internetworks.

IP broadcast, which is commonly used in DIS environments,
cannot be used over the Internet unless it is encapsulated. It also
adds an additional burden because itrequires that all nodes examine
a packet even if the information is not intended for that Teceiving
host, incurring a major performance penalty for that host because it
must interrupt operations in order to perform this task at the operat-
ing system level.

Point-to-point communication requires the establishment of a
connection or path from each node to every other node in the net-
work for a total of N*(N-1) virtual connections in a group. For ex-
ample, with a 1000 member group each individual host would have
to separately address and send 999 identical packets. If a client-
server model is used, such as that typically found in networked
games and multi-user domains (MUDs), the server manages all the
connections and rapidly becomes an input/output bottleneck.

Dead-reckoning

The networking technique used in NPSNET-IV. , evolved from
SIMNET, and embodied in DIS follows the players and ghosts par-
adigm presented in [1][7]. In this paradigm, each object is con-
trolled on its own host workstation by a software object called a
Player. On every other workstation in the network, a version of the
Player is dynamically modeled as an object called a Ghost.

The Ghost objects on each workstation update their own posi-
tion each time through the simulation loop, using a dead-reckoning
algorithm. The Player tracks both its actual position and the predict-
ed position calculated with dead-reckoning. An updated Entity
State Protocol Data Unit is sent out on the network when the two
postures differ by a predetermined error threshold, or when a fixed
amount or time has passed since the last update (nominally 5 sec-
onds). When the updated posture (location and orientation) and ve-
locity vectors are received by the Ghost object, the Ghost’s is cor-
rected to the updated values, and resumes dead-reckoning from this
new posture.

This dead-reckoning technique helps in overcoming a major
problem found in a number of networked simulations -- excessive
network utilization. For example, each networked participant play-
ing the popular game DOOM generates a packet on every graphics
frame. On an SGI, this translates into 30 packets per second, even
when an entity is inactive. This not only wastes bandwidth, it also
overloads the ability of network devices to process packets. On the
other hand, a high performance aircraft in a DIS environment typi-
cally produces about 8 packets per second --a dramatic difference.

MBONE

MBONE is a virtual network that originated from an effort to
multicast audio and video from the Internet En gineering Task Force
(IETF) meetings [2]. MBONE today is used by several hundred re-
searchers for developing protocols and applications for group com-
munication.

We have used MBONE to demonstrate the feasibility of IP
Multicast for distributed simulations over a wide area network. In
the past, participation with other sites required prior coordination
for reserving bandwidth on the Defense Simulations Internet (DSI).
DSI, funded by ARPA, is a private line network composed of T-1
(1.5 Mbps) links, BBN switches and gateways using the ST-II net-
work protocol. It had been necessary to use DSI because ARPA
sponsored DIS simulations use IP broadcast - requiring a unique
wide-area bridged network.

With the inclusion of IP Multicast in NPSNET-IV, sites con-
nected via the MBONE can immediately participate in a simulation,
MBONE uses a tool developed by Van Jacobson and Steven Mc-

94

Canne called the Session Directory (SD) to display the advertise-
ments by multicast groups. SD is also used for launching multicast
applications like NPSNET-IV and for automatically selecting an
unused address for a new group session. Furthermore, we can inte-
grate other multicast services such as video with NPSNET-IV. For
example, participants are able to view each other’s simulation with
avideo tool, NV, developed by Ron Fredrickson at Xerox Parc [5].

Acknowledgments

We wish to express our thanks to the Air Force Institute of
Technology, George Mason University, the Naval Research Labs
and all those who participated in the demonstrations of NPSNET-
Iv.

This work would not have been possible without the support of
our research sponsors: USA ARL, DMSO, USA STRICOM, USA
HQDA AI Center-Pentagon, USA TRAC, ARPA.

Resources

Many of the references noted below are available via the NPS-
NET Research Group’s WWW home page:

file://taurus.cs.nps.navy.mil/pub/NPSNET_MOSAIC/
npsnet_mosaic,html

References

1.Blau, Brian, Hughes, Charles E., Moshell, J. Michael and Lisle,
Curtis “Networked Virtual Environments,” Computer Graphics,
1992 Symposium on Interactive 3D Graphics (March 1992),
pp-157.

2.Casner, Steve. “Frequently Asked Questions on the Multicast
Backbone”. (6 May 1993). Available at venrera.isi.edu:/mbone/
fag.txt.

3.Deering, Stephen. Host Extensions for IP Multicasting. RFC
1112. (August 1989).

4.Institute of Electrical and Electronics Engineers, International
Standard, ANSI/IEEE Std 1278-1993, Standard for Information
Technology, Protocols for Distributed Interactive Simulation,
(March 1993).

5.Macedonia, Michael R. and Donald P. Brutzman. “MBone Pro-
vides Audio and Video Across the Internet”. In IEEE Computer.
(April 1994). pp. 30-36.

6.Pope, Arthur, BBN Report No. 7102, “The SIMNET Network
and Protocols”, BBN Systems and Technologies, Cambridge, Mas-
sachusetts, (July 1989).

7.Pratt, David R. “A Software Architecture for the Construction
and Management of Real Time Virtual Environments”. Disserta-
tion, Naval Postgraduate School, Monterey, California (June 1993).

8.Zyda, Michael J., Pratt, David R., John S. Falby, Chuck Lombar-
do, Kelleher, Kristen M. “The Software Required for the Computer
Generation of Virtual Environments”. In Presence. 2, 2. (Spring
1g9‘3). pp. 130-140.

BUNGIE - EXHIBIT 1006 - PART 7 OF 14

Visual Navigation of Large Environments Using Textured Clusters

Paulo W. C. Maciel*

Abstract

A visual navigation system is described which uses texture
mapped primitives to represent clusters of objects to main-
tain high and approximately constant frame rates. In cases
where there are more unoccluded primitives inside the view-
ing frustum than can be drawn in real-time on the worksta-
tion, this system ensures that each visible object, or a cluster
that includes it, is drawn in each frame. The system sup-
ports the use of traditional “level-of-detail” representations
for individual objects, and supports the automatic genera-
tion of a certain type of level-of-detail for objects and clusters
of objects. The concept of choosing a representation from
among those associated with an object that accounts for the
direction from which the object is viewed is also supported.
The level-of-detail concept is extended to the whole model
and the entire scene is stored as a hierarchy of levels-of-detail
that is traversed top-down to find a good representation for
a given viewpoint. This system does not assume that vis-
ibility information can be extracted from the model and is
thus especially suited for outdoor environments.

1 Introduction

This paper describes a new approach to the “walkthrough”
problem, where a viewer interactively moves through a static
scene database at high and approximately constant frame
rates.

Traditional approaches to this problem use a hardware
graphics pipeline and attempt to minimize the number of
polygons sent to the system. This minimization is achieved
both by culling the entire model or the part of it that is
potentially visible in the next few frames against the view-
ing frustum and using geometrically coarse representations
(levels of detail, or LODs) of individual objects.

The approach described in this paper attempts to extend
the domain of traditional approaches by assuming that sets
of potentially visible objects cannot easily be computed and
at any given frame the visible scene can contain more graph-
ics primitives than state-of-the-art hardware can render in
real-time even if the lowest detail LODs are used for every
object.

The basic strategy underlying the system described in this
paper is the use of impostors. An impostor is an entity that is
faster to draw than the true object, but retains the important

*Department of Computer Science, Lindley Hall, Indiana Uni-
versity, Bloomington, Indiana, pmaciel@ca.indiana.edu

tProgram of Computer Graphics, Cornell University, Ithaca,
New York, shirley@graphics.cornell.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

95

Peter Shirleyt

visual characteristics of the true object. Traditional LODs
are a particular application of impostors.

The key issue is how to decide which impostors to ren-
der to maximize the quality of the displayed image without
exceeding the available user-specified frame time. The best
approach so far to solve this problem attempts to predict
the complexity of the scene at the current frame and selects
impostors accordingly and is described by Funkhouser and
Sequin [3].

The system described in this paper can be viewed as an
extension of Funkhouser and Sequin’s system with the fol-
lowing new properties:

e The entire database is a single hierarchy which con-
tains drawable impostors (including LODs) for objects
as well as clusters of objects. This is a global general-
ization of the LOD concept to the entire model.

¢ The system uses the graphics hardware to automat-
ically create this hierarchy, generate impostors, com-
pute their rendering cost, and compute a static portion
of their benefit according to the direction from which
they are viewed.

