are available for checking interference between components as the
user interactively assembles the object. (Alternatively, interference
detection can be disabled.) The first method is the fastest and least
accurate, as it uses only protruding (peg, dovetail, etc.) features and
ray casting to determine whether the feature intersects the other
component where there is no hole. It is easy to see that surface-sur-
face intersections will be missed unless one of the surfaces is a peg
feature. The second method is slightly slower but somewhat more
accurate. It looks at the corners of all the surfaces making up the
components being connected. For each corner, a ray is cast to deter-
mine whether the corner is inside or outside the other component. If
any corner is inside the other component, interference is detected.
This method may miss some intersections between curved elements.
The third method performs a true boolean intersection between
every surface in the first component and every surface in the second
component. However, this operation is slow and becomes slower as
the number of surfaces in the components increases (which is guar-
anteed to happen as the assembly grows more and more complex),
even when bounding box checking is used to eliminate pairs of sur-
faces which definitely do not interfere.

Determining a part’s translational degrees of freedom is
closely related to being able to determine whether or not the part
is removable from the assembly by a single translation. It is also
sometimes important to check that a given part is constricted in
such a way that it cannot be removed. For example, if a user is
designing a fixture for machining, he may wish to make sure that
all the degrees of freedom of the stock being held in the fixture are
constrained and the stock cannot accidentally slide out of the fix-
ture while being machined.

The user can choose a component or set of components cur-
rently in the assembly for examination (if more than one compo-
nent is selected, they are examined as a group), and initiate the
computation of translational degrees of freedom from the mated
features by selecting a menu option. If a component’s motion is
not constrained, the direction vectors representing the directions in
which the component is free to move form a sphere. If the com-
ponent mates with a single flat surface on some side, that mating
reduces the degrees of freedom to half a sphere, because all the
direction vectors with a factor in the direction of the constraining
surface’s normal are eliminated. Similarly, if the component mates
with a surface that is not flat, all the direction vectors with a com-
ponent in the direction of any normal on the constraining surface
are eliminated. This situation is illustrated in Figure 6, which
shows a two-dimensional analogue to the preceding explanation.

i¥
@

)
Determining how a two-dimensional component’s
translational freedom is constrained by two flat-edge
matings. (a, b) Each mating constrains the movement
of the shaded component to any direction in the shad-
ed semicircle. (c) The final set of directions is deter-
mined by intersecting all the semicircles.

(a)

Figure 6.
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A component, axis of rotation, and the outer and inner
contours for determining rotational freedom. Our sys-
temn computes a polyline approximation to such a con-
tour.

Figure 7.

All the feature matings of the component(s) being analyzed are
examined. Flat surfaces add a single half-sphere constraint.
Hole/hole matings add a single half sphere constraint since a sur-
face is assumed to be present whenever a hole is, even if that sur-
face is not specifically given as a mating feature. Sculptured sur-
faces’ normals are sampled, and each normal adds a half-sphere
constraint. A hole/peg mating constrains the two components to
move only along the axis line of the peg and hole. All of these con-
straints are intersected to determine a section of a sphere, a single
direction, or two opposing directions which satisfy all the con-
straints. The set of valid directions of motion is displayed as a col-
lection of vectors. :

Similarly, the user may wish to determine if a component (or
group of components) can rotate in place. In order to be able to
rotate a component, the component must participate in a mating
involving a round peg and hole. This condition is necessary to be
able to determine an axis of rotation for the component. The axis
of rotation is taken to be that of the mated peg and hole. There is
no graphical display for the results of rotational freedom analysis,
but the user is shown a message summarizing the result.

If the component participates in more than one peg/hole mat-
ing, rotation is obviously not possible. Otherwise, a polyline
approximation to the outlines which would be swept out by rotat-
ing the components about the axis of rotation is found. Each con-
trol point of each surface is examined, and its distances from the
axis of rotation and from the lowest point on the component are
determined. An outer and inner contour are then computed from
these points for the rotating component (see Figure 7). Likewise,
an outer and inner contour are computed for the stationary compo-
nent. If the outer contour of the rotating component is everywhere
closer to the axis of rotation than the inner contour of the station-
ary component, we may conclude that free rotation is possible.
The same conclusion can be made if the inner contour of the rotat-
ing component is outside the outer contour of the stationary com-
ponent. A more accurate algorithm should be developed for this
step, since the existing one involves too much approximation.
However, it serves to illustrate the usefulness of rotational analy-
sis.

6. Exploded View Illustration

Exploded view illustrations are common in technical docu-
mentation because they are easy to understand even by people with-
out area expertise. Yet, while they are easy to understand, they are
deceptively difficult and time consuming to create manually. We
use information about part geometries, mated features, and disas-
sembly directions indicated by the mating of features to automate
much of the process of creating such illustrations.

As part of the assembly design system, a tool has been devel-
oped to create an exploded view of a completed assembly when that
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Figure 8. The exploded view tool.

assembly had been created and put together using the other-parts of
the system. Even though the creation of exploded views is largely
automated, a good deal of user control is allowed, because even the
most clever algorithm can sometimes generate results which are aes-
thetically unpleasing or otherwise not exactly what the user wants.
The difficult or repetitive operations, such as keeping track of part
connections, computing a perspective view of the geometry, and
finding the approximate locations for the parts in the final illustra-
tion are done by the algorithm. The user decides whether the illus-
tration should be an exploded view of the whole assembly or of a
subassembly, and can also alter the distance of explosion of any part
or subassembly, hide or show any component in the current illustra-
tion, cause any subassembly to be shown exploded or unexploded,
request enlarged views of small subassemblies, and specify which
parts should have text labels. (A screen capture of the utility is
shown in Figure 8.) The explosion of the assembly is generated in
three dimensions, but the view can be manipulated by the user until
it is satisfactory, then the geometry and view can be saved for out-
put to a rendering program.

Several preprocessing steps are involved in creating an explod-
ed view illustration. Although the geometries of the parts are ini-
tially stored in their own coordinate systems (the coordinate systems
in which they have been modeled), for the generation of exploded
views it is more convenient to store all geometries relative to the
coordinate system of the completed assembly. Since each compo-
nent stores the transformation which assembles it to its parent, this
is easily accomplished. The next step involves figuring out the
minimum distance each component must be exploded from its par-
ent subassembly to completely remove it from that subassembly.
This distance only needs to be computed once for each component,
since the basic relationships among the assembly components do
not change. Bounding boxes are computed for the component and
for its parent subassembly minus the component. Then the mini-
mum distance to separate the bounding boxes along the direction
of explosion is found. {The explosion direction is indicated by the
mating conditions present between the two components.)
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The creation of an exploded view is a recursive operation.
Each child of the main assembly is translated out from the assem-
bly’s origin along its removal direction by its minimum explosion
distance plus some additional value. (This extra distance serves to
further separate the parts, giving the “exploded” look.) Each com-
ponent of each of these subassemblies is, in turn, translated along
its removal direction out from the origin of the exploded parent
subassembly. The process continues until individual parts are
reached. The transformations are accumulated through the levels
of recursion, so each component has applied to it all of its ances-
tor subassemblies’ translations, then finally, its own.

However, an exploded view illustration does not consist sim-
ply of a set of parts separated in space. Leader lines are drawn
between parts, indicating from where each component was explod-
ed. Parts may also exhibit identification labels. Leader lines are
computed after the exploded geometries of all the components
have been found. A single line per part is not enough to clearly
show how that part connects to the other assembly components, so
leader lines are drawn between every pair of mated features.
Labels help identify parts in the illustration, Each label consists of
a text string (the part’s name, first assigned in the assembly plan-
ner) and a leader line connecting the label to the bounding box of
the part.

