;

parray[0)[2] = -5.0;

parray[l][0] = -10.0;

parrayjljjl] = 0.0;

206

parray[l][2] = 5.0;

parray[2][0] = -15.0;

parray[2][l] = 2.0;

parray[2][2] = 5.0;

parray [3] [0] = -15.0;

parray[3][l] = 2.0;

parray [3] [2] = -5.0;

lightorient (parray, points,0.0,0.0,0.0,Lx,ly,lz,cmin,crn ax, &cl);

color(cl);

polf(points,parray);

/* right side of gun barrel */

parray[0][0] = 1.6667;

parray[0][l] = 8.0;

parray [0] [2] = -0.5;

parray[l][0] = 2.3333;

parray [l][l] = 7.0;

parray [l] [2] = -0.5;

parray [2] [0] = 17.0:

parray[2J[l] = 7.0;

parray[2][2] = -0.5;

parray[3][0] = 17.0;

parray[3][li = 8.0;

parray[3|[2] = -0.5;

lightorient(parray,points,5.0,2.5,0.0,lx,ly,lz,cmin,cmax,&;cl);

color(cl);

polf(points, parray);

/* top of gun barrel */

parray [0][0j = 1.6667;

parray[0][l] = 8.0;

parray[0][2] = 0.5;

parray[l][0] = 1.6667;

parray[l][l] = 8.0;

parray[l][2] = -0.5;

parray [2] [0] = 17.0;

parray[2][l] = 8.0;

parray[2][2] = -0.5;

parray[3][0] = 17.0;

parray[3][l] = 8.0;

parray[3][2] = 0.5;

lightorient (parray. points, 5. 0.2. 5, 0.0,lx,!y,lz,cmin,cmax,&cl);

color(ci);

poif(points, parr ay);

/* left side of gun barrel */

parray [0][0] = 17.0;

parray[0][l] = 8.0;

parray[0][2] = 0.5;

parray[l][0] = 17.0;

parrayjljjl] = 7.0;

parray[lj[2] = 0.5;

207

parray[2)[0) = 2.3333;

parray[2][l] = 7.0;

parray(2J[2] = 0.5;

parray[3][0] = 1.6667;

parray[3][l] = 8.0;

parray[3][2] = 0.5;

lightorient(parray, points. 5. 0,2. 5. 0.0. be,ly,lz,cmin,cmax,&:cl);

color(cl);

polf(points,parray);

/* end of gun barrel */

parray[0][0] = 17.0;

parrayiOjjl] = 8.0;

parray[0][2] = -0.5;

parrayjljjoj = 17.0;

parrayjljjlj = 7.0;

parray[l][2] = -0.5;

parray[2)[0) = 17.0;

parray[2][l! = 7.0:

parray[2j[2J = 0.5;

parray[3][0J = 17.0;

parray[3][lj = 8.0;

parray!3l[2! = 0.5;

lightorien t(parray, points, 5. 0,2. 5, 0.0,lx,ly,lz,cmin,cmax,&cl);

color(cl);

polf(points, parray);

/*bottom of gun barrel */

parray[0][0j = 2.3333;

parrayjojjl] = 7.0;

parray [0] [2] = 0.5;

parray[l][0] = 2.3333;

parrayjljjl] = 7.0;

parray[ljJ2J = -0.5;

parray [2][0] = 17.0;

parrayJ2Jjlj = 7.0;

parrayJ2JJ2J = -0.5;

parrayJ3J[0] = 17.0;

parray js][l] = 7.0;

parray J3JJ2J = 0.5;

lightorient(parray, points, 5. 0,2.5, 0.0, be,ly,lz,cmin,cmax,&cl);

color(cl);

poif(points. parray);

/* right side of turret

parray[0][0) = -3.0;

parrayjojjlj = 9.0;

parrayjojJ2J = -1.0;

parrayjljjoj = -5.0;

parray[l][l] = 6.0;

parrayjljJ2] = -3.0;

parrayJ2Jjoj = 3.0;

208

parray[2][l] = 6.0;

parray[2][2] = -3.0;

pan-ay [S]jo] = 1.0;

parray[3][l] = 9.0;

parray[3][2] = -1.0;

lightorient (parray,points,-1.0, 2. 5,0.0,lx,ly,lz,cmin,cmax,&;cl);

color(cl);

po If(points, parray);

/* front side of turret */

parray[0][p] = 1.6667;

parrayjojjlj = 9.0;

parray [0] [2] = -1.0;

parray[l][0] = 3.0;

parrayjljjl] = 6.0;

parray[l][2] = -3.0;

parray[2][0] = 3.0;

parray[2][l] = 6.0;

parray [2] [2] = 3.0;

parray[3J[0] = 1.6667;

parray[3][l] = 9.0;

parray[3][2] = 1.0;

lightorient (parray, points,-1.0,2. 5,0.0,lx,ly,lz,cmin,cmax,&cl);

color (cl);

polf(points, parray);

/* left side of turret */

parray[0][0] = 1.6667;

parrayjojjlj = 9.0:

parray[0][2] = 1.0

parray[l][0] = 3.0

parrayjljjl] = 6.0

parrayjljJ2J = 3.0;

parray
J2] JO] = -5.0

parrayJ2}jlj = 6.0:

parrayJ2]J2J = 3.0

parray J3Jjoj = -3.0

parrayJ3Jjlj = 9.0,

parrayJ3]J2J = 1.0;

lightorient (parray,points,-1.0, 2. 5,0.0,bc,ly,lz,cmin,cmax,&cl);

color(cl);

polf(points, parray);

/* back side of turret */

parray j0j[0j = -3.0;

parrayjojjlj = 9.0;

parrayjojJ2J = 1.0;

parrayjljjoj = -5.0;

parrayjljjl] = 6.0;

parrayjljJ2] = 3.0;

parrayJ2]joj = -5.0;

parrayJ2]jlj = 6.0;