In Section 2 we revisit the work done by Funkhouser and
Sequin, briefly presenting the main components of their sys-
tem and showing why it doesn’t scale well to arbitrary envi-
ronments. In Section 3 we discuss how to extend the benefit
concept to account for cluster primitives and view-dependent
LODs. In Section 4 we show how the representation selection
process can be formulated as an NP-complete tree traversal
problem, and present a heuristic solution that generates a
complete, if non-optimal, representation of the model for
display. In Section 5 we discuss our implementation. Fi-
nally, we discuss the limitations of the system in Section 6
and the conclusions in Section 7.

2 Predictive Approach Revisited

The predictive approach described by Funkhouser and Se-
quin assumes that the system runs on a machine in which
the rendering cost of each object in the model can be es-
timated. This rendering cost is estimated by empirically
obtaining performance parameters of the machine and using
these parameters in a simple formula.

Since effective walkthrough systems need to achieve a bal-
ance between interactivity and visual quality, they use & ben-
efit heuristic to decide the amount of contribution to the
overall scene caused by rendering an object with a particu-
lar accuracy. This heuristic takes into consideration factors
associated to a representation of the object such as image-
space size of object, focus, speed relative to view point, se-
mantics, accuracy of a LOD, and hysteresis with respect to
gwitching between different LODs.

Objects are selected to render using an incremental opti-
mization algorithm that prioritizes the selection of objects
with high benefit/cost value to render until the user-specified

Figure 1: Three representations for a house. The left two
are view independent LODs while the right one is a view
dependent texture map.

frame time is reached. The result is that low-valued visible
objects may not be displayed. In environments where too
many vigible primitives are present at a given point in the
simulation, this can result in large “blank” spots on the scene
which would cause a distracting effect.

To reduce the number of primitives rendered at each
frame, visibility information from a pre-processing phase is
used to cull objects that are certainly blocked from view by
partitions. This approach works well for models that can be
subdivided into cells containing open spaces (such as doors
and windows) through which visibility can be determined.
In an outdoor environment such cells and portals are not
easily identifiable making the pre-processing of such an en-
vironment to extract visibility a hard problem.

Our system is also a predictive system and assumes that it
will run on a multiprocessor machine with texture mapping
capability. We allow for situations where more unoccluded
primitives can occur inside the viewing frustum than can be
rendered in real-time and do not assume that visibility infor-
mation can be extracted from the model. This last feature,
makes the system suitable for navigation of large outdoor
environments.

3 Benefit Calculation

Visual navigation systems use different representations
(LODs) of an object to improve the performance of the sim-
ulation. As explained in the previous section, each LOD
makes a contribution to the quality of the simulation that
can be estimated by a benefit heuristic.

In computing these benefits we face two interesting issues:
how to compute the benefit of individual representations of
objects taking into account their view angle dependent na-
ture (e.g. a roadside billboard has a low benefit when seen
from the side), and how a group of objects is perceived (its
“semantics”).

3.1 Benefit of Objects

In our approach, an object can have associated with it not
only the conventional LODs but also any other drawable rep-
resentation that resembles the object from given viewpoints.
Consider the possible representations we can use to render
a house as in Figure 1. In this picture, the first (leftmost)
of these representations is the house object at full detail,
the second is a low LOD representation and the third is just
a single polygon with a texture map representation of the
front of the house.

We classify the third representation as view dependent and
the first two as view independent meaning that the view de-
pendent would only be considered for a subset of all possible
viewing directions, while the view independeni LODs would
be considered for all viewing angles.

96

‘We have divided the contribution to the simulation of ren-
dering a given representation associated with an object in
two parts. One that is intrinsic to the object, the object’s
benefit, and one that is intrinsic to a representation of the
object, the accuracy with which it represents the full detail
object. :

Intrinsic to an object are factors such as its image-space
size (since large objects on the screen seem to contribute
more than smaller ones), its distance to the line of sight
(since assuming that the eye is looking to the center of the
screen, objects near the center of view are better resolved
by our visual system than objects in the periphery of view),
relative speed of the object to the viewpoint, and semantics
(role of the object in the simulation). Our per-object benefit
is computed as a weighted average of all these factors and it
is used to guide the selection of representations to render in
Section 4. The weights are empirically determined and can
be changed for each run of the simulation.

Intrinsic to a representation of an object is its accuracy
with respect to the full detail object, that is, how similar a
given representation is to the actual object for a particular
view angle.

Note that while the benefit of an object (except for its
semantic) can only be determined in real-time and therefore
is inherently dynamic, the accuracy of a representation is
inherently static and can be determined prior to the walk-
through of the model, as described in Section 3.2.

3.2 View Angle Dependent Benefit Calculation

Consider again the house representations in Figure 1. The
left most of these representations should have the highest
benefit regardless of view angle but we might not want to
render it since it is also the most expensive to render. The
benefit that should be assigned to the other two will depend
upon the user’s view angle (for the texture maps) and view
distance (for the low LOD).

A way of incorporating view dependency information into
the benefit heuristic is to measure the accuracy of each of the
object’s representations according to each viewing direction
possible.

Since the space of possible viewpoints and viewing direc-
tions is infinite, we approximate it by discretizing this space
into a finite set of viewing directions, and assuming that
the view distance is infinite (we use an orthographic pro-
jection). This seems reasonable because we do not expect
to use coarse LODs when the view distance is small. To
tabulate directional benefits, we sample the hemisphere of
directions (Figure 2) and calculate an image of the object
and impostor at each sample point.

The number and location of these samples will depend on
the number of representations that the object has and the
possible viewpoints during the walkthrough. For instance, in
the case of the 2D house impostor in Figure 1, we will never
use it unless we are roughly in front of the house, so only
directions around the line perpendicular to the 2D image are
sampled.

e sample each of the viewing directions and measure
the accuracy of each representation and construct a table
that has one entry for each pair (representation, viewing di-
rection). Each of these entries contains a similarity value
(accuracy) of the representation measured with respect to
the full detail object for the particular viewing direction.
During the walkthrough, the accuracy of a given representa-
tion and viewing direction can be obtained by accessing this
table.

Figure 2: Discretizing the space of viewpoints around an
object. Replication accuracies are shown at three of the
view angles. The low LOD house looks the “best” from the

top.

Ideally the accuracy of an image with respect to the ideal
image should be obtained by a perceptual comparison of the
two images but since we are in search of automatic ways to
determine similarity we resort to computational techniques.
In our implementation we use simple image processing tech-
niques to get this similarity value.

We avoid a simple pixel-by-pixel comparison of the two
images, since slight differences on the impostor’s image
would cause two very similar images to have a similarity
close to zero. Because the achromatic channel of vision is the
most important for shape recognition, we start by obtaining
a gray scale version of the two images by simply averaging
the rgb components at each pixel. Since edges are features
on an image that are readily identified by the human visual
system, an edge operator ig applied to the images. The im-
ages are convolved with a 5x5 Laplacian operator and its
zero crossings are computed. A subsequent blurring step in-
creases the chances of matching of the two images, which we
then compare pixel-by-pixel.

This image comparison method is far too simple to mimic
human image processing, but does serve as a placeholder in
our system that can be replaced later with a module that
performs better by using segmentation and high level pro-
cessing.

3.3 Benefit of Clusters

This section is meant to highlight that much more research
needs to be done on how benefit heuristics can draw on per-
ceptual behavior. We argue that a per-object benefit heuris-
tic does not address how humans perceive a collection of ob-
jects when seen as a whole. Briefly, if two objects « and
are represented by an impostor v and have benefits B, and
Bg what should the benefit By of v be?. B, is not simply
the sum of B, and Bp since o and when viewed as a group
might give a different contribution (meaning) to the simula-
tion then the objects alone would, that is, the benefit of all
the objects in a scene does not translate into a perceptual
measure for the entire scene.

A practical example would be to consider a walkthrough
of a battle field containing many soldiers and guns. In this
situation the benefit of a gun and a soldier do not add up
to form the benefit of a soldier holding a gun, particularly if
the soldier is pointing the gun toward the user of the system.

Therefore we conclude that to determine the benefit of an
object in some cases is undecidable without knowing what
surrounds it. As pointed out by Gestalt Psychologists [7],

97

the meaning conveyed by an object may be more than merely
the “addition” of the meanings conveyed by each one of the
objects alone, that is, the whole conveys more information
then the sum of its parts.

