
BUNGIE - EXHIBIT 1006 - PART 5 OF 14

processors execute these instructions at once, the lower execution
times of some of the integer operations make them very attractive.

2-byte 4-byte 4-byte
0 - eration short lon -- float

Addition

m@mau
%'

Figure 6: Execution time of integer versus floating-point
instructions.

Conversion from floating point to 4-byte integer format takes

1.35113, and from 4-byte integer to floating point takes l.57tts. This
makes it feasible to convert representations to use whichever is

more advantageous. Whenever possible, we use fixed~point or
integer representations.

Memory. Each processor has 256 bytes of local memory and 128

bytes of communication register that may also be used as local
memory. Each node can store 16MB of texture information in
table lookup memory. This memory may be read or written from
each of the pixel processors, thus serving as global storage.

3.2 Achieving interactive shading

Each Pixell-‘low node possesses an enormous amount of
computational power—over 40 billion integer operations or 2
billion floating-point operations per second. In addition, the

processors are programmable in a very general way, and we
believe that the 256 (+128) bytes of local memory at each

processor is sufficient to implement many interesting shading
algorithms. However. even this amount of computational power is
not enough to achieve our goal of real-time shading. We must
harness multiple PixelFlow nodes in an efficient manner to
multiply the power available for shading.

PixelFlow rasterizes images using a screen-subdivision approach,
sometimes called a virtual buffer [1 1]. The screen is divided into
128x64-pixel regions, and the regions are processed one at a time.
When the rasterizers have finished with a particular region, they
send appearance parameters and depth values for each pixel onto
the image-composition network, where they are merged and
loaded into a shader.

If there are s shaders, each shader receives one of every 5 regions.
While it shades the region. it has full use of the local memory at
each pixel processor. With this method of rendering, even a small
machine can support an arbitrary sized screen. Of course, the more
complex the problem, the more nodes that are needed to achieve
interactive performance.

Deferred shading. As stated in Section 2.3, deferred shading is a
powerful optimization for scenes of high depth complexity. It has
an even bigger payoff for a SIMD architecture such as PixelF1ow.
We implement deferred shading on a machine-wide basis by
giving each node a designated function: rasterization or shading.
The rasterization nodes implement the first loop in Figure 3b,
while the shading nodes implement the second.

As specified in Figure 3b. the rasterization nodes scan convert the
geometric primitives in order to generate the necessary appearance
parameters. Multiple rasterization nodes can work on a single
region of the screen as described by Molnar, et. al. [12]. The
composition network collects the rasterized pixels for a given
‘region (including all necessary appearance parameters), and

63

delivers it to the shading node that has been assigned to process
that region.

Deferred shading provides an additional computational advantage
on PixelFlow because of the SIMD nature of the pixel processors.
Consider how a SIMD machine might behave if shading is
performed during rasterization (immediate shading—Figure 3a).
For each primitive, the processors representing the pixels within
the primitive are enabled, while all of the others are disabled The
subsequent shading computations are performed only for the
enabled pixels. The processors representing pixels outside of the
primitive are disabled, so no useful work is performed.

Since most primitives cover only a small area of the screen, we
would make very poor use of the processor array. The key to
making effective use of the SIMD array is to have every processor
do useful work as much of the time as possible.

With deferred shading, all of the pixels in a region that require the
same shader can be shaded at one time, even if they came from
different primitives. This is especially useful when tessellated
surfaces are used as modeling primitives. These can he rastexized
as numerous small polygons but shaded as a single unit. In fact,
disjoint surfaces can be shaded at once if they use the same
shading function.

Factoring out common calculations. We can go even further
than executing shading functions only once per region. Shading
functions tend to be fairly similar. Even at a coarse level, most
shading functions at least execute the same code for the lights in
the scene even if their other computations differ. All of this
common code need only be done once for all of the pixels that
require it. As illustrated in Figure 7, if each shading function is
executed to the point where it is ready to do lighting computations,
the lighting computations for all of them can be performed at
once. The remainder of each shading function can then be
executed in turn.

If Shader—specEtlc code
for each surface shader

pre—lighl shading;

II Common code

for each light source
accumulate illumination;

1/ Shader-specific code
for each surface shader

post—llght shading;

Figure 7: Factoring out common operations for multiple
shading functions.

Currently, we code this manually, but this is yet another reason to
have a high-level compiler. A suitably intelligent compiler can
identify expensive operations (such as lighting and texture
lookups) among several shading functions and automatically
schedule them for co-execution.

Table lookup memory. Each shader node has its own table-
lookup memory for textures but, since it is not possible to know
which textures may be needed in the regions assigned to a particu-
lar node, the table memory of each must contain every texture. For
int_e'r'active use this not only limits the size of the textures to the
maximum that can be stored at one node. but it also presents a

problem for shadow map and environment map algorithms that
may generate new textures every frame. After a new map is
computed, it must be loaded into the table-lookup memories of
every shader node. This aspect of system performance does not
scale with the number of nodes: a maximum of 100 512x512

BUNGIE - EXHIBIT 1006 - PART 5 OF 14

 jwfi______:_

texture maps can be loaded into table—lookup memory per second
(2-3 in a 33 ms frame time).

Uniform and varying expressions. For efficiency, expressions
containing only uniform shader variables (those that are constant

over all of the pixels being shaded) are computed only once on the
RISC GP. Varying expressions (those that vary across the pixels),
or those containing a mix of uniform and varying variables, are
executed on the pixel-processor array.

Shader parameters. There are two ways to communicate
parameters to a shader node. One is to send the parameters over
the composition network. The other is to send the parameters over
the front-end geometry network. Obviously, a varying parameter
that must be interpolated over the pixels, such as color or surface
normal, is produced on a rasterization node, and should be sent
over the composition network.

A uniform parameter that is used at the GP and does not vary from
primitive to primitive should be sent over the geometry network
because composition network bandwidth is a valuable resource.

An example is something like the roughness of a surface which is

a fixed parameter for a particular material. If the parameter is
needed in the local memory of the pixel processors, it can be
broadcast locally at a shading node. We allow the programmer to
choose the best way to transmit each parameter.

3.3 Shader programming model

Low-level model. Since instructions for the pixel processors are
generated by the GP on a PixelFlow node, the code that a user
writes is actually C or C++ code that executes on the GP. Tlie

low-level programming model for the pixel processors (called
IGC.S'tream) consists of inline functions in C++ that generate code
for the SIMD array. Some of these functions generate the basic
integer operations; others, however, generate sequences of
instructions to perform higher-level commands, such as floating-
point arithmetic.

We have written a library of auxiliary shading functions to use
with this programming model. It provides basic vector operations,
functions to support procedural texturing {5, 13], basic lighting
functions, image-based texture mapping [14], bump mapping [15],
and higher-level procedures for generating and using reflection
maps [16] and shadow maps [17, 18}. It is perfectly feasible to
program at this level. In fact, we currently use this programming
model to write code for testing, and to produce images such as
those in the example video. We would prefer, however, to work at
a higher, more abstract level.

I-lligh-level model. We are implementing a version of the
RenderMan shading language that is modified to suit our needs.

Our goal in using a higher-level language is not solely to provide
architecture independence. That may be useful to us in the future,
of course, but since PixelFlow is an architectural prototype it is
not necessary. We are more interested in the shading language as a
way to demonstrate feasibility and to provide our users with a

higher-level interface that they’ve had [19] in order to encourage
wide use of the shading capabilities of our system. Also, as
mentioned earlier in this section, a high—level shading language
provides opportunities for compiler optimization, such as oo-
executing portions of several shader functions.

The RenderMan specification has only float, point, and color
arithmetic data types. Since we need to be frugal in our use of
floating-point arithmetic, we have added integers and f1xed-radix-

point numbers to the data types of our language. A compiler for
the shading language will accept shader code as input, and emit
C++ with SIMD processor commands as output. This code will be

64

linked with the auxiliary shading function library and finally with
the application program.

API support. We also need some way for graphics applications to
access our shading capability. Since one of our main goals for
PixelF1ow is interactive visualization of computations as they are
executing on a supercomputer, we have chosen an immediate-

mode application programmer's interface (API) similar to OpenGL
[20]. An advantage of choosing OpenGL, and extending it to meet
our needs is that students and collaborators are likely to be
familiar with the its basic concepts Also, this will make it easier to
port software between PixelFlow and other machines.

The current specification of OpenGL only incorporates the limited
set of shading models commonly found on current graphics
workstations: flat and linearly interpolated shading with image-
based textures. We have extended the specification to allow users
to select arbitrary shaders. ‘

We do not plan to implement an official, complete OpenGL for
two reasons. One is that some of the specifications of OpenGL
conflict with our parallel model of generating graphics. The
second is that we lack the resources to implement features that we
do not use. Consequently, though our functions are similar to

OpenGL, we use a pxgl prefix instead of OpenGL’s gl prefix.
Within these constraints, we have attempted to stick as closely as
possible to the OpenGL philosophy. We intend to describe this

API, and the problems involved in implementing it on PixelFlow,
in a future publication.