7. Data Structure

All of the tools described here use a common basic data struc-
ture for the assembly. We have already mentioned that this struc-
ture stores the assembly hierarchically, as a tree (the approach is
similar to that of Lee and Gossard [4]). This section summarizes
what data is stored.

Each node representing an assembly component is capable of
storing the information below; different pieces of information are
added throughout the design process:




« The name of the component, given by the designer.

+ A pointer to the subassembly of which the component is a
part. The main assembly is the only one which has no parent.

« A direction in which the component can be removed from its
parent assembly, determined from mating conditions.

o Textual comments about the component, entered by and use-
ful for the designer.

o A list of the assembly features of the component.

« Information to create the transformation used to move this
component from its geometry’s local coordinate system into
the coordinate system of its immediate parent subassembly.

+ A list of component parts, if any. Individual parts have no
components.

o The name of the file, if any, where the geometry of the com-
ponent is stored. Usually, only individual parts have geome-
try. The geometries of subassemblies are derived from the
geometries of their component parts.

» The geometry of the component.

Each assembly feature stores the following information:

e The geometric description of the feature. This includes the
feature location and orientation, depth, radius, cross-section
curve, number of threads per unit of length, and so on, as
appropriate to the type of feature. Hole features also indicate
whether or not they go all the way through the material and
are open on both ends. The geometry is specified in the coor-
dinate system of the component to which the feature belongs,

= Transformation information used for mating the feature with
its matching feature.

» A back pointer to the component whose feature this is.

= The matching feature (if any) on some other component.

« The inheritance history of the feature. This includes the next
and previous history links, as mentioned previously, and links
to other features (if any) which were coalesced to create this
one.

8. Future Work

A number of open issues still remain. First, a better mecha-
nism for making design revisions should be created. Currently, the
three clients we have described communicate through data files. It
would be useful to be able to make changes in the assembly plan-
ner and have these changes propagate to the other clients, auto-
matically updating the assembly components’ geometries and con-
nections. This is not an easy problem, however, especially if the
topology of the assembly or of any of the parts changes. Next,
more accurate and reliable assembly analysis algorithms should be
developed. Also, the system currently only tests whether a part is
removable along paths consisting of a single translation. Methods
for dealing with more complex removal paths should be examined.

We can also envision extensions which would increase the
usefulness of the system. For example, incorporating full-fledged
kinematic analysis would enable designers to examine mecha-
nisms to see if they perform as expected.

9. Conclusions

A system has been developed which integrates a number of
design aids which have not been previously available together in
order to help users design assemblies of mechanical parts. This
research has shown how, by integrating initial and more detailed
design into a single system, the designer’s knowledge can be
extracted in a natural way during the design process without over-

k-

burdening the designer. Exploded view illustration has also been
explored.
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Abstract

This paper discusses how wavelet techniques may be
applied to a variety of geometric modeling tools, In
particular, wavelet decompositions are shown to be
useful for hierarchical control point or least squares
editing. In addition, direct curve and surface manip-
ulation methods using an underlying geometric varia-
tional principle can be solved more efficiently by using
a wavelet basis. Because the wavelet basis is hier-
archical, iterative solution methods converge rapidly.
Also, since the wavelet coefficients indicate the degree
of detail in the solution, the number of basis func-
tions needed to express the variational minimum can
be reduced, avoiding unpecessary computation. An
implementation of a curve and surface modeler based
on these ideas is discussed and experimental results are
reported.

1 Introduction

Wavelet analysis provides a set of tools for representing functions
hierarchically. These tools can be used to facilitate a number of
geometric modeling operations easily and efficiently. In particular,
this paper explores three paradigms for free-form curve and surface
construction: control point editing, direct manipulation using least
squares, and direct manipulation using variational minimization
techniques. For each of these paradigms, the hierarchical nature
of wavelet analysis can be used to either provide a more intuitive
modeling interface or to provide more efficient numerical solutions.

In control point editing, the user sculpts a free-form curve or
surface by dragging a set of control points. A better interface
allows the user to directly manipulate the curve or surface itself,
which defines a set of constraints. In a least squares paradigm,
given a current curve or surface, the modelin g tool returns the curve
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or surface that meets the constraints by changing the current control
points by the least squares amount [1, 11].

The behavior of the modeling tool is determined by the type
of control points and basis functions used to describe the curve
or surface. With the unmiform cubic B-spline basis, for example,
the user’s actions result in local changes at a predetermined scale.
This is not fully desirable; at times the user may want to make fine
changes of detail, while at other times he may want to easily make
broad changes. Hierarchical B-splines offer a representation that
allows both control point and least squares editing to be done at
multiple resolutions [9]. Hierarchical B-splines, though, form an
over-representation for curves and surface (i.e., any curve has mul-
tiple representations using hierarchical B-splines). As a result, the
same curve may behave differently to a user depending on the partic-
ular underlying representation. In contrast, B-spline wavelets form
a hierarchical basis for the space of B-spline curves and surfaces
in which every object has a unique representation. Wavelet meth-
ods in conjunction with hierarchical B-splines provide a method for
constructing a useful geometric modeling interface. This approach
is similar to the one described by Finkelstein and Salesin [8]. In this
paper we will discuss some of the various issues that are relevant to
building such a modeling tool.

Variational modeling is a third general paradigm for geometric
modeling[2, 28, 21]. In this setting, a user alters a curve or surface
by directly manipulation, as above, defining a set of constraints. The
variational modeling paradigm seeks the “best” solution amongst all
answers that meet the constraints, The notion of best, which is for-
mally defined as the solution that minimizes some energy function,
is often taken to mean the simoothest solution.

In theory, the desired solution is the curve or surface that has
the minimum energy of afl possible curves or surfaces that meet the
constraints. Unfortunately there is little hape to find a closed form
solution '. Therefore, in practice, the “space” of parametric curves
or surfaces is restricted to those represented by a linear combination
of a fixed set of basis functions such as cubic B-splines. Given a set
of n basis functions, the goal of finding the best curve or surface is
then reduced to that of finding the best set of n coefficients. This
reduction is referred to as the finite element method [27].

The general case requires solving a non-linear optimization
problem. In the best case, the energy function is quadratic and
the constraints are linear leading to a single linear system to solve.
But even this can be costly when n is large since direct methods for
matrix inversion require O(n*) time. To accelerate this process it is
tempting to use gradient-type iterative methods to solve the linear
system; these methods only take O(n) time per iteration, due to
the O(n) matrix sparsity created by the finite element formulation.

'But see [20].
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Figure 1: Minimum energy solutions subject to three constraints, found by the B-spline and wavelet methods after various numbers (0-1024)
of iterations. (65 variables, 3 constraints). This illustrates the ill conditioning of the B-spline optimization problem.

Unfortunately, the linear systems arising from a finite element for-
mulation are often expensive to solve using iterative methods. This
1s because the systems are ill-conditioned, and thus require many
iterations to converge to a minimum [26, 25]. Intuitively speaking
this occurs because each basis function represents a very narrow
region of the answer; there is no basis function which can be moved
to change the answer in some broad manner. For example, chang-
ing one coefficient in a cubic B-spline curve during an iteration
alters the curvature in a local region only. In order to produce a
broad smooth curve, the coefficients of the neighboring B-splines
will move in next few iterations. Over the next many iterations, the
solution process will affect wider and wider regions, and the effect
will spread out slowly like a wave moving along a string. The result
is very slow convergence (see Figure (1)). One method used to
combat this problem is multigridding [26, 10], where a sequence of
problems at different resolution levels are posed and solved.

An alternative approach, is to use a wavelet basis instead of a
standard finite element basis [25, 23, 15, 22]. In a wavelet basis,
the answer is represented hierarchically. This allows the solution
method to alter the answer at any desired resolution by altering
the proper basis function, and thus the ill-conditioning is avoided.
In this paper we show how to use a wavelet construction, which
is based on cubic B-splines, to quickly solve variational modeling
problems in an elegant fashion.