209

}

parray[2][2] = -3.0;

parray[3][0] = -3.0;

parray[3][l] = 9.0;

parray[3][2] = -1.0;

lightorient(parray,points,- 1.0, 2.5,0.0,bc,ly,lz,cmin,cmax, &cl);

color(cl);

polf(points,parray);

/* top of turret */

paxray[0][0] = -3.0;

parray[0][l] = 9.0;

parray[0][2] = 1.0;

parray[lj[0) = -3.0;

parrayjljjl] = 9.0;

parray[lj[2] = -1.0;

parray[2][0] = 1.0;

parray[2][l] = 9.0;

parray[2][2] = -1.0;

parray[3][0] = 1.0;

parray[3][l] = 9.0;

parray[3][2] = 1.0;

lightorient(parray,points,-1.0,2.5,0.0,lx,ly,lz,cmin,cmax,&cl);

color(cl);

polf(points, parray)

;

closeobj();

210

NEAREST TGT

#include "gl.h"

#include "fogm.h"

nearest_tgt(vx,vy,vz,px,py,pz,tgt_idx)

Coord vx, vy, vz, px, py, pz;

int *tgt idx;

{

float dist, dist_to_los();

float min_dist;

float num_tgts;

extern floa~t tgt_pos[MAX_TGTS][S|;

int index;

numtgts = 10;

min_dist = dist_to_los(vx,vy,vz,px,py,pz,&tgt_pos[0][0]);

*tgt_idx = 0;

for (index = 1; index < num_tgts; +-findex) {

dist = dist_to_los(vx,vy,vz,px,py,pz,&:tgt_pos[index][0]);

if (dist < min_dist) {

min_dist = dist;

*tgt_idx = index;

}

}

211

NPOLY ORIENT

/* npoly_orient.c */

^include <gl.h>

^include <math.h>

int npoly orient(ncoords,xyz,xinside,yinside,zinside)

unsigned int ncoords;

Coord xyz[][3];

Coord xinside, yinside, zinside;

{

register unsigned short int i,j; /* loop temps */

Coord center[3|; /* center coordinate of the polygon */

Coord a[3], b[3j; /* vector hold locations for the vectors that run

from the center coordinate to the points of the

polygon */

Coord xn|3], xmn[3|; /* points on line containing normal that are

on opposite sides of the plane containing

the polygon.

7

float distton; /* distance to point n from pt inside. */

float disttomn; /* distance to point -n from pt inside. */

Coord normal[3]; /* the normal vector computed from a x b */

/* compute the center coordinate of the polygon */

center[0] = 0.0;

centerjl] = 0.0

center[2] = 0.0

for(i=0; i < ncoords; i++)

{

For(j=0; j < 3; j++)

{

center|j| += xyzii](j|;

I

}

/* divide out by the number of coordinates */

for(j=0; j < 3; j++)

{

centerjj] = center[j]/(float)ncoords;

}

212

/* check the first 2 coordinates of the polygon for their direction */

/* compute vector a. It runs from the center coordinate to coordinate */

for(j=0;j < 3;j++)

{

a[j] = xyz[0][j] - center[j];

}

/* compute vector b. It runs from the center coordinate to coordinate 1 */

for(j=0; j <3; j++)

{

b[j] = xyz[l][j] - centerfj];

}

/* compute a x b to get the normal vector */

normal[0] = a[l]*b[2] - a[2]*b[l]

normaljl] = a[2]*b[0] - a[0]*b[2]

normal[2] = a[0]*b[l] - a[l]*b[0]

/* compute point n, offset pt from center in direction of normal */

for(j=0; j < 3; j++)

{

xn[j] = centerfj] 4- normalfj];

}

/* compute point -n, offset pt from center in opposite direction

from normal.

7
for(j=0; j < 3; j++)

{

xmn[j] = centerjj] - normaljj];

}

/* compute the distance the inside pt is from point n */

distton = sqrt((xn[0] - xinside) * (xn[0] - xinside) +
(xn[l] - yinside) * (xn[l] - yinside) +
(xn[2] - zinside) * (xn[2] - zinside));

/* compute the distance the inside pt is from point -n */

disttomn = sqrt((xmn[0] - xinside) * (xmn[0] - xinside) +
(xmn[l] - yinside) * (xmn[l] - yinside) +
(xmnf2l - zinside) * (xmnf2l - zinside));

213

/* if the dist(n) < dist(-n), then n points back towards the

inside point and is on the same side of the plane as inside.

a x b is then clockwise.

_
7

if(distton < disttomn)

{

return(l); /* clockwise */

}

else

{

return(O); /* counterclockwise */

}

214

PRELAUNCH

/* The function prelaunch is the user interface portion of the FOG-M
flight simulation. It allows the operator to interactively enter

critical data items necessary to simulate the missile in flight.

The function returns the initial launch position in the x-z plane

and also the direction of flight. */

#include "gl.h"

^include "device.h"

^include "fogm.h"

^include "math.h"

prelaunch(vx, vy, vz, direction, compassdir, active, obj, tag)

Coord *vx, *vy, *vz;

double *direction;

float *compassdir;

int *active;

Object obj [7];

Tag tag[6l;

{

float gnd_level();

float compass();

int screencnt, launchlock, targetlock;

int xval, yval, xlaunch, ylaunch, xtarget, ytarget, utm x, utm y;

char xtemp[35], ytemp(35], dist[35], heading[35|;

float distance;

double xdistance, ydistance;

Colorindex unmask;

xtemp[0] = ' ';

ytempjo] = ' ';

dist[0] = ' ';

heading[0] = ' ';

unmask=(l<<getplanes()) -1;

writemask (unmask);

• if (TV) viewport(0,635, 0,474);

else v iewport|0. 1023,0.767);

pushmatrixl);

orcho2(0.0,1023.0,0.0,767.0);

direction = 0.0; / initialize the direction */

cursoffQ; /* turn the cursor off */

callobj(obj[SCREENl]); /* display screen 1 */

swapbuffersQ;

