invariant. However, this multiplication may be detectable
in our finite implementation: some copies on the edge of
the tessellation may appear or disappear. In the ideal im-
plementation (requiring more computer power) these copies
are barely visible, either being too small or too foggy.

The alternative, to translate the tessellation to follow the
observer, quickly leads in the hyperbolic case to severe nu-
merical problems in the action in the group elements. The
result is that the fourth, “homogeneous” coordinate of the
transformed vertices grows exponentially large and the de-
homogenization operation loses precision. This is avoided
by the method outlined above.

4.4 Stereo

Modeling stereo vision presented challenges in the non-euclidean

case. We first describe the more familiar solution available
in the euclidean setting. The observer and the CAVE have a
fixed physical reality which should be mirrored in the mod-
els we apply to them. That is, the model coordinates for
the navigator are the same as the model coordinates of the
CAVE. In particular, the interocular separation of the ob-
server stays at a fixed ratio to the CAVE size. We found
empirically that an interocular distance of about 1/100 that
of the diagonal of the CAVE is small enough to assure fu-
sion. This translates to-a distance of about 2 inches, roughly
corresponding to human anatomy. In euclidean space, mak-
ing the CAVE larger is equivalent to shrinking the scene
while keeping the CAVE a constant size. However, in non-
euclidean settings, this equivalence no longer holds! In these
spaces, there is no change of size without also changing
shape. Consequently, it is the CAVE and observer that
changes size (and shape!) while the scene remains the same.
Of course there is no gunarantee of fusion; it may become dif-
ficult if the observer in H® becomes too large while standing
near the fixed geometry; but the danger is no different from
the physically observed difficulty of fusing stereo when you
move your hand closer to your eyes in everyday life.

The pair of images for the stereo effect is produced by
rendering each eye separately as described above by hyper-
bolically translating the scene to locate the given eye at the
origin.

4.5 Efficiency measures

To maintain the frame rate required in VR, we needed to
disable the software lighting and shading for non-euclidean
scenes {OOGL does lighting in software because of the dif-
ferent metrics of the non-euclidean geometries). We kept the
model of the tessellation simple — a wireframe, with simple,
solid tiles inside. The discrete group software in OOGL au-
tomatically culled the copies of the tessellation which lay
outside the viewing frustum of a given wall of the CAVE.
Also, we kept the number of layers of the tessellation great
enough to produce a semnse of depth, but small enough to
maintain an adequate frame rate.

5 Evaluation

We have combined the discrete group capabilities of OOGL
with VR, the only visualization paradigm for an immer-
sive, direct experience of mathematical spaces, to extend
the power of interactive 3-d visualization of such spaces. Ac-
cess to 3-manifolds via a virtual environment is a significant
addition to the tools available for mathematical research
and education. For example, as pointed out in section 3,
GeomCAVE allows direct observation of interesting prop-
erties of non-euclidean spaces, such as the right angles of
dodecahedra in hyperbolic space. GeomCAVE immediately

170

makes features of OOGL available in VR, such as a col-
lection of geometric models and discrete group operations.
Thus, a mathematician who has built a manifold for viewing
in maniview would be able to also explore it in GeomCAVE,

6 Further work

e Implement mixed mode navigation in H 3 (see conclu-
sion of Section 4.2).

o Add more features of maniview:

— Control over the size and shape of the Dirichlet
domain.

— Control over the depth of the tessellation.

— As hardware improves, re-activate the software
shading and fog effects.

e More sophisticated tools for mathematicians:

— Connections with existing manifold software (such
as snappea ([5]).

— Finer interactive control of the discrete group: se-
lecting subgroups, use of color, deformation of the
group.

— Simulation of dynamical systems in non-euclidean
spaces.

— Extend the coverage to the other five Thurston
geometries.

¢ Experiment with audio tessellation along with the ge-
ometric data. The resulting echo patterns could dis-
tinguish differently-shaped manifolds.

7 Acknowledgements

We would like to extend special thanks to Stuart Levy of the
Geometry Center for his help. Thanks are also due to Mark
Phillips and Tamara Munzner, also of the Geometry Center,
as well as Louis Kauffman, of the University of Illinois at
Chicago.

REFERENCES

[1] Callahan, M.]., Hoffman, D. and Hoffman, J.T. Com-
puter Graphics Tools for the Study of Minimal Surfaces.
Communications of the Association for Computing Ma-
chinery 31, 6 (1988), 648-661.

Cruz-Neira, Carolina, Sandin, Daniel J., DeFanti,
Thomas A., Kenyon, Robert V. and Hart, John C.
The CAVE: Audio Visual Experience Automatic Vir-
tual Environment. Communications of the Association
for Computing Machinery 35, 6 (June, 1992), 65-72.

Gunn, Charlie. Discrete Groups and Visualization of
Three Dimensional Manifolds. Computer Graphics 27
(July, 1993), 255-262. Proceedings of SIGGRAPH 1993.

[4] Thurston, William. Three Dimensional Manifolds,
Kleinian Groups and Hyperbolic Geometry. BAMS 19
11982), 417-431.

[_§}~*Weeks, Jeff. snappea — a
" tion for computing 3-manifolds”.
ftp@geom.umn.edu).

(2]

(3]

Maclntosh applica-
(available from

BUNGIE - EXHIBIT 1006 - PART 12 OF 14

el

Tracking a Turbulent Spot in an Immersive Environment

*David C. Banks, Institute for Computer Applications in Science and Engineering

Michael Kelley, Information Sciences Institute

ABSTRACT

We describe an interactive, immersive 3D system called Tracksur,
which allows a viewer to track the development of a turbulent
flow. Tracktur displays time-varying vortex structures extracted
from a numerical flow simulation. The user navigates the space
and probes the data within a windy 3D landscape. In order to sus-
tain a constant frame rate, we enforce a fixed polygon budget on
the geometry. In actual use by a fluid dynamicist, Tracktur has
yielded new insights into the transition to turbulence of a laminar
flow.

1 Introduction

Simulating the evolution of a turbulent spot has consumed
thousands of CPU hours (on a Cray 2, Cray YMP, and YMP C-90
over the course of 2.5 calendar years) [1]. We wish to animate 230
time steps produced by the simulation, which are archived as hun-
dreds of gigabytes of data. How does one visualize this large
amount of time-varying data at interactive speeds?

A new technique for locating vortices in an unsteady flow [2]
compresses the volumetric flow-data by a factor of more than a
thousand. This amount of compression seemed to promise interac-
tive visualization of a massive time-varying dataset. We therefore
developed a visualization system, Trackiur, that uses the com-
pressed vortex representation to help track the development of a
turbulent flow [3]. Tracktur uses a graphics workstation, 3D track-
ing, and a stereoscopic display to create a virtual 3D environment
populated by time-varying vortex tubes.

2 The Interactive Environment

Our target user is the theoretical flow physicist who produced
the time-varying dataset. From his perspective, the significant fea-
tures of the simulation include the flat plate, the fluid flowing over
it, the vortex structures, and the units of the computational domain
(both spatial and temporal). The combination of a plane with a
continual flow over it suggested to us a windy landscape.

*JCASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Vir-
ginia 23681. 804/864-2194 (banks@icase.edu).

iJ‘nﬁ:;nrmczrz'rm Sciences Institute, 4350 N. Fairfax Drive, Suite 400, Arling-
ton, VA 22203. 703/243-9422 (kelleym@arpa.mil).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89781-736-7/95/0004...$3.50

One of our early design decisions was to make generous use
of texture maps to enrich the virtual world. A grid-texture was an
obvious choice for the ground plane, with stenciled textures added
to denote streamwise units of the domain. To indicate the free-
stream velocity, we animate a cloud-texture on two distant walls.
Textures denote the upstream and downstream directions. Sur-
rounded by a textured landscape, a viewer is given persistent
reminders of the spatial context he is operating within. The 3D
widgets in the environment are also textured to eliminate the car-
toon quality that constant-colored polygons convey.

In an actual wind-tunnel experiment, the vortex structures
would be only millimeters in size and the free-stream velocity
would be about 30 meters per second. The lifetime of the turbulent
spot would be less than a second. Tracktur displays the 3D anima-
tion at more human scales: the geometry is larger and the simula-
tion lasts longer, each by about three orders of magnitude.