Another problem with the finite element approach is choosing
the density of the bdsis functions. If too few basis functions (too
few B-spline segments or tensor product B-spline patches) are used
then the solution obtained will be far from the actual minimum. If
too many basis functions are used then unnecessary computation
will be performed during each iteration (n is too big). In order to
successfully choose a proper density, one must know how much
detail exists in the variational minimum answer, Since, a priori, this
1s unknown, an efficient solver must be able to adaptively change
the basis during the solution process [28], one needs an easy way
to detect that too many or too few basis functions are being used.
In addition, one needs a basis for which adding more detail, (i.e.,
refinement), is easy. Wavelets offer a basis where this task can be
accomplished quickly and elegantly.

The work presented in this paper combines the wavelet ap-
proaches of [25], [12], and [16]. Like [25], this paper uses hierar-
chical basis functions as a pre-conditioner, so that fewer iterations
are needed for convergence. Similar to [12] and [16], wavelets are
also used as a method for limiting the sclution method to the proper
level of detail.

2 Geometric Representation

This paper will restrict itself (o parametric representations of curves
and surfaces. In this representation, a curve is defined as a 3

dimensional trajectory parameterized by t,
v(t) = (X(t),Y (), Z(t))
and a surface is defined as
"}'(S,t) = (X(S,t),Y(s,t),Z(S,t)} 2)

which defines a three dimensional location for every parameter pair
(s,t).

The parametric representation of a curve or surface is made
up of three functions X, Y, Z, which are represented as a linear
combination of basis functions. Just focusing on the X function,
for curves this becomes

X@®) =) 2t
i

(1)

(3)

and for surfaces ,

X(s,t) =) 2iabr.in(st) )

ik
where the z are scalar coefficients. In geometric modeling the
univariate basis ¢y, ; () is typically some “piecewise” basis, such
as a cubic B-spline or the Bernstein (Bézier) basis, and the bivari-
ate basis used for surfaces is the associated tensor product basis

Gr,;,k(5,t) = br;(s)brp(t).

3 Hierarchical Geometric Descriptions

In this section we will briefly review some ways that curves and
surfaces may be represented hierarchically.

Let us begin by discussing curves. For simplicity we will deal
with the uniform cubic B-spline basis over the interval [0...2%]
made up of translations of a single basis shape denoted ¢(t). The
cubic B-spline function ¢(t) is supported over the interval [0. . . 4]
and is made up of 4 cubic polynomial pieces joined with C* con-
tinuity. The complete uniform cubic B-spline basis is made up of
translated copies ¢r,;(¢) of the basis shape ¢(t) (see Figure 2).

¢r,;(t) = ot —7) (5)

The index j represents the translation of a specific basis from the
canonical B-spline left justified at zero, and L is the level or resolu-
tion of the basis. There are roughly 2% functions in this basis 2, In
wavelet terminology, the space (or family) of curves spanned by all

-linear combinations of these basis functions is denoted V7, (e.g., Vi

< contains all functions that are piecewise cubic, with simple knots at

36

the integers).

%A few extra basis functions are needed at the boundary. This paper will not discuss
the technical details needed to handle all of the boundary constraints. This is discussed
in many places including [4, 16, 8, 13].




3.1 Hierarchical B-splines

Forsey and Bartels [9] introduced hierarchical B-splines as a way of
representing and modeling geometric objects hierarchically, Instead
of using only B-spline basis functions at a single resolution L, they
use a hierarchy of wider and wider B-spline functions

$i3(t) = 62" 't - j) (6)
for 0 < ¢ < L. For example, the basis functions ¢, _; ; at reso-
lution level L — 1 (with a support size of 8), are twice as wide as
the basis functions ¢ ; at level L (with a support size of 4). These
basis functions, ¢ —1,;, span the space of piecewise cubic functions
with knots at all even integers; in wavelet terminology, this space is
called V. On each coarser level, the space V; has half as many
basis functions, and they are all twice as wide.

According to the well known B-spline knot insertion algo-
rithm [6, 9, 3] one can define double width B-spline basis functions
as linear combinations of single width B-spline basis functions.

Z hk—2j @ik
k

Pi-1,j (7)

where the sequence h is
)

(see Figure (2)). As aresult of Equation (7) the set of functions in
V;—1 is a subset of the functions in V;.

ViciCc W ®)

The basic idea of Forsey and Bartels is to allow the user to control
the coefficient of each of these basis functions ¢; ; by exposing a
control mesh at each level 4.

3.2 Wavelets

Hierarchical B-splines {¢; ;} do not form a basis for the function
space Vi; they form an overrepresentation for all the curves in
Vr. In other words, thereé are many linear combinations of the
basis functions defining the same curve or surface. Wavelets are a
representation related to hierarchical B-splines, that form a basis:
in a wavelet basis, all curves in V, have a unique representation.

Rather than add a new finer set of B-splines at each level of the
hierarchy, the idea is to look for a set of functions ; ; that “fills
in” the space between the adjacent B-spline spaces, V; and Viy1.
These wavelet functions v ; represent the derail of the curve that
cannot be represented by the double width B-splines, ¢; ;. Foreach
i, the space of functions spanned by the 1; ; is called W;.

There is actually quite a bit of freedom in choosing these Vi
functions, and hence the space W;, as long as every function in
Vit1 can be written as a combination of some functlon in V; and
some function in W;. This is notated as

Viqr = Vi+W; (10)

Just like the Hierarchical B-splines are all scales and translates
of a single shape ¢(t), (see Equation (5)) in a wavelet basis, the
basis functions 1,5 are all translates and scales of a single function

¥(t). :
iy (1) = (2"t - j) (11)
Also similar to hierarchical B-splines, in a wavelet basis, the
basis functions on one level can be defined by linearly combining
B-spline functions on the next finer resolution,
Z Gh—25 Pik
k

Pio (12)
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And as a result W;_; C V;i. There is some degree of freedom
in choosing the sequence g, as long as the property expressed by
Equanou (10) holds. One such sequence given by Cohen et al. [5]
is? (see Figure (3)).

(0..10] {iﬂ 1 —96_:73280 -70 -9 1 20 §
e 256 356 255" 256 ° 256 ' 256" 356 ° 356 356" 156" 256
Due to the relationships of Equations (7) and (12), if some
function X () in V; has been expressed as a linear combination of
the B-spline basis function at level ¢ — 1 and wavelet basis functions

at level 7 — 1, using coefficients notated by x4, and 2y,

-1,i i—1,7*

X() =) 2o sy bimtg )+ 2y, Yios(0)  (13)
J

then, z4, ;, the coefficients of the same function, with respect to

the B- sphne basis at level ¢ may be found with

= Zh}'—% Tgigp T Zgj—ﬂ-” Lopi1,e
k k

and now X{t) = 23' Tos 5 ¢i,j(t)

Inversely, if some function has been expressed with respect to
B-spline functions at level 7, then the representation of Equation
(13) may be found using the formula

Z h’k—ij Lok
k

D Gu-2i ey,
k

using the proper inverse sequences § and f. Equation (15) projects
the high resolution curve from V; into the lower resolution space
Vi—1; this is, in some sense, a smoother approximation of the object
in V;. Equation (16) captures the detail that is Jost in this projection,
and represents it using a basis for the space W;_i.

When using the /i and g sequences given by Cohen et al [5], the

proper inverse sequences /i and § are

= -1 -9 70 280 70 -—-96 —1 —5}
256° 2567256 256 ' 256 2567 256 256 256" 256" 256

T 4 (14)

Ty ; (15)

Topi 1,5 (16)

(17

3.3 The Basis

Every function in V7, expressed as a combination of the B-spline
basis functions {¢r,;}, can be expressed uniquely in the wavelet
basis 1s made up by the functions

{#o,j, ¢} 0<i<L-1

In the wavelet representation, the function is expressed hierarchi-
cally.