215

screencnt = 1; /* initialize counter for screen displays */

while(TRUE) {

frontbuffer(TRUE);

if (getbutton(MOUSE2) && !(getbutton(MOUSEl)) && !(getbutton(MOUSE3))) {

ringbell();

while (getbutton(MOUSE2));

screencnt += 1;

if (screencnt == 2) callobj(obj(SCREEN2]);

else if (screencnt == 3) callobj(obj(SCREEN3J);

else break;

}

if (getbutton(MOUSEl) && (getbutton(MOUSE2)) &<fc (getbutton(MOUSE3))) {

*active = FALSE;
goto exit;

}

}

frontbuffer(FALSE);

editobj(obj[FLTPATHj); /* erase previous missile path */

objreplace(tag[MISSILE]);

circf(0.0, 0.0, 0.0);

move2(0.0, 0.0);

draw2(0.0, 0.0);

objreplace(tagjTGTl);

circf(0.0, 0.0, 0.0);

closeobj();

editobj(obj[STATS]); /* erase previous launch statistics */

objreplace(tag[HEAD]);

charstr("");

cmov2i(H5,60);

charstr(,M
');

objreplace(tag[TARGET]);

charstr("");

cmov2i(0,0);

charstrC*");

closeobj();

setcursor(0,RED,unmask); /* set up cursor and mouse */

attachcursor(MOUSEX,MOUSEY)

;

setvaluator(MOUSEX. 384, 0,767);

setvaiuaton MOUSEY, 384. 0, 767);

ourson();

launchlock = FALSE;
targetlock = FALSE;

callobj(obj[CONTOUR]); /* load static displays into both buffers */

callobj(obj|INSTR]);

callobj(obj[STATS]); /* included so swapped buffer doesn't have "hole" */

swapbuffers();

216

callobj(obj [CONTOUR]);
callobj(obj[INSTR]);

while(TRUE) {

if (getbutton(MOUSEl) && (getbutton(MOUSE2)) && (getbutton(MOUSE3))) {

*active = FALSE;
goto exit;

}

xval = getvaluator(MOUSEX); /* read the x and y mouse positions */

yval = getvaluator(MOUSEY);

utm_x = (50000 + (int)(xval * GRID_FACTOR)); /* compute grid coordinates */

utm_y = (80000 + (intjjyval * GRIDFACTOR));

sprintf(xtemp,"%4d",utm_x); /* store coordinates in temporary buffer */

sprintf(ytemp,"%4d",utm_y);

/* if LEFT MOUSE selected lock in launch position and update control panel */

if (getbutton(MOUSE3) && (!getbutton(MOUSE2)) && (!getbutton(MOUSEl))) {

ringbell();

xlaunch = xval;

ylaunch = yval;

launchlock = TRUE;
*vx = ((float)((xval * FT_10K)/767));

*vz = -((float)((yval * FT_10K)/767));

*vy = gnd_level(*vx, *vz) + 200.0;

editobj(obj[STATS]);

objreplace(tag[LAUNCH]);

charstr(xtemp);

cmov2i(170,220);

charstr(ytemp);

closeobjQ;

} /* endofMOUSE3 hit */

/* As long as LEFT MOUSE not selected, keep on displaying current UTM
grid coordinates in control panel area. */

if (llaunchlock) {

editobj(obj[STATS]);

objreplace(tag[LAUNCH]);

charstr(xtemp);

cmov2i(170,220);

charstr(ytemp);

closeobj();

}

/* if RIGHT MOUSE selected lock in target and update control panel. */

if (getbutton(MOUSEl) && (!getbutton(MOUSE3)) && (!getbutton(MOUSE2))) {

ringbell();

217

xtarget = xval;

ytarget = yval;

targetlock = TRUE;
editobj(obj [STATS]);

objreplacej tag[TARGET])

;

charstr(xtemp);

cmov2i(170,140);

charstr(ytemp);

closeobj();

}

/* As long as RIGHT MOUSE not selected keep on displaying current UTM
grid coordinates in control panel area. */

if (Itargetlock) {

if (launchlock) {

xdistance = ((double) (xval - xlaunch));

ydistance = ((double) (yval - ylaunch));

distance = sqrt((float)(xdistance * xdistance + ydistance * ydistance));

distance = distance * GRID_FACTOR;
sprintf(dist,"%5.0f METERS", distance);

*direction = atan2(ydistance, xdistance);

if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass(*direction);

sprintf(heading,"%d DEGREES", (int)*compassdir);

editobj(obj[STATS]);

objreplace(tag[TARGET]);

charstr(xtemp);

cmov2i(l70,140);

charstr(ytemp);

objreplace(tag[HEAD]);

charstr(heading);

cmov2i(ll5,60);

charstr(dist);

closeobj();

}

}

/* if launch position and target location have been selected by the

operator compute the direction of the missile and distance to target. */

if (launchlock && targetlock) {

xdistance -
(

(doubiejjxtarget - xiaunch));

ydistance = ((double)(ytarget - ylaunch));

distance = sqrt((9oatj((xdistance * xdistance) —

(ydistance * ydistance)));

distance = distance * GRIDFACTOR;
sprintf(dist,"%5.0f METERS", distance);

*direction = atan2(ydistance, xdistance);

if (*direction < 0.0) direction += TWOPI;
*compassdir = compass(*direction);

218

}

sprintf(heading,"%d DEGREES", (int)*compassdir);

editobj(obj[STATS]);

objreplace(tag[HEAD]);

charstr(heading)

;

cmov2i(H5,60);

charstr(dist);

closeobjQ;