While realizing that it is extremely difficult to account
for how objects interact in a scene we still use a per-object
benefit heuristic knowing that it may not be suitable for
some groupings of objects.

4 Navigation System Design

The ultimate goal of this work is to design a visual navigation
system that is able to keep a user-specified uniform frame
rate when displaying a large environment.

We begin by presenting a general framework for visual
navigation systems. We then formalize the navigation prob-
lem as an NP-complete tree traversal problem and explain
in detail the design of our system.

4.1 Framework for Visual Navigation Systems

In many cases, conventional LODs are either not readily
available, are expensive, or are time consuming to generate.
Since these LODs are simply representations of the “true”
objects they do not necessarily need to be versions of the
same object with fewer geometric primitives (or drawn with
a less accurate rendering algorithm such as flat shading in-
stead of Gouraud shading) but rather representations that
can be drawn on the computer screen in less time than the
true object and provide the simulation with a feel similar to
that obtained by using the full detail object.

With this in mind, our design allows an object to be as-
sociated to many different representations that resembles it,
possibly from different view angles.

4.1.1 Object-Oriented Design

The main abstraction for a single object, is the “conceptual
object” abstraction. It corresponds to any object in the
model that has a well defined meaning in the simulation,
such as, a car or a building. Associated with the conceptual
object is a set of “drawable representations”, which have
characteristics similar to the actual object it represents.

The “drawable representation” abstraction represents a
variety of hardware drawable representation or impostors for
a given conceptual object. The abstractions for drawables
encapsulate hardware defined primitives such as meshes of
triangles, splines, list of polygons, etc., as well as the impos-
tor representations presented in Section 4.1.2. This encap-
sulation of both hardware primitives and impostors allows
the design of very efficient rendering routines that extract
the most performance of the graphics subsystem. Other im-
postor abstractions may be added to this design as deemed
necessary to solve a particular problem or to add a particular
feature to the walk-through program.

The conceptual object’s interface is defined by virtual
functions to compute the object’s benefit, visibility, and a
“draw” function that is redefined for each specific drawable
representation. The drawable representation’s interface is
defined by functions to compute the drawable’s rendering
costy ‘accuracy, and by customized “draw” functions.

4.1.2 Types of Impostors

As mentioned in Section 3.1, we allow an object to be rep-
resented by both view dependent and view independent im-

postors.
Examples of view dependent impostors are:

e A texture map that is pasted onto the appropriate face
of an object’s bounding box. This texture map is called
a textured cluster when it corresponds to an image of
a group of objects.

e Another view dependent texture map is also known as
billboard in [6] and is obtained in the same way as tex-
ture maps. A billboard is centered at an object’s center
and made to rotate in such a way that it always face
the observer. Since one billboard is computed for each
face of the object’s bounding box as the observer moves
around the object a different billboard is selected to dis-
play according to the viewpoint. This impostor is useful
to represent objects that are approximately rotationally
symmetric such as pine trees.

e Another variant of the texture map described above is
a pseudo-texture map!. A pseudo-texture map is a tri-
angular mesh (or a quadrilateral strip) onto which a
texture map is pasted in such a way that each pixel in
the image is associated to a pair of triangles (or quadri-
lateral) in the mesh.

Examples of view independent impostors are:

¢ The conventional levels-of-detail, i.e., geometrically
coarse versions of a given object?.

e Boxes whose faces have the average areas and colors as
the corresponding sides of the object’s bounding box.

e Texture mapped boxes. This representation uses tex-
ture maps that are pasted onto each face of the object’s
bounding box and is useful to represent box like objects
such as the Standard Oil Building in Chicago.

4.2 Impostor Selection

There are certain cases where specific impostors are more
suitable than others and we can usually “suggest” to the
walkthrough program which representation to display at a
given point in the simulation.

For example, if the image-space size N of an object is
less then a few pixels then the representation that should
be used is the average box above. If NV is greater then a
pre-fixed maximum size then the full detail object might be
required. If different LODs are present in the model, then
different image space size thresholds may be used to select
the appropriate LOD to be displayed.

Box-like and symmetric objects can be displayed using a
texture mapped box and a billboard, respectively. Texture
maps can be selected according to the obeserver’s viewpoint.
For example, if four texture maps are used for each face of
an object’s bounding box, then the appropriate texture map
for a given viewpoint can be selected as follows:

1. Ina pre-processing phase, associate to each texture map
a number corresponding to the region it belongs as in
Figure 3.

11t can be used in machines that do not have texture mapping

hardware.
2Some toolkits such as Performer[6] provide routines to auto-
matically generate coarse versions of a given full-detail object.

98

Regloa 2

" Regiom1

Figure 3: Possible viewpoint regions in object coordinates.

2. During the walkthrough we determine the viewpoint
with respect to the object's coordinate system and
therefore the region it is in.

In some situations, both a view dependent and a view
independent representation are suitable. When this is the
cage, we can decide upon these two representations by ob-
taining the accuracy of each representation for the particular
observer view angle using the table described in Section 3.2
and then select the representation with the highest accu-
racy/cost ratio. This heuristic is particularly useful in cases
where the observer’s line of sight is approaching a 45 degree
angle with the line perpendicular to the texture map. In
such a case although the texture map may have a low ren-
dering cost, its accuracy will also have a low value which will
favor the selection of a possibly more costly view dependent
representation.

4.3 Formalization of the Problem

We begin by defining a meta-object abstraction to be an en-
tity with one or more hardware drawable representations as
in the framework described in Section 4.1. It is an abstrac-
tion for both conceptual objects and groups of objects.

As before, a hardware drawable representation is an entity
that can be rendered by the graphics hardware to represent
objects and has associated to it a rendering cost and a mea-
sure of its “contribution” to the simulation.

The model is then defined as a collection of conceptual
objects at specific positions and orientations in space that
forms the environment in which the user navigates.

The model hierarchy is defined to be a tree structure
whose nodes are meta-objects that provide multiple repre-
sentations of the model, each representing it at a given ren-
dering time and providing the user with a given perception
of it. In this hierarchy each node contains drawable rep-
resentations of its children. The root contains the coarsest
representations for the entire model with the lowest possible
rendering cost while the leaves form the perceptually best
representation of the model with the highest rendering cost.

More formally, the model hierarchy M is a tree structure
that can recursively be defined by the following rules:

1. A meta-object that has no children is a model hierarchy
with just one node, the root node.

2. Let M1, Ms...M,, be model hierarchies whose root nodes
are the meta-objects m1,ma...m,, respectively, that
_represent sets of conceptual objects and have associ-
#" ated with each of them the sets ry,rs...r, of drawable
representations. Let m be a meta-object that repre-
sents the union of m; and has associated to it a set #

of drawable representations such that Cost(Maz(r)) <
i=q Cost(Min(r;)), where Maz(r) is the representa-

tion that has the highest cost among those in r, Min(r;)

is the representation that has the lowest cost among

those in r; and Cost(z) is the rendering cost of repre-
gentation z. M is then defined to be a model hierarchy
if m is the parent of m; fori=1...m.

Figure A shows how the model of a city would be orga-
nized to form a hierarchy in which each node has a set of
jmpostors to represent the objects it subsumes.

Given these definitions, we state the walk-through prob-
lem as a tree traversal problem:

“Select a set of nodes in the model hierarchy that pro-
vides the user with a perceptually good representation of
the model”, according to the following constraints:

1. The sum of the rendering cost of all selected nodes is
less than the user specified frame time.

2. Only one node can be selected for each path from the
root node to a leaf node, since each node already con-
tains drawable representations that represent all its de-
gcendant nodes.

The problem as described here is an NP-complete tree
traversal problem and is a variant of the “Knapsack prob-
lem”, which is not surprising since we are generalizing the
system that Funkhouser and Sequin showed to be a knapsack
problem. The candidate sets from which only one element
will be selected to be put in the knapsack are the set of rep-
resentations associated to each meta-object. The knapsack
size is the frame time per frame that the selected represen-
tations must not exceed. The cost of each element is the
rendering cost associated to a representation. The profit of
an element is the accuracy of the representation plus the
benefit of the object with which it is associated.

To solve this problem we use the framework described in
Section 4.1 and develop a model hierarchy building algo-
rithm and a heuristic representation selection algorithm.

4.4 Design of the Model Hierarchy

We partition the entire model according to our formalization
of the problem, and form a tree structure in which each node
contains low-cost representations for the nodes it subsumes.

The structure that we use is a variation of an octree that
is a bounding volume hierarchy, that can be used to cull
objects against the viewing frustum and also serves as a
rendering aid, since we can draw its nodes.