Limitations. Although the PixelFlow shading architecture
supports most of the techniques common in “photorealistic
rendering," (at least in RenderMan's use of the term), it has a few
limitations. Because Pixel!’-low uses deferred shading, shaders
normally do not affect visibility. Special shaders can be defined
that run at rasterization time to compute opacity values. However,
these shaders poorly utilize the SIMD array and slow rasterization.

A second limitation is that shaders cannot affect geometry.
RenderMan, for example, defines a type of shader called a
displacement shader, which displaces the actual surface of a
primitive, rather than simply manipulating its surface-normal
vector, as is done in bump mapping. This is incompatible with the
rendering pipeline in PixelFlow, as well as that of virtually all
other high-performance graphics systems.

4 EXAMPLE

In this section, we present a detailed example of real-time high-
quality shading on PixelFlow. The example—bowling pins being
scattered by a bowling balI—was inspired by the well-known
“Textbook Strike” cover image of the RenderMan Companion [6].
We cannot guarantee that the dynamics of motion are computable
in real-time, but we are confident that a modest-sized PixelFlow

system (less than one card cage) can render the images at 30
frames per second.

The accompanying video was rendered on the PixelFlow
functional simulator. The execution times are estimates based on

the times of rasterization and shading of regions, using worst-case
assumptions about overlap. We simulated a PixelFlow machine

containing three rasterizer nodes, twelve shading nodes, and a
frame-buffer node. There are 10,700 triangles in the model. The
images were rendered at a resolution of 640x512 pixels with five-
sample-per~pixel antialiasing.

—«r-—----4-u--veg.
4,1 Shading functions

Three shading functions are used to render these images, one for
the bowling pins, one for the alley, and one for the bowling ball.
Two light sources illuminate the scene, an ambient light and the
main point-light source which casts shadows in the environment.

llli
Parameter Number of bytes

Shader ID

 1x8
2x3
2x2
2x2

Figure 8: Appearance parameters used in bowling
example.

Figure 8 shows the data for each pixel that is sent from a
PixelFlow rasterizer node to a shader node, a total of 34 bytes. We

actually plan to use 10 bits of color per channel on most PixelFlow

applications, but 8 bits were used for this simulation. In addition
to the appearance parameters used by the shaders, two other

parameters are necessary, the depth and a shader identification
number for each pixel. The shader ID is used by the shading
control program to select the shader code for each pixel.

The bowling ball has a shadow-mapped light source with a Phong
shader. The alley has a shadow-mapped light source, reflection
map, mip-mapped wood texture, and a Phong shader. The pins
have a shadow-mapped light source, procedural crown texture,

mip-mapped label, bump-mapped scuffs, mip~rnapped dirt, and
finally a simple Phong shader. We factor out common lighting
computations as described in Section 3.2. Each shader is divided
into three parts, the part before the lighting computation, the
common lighting computation, and the part after the lighting
computation. '

4.2 Multiple-pass rendering

The shadow and reflection maps are obtained during separate
rendering passes. When each of these 512x512 images has been
computed and stored, rendering of the final image begins. In this
section we describe, in detail, the steps necessary to render and
store the shadow map and to render the final camera-view image.
Since computation of the reflection map is similar, we do not
describe it in detail.

Shadow map. A shadow map is a set of depth values rendered
from the point of view of the light source. We use three rasterizer
nodes to rasterize all the primitives and compute the depth at each

sample point. Since we do not need to calculate colors or other
parameters, this is a simple computation. The worst-case time for
this step is approximately 100 us, although many map regions
have very few polygons and take less time to rasterize.

The depth values are then z-composited over the composition
network, and the resulting depth is sent to all of the shaders.
Composition time is only 5 its per region. Notice that data transfer
and computation can proceed simultaneously.

As mentioned in Section 3.2, storing tables for shadow or

reflection mapping is a point of serialization on our system. The
combined time to store both the shadow and reflection map takes
almost half the time for each frame. Since the hardware can store

four values into table memory at one time, we take advantage of

this intra-node parallelism by storing the depth map in units of
four regions each. Thus, the shader nodes accept four regions of
data before storing them.

The total time to complete the shadow map pass is the time
consumed by eight table writes, 6.08 ms, plus the time to rasterize
the first four regions, for a total time of less than 7 ms.

Reflection Map. Rasterization for the reflection map can begin as
soon as enough buffer space is available at the rasterization nodes.
Shading for the reflection map can begin as soon as the last table
write for the shadow map has begun. The reflection map can be
generated and stored in less than 7 ms.

Final Image. The rendering time for the final image is a function
of both the rasterization time and the shading time. If the time to
rasterize a region is longer than the time-to shade it, the shading
nodes will be idle waiting for appearance parameters from the
rasterizer nodes. The worst-case time will then be the total

rasterization time plus the time to shade the final region. If the
time to rasterize a region is less than the time to shade it, the
shading nodes will always have regions waiting to be shaded. We
will see that for this scene shading is the bottleneck, so the
rendering time will be the total shading time plus the time to
rasterize the first few regions (to get the shading nodes started).

First, consider the rasterization time. With all of the appearance

parameters, each of the front-facing triangles in the model takes
approximately 0.85 us to rasterize. One of the busiest frames, with
all of the pins visible, contains just under 6400 front-facing
triangles (this includes the additional triangles that have to be
rendered when triangles cross region boundaries). This total takes
5.4 ms to complete on one rasterizer node. If we also do five
sample antialiasing, this becomes 27 ms. To achieve our
performance goal we divide the polygons over 3 rasterizers to
decrease the time to a little over 9 ms. Details on the use of

multiple rasterizers in PixclFl0w can be found in [l2].

 " Shaclin funion '

Section of code.m_..—

pre-light £3-
--

 --
--
--

post-iight E--
--
--

Figure 9: Shading times (1 node, 1 sample, 1 region)
excluding table lookup.

Now, consider the shading time. In PixelFlow, the table lookup
time is proportional to the number of pixels that need data, so it is
not constant for a region but depends on how many total values
are actually needed. The worst case for table lookup will occur if
all of the pixels in a region use the bowling pin shading function
since it needs to look up four different values: two mip-mapped
image textures, one bump map, and one shadow map. To do one
table lookup for all 8K pixels on a node takes 190 its, so looking
up four values for a full region requires 760 ps.

The worst-case time for the rest of the shader processing occurs
for regions that require all three shading functions, bowling pin.
alley, and hall. For regions without all of these elements, only

some of the shading functions need to be run. Figure 9 shows the
processing time for the shading functions excluding the table
lookup times. Note, however, that the time setting up for a
lookup and using the results is included. The slowest time for a

region is the sum of all the times in the figure or 150 us.

This time is for only one sample of one region. Since we are
doing five samples and a 640x512 video image has 40 regions,
there are really 200 regions to shade. The total time comes to

182 ms. By distributing the shading among twelve shading nodes,
we can cut the worst-case shading time to about 15 .2 ms.

The 9 ms spent rasterizing is less than the shading time.
Therefore, the shading time dominates. The total time to compute
the final camera view is the shading time plus the time to rasterize
the first regions, or about 15.7 ms.

Total frame time. A complete image can be rendered in under
29.7 ms. This includes 7 ms to generate a shadow map, 7 ms to
generate a reflection map, and 15.7 ms for the final camera image.
These times were computed with pessimistic assumptions and
without considering the pipelining that occurs between the
rendering phases. This results in a frame rate faster than 30 Hz.
With more hardware it will be possible to run even faster.

Additional hardware will not significantly speed the shadow or
reflection map computations since they are dominated by the
serial time spent writing the lookup tables. But rendering time of
the camera image is inversely proportional to the number of

rasterization and shading nodes. For more complex geometry, we
add rasterization nodes. For more complex shading, we add
shading nodes. Note that the hardware for both of these tasks is
identical. The balance between them can be decided at run time.

5 CONCLUSION

In this paper, we described the resources required to achieve real-
time programmable shading——programmability, memory, and
computational power—-requirements that many graphics hardware
systems are close to meeting. We explained how this shading
power can he realized in our experimental graphics system,
PixelFlow. And we showed with an example, simulations, and
timing analysis that a modest size PixelF1ow system will be able
to run programmable shaders at video rates. We have

demonstrated that it is now possible to perform, in real time,
complex programmable shading that was previously only possible
in software renderers. We hope that programmable shading will
become a common feature in future commercial systems.

ACKNOWLEDGMENTS

We would like to acknowledge the help of Lawrence Kesteloot
and Fredrilt Fatemi for the bowling simulation dynamics, Krish
Ponamgi for the PixelFlow simulator, Jon Leech for his work on

the Pixeli-ilow API design, Nick England for his comments on the

paper, and Tony Apodaca of Pixar for RenderMan help and
advice. Thanks to Hewlett-Packard for their generous donations of
equipment.

This research is supported in part by the Advanced Research
Projects Agency, ARPA ISTO Order No. A410 and the National
Science Foundation, Grant No. MIP-9306208.

6&5

REFERENCES

[1]

[21

13]

[4]

[5]

[51

[7]

[3]

[9]

[10]

111]

[12]

[13]

[14]

115]

[16]

[17]

[131

[191

[20]

Cook, R. L., L. Carpenter and E. Catmull, "The Reyes
Image Rendering Architecture", SIGGRAPH 87, pp. 95-102.