We want to help the scientist comprehend the spatial evolu-
tion of a turbulent spot; since the spot convects downstream, we let
the viewer be convected along with it to keep it in the field of view.
Widgets are convected downstream with the viewer to remain
within reach. A time-slider advances to mirror the current time
step in the animation; alternatively, the viewer can set the current
time step by adjusting the slider. Shadows on the ground plane pro-
vide a depth cue at only a small penalty in performance [4]. The
viewer can select surface, wire-frame, or fat-line representations of
the geometry. The fat-line segments (through the core of the vorti-
ces) are given widths to match the thickness of the tube and are
illuminated as one-dimensional fibers [5] in order to convey shape
from shading.

We also want to permit routine measurements of flow quanti-
ties. The viewer is given a data probe — a ray emanating from the
pointing device in the virtual environment. Tracktur locates the
nearest point on a vortex core to the probe ray, then displays
attributes (such as spatial position of the point) in a pop-up panel.

3 3D Toolkits

Tracktur is constructed from several component libraries,
including public-domain toolkits. The Minimal Reality toolkit [6]
provides the basis of a through-the-window interface that uses ste-
reoscopic display and 3D tracking for the head and hand. The
CAVE version of the application [7] uses code developed by the
Electronic Visualization Laboratory [8].

We developed a custom toolkit to implement 3D menus
(using Hershey fonts), buttons, and sliders. We also developed a
calibration tool for the 3D trackers to determine the proper matrix
transforms. The user interactively aligns coordinate axes (dis-
played on the screen) to establish the correct rotation matrix. The
various transformations are written to a file and need not be recom-
puted unless the equipment is moved.

171

'.:‘.1.;

A backward-tilted S-shaped vortex head that develops in the late
stages of transition from a laminar flow to a turbulent spot.

4 The Fixed Polygon Budget

A difficult aspect of developing an interactive system is pre-
serving a fixed frame rate. Our scene-updates are typically domi-
nated by the time spent drawing the vortex tubes, so we budget a
fixed number of polygons with which to model them. The turbu-
lent spot increases in geometric complexity as the simulation
progresses: a single vortex tube at time 28 develops into about 150
tubes at time 221. An SGI Onyx with RealityEngine2 graphics sus-
tains about 15 frames per second with a fixed count of 9000 poly-
gons.

In the early stages of the simulation, the polygon budget
allows a finer resolution than we have computed. We therefore re-
sample the vortex skeleton at a higher spatial resolution in order to
exhaust the supply of polygons. But in the late stages of the simu-
lation it is imperative to dole out the polygons in a miserly fashion.
The vortex skeletons are down-sampled according to a set of heu-
ristics designed to preserve significant geometric features. The re-
sampling works as a filter on the original skeletal representation of
the vortex core. The first sample-point is always retained. After a
point is retained, subsequent points along the skeleton are rejected
unless any of the following hold:

e the arclength exceeds a threshold;
s the integrated curvature exceeds a threshold;
o the radius of the cross-section changes quickly.

Sometimes a vortex skeleton enters a small spiral from which
it never exits. To guard against wasted samples, we reject points on
the skeleton where the ratio of the skeleton’s radius to its radius of
curvature exceeds a threshold (we use the constant 0.7). These
heuristics maintain a reasonable amount of geometric detail at the
late stages of the simulation.

5 What Has Been Learned

The scientist who generated the dataset (Dr. Bart Singer)
agreed to use the system to study how a turbulent spot develops.
He has learned two new things about the evolution of the turbulent
spot. In order to place them in their context, we give a brief
descriptive summary of the spot’s development.

First, Singer discovered a backwards-tilted S-shaped vortex
head in the late stages of transition (see figure). The vortex is simi-
lar in shape to a structure seen in experimental data for a similar
flow. Singer had not observed this feature in his dataset until he
used our system. Evidently, the interactivity permitted him to
select the right combination of a particular viewpoint and a partic-

172

ular time step. This could, in principal, have been discovered with
the visualization system he was a accustomed to using, but its
more limited interactivity made the feature much harder to find.

Secondly, the visualization system gave Singer his first view
of the dynamic behavior of “necklace” vortices, which define the
outer extent of the turbulent spot. They eventually shred into
pieces, curling into horseshoe and hairpin vortices. Without Track-
tur, Singer had been unable to track the necklace vortices through
their entire history. These findings are initial evidence that the sys-
tem can assist in the research task.

6 Conclusions

Visualization tools can certainly ecommunicate research
results, but it is not yet clear how well they help produce research
results. We have created an interactive 3D visualization system,
called Tracktur, and put it into the hands of the scientist. Tracktur
provides a textured environment for examining the onset of turbu-
lence. The viewer can navigate through the landscape and interact
with a turbulent spot through 3D menus, buttons, sliders, and a
data probe. In the hands of a fluid scientist, the system has yielded
new insights into the development of a turbulent spot.

Acknowledgments

This work was supported under NASA contract No, NAS1-
19480. We thank Bill von Ofenheim and the Data Visualization
Lab at NASA Langley Research Center for use of their stereo
glasses. We thank Jonathan Shade at the San Diego Supercomputer
Center for help in creating transparent texture maps.

Bibliography
[1] Singer, Bart A. and Ron Joslin, “Metamorphosis of a hairpin

vortex into a young turbulent spot.”’ Physics of Fluids A, Vol.
6, No. 11 (Nov. 94).

[2] Banks, David C. and Bart A. Singer, “Vortex Tubes in Turbu-
lent Flows: Identification, Representation, Reconstruction.”
Proceedings of Visualization '94.

“The Tracktur Home Page,” World Wide Web URL
hitp://www.icase.edu/~banks/tracktur/vortex/doc/
tracktur.html.

Blinn, Jim, “Me and My (Fake) Shadow.” IEEE Computer
Graphics & Applications (Jim Blinn’s Corner), January 1988,
pp. 82-86.

[5] Banks, David C., “Illumination in Diverse Codimensions.”
Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-
29, 1994). In Computer Graphics Proceedings, Annual Con-
ference Series, 1994, ACM SIGGRAPH, New York, pp. 327-
334,

“MR Toolkit,” World Wide Web URL
http://web.cs.ualberta.ca/~graphics/MRToolkit.html.

Banks, David C., “The Onset of Turbulence in a Shear Flow
Over a Flat Plate.” [Demonstration] SIGGRAPH °94
VROOM Exhibit. In Visual Proceedings: The Art and Inter-
disciplinary Programs of SIGGRAPH 94, Computer Graphics
Annual Conference Series, 1994, ACM SIGGRAPH, New
York, p. 235. Also in “Fluid Mechanics,” World Wide Web

[3]

[4]

(6]

[7]

#" http:/fwww.ncsa.uiuc.edu/EVL/docs/VROOM/HTML/
PROJECTS/23Banks.html.

“CAVE User’s Guide,” World Wide Web URL
http://www.ncsa.uiuc.edu/EVL/docs/html/CAVEGuide.html.

(8]

Behavioral Control for Real-Time Simulated Human Agents

John P. Granieri, Welton Becket,
Barry D. Reich, Jonathan Crabtree, Norman I. Badler

Center for Human Modeling and Simulation
University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389

granieri/becket/reich/crabtree/badler@graphics.cis.upenn. edu

Abstract

A system for controlling the behaviors of an interac-
tive human-like agent, and executing them in real-time,
is presented. It relies on an underlying model of contin-
uous behavior, as well as a discrete scheduling mecha-
nism for changing behavior over time. A multiprocess-
ing framework executes the behaviors and renders the
motion of the agents in real-time. Finally we discuss
the current state of our implementation and some areas
of future work.

1 Introduction

As rich and complex interactive 3D virtual environ-
ments become practical for a variety of applications,
from engineering design evaluation to hazard simula-
tion, there is a need to represent their inhabitants as
purposeful, interactive, human-like agents.