This tree is constructed in a bottom-up fashion instead of
the traditional top-down recursive way, so that we can see
which objects are being “clustered”® together as described
in Section 5.

The criteria used to group objects takes into account only
the proximity of objects and our model hierarchy building
program is designed to cluster together nearby objects first
in the way illustrated in the 2D example of Figure 4.

According to a user-supplied number of divisions in x, y,
and z axis of the bounding box of the entire model an initial
octree cell size and therefore tree depth is specified. We start
by creating a “child list” that contains all the conceptual
objects in the model with their bounding boxes. This initial
list will correspond to the leaves of the tree. The child list
is used to generate the next level up of the tree. For each

3What is meant by clustering is basically the generation of
impostors for the group of objects.

99

2D Example:

.
s
e I[= =
"L
BT amm
.”E"“L-I!J Sublree A
Ao

Figure 4: Generating the model hierarchy octree. Represen-
tations are generated for cells with more than one object.

Structural (subtree A)

Clusters

Bl conceptual
objects

Figure 5: Subtree A as depicted on Figure 4.

level of the tree and for each cell in that level, we get the
set of objects that are completely inside the cell. If this
set is empty we move on to the next cell. Otherwise we
compute the bounding box of the objects in the cell and
discard it if the bounding box is already in the child list; since
impostor representations for that set of objects had already
been created. If it is not in the list we create impostor
representations for the cluster inside the cell.

In our implementation clusters are generated by creating
texture maps* of the objects from given view angles and their
generation is described in Section 5. After the impostor rep-
resentations have been created, we make the cell point to its
children and remove them from the child list. We then add
the new cell to the end of the child list and repeat the process
until we obtain a single cell with impostor representations
for the entire model.

It is important to note that at each time we cluster objects
we always take into account the actual objects that the cell
subtends instead of previously computed clusters.

Note that cluster representations are generated only if
there is more then one object totally inside each cell. Single
objects inside a cell as well as objects on cell boundaries will
be grouped in the next levels up in the hierarchy. Figure §
shows the structure of subtree A depicted in Figure 4.

4.5 Traversal of the Model Hierarchy

Due to the NP-complete nature of selecting representations
to render from the model hierarchy, we have devised a heuris-
tic algorithm that quickly (in less than the frame time) tra-
verses the model hierarchy. This algorithm selects repre-
sentations to be rendered, accumulating rendering cost until
the user-specified frame time is reached. When this occurs,

4 Actually, representations only need to obey the cost require-
ment stated in Section 4.3.

the algorithm stops and sends a list of representations to the
graphics pipeline.

The tree traversal is top-down from the root node and
first traverses the branches that contain the most “benefi-
cial” nodes according to the benefit heuristic presented in
Section 3.1.

The problem is that our per-object benefit heuristic asso-
ciates benefit not to cluster representations but to represen-
tations for conceptual objects that are at the very bottom of
the tree. High up in the hierarchy we do not know to which
branches of the tree the most beneficial objects belong. Be-
cause of this, we have decided to break the selection of nodes
to render in two phases as described below.

4.5.1 First Pass: Assign Initial Representation,
Benefit, Visibility, and Cost.

In this first phase of the selection process, we recursively
descend the model hierarchy in a depth-first manner and
associate a benefit and visibility value with each node in the
tree, and an initial drawable representation.

Since the leaves represent single objects, their benefits
are computed as a weighted average of the factors intrinsic
to objects as described in Section 3.1. The benefit value
associated to a tree node is taken to be the maximum value
of all the benefits of its children.

The visibility of nodes are computed by checking if the
bounding box in eye-coordinates of the bounding box of the
object intersects the viewing frustum. A node is said to be
visible if at least one of its children is visible.

At a given point in the simulation a view dependent and &
view independent representation for an object is selected us-
ing the criteria specified in Section 4.2. The rendering cost
and accuracy of drawable representations that are stored
with each representation in the model are used to select
which of these two representations will be assigned to be
the initial representation of the node. The representation
that has the highest accuracy /cost ratio is selected to be the
initial representation. In the next phase (described below),
if there is still frame time left we try to improve on this
initial choice.

After initial representations are selected to each of a
node's children, the children’s cost is stored with the node
to be used in the next phase.

4.5.2 Second Pass: Best-First Tree Traversal.

In this phase, we use the information obtained in the pre-
vious phase for each node of the model hierarchy to imple-
ment an efficient 'best-first’ tree traversal. The result of this
traversal is a rendering list of drawable representations that
is sent to the graphics hardware for rendering as shown in
Figure 6.

To implement this strategy, we make use of a list of meta-
objects organized in decreasing order of benefit (computed
in the previous phase). We keep accumulating frame time as
we select representations to render and whenever the time
required to render the children of a node plus the total ac-
cumulated time so far exceeds the frame time we insert the
representation for the node in the rendering list and move
on to the next node.

The algorithm first explores the branches of the tree con-
nected to the most beneficial nodes as follows: Start by in-
serting the root node in the list and setting the total render-
ing cost to be the cost of rendering the initial representation
associated to the root node. We then process thig list until

Figure 6: Tree representing the model hierarchy and the set
of nodes to be rendered as a linked list.

it is empty. We remove the element in the front of the list
and discard it if it is not visible.

If the node is a leaf node (containing a conceptual object)
we check if there is still rendering time left to select a better
representation for the object. In the positive case we select
to render (insert in the rendering list) the next higher accu-
racy representation for the node and add its rendering time
to the total accumulated rendering time.

In the case where the node contains representations for a
cluster of objects, we check if instead of rendering the cluster
representation we still have time to render all of its children,
i.e, the total accumulated time plus the cost of rendering
the node’s children does not exceed the frame time. In the
positive case, we insert each of its visible children in the
list ordered by each ones benefit and add their cost to the
total accumulated rendering time. Otherwise we insert the
cluster’s representation into the rendering list.

Note that at each point in this traversal, a complete rep-
resentation of the scene is stored in the list of meta-objects
and whenever there is frame time left to render the children
of a node, before adding the cost of the children to the total
accumulated cost we subtract the cost of the initial repre-
sentation for the node.

4.6 Temporal Coherence

While navigating through the model the viewpoint can ran-
domly get close or far away from “important” objects that
require most of the frame time. This sometimes causes a
seemingly random switch from a cluster representation to
the representations of the actual objects (or vice-versa). The
idea of using frame-to-frame temporal coherence as used by
Funkhouser and Sequin, is used here to mininimize this ef-
fect by discouraging switching from representations for par-
ent nodes to representations for children nodes. We keep a
counter of the number of times the walkthrough program de-

«cided to switch from parent to children. The actual switch-

- ing is only allowed if this counter exceeds a pre-fixed thresh-

100

old. The delayed switching from children representations to
cluster representations is not implemented since it would oc-
cur in a situation that most of the frame time has already
been allocated and this delay would greatly reduce the frame
rate.

"

\

5 Implementation

This research has resulted in the implementation of three
programs on a four processor SGI Onix workstation with
a RealityEngine board: the model hierarchy building and
representation generation program, the cost and accuracy of
representations measurement program, and the walkthrough
program.

These programs are implemented in C++, use GL[8] for
rendering, and have an X-Motif GUI to facilitate parameter
changes for system evaluation.

5.1 Model Hierarchy Building and Representa-
tion Generation

The program that builds the model hierarchy implements
the hierarchy building algorithm described in section 4.4 and
opens two windows, as shown in Figure B. The right window
displays the objects/clusters and compute texture maps for
each of the sides of their bounding boxes while the left illus-
trates the process of building the hierarchy. In this image,
the dots represents objects that were not “clustered” yet.
The purple square with green dots is the bounding box of
the objects (in green) that completely fit inside it and the
“red” band is showing groups of objects already “clustered”.

View dependent impostors such as texture maps are au-
tomatically obtained in the following way with the help of
the graphics hardware:

1. Set up a viewpoint, a viewing direction, and an ortho-
graphic projection matrix.

2. Draw the object(s) in a completely black background
and adjust the texture resolution® by scaling the ob-
ject(s) inside the orthographic viewing volume.

3. Grab the resulting image from the window (right win-
dow in Figure B) and set the alpha component of black
pixels to zero, so that if the objects have holes we can
see through when they are rendered.

Average color boxes are also obtained in a similar fashion.
The average color for each face is just the average of the rgb
colors of all non-black pixels and the average area is the
number of all non-black pixels in the face’s image that is
converted to an area in object coordinates.