Whitted T., and D. M. Weimer, " A Software Testbed for

the Development of 3D Raster Graphics Systems", ACM
Transactions on Graphics, Vol. 1, No. 1, Jan. 1982, pp.43-58.

Cook, R. L., "Shade Trees", SIGGRAPH 84, pp. 223-231.

Hanrahan, P. and J. Lawson, "A Language for Shading and
Lighting Calculations", SIGGRAPH 90, pp. 289-298.

Perlin, K., "An Image Synthesizer", SIGGRAPH 85, pp.287-296.

Upstill, S., The RenderMan Companion, Addison-Wesley,1990.

Akeley, K., “Reality Engine Graphics”, SIGGRAPH 93,
pp. 109-116.

Fuchs H., J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel,
"Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories",
SIGGRAPH 89, pp. 79-88.

Deering, M., S. Winner, B. Schediwy, C. Duffy, and N.
Hunt, “The Triangle Processor and Normal Vector Shader:

A VLSI System for High Performance Graphics”,
SIGGRAPH 88, pp. 21-30.

Tebbs, B., U. Neumann, J. Eyles, G. Turk, and D.
Ellsworth, “Parallel Architectures and Algorithms for
Real-Time Synthesis of High Quality Images using
Deferred Shading”, UNC CS Technical Report TR92-034.

Gharachorloo N., S. Gupta, R. F. Sproull and I. E.
Sutherland, "A Characterization of Ten Rasterization
Techniques", SIGGRAPH 89, pp. 355-368.

Molnar S., J. Eyles, and J. Poulton, "PixelFlow: High-
Speed Rendering Using Image Composition", SIGGRAPH
92, pp. 231-240.

Gardner G. Y., "Visual Simulation of Clouds",
SIGGRAPH 85. P13. 297-303.

Williams 1... "Pyramidal Pararnetrics", SIGGRAPH 83, pp.1-11.

Blinn, J. F., "Simulation of Wrinkled Surfaces",
SIGGRAPH 78, 1313. 286-292.

Greene N., "Environment Mapping and Other Applications
of World Projections", IEEE CG&A, Vol. 6, No. 11, Nov,
1986, pp. 21 - 29.

Williams L, "Casting Curved Shadows on Curved
Surfaces". SIGGRAPH 78, pp. 270-274.

Reeves W. T., D. l-1. Salesin, and R. L. Cook, "Rendering
Antialiased Shadows With Depth Maps", SIGGRAPH 87,
pp. 283-291.

Rhoades, J., G. Turk, A. Bell, A. State, U. Neumann, and
A. Varshney, “Real-Time Procedural Texture", Proc. 1992
Symp. on 3D Interactive Graphics, pp. 95-100.

Akeley K., Smith K. P., Neider 1., 0penGL Reference
Manual, Addison-Wesley, 1992.

eyes
95-

:1 for
lCM

- PP-

31.

and

PP-

sley,

93,

'ael,
ssor

Jl1S

OV,

ed

ns
37,

nd
'92

‘-C8

._.._.‘

Interactive Full Spectral Rendering

Mark S. Peercy

Benjamin M. Zhu
Daniel R. Baum

Silicon Graphics Computer Systems

The scattering of light within a scene is a complicated process that
one seeks to simulate when performing photorealistic image syn-

thesis. Much research on this problem has been devoted to the

geometric interaction between light and surfaces, but considerably
less effort has been focused on methods for accurately representing

and computing the corresponding color information. Yet the ef-
fectiveness of computer image synthesis for many applications also

depends on how accurately spectral information can be simulated.
Consider applications such as architectural and interior design, prod-

uct styling, and visual simulation where the role of the computer is
to show how objects would appear in the real world. If the color
information is rendered inaccurately. the computer simulation may

serve as a starting point; but in the long run, its usefulness will be
limited.

Correctly handling color during image synthesis requires preserving
the wavelength dependence of the light that ultimately reaches the

eye, a task we refer to as full spectral rendering. Full spectral
rendering has been primarily in the purview of global illumination
algorithms as they strive for the highest degree of photorealism.
In contrast, commercially available interactive computer graphics

systems exclusively use the RGB model, which describes the lights
and surfaces in a scene with their respective RGB values on a given

monitor. The light scattered from a surface is given by the products
ofthc red, green, and blue values ofthe light and surface, and these
values are directly displayed. Unfortunately, the RGB model does

a poor job of representing the wide spectral variation of spectral
power distributions and surface scattering properties that is present
in the real world [4], and it is strongly dependent on the choice
of RGB monitor. As a result, the colors in an RGB image can be

severely shifted from the correct colors.

These drawbacks have frequently been overlooked in interactive

graphics applications because the demand for interactivity has tra-
ditionally overwhelmed the demand for photorealism. However,

graphics workstations with real-time texture mapping and antialias-
ing are overcoming this dichotomy [1]. Many applications that had

Address: Silicon Graphics, lnc., 20] l N. Shoreline Blvd. Mountain View, CA 94040
peercy@sgi.com;zhu@sgi.corn; drb@sgi.com

Permission to copy without lee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advanta e, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Qomputing
Machinery. To copy othenvise, or to republish, requtres a tee
andfor specific permission. I
1995 Symposium on interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

67

previously bypassed photorealism for interactivity now are capa-
ble of having some measure of both. The best current example is
the blending of visual simulation technology and mechanical com-

puter aided design for the visualization of complex objects such
as automobiles. And as workstation technology continues to ad-

vance, interactive rendering quality and speed will both increase.
Consequently, utilizing interactive full spectral rendering will have

significant benefits.

We present an approach to and implementation of hardware-assisted
full spectral rendering that yields interactive performance. We
demonstrateits use in an interactive walkthrough of an architectural
model while changing time of day and interior lighting. Other ex-

amples include the accurate simulation of Fresnel effects at smooth
interfaces, thin film colors, and fluorescence.

Generalized Linear Color Representations

The architecture uses generalized linear color representations based

upon those presented in [7] and [8]. The representations are obtained

by considering scattering events as consisting of three distinct el-
ements: a light source, a surface, and a viewer. Light from the
source reflects from the surface to the viewer, where it is detected.

We use the term viewer to apply to'a set of is implicit or explicit
linear sensors that extract color information from the scattered light.

This information might be directly displayed, or it might be used

again as input to another scattering event.

To derive the representations we expand the light source spectral

power distribution in a weighted sum over a set of 171 basis func-

tions. The light is represented by a light vector, E’, that contains the
corresponding weights. The surface is then described by a set of

m sensor vectors, where the 2'” vector gives the viewer response
to the 1”‘ basis function scattered from the surface. If we collect

the sensor vectors in the columns of a surface matrix, S, the viewer

response to the total scattered light reduces to matrix multiplication;
3' 2- SE‘. The effect of geometry on light scattering is incorporated
in the chosen illumination model.

The principal advantage of these representations comes when ev-

erylight source in the scene is described by the same set of basis
furictions. The light vectors and surface matrices can then be pre-
computed, and the rendering computation reduces to inexpensive
and straightforwardly implemented matrix multiplication. Addi-
tionally, the freedom to selectappropriate basis functions and sensor

responsivities opens wide the applications of this approach.

Selection of Basis Functions.‘ The basis functions are chosen to

capture the spectral power distributions of all light sources in the

scene. For a small number of independent lights, one could simply
choose as basis functions the spectral curves of the lights. However,

if the number of spectral power distributions for the lights is large,
as, for example, when the sun rises and sets, the dimensionality can
be reduced through various techniques, including point sampling
and characteristic vector analysis [6] [7] {5].

Selection of Sensor Responsivities: If the scattered light is to be
viewed directly, as is typically the casein interactive graphics, the
sensor responsivities should be the human color matching functions
based on the monitor RGB primaries. For an application such as
merging computer graphics and live action film, the sensors can
be chosen as the response curves of the camera used. The final

image would consist of color values of the synthetic objects as if
they were actually filmed on the set, so the image could be blended

more easily into the live action. Similarly, the sensor values might
be chosen to simulate the shift of non-visible radiation into visible

light in, for example, radio astronomy or night vision goggles. If,
alternatively, the scattering is only an intermediate step in a multiple
refiection path, as when computing environment maps, the sensor
responsivities can be chosen as the basis functions ofthe next event.

Hardware Implementation

Current Capabilities: Current workstations can employ the gener-
alized linear color representations in special circumstances. When

a scene contains a set of lights with identical spectral power dis-
tributions, only a single basis function is required. Light vectors
then have only one component that modulates single-column surface
matrices. If the viewer has three or fewer sensors, RGB hardware

can perform this modulation. For scenes illuminated by multiple
sources. a natural implementation is via the accumulation buffer

[3]. Pixels from the framebuffer can be added to the accumulation

buffer with an arbitrary weight, so the matrix multiplication can
be computed with multiple passes through the accumulation buffer,
one for each basis function, as ifit were a single illuminant.

