generally perceptible. Any "chattering”" induced by sharp
surface features may be dealt with by either increasing the
sponginess of the surface, or increasing the size of the virtual
surface in the user's hand space, thereby effectively increasing
the spatial sampling rate for the same hand movement
velocity.

The assumptions made about reasonable and expected hand
movements could easily be enforced by the addition of velocity
dependent forces to restrain motion to a reasonable speed.
Users have been surprisingly adept, however, at tuning their
hand gestures to give the maximum sensitivity to surface
features, and so a need for such restrictions has not yet been
seen.

R S e, o

Figure 1 - Measuring a sample of TMV. Height in 3D space is
exaggerated by a factor of 5.

4, TOOLS
4.1 DISPLAY TOOLS

The NM has inherited the standard set of virtual-reality (VR)
tools from the UNC vlib, such as grabbing, scaling, and flying
[3]. In addition, tools are added as their desirability becomes
apparent during use of the system. When used immersively,
fixed lighting sources have proved sufficient, as the user's head
position relative to the surface and light determines specular
highlighting. By moving about in the scene, the optimal
angle for viewing features of interest can be found. While
working in groups, however, it frequently proves advantageous
to fix a single hypothetical user's position in space, and
display to a projection screen a single view which all user's
share. Transition from fixed view to head tracked may be
performed on the fly for investigation of specific features, the
subtleties of which are often more easily discerned in the
immersive mode despite the lower resolution display. While in
fixed view, it is helpful to adjust the lighting source to bring
out specific details. A virtual pointer is supplied to allow the
user to point to the directional light source. The lighting of
the scene is updated as the user moves the pointer until
illumination becomes optimal.

4.2 MEASURING TOOLS

Quantitative tools are essential for full understanding of the
data. Often, features are distinguishable only by their absolute
size. The user may create a measuring rectangle perpendicular
to the horizontal plane by selecting two points, such as at the
base and peak of a feature. The rectangle is displayed with
height and width in nanometers, as well as a profile of the
surface intersecting the rectangle. This display may be
independently positioned by the user, and persists until being

explicitly dismissed, giving a reference scale for the rest of the
image. Since the horizontal shape of features displayed is the
convolution of features on the surface with the probe tip, which
has a typical radius of curvature of 30 to 50 nm, features tend to
appear flattened. This appearance may be corrected by
vertically stretching the measurement rectangle until the
profile of a reference feature takes the correct shape (e.g. a
colloidal ball has same height as width). The height of the rest
of the scene is then scaled accordingly.

4.3 VCR TOOLS

While the NM is primarily a real-time data visualization
system, it is also valuable for off-line analysis. Snapshots of
the scene may be saved to disk at any time. Additionally, the
stream of data returning from the microscope is saved and may
be replayed interactively, with all tools available except those
involving modification, which naturally require an actual
surface and microscope. Standard VCR functions are supported,
such as control over replay rate, fast forward, rewind, and
absolute positioning in the stream. These afford quick review
of selected segments within a stream which may be quite large,
having been acquired over the span of up to an hour. The
viewpoint and vertical scale can be different in the replay than
in the original experiment, as they do not depend on the surface
data.

The NM is not limited to data collected within the interface.
Simple file format conversion routines have been written to
allow the importation of data collected elsewhere and by
microscopes other than the Digital Instruments Nanoscope III
currently used in the system. Data received from the UCLA
materials science group is investigated using the interface as a
3-D viewer, and video tapes returned to the group of "walk-
throughs" of the surface under study. As a visualization tool
alone the interface has proven worthwhile in the understanding
of complex surface features.

4.4 MODIFICATION TOOLS

A set of physical knobs on the ARM control the sponginess of
the surface and the forces applied by the tip to the sample. That
the perceived hardness of the surface determines sensitivity to
smaller details is straightforward. The implications of tip force
on haptic response is more subtle. If the force applied by the
microscope is too great, a feature will be displaced
immediately, and will never be felt. If the force is too small,
the feature will be felt, but no modification made. The force
necessary to modify the surface is determined by factors such as
the exact tip shape, the direction of the force, humidity, and
surface contaminants, and may vary widely across a given
sample and over periods of time as short as tens of minutes.
Without knowing a priori the force required, the user must have
immediate control over the forces applied. The interface allows
the user to control the position of the tip and feel the surface '
with one hand, while the other hand adjusts physical knobs
controlling the force level. The microscope may be toggled
between non-damaging and modification modes with a thumb
switch, to allow exact positioning of the tip by feel before the
application of forces to features.

To supplement the modification mode's immediate haptic
display, after a modification event a small area around the event
is scanned and updated. This area is generally of greatest
interest and most likely to be out of date, and is refreshed in
about a hundredth of the time needed to rescan the entire
surface. After quickly updating that subset of the grid, imaging
of the full selected region resumes.

16
BUNGIE - EXHIBIT 1006 - PART 2 OF 14

Area Sweep Since the forces applied by the tip are
always under immediate user control, the entire area being
scanned may be swept out simply by increasing the force until
all materials are removed as desired. This is the interactive
method most commonly supported by commercial AFMs.
While an efficient way to clear a region, it has several
disadvantages. This method is inappropriate for selective
removal of material within a rectangle. The force required to
move material in one area may be enough to damage the
substrate or other desired features nearby. Moreover, the
clearing may be incomplete, with ragged edges around the
border or debris left in the region which must then be cleaned
out.

Line Tool The etching of circuits from a conducting
film on non-conducting substrate frequently requires straight
lines connecting cleared regions or isolating conducting
regions. The user may select any two endpoints of a line
segment, and have the tip scratch between the two points at a
preset modification force.

Engrave Toel Many commercial microscopes support
lithography techniques, allowing the user to preset a path to be
traced by the tip at a specific force. These afford efficient
etching of an exact known outline into a surface, but leave the
same jagged edges and debris as the area sweep. Cleaning these
edges is easily performed using the engraving tool, in which
the tip tracks the hand exactly over the surface. The effect is
like the user having an ice pick with which to feel the surface,
scratch it, and push about materials on it. (Depending on the
tip radius relative to surface features, it may be a very blunt ice
pick.) This gives the finest degree of control available with
the microscope.

Figure 2 - A segment of TMV is separated using the sweep tool.
The two black lines extending upward toward the hand (not
shown) define the flat edge of the virtual broom. The two
parallel lines of white markers indicate the path having been
swept out. The image has not yet been updated to show the
removal of the segment.

Sweep Tool As can easily be imagined, pushing
materials about with an ice-pick might sometimes be less than
convenient. Often, a different instrument is more appropriate.
While there is only one physical tip, control of its motion can
simulate other, virtual tools. A virtual whisk broom is provided
for selective clearing of regions and manipulation of larger
objects, or even small objects which are to be swept in a
general direction, and then positioned precisely using the
engrave tool. In sweep mode, the tip oscillates between the
tracked position of the user's hand and a point determined by
the orientation of the hand (figure 2). The magnitude and
direction of the oscillation is therefore immediately and

17

intuitively determined by the user, giving the illusion of an
extended tip, the flat edge of which may be used to scrape out
selected areas or push objects. This complements the area
sweep mode in that, while it lacks the precise rectangular
boundary of area sweep, it is also not limited to any rectangle.
The "edge" may become wide or narrow, and change orientation
relative to the surface plane as required to navigate though
features which must be left undisturbed.

5. RESULTS
5.1 BALL PUSHING

The manipulation of colloidal gold particles has proved an
excellent test-bed for the interface, in addition to being a
worthwhile pursuit in its own right. Controlled movement of
the balls would enable the performance of experiments
determining physical properties and materials characteristics
which are currently only predicted by theory [1]. Balls are
typically deposited randomly about a surface. Isolation and
precise positioning of individual balls, ei{her into patterns or
within other structures is difficult, if not impossible using
means available with commercial microscopes. The
interaction between balls and the microscope tip is
unpredictable. At the same time, the balls are rigid enough to
easily be felt with the NM's haptic display, and image clearly.