It is not a great leap of the imagination to think
of a product designer creating a virtual prototype of a
piece of equipment, placing that equipment in a virtual
workspace, then populating the workspace with virtual
human operators who will perform their assigned tasks
(operating or maintaining) on the equipment. The de-
signer will need to instruct and guide the agents in the
execution of their tasks, as well as evaluate their per-
formance within his design. He may then change the
design based on the agents’ interactions with it.

Although this scenario is possible today, using only
one or two simulated humans and scripted task anima-
tions [3], the techniques employed do not scale well to
tens or hundreds of humans. Scripts also limit any abil-
ity to have the human agents react to user input as well
as each other during the execution of a task simulation.
We wish to build a system capable of simulating many
agents, performing moderately complex tasks, and able
to react to external (either from user-generated or dis-
tributed simulation) stimuli and events, which will oper-
ate in near real-time. To that end, we have put together
a system which has the beginnings of these attributes,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/95/0004...$3.50

and are in the process of investigating the limits of our
approach. We describe below our architecture, which
employs a variety of known and previously published
techniques, combined together in a new way to achieve
near real-time behavior on current workstations.

We first describe the machinery employed for behav-
ioral control. This portion includes perceptual, control,
and motor components. We then describe the multipro-
cessing framework built to run the behavioral system in
near real-time. We conclude with some internal details
of the execution environment. For illustrative purposes,
our example scenario is a pedestrian agent, with the
ability to locomote, walk down a sidewalk, and cross
the street at an intersection while obeying stop lights
and pedestrian crossing lights.

2 Behavioral Control

The behavioral controller, previously developed in [4]
and [5], is designed to allow the operation of paral-
lel, continuous behaviors each attempting to accom-
plish some function relevant to the agent and each con-
necting sensors to effectors. Our behavioral controller
is based on both potential-field reactive control from
robotics [1, 10] and behavioral simulation from graph-
ics, such as Wilhelms and Skinner’s implementation [20]
of Braitenberg’s Vehicles [7]. Our system is structured
in order to allow the application of optimization learn-
ing [6], however, as one of the primary difficulties with
behavioral and reactive techniques is the complexity of
assigning weights or arbitration schemes to the various
behf.vioi‘s in order to achieve a desired observed behav-
ior [b, 6].

Behaviors are embedded in a network of behavioral
nodes, with fixed connectivity by links across which only
floating-point messages can travel. On each simulation
step the network is updated synchronously and with-
out order dependence by using separate load and emit
phases using a simulation technique adapted from [14].
Because there is no order dependence, each node in the
network could be on a separate processor, so the net-
work could be easily parallelized.

Each functional behavior is implemented as a sub-
network of behavioral nodes defining a path from the
geométry database of the system to calls for changes
in the database. Because behaviors are implemented
as networks of simpler processing units, the representa-
tion is more explicit than in behavioral controllers where
entire behaviors are implemented procedurally. Wher-

173

ever possible, values that could be used to parameterize
the behavior nodes are made accessible, making the en-
tire controller accessible to machine learning techniques
which can tune components of a behavior that may be
too complex for a designer to manage. The entire net-
work comprising the various sub-behaviors acts as the
controller for the agent and is referred to here as the
behavior net. ,

There are three conceptual categories of behavioral
nodes employed by behavioral paths in a behavior net:

perceptual nodes that output more abstract results
of perception than what raw sensors would emit.
Note that in a simulation that has access to a com-
plete database of the simulated world, the job of
the perceptual nodes will be to realistically limit
perception, which is perhaps opposite to the func-
tion of perception in real robots. -

motor nodes that communicate with some form of mo-
tor control for the simulated agent. Some motor
nodes enact changes directly on the environment.
More complex motor behaviors, however, such as
the walk motor node described below, schedule a
motion (a step) that is managed by a separate,
asynchronous execution module.

control nodes which map perceptual nodes to motor
nodes usually using some form of negative feed-
back.

This partitioning is similar to Firby’s partitioning of
continuous behavior into active sensing and behavior
control routines [10], except that motor control is con-
sidered separate from negative feedback control.

2.1 Perceptual Nodes

The perceptual nodes rely on simulated sensors to
perform the perceptual part of a behavior. The sensors
access the environment database, evaluate and output
the distance and angle to the target or targets. A sam-
pling of different sensors currently used in our system is
described below. The sensors differ only in the types of
things they are capable of detecting.

Object: An object sensor detects a single object. This
detection is global; there are no restrictions such
as visibility limitations. As a result, care must
be taken when using this sensor: for example, the
pedestrian may walk through walls or other objects
without the proper avoidances, and apparent real-
ism may be compromised by an attraction to an
object which is not visible. It should be noted that
an object sensor always senses the object’s current
location, even if the object moves. Therefore, fol-
lowing or pursuing behaviors are possible.

Location: A location sensor is almost identical to an
object sensor. The difference is that the location
is a unchangeable point in space which need not
correspond to any object.

Proximity: A proximity sensor detects objects of a
specific type. This detection is local: the sensor can
detect only objects which intersect a sector-shaped
region roughly corresponding to the field-of-view of
the pedestrian.

Line: A line sensor detects a specific line segment.

Terrain: A terrain sensor, described in [17], senses the
navigability of the local terrain. For example, the
pedestrian can distinguish undesirable terrain such
as street or puddles from terrain easier or more de-
sirable to negotiate such as sidewalk.

Field-of-View: A field-of-view sensor, described
in [17], determines whether a human agent is visi-
ble to any of a set of agents. The sensor output is
proportional to the number of agents’ fields-of-view
it is in, and inversely proportional to the distances
to these agents.

2.2 Control Nodes

Control nodes typically implement some form of neg-
ative feedback, generating outputs that will reduce per-
ceived error in input relative to some desired value or
limit. This is the center of the reactivity of the be-
havioral controller, and as suggested in [9], the use of
negative feedback will effectively handle noise and un-
certainty.

Two control nodes have been implemented as de-
scribed in [4] and [5], attract and avoid. These loosely
model various forms of tazis found in real animals [7, 11]
and are analogous to proportional servos from control
theory. Their output i1s in the form of a recommended
new velocity in polar coordinates:

Attract An attract control node is linked to # and d
values, typically derived from perceptual nodes,
and has angular and distance thresholds, ¢y and
ts. The attract behavior emits Af and Ad values
scaled by linear weights that suggest an update
that would bring d and @ closer to the threshold
values. Given weights ky and kg :

if —tg <0<ty
if 6 > 1
otherwise

0
Af = { ko(0 —tg%
kg(lg + tg

_J o ifd <ty
= { ka(d —t3) otherwise.

Avoid The avoid node is not just the opposite of ai-
tract. Typically in atiract, both 6 and d should
be within the thresholds. With aveid, however,
the intended behavior is usually to have d outside
the threshold distance, using 6 only for steering
away. The resulting avoid formulation has no an-

- gular threshold:

0 ifd>ty
A=< ke(m—8) ifd<tzandf >0
ko(—m — 6) otherwise

ifd>t,
otherwise.

A= { gd(td_ 2

174

'{ """"""" Goal

Wall

Figure 1: Sawtooth path due to potential field discon-
tinuities

2.3 Motor Nodes

Motor nodes for controlling non-linked agents are im-
plemented by interpreting the Ad and A values emit-
ted from control behaviors as linear and angular ad-
justments, where the magnitude of the implied velocity
vector gives some notion of the urgency of traveling in
that direction. If this velocity vector is attached di-
rectly to a figure so that requested velocity is mapped
directly to a change in the object’s position, the result-
ing agent appears jet-powered and slides around with
infinite damping as in Wilhelms and Skinner’s environ-
ment [20].