Required Modifications.’ Needless to say, the accumulation buffer

involves substantial added computational effort as all of the geom-
etry is recomputed in each pass. A superior solution is obtained by
folding the linear color representations into the hardware, a goal we
have achieved in a prototype system by altering a Silicon Graphics
RealityEnginem [1]. RGB products must be replaced by matrix
multiplication at every point in the rendering path that performs il-
lumination computations - polygon lighting, texture mapping, and
environment mapping. Venex lighting calculations are implemented
through microcode modification. Currently, our system allows de-
cal textures orintensity modulatedtextures; full spectral textures, on
the other hand, require ASIC hardware modifications. We have de-

vised solutions to full spectral texturing and environment mapping
and the hardware required to implement them.

Full Spectral Examples: We implemented an interactive walk-

through of the Barcelona Pavilion, originally designed by architect
Ludwig Mies van der Rohe. The light sources in the scene include

ambient skylight, directional sunlight, and multiple interior fluores-

cent lights. The user can interactively change the time of day while
traversing the database. As the time of day changes, the spectral
power distributions both from the disk ofthe sun and from the am-

68

bient skylight change — however, the change in spectral power can
be captured with a small number ofbasis functions [5], an excellent

demonstration of the flexibility of the generalized linear color rep-
resentations. lmages from a walkthrough are shown in Figure l in
the color plates.

Environment mapping based upon sphere maps [2] can be used to
preserve both surface and illumination infonnation. Therefore, we
can reproduce, for example, accurate Fresnel reflection and thin

film colors, both of which depend on full spectral data (Figure 2).
Additionally, the generalized linear color representations need not
be restricted to the visible wavelengths. For instance, fluorescent

objects convert ultraviolet energy to visible light. With no additional

rendering cost after precomputing the surface matrices, our system
can correctly display lluorescentobjects (Figure 3). Similarly, these
representations may be applied to the simulation of infrared camera

response in, for instance, night vision goggles.

Ongoing Research

Improved color calculations during image synthesis will likely be-
come more important as hardware and software improvements con-

tinue to be made. One area that increased accuracy in color re-

production can have a significant impact is the seamless merging
of computer graphics and live action film or video. By simulating
the sensors of the camera that captured the original footage and
the lighting infomration from the set, it is possible to simulate the

appearance of computer graphics objects under the same lighting
conditions as the actual set. A complete solution to this problem
must pay particular attention to the calibration of the color values

from the camera, a non-trivial task. We are currently studying this
problem and are applying our rendering system to its solution.

References

[I] Akeley, Kurt. RealityEngine Graphics. Proceedings of SlG-
GRAPH ‘93 (Anaheim, California, August l-6, 1993). In
Computer Graphics (August 1993), 109-116.

Haeberli, Paul and Kurt Akeley. The Accumulation Buffer:

Hardware Support for High-Quality Rendering. Proceedings
of SIGGRAPH ’90 (Dallas, Texas, August 6-10, I990). in
Computer Graphics 25, 4 (August 1990), 309-318.

Haeberli, Paul and Mark Sega]. Texture Mapping as a Fun-
damental Drawing Primitive. Proceedings ofrhe Fourth Enro~
graphics Workshop on Rendering (l 993), 259-266.

Hall, Roy. Illumination and Color in Computer Generated
imagery. Springer-Verlag, New York, 1989.

Judd, D. B., D. L. MacAdam, and G. W. Wyszecki. Spectral
Distribution of Typical Daylight as a Function of Correlated

Color Temperature. J. Opt. Soc./im. 54, 8, (1964), l03 l -l 040.

Meyer, Gary. Wavelength Selection for Synthetic Image Gen-
eration. Computer Vision, Graphics, and Image Processing 41

_ (1988), 57-79.

I7]

[2]

[3]

{4}

[5]

I6]

Peercy, Mark S. Linear Color Representations for Full Spec-
,-" tral Rendering. Proceedings of SIGGRAPH ’93 (Anaheim.

California, August 1-6, I993). ln Computer Graphics (August
1993), I9]-198.

Wandell, Brian. The Synthesis and Analysis of Color lmages.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
PAM!-9,] (1987). 2-13.

[3]

----»s--...-.—m

win-2——..r¢..3tn9

interactive Volume Visualization

on a Heterogeneous Message-Passing Multicomputer

Andrei State*, Jonathan McAi|ister*, Ulrich Neumannii,
Hong Chen , Tim J. Cuilip*, David T. Chen* and Henry Fuchs*

*University of North Carolina at Chapel Hill
iuniversity of Southern California

ABSTRACT

This paper describes VOL2, an interactive general-purpose volume
renderer based on ray casting and implemented on Pixel—Planes 5,
a distributed—memory, message-passing multicomputer. VOL2 is
a pipelined tenderer using image-space task parallelism and
object-space data partitioning. We describe the parallelization and
load balancing techniques used in order to achieve interactive

response and near-real-time frame rates. We also present. a
number of applications for our system and derive some general
conclusions about operation of image»order rendering algorithms
on message-passing multicortiputers.

1 INTRODUCTION AND PREVIOUS WORK

Volume rendering is a widely used visualization method. Due to
the large number of graphics primitives (voxels) which must be
visited during the image generation process, real-time (or even
interactive) frame rates are difficult to achieve, even on highest-
performance graphics engines. Previous work that addressed this
computational expense problem includes [9], in which a number

of parallelization and load balancing techniques for the special
case of a shared~memory architecture were presented; the
rendering algorithm used was ray casting with parallel projection.

We describe an equivalent system, l/0L2, for a distributed-

memory architecture. It uses ray casting with perspective
projection, a general volume rendering method suitable for a

variety of visualization tasks. Ray casting is an image-order
algorithm in which volume data is traversed and sampled by rays
emanating from the viewpoint; the rays intersect the image plane;
they accumulate (integrate) infonnation about the volume data
during traversal. The algorithms and principles used as the basis
for VOL2 are outlined in [2,4,5,8,l0,l3,]9]. An early

‘Department of Computer Science, University of North Carolina at ChapelHill, Chapel Hill, NC 27599-3175.
{state|mcallist[chenhlcu11ipIChen]Euchs)@cs.unc.edu

*Computer Science Department, University of Southern California, HenrySalvatori 333, Los Angeles, CA 90089-0781.uneumann@usc.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of C_:omputing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

69

experimental precursor of VOL2 was mentioned in [l2,l9}. An
early version of this paper was published as [11].

The remainder of this work is organized as follows: brief

overview sections on the hardware platform used and the type of
display presented to the user are followed by a detailed description
of the internal pipelined-parallel system layout. We then describe
the types of visualization modes and graphics primitives supported
by VOL2. The largest section is devoted to methods used to
obtain interactive and real—time performance levels; these include
a technique derived from “frameless rendering” [1]. We conclude
with an overview of applications for our system.

2 HARDWARE PLATFORM

VOL2 is implemented on Pixel-Planes 5, a high-performance
graphics engine with general—purpose computing nodes (called
Graphics Processors or GPs) based on the Intel i860

microprocessor, and special-purpose rendering nodes based on
massively parallel SIMD processor-enhanced memories [3]. Each

GP has 8 Megabytes of local memory. Each rendering node can
execute pixel operations in parallel on a 128x128 pixel raster,
which corresponds to 1/20 of the final 512x640 pixel image. All
nodes are interconnected via the system's internal 5 Gigabitfsec
token ring network. Also connected to the token ring are frame
buffers and the Sun-4 host computer.

3 PRESENTED DISPLAY

VOL2 produces successively refined displays by rendering a
coarse image while the view parameters are changing, and by
gradually increasing the image quality during interaction pauses
(Plate 1). Kinetic depth effect is provided by appending to such a
successive refinement sequence a series of seven highest-
resolution frames; these cyclically displayed cineloop frames
present the visualized structures in animated oscillatory rotation
(rocking). The user will observe gradually increasing image
resolution, followed by increasingly smooth left-right rocking of
the displayed high-resolution structures (as each successive
cineloop frame is being computed, it is immediately included in
the rocking sequence). Additional depth cues are provided by
directional lighting with diffuse and specular reflections.

4 RENDERING PiPELlNE

The rendering pipeiine has six components (Fig. 1): the host, the
master GP. ray casters, compositors, splat processors (for screen
interpolation), and the frame buffer. The host provides UNIX
services and allows users real-time control through an X-window
interface and other input devices (joysticks, trackers). The master

commands, data
iv

/f?'"”ia”dSi ‘“€l\
ray casting GPs

i IT T T T T ' ''"I
‘ : splat processors:IIIIIIIIIIII

20 128x128 pixel arrays

\a.¥ 5/

frame
buffer

ig. 1. VOL2 visualization pipeline.

GP is responsible for system synchronization and for load
balancing the ray casters. Most of the i860 nodes are allocated as
ray casters which compute image samples. Eight i860 nodes are
used as compositors which combine the image samples into a final
image. This image is sent to rendering nodes operating as splat
processors which interpolate the image over the full display
resolution and write the result to the frame buffer.