Figure 3 - Colloidal gold balls arranged in a ring. The hand
icon is front right.

In one experiment, a thin gold wire (~50 nm wide) was etched
into a 15 nm thick gold film on mica substrate using standard
AFM lithography techniques. A gap approximately 100 nm
wide was then cut into the wire, and colloidal gold balls of 15
nm diameter distributed over the surface. The user was then able
to select a ball and maneuver it through the other particles in
the area and position it in the gap, without disturbing other
material in the region, or damaging the wire. By using a light
force in engrave mode, the user could feel the ball on the edge
of the tip, and so could follow the ball closely and detect when
the ball took an erratic jump, quickly compensating in the
direction of pushing, or waiting for the image to be updated to
relocate the ball. Fig. 4 shows the trace of the pushing events
and the final pushes of the ball into the gap. The entire

sequence was performed in a matter of minutes. It is not clear
how or even if the same result could be accomplished using
methods currently available with commercial AFMs. The
experiment provides a convincing proof of concept for the
manipulation of a colloid into a gap in a wire which is
connected to macroscopic leads for the electrical
characterization of the particle. Such a circuit is currently
being fabricated at UNC-CH, and characterization experiments
are expected in the coming weeks.

Colloidal gold balls have also been arranged into structures
such as a ring and a matrix. The ability to arrange the balls
into specific patterns is useful both in the fabrication of
circuits from the balls, and comparison with theoretic
refraction patterns in near field spectroscopy studies. Work is
also currently underway to position balls in arrangements for
which theoretic predictions of refraction patterns exist.

5.2 VIRUS MANIPULATIONS

The positioning of a virus in a circuit as described above would
offer a unique ability to characterize the electrical properties of
the virus. Manipulation of the virus is even more challenging
than the gold balls, however. Samples of Tobacco Mosaic
Virus (TMV) were distributed over a mica substrate. In pushing
it with the engrave tool, the TMV was found to be very easy to
bend and break. The tip could also be positioned on the TMV
and the force turned up slowly until the tip ruptured the virus, an
event which could be easily felt by the user. But while the
dissection of TMV particles was interesting in its own right,
moving a particle as a whole unit was also desirable.

User frustrations with trying to push an extended flexible
object with a sharp instrument led to the introduction of the
sweep tool. Intuitively, it would have been the tool of choice
in an analogous real-world task. Building the illusion of the
broad edge from the reality of the microscope's single sharp tip
proved easier than coming up with the initial insight that a
blunter instrument would sometimes be preferable. In the
natural and intuitive ‘environment in which user's had been
interacting with the TMV, however, that insight and the request
for its implementation were natural and forthcoming.

In positioning a virus particle, the sweep tool proved ideal.
The broad edge of the tip oscillations along the length of the
TMYV applied a more uniform force, moving and rotating it as a
unit. Again as proof of concept, a letter T was formed of TMV
segments as shown in Fig. 5. As can be seen in the figure, the
TMYV particles obtain a slightly rumpled appearance after they
have been moved. This indicates that, while we are moving the
particles as units, we are not doing so without damage. We are
investigating possible virtual tools that might be even gentler
still, in the hopes of moving the particles while leaving them
intact.

6. CONCLUSIONS

The NanoManipulator provides an intuitive interface hiding the
details of performing complex tasks using an SPM. Surface
features are more easily recognized with the combination of 3-
D topography and haptic feedback in real time. Feeding the
user's senses more fully allows faster development of
manipulation skills. The collaborative nature of the project
allows new tools to be developed as the needs of the users

18

become more sophisticated. Many tasks performed using the
NM are not well enough understood to be automated, so they
require real time feedback to and response from the user. It is
hoped that the NM will provide the insight into the
manipulation process necessary to automate the fabrication of
mesoscopic and nanometer-scale circuits. The NM is valuable
now in the building of one-of-a-kind structures which will
contribute significantly to the areas of materials science and
solid state physics.

ACKNOWLEGEMENTS

We are grateful to the National Institutes of Health (grant
#RR02170), the Defense Advanced Research Projects Agency
(contract #DABT63-92-C-0048), the National Science
Foundation (grant #IRI-9202424), and the Office of Naval
Research for funding and support.

REFERENCES

1. Devoret, M. H., D. Esteve and C. Urbina, "Single-
electron Transfer in Metallic Nanostructures”, Nature 360, 547
(1992).

2. Kastner, M. A., Reviews of Modern Physics, 64, 849
(1992).
3 Robinett, Warren, and Richard Holloway,

Implementation of Flying, Scaling, and Grabbing in Virtual
Worlds. Proceedings of the ACM Symposium on Interactive 3D
Graphics (Cambridge, MA, 1992), special issue of Computer
Graphics, ACM SIGGRAPH, New York, 1992.

4. Taylor, Russell, Warren Robinett, Vernon L. Chi,
Frederick P. Brooks, Jr., William V. Wright, R. Stanley
Williams, and Erik J. Snyder, The Nanomanipulator: A Virtual-
Reality Interface for a Scanning Tunneling Microscope.
Proceedings of SIGGRAPH '93 (Anaheim, California, August
1-6, 1993). In Computer Graphics Proceedings, Annual
Conference Series, 1993, ACM SIGGRAPH, New York, 1993,
pp. 127-134,

5. Mark, Wiliam R. and Scott C. Randolph, "UNC-CH
Force Feedback Library", UNC-CH Computer Science Dept.
Technical Report #TR94-056, 1994.

6 Ouh-young, Ming. Force Display in Molecular
Docking, Ph. D. Thesis, University of North Carolina at
Chapel Hill, 1990.

7 Fuchs, Henry, John Poulton, John Eyles, Trey Greer,
Jack Goldfeather, David Ellsworth, Steve Molnar, Greg Turk,
Brice Tebbs, and Laura Israel. Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories. Proceedings of SIGGRAPH '89. In Computer
Graphics, 19 3 (1989). 79-88.

8 Stroscio, Joseph A. and D. M. Eigler, Atomic and
Molecular Manipulation with the Scanning Tunneling
Microscope. Science, 254 (1991). 1319-1326.

9 Sarid, Dror, Scanning Force Microscopy,Oxford
Series in Optical and Imaging Sciences, Oxford University
Press, NY 1991.

10 Chen, C. Julian, Introduction to Scanning Tunneling
Microscopy,Oxford Series in Optical and Imaging Sciences,
Oxford University Press, NY 1993,

Combatting Rendering Latency

Marc Olano, Jon Cohen, Mark Mine, Gary Bishop
Department of Computer Science, UNC Chapel Hill
{olano,cohenj,mine,gb} @cs.unc.edu

ABSTRACT

Latency or lag in an interactive graphics system is the delay
between user input and displayed output. We have found latency
and the apparent bobbing and swimming of objects that it
produces to be a serious problem for head-mounted display
(HMD) and augmented reality applications. At UNC, we have
been investigating a number of ways to reduce latency; we present
two of these. Slats is an experimental rendering system for our
Pixel-Planes 5 graphics machine guaranteeing a constant single
NTSC field of latency. This guaranteed response is especially
important for predictive tracking. Just-in-time pixels is an attempt
to compensate for rendering latency by rendering the pixels in a
scanned display based on their position in the scan.

1 INTRODUCTION

1.1 What is latency?

Performance of current graphics systems is commonly measured
in terms of the number of triangles rendered per second or in
terms of the number of complete frames rendered per second.
While these measures are useful, they don’t tell the whole story.

Latency, which measures the start to finish time of an operation
such as drawing a single image, is an often neglected measure of
graphics performance. For some current modes of interaction,
like manipulating a 3D object with a joystick, this measure of
responsiveness may not be important. But for emerging modes of
“natural” interaction, latency is a critical measure.