2.3.1 Walking by-sampling potential fields

When controlling agents that walk, however, the mo-
tor node mapping the velocity vector implied by the
outputs of the control behaviors to actual motion in
the agent needs to be more sophisticated. In a walking
agent the motor node of the behavior net schedules a
step for an agent by indicating the position and orien-
tation of the next footstep, where this decision about
where to step next happens at the end of every step
rather than continuously along with motion of the agent.
The velocity vector resulting from the blended output
of all control nodes could be used to determine the next
footstep; however, doing so results in severe instability
around threshold boundaries. This occurs because we
allow thresholds in our sensor and control nodes and as
a result the potential field space is not continuous. Tak-
ing a discrete step based on instantaneous information
may step across a discontinuity in field space. Consider
the situation in Fig. 1 where the agent is attracted to a
goal on the opposite side of a wall and avoids the wall
up to some threshold distance. If the first step is sched-
uled at position p1, the agent will choose to step directly
toward the goal and will end up at ps. The agent is then
well within the threshold distance for walls and will step
away from the wall and end up at ps, which is outside
the threshold. This process then repeats until the wall

175

Max Step Length

Figure 2: The fan of potential foot locations and orien-
tations

Perceplual E Control 5 Motor
Nodes i Nodes : Nodes.
Goal Sensor d: Attract 5d |
v 1
I 9! miin-d, min- € V
& P scaling weights (4} 8o i
\ Walk
' 7 5d |
Walker Sensor d E Avoid d i in-step hkin
Jfov, max-d ' max-d ! max-step
:H H
averaging weights (4) T scaling weights (4) g T step-speed
: L
Cylinder Sensor |9 Avoid - 1
Jfov, max-d o 1 max-d 8]
averaging weights (4) |F———==| scaling weights (4}

Figure 3: An example behavior net for walking

is cleared, producing an extremely unrealistic sawtooth
path about the true gradient in the potential field.

To eliminate the sawtooth path effect, we sample the
value of the potential field implied by the sensor and
control nodes in the space in front of the agent and step
on the location yielding the minimum sampled ‘energy’
value. We sample points that would be the agent’s new
Jocation if the agent were to step on points in a number
of arcs within a fan in front of the agent’s forward foot.
This fan, shown in Fig. 2, represents the geometrically
valid foot locations for the next step position under our
walking model. This sampled step space could be ex-
tended to allow side-stepping or turning around which
the agent can do [3], though this is not currently ac-
cessed from the behavior system described in this pa-
per. For each sampled step location, the potential field
value is computed at the agent’s new location, defined
as the average location and orientation of the two feet.

2.4 An example behavior net

The example behavior net in Fig. 3 specifies an over-
all behavior for walking agents that head toward a par-
ticular goal object while avoiding obstacles (cylinders in
this case) and each other. The entire graph is the behav-
iornet, and each path from perception to motor output
is considered a behavior. In this example there are three
behaviors: one connecting a goal sensor to an attraction
controller and then to the walk node (a goal-attraction
behavior), another connecting a sensor detecting prox-
imity of other walking agents to an avoidance controller

and then to the walk node (a walker-avoidance behav-
ior), and a final behavior connecting a cylinder prox-
imity sensor to an avoidance behavior and then to the
walk node (a cylinder-avoidance behavior).

Each node has a number of parameters that deter-
mine its behavior. For example, the walker sensor and
the cylinder sensor nodes have parameters that indi-
cate how they will average all perceived objects within
their field of view and sensing distance into a single ab-
stract object. The Attract and Avoid nodes have scaling
weights that determine how much output to generate as
a function of current input and the desired target values.

The walk motor behavior manages the sampling of
the potential field by running data through the percep-
tual and control nodes with the agent pretending to be
in each of the sampled step locations. The walk node
then schedules the next step by passing the step location
and orientation to the execution module.

Note that this example has no feedback, cross-talk,
or inhibition within the controller, though the behav-
ioral controller specification supports these features [5].
Although this example controller itself is a feed-forward
network, it operates as a closed-loop controller when at-
tached to the agent because the walk node’s scheduling
of steps affects the input to the perceptual nodes.

Our use of aftract and avoid behaviors to control
groups of walking agents may appear on the surface
like Ridsdale’s use of hot and celd tendencies to control
agents in his Director’s Apprentice system ‘[18}. How-
ever, his system was not reactive and on-line as our
behavioral controller is, it did not limit perception of
agents, it had no structured facilities for tuning behav-
ior parameters, and it did not take advantage of devel-
opments in reactive control and behavioral simulation.
His system focused on the use of an expert system to
schedule human activity conforming to stage principles
and used hot and cold tendencies to manage complex
human behavior and interaction. We limit the use of
behaviors to reactive navigation and path-planning, us-
ing parallel transition networks rather than one large
expert system to schedule events, and we look to sym-
bolic planning systems based on results in cognitive sci-
ence, such as [3, 8, 16], to automate high-level human
behavior and complex human interactions.

3 Parallel Automata ;

Parallel Transition Networks (PaT-Nets) are transi-
tion networks that run in parallel with the behavior
net, monitor it, and edit it over time [8]. They are
a mechanism for scheduling arbitrary actions and in-
troducing decision-making mto the agent architecture.
They monitor the behavior net (which may be thought
of as modeling low level instinctive or reflexive behavior)
and make decisions in special circumstances. For exam-
ple, the agent may get caught in a dead-end or other
local minimum. PaT-Nets recognize situations such as
these, override the “instinctive” behavior simulation by
reconfiguring connectivity and modifying weights in the
behavior net, and then return to a monitoring state.

In our pedestrian example we combine object and
location sensors (in perceptual nodes) with attract con-
trol nodes, and proximity and line sensors (in percep-
tual nodes) with avoid control nodes. Pedestrians are
attracted to street corners and doors, and they avoid
each other, light poles, buildings, and the street except
at crosswalks.

176

Init State 3
Bind
Avoidances

Go North

State 1 State 2

Go North to
SE Comer

Cross to
NE Corner

Figure 4: North-net: A sample ped—-net shown graph-

ically

Figure 5: A pedestrian crossing the street

We use PaT-Nets in several different ways.
Light-nets control traffic lights and ped-nets control
pedestrians. Light-nets cycle through the states of the
traffic light and the walk and don’t walk signs.

Fig. 4 is asimple ped-net, a north-net, which moves
a pedestrian north along the eastern sidewalk through
the intersection. Initially, avoidances are bound to the
pedestrian so that it will not walk into walls, the street,
poles, or other pedestrians. The avoidances are always
active even as other behaviors are bound and unbound.
In State 1 an attraction to the southeast corner of the
intersection is bound to the pedestrian. The pedestrian
immediately begins to walk toward the corner avoiding
obstacles along the way. When it arrives the attraction
is unbound, the action for State 1 is complete. Nothing
further-happens until the appropriate walk light is lit.
When-it is Iit, the transition to State 2 is made and ac-
tion' Cross to NE Corner is executed. The agent crosses
the street. Finally, the agent heads north.

Fig. 5 shows a pedestrian controlled by a north-net.
The transition to State 2 was just made so the pedes-
trian is crossing the street at the crosswalk.

e

N

4 Real-Time Simulation Environment
The run-time simulation system is implemented as a
group of related processes, which communicate through
shared memory. The system is broken into a minimum
of 5 processes, as shown in Fig. 6. The system relies
on IRIS Performer [19] for the general multiprocessing
framework. Synchronization of all processes, via spin
locks and video clock routines, is performed in the con-
TROL process. It is also the only process which performs
the edits and updates to the run-time visual database.
The cuULL and DRAW processes form a software render-

ing pipeline, as described in [19]. The pipeline improves -

overall rendering throughput while increasing latency,
although the two frame latency between cONTROL and
DRAW 1s not significant for our application. Qur conN-
TROL process is equivalent to the APP process in the
Performer framework. We have used this framework to
animate multiple real-time human figures [12].

4.1 CONTROL Process

The CONTROL process runs the main simulation loop
for each agent. This process runs the PaT-Nets, and un-
derlying behavior net-for each agent. While each agent
has only one behavior net, they may have several PaT-
Nets running, which sequence the parameters and con-
nectivity of the nodes in the behavior net over time (as
shown in Fig. 6).

By far the costliest computation in the CONTROL pro-
cess, for the behaviors modeled in this example applica-
tion, is the evaluation of the Walk motor node in the be-
havior net, and specifically the selection of the next foot
position. Since this computation is done only once for
every footfall, it usually runs only every 15 frames or so
(the average step time being about 1/2 second, and av-
erage frame rate 30Hz). If the CONTROL process starts
running over its allotted frame time, the Walk nodes
will start reducing the number of points sampled for the
next foot position, thereby reducing computation time.
The only danger here is described in Section 2.3.1, the
potential for a sawtogth path. If many agents are walk-
ing at similar velocities, they can all end up computing
their next-step locations at the same frame-time, creat-
ing a large computation spike which causes the whole
simulation to hiccup. (It is visually manifested by the
feet landing in one frame, then the swing foot suddenly
appearing in mid-stride on the next frame.) We attempt
to even out the computational load for the Walk motor
node evaluation by staggering the start times for each
agent, and thereby distributing the computation over
about 1/2 second for all agents.