Local memory on each GP can hold only a limited number of
voxels (about 6M in 8-bit voxel mode and 1.5M in 32»bit voxel

mode). If the data set is too large to be replicated on all ray
casting nodes, it is partitioned into slabs at system startup time;
the ray casting GPs are partitioned into groups [8]. Each group of
ray casting GPs is assigned to a slab of the data set (object-space
partitioning, Fig. 2). During rendering, ray casters sample their
assigned slabs on an image-space grid, compute partial screen
region images (i. e., arrays of partially composited ray segments)
and send these to the compositors. The latter combine the partial
image samples into final image samples. This is accomplished by
front-to-back compositing of the ray segments. Typically 8 nodes
are allocated to the cornpositing task, each responsible for a
640x64 pixel horizontal band of the final 640x512 pixel image.
The actual resolution of the computed image varies due to the use
of successive refinement; the array of composited image samples
sent to the splat processors to generate the fixed resolution
(640x5l2) final image is thus of variable size.

70

static/dynamic volume data sets,
partitioned into slabs, each
assigned to a group of ray casters image plane

viewpoint

composited image value
rendered as a 2D splat

Each ray traverses multiple slabs; each slab-segment of a
ray is calculated by a ray caster from a different group

Fig. 2. Static object space data partitioning into parallel slabs.

The SIMD rendering nodes are used as splat processors due to
their availability and efficiency at this task [10]. Composited
image samples are convolved with a 2D filter kernel to resample
the image at frame buffer resolution. Several user-selectable filter
kernels are implemented. among them box, biiinear, biquadratic,
piecewise quadratic and bicubic filters (Plate 2). The resampled
values are sent to the frame buffer for display.

5 RENDERING OPTIONS

The ray caster code implements a number of rendering modes,
such as isosurface rendering, direct rendering with and without
shading, and maximum intensity projection (MIP). Plate 3
illustrates the visualizations obtained by these modes from the
same data. Adding a new rendering mode to VOL2 amounts to
writing a new ray caster core function; ray caster core functions
are used in the innermost ray casting loop to sample the data set at
a specific position along a ray and interpret the sample in a
specific way (isosurface search, opacity accumulation, etc.). This
modular design allows for easy prototyping and experimentation
with new rendering modes without overburdening the programmer
with the intricacies of Pixel-Planes 5 multiprogramming.

VOL2 supports wireframe line segments and flat~shaded triangles
as graphics primitives. The (antialiased) lines are Z-buffered
against isosurfaces and against each other. They are added by the
splat processors (Fig. 3) after the image is resampled to frame
buffer resolution (lines are only visible within fuily transparent
areas of the data set). Triangles can be used to add reference
geometry to the scene and may penetrate into the volume data set.
They are rendered by the ray casting GPs since they must be
composited properly with the volume data. Since there are

typically few triangles in our applications, their rendering cost is
minimized by testing their individual bounding boxes against each
screen region to ascertain if rays cast on a particular ray casting
GP. (i. e., through a specific screen region) will hit any triangles;
ray" setup involves computing the intersection distance to the

polygons to eliminate intersection tests at every ray step.

‘ A cut-plane for the volume data set is also provided. It is textured
with the volumetric data (visible in Plate 5). The cut plane can be
moved by the user to examine any arbitrarily positioned or
oriented cross-section of the volumetric data set.

specify
new view

transform

viewpoint
into volume

dataset sace transformwireframe
elements into

cast rays from
viewpoint
determine

rasterize
wireframe

elements into

pixels with
depth

intersections,
colors...

sp at co or
into pixels

into ixels _N

- raw wire rames
on basis of

pixel-by-pixel
de th test

Fig. 3. Algorithm for combining wireirame line segment primitive
with volume rendered images.

6 OBTAINING INTERACTIVE PERFORMANCE

The generality of ray-casting (for example, in isosurface
rendering the surface thresholds can be changed on-the-fly, since
no intermediate geometric primitives have to be generated). has
its price. Ray casting is computationally expensive, even for
relatively small data sets (IM voxels). We therefore attempted to
identify and remove or alleviate VOL2’s performance bottlenecks.

6.1 BY-PASS CODE

In order to obtain timing measurements, by-pass code was
implemented in the master GP, ray casting and compositing
nodes. By-pass code is derived from the code normally executing
on the computing nodes by removing all compute-intensive
operations and retaining only the message-passing instructions,
thus preserving a computing node’s ability to operate in the
system (by essentially “fooling” the nodes it communicates with).

By selectively activating by-pass code for certain nodes, one can
determine how fast the rest of the system can be operated. For
example, by activating by-pass code for all nodes, we can
determine the maximum obtainable system performance for our
image generation pipeline layout (Fig. 4); by activating by-pass
code for all nodes except the master GP, we can determine at what
frame rates the master GP becomes overburdened during system
operation (Fig. 5); by activating by-pass code for the ray casters
and the master GP, we obtain the maximum speed at which the
cornpositing/splatting/display back-end can operate—compositing
performance is fairly independent of image content; it depends
mostly on image resolution and the number of object partitioning
slabs (Fig. 6).

6.2 LOAD BALANCE AND ADAPTIVE SAMPLING

Unlike the other system components, the ray casting nodes do not
exhibit a maximum speed behavior. Their performance depends
largely on data set size and image content. While master GP and
compositing back-end have to be abie to keep up with the ray

71

10

o
as
(.0"'-I.
an
as
E
ST 3

.4.

$3
512x640 256x320 128x160

image sampling resolution

64x80

Fig. 4. Flendering pipeline throughput, measured with by-passed
image generation code in all pipeline stages; this shows the
maximum speed supported by the message-passing framework at
different image sampling resolutions. These numbers are
independent of the number of computing nodes present in the
system.

UtoU)''-n_
in
OJ

E«:

GPs configured as ray casters

0 3 6 912t5‘l821242T303336

Fig. 5. Master GP maximum performance, measured with by-
passed code on all nodes except the master GP. If the system
contains few ray casters, the frame rate is low due to screen region
processing (however minimal due to by-passing) on a single ra
caster. For larger numbers of ray casters, we measure master G
maximum speed.

0
(‘DU)

"H.
0')
(‘D
E
E\O—

512x640 256x320 128x160

image sampling resolution

Fig. 6. Performance of the compositing-splatting-display back-end,
measured with by-passed image generation code in the ray casting
nodes. These numbers are independent of the number of
computing nodes present in the system.

casters for the types of data sets and displays VOL2 is normally
used for, the ray casters themselves have to be load balanced with
respect to each other. To that end, ray casters are dynamically
assigned screen regions for image generation processing. Two
assignment methods are implemented and are user-selectable. In
the sample rows approach the master GP assigns sequential rows
of samples (Fig. 7, left) to the ray Casting nodes on a first-come-
first-serve (FCFS) basis. The rows are distributed in order,

starting at the top of the image. This provides good load balance,
but precludes adaptive sampling since a 2D context is required for
it on each ray caster.

Fig. 7. Image space partitioning for load balancing by sample rows
(left) and sample squares (right).

-JIlI
I

IIIII,

Fig. 8. Conventional adaptive subdivison (left) causes 51 samples
to be taken while partial subdivision (right) requires only 29
samples. Samples taken at successive levels of subdivision are
represented by progressively finer circles. The curve boundary
triggers the subdivision criterion.

In the second load balancing approach (sample squares) the
master GP distributes a total of eighty 65x65-pixel square screen
regions (Fig 7, right) on a FCFS basis to the ray casting nodes.
The square region size (1/80th of the final image) includes two
edges of replicated rays to support adaptive sampling without
seams. Squares are distributed in order of descending cost, where
cost is the time taken to render the region in the previous frame
(0th order cost prediction). Typically, assignment of squares on
the basis of descending cost provides approximately 10-20%
increase in frame rate over distribution in screen order.

The sample squares approach is combined with adaptive
sampling, implemented as a modified form of recursive square
subdivision. It requires fewer rays and provides similar results to
that used in [6]. The conventional approach (Fig. 8, left) fully
subdivides a square area by computing five new samples when
any pair of four corner values exhibit variance above a user-
defined threshold. Our partial subdivision approach -(Fig. 8, right)
computes new samples only between varying sample pairs with
the center sample taken if any samples within a square vary. The
example shows that the new approach requires fewer samples than
the full subdivision method. A triangular subdivision method [15]
has similar economy, but is less well suited to square regions.

For the isosurface ray caster, an additional optimization technique
is used in combination with adaptive sampling: the ordered
sequence of isosurfaces encountered along each ray is encoded in
the ray sample. The encoded values are also compared during
adaptive sampling; differences between neighboring rays trigger
adaptive sampling along contours and isosurface intersection
curves even if the threshold criterion is not met, thus enforcing
accurate edge and intersection curve display.

Plate 4 shows a bar graph of the ray casting GP workloads
normalized to the highest load (these and other types of test
displays have proven very useful for observing the behavior of our
system). Both the sample rows and sample squares approaches

72

FrameFlate[Hz]

"""'l""""""'l"' ..,,.-.-.....-
I-IIIIIIIIIIIII
JI
i
Q.IaIIIIrII‘IIIIIIIIIIII

5 9.8 13 19.8 24 33.5 42.9 52.4 57.1

Viewpoint Distance [cm]

Fig. 9. Frame rate comparison between sample rows and sampie
squares for varying volume data set size in image space. (Full
screen images are produced by 5 cm viewpoint distance, 60 em
distance produces approximately 1/16 screen coverage.) Line
partitions cast rays every 8x8 or 4x4 pixels. Square regions are
adaptively sampled initlall at one ray per 16x16 pixels and refined
up to one ray per 4x4 pixe s. These measurements were taken on a
system containing a total of 21 GPs. of which only 4 were allocated
as compositors. Fi ures for larger systems with 8-compositor
allocation are slightly igher.

produce good load balance with the former giving better
performances for images with low screen coverage and the latter
approach giving better performance for full-screen images, as well
as more consistent frame rates over varied image sizes (Fig. 9).