1.2 Why is it there?

All graphics systems must have some latency simply because it
.takes some time to compute an image. In addition, a system that
can produce a new image every frame may (and often will) have
more than one frame of latency. This is caused by the pipelining
used to increase graphics performance. The classic problem with
pipelining is that it provides increased throughput at a cost in
latency. The computations required for a single frame are divided
into stages and their execution is overlapped. This can expand the
effective time available to work on that single frame since several
frames are being computed at once. However, the latency is as

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

19

long as the full time spent computing the frame in all of its stages.

1.3 Why is it bad?

Latency is a problem for head-mounted display (HMD)
applications. The higher the total latency, the more the world
seems to lag behind the user’s head motions. The effect of this lag
is a high viscosity world.

The effect of latency is even more noticeable with see-through
HMDs. Such displays superimpose computer generated objects
on the user’s view of the physical world. The lag becomes
obvious in this situation because the real world moves without lag,
while the virtual objects shift in position during the lag time,
catching up to their proper positions when the user stops moving.
This “swimming” of the virtual objects not only detracts from the
desired illusion of the objects’ physical presence, but also hinders
any effort to use this technology for real applications.

Most see-through HMD applications require a world without these
“swimming” effects. If we hope to have applications present 3D
instructions to guide the performance of “complex 3D tasks” [9],
such as repairs to a photocopy machine or even a jet engine, the
instructions must stay fixed to the machine in question. Current
research into the use of see-through HMDs by obstetricians to
visualize 3D ultrasound data indicates the need for lower latency
visualization systems [3]. The use of see-through HMDs for
assisting surgical procedures is unthinkable until we make
significant advances in the area of low latency graphics systems.

2 COMBATTING LATENCY
2.1 Matching

A possible solution to this lag problem is to use video techniques
to cause the user’s view of the real world to lag in synchronization
with the virtual world. However, this only works while the
latency is relatively small.

2.2 Prediction

Another solution to the latency problem is to predict where the
user’s head will be when the image is finally displayed [10, 1, 2].
This technique, called predictive tracking, involves using both
recent tracking data and accurate knowledge of the system’s total
latency to make a best guess at the position and orientation of the
user’s head when the image is displayed inside the HMD. Azuma
states that for prediction to work effectively, the lag must be small
and consistent. In fact he uses the single field-time latency
rendering system (Slats), which we will discuss shortly, to achieve
accurate prediction.

A/D converter
output

Workstation

l“ Display
]

Photodiode
@ Digital
. Oscilloscope
T

Figure 1: Apparatus for external measurement of
tracking and display latency.

Pendulum

LED/Photodiode

2.3 Rendering latency: compensation and reduction

2.3.1

There are a wide spectrum of approaches that can be used to
reduce lag in image generation or compensate for it. One way to
compensate for image generation latency is to offset the display of
the computed image based upon the latest available tracking data.

Range of solutions

This technique is used, for example, by the Visual Display
Research Tool (VDRT), a flight simulator developed at the Naval
Training Systems Center in Orlando, Florida [5, 6]. VDRT is a
helmet-mounted laser projection system which projects images
onto a retro-reflective dome (instead of using the conventional
mosaic of high resolution displays found in most flight
simulators). In the VDRT system, images are first computed
based upon the predicted position of the user's head at the time of
image display. Immediately prior to image readout, the most
recently available tracking data is used to compute the errors in
the predicted head position used to generate the image. These
errors are then used to offset the raster of the laser projector in
pitch and yaw so that the image is projected at the angle for which
it was computed. Rate signals are also calculated and are used to
develop a time dependent correction signal which helps keep the
projected image at the correct spatial orientation as the projector
moves during the display field period.

Similarly, Regan and Pose are building the prototype for a
hardware architecture called the address recalculation
pipeline[15]. This system achieves a very small latency for head
rotations by rendering a scene on the six faces of a cube. As a
pixel is needed for display, appropriate memory locations from the
rendered cube faces are read. A head rotation simply alters which
memory is accessed, and thus contributes nothing to the latency.
Head translation is handled by object-space subdivision and image
composition. Objects are prioritized and re-rendered as necessary
to accommodate translations of the user’s head. The image may
not always be correct if the rendering hardware cannot keep up,
but the most important objects, which include the closest ones,
should be rendered in time to keep their positions accurate.

Since pipelining can be a huge source of lag, latency can be
reduced by reducing pipelining or basing it on smaller units of
time like polygons or pixels instead of frames. Most commercial
graphics systems are at least polygon pipelined. Whatever level
the pipelining, a system that computes images frame by frame is
by necessity saddled with at least a frame time of latency. Other
methods overcome this by divorcing the image generation from
the display update rate.

Frameless rendering[4] can be used to reduce latency in this way.
In this technique pixels are updated continuously in a random
pattern. This removes the dependence on frames and fields.

20

(= o
=

Ring
Network

Frame

Renderers
= Buffer

Figure 2: Pixel-Planes 5 system architecture

Pixels may be transformed at whatever rate is most convenient.
This reduces latency at the cost of image clarity since only a
portion of the pixels are updated. The transform rate can remain
locked to the tracker update rate or separated on a pixel-by-pixel
basis as with the just-in-time pixels method, discussed next.

2.3.2

We will present a technique called just-in-time pixels, which deals
with the placement of pixels on a scan-line display as a problem of
temporal aliasing [14]. Although the display may take many
milliseconds to refresh, the image we see on the display typically
represents only a single instant in time. When we see an object in
motion on the display, it appears distorted because we see the

Just-in-time pixels (JITP)

“higher scan lines before we see the lower ones, making it seem as

if the lower part of the object lags behind the upper part.
Avoidance of this distortion entails generating every pixel the way
it should appear at the exact time of its display. This can lead to a
reduction in latency since neither the head position data, nor the
output pixels are limited to increments of an entire frame time.
This idea is of limited usefulness on current LCD HMDs with
their sluggish response. However, it works quite well on the
miniature CRT HMDs currently available and is also applicable to
non-interactive video applications.

2.3.3 Slats

As a more conventional attack on latency, we have designed a
rendering pipeline called Slats as a testbed for exploring fixed and
low latency rendering [7]. Unlike just-in-time pixels, Slats still
uses the single transform per frame paradigm. The rendering
latency of Slats is exactly one field time (16.7 ms). This is perfect
for predictive tracking which requires low and predictable
latency. We measure this rendering latency from the time Slats
begins transforming the data set into screen coordinates to the
time the display devices begin to scan the pixel colors from the
frame buffers onto the screens.

3 MEASURING LATENCY

We have made both external and internal measurements of the
latency of the Pixel-Planes 5 PPHIGS graphics library [13, 71.
These have shown the image generation latency to be between 54
and 57 ms for minimal data sets. The internal measurement
methods are quite specific to the PPHIGS library. However, the
external measurements can be taken for any graphics system.

- The external latency measurement apparatus records three timing

signals on a digital oscilloscope (see figure 1). A pendulum and
led/photodiode pair provide the reference time for a real-world
event — the low point of the pendulum’s arc. A tracker on the
pendulum is fed into the graphics system. The graphics system

object
viewing viewing
frustum frustum
time t, time t,
scanline x — scanline y

rotation

LU LT

image image
scanout scanout
at time t, attime t,

percieved
object

Figure 3: Image generation in conventional
computer graphics animation. Scanline x is
displayed at time t,, scanline y is displayed at time
[y'
starts a new frame when it detects the pendulum’s low point from
the tracking data. An D/A converter is used to tell the
oscilloscope when the new frame has started. Frames alternate
dark and light and a photodiode attached to the screen is used to
tell when the image changes. The tracking latency was the time
between the signal from the pendulum’s photodiode and the
rendering start signal out of the D/A converter. The rendering
latency was the time between the signal out of the D/A converter
and the signal from the photodiode attached to the screen. These
time stamps were averaged over a number of frames.