Transforming a function’s representation from B-spline to wavelet
coefficients may be done with the pyramid procedure coe £ _pyrm up.
This procedure may be performed in linear time by successively ap-
plying the transformation of Equations (15) and (16). This linear
transformation may be denoted by the matnx W. The inverse trans-
formahon (denoted by the matrix W), may be implemented with
the procedure coef_pyrm down, which succesively applies the
transformation of Equation (14).

If coef _pyrm up is implemented using the k and g sequences
instead of the f and j sequences, then the resulting procedure may

(18)

3 A different sequence is given by Chui [3] and generates a semi-orthogonal wavelet.




Figure 2: Five B-splines ¢, ; may be combined using the weights
h to construct the double width B-spline ¢,; 0

Y-
i A

Figure 3: Eleven B-splines ¢,,; may be combined using the weights
g to construct the wavelet function - 0

be called basis.pyrm up, and it is represented by the matrix

w-T 5 coef.pyrmdown is implemented using the A and
§ sequences instead of the h and g sequences, then the resulting
procedure may be called basis_pyrm down, and itis represented

by the matrix wT,

3.4 Surfaces

The ideas outlined above are easily extended to tensor product sur-
faces [3]. The uniform tensor product cubic B-spline basis is made
up of the functions ¢y, ;(s)¢r . (t) The hierarchical uniform tensor
product cubic B-spline representation is made up of the functions
®i,;(8)di,x(t) for 0 < ¢ < L. On each coarser resolution of the
hierarchy, there are 1/4 the amount of ¢ basis functions.

The tensor product B-spline wavelet basis is made up of the

functions
B (8)ok(t)  &is(s)vik(t) (19)
Vi, (8)Bik(t) i;(8) i x(t)

with ¢in {0... L — 1}. :
Tust like for curves, there are four pyramid procedures and
associated W matrices.

4 Geometric Modeling with Wavelets

The styles of interactive control discussed in the introduction will
be revisited in the context of hierarchical representations. Multires-
olution modeling allows the user to interactively modify the curve
or surface at different resolution levels. This allows the user to
make broad changes while maintaining the details, and conversely
detailed changes while maintaining the overall shape. Two types
of hierarchical manipulation are considered, control point dragging
and a direct manipulation involving solving a least squares problem.

In contrast, variational modeling allows the user to directly
manipulate the curve or surface with the curve or surface main-
taining some notion of overall smoothness subject to user imposed
constraints. This physically based paradigm provides an intuitive

“This basis is known as the non-standard basis [3].
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Figure 4: When B-spline coefficients are manipulated, the curve
responds in a “hump” like fashion. When wavelet coefficients are
manipulated, the curve responds in a “wave” like fashion.

means for shape control. Each of these paradigms will be explored
In the context of wavelet bases which will be shown to provide the
required hooks for such interaction and/or significant computational
savings.

4.1 Multiresolution Modeling

A multiresolution representation such as a hierarchical B-spline or
wavelet representation may be used to implement a multiresolution
modeling system. This section explores the choices that must be
made when designing a multiresolution tool. Two related methods
are described; direct control point manipulation and a least squares
solver.

In control point modeling, the user is allowed to directly alter
the coefficient values, by clicking and dragging on control points.
In the least squares scheme [I, 11], the user can click and drag
directly on the curve or surface, defining interpolation and tangent
constraints. The system returns the curve or surface that satisfies
these linear constraints (Ax' = b), by changing the coefficients
by the least squares amount. Least square solutions can be found
very inexpensively using the pseudeinverse [11]. The least squared
problem can also be posed as a minimization problem [28], whose
solution can be found by solving a sparse, well conditioned, linear
system.

In multiresolution versions of these two schemes, the user
chooses the resolution level 1, and then only the quantities of basis
functions on level ¢ are altered. The locality of the effect on the
curve or surface is directly tied to the chosen level 7. In control
point modeling, the control polygon at level i is manipulated by
the user. In a least squares scheme, the user is provided a direct
handle on the curve or surface itself, and the least squares solution
is found only using the basis functions on level 1. The least-squares
approach offers a much more intuitive interface, and (for curves)
works at interactive speeds.

One decision to be made is whether to expose the user to hier-
archical B-splines or to wavelets. It is easy to see that manipulat-
ing wavelet basis functions does not produce an intuitive interface.
Moving such a control point, and thus changing the amount of some
wavelet basis function used, changes the solution in a “wave” like
fashion. In contrast, it is more intuitive to move a B-spline control
point which changes the solution in 2 “hump” like fashion (see Fig-
ure 4). Thus the user in this case should manipulate the hierarchical
B-spline functions.

4.2 Orientation

In'the parametric representation, the curve or surface is represented
by three functions X,Y, Z. In the the multi-resolution paradigm,

‘when a user adds fine directional detail, say a fine hump in the

X direction, this detail will become locked in the originally chosen
direction. If the user Jater manipulates the broad sweep of the curve,
the detail will maintain its original direction (see Figure 5). This is
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Figure 5: When the (X,Y,Z) frame is used for wavelet multiresolu-

.tion editing, detail maintains its orientation as the sweep is changed.

When the normal, tangent, bi-normal, (N, T, B) frame is used with
a wavelet representation, the detail does not maintain its structure
as the sweep is changed. When the (N, T, B) frame is used with
a B-spline representation, the detail follows the orientation of the
curve.

not always desirable, since the user may want the detail’s orientation
to follow the changing direction of broader curve or surface.

An “orientation” approach first proposed by Forsey and Bar-
tels [9] may be applied to the multiresolution editing scheme. In
a multiresolution modeling system all of the information describ-
ing the curve or surface lives at some resolution. In an orientation
approach, the information at each resolution ¢ is not expressed as
three independent functions of (X, ¥, Z). Instead the detail at each
resolution 7 is represented with respect to the geometric shape of
the lower resolution version of the curve or surface. This lower res-
olution version is defined by summing all of the information from
all the lower resolution levels.

Tangent and normal directions of the lower resolution curve or
surface are then computed at a series of sample points. The detail
coefficients at level 7 are then expressed with respect to these tangent
and normal directions instead of the (X, Y, Z) directions. If any
lower resolution component of the curve is later explicitly altered,
then the detail’s orientation will change appropriately.

4.2.1 Defining Detail

In order to apply an orientation approach, one must have some
method for decomposing the object mto components at different
resolutions. When one is using hierarchical B-splines, which over-
represent objects in V7, then there 1s some freedom in defining what
information resides at which level of detail.

If the geometric object is being designed with a multiresolution
editor, then the user is explicitly manipulating the object at resolu-
tions that he chooses. Therefore, one simple method is to maintain
all information at the resolution entered by the user [9]. Using this
method, the same geometric object may behave differently depend-
ing on the way the object was generated.

An alternative is to use wavelet analysis: begin with the com-
plete resolution object (in Vi), and then successively project it to
each lower resolution level using Equation (15). This generates a
unique smoothed version of the object at each resolution ;. The
object can now be represented as a combination of components
from the difference spaces W;.

In typical wavelet analysis, the components in W; are repre-
sented using some special basis functions 4); ; that span the differ-
ence space W;. Alternatively, instead of using wavelet functions
t; j to represent the difference, one may instead use the B-spline
functions on the next finer level ¢4 ;. This can be done because
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of Bquation (12). The choice of whether to use B-spline or wavelets
to represent the functions in W; is an important question that we
shall deal with soon.