The generation of a pseudo-texture map involves a pre-
processing of the original image because if there are too
many pixels on the image the rendering of the texture would
require too many meshed triangles. Therefore, we succes-
sively shrink the original image by convolving it with a Gaus-
sian filter that averages the RGB components of the pixels.

5.2 Cost amd Accuracy of Representations
Measurement

The cost of each representation is measured by selecting a
specific representation and drawing it 2 number of times in
order to get an average rendering time as shown in Figure
C.

The accuracy of an impostor is measured using the proce-
dure described in Section 3.2 and a table that describes how
similar each of the representations is compared to the origi-
nal image of the object for five directions around the object

5What ultimately determines the resolution of the texture map
is the complexity (or granularity of details) that the object(s)
exhibit(s) from a particular direction.

101

"t

£

viewpalnt D |
Y,

Hne of elght

Figure 7: Checking the visibility of & set of objects against
the viewing frustum.

is generated. One of the most immediate improvements we
need to make is the use of more directions in this table.

5.3 Visual Navigation

The walkthrough program implements the framework de-
scribed in Section 4.1 and the traversal algorithms described
in Section 4.5. The computation of the representation to be
rendered in the next frame is done in one processor while
another one holds the graphics pipeline to render the cur-
rent frame. Semaphores are used to synchronize the two
processes.

The traversal algorithm assumes that visibility of bound-
ing boxes can be determined quickly. This can be done by
first computing the bounding box in eye-coordinates of the
object’s bounding box. We then compute its intersection
with a box formed by extending the slice of the viewing
frustum corresponding to the farthest z-value of this box to
its nearest z-value. This visibility test can return true even
though no object inside the cluster is also inside the viewing
frustum as shown in Figure 7.

This problem is solved by the first phase of the traversal
algorithm since it marks a cluster as visible if and only if
at least one of the objects that it represents is inside the
viewing frustum. If computing the visibility of individual
objects are taking too much time we can use a faster test
and check if spheres enclosing groups of objects intersect
the viewing frustum.

5.4 Performance

Qur test model has around 1.6 million polygons and dur-
ing our tests we have constrained the number and size of
texture maps generated by the hierarchy building program
to the available texture memory of one megatexel (one mil-
lion texture pixels) by selecting appropriate octree cell sizes
and adjusting the resolution of the texture representation
for objects and clusters.

For this model we were able to keep a frame rate of around
16 frames per second (fps) for a target frame rate of 30 fps
throughout the simulation without too much degradation
in image quality. Figure D shows the image seen by the
observer (left) and a top view of the the same scene showing
where clusters are being displayed (right).

Figure 8 shows the user mode (right) and real time (left)
throughout a simulation path of the model. The user time
graph shows that our estimation of cost and rendering algo-
rithm is achieving the goal of keeping a uniform and high
frame rate. The real time graph show spikes due to random
interrupts and a gap with respect to the 1/30 line due to
smooth LOD switching using transparency blending.

“time.txt® «

“eime.eEt" .
8.933 0.08% -

L} 20 400 609 [} L e 460 L

Real tinie User thme
Figure 8: Plot frame versus frame time with (left) and with-
out (right) smooth LOD switching.

These interrupts can be minimized by mechanisms such as
processor isolation, interrupts redirection, processor locking
and so on ag described in [9].

The same model, without the model hierarchy, takes
around 1 frame per second for certain viewpoints in our test
path.,

6 Limitations

One limitation of this system is the number of texture maps
that can be used to represent objects and clusters. As the
gystem uses more texture maps to represent clusters and
individual objects, the chance of a texture-cache miss in-
creases. A cache miss results in an unpredictable interrupt
that will invariably defeat the purpose of a predictive system.
Future methods of intelligent prefetch of textures that are
likely to be needed could make texture cache misses much
lesg likely, and thus allow the use of many more textured
impostors.

We have not addressed the illumination of the environ-
ment. Although the illumination of a complex environment
can be computed using the radiosity method in a view in-
dependent fashion the shading attributes of objects (adding
specular highlights) and clusters would need to be incorpo-
rated to their representations. Instancing of objects would
not be practical since two identical objects in different loca~
tions in the model would have different shading attributes.
As the size of texture memory increases these problems will
become less serious, but they will not go away.

The most serious limitation in our current implementa-
tion is that our tree traversal requires that a cluster know
something about the benefits of its children, so all primitives
are visited once per frame in the first pass of the algorithm,
and therefore it is O(n), where n is the number of objects.
Our traversal algorithm is top-down, so there is no reason
it could not be O(logn) if a more intelligent traversal algo-
rithm is used.

7 Conclusion

We have presented a way of using clusters of objects to im-
prove the performance of an LOD-based visual navigation
system. When there are too many visible LODs to render
in real-time, we render single texture-mapped cluster primi-
tives in place of groups of individual LODs. The techniques
used to generate clusters can also be used to generate a par-
ticular type of textured LODs for single primitives. We have

102

also discussed some limitations of the object-based benefit
heuristic, and extended it to account for the variability of
an LOD’s quality as the view angle changes.

The main lessons to be drawn from this work are that the
predictive framework of Funkhouser and Sequin extends well
to a hierarchical version of the LOD concept, and that pre-
computed visibility information is not essential for efficient
visual navigation programs.

8 Acknowledgments

Thanks to Ken Chiu and Aaron Yonas for their suggestions
on the draft of this paper. Thanks to Ken Chiu and Paul
Bourke for the model of a tree and a town house, respectiv-
elly, used in the color plates. Thanks to the Brazilian gov-
ernment agency CAPES, for providing the first author the
financial support to conduct this research. Thanks to the Re-
search and University Graduate Schools (RUGS) Research
Facility Fund (RFF) and the NSF CDA-92-23008 grants that
provided the graphics workstations that were used in this re-
search. The second author was also supported by NSF RIA
grant CCR-92-09457.

References

[1] John M. Airey, John H. Rohlf, and Jr Frederick
P. Brooks. Towards image realism with interactive up-
date rates in complex virtual building environments.
Computer Graphics, pages 41-50, 1990.

Kurt Akeley. Reality engine graphics. Proceedings
of SIGGRAPH'93 (Anaheim, California, August 1-6,
1993). In Computer Graphics Proceedings, Annual Con-
ference Series, 1998, ACM SIGGRAPH, pages 109-116.

Thomas A. Funkhouser and Carlo H. Sequin. Adaptive
display algorithm for interactive frame rates during vi-
sualization of complex virtual environmnets. Computer
Graphics, pages 247-254.

Thomas A. Funkhouser, Carlo H. Sequin, and Seth
Teller. Management of large amounts of data in interac-
tive building walkthroughs. Proceedings of the 1992 Sym-
posium on Interaciive 3D Grephics (Cambridge, Mas-
sachusetts, March 29 - April 1, 1992), special issue of
Computer Graphics, ACM SIGGRAPH, pages 11-20,
1992.

Paulo Maciel. Visual navigation of largely unoccluded
environments using textured clusters. Ph.D. Thesis, Jan-
vary 1995. Indiana University, Bloomington.

John Rohlf and James Helman. Iris performer: A
high performance multiprocessing toolkit for real-time
3D graphics. Proceedings of SIGGRAPH'9{ (Orlando,
Florida, July 24-29, 1994). In Computer Graphics Pro-
ceedings, Annual Conference Series, 1994, ACM SIG-
GRAPH, pages 381-394.

Harvey R. Schiffman. Sensation and Percepiion an Inte-
grated Approach. John Wiley & Sons, New York, 1990.

‘Inc. Silicon Graphics. Graphics Lsbrary Programming
¢ Guide, Volumes I and II, 1992.

Inc. Silicon Graphics. React In Iriz: A description
of real-time capabilities of Iriz v5.3 on Onyz/Challenge
multiprocessor sysiems., 1994.

(2l

3]

[4]

(5]

[6]

Guided Navigation of Virtual Environments

Tinsley A. Galyean

MIT Media Lab
Cambridge, MA. 02139
tag @ media.mit.edu

ABSTRACT

This paper presents a new method for navigating virtual envi-
ronments called “The River Analogy.” This analogy provides a
new way of thinking about the user's relationship to the virtual
environment; guiding the user’s continuous and direct input within
both space and time allowing a more narrative presentation. The
paper then presents the details of how this analogy was applied to a
VR experience that is now part of the permanent collection at the
Chicago Museum of Science and Industry.