The internal measurements found the same range of rendering
latencies. The test was set up to be as fair as possible given the
Pixel-Planes 5 architecture (figure 2, explained in more detail
later). The test involved one full screen triangle for each graphics
processor. This ensured that every graphics processor would have
work to do and would have rendering instructions to send to every
renderer. The first several frames were discarded to make sure the
pipeline was full. Finally, latency determined from time stamps
on the graphics processors was averaged over a number of frames.

4 JUST-IN-TIME PIXELS
4.1 The idea

When using a raster display device, the pixels that make up an
image are not displayed all at once but are spread out over time.
In a conventional graphics system generating NTSC video, for
example, the pixels at the bottom of the screen are displayed
almost 17 ms after those at the top. Matters are further aggravated
when using NTSC video by the fact that not all of the lines of an
NTSC image are displayed in one raster scan but are in fact
interlaced across two fields. In the first field only the odd lines in
an image are displayed, and in the second field only the even.

21

object

viewing viewing

frustum frustum

time t, time t,
scanline x paimeid scanline y

rotation

image image
scanout scanout
at time t, at time t,
percieved
object

Figure 4: Image generation using just-in-time
pixels

Thus, unless animation is performed on fields (i.e. generating a
separate image for each field), the last pixel in an image is
displayed more than 33 ms after the first. The problem with this
sequential readout of image data, is that it is not reflected in the
manner in which the image is computed.

Typically, in conventional computer graphics animation, only a
single viewing transform is used in generating the image data for
an entire frame. Each frame represents a point sample in time
which is inconsistent with the way in which it is displayed. As a
result, as shown in figure 3 and plate I, the image does not truly
reflect the position of objects (relative to the view point of the
camera) at the time of display of each pixel.

A quick “back of the envelope” calculation can demonstrate the
magnitude of the errors that result if this display system delay is
ignored. Assuming, for example, a camera rotation of 200
degrees/second (a reasonable value when compared with peak
velocities of 370 degrees/second during typical head motion - see
[12]) we find:

Assume:
1) 200 degrees/sec camera rotation
2) camera generating a 60 degree Field of View (FOV)
image
3) NTSC video
60 fields/sec NTSC video
~600 pixels/FOV horizontal resolution

We obtain:
200 Jeurses L Lo : geercs camera rotation
©osec 60 fields field

Thus in a 60 degree FOV image when using NTSC video:

1 FOV pixels
3.3 degrees x — x600
g 60 degrees FOvV

=33 pixels error

Thus with camera rotation of approximately 200 degrees/second,
registration errors of more than 30 pixels (for NTSC video) can
occur in one field time. The term registration is being used here to
describe the correspondence between the displayed image and the
placement of objects in the computer generated world.

Note that even though the above discussion concentrates on
camera rotation, the argument is valid for any relative motion
between the camera and virtual objects. Thus, even if the
camera's view point is unchanging, objects moving relative to the
camera will exhibit the same registration errors as above. The
amount of error is dependent upon the velocity of the object
relative to the camera’s view direction. If object motion is
combined with rotation the resulting errors are correspondingly
worse.

The ideal way to generate an image, therefore, would be to
recalculate for each pixel the position and orientation of the
camera and the position and orientation of the scene’s objects,
based upon the time of display of that pixel. The resulting color
and intensity generated for the pixel will be consistent with the
pixel’s time of display. Though objects moving relative to the
camera would appear distorted when the frame is shown statically,
the distorted JITP objects will actually appear undistorted when
viewed on the raster display. As shown in figure 4 and plate 2,
each pixel in an ideal just-in-time pixels renderer represents a
sample of the virtual world that is consistent with the time of the
pixel’s display.

Computation of both the viewing matrix and object positions for
each pixel is quite expensive. Acceptable approximations to just-
in-time pixels can be obtained, however, with considerably less
computation. One option is to use a single transformation per
scan line. This relies on the changes being small during the short
(approximately 65 ps) time for the line. Calculations show this to
be a reasonable assumption, allowing on the order of 0,13 pixels
error.

Another approximation is to use only two transformations per
field, one for the first pixel and one for the last pixel. Object
positions are linearly interpolated between these two.

4.3 JITP applied to latency

A partial test implementation has been constructed that renders
images using the just-in-time pixels paradigm. This system is
intended to be used in a see-through HMD to help reduce image
generation latency. In a real-time JITP system, instead of
computing pixel values based upon the predicted position and
velocity of the virtual camera, each pixel is computed based upon
the position and orientation of the user’s head at the time of
display of that pixel. Generation of a just-in-time pixel in real
time, therefore, requires knowledge of when a pixel is going to be
displayed and where the user is going to be looking at the time.
This implies the continuous and parallel execution of the
following two central functions:

1) Synchronization of image generation and image scanout

2) Determination of the position and orientation of the

user’s head at the time of display of each pixel

By synchronizing image generation and image scanout, the JITP
renderer can make use of the details of how the pixels in an image
are scanned out to determine when a particular pixel is to be
displayed. By knowing what scanline the pixel is on, for example,
and how fast the scanlines in an image are displayed, the JITP
renderer can easily calculate the time of display of that pixel.

22

Determination of where the user is looking can be accomplished -
through use of a conventional head tracking system (magnetic or
optical for example). Determination of where the user is looking
at the time of display of a pixel requires the use of a predictive
tracking scheme. This is due to the presence of delays between
the sampling of the position and orientation of the user’s head and
the corresponding display of a pixel. Included in the end-to-end
delays is the time to collect tracking data, image generation time
and the delays due to image scanout.

In the current implementation, the calculations for each scanline
are pushed as late as possible. Ideally data for each scanline is
transferred to the frame buffer just before it is read out by the
raster scan. This technique, known as beam racing, was first used
in early flight simulators. By pushing the graphics calculation as
late as possible, beam racing allows image generation delays to be
combined with display system delays. The result is lower overall
end-to-end delay which simplifies the task of predicting the future
position and orientation of the user’s head. Prediction also
benefits from the fact that the delayed computation makes it
possible to use the latest available tracking data in the generation
of the predicted user view point. :

5 SLATS

5.1 Brief Pixel-Planes 5 description

To understand how Slats works requires some knowledge of
Pixel-Planes 5 [11]. Using Pixel-Planes 5 gave us total control
over the graphics software, which was all developed in-house.
Because our goal was to achieve lower latency by modifying the
rendering pipeline, such low-level control was necessary.

Referring to figure 2, Pixel-Planes 5 uses parallelism at both the
transformation and rasterization stages of the rendering process.
Primitives are typically generated on a host workstation and sent
via a ring network to a set of graphics processors (GPs), where
they are stored in local display lists, The graphics processors
traverse these display lists, transforming the primitives from
object coordinates to screen coordinates and generating
appropriate rendering commands. The graphics processors then
send these commands over the ring to the renderers, which
perform rasterization and shading. Each of which handles a
128x128 region of the screen. Finally, the renderers send the
resulting pixel values to a frame buffer, which is synchronized
with a video display for output,

5.2 'PPHIGS pipeline

PPHIGS is the standard rendering library for Pixel-Planes 5. It is
controlled by a software layer called Rendering Control [8]. The
rendering process is broken into three main stages. In the
transform stage, the GPs transform the primitives. In the render
stage, the renderers scan convert and shade the primitives. If there
are more regions on the screen than there are renderers, the first
renderer to finish starts on the next screen region. Finally, in the
copy stage, the pixel data is copied into the frame buffer. This is
illustrated in figure 5.