6.3 PARTIAL UPDATlNG

In addition to the multiple successive refinement levels, the user
can select a partial updating mode to increase the frame rate.
Partial updating is loosely based on the frameless rendering
technique described in [1]. This causes a new frame to be
displayed as soon as a user—selected fraction of the image samples
have been updated. Update levels of 25%, 50%, and 100% are
currently implemented. For example, if the partial updating
fraction is 25%, each sample is updated once every 4 frames.
When user interaction pauses, an image at the lowest successive
refinement level will have filled in after four frames.

Rather than updating a randomly distributed set of samples, we
update the samples on a regular grid, which has the benefit that
the bookkeeping required to ensure every sample eventually gets
replaced if samples are chosen randomly all but disappears; a
simple modulus of the sample coordinates with the frame number
tells whether to cast a ray for a given sample on a given frame.

Partial updating implies incremental image modification,
requiring the array of screen samples to be preserved from one

‘frame to the next. In our implementation, this array is stored on
the compositing nodes. Note that due to image partitioning for
dynamic load balancing of the ray casters, it would be difficult to
preserve the (fragmented) images on the ray casters; the existence
of a compositing step in our pipeline proved advantageous for the
implementation of partial updating.

--u—.-..,..«.._-..g
6.4 OTHER OPTIMIZATIONS

A number of standard techniques are used to speed up ray casting.
The voxels are stored with 13-bit pre-computed normals. A
shading table is computed at the start of every frame that encodes
the Lambertian coefficient for the given light direction(s) as a
function of the surface normal. Voxel shading is efficiently
performed by lookup into this table. Pre-computed threshold hits
at each voxel accelerate ray processing by flagging whether an 8-
voxel cell has “interesting” material within it. The highest value
in each cell is also pre—computed and used to speed up ray casting.
Rays are terminated when an opacity threshold is reached.

7 APPLICATIONS

VOL2 has been used as a rendering engine (both as a separate
stand-alone server and embedded in a more complex system) for a
number of research projects:

7.1 INTERACTIVE RADIATION THERAPY PLANNING

VOL2 is used as a visualization tool within VISTAnet, a
collaborative project whose principal application is interactive
radiation therapy planning (IRTP); the goal is to deliver lethal
radiation to cancerous tissue, while keeping the doses received by
healthy tissue at non-lethal levels. The treatment strategy is to
intersect multiple treatment beams onto a predetermined 3D target
region of a patient's anatomy, a complex task requiring
comprehension of shape and sensitivity of the anatomy.
VISTAnet is an experimental tool enabling 3D IRTP through
rapid radiation dose computation (on a Cray Y—MPTM
supercomputer) combined with interactive radiation dose
visualization. Cray and Pixel-Planes 5 are linked by a near-
gigabit communication network.

During an interactive session, a physician user specifies anatomy
data sets and defines or modifies treatment beam parameters.
These are transmitted to the Cray, which computes the dose
distribution produced within the anatomy by the current treatment
beam configuration and sends the dose data over the high-speed
network to Pixel-Planes 5, where a combined image of anatomy.
treatment beams, and resulting dose is generated; the physician
examines the rendering and continues to adjust the parameters.
The current processing rate is several such adjustments per second
for anatomy data sets containing about 1M voxels. The display
(Plate 5) must hence be able to quickly convey the treatment
plan's characteristics to the user.

A special ray caster core function was added to VOL2 for
operation under VISTAnet; it performs isosurface rendering of
anatomy and dose data sets. For the anatomy, user-defined
thresholds in the CT data and pre-defined organ or tumor
segmentation data are both used for on-the-fly isosurface search
during ray traversal; simultaneously, the radiation dose data set is
traversed in search of up to three radiation dose isosurfaces, also
with user-defined thresholds. Proper eompositing of the dose,
anatomy and organ or tumor surfaces must be ensured, especially
when multiple surfaces lie between ray samples (Fig. 10); each
surface‘s distance from the previous sample point along the ray is
computed and sorted to establish the correct order for
compositing. Wireframe outlines for the radiation treatment
beams are rendered using VOL2's line segment primitives.

The (dynamically changing) radiation dose data set is received
asynchronously from the Cray (via the Network Interface Unit or
NIU, also attached to the Pixel-Planes 5 token ring and providing
access to the external V1STAnet Gigabit network). An incoming

73

Fig. 10. lsosurfaces between samples along a ray are encountered
in algorithmic order but must be sorted for composlting. Surfaces
detected in <1 ,2,3>-order must be composited in <2,1.3>-order.

radiation dose preempts ongoing rendering for the current frame
and switches context to a different task which distributes the new

radiation dose to all ray casters as it is received. The distribution
scheme follows the data set slab partitioning scheme described.

VISTAnet is described in more detail in [12,15].

7.2 INTERACTIVE 3D ULTRASOUND VISUALIZATION

The dynamic data set updating capabilities developed . for
VISTAnet are also used in an experimental augmented-reality
ultrasound visualization system (Plate 6). For this system we have
allocated a number of computing nodes to a volume
reconstruction task: video images from an ultrasound machine are
resainpled into a volume data set, which is then transmitted to the
ray casters for near-real-time image generation [17]. This system
also required the incorporation of virtual-reality—type head and
hand tracking support.

7.3 STEREOSCOPIC DISPLAY

Support for stereoscopic visualization using field-sequential stereo
display on a large rear-projection screen was added to VOL2 for
virtual reality experiments, as was the capability to generate such
displays for head tracked viewing; this includes off-center
perspective projection and the ability to position the viewpoint
inside the volumetric data set.

7.4 OFF-LINE IMAGE GENERATION

Finally, VOL2 has also been used as an off-line rendering tool for
simulated augmented-reality ultrasound visualization [17] and as
an image precomputation too] for an experimental head—motion
parallax visualization system [16].

8 CONCLUSIONS

The methods used to obtain the current performance (pipelined
system layout, load balance between pipeline stages as well as
between parallel nodes of individual pipeline stages) were
successful-—VOL2 has even been used as a skeleton for other

Pixel-Planes~5-based parallel image-order renderers: polygon-
based interactive ray tracing and interactive image-based
morphing; both take advantage of the sophisticated, finely
tuneable control over the performance/image quality tradeoff
provided by the VOL2 framework.

We consider the by-pass code method one of the most useful

lessons learned while building this system. This technique is
generally applicable to the design of parallel/pipelined image-
order renderers and has proven extremely useful as a tool to detect
and eliminate performance bottlenecks in a complex
multicomputer-based real-time rendering system.

9 FUTURE WORK

It has been extremely difficult to achieve VOL2's current frame
rates and interactive response characteristics. The

performance/resolution tradeoff is particularly unsatisfactory since
it weakens kinetic depth cues. The system does indeed provide
both interactive frame rates and strong kinetic depth, but not
simultaneously (and hence not interactively), due to insufficient
computational power. We expect significant performance
improvements from an implementation of a general-purpose
volume rendering algorithm on next-generation graphics
multicomputers [7].

10 ACKNOWLEDGMENTS

We acknowledge the significant algorithm and software
development efforts of John Rhoades, Qin Fang, Matt Lavoie, Jim
Symon and Suresh Balu. This work was supported by NSF and
ARPA under Cooperative Agreement NCR-8919038 with CNRI
(“VISTAnet: A Very High Bandwidth Prototype Network for
Interactive 3D Imaging"), by Bellsouth, and by GTE. Additional
funding was provided by ARPA ISTO contract DAEA I8-90—C-
0044 (“Advanced Technology for Portable Personal
Visualization").

REFERENCES

1. Bishop, Gary, Henry Fuchs, Leonard McMillan and Ellen J.

Scher Zagier. “Frameless Rendering: Double Buffering
Considered Harmful,” Proceedings of SIGGRAPH ’94 (Orlando,

FL, July 24-29, 1994). In Computer Graphics Proceedings.
Annual Conference Series, 1994, ACM SIGGRAPH, pp. 175-
176.

2. Drebin, Robert A., Loren Carpenter, and Pat Hanrahan.
“Volume Rendering,” Proceedings of SIGGRAPH ’88 (Atlanta,
GA. August 1-5, 1988). In Computer Graphics, 22, 4, (August
1988), ACM SIGGRAPH, New York, pp. 65-74.

3. Fuchs, Henry, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg Turk, Brice
Tebbs and Laura Israel. “Pixel—Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced

Memories,” Proceedings of SIGGRAPH ‘S9 (Boston, MA, July
31-August 4, 1989). In Computer Graphics, 23, 3 (August 1989),
ACM SIGGRAPH, New York, 1989, pp. 79-88.