Another computational load in the CONTROL process
comes from the evaluation of the conditional expressions
in the Pat-Nets, which may occur on every frame of the
simulation. They are currently implemented via LISP
expressions, so evaluating a condition involves parse and
eval steps. In practice, this is fairly fast as we pre-
compile the LISP, but as the PaT-Nets increase in com-
plexity it will be necessary to replace LISP with a higher
performance language (i.e. compiled C code). This may
remove some of the generality and expressive power en-
joyed with LISP.

Another technique employed to improve perfor-
manc , when evaluating a large number of Pat-Nets and
behavior nets, is to have the CONTROL process spawn
copies of itself, with each copy running the behavior of
a subset of the agents. This works as long as updates
to the visual database are exclusive to each CONTROL

process. (In practice this is the case, since the current
behavior net for one agent will not edit any parameters
for another agent in the visual database.) Of course, the
assumption in spawning more processes is that there are
available CPUs to run them.

The CONTROL process also provides the outputs of
the motor nodes in the behavior net to the MoTION
process. These outputs, in the case of the walking be-
havior, are the position and orientation of the agent’s
next foot fall. It also evaluates the motion data (joint
angles) coming from the MOTION process, and performs
the hecessary updates to the articulation matrices of the
human agent in the visual database.

4.2 SENSE Process

The SENSE process controls and evaluates the sim-
ulated sensors modeled in the perceptual nodes of the
behavior net. It provides the outputs of the percep-
tual nodes to the CONTROL process, which uses them
for the inputs to the control nodes of the behavior
net. The main computational mechanism the sensors
employ are intersections of simple geometric shapes (a
set of points, lines, frustums or cones) with the visual
database, as well as distance computations. This pro-
cess corresponds to an ISECT process in the Performer
framework.

The major performance parameters of this process
are the total number of sensors as well as the complex-
ity and organization of the visual database. Since it
needs read-only access to the visual database, several
SENSE processes may be spawned to balance the load
between the number of sensors being computed, and the
time needed to evaluate them. (These extra processes

. are represented by the dotted SENSE process in Fig. 6.)

177

There is a one frame latency between the outputs of the
perceptual nodes and the inputs to the control nodes
i the behavior net (which are run in the coNTROL
process), but this is not a significant problem for our
application.

4.3 MOTION Process

Once the agent has sensed its environment and de-
cided on on appropriate action to take, its motion is
rendered via real-time motion generators, using a mo-
tion system that mixes pre-recorded playback and fast
motion generation techniques.

We use an off-line motion authoring tool [2, 13] to
create and record motions for our human figures. The
off-line system organizes motion sequences into posture
graphs (directed, cyclic graphs). Real-time motion play-
back is simply a traversal of the graph in time. This
makes the run-time motion generation free from frame-
rate variations. The off-line system also records mo-
tions for several levels-of-detail (LOD) models of the
human figure. (Both the bounding geometry of the fig-
ure, as well as the articulation hierarchy (joints) are
represented at several levels of detail.) The three levels-
of-detail we are using for the human figure are:

1. A 73 joint, 130 DOF, 2000 polygon model, which
#"has articulated fingers and flexible torso, for use in
close-up rendering, and fine motor tasks (Jack®),

2. A 17 joint, 50 DOF, 500 polygon model, used for
the bulk of rendering; it has no fingers, and the
flexible torso has been replaced by two joints,

;' SENSE
. process '

PaT-Nets

output of
perceptual
nodes

process

output of
motor control

nodes

N % MOTION
{ MOTION '
!] process

|, process '

intersections

motion frames

motion frames

1: perceptual nodes 2: control nodes 3: motor control nodes ————=a. = data flow

visual database

.=~ 7"\ =control flow

Figure 6: The multiprocessing framework for the real-time behavior execution environment

3. An 11 joint, 21 DOF, 120 polygon model used when
the human agent is at a large distance from the
camera.

This process produces a frame of motion for each
agent, then sleeps until the next frame boundary (the
earliest any new motion could be needed). It provides
the correct motion frame for the currently active LOD
model in the visual database. For certain types of sen-
sors modeled in the perceptual nodes, this process will
also be requested to provide a full (highest LOD) update
to the visual database, in the case where a lower LOD
is currently being used, but a sensor needs to interact
with the highest LOD model.

The motion database consists of one copy of the pos-
ture graphs and associated motion between nodes of the
posture graph. Each transition is stored at a rate of
60HZ, on each LOD model of the human agent. This
database is shared by all agents. Ounly a small amount of
private state information 1s maintained for each agent.

The MOTION process can effectively handle about 10-
12 agents at update rates of 30Hz (on a 100MHz MIPS
R4000 processor). Since the process only has read-only
access to the motion database, we can spawn more MO-
TION processes if needed for more agents.

4.4 Walking as an example

A MOTION process animates the behaviors specified
by an agent’s motor nodes by playing back what are
essentially pre-recorded chunks of motion. As a time-
space tradeoff, this technique provides faster and less
variable run-time execution at the cost of additional
storage requirements and reduced generality. The in-
teresting issues arise in how we choose a mapping from

178

motor node outputs to this discrete representation; it
plays a significant role in determining how realistic the
animated agents will be.

The primary motor behavior to be executed is walk-
ing. Our full walking algorithm combines kinematics
with dynamic balance control and is capable of gener-
ating arbitrary curved-path locomotion [15]. In order
to reduce computational costs, however, we have not
incorporated the algorithm directly into our run-time
system. Instead, as implied by the preceding discussion,
we record canonical “left” and “right” steps generated
by the algorithm (which is a component of our off-line
motion authoring system) and then play them back in
an alternating fashion to produce a continuous walking
motion.

The input to the appropriate MOTION process’s walk-
ing subsystem consists of the specification of the desired
next foot position and orientation (for the swing foot).
This input is itself already discretized, as the motor
node responsible (the Walk motor node) for evaluat-
ing how desirable 1t is for the agent to be at particular
positions only computes the desirability criteria at a set
number of points (in Fig. 2). However, even given that
there are only n possibilities for the placement of the
swing foot on the next step, this would still require us
to record order n? possible steps, since the planted foot
could -be in any one of the n different positions at the
start of the step (determined by the last step taken)
and any one of the n at the end.

Without recording all n? distinct steps it is neces-
sary to choose the best match among those that we do
record. One of the most important criteria in obtaining
realistic results is to minimize foot slippage relative to

() Swing foot
. Planted foot

(w.r.t. next step)

Figure 7: Posture graph for variable step length walking
(3 step sizes)

the ground; foot slippage occurs when the pre-recorded
movement (in particular its amount and direction) does
not match that specified by the walk motor node at
run time. On the basis that translational foot slippage
is far more evident than rotational slippage (at least
from our informal observations), we currently adopt an
approach in which we record three types of step: short,
medium, and long. Turning is accomplished by rotating
the agent around his planted foot smoothly throughout
the step. Having three step sizes significantly increases
the chances of being able to find a close match to the
desired step size, and, in fact, the walk motor node
can be constrained to only consider the three arcs of
the next foot location fan (see Fig. 2) that correspond
exactly to our recorded step sizes. Doing so eliminates
translational slippage, but has the sawtooth hazard.

The posture graph for all possible step-to-step fran-
sitions is shown in Fig. 4.4. Notice that even with only
three kinds of straight-line walking there are many pos-
sible transitions, and hence numerous motion segments
to be recorded. However, allowing for variable step
lerigth is very important. For instance, an attract con-
trol node can be set to drive the agent to move within
a certain distance of a goal location; were there only a
single step size, the agent might be unable to get suf-
ficiently close to the goal without overshooting it each
time, resulting in degenerate behavior (and possible vir-
tual injury).