In this timing diagram and the ones that follow, each line shows
use of an independent hardware resource. So the GPs, renderers,
and frame buffer can all be used simultaneously. However one

-stage on the GPs must be finished before the next can begin.
- Arrows show, for one frame of interest, the dependencies between

the different resources. All other timings can (and probably will)
change depending on the contents of the scene.

a

GPs sl = Q 12
VAN b

Renderers | J X O —=

Z c

Frame Buffer $ ¢ I “H 12

—33.3 ms—
D = one frame

Figure 5: Basic PPHIGS timing for a frame
passing through the pipeline. a, b, and c are the
transform, render, and copy stages respectively for
a single frame. The arrow between the middle of b
and the start of c indicates that ¢ can begin as soon
as the first region is finished in b.

For stereo operation, PPHIGS handles first the left eye and then
the right eye. However, both are considered part of a single unit.
When the application software says to draw a frame, images for
both eyes are drawn. This is illustrated in figure 6.

a__ b
< I 1 .~ -~ & | 2

rﬁm%ly‘é@:le@::z

/[f
Frame Buffers3_] [&_oL__o{r] 14l | [3
D = left eye D =right eye

—33.3 ms—=
Figure 6: PPHIGS timing for a stereo pair passing
through the pipeline. a, ¢, and e are the transform,
render, and copy stages of the left eye. b, d, and f
are the right eye.

GPs

Renderers

As was mentioned earlier, the timings, other than those explicitly
shown, can vary quite a bit. The lowest latency possible with
PPHIGS occurs when the transform and render stages are small
and the copy time is the limiting factor. In this case, the
synchronization between, the stages forces three fields of latency
between the time the transformation begins and the time both eyes
are complete and the images are displayed. This is illustrated in
figure 7.

=]=]=

GP 21|
Renderer Eﬂ ! . . l:lf I::I B
' ' le . '
Frame Buffer $.__| < O Jozss ¢
: : ; =333 ms—™
[l =lefteye [] =right eye i = vertical retrace

Figure 7: PPHIGS timing for a stereo pair with
minimal latency. Render stage to copy stage
dependencies are not shown for clarity.

5.3 Slats pipeline

Slats achieves its guaranteed latency by insisting that all the work
for one field be finished during the field immediately before it.
Since it is built with latency sensitive HMD applications in mind,
it always generates stereo images. The pipelining in Slats is at a
polygon level. As soon as a set of polygons are transformed (in
clumps of 30 for ring network efficiency), they are sent to the
renderers. Each renderer handles four screen regions so the entire
screen for both eyes can be covered by the available renderers.

23

GP

Renderer ;:! D :

Frame Buffer I:I] Eg E] E
: 333 ms—>
[] = both eyes

Figure 8: Slats timing for a stereo pair. a, b, and c
are the transform, render, and copy stages
respectively. Stage b starts after the first batch of
triangles are transformed in a. The first half of ¢
must finish before the vertical retrace.

! = vertical retrace

Since a field is two regions high, the copy stage happens in two
parts. The copy of the second half of the screen, which only takes
3.9 ms, doesn’t occur until after the field is already being
displayed. The copying of the first half of the screen must be
done before the vertical retrace since those pixels are immediately
displayed. This is illustrated in figure 8.

In many ways, Slats falls short of a general graphics library like
PPHIGS. For the sake of simplicity, it uses only a single GP
instead of the many (up to 50) available to PPHIGS. This
severely limits the number of triangles that Slats can handle. The
use of four regions per renderer makes polygon level pipelining
easier, but also limits the shading model to simple Gouraud color
interpolation.

All of the triangles must be transformed and rendered before the
first copy begins, a period of about 12.8 ms. If there are too many
primitives to make this deadline, Slats fails to generate a correct
image. In the current implementation, this translates to about 100
triangles (or 12,000 triangles per second). Even if we optimized
the code—and PPHIGS achieved about a factor of three
performance increase after the triangle code was optimized to fit
in the GP instruction cache—the communication bandwidth out of
one GP and the speed of the renderers limits the maximum
performance to about 250 triangles. We estimate that using
multiple GPs and more renderers we might be able to push this to
a few thousand, but currently don’t have plans to follow this path.

These limitations are not flaws, Slats excels at what it is built for:
experiments requiring low latency, fixed latency, or both.
Azuma’s work on predictive tracking [1] used Slats for just this
reason.

Because it considers both eyes simultaneously, it can share more
of the work than PPHIGS, which handles them sequentially but
grouped. In fact, both eyes can be copied at the same time.
Because it only renders the lines of the image visible in each field
— the even lines are rendered while the odd field is visible, and
the odd lines are rendered while the even lines are visible — it has
half the rendering and half the copying.

As a comparison of the performance of both, figure 9 shows the
pixel error for the setup used in our video. There is 33 ms of
latency for the optical ceiling tracker[2], making a total of 90 ms
for PPHIGS and 50 ms for Slats. Other trackers may have lower
latency, but this will only increase the importance of image
generation latency since the error is linear with respect to
latency[1]. The error was calculated off-line with captured tracker
data from a typical demo with a naive user under the opfical
ceiling tracker. The pixel error shown is computed by taking a
point in the center of the field of view for each frame and

150

I

160

Lol

50

T |

Error in pixels

n
=

90 ms

-100
o 50ms

IR B SR
1

-150 LB e e

100

i
LI R L R

-150 -100

L E B

-50 0
Error in pixels

| B B

50 150

Figure 9: Pixels of error between a pixel at the
center of the screen and the location where it
should have been displayed by the time the frame
was visible. For 90 ms, corresponding to PPHIGS
+ 33 ms tracker latency, and 50 ms, corresponding
to Slats + 33 ms tracker latency.

determining how far from the center it would be when the frame is
displayed.

6 CONCLUSION

We have presented two methods for reducing image generation
latency. Both, necessarily, at a cost in polygon performance. As
HMD applications become more prevalent, people will require
minimal latency, much as they do high poiygon rendering
performance today.

7 ACKNOWLEDGMENTS

We would like to give special thanks to Ron Azuma. Ron is
responsible figure 9, and was a huge help in the creation of the
Slats video. We would also like to thank Tony Apodaca and Pixar
for access to RenderMan, which was used to create the old well
JITP simulation.

This project was funded in part by the National Science
Foundation, NSF Grant Number MIP-9306208 and NSF
Cooperative Agreement Number ASC 8920219, and by the
Advanced Research Projects Agency, ARPA ISTO Order
Number A410 and ARPA Contract DABT63-93-C-C048.

8 REFERENCES

1 Azuma, Ronald and Gary Bishop. Improving Static and
Dynamic Registration in an Optical See-through HMD.
Proceedings of SIGGRAPH ‘94 (Orlando, Florida, July 24-29,
1994). In Computer Graphics Proceedings, Annual Conference
Series, 1994. ACM SIGGRAPH, New York, 1994, pp. 197-204.

2 Azuma, Ronald. Predictive Tracking for Augmented
Reality. UNC Chapel Hill Department of Computer Science PhD
Dissertation, 1995.

24

3. Bajura, Michael, Henry Fuchs and Ryutarou Ohbuchi.
Merging Virtual Objects with the Real World: Seeing Ultrasound
Imagery within the Patient. Proceedings of SIGGRAPH ‘92
(Chicago, Illinois, July 26-31, 1992). In Computer Graphics, 26,
2 (July 1992), ACM SIGGRAPH, New York, 1992, pp. 203-210.

4, Bishop, Gary, Henry Fuchs, Leonard McMillan and
Ellen Scher Zagier. Frameless Rendering: Double Buffering
Considered Harmful. Proceedings of SIGGRAPH '94 (Orlando,
Florida, July 24-29, 1994). In Computer Graphics Proceedings,
Annual Conference Series, 1994. ACM SIGGRAPH, New York,
1994, pp. 175-176.