4.2.2 Projections between Levels

There are many ways to obtain a lower resolution version of some
object from V7. For example, given an object in V5, one could
obtain a lower resolution version in Vz_; by throwing away every
other control point. Subsampling is not a true projection; starting
with a smooth curve in Vi, and then expressing that smooth
curve in the higher resolution B-spline basis basis V7, and finally
subsampling the control points will not return the original smooth
curve we began with.

Another way of obtaining a smoothed version of the object
is by orthogonally projecting the object from Vr.into VL. The
orthogonal projection is the object in V;,—; that is closest to object in
V. using the L* measure. One may obtain the orthogonal projection
by using Equation (15), with the A sequence given for the semi-
orthogonal wavelet construction by Chui [3]. This is the approach
used in [8]. Although this is a very elegant way of obtaining a
lower resolution version of an object, it has a few drawbacks. This
particular / sequence is infinite in length (although it does decay
rapidly from its centers) and so performing this task efficiently can
be troublesome. Also, because these sequences are not local, then
a single change to one B-spline coefficient at level L will alter all
of the coefficients of the projection at level L — 1.

One good compromise between these two extremes (subsam-
pling, and orthogonal projection), is to use Equation (15) but to use
the h filter given for the non-orthogonal wavelet construction by
Cohen et al. [5]. This projection in non-erthogonal, but it is en-
tirely local. This is the choice we have used in cur multiresolution
modeling tool.

4.2.3 Representing Detail

What set of basis functions should be used to represent the detail.
If a wavelet projection Equation (15) is used to define the lower
resolution versions of the object; then the detail can be represented
by using the corresponding wavelet functions. The other option is
to represent the detail using hierarchical B-spline functions. The
disadvantage of using hierarchical B-splines is that there are roughly
27 B-splines in the hierarchy, and only n wavelets.

The advantage of using hierarchical B-splines however is that
they maintain the orientation better. When the user changes the
broad sweep of the curve, changing the tangent, normal, and bi-
normal frame at t;, the detail functions are remixed. If the de-
tail functions are wavelet functions, then changing the normal and
tangent frame remixes “wave” shaped functions introducing non-
intuitive wiggles. If the detail functions are B-spline basis functions,
then “hump” shaped functions get remixed, yieding more intuitive
changes. Also if the detail functions are B-splines, then because
there are twice as many B-splines than wavelets, the tangent and
normal directions are computed at twice as many sample points
allowing the detail to follow the orientation with more fidelity (see
Figure 5).

5 Variational Modeling

The variational modeling paradigm generalizes the least squares
notion to any objective function minimization, typically one repre-
senting minimizing curvature. The variational problem leads to a
non-linear optimization problem over a finite set of variables when
cast into a given basis.



There are a variety of objective functions used in geometric
modeling [21, 24] In our implementation we have used the thin-plate
measure which is based on parametric second derivatives [27, 2, 28].
The thin plate minimum may be found by solving the following
linear system [28].

’; g (20)

H AT
A 0

Where A is the constraint matrix, H is the Hessian matrix, and A
are Lagrange variables.

5.1 Hierarchical Conditioning

Wavelets can be used in the context of variational modeling so that
the solution may be obtained more efficiently.

In the B-spline basis, the optimization procedure resulted in
the linear system given by Equation (20). In the wavelet basis, a
different linear system results which is given by

B AT

A 0 (21)

X 0
A b

where the bars signify that the variables are wavelet coefficients,
X = Wx, and the Hessian and constraint matrix are expressed with
respect to the wavelet basis. To see the relationship with the B-
spline system, the new system can also be written down as

2| =

X
A

w-THw-1 w-TaT
aw-1 0
Although Equation (20) and Equation (21/22) imply each other,
they are two distinct linear systems of equations. Because the
wavelet system (21/22) is hierarchical it will not suffer from the
poor conditioning of the B-spline system of Equation (20). For a
rigorous discussion of the relevant theory see [7].
The scaling of the basis functions is very significant for the
bebavior of the optimizing procedures. Traditionally the wavelet
functions are defined with the following scaling [19, 22]:

Qli=L)/2 ¢(2(:’—L)t_j)
2(5—14)/2 ¢(2({—L)t "J)

¢i;(t)
i (t)

This means that at each level moving up, the basis functions
become twice as wide, and are scaled '2 times as tall. While in
many contexts this normalizing may be desirable, for optimization
purposes it is counter productive. For the optimization procedure
to be well conditioned [ 15, 7] it is essential to emphasize the coarser
levels. The correct theoretical scaling depends on both the energy
function used, and the dimension of problem. For a fuller discus-
sion, see the Appendix in [13]. In the experiments described in this
paper the following scaling was used

(23)

g—(i=L) q5(2(i—L)t*j)
2700 g2 B — )

b4 (t)
Pij (1)
This means that as one goes from level 5 to level i — 1 the basis
functions become twice as wide, and 1/2 as tall. In the pyramid

code, this is achieved by multi?ly'mg all of the h and g entries by 2,
and all of the hoand by 1/2°,

(24)

The proper scaling is cssential to obtain the quick convergence of the wavelet
method when steepest descent or conjugate gradient iteration is used. Scaling is
not important with Gauss-Seidel iteration, which will perform the same sequence of
iterations regardless of scale.
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5.1.1 Explicit vs. Implicit

There is now a choice to make. In an iterative conjugate gradient
solver, the common operation is multiplication of a vector times the
wavelet matrix given in Equations (21/22). There are two ways to
implement this,

One approach, the explicit approach, is to compute and store
the wavelet Hessian matrix H and the wavelet constraint matrix
A (Equation (21)). These can be computed directly from a closed
form (piecewise polynomial) representation of the wavelet functions
1i,;. Unfortunately, these matrices are not as sparse as the B-spline
Hessian and constraint matrices.

Alternatively, there is the implicit approach [29, 25] which only
computes and stores the entries of the B-spline matrices H and A
(Equation (22)). Multiplication by the W matrices is accomplished
using the pyrm procedures, The advantage of this approach is that
the whole multiply remains O(n) in both time and space, since
the pyrm procedures run in linear time, and the matrices H and
A are O(n) sparse. Even though one of the methods explicitly
uses wavelet terms while the other uses B-spline terms, these two
methods are mathematically equivalent, and so both will have the
same condition properties.

5.2 Adaptive Oracle

By limiting the possible surfaces to only those that can be ex-
pressed as a linear combination of a fixed set of basis functions,
one obtains an approximation of the true optimal surface. As more
basis functions are added, the space of possible solutions becomes
richer and a closer approximation to the true optimal surface can
be made. Unfortunately, as the space becomes richer, the number
of unknown coefficients increases, and thus the amount of compu-
tation required per iteration grows. A priori, it is unknown how
many basis functions are needed. Thus, it is desirable to have
a solution method that adaptively chooses the appropriate basis
functions. This approach was applied using hierarchical B-splines
in [28]. When refinement was necessary, “thinner” B-splines basis
functions were added, and the redundant original “wider” B-splines
were removed. With wavelets, all that must be done is to add in
new “thinner” wavelets wherever refinement is deemed necessary.
Since the wavelets coefficients correspond directly to local detail,
all previously computed coefficients are still valid,

The decision process of what particular wavelets to add and
remove is governed by an eracle procedure which is called after
every fixed number of iterations. The oracle must decide what level
of detail is required in each region of the curve or surface.

When some region of the solution does not need fine detail, the
corresponding wavelet coefficients are near zero, and so the first
thing the oracle does is to deactivate the wavelet basis functions
whose corresponding coefficients are below some small threshold.
The oracle then activates new wavelet basis functions where it
feels more detail may be needed. There are two criteria used. If
a constraint is not being met, then the oracle adds in finer wavelet
functions in the region that is closest in parameter space to the
unmet constraint. Even if all the constraints are being met, it is
possible that more basis functions would allow the freedom to find a
solution with lower energy. This is accomplished by activating finer
basis functions near those with coefficients above some maximum
threshold.