One thing worthy of mention with respect to the
number of different walking steps required to reproduce
arbitrary curved-path locomotion is that while there are
theoretically order n? of them, the similarities are sig-

nificant. It is thus possible that it will prove feasible to
store a single full set of steps along with a little more in-
formation to represent how those steps can be modified
slightly to realistically turn the agent left or right, and
make it sufficiently fast for our real-time applications.

5 Conclusions and Future Work

We have designed a multiprocessing system for the
real-time execution of behaviors and motions for sim-
ulated human-like agents. We have used only toy ex-
amples to date, and are eager to push the limits of the
system to model more complex environments and inter-
actions amongst the agents.

Although our agents currently have limited abilities
locomotion and simple posture changes), we will be
eveloping the skills for interactive agents to. perform

maintenance tasks, handle a variety of tools, negotiate
terrain, and perform tasks in cramped spaces. Our goal
is a system which does not provide for all possible be-
haviors of a human agent, but allows for new behaviors
and control techniques to be added and blended with
the behaviors and skills the agent already possesses.

We have used a coarse grain parallelism to achieve

interactive frame rates. The behavior net lends itself
to finer grain parallelism, as one could achieve using a
threaded approach. Qur system now is manually tuned
and balanced (between the number of agents, the num-
ber of sensors per agent, and the complexity of the vi-
sual database%. A fruitful area of research is in the au-
tomatic load balancing of the MOTION and SENSE pro-
cesses, spawning and killing copies of these processes,
and doling out agents and sensors, as agents come and
go in the virtual environment. Results in real-time sys-
tem scheduling and approximation algorithms will be
applicable here.

6 Acknowledgments

This research is partially supported by ARO DAALO3-
89-C-0031 including U.S. Army Research Laboratory;
Naval Training Systems Center N61339-93-M-0843;
Sandia Labs AG-6076; ARPA AASERT DAAH04-94-G-
0362; DMSO DAAH04-94-G-0402; ARPA DAMDI17-94-
J-4486; U.S. Air Force DEPTH through Hughes Missile
Systems F33615-91-C-0001; DMSO through the Univer-
sity of lowa; and NSF CISE CDA88-22719.

References
[1] Ronald C. Arkin. Integrating behavioral, percep-
tual, and world knowledge in reactive navigation.
In Pattie Maes, editor, Designing Autonomous
Agents, pages 1056-122. MIT Press, 1990.

[2) Norman I. Badler, Rama Bindiganavale, John
Granieri, Susanna Wei, and Xinmin Zhao. Posture
interpolation with collision avoidance. In Proceed-
ings of Computer Animation '94, Geneva, Switzer-
land, May 1994. IEEE Computer Society Press.

[3] Norman I. Badler, Cary B. Phillips, and Bonnie L.

Webber. Simulating Humans: Computer Graphics,

_Animation, and Control. Oxford University Press,
June 1993.

Welton Becket. Simulating Humans: Computer
Graphics, Animation, and Conlrol, chapter Con-
trolling forward simulation with societies of behav-
iors.

[4

e

L9

[5]

9]

[10]

[11]

[12]

[13]

[17]

Welton Becket and Norman I. Badler. Integrated
behavioral agent architecture. In The Third Con-
ference on Computer Generated Forces and Behav-
ior Representation, Orlando, Florida, March 1993.

Welton M. Becket. Optimization and Policy
Learning for Behavioral Control of Simulated Au-
tonomous Agents. PhD thesis, University of Penn-
sylvania, 1995. In preparation,

Valentino Braitenberg. Vehicles: Erzperiments in
Synthetic Psychology. The MIT Press, 1984.

J. Cassell, C. Pelachaud, N. Badler, M. Steedman,
B. Achorn, W. Becket, B. Douville, S. Prevost, and
M. Stone. Animated conversation: rule-based gen-
eration of facial expression, gesture and spoken in-
tonation for multiple conversational agents. In Pro-
ceedings of SIGGRAPH ’94. In Computer Graph-
ics, pages 413-420, 1994.

Thomas L. Dean and Michael P. Wellman. Plan-
ning and Control. Morgan Kaufmann Publishers,
Inc., 1991.

R.. James Firby. Building symbolic primitives with
continuous control routines. In Artificial Intelli-
gence Planning Systems, 1992.

C. R. Gallistel. The Organization of Action: A New
Synthesis. Lawrence Elerbaum Associates, Publish-
ers, Hillsdale, New Jersey, 1980. Distributed by the
Halsted Press division of John Wiley & Sons.

John P. Granieri and Norman I. Badler. In Ray
Earnshaw, John Vince, and Huw Jones, editors,
Applications of Virtual Realily, chapter Simulating
Humans in VR. Academic Press, 1995. To appear.

John P. Granieri; Johnathan Crabtree, and Nor-
man I. Badler. Off-line production and real-time
playback of human figure motion for 3d virtual en-
vironments. In IEEE Virtual Reality Annual Inter-
national Symposium, Research Triangle Park, NC,
March 1995. To appear.

David R. Haumann and Richard E. Parent. The
behavioral test-bed: obtaining complex behavior
from simple rules. The Visual Computer, 4:332—
337, 1988. :

Hyeongseok Ko. Kinematic and Dynamic Tech-
niques for Analyzing, Predicting, and Animatling
Human Locomotion. PhD thesis, University of
Pennsylvania, 1994,

Micheal B. Moore, Christopher W. Geib, and
Barry D. Reich. Planning and terrain reasoning.
In Working Notes - 1995 AAAI Spring Symposium
on Integrated Planning Applications., 1995. to ap-
pear.

Barry D. Reich, Hyeongseok Ko, Welton Becket,
and Norman I. Badler. Terrain reasoning for hu-
man locomotion. In Proceedings of Computer Ani-
mation ‘94, Geneva, Switzerland, May 1994. IEEE
Computer Society Press.

180

[18] Gary Ridsdale.

[20] Jane Wilhelms and Robert Skinner.

The Director’s Apprentice: An-
imating Figures in a Constrained Environment.
PhD thesis, Simon Fraser University, School of
Computing Science, 1987.

[19] John Rohlf and James Helman. IRIS Performer:

A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. Compuler Graphics,
pages 381-394, 1994.

A ’notion’
for interactive behavioral animation control. IEEE
Computer Graphics and Applications, 10(3):14-22,
May 1990.

A

Impulse-based Simulation of Rigid Bodies

Brian Mirtich *
John Canny T

University of California at Berkeley

Abstract

We introduce a promising new approach to rigid body
dynamic simulation called impulse-based simulation. The
method is well suited to modeling physical systems with large
numbers of collisions, or with contact modes that change
frequently. All types of contact (colliding, rolling, sliding,
and resting) are modeled through a series of collision im-
pulses between the objects in contact, hence the method is
simpler and faster than constraint-based simulation. We
have implemented an impulse-based simulator that can cur-
rently achieve interactive simulation times, and real time
simulation seems within reach. In addition, the simulator
has produced physically accurate results in several qualitative
and quantitative experiments. After giving an overview of
impulse-based dynamic simulation, we discuss collision de-
tection and collision response in this context, and present
results from several ezperiments.

1 Introduction

The foremost requirement of a dynamic simulator is phys-
ical accuracy. The simulation is to take the place of a phys-
ical model, and hence 4ts utility is directly related to how
well it mimics this model. A second important requirement
is computational efficiency. Many applications (e.g. elec-
tronic prototyping [9]) benefit most from interactive simula-
tion; others (e.g. virtual reality) demand real time speeds.

This paper discusses a mew approach to dynamic simu-
lation called impulse-based simulation, founded on the twin
goals of physical accuracy and computational efficiency. The
initial results from our impulse-based simulator look very
promising, both from speed and accuracy standpoints. In
this paper we give an overview of the impulse-based ap-
proach, then discuss collision detection and resolution’ and
results from several experiments.

* mirtich@cs.berkeley.edu, Department of Computer Science, 387
Soda Hall, University of California, Berkeley, CA 94720. Supported
in part by NSF grant #FD93-18412.