/* add small red and blue circles to contour map to indicate launch

position and target location. Connect circles to indicate missile

Bight path */

if (launchlock)

if (targetlock) {

editobj(obj[FLTPATH]);

objreplace(tag[MISSILE]);

circf((float)(xlaunch)/767.0*100.0, (float) (ylaunch)/767.0*100.0, 0.6);

move2((float)(xtarget)/767. 0*100.0, (float)(ytarget)/767. 0*100.0);

draw2((float)(xlaunch)/767.0*100.0, (float)(ylaunch)/767.0*100.0);

objreplace(tag[TGT]);

circf((float) (xtarget)/767.0* 100.0, (float) (ytarget)/767.0*100.0, 0.6);

closeobjQ;

}

else {

editobj(obj[FLTPATH]);

objreplace(tag[MISSILE]);

circf((float)(xlaunch)/767.0*100.0, (float)(ylaunch)/767.0*100.0, 0.6);

move2((float)(xval)/767.0*100.0, (float)(yval)/767. 0*100.0);

draw2((float)(xlaunch)/767.0* 100.0, (float)(ylaunch)/767.0*100.0);

closeobj();

}

/* if MIDDLE MOUSE selected, launch has occurred and control transfers

back to main portion of FOG-M program displaying out-the-window 3-D

view of the flight area. */

if (getbutton(MOUSE2) && (!getbutton(MOUSEl)) && (!getbutton(MOUSE3))

&& launchlock && targetlock) {

ringbellQ;

while (getbutton(MOUSE2));

break;

}

219

writemask(SAVEMAP);
callobj(obj[FLTPATH]);

writemask (unmask);

callobj(obj(STATS]);

swapbuffersQ;

}

exit:

cursoff();

popmatrix();

}

220

RANDNUM

/* randnum.c - returns a random float between zero and one */

static long seed = 1234567;

randseed(newseed)

long newseed;

{

seed = newseed;

}

float randnumQ

{

long multQ;

seed = (mult(seed, 31415821) + 1) % 100000000;

return (seed / 100000000.0);

long mult(p,q)

long p,q;

{

long pO, pi, qO, ql;

pi = p / 10000;

pO = p % 10000;

ql = q / 10000; .

qO = q % 10000;

return((((pO*ql + pl*q0) % 10000) * 10000 + p0*q0) % 100000000);

221

READCONTROLS

/* reads the values from the operator's controls (mouse and dials) */

^include "gl.h" /* graphics lib defs */

^include "fogm.h" /* fogm constants */

^include "device.h" /* device definitions */

read controls(designate, greyscale, flying, active, speed, direction,

compassdir, alt, pan, tilt, fovy)

int *designate, *greyscale, *flying, *active, *fovy;

float *speed, *compassdir;

double *direction, *pan, * tilt

;

Coord *alt;

{

extern float randx, randy, randz;

float randnum();

Colorindex colors[l];

/* quit if all three mouse buttons are pushed */

if(getbutton(MOUSEl) && getbutton(MOUSE2) && getbutton(MOUSE3)) {

"flying = FALSE;
* active = FALSE;

}

else {

if (getbutton(MOUSE3) && !(getbutton(MOUSE2)))
{ /* Zoom In */

*fovy = (*fovy < (80 + DELTAFOVY)) ? 80 : *fovy - DELTAFOVY;
}

if (getbutton(MOUSEl) && !(getbutton(MOUSE2))) { /* Zoom Out */

*fovy = (*fovy > (550 - DELTAFOVY)) ? 550 : *fovy + DELTAFOVY;

}

if (getbutton(MOUSE2)) { /* designate/reject target */

if (*designate) { /* see if target in sights */

/*pushmatrix();

pushviewport();

pushattributes();

viewport(0, 1023, 0, 767);

ortho2(0.0, 1023.0, 0.0. 767.0);

cmov2s((Scoord) (768/2), (Scoord) (768/2));

readpixeis(l, colors);

if ((colors[0] >= MINTGTCOLOR) && (colors[0] <= MAX_TGT_COLOR)) {

*designate = FALSE;
ringbellQ;

randx = 30.0 * randnum() - 15.0;

randy = 10.0 * randnum() - 5.0;

randz = 10.0 * randnum();

while (getbutton(MOUSE2));

222

/*}

popattributesQ;

popviewportQ;

popmatrix(); */

}

else { /* reject currently designated target */

ringbellQ;

'designate = TRUE;
/* re-adjust tilt and pan values appropriately */

;

}

}

if (*greyscale != getvaluator(DIAL3)) {
/* DIAL3 indicates color change */

'greyscale = !*greyscale;

setvaluator(DIAL3,*greyscale,0,l);

colorramp(*greyscale,FALSE);

}

speed = (float) (getvaluator(DIAL2) / SPEEDSENS); / get desired speed */

*alt = (Coord) (getvaluator(DIAL4));

*pan = DTOR * (double)(-getvaluator(MOUSEX)) / PANSENS;
*tilt = DTOR * (double) (getvaluator(MOUSEY)) / TILTSENS;

*compassdir = (float)getvaluator(DIALO) / DIRSENS;
/* keep 'direction between and 360, update valuator if changed */

if ('compassdir >= 360.0) {

*compassdir -= 360.0;

setvaluator(DIALO,(int)(*compassdir*DIRSENS), (int)(-360*DIRSENS),

(int)(720*DIRSENS));

}

if (*compassdir < 0.0) {

*compassdir += 360.0;

setvaluator(DIALO,(int)(*compassdir*DIRSENS), (int)(-360*DIRSENS),

(int)(720*DIRSENS));

}

/'convert 'direction from compass degrees to trigonometric radians */

'direction = ('compassdir <= 90.0) ? DTOR * (90.0 - *compassdir) :

DTOR * (450.0 - *compassdir);

223

READDATA

/* reads the raw 16 bit elevation and vegetation code data

from the DMA data file and inserts it into the global

gridpixel array */

^include "fogm.h"