To avoid cycles, a basis function is marked as being dormant
when it is removed from consideration. Of course, it is possible

‘that later on the solution may really need this basis function, and so
" periodically there is a revival phase, where the dormant marks

are removed.
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Figure 6: Error per time. Curve with 65 control points, 3, 7, and 13
constraints.

5.3 User Interface

A user of the system is first presented with a default curve or surface.
Constraints can then be introduced by clicking on the curve or
surface with the mouse. The location of the mouse click defines a
parametric position ¢ (and s) on the curve (or surface). The user
can then drag this point to a new location to define an interpolation
constraint. Tangent constraints at a point can also be defined by
orienting “arrow” icons at the point. Once the constraint is set,
the solver is called to compute the minimum energy solution that
satisfies the constraints placed so far. Resulting curves and surfaces
are displayed using SGI GL nurbscurve and nurbssurface
calls ®. !

When the solution 1s completed, the result provides information
for not only the curve or surface satisfying the specific value of the
new constraint, but for all curves or surfaces with respect to any
value of this constraint. Once the linear system (Equation (21/22))
with the newest constraint has been solved, the solver stores the
delta vector

AxX
Abm

where m iIs the index of the newest constraint, and b, is the con-
straint value (i.e., the position or tangent specified by the user).
This vector stores the change of the coefficient vector due to a unit
change in the new constraint Abym, essentially a column of the
inverse matrix. The user is now free to interactively move the tar-
get location of the constraint without having to resolve the system
since, as long as the parameters s, and t of the constraints do not
change, the matrix of the system, and thus its inverse, do not change.
However, as soon as a new constraint is added (or a change to the
parameters s and ¢ is made) there 1s fresh linear system that must
be solved, and all of the delta vectors are invalidated. The ability
to interactively change the value of a constraint is indicated to the
user by coloring the constraint icon. See Color Plate.

(25)

5.4  Variational Modeling Results

6 , 5 . .
One GL call to nurbssurface can be more expensive than a complete iteration.
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Figure 7: Error per time. Surface with 1089 control points, 11,23,64
evenly space constraints, and 62 constraints along the boundary.

A series of experiments were conducted to examine the performance
of the wavelet based system compared to a B-spline basis. In the
curve experiments, the number of levels of the hierarchy, L, was
fixed to 6, and in the surface experiments, L was fixed as 5. The op-
timization process was then run on problems with different numbers
of constraints. The results of these tests are shown in Figures 6 and
7. These graphs show the convergence behavior of three different
methods, solving with the complete B-spline basis, solving with
the complete wavelet basis, and solving with an adaptive wavelet
basis that uses an oracle. (The wavelet results shown here are using
the implicit implementation). If x™) is the computed solution
expressed as B-spline coefficients at time m, and x” is the correct
solution of the complete linear system ’ (i.e., the complete system
with 2% + 1 variables, and no adaptive oracle being used) then the
error at time . is defined as

Zj | _J;J(‘M)I
” 0
Z_-,’Imjw"r";(iJl

To obtain the starting condition %) two constraints were ini-
tialized at the ends of the curve, and the minimal thin plate solution
(which in this case is a straight line) was computed. (For surfaces,
the four corners were constrained.) All times were taken from runs
on an SGI R4000 reality engine.

When the are a large gaps between the constraints, the B-spline
method is very poorly conditioned, and converges quite slowly
while the wavelet method converges dramatically faster. In these
problems, the oracle decides that it needs only a very small active
set of wavelets and so the adaptive method converges even faster,
As the number of constraints is increased, the solution becomes
more tightly constrained, and the condition of the B-spline system
improves. (Just by satisfying the constraints, the B-spline solution
is very close to minimal energy). Meanwhile the oracle requires a

(26)

"computed numerically to high accuracy

®In the curve experiments, each B-spline iteration took 0.0035 seconds, while
each iteration of the implicit wavelet method took 0.011 seconds. For the surface
experiments, each B-spline iteration took 0.68 seconds while each iteration of the
implicit wavelet method took 0.85 seconds. (The wavelet iterations using the explicit
representation took about 10 times as long).



larger active set of wavelets. Eventually, when enough constraints
are present, the wavelet methods no longer offer an advantage over
B-splines.

Experiments were also run where all the constraints were along
the boundary of the surface. In these experiments there are many
constraints, but the since the constraints are along the boundary,
much of the surface 1s “distant” from any constraint. In these
problems, the wavelets also performed much better than the B-
spline method.

6 Conclusion

This paper bas explored the use of wavelet analysis in a variety
of modeling settings. It has shown how wavelets can be used to
obtain multiresolution control point and least squares contral. It
has shown how wavelets can be used to solve variational problems
more efficiently.

Future work will be required to explore the use of higher order
functionals like those given in [21, 24]. Because the optimiza-
tion problems resulting from those functionals are non-linear, they
are much more computationally expensive, and it is even more
important to find efficient methods. It is also important to study op-
timization modeling methods where constraint changes only have
local effects.

Many of these concepts can be extended beyond the realm of
tensor product uniform B-splines. Just as one can create a ladder of
nested function spaces V; satisfying the property of Equation (10)
using uniform cubic B-splines of various resolutions, one can also
create a nested ladder using non-uniform B-splines [18].

Subdivision surfaces are a powerful technique for describing
surfaces with arbitrary topology [14]. A subdivision surface is
defined by iteratively refining an input control mesh. As explained
by Lounsbery et al. [17], one can develop a wavelet decomposition
of such surfaces. Thus, many of the ideas developed in this paper
may be applicable to that representation as well.
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1 INTRODUCTION

Image metamorphosis (morphing) is a powerful and easy-to-use
tool for generating new 2D images from existing 2D images.
In recent years morphing has become popular as an artistic tool
and is used extensively in the entertainment industry. In this
paper we describe a new technique for controlled, feature-based
metamorphosis of certain types of surfaces in 3-space; it
applies well-understood 2D methods to produce shape
metamorphosis between 3D models in a 2D parametric space.
We also describe an interactive implementation on a parallel
graphics multicomputer, which allows the user to define,
modify and examine the 3D morphing process in real time.

2 PREVIOUS WORK

Wolberg [4] described a point correspondence technique for
morphing 2D images. Consider a pair of 2D source images, A
and B. If a feature in image A is meant to match a feature in
image B, the user chooses a point within the feature of each
image. When the point morphs from A to B, so does a
neighborhood surrounding it. By defining such pairs of points
for all interesting features, the user can create a metamorphosis
sequence between the two static images A and B.

Beier and Neely [1] described a segment correspondence
technique for morphing 2D images. When a feature in image A
is required to transform to a feature in image B, a line segment
is drawn over the feature in each image. As the segment
morphs from A to B, so does a neighborhood surrounding it.
By judiciously creating line segments, the user can preserve all
the important features throughout the morph. This technique is
easier to use than the point correspondence method; usually
fewer than half as many line segment pairs than point pairs are
required to define a morph sequence between two static images.

2D methods provide simple user control for image-based
morphing. However, since little or no information about
actual 3D geometry is available, it is difficult to create
“natural”-looking transformations; morphing animations
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created with 2D methods often exhibit a subtle “flattening”
effect.

Kent, Carlson and Parent [3] described a method for morphing
3D polyhedral objects by merging the topologies of two 3D
source polyhedra A and B. New vertices, edges, and faces are
added to both A and B so that every polygon of A corresponds
to a polygon of B. To morph between them one interpolates
between corresponding vertices. The user can exercise some
control over how the correspondences are established, but only
very indirectly, by selecting a specific method of mapping the
two source objects onto a common intermediate mapping
surface used for topology merging (for example, a sphere).
Kent concludes:

... techniques that provide a finer level of control over the
transformation are needed. One possibility is to add a warping
step ... before the topologies are merged.