Tife@cs.berkeley. edu, Department of Computer Science, 529 Soda
Hall, University of California, Berkeley, CA 94720. Supported in part
by NSF grant #FD093-19412.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1995 Symposium on Interactive 3D Graphics, Monterey CA USA
© 1995 ACM 0-89791-736-7/85/0004...$3.50

181

Related work

Moore and Wilhelms give one of the earliest treatments of
iwo fundamental problems in dynamic simulation: collision
detection and collision response [14]. Hahn also pioneered
dynamic simulation, modeling sliding and rolling contacts
using impact equations [8]. His work is the precursor of our
method, although we extend the applicability of impulse dy-
namics to resting contacts, and model multiple objects in
contact with impulse trains as well. These early approaches
all suffered from inefficient collision detection and unrealis-
tic assumptions concerning impact dynamics (e.g. infinite
friction at the contact point).

Cremer and Stewart describe Newton [7, 17], probably
the most advanced general-purpose dynamic simulator in use
today. Newton’s forte is the formulation and simulation of
constraint-based dynamics for linked rigid bodies, although
the contact modeling is fairly simplistic. Baraff has studied
multiple rigid bodies in contact [1, 2], and shown that com-
puting contact forces in the presence of friction is NP-hard
[3]. A summary of his work in this area appears in [4].

There are few full treatments of frictional collisions.
Routh [16] is still considered the authority on this subject,
and more recently, Keller gives an excellent treatment of
frictional collisions [10]. Our analysis is extremely similar to
that of Bhatt and Koechling, who independently derived the
same key equation for integration of relative contact veloc-
ities during impact. They give a classification of frictional
collisions, based on the flow patterns of tangential contact
velocity [6].

Wang and Mason have studied two-dimensional impact
dynamics for robotic applications, based on Routh’s ap-
proach [18]. Finally, a number of researchers have inves-
tigated several problems and paradigms for dynamic simu-
lation and physical-based modeling [5, 19, 20].

1.1

2 The impulse-based method

One of the most difficult aspects of dynamic simulation
is dealing with the interactions between bodies in contact.
Most of the work which has been done in this area falls into
the category of constraint-based methods [4, 5, 7, 19]. An
example will illustrate the approach. Consider a ball rolling
along a table top. The normal force which the table ex-
erts on the ball is a constraint force that does no work on
thq:‘})h.ll, but only enforces a non-penetration constraint. In
thé Lagrangian constraint-based approach, this force is not
modeled explicitly, but is accounted for by a constraint on
the configuration of the ball (here, its z-coordinate is held
constant). Alternatively, one may model the forces explic-
itly, solving for their magnitudes using Lagrange multipli-

ers. However this still requires complete, exact knowledge of
the instantaneous state of contact between the objects, since
that determines where and when such forces can exist.

A problem with this method is that as a dynamic sys-
tem evolves, the constraints may change many times, e.g.
the ball may roll off the table, may hit an object on the
table, etc. Determining the correct equations of motion for
the ball means keeping track of these changing constraints,
which can become complicated. Moreover, it is not even al-
ways clear what type of constraint should be applied; there
exist at least two models for rolling contact which in some
cases predict different behaviors [11]. Finally, impacts are
not easily incorporated into the constraint model, as they
generally give rise to impulses, not constraint forces present
over some interval. These collision impulses must be handled
separately, as in [1].

In contrast to constraint-based methods, impulse-based
dynamics involves no explicit constraints on the configura-
tions of the moving objects; when the objects are not collid-
ing, they are in ballistic trajectories. Furthermore, all modes
of continuous contact are handled via trains of impulses ap-
plied to the objects, whether they be resting, sliding, or
rolling on one another. Under impulse-based simulation, a
block resting on a table is actually experiencing many rapid,
tiny collisions with the table, each of which is resolved using
only local information at the collision point.

Now consider the case of a ball bouncing along the terrain
shown in figure 1. Under constraint-based simulation, the

Figure 1: A nightmare for constraint-based simulation.

constraints change as the ball begins traveling up the ramp,
leaves the ramp, and settles into a roll along the ground. All
these occurrences must be detected and processed. Impulse-
based simulation avoids having to worry about such transi-
tions. In this sense, it is a more physically sound treatment
since it does not establish an artificial boundary between,
for example, bouncing and rolling, but instead handles the
entire continuum of contact between these phases.

We do not wish to discredit constraint-based methods of
dynamic simulation; indeed, there are many situations for
which they are the perfect tool. We believe the impulse-
based method is better suited to simulating many common
physical systems, especially those which are collision inten-
sive, or that have many changes in contact mode. We ex-
amine the possibility of using both methods of simulation
together, combining the strengths of each, in section 6.

Two obvious questions concerning impulse-based simula-
tion are: (1) Does it work, i.e. does it result in physically
accurate simulations?, and (2) Is it fast enough to be practi-
cal? We defer more thorough answers to these questions to
section 5, but for now state the following: impulse-based dy-
namic simulation does produce physically accurate results,
and the approach is extremely fast. Simulations can cer-
tainly be run interactively with our current implementation,
and we believe real time simulation is a reachable goal.

3 Collision detection

Impulse-based dynamic simulation is inherently collision
intensive, since collisions are used to affect all types of inter-
action between objects. Hahn found collision detection to be

the bottleneck in dynamic simulation [8], and efficient data
structures and algorithms are needed to make impulse-based
simulation feasible.

Currently in our simulator, all objects are geometrically
modeled as convex polyhedra or combinations of them. The
polyhedral restriction is not at all severe, because our colli-
sion detection system is very insensitive to the complexity of
the geometric models, permitting fine tessellations. Indeed,
some of the simulations described in section 5 use polyhedral
models with over 20,000 facets, with negligible slowdown.

3.1 Prioritizing collisions

Obviously, checking for possible collisions between all
pairs of objects after every integration step is too inefficient.
Instead, collisions are prioritized in a heap (see figure 2). For

@

Figure 2: Prioritizing collisions in a heap.

each pair of objects in the simulation, there is an element
in the heap, which also contains a lower bound on the time
of impact (TOI) for the given pair of objects. The heap is
sorted on the TOI field, thus the TOI field of the top heap
element always gives a “safe” value for the next collision free
integration step.

After an integration step, the distance between the ob-
jects on the top of the heap (call them A and B) must be
recomputed. In our implementation, we use the Lin-Canny
closest features algorithm [12]. This is an extremely effi-
cient algorithm which maintains the closest features (ver-
tices, edges, or faces) between a pair of convex polyhedra.
It is fastest in applications like dynamic simulation, when
the objects move continuously through space and geometric
coherence can be exploited.

Collisions are declared when the distance between objects
falls below some threshold e.. First suppose the distance
between A and B lies above e.. In this case, the dynamic
states of A and B along with the output of the Lin-Canny
algorithm are used to compute a new conservative bound
on the time of impact of A and B. The A-B heap pair
is updated with this new value, possibly affecting its heap
position, and the integrator is ready for another step.

If the distance between A and B is less than e., a collision
is declared. The collision resclution system computes and
applies collision impulses to the two objects, changing their
dynamic state. At this point the TOI is recomputed for these
objects as before, however another step is necessary: the
TOI between all object pairs of the form A-z and B-z must
also be recomputed. The reason is that the TOI estimator
uses a ballistic trajectory assumption to bound the time of
impact-for a pair of objects. Applying collision impulses to
objects violates this assumption, and so every previous TOI
involving such an object becomes invalid. Note that this is
an O(n) update step.

3.2 Further reducing collision checks and TOI updates

The strategy described above reduces collision checks sig-
nificantly, especially between objects which are far apart or

182

moving slowly. However, the number of collision checks is
still O(n?) because they are performed periodically between
every pair of objects. A more serious problem is the O(n)
TOI update step that must be performed every time a colli-
sion impulse is applied to an object. What the heap scheme
misses is the fact that some objects never come near each
other, and collision checks as well as TOI updates for such
pairs of objects are unnecessary.

To alleviate this problem, we employ a spatial tiling tech-
nique based on Overmars’ efficient point-location algorithms
in fat subdivisions [15]. For each object ¢ in the simulation,
one can easily find an enclosing, axis-aligned rectangular vol-
ume B; which is guaranteed to contain the object during the
next integration step. This is possible because of the ballistic
trajectory assumption.