#include "files.h"

readdataQ

{

int fd; /* file descriptor for the data file *j

short row, col, rowoffset, coloffset; /* loop indicies */

extern short gridpixel[l00][l00]; /* DMA elev and veg. data */

/* read the data from the data file into the gridpixel array */

fd = open(TERRAIN_FILE,RD);
lseek(fd,0,0);

for (coloffset = 0; coloffset < NUMXGRIDS * 10; coloffset += 10) {

for (rowoffset = 0; rowoffset < NUMZGRIDS*10; rowoffset += 10) {

for (col = 0; col < 10; ++col)
{

for (row = 0; row < 10; H—-row) {

read (fd,&gridpixel[rowoffset-rrow] [coloffset -r-col], 2);

}

}

224

ROAD BOUNDS

#include "math.h"

^include "fogm.h"

#define X
#define Y 1

#define Z 2

#define NONE

road bounds(ptl, pt2, pt3, road width, left_ptl, right_ptl, left pt2,

right pt2, first xgrid, first_zgrid, last_xgrid, last_zgrid)

float ptl[3], pt2[3], ptS(S], road_width;

float left_ptl[3], right_ptl[3], left_pt2[3], right_pt2[3];

int *first xgrid, *last xgrid, *first zgrid, *last zgrid;

{

float delta_x, delta_z, seg_dir, minx, maxx, min_z, max_z;

float left_endl(3], right_endl[3], left_start2[3], rightj3tart2[3],

left_end2[3], right_end2[3];

int intersection_type;

/* determine the corner points of the segment */

delta_x = pt2[X] - ptl[X];

delta_z = pt2[Z] - ptl[Z|;

seg_dir = atan2(delta_z, deltax);

left~endl[X] = pt2[X]~+ (cos(seg_dir + HALFPI)*road_width/2.0);

right_endl[X] = pt2(X] + (cos(seg_dir - HALFPI)*road_width/2.0);

left_endl[Z] = pt2[Z] + (sin(seg_dir + HALFPI)*road_width/2.0);

right_endl[Z] = pt2[Z] + (sin(seg_dir - HALFPI)*road_width/2.0);

if((pt2[X]!=pt3|X])||
(Pt2[Z] != Pt3[Z])) {

/* we are not working with the final segment of this road, find

the intersection of this segment with the next one */

delta_x = pt3[X] - pt2(X];

delta_z = pt3[Z] - pt2[Z];

seg_dir = atan2(delta z, delta x);

left~start2[X] = pt2[Xj+ (cos(7eg_dir + HALFPI)*road_width/2.0);

right_start2[X] = pt2(X] + (cos(seg_dir - HALFPI)*road_width/2.0);

left_start2[Z] = pt2fZ] + (sinfsegdir + HALFPT)*road_width/2.0);

nght_start2lZ| = pt2lZ] + (sinjseg _dir - HALFPI)*road width/2.0);

left_end2|X| = pt3!XI + (cos|seg_dir - HALFPI)*road_width/2.0);

right_end2[X] = pt3[X] + (cos(seg_dir - HALFPI)*road_width/2.0);

left_end2[Z] = pt3[Z] + (sin(seg_dir + HALFPI)*road_width/2.0);

right_end2[Z] = pt3[Z] + (sin(seg_dir - HALFPI)*road_width/2.0);

/* find the intersection point of the left hand sides of the

first and second road segments */

line_intersect2(left_ptl, leftendl, left start2, left end2,

left_pt2, ^intersection type);

225

if (intersection_type == NONE) {

left_pt2[X] = left_endl[X];

left_pt2[Z] = left_endl(Z];

}

/* find the intersection point of the right hand sides of the

first and second road segments */

line_intersect2(right_ptl, right_endl, right_start2, right end2,

right pt2, &intersection_type);

if (intersection_type == NONE) {

right_pt2[X] = right_endl[X];

right_pt2[Z] = right_endl[Z];

}

else {

}

I

/* this is the final segment of this road */

left_pt2[X] = left_endl[Xj;

left_pt2[Z] = left_endl[Z|;

right j>t2(X] = right_endl[X];

right_pt2[Zj = right_endl[Z];

/* determine the min and max x and z values */

min x = left ptl[Xj;

max x = left_ptl[X];

min z = left_ptl[Z];

max_z = left_ptl[Z|;

if (right_ptl[X] < min_x) min_x = right_ptl[X];

if (right_ptl[X] > max_x) max_x = right_ptl[X];

if (right ptl[Z] < min_z) min_z = right_ptl[Z];

if (right ptl[Z] > maxz) max_z = right_ptl[Z];

if (left_pt2[X] < minx) minx = left_pt2[X];

if (left~pt2[X] > maxjc) max~_x = left~_pt2[X|;

if (left_pt2[Z] < min_z) minz = left_pt2[Zj;

if (left_pt2[Z] > max_z) maxz = left_pt2[Z];

if (right pt2[X] < min_x) min_x = right pt2[X];

if (right pt2[X] > max_x) max_x = right_pt2[X];

if (right_pt2[Z] < min_z) min_z = right_pt2[Z];

if (right_pt2[Z] > max_z) max_z = right_pt2(Z];

*first_xg~rid = (int)(min_x/FT~100M);

*first_zgrid = (int)(min_z/FT_100M);

*last_xgrid = (int)(max_x/FT_100M);

"lastzgnd = (int |(max_z/FT_iOOM);

if (*first_xgnd < 0) *first_xgrid = 0;

if (*first_zgnd < 0) *first_zgrid = 0;

if (*last_xgrid > 98) *last_xgrid = 98;

if (*last_zgrid > 98) *last_zgrid = 98;

226

SORT ARRAY

sort array(array, num_entries, decending, test_index)

float array[l0][3];

int num entries, decending, test_index;

{

int ij;

float temp[3];

for (i = 0; i < num_entries; ++i) {

for (j = i + 1; j <= num_entries; + +j) {

if (((decending) && (array [j][test _index] > array [i][test_index]))
||

((Idecending) && (array
[j]