1. INTRODUCTION

Today's Virtual Reality (VR) technology provides us with an
opportunity to have experiences that would otherwise be impossi-
ble. We can smoothly and continuously interact while immersed in
environments that would be inaccessible or impossible to experi-
ence. In these environments, we are free to roam and explore.
architectural walk throughs for example, scientific visualization,
and even games like DOOM place us in alternative worlds while
giving us methods for navigating these virtual spaces. These meth-
ods allow smooth and continuous interaction that can immediately
influence the constantly changing presentation, but they rely on the
user's actions and thoughts to bring structure to the experience. If
any narrative structure (or story) emerges it is a product of our
interactions and goals as we navigate the experience. I call this
emergent narrative. In soine applications this complete freedom to
explore is appropriate. However, there is an alternative. This is the
process of empowering the author to bring structure to the experi-
ence, which makes this medium more appropriate for applications
such as teaching, storytelling, advertising and information presen-
tation. To do this, we will need to balance the interaction (explora-
tion) with an ability to guide the user, while at the same time
maintaining a sense of pacing or flow through the experience. This
type of guidance is the process of a providing narrative structure.
Like a narrative presentation any solution must guide the user both
temporally and spatially.

2. PREVIOUS WORK

Virtual environment navigation has mainly consisted of build-
ing new methods and technologies that allow the users to control
the position and orientation of the virtual camera, through which
they see the virtual world. Early work in camera control (even
before the advent of VR technology) focused on specifying camera
movements over a path. [1, 4] In an effort to address the needs of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

103

animation production and does not address the issue of interactive
camera control.

A number of different researchers have addressed the issues
behind camera control for manipulation and/or exploration appli-
cations. [2, 5] All of these methods focus on providing better ways
for the user to roam free, exploring within the virtual world. It is
this ability for the user to directly control his/her place in the vir-
tual world that is so often synonymous with the words “virtual
reality.” While these methods couple smooth, continuous interac-
tion with the smooth and continuous presentation available in real-
time computer graphics environments, they do nothing to guide the
user. There is no room for an author’s intentions to influence the
experience. Therefore there is no narrative structure.

Researchers in interactive narrative working with linear mate-
rial like digital video have worked to unfold it in order to provide a
non-linear environment for the user [3]. Shots are interactively
laced together into sequences and these sequences tell a story.
Because shots are the smallest building blocks available, the inter-
action intermittently guides how these shots are laced together.

The traditional analogy of how these types of interactive experi-
ences are structured is often referred to as the branching analogy.
Each branch represents a linear segment traversing part of the nar-
rative space. A linear segment is played until the next node is
reached. It is at these nodes where options are provided. The
advantage of branching is that the experience does have a narrative
structure, the interaction is guided. The disadvantage is that one
can interact only at the nodes thereby chopping up both the inter-
action and the presentation.

The goal set forth is to find a way to marry the advantages of
immersive VR experience with the advantages of narrative struc-
ture. How do we allow the smooth, continuous interaction and pre-
sentation, to coexist-exist with the structural and temporal qualities
of narrative (plot and pacing)? In other words, how do we balance
the notion of interaction with guidance (telling).

3. THE RIVER ANALOGY

Here I propose an alternative analogy for navigating virtual
spaces. Instead of linking a sequence of branches and nodes, or
giving the user free rein, I suggest that the navigation paths be
more like a river flowing through a landscape. The user is a boat
floating down this river with some latitude and control while also
being pushed and pulled by the pre-defined current of the water.
Like the branching structure this approach constrains the audi-
ence's movement through the space to interesting and compelling
paths; But there are some unique advantages to this approach: the
flow of the experience, the continuous input of the rudder, and
multiple levels of structure.

The river analogy assures an uninterrupted flow. When in a boat
you float down the river even when you are not steering. The pre-

sentation is continuous regardless of whether or not there is input.
The amount of control you have over the boat varies with the prop-
erties of the river. If the rapids increase, you move faster with less
room for swinging from side to side. Alternatively, the pace can
slow and the river can widen giving room to steer from one bank to
the other.

In the river analogy the boat’s rudder can be likened to audience
input. A rudder takes input continuously. The amount of influence
may vary depending on the water conditions but you can always
provide the input. It is also the case that the rudder may have both
an immediate and a long term impact on the navigation. How the
rudders are used can determine both your local position within the
river, but also a more global position, such as which fork in the
river your boat might take.

The river provides two levels of guiding structure. First is the
local structure of the river including the water flow, rocks in the
river, the width between the banks, etc. Second, is the global struc-
ture, including both the path the river flows and the forks that sep-
arate and/or rejoin. The audience input has influence on how both
levels of this representation are navigated. The rudder or input can
steer between the banks while the position of the boat when a fork
is reached will dictate which part of the fork the audience will
travel.

Like a river, a guiding navigation method should guide without
interruption of the presentation. This creates a sense of interaction
by constantly accepting user input and guiding it with a higher
level, longer term structure.

4. APPLICATION OF THE RIVER ANALOGY

A highlight of the Chicago Museum of Science and Industry's
new exhibit, /maging the Tools of Science, is the virtual reality
experience. The primary goal of this exhibit was to expose and
educate the visitor to what VR technology is and can do. Any
experience that was going to be successful, was going to be highly
constrained by the issues inherent in bringing an immersive expe-
rience to a public place like the museum. In a museum setting it is
necessary to limit the amount of time a person spends, provide an
interface that keeps people from getting lost and frustrated, while
at the same time making them aware that they have some direct
and immediate control over how they move through the environ-
ment. To meet these demands it was decided that the experience
would be between 2 and 3 minutes long with a clear beginning,
middle, and end. This allowed the user to feel they had a complete
experience while allowing the museum to predict how quickly
they could move people through the exhibit. These constraints
required the user's navigation to be guided through the virtual
world, and the river analogy helped us address these issues.

In this application, the analogy of the river was taken quite liter-
ally. We defined a path through the virtual space as the river. The
user was then guided through the space much like a water-skier
behind an invisible boat. The boat or anchor moves along the path
at a rate that varies as specified by the creator of the experience
(the author). The user is then tethered to the anchor by a spring that
constantly pulls them along. Meanwhile the user is free to look in
any direction he or she chooses. Figure 1 shows the model we
used. This model gives the user direct control over where they are
looking while at the same time giving them indirect control over
their local position. Looking in a given direction will impart some
force in that direction and allow the user to swing over in that
direction moving closer to the object they are watching. At the
same time the boat continues to pull them along the journey, main-
taining a sense of pacing and flow.

There are a series of parameters that can change the nature of
this interface: the current and desired speed of the anchor, the
amount of thrust the user is imparting, and the spring and damping
constants. In this implementation, all of these values are free to
change throughout the experience. The changes are encoded at

104

path/river

anchor/boat

spring/tether
\force attaching to anchor

view direction <—

force viewer's eye/camera

«+— at any point on the path the following can be changed
- new desired anchor speed
- a rate to reach new speed
- view thrust amount
- spring constant
- damping constant

Figure 1: An qulication of the River Analogy, consisting of a
number of different parts: the anchor moving along the path, a
spring attaching the user position fo the anchor, a thrust
imparted by the user dictated by the direction the user is look-
ing, and a general viscous damping to prevent the user from
oscillating about the anchor position,
locations along the path, allowing the author to specify over which
areas of the journey the user is more or less free to roam. For
example, as the user approaches a larger open space the author
many choose to slow down the anchor, decrease the spring and
damping constants, and increase the viewer thrust allowing the
user more latitude and time to explore. Alternatively, the author
might focus the experience by increasing the spring constant,
speeding up the anchor, and reducing the thrust.

5. CONCLUSION

It is clear that there are VR application for which the current
methods of navigation are not sufficient. Some of these applica-
tions suggest the need for a method to guide the user as s/he navi-
gates the virtual landscape. The River Analogy provides a way of
thinking about how the author's intentions can steer the interaction
given by the user to create a guided navigation. This paper has pre-
sented this analogy and one particular application of this analogy
to an existing public VR exhibit. This work only begins to touch
on the potential of guided interaction for virtual environments.

ACKNOWLEDGEMENTS

The Art Technology Group including: Martin Friedmann,
Stephen Clark, Andy Schwarz, Keith Baccki, Andy Hong, David
Rose, Joe Chung, Jeet Singh. Martin in particular for outstanding
work on implementation. Glorianna Davenport (Media Lab) for
her help and support. Steven Drucker for the many inspiring con-
versations.