3 Breglia, Denis, Michael Spooner and Dan Lobb.
Helmet Mounted Laser Projector. Proceedings of the Image
Generation/Display Conference 11 (Scottsdale, Arizona June 10-
12, 1981). pp. 241-258.

6. Burbidge, Dick, Paul Murray. Hardware Improvements
To The Helmet Mounted Projector On the Visual Display
Research Tool (VDRT) At The Naval Training Systems Center.
Proceedings of the SPIE conference on Head-Mounted Displays,
1989.

T. Cohen, Jon and Marc Olano. Low Latency Rendering
on Pixel-Planes 5. UNC Chapel Hill Department of Computer
Science technical report TR94-028, 1994.

8. David Ellsworth. Pixel-Planes 5 Rendering Control.
UNC Chapel Hill Department of Computer Science Software
Documentation, 1989.

9. Feiner, Steven, Blair MaclIntyre and Dorée Seligmann.
Knowledge-based Augmented Reality. Communications of the
ACM, 36,7, July 1993, pp. 52-62.

10. Friedmann, Martin, Thad Starner and Alex Pentland.
Device Synchronization Using an Optimal Filter. Proceedings of
1992 Symposium on Interactive 3d Graphics (Cambridge,
Massachusetts, March 29-April 1, 1992). Special issue of
Computer Graphics, ACM SIGGRAPH, New York, 1992 pp. 57-
62.

11. Fuchs, Henry, John Poulton, John Eyles, et al. Pixel-
Planes 5: A Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories. Proceedings of
SIGGRAPH ‘89 (Boston, MA, July 31-August 4, 1989). In
Computer Graphics, 23, 3 (July 1989), ACM SIGGRAPH, New
York, 1989, pp. 79-88.

12. List, Uwe Nonlinear Prediction of Head Movements for
Helmet-Mounted Displays. Technical Paper AFHRL-TP-83-45,
December 1983.

13. Mine, Mark. Characterization of End-to-End Delays in
Head-Mounted Display Systems. UNC Chapel Hill Department
of Computer Science technical report TR93-001, 1993.

14. Mine, Mark and Gary Bishop. Just-In-Time Pixels.
UNC Chapel Hill Department of Computer Science technical
report TR93-005, 1993.

19. Regan, Matthew and Ronald Pose. Priority Rendering
with a Virtual Reality Address Recalculation Pipeline.
Proceedings of SIGGRAPH ‘94 (Orlando, Florida, July 24-29,
1994). In Computer Graphics Proceedings, Annual Conference
Series, 1994. ACM SIGGRAPH, New York, 1994, pp. 155-162.

16. Ward, Mark, Ronald Azuma, Robert Bennett, Stefan
Gottschalk and Henry Fuchs. A Demonstrated Optical Tracker
with Scalable Work Area for Head Mounted Display Systems.
Proceedings of 1992 Symposium on Interactive 3d Graphics
(Cambridge, Massachusetts, March 29-April 1, 1992). Special
issue of Computer Graphics, ACM SIGGRAPH, New York,
1992, pp. 43-52.

Underwater Vehicle Control from a Virtual
Environment Interface

Stephen D. Fleischer and Stephen M. Rock
Stanford Aerospace Robotics Laboratory

Abstract

This paper describes a collaborative research effort
initiated by Monterey Bay Aquarium Research Insti-
tute (MBARI), Stanford Aerospace Robotics Labora-
tory (ARL), and NASA Ames Research Center. The
goal of this joint effort was to develop an experimental
system which demonstrates real-time supervisory con-
trol of an underwater vehicle from an interactive, 3-D
graphical interface.

Introduction

OTTER {Oceanographic Technologies Testbed for Ex-
perimental Research) is a remotely-operated underwater
vehicle jointly constructed by MBARI and ARL. Re-
cently, our research focus has been the creation of a
3-D graphical interface to control OTTER. To accom-
plish this task, the NASA Ames Virtual Environment
Vehicle Interface (VEVI) was chosen as a baseline and
extensively modified for use with the underwater vehi-
cle.

This research was ‘divided into two separate objec-
tives. The first objective was to extend the capability
of the current X Window-based graphical user interface
(GUI) for OTTER, by taking advantage of the current
virtual reality (VR) technologies available from NASA

Stephen D. Fleischer and Stephen M. Rock

Durand Bldg., Stanford University, Stanford, CA 94305

fleisch, rock@sun-valley.Stanford EDU

Michael J. Lee
MBARI, 160 Central Avenue, Pacific Grove, CA 93950
lemi@mbari.org

Permission to copy without fee all or art of this material i
granted provided that the copies are no‘t) made or distribﬂ‘t?‘éésfor
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing

achinery. To copy otherwise, or to republish, requires a fee
?gglso[s specific permission.
ymposium on Interactive 3D Gra hics, Montere
© 1995 ACM 0-897’91-736-?/95/0004.%3.50 FEAA

23

Michael J. Lee
Monterey Bay Aquarium Research Institute

Ames. This new GUI is capable of providing the user
with better visualization of the underwater environment
and improved control of the vehicle.

Our second goal was to demonstrate task-level posi-
tion control of OTTER from the new virtual environ-
ment interface. Specifically, the user should be able to
control the vehicle along a desired trajectory by specify-
ing a number of via points along the path. This requires
successful integration of the graphical interface into the
vehicle control system hierarchy.

VEVI Structure

In the past, VEVI has been used to control other robotic
vehicles of all types with great success. Some exam-
ples include the NASA Ames TROV underwater vehi-
cle, which has explored the waters of the Antarctic; the
ARL space robots, which simulate the zero-gravity of
space in two dimensions; and most recently, the CMU
Dante II eight-legged walking vehicle, which explored
the Mt. Spurr volcanic crater in Alaska. [1]

Figure 1 shows the current structure of the VEVI
software, as implemented in the OTTER control ar-
chitecture. The core of VEVI is the Renderer, which
was written on top of the WorldToolKit (WTK) world
simulation library. The WorldToolKit library, devel-
oped by the Sense8 Corporation, enables programmers
to graphically simulate an environment, including the
universe model and any movable objects within that
universe. The Renderer has the capability to interact
with novel virtual reality devices, such as stereo or head-
mounted displays, flying mice, 6-DOF spaceballs, and
head-trackers.

In order to communicate with the connected vehicle,
VEVI transfers data through shared memory to the Ve-
hicleNode, which then communicates to the vehicle over
a network. The NDDS network protocol, developed by
students in ARL at Stanford University, [2] provided the
communications interface between VEVI and OTTER.

The VeviNode provides VEVI with the ability to sup-
port multiple users across a network. The Renderer
talks to the VeviNode through shared memory, which
then broadcasts information to other copies of VEVI
running on the network.

s —
g N Display
E Position Device
> i

o

g Renderer
e =k

B Input Devices
2 == VehicleNode

&

g l To Vehicle

Figure 1: VEVI Structure

The SensorNode is only used if there are specialized
sensors which cannot be accessed through the Vehicle-
Node. All sensors on OTTER, including the thrusters,
cameras, and acoustic positioning system, are accessed
directly through the VehicleNode.

Implementation on OTTER

In our attempt to achieve position control from the vir-
tual environment interface, we were able to take advan-
tage of the OTTER Task-Level Control architecture. [3]
As seen in Figure 2, this paradigm divides the vehicle
control system into three levels, which can each be im-
plemented on separate computers. The lowest (servo)
level includes the real-time control loops, which are im-
plemented in the computers on-board the underwater
vehicle. Task commands are sent from the organiza-
tional level, which are then decomposed into smaller
tasks by the middle (task) level and sent to the servo
level for execution.