[test index] < array[i][test index]))) {

temp[0] = array [i][0];

tempfl] = array [i][l];

temp[2] = array[i][2];

array [i][0] = arraylj][0];

array[i][l] = array[j][l];

array[i][2] = aiTay[Jl[2];

array[j][0] = temp[0];

array [j][l] = temp[l];

array[jj[2i = temp[2];

}

227

UP LOOK POS

/* compute the camera's lookat position */

#include "fogm.h" /* fogm constants */

^include "math.h" /* math routine definitions */

#include "gl.h" /* graphics definitions */

update_look_posit(direction, pan, tilt, vx, vy, vz,

tgtx, tgty, tgtz, designate, px, py, pz)

double direction, pan, tilt;

Coord vx, vy, vz, tgtx, tgty, tgtz, *px, *py, *pz;

int designate;

{

extern int framecnt;

double lookdir;

if (designate) { /* missile is not locked on to a target */

/* compute direction camera is looking */

lookdir = direction -l- pan;

/* compute a coordinate along camera's line of sight */

*px = vx + cos(lookdir) * MAXLOOKDIST;
*pz - vz - sin(lookdir) * MAXLOOKDIST;

if (framecnt < 15) {

*py = 4.0 * vy * (14 - framecnt) / 14.0;

framecnt++
;

}

else {

*
py = vy + MAXLOOKDIST * tan(tilt);

}

}

else {

*px = tgtx;

*py = tgty;

*pz = tgtz;

}

228

UP MSL POSIT

/* Compute new missile position */

^include "gl.h" /* graphics definitions */

^include "device.h" /* graphics device definitions */

^include "fogm.h" /* fogm constants */

^include "math.h" /* math function declarations */

^include <sys/types.h> /* contains the time sturcture tms */

^include <sys/times.h> /* for time calls */

update missile posit (direction, compassdir, speed, designate,

tgtx, tgty, tgtz, vx, vy, vz, flying)

double *direction;

float *compassdir;

float speed;

int designate;

Coord tgtx, tgty, tgtz;

int *flying;

Coord *vx, *vy, *vz;

{

static long seconds;

static long lastsec = -999; /* -999 is flag to indicate no value */

struct tms timestruct;

float deltadist, gndlevel, gnd_level(), compassQ, ht_above_tank;

long float deltax, deltaz, dist to tank;

seconds = times(×truct);

/* compute distance missile must move ahead to maintain speed */

if (lastsec == -999)

deltadist = 0.0;

else

deltadist = (speed/FPS_TO_KTS) * (seconds - lastsec);

lastsec = seconds; /* save for next pass */

if (designate) { /* missile under operator contol, not locked on tgt */

*vx += deltadist * cos(*direction);

*vz -= deltadist * sin(*direction);

/* keep missile at least 50 ft above ground level

gndlevel = gnd_level(*vx, *vz);

if (*vy < (gndlevel + 50.0)) *vy = gndlevel + 50.0;

}

else {

deltax = *vx - tgtx;

deltaz = *vz - tgtz;

dist_to_tank = hypot(deltax, deltaz);

229

if (deltadist > (float)dist_to_tank) { /* hit on target */

deltadist = (float)dist_to_tank - 5.0;

"flying = FALSE;
lastsec = -999; /* no value flag for next launch */

}

"direction = (double)atan2((float)deltaz, (float)-deltax);

if ("direction < 0.0) "direction += TWOPI;
"compassdir = compass("direction);

setvaluator(DIALO,(int)(*compassdir*DIRSENS), (int)(-360*DIRSENS),

(int)(720*DIRSENS));

*vx += (deltadist * cos("direction));

*vz -= (deltadist * sin(*direction));

htabovetank = (float) *vy - gnd_level(tgtx,tgtz);

*vy -= (Coord) ((htabovetank * deltadist) / (float)dist_to_tank)

230

VIEW BOUNDS

^include "fogm.h"

#include "gl.h"

^include "math.h"

view_bounds(vx, vy, vz, px, py, pz, tilt, fovy,

firstxgrid, firstzgrid, lastxgrid, lastzgrid)

Coord vx,vy,vz;

double tilt;

int fovy;

short *firstxgrid, *firstzgrid, *lastxgrid, *lastzgrid;

{

float ix, iz; /* the intersection points */

float lookdir;

float deltax, deltay, deltaz, delta_alt, fx, fy, fz;

float half_fovy;

float lower_edge_angle;

/* compute the direction the camera is looking */

lookdir = atan2((float)(vz - pz), (float)(-(vx-px)));

if (lookdir < 0.0) lookdir += TWOPI;

if (vy > py) {

/* tilt angle is negative */

deltax = px - vx;

deltay = py - vy;

deltaz = pz - vz;

delta_alt = pow((float)MIN, ALTSCALE) - vy;

}

else {

/* tilt angle is positive, use the lower fustrum edge instead

of the line of sight to compute the view bounds */

/* compute a coordinate along the lower fustrum edge */

halfjovy = ((float)fovy/20.0*DTOR);

lower_edge_angle = tilt - half fovy;

fx = v~x + cos(lookdir)*MAXLOOKDIST;

fz = vz - sin(lookdir)*MAXLOOKDIST;

fy = Vy + tan(lower_edge_angle)*MAXLOOKDIST;

deltax = fx - vx;

deltay = fy - vy;

deltaz = fz - vz;

delta_alt - pow((float)MIN, ALTSCALE) - vy;

}

ix = vx + ((deltax/deltay)*delta alt);

iz = vz + ((deltaz/deltay)*delta_alt);

/* compute which grid objects should be sent through the geometry

pipeline */

231

if (deltay > 0.0) {

/* the fustrum is looking totally skyward, don't bother doing

any terrain */

*firstxgrid = 0;

*firstzgrid = 0;

*lastxgrid = 0;

*lastzgrid = 0;