REFERENCES

1. Bartels, R., J. Beatty, and B. Barsky, An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling.
Morgen Kaufmann, Los Angeles, 1987,

2. Brooks, F. P. Grasping Reality Through Illusion -- Interactive
Graphics Serving Science. CHI '88 Proceedings, Special Issue of
SICHI Bulletin, 1988, 1-11.

3. Davenport, G., T. Aguierre-Smith, and N. Pincever, Cine-
matic Primitives for Multimedia, Computer Graphics & Applica-
tions, (July 1991), 67-73.

4. Shoemake, K. Animating Rotation with Quaternion Curves.
Proceeding of SIGGRAPH '85. (San Francisco, California, July
22:26, 1985). In Computer Graphics 19, 3 (July 1985), 245-254

5. Ware, C. and S. Osborne. “Exploration and Virtual Camera
Control in Virtual Three Dimensional Environments,” Proceedings
of the 1990 Symposium on Interactive 3D Graphics (Snowbird,
Utah, March 25-28, 1990),special issue of Computer Graphics,
ACM SIGGRAPH, New York, 1990, 175-184

Portals and Mirrors:
Simple, Fast Evaluation of Potentially Visible Sets

David Luebke and Chris Georges
Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

We describe an approach for determining potentially visible

sets in dynamic architectural models. Our scheme divides the
models into cells and portals, computing a conservative estimate
of which cells are visible at render time. The technique is simple
to implement and can be easily integrated into existing systems,
providing increased interactive performance on large architec-
tural models.

Introduction

Architectural models typically exhibit high depth complex-
ity paired with heavy occlusion. The ratio of objects actually
visible to the viewer (not occluded by walls) to objects theoreti-
cally visible to the viewer (intersecting the view frustum) will
usually be small in a walkthrough situation. A visibility algorithm
aimed at reducing the number of primitives rendered can exploit
this property. Following prior work [1,2,3], we make use of a sub-
division that divides such models along the occluding primitives
into “cells” and “portals”. A cell is a polyhedral volume of space;
a portal is a transparent 2D region upon a.cell boundary that con-
nects adjacent cells. Cells can only “see” other cells through the
portals. In an architectural model, the cell boundaries should fol-
low the walls and partitions, so that cells roughly correspond to
the rooms of the building. The portals likewise correspond to the
doors and windows through which neighboring rooms can view
each other.

Given such a spatial partitioning of the model, we can deter-
mine each frame what cells may be visible to the viewer. By
traversing only the cells in this potentially visible set (PVS), we
can avoid submitting occluded portions of the model to the graph-
ics pipeline. What cells comprise the PVS? Certainly the cell
containing the viewpoint is potentially visible. Those neighboring
cells which share a portal with the initial cell must also be
counted as potentially visible, since the viewer could see those
cells through the portal. To this we add those cells visible through
the portals of these neighbors, and so on. In this manner the prob-
lem of determining what cells are potentially visible to the viewer
reduces to the problem of determining what portals are visible
through the portals of the viewer’s cell.

luebke @cs.unc.edu (919) 962-1825
georges@cs.unc.edu (919) 962-1789
CB# 3175 Sitterson Hall; UNC, Chapel Hill, NC 27599-3175

Permission to copy without fee all or part of this material is
granted provided that the coples are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Assoclation of Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.]

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

105

Our system makes this determination dynamically at render
time. Rather than finding the exact PVS for each cell as a prepro-
cess, we postpone the visibility computation as long as possible.
This type of dynamic evaluation of portal-portal -visibility is not
new. Earlier efforts have centered on precisely determining sight-
lines through portals; our method offers a less exact but much
simpler alternative. The algorithm has been implemented on the
Pixel-Planes 5 graphics computer at the University of North Caro-
lina and provides a substantial speedup on a sample model of
50,000 polygons.

Previous Work

Jones [1] explored the subdivision of geometry into cells and
portals as a technique for hidden line removal. In his algorithm,
models are manually subdivided into convex polyhedral cells and
convex polygonal portals. The subdivision is complete in the
sense that every polygon in the dataset is embedded in the face of
one or more cells. Rendering begins by drawing the walls and por-
tals of the cell containing the viewer. As each portal is drawn, the
cell on the opposite side of the portal is recursively rendered. In
this way the cell adjacency graph defined by the partitioning is
traversed in depth-first fashion. The portal sequence through
which the current cell is being rendered comprises a convex
“mask” to which the contents of the cell are clipped. If the inter-
section of a portal with the current mask is empty, the portal is
invisible and the attached cell need not be traversed.

More recent work has abandoned the attempt to compute
exact visibility information, focusing instead on computing a con-
servative PVS of objects that may be visible from the viewer’s
cell. The graphics pipeline then uses standard Z-buffer techniques
to resolve exact visibility. Airey [2] was the first to use a portal-
based approach effective in architectural environments. He
described multiple ways to approach the problem of determining
cell-to-cell visibility, including ray-casting and shadow volumes.
Teller [3] has taken the concept further and found a closed-form,
analytic solution to the portal-portal visibility problem. Using 2D
linear programming to test portal sequences against arbitrary visi-
bility beams, Teller computes a complete set of cell-to-cell and
cell-to-object visibilities in a preprocess. At render time this PVS
is further restricted according to which portals are actually visi-
ble. Teller’s approach is mathematically and computationally
complex, requiring hours of preprocess time for large models [3].

Motivation

Such a large preprocessing cost may be inappropriate for
interactive applications. For example, architectural walkthroughs
are often used for revision purposes. A visualization of a building
under design is more valuable to an architect if inquiries of the
type “What if I move this wall out ten feet?” can be answered
immediately. Adding portals, moving portals, and redistributing

cells boundaries will all be common operations in an interactive
architectural design application. To take full advantage of the
static visibility schemes mentioned above, each of these would
require a potentially lengthy PVS recalculation best done off-line.

Envisioning such an application as our final goal, we
decided to focus on improving the dynamic visibility determina-
tion. Jones’ algorithm finds the exact intersection of 2D convex
regions, requiring O(n Ig n) time for portal sequences with n
edges. Teller's linear programming approach computes only the
existence of an intersection, and runs in time linear in the number
of edges. We sought a dynamic solution that would also run in lin-
ear time and would integrate easily into existing systems.

Faster Dynamic PVS Evaluation

We use a variation of Jones’ approach that employs bound-
ing boxes instead of general convex regions. Our scheme first
projects the vertices of each portal into screen-space and takes the
axial 2D bounding box of the resulting points. This 2D box,
called the cull box, represents a conservative bound for the portal;
that is, objects whose screenspace projection falls entirely outside
the cull box are guaranteed not to be visible through the portal
and may be safely culled away. As each successive portal is tra-
versed, its box is intersected with the aggregate cull box using
only a few comparisons.

During traversal the contents of each cell are tested for visi-
bility through the current portal sequence by comparing the
screenspace projection of each object’s bounding box against the
intersected cull box of all portals in the sequence. If the projected
bounding box intersects the aggregate cull box, the object is
potentially visible through the portals and must be rendered.
Since a single object may be visible through multiple portal
sequences, we tag each object as we render it. This object-level
culling lets us avoid rendering objects more than once per frame.

Alternatively, we can render each object once for every por-
tal sequence which admits a view of the object, but clip the actual
primitives to the aggregate cull box of each sequence. Under this
primitive-level clipping scheme objects may be visited more than
once, but since the portal boundaries do not overlap, no portion of
any primitive will be rendered twice. Typically object-level cull-
ing will prove more efficient, but for objects whose per-primitive
rendering cost far exceeds their clipping cost, primitive-level clip-
ping provides a viable option.

Implementation

We have implemented this approach on Pixel-Planes 5, the
custom graphics multicomputer developed at the University of
North Carolina. The traversal mechanism treats portals as primi-
tives to be rendered. Each portal consists of a polygonal boundary
and a pointer to the adjacent cell; when a portal is encountered
during traversal we test its axial screenspace bounding box
against the current aggregate cull box. If the intersection is non-
empty, we use it as the new aggregate cull box and recursively
traverse the connected cell.