Organizational
Level

Task Level

Servo Level L] Filters/Control Laws

=
.@“ Actuators
Sample Loop

Figure 2: OTTER Task-Level Control Structure

Graphical User
Interface

Task-Level Control —
Network Communication

This methodology isolates the graphical user inter-
face, which encompasses the entire organizational level,
from the lower levels of the control hierarchy. Concep-
tually, task-level control enables the user to perform

26

complex functions (e.g. driving a vehicle along a de-
sired path) by combining lower-level tasks which can
be performed autonomously by the vehicle. After im-
plementing a simple point-to-point transect as a task
for the vehicle, we added a position control module to
VEVI. With this module, the user is able to graphically
specify a series of via points along a path by dragging
around a ghost image of OTTER in the virtual envi-
ronment. These via points are then translated into task
commands which are sent to the vehicle.

Conclusions

We have performed several demonstrations of task-level
position control from the virtual environment interface
in the Naval Postgraduate School (NPS) fresh-water test
tank. Currently, VEVI runs in single-user mode, with a
standard SGI color monitor for display and a standard
2-DOF mouse for user input.

By developing this operational platform for exper-
imental research, we plan to pursue fundamental re-
search in the development of interactive, 3-D virtual
environment interfaces to control complex, real-time
robotic systems. In terms of the OTTER project, we
believe that continued research will encourage teams of
marine research scientists to work with the underwater
vehicle remotely, while enabling them to visualize the
environment and relevant data in real-time.

In essence, we hope to enable the end-user to be-
come more effective in performing a variety of tasks by
maintaining a simple, intuitive interface to an inherently
complex system.

References

(1] Fong, T. W. A Computational Architecture for
Semi-autonomous Robotic Vehicles. In Proceedings
of ATIAA Computing in Aerospace 9 Conference (San
Diego, CA, October 1993), ATAA.

[2] PARDO-CASTELLOTE, G., AND SCHNEIDER, S. A.
The Network Data Delivery Service: Real-Time
Data Connectivity for Distributed Control Applica-
tions. In Proceedings of the International Conference
on Robotics and Automation (San Diego, CA, May
1994), IEEE, IEEE Computer Society.

[3] Wang, H. H., MARKS, R. L., RoCK, S. M., AND
Lee, M. J. Task-Based Control Architecture for an
Untethered, Unmanned Submersible. In Proceedings
of the 8th Annual Symposium of Unmanned Unteth-
ered Submersible Technology (September 1993), Ma-
rine Systems Engineering Laboratory, Northeastern
University, pp. 137-147.

- e W

D F oy (DD — 1

Interactive Design, Analysis, and Illustration of Assemblies

Elena DriskillT

Elaine Coheni

Department of Computer Science
University of Utah
Salt Lake City, Utah

Abstract

We present an interactive approach for helping designers
describe, revise, analyze, and illustrate assemblies of mechanical
parts within the context of a common data structure and set of
assembly features. This paper describes an implementation used to
test the validity of these ideas, which has been integrated into an
existing spline-based geometric modeling system.

Several interactive tools have been implemented. An assembly
planner allows the user to design the assembly structure before mod-
cling any geometry by using a combination of top-down and bot-
tom-up design. After the geometry of each part in the assembly,
together with its assembly features, has been modeled, the user can
interactively put the parts together and perform degree of freedom
analysis on them by using another tool. Such an interactive
approach can help a designer determine whether the design is sound
before the entire assembly is put together. Finally, once all part con-
nections have been established, an exploded view generation tool
can help the designer create an informative illustration of the prod-
uct for the purposes of documentation or further visual analysis.

1. Introduction

Interactive computer-aided design systems were developed to
help designers create models of mechanical parts as part of the
mechanical engineering process. Instead of making numerous
detailed mechanical drawings on paper, a designer can now create a
three-dimensional model of a part, experiment with different shapes
and proportions, even analyze the part's structural stability, then cre-
ate rendered images of the part to show others.

A mechanical part is seldom designed to stand alone. More
often is created to be used as part of some machine, mechanism, or
another kind of assembly, yet few aids for designing assemblies are
available. As the engineer designs the part, he already knows what
the mechanism is supposed to do and how it will do it, has some
ideas of what the other components in the mechanism will look like,
and how all of these components will fit and work together. A sys-

The authors may be contacted via electronic mail at
+ elenad @fa.disney.com or elena@cs.utah.edu
i cohen@cs.utah.edu

Permission to copy without fee all or part of this material is

tem can collect such information from the designer and use it to
advantage.

This work is a step towards having the design of mechanisms
be as straightforward to the user as the design of parts. The method-
ology described here takes the designer from the early planning
stage of the assembly (which takes place before the design of indi-
vidual assembly components) through assembly analysis and the
creation of exploded view illustrations. Each tool described here
augments the assembly description and also utilizes information
obtained in previous design steps.

2. A Brief Overview of Related Work

Surprisingly little work has been done on assembly planning.
Gui and Mantyla [3] have developed a system which supports top-
down functional design for creating assemblies based on functional
and behavioral, but not necessarily geometric, knowledge about a
product.

Once geometry has been designed, it is necessary to specify
part positions relative to one another in an assembly. There are sev-
eral approaches. Sometimes transformation matrices are used to
implement the specification of a rigid body transformation neces-
sary to move an object into the assembled position, given relative to
the world coordinate system [6] or relative to other components in
the assembly [2, 11]. Another style of transformation specification
uses mating conditions [4], where particular locations on assembly
components are specified to mate, and in our assessment is the most
advantageous since the specification of positions by using transfor-
mation matrices is error prone. Assembly features may be used for
specifying mating conditions. Various issues related to modeling
with features in various contexts are discussed in [8]. In [7], mating
conditions are derived from the geometric and topological informa-
tion stored in the model itself. Researchers have also considered the
problem of determining translational and rotational degrees of free-
dom and finding disassembly directions of parts [7, 12].

However, most researchers tend to concentrate on a particular
area of assembly design, such as generating an assembly sequence
{7, 1], performing kinematic simulation [11], and so on, and few
integrate a spectrum of different operations together into a coherent
system for assembly design. For example, some researchers rely on
asking the user questions about which parts should be assembled
before others in order to determine a precedence graph from which
they then find assembly sequences [1]. This is an instance of solv-
ing a very specialized problem, where geometric information is not

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.]

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/85/0004...$3.50

even utilized; only precedence data obtained by a rather error-proné
process is used. Also, some systems attempt to second-guess the
designer and automatically break the assembly into subassemblies
[5, 10]. Subassemblies created in this way do not always make

27

Figure 1. An assembly design in progress.

sense, and a combinatorial explosion of possibilities for part combi-
nations prevents the systems from handling very large assemblies in
reasonable time.

As for the automatic generation of exploded views, the authors
have been able to find only one reference which even mentions such
a capability. Strip and Maciejewski’s system Archimedes [9) pro-
duces exploded views of assemblies for the purposes of visualiza-
tion within the robot planning system. However, the geometry of
the parts is limited to arbitrarily stepped cylinders and holes whose
axes are parallel to each other, a domain in which the generation of
exploded views is unidirectional. The production of exploded views
of assemblies was only mentioned in passing and does not appear to
be interactive or general purpose.

3. Assembly Planning

A straightforward way of visualizing an assembly is as a tree,
where the leaves are individual parts and the internal nodes are sub-
assemblies. Simpler subassemblies are connected into more ‘com-
plex ones, and the root of the tree is the final completed assembly.

Different people have different ways of thinking about their
designs. Some start with the assembly and break it down into sim-
pler components. Some start with the parts and build the assembly
up from them. Typically a combination of these methods is useful.
The top-down approach works well for large complex assemblies.
The designer knows what the desired final product is and what the
major components will be, but at the outset, probably has not
thought about the smallest details. However, suppose the designer
wants to make a fixture which will hold a part during machining and
has a catalog of standard fixturing elements. He may wish to design
the fixture from the bottom up, by starting with the fixture compo-
nents from the catalog and the stock from which the part will be
machined, and building the assembly up from there.