We implemented Beier’s technique as that warping step for the
special case of cylindrical mapping surfaces, warping the
model’s 2D parameter space instead of a (projected) 2D image.

3 CONTROLLED 2D-3D MORPHING

QOur method consists of morphing the common intermediate
mapping surface or 2D parameter space of a pair of surface
models. We use Beier’s techniques to establish
correspondences and accomplish the warping. The 2D nature of
the process makes interaction easy. While defining
correspondences, the user can simultaneously inspect the two
parametric images as well as the resulting surface in 3-space .

We begin with a pair of surface models A and B (Figure 1) which
have been meshed over some parameter space. Models in other
formats (like polygon-lists, NURBS, or implicit surfaces) must
be resampled and meshed so that they have similar parameter
spaces. This may seem like a relatively harsh restriction,

2D parametric space

3D geometry

Figure 1. Object A is morphed into Object B. The objects
are parametric surfaces. To interpolate between the
geometries, interpolate between the 2D parameter spaces.




making the technique applicable only to convex or star-shaped
objects. However, there are physically-based and model-
specific projection techniques [3] that can be applied to more
complex geometries.

All the surface attributes of the source models must be available
in the 2D parameter space so that they may be interpolated.
There are map-parameters attached to each sample as well. For
example, in the case of a spherically-projected apple, the map-
parameter is the radius at each sample point. Knowing the
radius, one can reconstruct the surface of the original apple and
attach the sample’s surface attributes to it.

The surface attributes are interpolated as well as the samples’
map-parameters. The interpolated map-parameters serve to
construct the morphed target model from a morphed image in
the 2D parametric space. The 3D target model is derived from
this image by applying the mappings; in doing so, we use the
“morphed” values of the map-parameters at each sample point
to construct the surface of the target.

4 INTERACTIVE IMPLEMENTATION

We have implemented a prototype system on the Pixel-Planes
5 graphics multicomputer, a heterogeneous system consisting
of over 30 Intel i860-based MIMD nodes and a massively
parallel array of SIMD pixel processors [2]. We chose Beier’s
technique for its easy and intuitive.control methods. We
demonstrate our method on 3D models of human heads
generated by a 3D scanner (Cyberware™). These models are
represented in cylindrical coordinates (with the mantle of the
cylinder serving as the 2D parameter space for the morphing
process). Our samples contain the surface attribute color and
the map-parameter radius. Traditional morphing between 2D
images operates on color as a function of 2D pixel coordinates;
here we operate on color and radius as functions of the 2D
parametric coordinates angle and height.

The software design of the system is straightforward: the entire
2D parameter space of each of the two source models with
surface attributes and. map-parameters is replicated on all MIMD
nodes. Each node generates a subset of the morphed parametric
image. The nodes then apply the morphed colors and map-
parameters to generate colored polygons from the morphed
parametric image (Plate 1).

Plate 2a shows a pair of 2D parametric images on which a user
has marked features. The background images show the color
intensity of the models in the parameter space of cylindrical
coordinates. Plate 2b shows the radii (essentially height
functions) in cylindrical coordinates, mapped to gray intensity
values. Note the pairs of line segments: they establish
correspondences between various features of the two source
models in the Beier-Neely technique. These features may be
chosen simply by their similar color (like matching the red
regions of lips in a 2D image), but they may also be chosen by
their similar 3D geometry (like matching the pointed tip of
each nose). This latter ability is crucial for matching features
in regions of constant color. These regions are prominent in
profile, but not in the general projected views. It would be
inefficient to search for corresponding features by continually
rotating the objects until their features are identifiable by their
colors alone.

Plate 3 shows a sequence of shape metamorphosis images
generated by our system. Mapped onto the surfaces of the 3D
models, the line segments become surface-following curves.
The face rotates as it is morphed to demonstrate how the
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geometric features are preserved during the interpolation.
Notice, for example, how the lips spread open as the morphing
progresses. Notice also that one of the eyes is obscured in the
left image. Pure image-based morphing cannot interpolate
between features when one of them is obscured under a
particular viewing projection.

The entire process of matching features and warping between
the surfaces in Plate 3 takes only a few minutes for a trained
user. The 274-by-222 surface mesh with 33 pairs of line
segments for correspondence definition is morphed and
rendered on Pixel-Planes 5 at 20 frames per second (4-by-4
decimation) or at 1 frame per second (full resolution).

5 FUTURE WORK

We are currently working on a true 3D interface for our system.
This will allow the user to specify correspondence areas
directly on the 3D source objects, while continuing to use 2D
parametric space morphing techniques. In the future we plan to
add support for other types of parametric spaces besides
cylindrical projections. Then our system could allow
controlled shape metamorphosis for many of the classes of 3D
objects described in [3].

6 CONCLUSIONS

We have described how to apply image-based metamorphosis
to parametrically defined 3D surfaces or arbitrary surfaces that
can be expressed parametrically using projection technigues
described in [3]. For such surfaces our method is superior to
ordinary image-based warping: the warp is defined only once
(rather than frame-by-frame) for an entire animation and can be
accomplished in a short interactive session. Since our method
provides local correspondence definition, it is superior to
previous techniques that automatically map between surfaces in
a global manner. The technique is easily parallelizable; on our
prototype system the interpolating surfaces can be constructed
and displayed at interactive frame rates.

Finally, the animation sequences produced with our method do
not exhibit the “flattening” effect typical for image-based
morphing. Our sequence has an intuitively three-dimensional
“look,” noticeable not only in high-resolution animations, but
also at lower resolutions, during interactive operation.

We would like to acknowledge the contributions of Andrew
Brandt, Anselmo Lastra, Greg Turk and David Addleman.
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Shadow Volume BSP Trees for Computation of Shadows in Dynamic
Scenes
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ABSTRACT

This paper presents an algorithm for shadow calculation
in dynamic polyhedral scenes illuminated by point light
sources. It is based on a modification of Shadow Volume
Binary Space Partition trees, to allow these be construc-
ted from the original scene polygons in arbitrary order and
to support for fast reconstruction after a change in scene
geometry. Timings using sample scenes are presented that
indicate substantial savings both in terms of computation
time and shadows produced.

KEY WORDS: shadows, BSP Trees, SVBSP Trees,
dynamic modification.

1 INTRODUCTION

An algorithm is presented for rapid updating of shadows
in dynamic environments, where objects are transformed in
near real time with induced changes to shadows computed
and displayed. The algorithm employs shadow volumes
(SV). This was a term used by Crow [6] to denote the semi-
infinite volume enclosed by the shadow planes (SP) formed
by the triangle of the edge vertices and the light source po-
sition, for each edge of a polygon and culled by the polygon
plane. Reviews of shadow algorithms for static scenes may
be found in [1, 19, 15]. An algorithm for shadows in dy-
namic scenes is described in [5]. This uses a Shadow Tiling
and a Binary Space Partition (BSP) tree. BSP trees were de-
veloped by Fuchs, Kedem and Naylor [8] as a visible surface
determination, based on Schumacker’s results [14]. A BSP
tree is a hierarchical subdivision of space into homogeneous
regions, using the planes defined by the scene polygons as
partitions. It is mainly suitable for static scenes but un-
der the right circumstances it can deal with moving objects
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[7, 17, 5]. Thibault, Naylor, and Amanatides [11, 16] em-
ployed the BSP tree to represent arbitrary polyhedral solids
and for set operations on polyhedra in representation and
rendering for CSG. They also showed that a BSP tree can
be constructed incrementally.