4. Levoy, Marc. “Volume Rendering by Adaptive
Refinement,” The Visual Computer, 1990, 6, pp 2-7.

5. Levoy, Marc. “Design for a Real-Time High-Quality
Volume Rendering Workstation,” Proceedings of the Chapel Hill
Volume Visualization Workshop (Chapel Hill, NC, May 1989), pp.85-92.

6. Levoy, Marc. “Display of Surfaces from Volume Data,"

IEEE Computer Graphics and Applications, May 1988, pp. 29-37.

7. Molnar, Steven, John Eyles and John Poulton. “Pixell-‘low:

High-Speed Rendering Using Image Composition," Proceedings
of SIGGRAPH ’92 (Chicago, IL, July 26-31, 1992). In Computer
Graphics. 26, 2 (July 1992), ACM SIGGRAPH, New York, 1992,
pp. 231-240.

8. Montani, C., R. Perego and R. Scopigno. “Parallel Volume
Visualization on a Hypercube Architecture," Proceedings of the
1992 Workshop on Volume Visualization (Boston, MA, October

74

19-20, 1992), special issue of Computer Graphics, ACM
SIGGRAPH, New York, 1992, pp. 9-16.

9. Nieh, Jason and Marc Levoy, “Volume Rendering on
Scalable Shared—Memory MIMD Architectures," Proceedings of
the 1992 Workshop on Volume Visualization (Boston, MA,
October 19-20, 1992), special issue of Computer Graphics, ACM
SIGGRAPH, New York, 1992, pp. 17-24.

10. Neumann. Ulrich. “Interactive Volume Rendering on a
Multicomputer,” Proceedings of the 1992 Symposium on
Interactive 3D Graphics (Cambridge, MA, March 29-April 1,
1992), special issue of Computer Graphics, ACM SIGGRAPH,
1992, pp. 87-93.

11. Neumann, Ulrich, Andrei State, Hong Chen, Henry Fuchs,
Tim J. Cullip, Qin Fang, Matt Lavoie and John Rhoades.
“Interactive Multimodal Volume Visualization for a Distributed

Radiation-Treatment Planning Simulator,” Technical Report
TR94~040, University of North Carolina at Chapel Hill, Computer
Science Department, June 1994.

12. Rosenman, Julian, Edward L. Chaney, Tim J. Cullip, James
R. Symon, Vernon L. Chi, Henry Fuchs and Daniel S. Stevenson.

“VISTAnet: Interactive Real-Time Calculation and Display of 3-
Dimensional Radiation Dose: An Application of Gigabit
Networking,” Int. J. Radiation Oncology Biol. Phys, 25,
Pergamon Press Ltd., 1992, pp. 123-129.

13. Sabclla, Paolo. “A Rendering Algorithm for Visualizing 3D
Scalar Fields,” Proceedings of SIGGRAPH ‘S8 (Atlanta, GA,
August 1-5, 1988). In Computer Graphics, 22, 4, (August 1988),
ACM SIGGRAPH, New York, pp. 51-58.

14. Shu, Reuben and Alan Liu. “A Fast Ray Casting Algorithm
Using Adaptive Isotriangular Subdivision,” Proceedings of
Visualization '91 (San Diego, CA, October 22-25, 1991), Gregory
M. Nielson and Larry Rosenblum, Editors, IEEE Computer
Society Press, Los Alamitos, CA, October 1991, pp. 232-238 and
426.

15. State, Andrei, Julian Rosenman, Henry Fuchs, Tim J. Cullip
and Jim Symon. “VISTAnet: Radiation therapy treatment
planning through rapid dose calculation and interactive 3D

volume visualization,”Visualization in Biomedical Computing
1994 (Rochester, MN, October 4-7, 1994), Richard A. Robb,
Editor, Proc. SPIE 2359, 1994, pp. 484-492.

16. State, Andrei, Suresh Balu and Henry Fuchs. “Bunker
View: Limited—range head—motion-parallax visualization for
complex data sets," Visualization in Biomedical Computing 1994
(Rochester, MN, October 4-7, 1994), Richard A. Robb, Editor,
Proc. SPIE 2359, 1994, pp. 301-306.

17. State, Andrei, David T. Chen, Chris Tector, Andrew Brandt,

Hong Chen, Ryutarou Ohbuchi, Mike Bajura and Henry Fuchs.
“Case Study: Observing a Volume Rendered Fetus within a

Pregnant Patient,” Proceedings of Visualization ’94 (Washington,
DC, October 17-21, I994), R. Daniel Bergeron and Arie
Kaufman, Editors, IEEE Computer Society Press, Los Alamitos,
CA, pp. 364-368 and CP-41.

18. Westover, Lee. “Interactive Volume Rendering,”
Proceedings of the Chapel Hill Volume Visualization Workshop
(Chapel Hill, NC, May I989), pp. 9-16.

19. Yoo, Terry S., Ulrich Neumann, Henry Fuchs, Stephen M.
Pizer, Tim Cullip, John Rhoades and Ross Whitaker. “Direct

Visualization of Volume Data," IEEE Computer Graphics and
Applications, 12, 4, Los Alamitos, CA, July 1992, pp. 63-71.

________l

The Sort-First Rendering Architecture for High-Performance Graphics

Carl Mueller

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

Interactive graphics applications have long been challenging
graphics system designers by demanding machines that can
provide ever increasing polygon rendering performance.
Another trend in interactive graphics is the growing use of
display devices with pixel counts well beyond what is usually
considered “high resolution.” If we examine the architectural
space of high-performance rendering systems, we discover
only one architectural class that promises to deliver high
polygon performance with very-high-resolution displays and
do so in an efficient manner. It is known as “sort-first.”

We investigate the sort-first architecture, starting with a
comparison to its architectural class mates (sort—middle and
sort-last). We find that sort-first has an inherent ability to take
advantage of the frame-to-frame coherence found in interactive
applications. We examine this ability through simulation with
a set of test applications and show how it reduces sort—first’s
communication needs and therefore its parallel overhead. We
also explore the issue of load—balancing with sort-first and
introduce a new adaptive algorithm to solve this problem.
Additional simulations demonstrate the effectiveness of this

algorithm. Finally, we touch on a variety of issues that must
be resolved in order to fulfill sort-first‘s ultimate promise:
millions of polygons for zillions of pixels.
1. Introduction

The demands for better interactivity and realism in applications
such as vehicle simulation, architectural walkthrough,

computer-aided design, and scientific visualization have
continually been driving forces for increasing the graphics
performance available from high-end graphics systems.

Interactivity implies that the images are drawn in real—time in
rapid response to user input. This immediately brings out two
requirements from the graphics system: it must be able to draw
images at approximately 30 frames per second (real-time), and
it must have low latency (rapid response).

Realism implies that the images are rendered from detailed

UNC Sitterson Hall CB 3175; Chapel Hill, NC 27599-3175
phone: (919) 962-1378; email: mueller@cs.unc.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

75

scene descriptions, meaning that the scenes consist of many
thousands of graphics primitives. Realism also requires a
display system that can show the scenes with a level of detail
matching what the eye can see. Providing such detail for a
reasonable field of view requires millions of pixels.

There are a variety of display devices on the path toward
offering better realism. The proposed HDTV standard aims at
nearly two million pixels. CAVE-type immersive displays [5]
cover 4 walls of a room with a total of 5 million pixels, a
number much smaller than what is desirable. Even head-

mounted displays (HMDs), which would seem to require many
fewer pixels, already are reaching one million pixels per eye
[12] and are expected to go much further. in fact, Kaiser Electro-
Optics is working on an ARPA-sponsored project to create an
immersive HMD system with 4.6 million pixels per eye [7].

The number of applications which will want to take advantage
of such high-resolution display devices will only increase as
such devices become more popular. Yet so far, the only way to

generate interactive images for these devices requires massive
duplication of graphics hardware. Without an efficient
solution, use of such devices will be limited to those parties
with large acquisition budgets.

2. Parallel Graphics Systems

The task of a graphics computer can be described fairly simply.
Given a mathematical model of all the objects in a particular
environment, it must compute the visual contribution of each
object for each pixel in a given viewing plane. This is a type
of sorting problem, a fact recognized by Sutherland, Sprouli,
and Schumacher in 1974 [18]. For interactive graphics, the

task is performed in two major stages: transformation and
rasterization. The former converts the model coordinates of

each object primitive into screen coordinates, while the later
converts the resulting geometry information for each primitive
into a set of shaded pixels.

The graphics performance demanded by the aforementioned
applications requires parallel processing at both the
transformation and rasterization stages of the graphics

pipeline. The former is needed to cope with the large number of
primitives, while the latter is needed for the large number of
display pixels. The choices for how to partition and recombine
the parallelized work at the different pipeline stages lead to a
taxonomy of different architectures: sort-first, sort—middle, and
sort-last [13,15].

We now briefly examine each of sort-first, sort-middle, and
sort-last. In the following descriptions, we consider a
framework of an application host computer working with a

graphics computer subsystem. The latter consists of many
parallel processors working to produce the desired images in
real time. Initially, the display database is partitioned and
distributed among all the processors.
2.1 Sort-first

In sort-first (figure 1), each processor is assigned a portion of
the screen to render. First, the processors examine their
primitives and ciassify them according to their positions on
the screen. This is an initial transformation step to decide to
which processors the primitives actually belong, typically
based upon which regions a primitive's bounding box
overlaps. During classification, the processors redistribute the
primitives such that they all receive all of the primitives that
fall in their respective portions of the screen. The results of

this redistribution form the initial distribution for the next
frame.