We feel that modeler integration is crucial to this problem of
interactive model revision. If an architect wishes to move a wall
or broaden a doorway, the modeling system should be able to
make the change quickly and broadcast that change to the graph-
ics system. In our system the spatial partitioning of the model
into cells and portals is directly embedded in the modeler’s repre-
sentation. Portals are treated as augmented polygons, each tagged
with the name of the attached cell. Cells are simply logical group-
ings in the modeler’s hierarchy and need not necessarily be
convex. We have found this quite convenient when constructing
models; each room typically corresponds to a cell and it takes
only seconds to add and move a portal, or to reshape a cell. We
have already adapted two commercial modelers to our system,
which speaks to the simplicity of the integration process.

106

Results

We have tested our system on a subset of the UNC Walk-
through project’s model of Professor Fred Brooks’ house,
comprised of 367,000 radiositized triangles. The speedup
obtained by this visibility algorithm, like the speedup obtained by
similar schemes, is extremely view-and model-dependent. Over a
500-frame test path through the model, the frame rate using PVS
evaluation ranged from just over 1 to almost 10 times the frame
rate of the entire unculled model. For typical views the dynamic
PVS evaluation culled away 20% to 50% of the model. It should
be emphasized again that these numbers are specific to the model
and view path, but they certainly indicate the promise of the algo-
rithm as a simple, effective acceleration technique.

Ongoing and Future Work

Efficiency could be further increased by applying obscura-
tion culling to portals [4]. This scheme tests potentially visible
items against an “almost complete” Z-buffer before rendering.
This would allow the ‘detail’ objects in each cell as well as the
occluding cell walls to block portals, potentially reducing the
PVS. The Pixel-Planes architecture makes obscuration culling of
portals feasible, and we are currently exploring this possibility.

Teller mentions that the concept of portals may be extended
to mirrors [3]. Under this scheme mirrors are treated as portals
which transform the attached cell about the plane of the mirror;
this has the advantage of automatically restricting the PVS seen
through the mirror. Though conceptually simple, mirrors intro-
duce many practical difficulties which require additional clipping
by the rendering engine to resolve. For example, geometry behind
the mirror must not appear in its reflected “world,” and reflected
geometry must not appear in front or to the side of the mirror.

A special case that avoids these problems can be constructed
by embedding the mirror in an opaque cell boundary (for exam-
ple, a wall-mounted mirror in a bathroom), and we have
implemented such mirrors (Plate 1). The concept of an immov-
able mirror fits poorly with our goal of interactive, dynamic
environments, however, so we have focused on the more general
case. Clipping is complicated further by mirrors that overlap in
screenspace, and further still by mirrors which recursively reflect
other mirrors. At present our system allows static mirrors, which
can reflect each other to arbitrary levels of recursion, or more gen-
eral “hand-held” mirrors, (an example of free-moving portals),
which permit one-bounce reflections. We are currently working
on the dynamic, fully recursive case.

Acknowledgments

The authors would like to extend their sincere thanks to
Mike Goslin, Hans Weber, Power P. Ponamgi, Peggy Wetzel,
and Stump Brady. This work was supported by ARPA Contract
DABT63-93-C-C048.

References

[1] Jones, C.B. A New Appreach to the ‘Hidden Line’ Problem.
The Computer Journal, vol. 14 no. 3 (August 1971), 232..

[2] Airey, John. Increasing Update Rates in the Building Walk-
through System with Automatic Model-Space Subdivision
and Potentially Visible Set Calculations. Ph.D. thesis, UNC-
CH CS Department TR #90-027 (July 1990).

[3] Teller, Seth. Visibility Computation in Densely Occluded
Polyhedral Environments. Ph.D. thesis, UC Berkeley CS
Department, TR #92/708 (1992).

[4] Greene, Ned, Kass, Michael, and Miller, Gavin. Hierarchi-
cal Z-Buffer Visibility. Proceedings of SIGGRAPH ‘93
(Anaheim, California 1993). In Computer Graphics Pro-
ceedings, Annual Conference Series, 1993, ACM SIG-
GRAPH, New York 1993, pp. 59-66.

I

Interactive Playing with

Large Synthetic

Environments

Bruce F. Naylor
AT&T Bell Laboratories
Murray Hill, NJ 07974

introduction

Until recently, opportunities to experience large synthetic
environments have been limited primarily to expensive
training simulators. However, with the advent of "location
based entertainment” at theme parks and even CD-ROM
based games for PC's, these kinds of experiences are
beginning to be made available to the general public as
well. The constraints on the possibilities for appealing
"content" arises from the technological capabilities that are
possible for a given performance level on a given platform.
Currently, for 3D graphics, performance is closely tied to
the number of texture mapped polygons that can be
rendered for each frame as well as the rate at which
collisions of various kinds can be computed.

Large synthetic environments require at least tens of
thousands of polygons, and could easily entail millions.
However, for each image, only a small subset of these
polygons are typically required to synthesize the image.
Similarly, collisions between two objects, or between a
viewer and the environment, involve an even smaller
subset. The task then for efficient geometric computations
is to, if possible, quickly identify the relevant subset. The
principal methodology for finding the minimal subset of
polygons is to use spatial search structures, such as regular
grids, octrees, or binary space partitioning trees. In this
paper, we describe briefly the current status of our efforts
at using binary space partitioning trees for navigating
through and playing with large environments, including
rendering and collision detection, as well as permitting
interactive modifications of the environment using set
operations that should prove appealing for entertainment
applications.

Partitioning Trees (or BSP Trees) [Fuchs, Kedem, and
Naylor 80] differ from regular grids in that they are
hierarchical (multi-resolution), and from octrees in that the
method of space partitioning requires not only determining
when to partition, but where, as well. The absence of a
restriction on the planes used in partitioning trees obviates
the need for a distinction between the spatial search
structure and the representation of polyhedra by using the
planes containing faces to partition space. A single tree,
representing some rigid object for example, can be
transformed with affine and perspective transformations
by only transforming the plane equations; thereby not
changing the tree structure. The tree provides a visibility
order for rendering objects with any mix of transparent
and opaque surfaces, and the near-to-far ordering that can
be used for pruning away fully occluded subtrees. In
addition, it can be used for efficient solid clipping with a
view-volume, for computing shadows and/or global
illumination, for intersecting rays with an object, and for
determining the location of points (representing, for
example, sprites in computer games) in an environment
Spatial relations between two objects can be computed
efficiently by merging their respective trees into a single
tree [Naylor, Amanatides and Thibault 90]. This provides,

on the modeling side, set operations and
collision/interference detection. For rendering, tree
merging determines inter-object visibility, analogous to
merging sorted lists in Merge Sort, which provides the
proper ordering required for transparent objects whose
convex hulls interpenetrate. It can also be used to discover
that a moving object has become totally occluded by
another object and so need not be drawn. In addition, tree
merging can be used to cast shadows from one object onto
another.

Visibility Culling of Large Environments

The most important computation for efficiently navigating
through large environments is conceptually a rather simple
and familiar one: clipping to the view-volume. However,
approaching this using solely the traditional graphics
pipeline for polygon clipping in an O(n) process. While any
spatial search structure can be used to accelerate this
computation, our use of partitioning trees has several
consequences. The first is that partitioning trees provide a
representation of space as a hierarchy of convex bounding
volumes that is highly adaptive to the contents of the
space. Thus, unlike a regular grid, the subdivision can be
very fine in areas of high level of detail without
compromising the representation of large open areas by a
few large cells. Our method of building trees [Naylor 93],
based on minimizing the expected cost of search operations,
produces such trees, since large open regions are treated as
being highly probable and will have short paths. This is
completely analogous to Huffman codes, in which the
number of bits assigned a code, i.e. the path length in the
Huffman code binary tree, is inversely related to the
probability of that code being used. Here, largeness 1is
treated as being positively correlated to the probability of
intersecting a region.

Given a tree representation of the environment,
constructed off-line, together with a particular view, we
find the subset of the environment within the view-volume
by first constructing a Partitioning Tree representation of
the view-volume [Naylor 92a]. Since we are using a tree for
this, the view-volume can have any polyhedral geometry,
and so need not be limited to a truncated pyramid. We also
provide solid clipping; that is, the intersection of the view-
volume with the solid environment will be displayed by
polygons having the attributes of the material with which
the view-volume is intersecting. We use the general tree
merging machinery for view-volume clipping/culling.
However, we do not produce a new tree corresponding to
intersection of the environment with the view-volume.
Rather we combine the view-volume intersection with the
visibility priority traversal so that the polygons are
transmitied to the polygon drawing stage as the
intersection operation proceeds, thus obviating the need for
creating an intermediate clipped tree.

Another very effective but very simple method of
reducing the computational requirements is to combine
simulation of fog with placement of the far clipping plane.

107