Based on these results Chin and Feiner [3] introduced the
Shadow Volume Binary Space Partition (SVBSP) tree al-
gorithm for point light sources that can be used to compute
shadows efficiently for polyhedral scenes. The algorithm
used a BSP tree to order the input polygons in increasing or-
der of depth from the light source, and to incrementally build
a BSP tree representation of a single merged shadow volume
for the whole scene. In the process of building the tree, the
scene polygons are split and labeled as lit or shadowed. The
algorithm operates in object space so that the shadows need
not be regenerated if the viewing parameters are changed.
The method is therefore suitable for walk-through applica-
tions. However, it is not suitable for interactive modification
of objects in the scene, since any change in an object’s pos-
ition could destroy the ordering and may require the recon-
struction of the shadow tree. Similar structures were used
in [10] for image representation and in [4, 2] for determining
illumination discontinuities from area light sources.

The algorithm presented here employs a generalization
of the SVBSP tree that does not require the construction of
a BSP tree of the original scene polygons, and that does sup-
port near real-time incremental changes to the SVBSP tree
and therefore to shadows in response to object transforma-
tions. This method also results in computation of a smaller
number of shadows compared to the original method. An
application of the algorithm on a VR system is described in
[18].

2 BUILDING THE UNORDERED SVBSP
TREE

The standard SVBSP tree is built from an ordered set of
polygons so there is no question as to which polygon is
closer to the light source when the SVs of two polygons in-
terséct. Building the tree using only the shadow planes is
sufficient. For the unordered SVBSP tree the scene poly-
gons themselves must be added to convey that information,
so the SV of each individual polygon is complemented with
the polygon plane. Since nodes containing shadow planes
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and nodes containing polygon planes are treated differently
by the algorithm they will be distinguished by calling the
former SP-Nodes (Shadow Plane Nodes) and the latter PP-
Nodes (Polygon Plane Nodes), Figure 2.

The algorithm uses a copy of the scene polygons in the
tree for calculating the shadows which are then stored as
detail ontop of the actual scene polygons.

The tree is built incrementally by inserting the light-
facing polygons into an initially empty tree, a single OUT
node (Figure 3 ). The first polygon just replaces that node
with its SV (Figure 4). Subsequent scene polygons are
filtered into the tree by comparing them at each level against
the plane at the root of the tree and recursively inserting
them into the appropriate subtree. If they straddle the root
plane then they are split and each piece is treated separ-
ately. When an OUT node is reached it is replaced by the
SV. If the polygon was split its SV is built using the shadow
planes of the original polygon (polygon 4 in Figure 6 ). This
is necessary for dynamic modification and it also means that
the SV needs to be calculated only once even if a polygon is
split into many pieces.

A face onto which a shadow is cast is referred to as a
target face. When a PP-Node is encountered, if the inserted
polygon is classified as behind its plane then it is marked
as shadowed and stored there (face 3 in Figure 6 ). If it is
classified as in front then it takes note of the face at the root
as a potential target and it is inserted into the front subtree.

If it reaches an OUT node then a shadow is cast on the face
stored as potential target (face 2 in Figure 6 ). If it comes in
front of more than one potential target, only the last one is
remembered and used (polygon 5 in Figure 7 comes in front
of 2 and then in front of 4, a shadow is casted only on 4).

To cast a shadow onto a target, the original scene polygon
of the target is clipped against the relevant SV.

3 USING THE TREE FOR DYNAMIC
SHADOW COMPUTATION

In an interactive application where the scene geometry
changes, the tree can be used to maintain the correct shad-
ows.

During the building of the tree, each inserted polygon
constructs a list of pointers to the locations it occupies on
the tree. When an object is transformed, its polygons and
their shadow planes on the tree are found using the loca-
tion lists and are marked. After all relevant polygons have
been marked, a recursive function is called that will iter-
ate through the SVBSP tree once and remove all marked
nodes. The result of this will be a valid SVBSP tree for the
scene, but now without the transformed object. The object
can then be reinserted into the tree using the algorithm de-
scribed in section 2, to get the shadows at its new position.

3.1 REMOVING THE MARKED NODES

The function used for removing the marked nodes works on
the whole SV of polygons rather than on single nodes. There
are 3 possible positions for each polygon and its shadow
volume to consider:

(a) In the IN region, behind a PP-node (no shadow planes
were attached here, just the polygon). This is the simplest
case, the polygon is just removed (polygon 3 in Figure 7).

(b) At the leaves, subdividing an empty subspace. Again
this is simple, the SV is replaced by an OUT node. Care
must be taken if the PP-Node had a non-null target. This
occurs when it is in front of some other PP-Node during
insertion and it is now casting a shadow on this. In this case
the shadow must be removed. For example when deleting
polygon 5 in Figure 7, the front (left) subtree of node labeled
4.2 should be replaced by OUT and the shadow on polygon 4
should be deleted (the arrows there show the target relation).

{c) Splitting a non-empty subspace, the SV forms the root
of a larger subtree. This is the only relatively complex case.
Removing it would result in unconnected subtrees and these
must be put together to form a new tree to replace the old
one. If the deleted polygon was casting a shadow then that
must be replaced by shadows from polygons that had the
deleted one as target. These can only be in the front subtree

-of the deleted PP-node. For example if polygon 4 in Figure 7

. is deleted then the shadow from 4 to to 2 should be replaced
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by a shadow from 5. Any polygons that were in shadow,
in the IN region behind the deleted polygon, must also be
inserted into the new unified subtree.
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Figure 6: Insert poly 3 and 4

3.2 JOINING THE SUBTREES

Naylor in [11] described an algorithm for merging BSP trees
that could be used in case (c) above. Given two BSP trees
for merging, treel is inserted into tree2. To achieve this
tree2 is split into tree2.front and tree2.back by filtering the
root of treel into it. These two new trees are then recurs-
ively merged into the corresponding subtrees of treel until
they reach the leaves. Experimental results have shown this
method to be very slow for our purposes. The main reason
is that it operates on a closed subspace and it would require
the shadow planes involved in the merging to be clipped and
bounded. Also it is very general, it doesn’t utilise the fact
that all the shadow planes emanate from the same point (the
light source).

A more specialised algorithm is used here. The largest of
the trees to be merged is found, say treel, and any possible
marked nodes on this are removed. The inserted tree, tree2,
is then treated as a set of shadow volumes. The polygon
node (PP-Node) of the shadow volume forming the root of
tree2 is found and filtered down treel along with its front
and back subtrees. The filtering is done in a similar manner
to a polygon. The fact that all shadow planes go through
the light source position, ensures that anything enclosed by
a polygon’s shadow volume can be split by another shadow
plane, only if the polygon itself is split. This means that the
front and back subtrees need to be checked for intersection
with a plane only if the polygon is split by that plane. If the

Figure 4: Insert poly 1
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PP-Node meets another fragment of its own original polygon
they can join up under its shadow volume (this is possible
since the shadow planes used by the fragments are those
of the original). When it reaches an OUT node its SV is
attached. After the ‘root’ SV and the subtrees of its PP-
Node have been inserted, the algorithm is called recursively
to insert the front subtrees of its SP-Nodes.

Note that the subtrees involved here existed in non-
intersecting subspaces separated by the deleted planes so
there is no shadow relation between them. Also, if polygons
split or come together during the merging, the shadows on
them or the shadows they cast do not change.

4 FURTHER DISCUSSION

When a target object is being continuously transformed, for
example as a result of being dragged during an interactive
application, the functions described in sections 3.1 and 3.2
are only relevant for the very first transformation. After the
first deletion and re-insertion, the faces will end up at the
leaves and in subsequent frames can be deleted in constant
time,,

#Tn the standard SVBSP tree the smaller objects tend to
be higher up the tree because they tend to be closer the light
source. This is the order that is obtained from the scene BSP
tree traversed from the light position. Also their polygons
may be widely distributed in the tree (Figure 10 ). Moreover