Following classification, each processor performs the
remaining transformation and rasterization steps for all of its
resulting primitives. Finished pixels are sent to one or more
frame buffers to be displayed.
2.2 Sort-middle

In sort-middle (figure 2), there is a set of transformation
processors and a set of rasterization processors. Physically,
the two sets may use the same hardware, but they remain
logically separate sets. Each rasterization processor is
assigned a portion of the screen. To produce an image, each
transformation processor completely transforms its portion of
the primitives. The resulting primitive information is again
classified by screen location and sent to the correct set of
rasterization processors. After rasterization, finished pixels
go to the frame huffer(s).

In contrast to sort-first, the original distribution of primitives
is maintained on the transformation processors. For each
frame, all of the transformed primitives must be routed to the
correct set of rasterization processors.
2.3 Sort-last

For sort-last (figure 3), each processor has a complete
rendering pipeline and produces an incomplete full-area image
by transforming and rasterizing its fraction of the primitives.
These partial images are composited together, typically by
depth sorting each pixel, in order to yield a complete image for
the frame buffer. The composition step requires that pixel
information (at least color and depth values) from each
processor be sent across a network and sorted along the way to
the frame buffer.

Graphics Database

Geometric
transformation

Rasterization

Display

Figure 1. Sort-First Pipeline

Graphics Database

Figure 2. Sort—Middle Pipeline

Naturally, each architecture has a set of advantages and
disadvantages. We outline these briefly here; for a more
complete comparison, refer to [15].

2.4 Comparison

Sort—last is a very promising architecture and is discussed in
detail in [I3] and [14]. It offers excellent scalability in terms of
the number of primitives it can handle. However, its pixel
budget is limited by the bandwidth available at the
composition stage. Using a specialized composition network
can help to overcome this problem.

Anti—aliasing is a major problem for sort-last: regardless of the
solution chosen, the composition task is non-trivial. Using
super-sampling multiplies the amount of pixel bandwidth
required, since each sample must be composited. A-buffer
approaches introduce new complications to the composition
process, since the number of fragments per pixel may vary and
become arbitrarily large.

Finally, since visibility is not decided until after the
composition stage, sort-last places limitations on the kinds of
rendering algorithms which may be used. The choice of
algorithms available for rendering transparent polygons
becomes limited, for example, and visibility-based culling
algorithms are less useful on sort-last.

Because of the way it builds upon traditional graphics
pipelines, sort middle is a fairly natural architecture which has
resulted in many implementations. Some examples are [1], [3],
[6], [9], [11], and [21]. However, sort-middle’s requirement
that any transformation processor be able to talk to any
rasterization processor means that its scalability is limited.
Increasing the number of processors geometrically increases
the demands on the communications network between them.

In addition, sort-middle faces load-balancing problems when
the on—screen distribution of primitives is uneven. This will
result in rasterization processors becoming unevenly loaded,
and this in turn may degrade system performance unless careful
attention is given to this problem. A variety of solutions have
been -used to address this issue (refer to the references above).

Sort—first is a promising architecture that has until now
received little attention. It is the only architecture which
inherently takes advantage of frame-to-frame coherence. In an
interactive application, the viewpoint changes very little from
frame to frame, and thus the on-screen distribution of

primitives does not change appreciably. Since primitives in a
sort-first system are only transferred when they cross from one
processor’s screen region to another’s, only a fraction of them
will have to be communicated each frame. Also, any

Graphics Database

Geometric Geometric
"' transformation transformation

Rasterization

r
Display

Figure 3. Sort—Last Pipeline

76

v--50---..—..-........._...,,._w_- co1'|'llTi1.'ll'liCa[i0I1 that does occur is typically fairly local; usually
only “neighboring” processors will need to talk with each
other. These facts suggest that it has good scalability in terms
of the number of primitives it can handle.

In sort-first, once a processor has the correct set of primitives
to render, only that processor is responsible for computing the
final image for its portion of the screen. This allows great
flexibility in terms of the rendering algorithms which may be
used. All the speed-ups which have been developed over time
for serial renderers may be applied here.

Since only finished pixels need to be sent to the frame-buffer,

sort-first can easily handle very-high-resolution displays.
This is the bottleneck for sort—last. Sort-middle also sends

only finished pixels to the frame-buffer, but increasing the
display resolution requires increasing either the size or number

of rasterization processors, either of which causes problems.
Thus sort—first is the only architecture of the three that is ready
to handle large databases and large displays.

However, sort-first is not without its share of problems. Load-
balancing is perhaps one of the biggest concerns: because the

on-screen distribution of primitives may be highly variable,
some thought must go into how the processors are assigned
screen regions. Also, managing a set of migrating primitives
is a complex task. These and other problems are the focus of
this research.

3. Coherence Study

Because sort-first utilizes the coherence of on-screen primitive
movement, we performed experiments to analyze this factor
and determine what kind of savings might be achieved with
actual applications. We wanted to know what fraction of

primitives would need to be sent from processor to processor in
a sort-first implementation. This testing was done using a
simulation with several simplifying assumptions.

The testing involved two phases. The first was to make
recordings from actual applications running on UNC’s Pixel-
Planes 5 graphics system. The resulting recordings contain a
series of viewpoint information for each frame rendered while
the application was run‘. The second phase was to take this
information and the graphics database archive files and feed

them to the simulation program. This program is based upon a
framework written by David Ellsworth for his study of sort-
middle systems [9]. Code was added to implement a sort-first
partitioning and to calculate the resulting primitive traffic.

Various applications were used for the different test cases.
“PLB” spins its database on the screen’s vertical axis (named
after a graphics performance benchmark from {l6]). “Vixen” is

a HMD-based visualization program that allows one to fly
through an arbitrary display database. Finally, "Xfront” is
similar except that it is joystick-controlled.

The setup for these tests is as follows:

- The database is simply a list of polygons (no structure).
- The aspect ratio of the screen is square.

- The screen is subdivided into equal-size square regions with
one region assigned to each processor.

- The primitives are initially randomly distributed (the first
frame’s data is ignored for this reason).

- Primitives are redistributed according to the regions their
bounding boxes cover.

~ If a primitive falls into multiple regions, the processor at the
upper-left region is deemed to be “in charge” of it.

- Off-screen primitives remain at the processor where theywere last on-screen.

77

In these tests, the screen resolution is irrelevant; only the
number of regions (and thus processors) matter. Several
configurations of regions were tested: 4x4, 8x8, and 16x16.
The simulation program outputs a series of values per frame
representing the percentage of primitives that had to be
communicated in that frame. From these figures, we calculate
the arithmetic mean, the high value. the standard deviation, and
the 95th percentile value.

For PLB, the database is a scanned model of a human head (see
plate 1). The model is placed in the center of the screen and
spun at 4.5 degrees per iteration around a vertical axis through
its center (as in [16]).

E;E_h_e_ad 59,592 polygons, 80 frames
regions: 4L1 _&x_8_ ,1_6,_t_lfi
mean 4.06 % 8.80 % 18.07 %

high 5.19 10.30 20.80
std-dev 0.54 0.70 1.05
95-% 5.07 9.92 20.06

For Vixen, the test case is a HMD walk-through of a Sitterson
Hall’s lobby (plate 2). The path starts on the mezzanine, goes
down the stairs, and then turns around to look back at the

starting point.

Lobby 16,267 polygons, 218 frames
regions: gtx_4 _8)_t_8 16x16
mean 2.13 % 4.95 % 11.41 %

high 21.17 45.17 87.44
std-dev 3.38 7.28 15.05
95-% 8.67 20.67 44.60

For Xfront, the model is a terrain database of a section of the

Sierra Nevada mountains (plate 3). The model undergoes a
series of zooms, rotations, and translations, with an abrupt
reset between each sequence.

_$_i_g[Q 162,690 polygons, 234 frames
regions: 51_i_t_§ E 16x 6
mean 3.17 % 6.08 % 11.51 %

high 98.07 102.26 107.38
std-dev 7.68 9.53 11.76
95-% 5.04 10.36 20.53

Looking at the results, we can see that increasing the number of
regions increases the percentage of primitives that are
communicated. This is fairly obvious, since increasing the
number of region borders will increase the chance of a
primitive crossing them.

The high values are somewhat interesting. For Sierra, the large
values resulted from the abrupt transitions in this sequence.
These exceeded 100% for two of the cases since primitives
which fall into multiple regions may need to be sent more thanonce.

The percentiles perhaps are of greatest interest. They show
that for moderately interactive applications (PLB, Xfront),
95% of the rendered frames require reshuffling of only about
20% of the primitives or less. For more highly interactive
applications (Vixen), this figure goes up to about 45% in the
worst case. As one may expect, this figure is directly related to
the type of motion present in the application and how it affects
the scene. A HMD user can create a lot of relative motion

simply by rapidly turning his head.

The figures suggest that temporal coherence can provide sort-
first with a dramatic savings in the amount of communication it

must perform. The amount of savings is related directly to the