}

else {

/* display 20 grid squares on all sides of the intersection point */

*firstxgrid = (int)(ix/FT_100M) - 20;

*lastxgrid = (int)(ix/FT_100M) + 20;

*firstzgrid = (int)(-iz/FT_100M) - 20;

lastzgrid = (int)(-iz/FT_100M) + 20;

/* insure that objects drawn include the current missile position */

if ((int)(vx/FT_100M) < *firstxgrid)

*firstxgrid = (int)(vx/FT_100M);

if ((int)(vx/FT_100M) > *lastxgrid)

*lastxgrid = (int)(vx/FT_100M);

if ((int)(-vz/FT_100M) < *firstzgrid)

*firstzgrid = (int)(-vz/FT_100M);

if ((int)(-vz/FT_100M) > *lastzgrid)

*lastzgrid - (int)(-vz/FT_100M);

if (*firstzgrid < 0) *firstzgrid = 0;

if (*firstxgrid < 0) *firstxgrid = 0;

if (*lastzgrid > 98) *lastzgrid = 98;

if (*lastxgrid > 98) *lastxgrid = 98;

232

LIST OF REFERENCES

1. PC Connection advertisement, PC Magazine, v. 6, no. 11, p. 241, June 9,

1987.

2. Orlansky, J. and String, J., "Reaping the Benefits of Flight Simulation," in

Computer Image Generation, edited by B. Schachter, John Wiley & Sons,

Inc., New York, New York, 1983.

3. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Computer Graphics Fiber Optics Guided Missile Flight

Simulator (FOG-M Simulator) Required Instrumentation Capability (RIC),

Fort Ord, California, 1986.

4. Mar, Roland K., "FOG-M: Another Army Orphan for the Marines?" U. S.

Naval Institute Proceedings, v. 113/6/1012, pp. 95-97, June 1987.

5. Kotas, Jim, "Computer Image Generation: Realistic Simulation," National

Defense, v. 70, no. 412, pp. 26-31, November 1985.

6. Berthiaume, Richard, Karnavas, Gary, and Bernsteen, Stan, "Graphical

Representations of DMA Digital Terrain Data on Low Cost Commercial

Graphics Workstation," Proceedings of the IEEE 1986 National Aerospace

and Electronics Conference, v. 3, pp. 992-996, 1986.

7. Silicon Graphics, Inc., IRIS User's Guide, Mountain View, California, 1986.

8. Fox, Teresa A., Clark, Philip D., "Development of Computer-generated

Imagery for a Low-cost Real-time Terrain Imaging System," Proceedings of

the IEEE 1986 National Aerospace and Electronics Conference, v. 3, pp.

986-991, 1986.

9. Defense Mapping Agency, Product Specifications for Digital Landmass

System (DLMSJ Data Base, 2d ed., April 1983.

10. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Fort Hunter Liggett Digital Terrain Database on the VAX
Computer, Fort Ord, California, 1985.

233

11. Hearn, Donald, and Baker, M. Pauline, Computer Graphics, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1986.

12. McGrew, J. F., "Exaggerated Vertical Scale in CGI Terrain Perspectives,"

Proceedings of the Human Factors Society 27th Annual Meeting, v. 1, pp.

33-35, 1983.

13 Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., "Near Real-Time

Shaded Display of Rigid Objects," Computer Graphics, v. 17, no. 3, pp. 65-

72, July 1983.

14. Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., Reading,

Massachusetts, 1983.

234

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center

Cameron Station

Alexandria, Virginia 22304-6145

2. Chief of Naval Operations

Director, Information Systems (OP-945)

Navy Department

Washington, DC 20350-2000

3. Commanant (G-PTE)

United States Coast Guard

2100 Second Street SW
Washington, DC 20593

4. Superintendent

Attn: Library (Code 0142)

Naval Postgraduate School

Monterey, California 93943-5002

5. Chairman (Code 52)

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

6. Computer Technology Curricular Officer (Code 37)

Naval Postgraduate School

Monterey, California 93943

7. Michael J. Zyda (Code 52Zk)

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

235

8. Robert B. McGhee (Code 52Mz)

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

9. Captain Douglas B. Smith

Headquarters, United States Marine Corps

Code CCA
Washington, DC 20380

10. Lieutenant Dale G. Streyle

CG EECEN (Computer Systems Branch)

Wildwood, New Jersey 08260

236

& 18.
J

7

Thesis
S57635 Smith
c.l An inexpensive real-

time interactive three-
dimensional flight simu
lation system.

I HOW 90 3 6 3 3 1

3 8 3

Thesis

S57635 Smith

c.l An inexpensive real-

time interactive three-

dimensional flight simu-

lation system.

 4.. ”a... mu:unwaw v¢VAtnk .,«pup.- m;.

 xhrs557o35 '

5:13.351: 2:?347':3.3:“ I'.mm“... “MI.“I ,.... * . . _ An Inexpenswe real-tlme Interactive thr _ "

uftf.“"::€.’i.';:.::‘;;';::::‘. ' .. I * w T|‘ v ~ ~ . .- -M

M . m m...“ .I I.. w. I... I“, - M 1u... “.0 I”I..“In. u. ..—. I. I m»: uurI’bl i

IA-‘y-I u.Mm I unt- AMA HNW: magma . . I IJam 0 Ann-Mylar In. IA . I ‘ ..37 .. I I
3 2768 000 73528 6 ' -

um..I.m..cztam.;.man-“uhur. DUDLEY KNOX LIBRARY«ulna-J‘unlA-ku-bnfiw‘w’amt Illu. a m n. m. M 'n - . .

w4.:

'rn'lnl-unl "73"." ”A ‘5‘ Mn. um..- I. I- - -Ju-mm. mw-lu-‘uum- mumm-(“a-w-umu l~nm maymum: ..-.-.M~.-u.‘v..4,u law-lam.
yum-«mg .1 flufwumnn:- m

um. nm:.:...»...;.'.. ”1“,.“ m h. -ua u - n . I . .and." .. ‘(.- , \uu‘a-I u m. n - h. A - I . . I u .a-t-u-mI-ul wuwan-«ram-o-m «Juan-Ann. H.» .. mu» u y . -nme-A ”I... w w - - - - Lmum-a. I -. . ,

. . . . I4~I..I.,... .. -

ll]!41ul‘lh

Marv... .1“
.... yaw. m...unto-untuulm mu... m ¢.A'....lwauu-r. nun-Juan!“I¢u.n n.