To accommodate these different approaches, the assembly
planner allows both methods of design. The user can either create
children of any node and design from the top down, or create uncon-
nected nodes and subtrees and then attach them as children of other
nodes, designing from the bottom up. In fact, the methods are like-
ly to be used in combination in a repetitive process. Figure 1 shows

a screen capture of an assembly in progress. The user has designed
three unconnected subtrees, two of which are subassemblies, and
the third of which will perhaps be expanded into a subassembly in
the near future. Later, the user will connect the components into a
single assembly tree.

Simply specifying an assembly structure is not enough during
assembly planning. The designer may wish to think about the
geometry of the assembly components, make annotations about the
compenents’ function, construction, and connections with other
components, and later, perhaps associate a three-dimensional geo-
metric model with each part. Our assembly planner includes a sim-
ple annotation mechanism, which enables the user to enter textual
and graphical documentation for any assembly component. Figure
2 shows a component’s information window, which may be opened
by clicking on that component’s node in the tree with the mouse, It
includes an area for entering the component’s name (which is the
name that appears in the component’s pushbutton), an area for tex-
tual documentation, and a sketchpad with several drawing tools,
which can be used to plan the design. There is also an area for asso-
ciating a three-dimensional geometry with a component when this
geometry becomes available. A three-dimensional description of
the part is designed using a geometric modeler, and to associate this
data with a component, the user supplies the name of a file contain-
ing this description. Each part’s geometry may be designed in its
own coordinate system.

Although in a finished assembly model it makes sense for
only the individual parts to have an associated geometry, a simpli-
fied geometry could also be associated with unfinished subassem-
blies while the design is in progress. These geometries could
approximate the sizes and shapes the final subassemblies are
expected have, and the designer could use these approximations to
determine whether or not the subassembly would fit into the rest of
the assembly properly before finishing up the detailed design of
the parts.

4. Features and Assembly

28

Geometry alone does not conveniently provide information
about how parts in an assembly might be connected. It is very dif-

==L

[@][Z] Dialog popup | A

Figure 2. The component information window.

ficult, if not impossible, to determine whether a particular indenta-
tion in a part geometry is there to make the part lighter by removing
nonessential material or whether it is intended to mate with a pro-
trusion on another assembly component.

Features have been successfully used in geometric modelers to
supply additional information for tasks such as automated machin-
ing. This work uses assembly features to carry information appro-
priate to aid the process of putting an assembly together. We define
a set of assembly features, including several new ones, for this pur-
pose; these features are listed and shown in Figure 3. It is certainly
not an exhaustive set of possible assembly features, but it gives a
good idea of what a feature-based approach can accomplish. These
features are associated with each part’s geometry when this geome-
try is designed in the geometric modeler. Each feature contains a
geometric description (e.g. a radius, a length, a description of a sur-
face or of a cross-section curve, etc.) and a center point and orienta-
tion, defining the feature’s coordinate system with respect to its
component’s coordinate system.

Assembly-specific information carried or represented by a fea-
ture might include the types of other features it can mate with, and
the probable removal direction it indicates for the parts it helps con-
nect. For example, a cylindrical peg feature may mate with cylin-

) @ . ﬁ @
©) ‘ ’ l

Figure 3. Currently defined assembly features: (a) round
peg/hole, (b) surface, (c) location and orientation fea-
ture (no geometry), (d) dovetail and dovetail groove,
(e) threaded peg/hole, (f) peg/hole of arbitrary cross-
section.

(a)

drical hole features which have the same cross-section radius as the
peg. Parts which are mated with the help of the peg and hole may
be separated along the axis of the peg. Features may indicate other
useful information also. For example, if one component has two peg
features and the other has two hole features which are specified to
mate, vet the peg features’ axes are not parallel, the parts cannot
mate because it is physically impossible to insert both pegs into the
holes without interference.

Sometimes an assembly feature is distributed over several
assembly components and is not complete until all of these compo-
nents are connected in such a way that the sections of the feature
align. To describe this situation, we have defined the concept of par-
tial assembly features. An example of a partial feature is shown in
Figure 4 The specification of partial features is accomplished by
associating a particular assembly feature with more than one part in
the geometric modeler. The feature description also contains the
number of parts containing pieces of the same feature. Each time a
component containing a section of the feature is attached to a sub-
assembly containing another section of the same feature, the count
of feature sections in the subassembly is decremented by the num-
ber of feature pieces contained within the newly added component.
When the count is 1, the feature is complete.

i

Fig'ure 4. The hole which will be formed when the three com-
‘ ponents are aligned is an example of a partial feature.
Pockets, surfaces, and other features may be similarly

distributed over more than one assembly component.

[®@] &) Cotinect

i
:
2
B
i
#
o
E
i

Figure 5. The assembly tool.

We have created an interactive assembly specification capabil-
ity. It uses data from the assembly planner to determine the order in
which to present subassemblies to the user for the interactive speci-
fication of connections. A screen capture of the tool is shown in
Figure 5. The small display areas on the right show all the compo-
nent parts or other subassemblies belonging to the current sub-
assembly (as defined in the planner), the larger area in the middle
displays the next component the user has selected for attaching to
the subassembly, and the display area on the left shows the partial-
ly completed subassembly. A subassembly may only be selected for
the specification of connections if the geometries of all of its com-
ponents are defined. In other words, all of its components must be
either single parts, whose geometries are known from the start, or
subassemblies whose connections, and therefore geometries, have
already been specified.

A set of toggle buttons determines which types of features are
currently selectable (and highlighted). Only completed features are
shown, partial features are not visible until they are completed. At
each step, the user selects a feature or a set of features to mate on
each of the two components, and the system attempts to attach the
part to the subassembly in such a way that all the mating conditions
are met. This is accomplished by finding all potentially matching
pairs of features (by comparing geometric attributes, such as radius,
and location relative to other features on the same component), then
finding a set of feature pairs where each feature on the first compo-
nent matches exactly one feature on the second component. From
the mated features, a transformation is computed which aligns the
parts in such a way that the selected feature pairs mate. If more than
one part mating satisfies the required conditions, all possibilities are
found and the user is allowed to toggle through them and select one.
However, such an ambiguous situation can potentially indicate to
the user that a flaw exists in the design.

As components are added to a subassembly, one of several
things can happen to those components’ features. First, a copy of
any feature not used in the mating is added to the feature list of the

30

subassembly, where it can be used later to help add other compo-
nents to the subassembly. A feature which participates in a mating
may be altered. This currently applies to matings of holes with other
holes. When two holes are aligned, it is logical that they coalesce to
form a single, longer hole which may be used in a future mating.
Such a longer hole is computed and added to the feature list of the
subassembly. Finally, a feature may be eliminated in the mating.
For example, surface features mate over their entire surface.
Because of this, they are no longer useful for future matings, and
they are not inherited.

History pointers are stored with each feature. The previous
history pointer points at the previous incarnation of the feature, the
one on the component the feature was copied from. The next histo-
Ty pointer points in the other direction of increasing complexity. For
partial features and coalesced holes, a list of the components where
the pieces of the feature originated is stored instead. Because of
this, it is possible to implement a multiple undo capability for
assembly operations without using special additional storage.

5. Assembly Analysis

Being able to analyze parts for proper fit and removability is an
important capability for interactive assembly modeling. The design-
er receives immediate feedback and can redesign part geometry as
necessary without having to put the whole assembly together before
finding out that something is wrong.

The assembly tool provides several options for feedback on
component interference as parts are added to the current subassem-
bly, with varying degrees of reliability and computational speed.
The user can also select a component in the current subassembly and
examine its translational and rotational degrees of freedom to deter-
mine if the component is constrained or free to move as expected.

Three interference detection methods of progressive accuracy