 \r‘ w.“ . . ., «a uJIIhmm n...“ n I“mum-u.«umber-”Aw- momma- I.-«An.» .ns .n... vim-gnu...“ .-mum

 . ”In ..

u... m. J"

 .4-...yumm m own...» .uuzau. DIV .- m”mama...- Haw Vlllv'u‘hqeluu.a». nun-Au) 2...”. .m.....-.-I-.m-tr-lwwhll a...» nu... “rpm-M (Int. 4.. u"—nmmmuw n...

ya m3?" k-A.. .1 . .-..MOB-ta!» 34.- '3m”...

 ”TI‘S'J aH. . .r -.“mm, M:

 Jill".a.-.w..I‘a..1...“- .-
 unmana- m; w" .m

Vin-awfiulsu: 4. '" :.;
 may...» ma»;Il.u)l.l.f‘vl\-u.mm-puaun w ”Inall; MJ‘JIfhhlr ih'ua 4

:...I......

 r I mu:u Inn-a... mun 1‘

.h. tux--4. -. ..
~35:——-r-O.'{‘)J

K ”my.” a 4)h—fi-l‘pain: A».
an... .me-mmnu v ‘I.e

 fl .‘. . n:
‘ m mm!» ~. . ’hnr‘n II

m van: Mum-n.»-
.Auu .Mmymus. u .

aa4\I-.:".-'\$’:.Nm .
axi-w- ' ' \an a .

.nn's‘wvu. rnnuuum‘: nr- 7. ' '
m \u. urn-Imu-. 14-, w i .

v “)4!“ uvu-wm)5: ivuvn. "X 1‘mm). nam wnn ‘Ifi-ugsm . ~A'5’»... wa— you In. .a.- w ”WM"!

. . 5
9;:h-3mmwis _mm ww- -. nmrue

.n-_uv.‘11:; W .II. u :_
" pu-y'nv .9».~ ‘0“:7 "En;- \ _ .wk “'11- “tantra-um Imus... M, , ,mm‘mmMn/w awry-y-m‘ < - w: w ,v- ‘\-|fi"v)~ arm-ug- n mm‘mm--; - ,n s. J‘llx‘“? y I vyn'ynwy u y . .we; «mam-I ”33"..““1wX‘R—‘s‘ra-‘I M:$W!:u try- I

ma» Isa-“m-mm a: ‘ I I, . . . _ ..Wn'y: ‘1": VWV‘WIF - . yny‘A‘Lu 'm‘ m "70...." I, . mm. In ,- _ , . ' _‘9‘”‘u‘nlbvvwo'ww'x- rm . . .~qmn- 3:14am» . t '~n~~v w . .
n-vaw‘u . ' ‘

murky”. fin... ‘ . , .
-k:;L-ar ' , . ,a" " .

{pp-n,I'm"?‘ 'M””19",. g -: _ ‘ ‘
wwwmu-u'w-L-u mum-rm. ' mam“. .

WNnquuwv 1 «smwman-m'v m.» .-..._,.. q ng :- rpm at. I .l'bp'nuon . .’v»~~ - we”

~-v~~'n..'
Hug-n:m, J,

“-m-i‘mjll-g.

~1-
u-w-n-o-ovv-I» ~ on

)Mun ,«K‘afiw
4“”“TL'ZTWW’V' ‘

. . .
w "m-

V'" "K “in; ”II-g ':If .I'I-I 7‘

 '1 ‘16“1‘ VW- } | vn . 1 , mm . .meg-m {3' " ’m , ‘
 my: wlrl‘

lt'i‘. I l

g 3.2:."RELIGJIEIGL‘L "PWmm... WI. m- a»

. ..my...“ a m «In»

M'IEI'I‘I'J‘M'I 'u
m...

-..- In5 w. . .r' .finv‘fifilln “h I' -V'V'wiltw-unfl'vn .'ram-M H fitHI‘Nh’l 'PI‘! ‘ \
IV‘h-I"IM|!’FI‘I:*[~vn-r‘n» «m. ‘

W V» ‘
raw-a “1» V v. ' I lmm.

mm. . $13.. “-51. mini-1| ‘ ‘ _ ,u. nn n. nu,.~...ur...... . , ,h'leN-Ml IM“‘IDVIEIUW1\I- “thl‘” I u l I‘VI‘I,[I:'\“W FIN‘F‘~VII\'tr 1 n IIi' ”IE!" WI‘‘11 ~‘I IW'“" n I Unnn-u uvy, A: n «mun-ur-112‘Iv n "no-I I - .
'w ”THEE" 'fi'r" my ' " ‘.I ,m u . .- w“. -pun-rnun. II. n- m-u .nr ‘ '«arm n .. \. ‘ . .- ‘. \ . .

. I -
Imi-wWIaw-nq'w‘ I \ I ' 'w" v I ‘I n w. ' ' 'm». Ina- - - I , _ ._" W»: n wm not mu... mm ’ , 'n «'1’ Win-t «I. m. (‘I -.~' . ‘Wlln\'h’\ , u . .
W'M‘“ .HDI’I‘I. m“ V‘” n . .1'K-i':g‘'. "I D \ ~_ I... ram “ma-m» v . .
~- ~ ‘ “n ‘ _' . Iw "'- mun-mam.“ -
-. mum... yuan-5.1515415! t