The idea is to keep track of which objects are near each
other, by keeping track of which bounding boxes overlap.
To this end, the physical space is partitioned into a cubical
tiling with resolution p. Under this tiling, Coordinates in
physical space are mapped to integers under the tiling map

" 2 _ [/]
y | — | lv/e]

z L2/

Let S; be the set of tiles which B; intersects. We store ¢ ina
hash table multiple times, hashed on the coordinates of each
tile in S;. Clearly objects i and j can only possibly collide
during the next integration step if 7 and j are both present in
some hash bucket. Only in this case do we keep object pair
i-j in the collision heap. Furthermore, if object i experiences
a collision impulse, TOIs need only be recomputed for object
pairs i-k, where object k shares a hash bucket with object 1.

This scheme tremendously reduces the number of collision
checks and TOI computations that must be performed, since
most objects are generally in the vicinity of only a small
subset of the set of all objects. Collision detection is still
O(nz) in the worst case, but almost always better. Consider
for example the case of simulating a vibratory bowl feeder
sorting hundreds of small parts. Since the number of parts
near another part can be bounded by a constant, the number
of collision checks are O(n).

One added wrinkle is that one must actually employ a
hierarchy of spatial tilings and hash tables of varying resolu-
tions, in order to prevent having to hash a sofa according to
tiles the size of ice cubes. The hierarchy is needed to keep
the rate of bucket updates small. See Overmars for more
information on this multiple resolution hashing scheme [15].

1)

3.3 Time of impact estimator

The time of impact (TOI) estimator takes the current
dynamic state (pose and velocity) of two objects as well as
the closest points between them, and returns a lower bound
on the time of impact for those two objects. We assume
the objects are convex; concavities are handled by convex
decomposition.

Let c; and c; be the current closest points between two
objects i and j on a collision course. Let d be a unit vector
in the direction of ¢; — cj, and d be the distance between c;
and ¢;. A convexity argument shows that no matter where
the ultimate contact points are located, these contact points
must cover the distance d in the direction of d before collision
can occur. From this one obtains a conservative bound on
the time of collision:

d
e >

B e e ey)
(v; = vi)-d+riwi + 7505

183

where v denotes center of mass velocity, r denotes maximum
“radius,” w denotes maximum angular velocity magnitude,
and the subscripts refer to the body. This bound assumes
both objects are ballistic, so that gravitational effects cancel
out. If, for instance, object i is a fixed table top, then the
gravitational acceleration of j must be accounted for.

The conservation of momentum can be used to bound the
angular velocity magnitude of a body in a ballistic trajec-
tory:

[(Jows, Tywy, Jzws)T ||
Wmax S n s
min(Jz, Jy, Jz)

where J is the vector of diagonal elements of the diagonalized
mass matrix, and w is the current angular velocity.

(3)

4 Computing collision impulses

When two bodies collide, an impulse p must be applied to
one of the bodies to prevent interpenetration; an equal but
opposite impulse —p is applied to the other. Once p and
its point of application are known, it is a simple matter to
compute the new center of mass and angular velocities for
each body. After updating these velocities, dynamic state
evolution can continue, assuming ballistic trajectories for all
moving objects. The point of application is computed by the
collision detection system, and hence the central problem
in collision resolution is to determine the collision impulse
p. Accurate computation of this impulse is critical to the
physical accuracy of the simulator. We now discuss how p
may be computed; a more detailed discussion can be found
in [13].

4.1 Assumptions for collisions

For impulse-based simulation, it is not feasible to make
gross simplifying assumptions such as frictionless contacts
or perfectly elastic collisions. Our approach for analyzing
general frictional impacts is similar to that of Routh [16],
although we derive equations which are more amenable to
numerical integration. Keller also gives an excellent treat-
ment [10], and Bhatt and Koechling’s analysis is quite sim-
ilar to ours [6]. There are three assumptions central to our
analysis:

1. Infinitesimal collision time
2. Poisson’s hypothesis
3. Coulomb friction model

The infinitesimal collision time assumption is commonly
made in dynamic simulation [10]. It implies that the po-
sitions of the objects can be treated as constant over the
course of a collision. Furthermore, the effect of one object
on the other can be described by an impulse, which unlike
a normal force can instantaneously change velocities. This
assumption does not imply that the collision can be treated
as a discrete event. The velocities of the bodies are not
constant during the collision, and since collision (frictional)
forces depend on these velocities, it is necessary to examine
the dynamics during the collision. In short, a collision is a
single/point on the time line of the simulation, but to deter-
miné“the collision impulses which are generated, one must
use a magnifying glass to “blow up” this point, examining
what happens inside the collision.

Poisson’s hypothesis is an approximation to the complex
deformations and energy losses which occur when two real
bodies collide. Trying to explicitly model these stresses and
deformations is too slow for interactive simulation; Poisson’s

hypothesis is a simple empirical rule that captures the basic
behavior during a collision. A collision is divided into a com-
pression and a restitution phase, based on the direction of
the relative contact velocity along the surface normal. The
boundary between these phases is the point of maximum
compression, at which point the relative normal contact ve-
locity vanishes. Let piosar be the magnitude of the normal
component of the impulse imparted by one object onto the
other over the entire collision, and pm. be the magnitude of
the normal component of the impulse just over the compres-
sion phase, i.e. up to the point of maximum compression.
Poisson’s hypothesis states

(4)

where ¢ is a constant between zero and one, called the coef-
ficient of restitution, that is dependent on the objects’ ma-
terials.

Our final assumption is the Coloumb friction law. At a
particular point during a collision between bodies A and B,
let u be the contact velocity of A relative to B, let u; be
the tangential component of u, and let {i; be 2 unit vector
in the direction of u;. Let f, and f; be the normal and
tangential (frictional) components of force exerted by B on
A, respectively. Then

Ptotal = (1 -+ e)pmc

w£0 = fi=—p|fd (5)
w=0 = |[f <plfal (6)

where p is the coefficient of friction. While the bodies are
sliding relative to one another, the frictional force is exactly
opposed to the direction of sliding. If the objects are sticking
(ie. u; vanishes), all that is known is that the total force
lies in the friction cone.

4.2 Initial collision analysis

A possible collision is reported whenever the distance be-
tween two bodies falls below the collision epsilon, .. This
is only a possible collision, because the objects may be re-
ceding. If the normal component of the relative velocity of
the closest points has appropriate sign, no collision impulse
should be applied. Note we are assuming the existence a nor-
mal direction; polyhedral objects have discontinuous surface
normals, however reasonable surface normals can always be
found.

Establish a collision frame with the z-axis aligned with
the collision normal, directed towards body 1. Let u =
1 — u; be the relative contact velocity between bodies 1
and 2. When u, < 0, a collision impulse must be applied to
prevent interpenetration; it is necessary to analyze the dy-
namics of the bodies during the collision to determine this
impulse. We use v to denote the collision parameter; that
is, v is a variable which starts at zero, and continuously in-
creases through the course of the collision until it reaches
some final value, v¢. All velocities are functions of 4, and
p(7) denotes the impulse delivered to body 1 up to point
« in the collision. The goal is to determine p(7y), the final
total impulse delivered.

Initially, one might choose v to be time since start of
impact, but in fact this is not a very good choice. If the
dynamics are studied with respect to time, the collision im-
pulses are computed by integrating force. Unfortunately,
the forces generated during a collision are not easily known;
one can assume a Hooke’s law behavior at the contact point,
begging the question of how to choose the spring constants.
Nonetheless, a variety of “penalty methods” do attempt to
choose such spring constants.

184

A way of avoiding this problem is to choose a different
parameter for the collision, namely ¥ = p., the normal com-
ponent of the impulse delivered to body 1. The scalar p. is
zero at the moment the collision begins, and increases during
the entire course of the collision, so it is a valid parameter.
Let Au(y) denote the total change in relative contact ve-
locity at point ¥ in the collision, and p(v) be the impulse
delivered to body 1 up to this point. Straightforward physics
leads to the equation

Au(y) = Mp(7) (7

(see [13] for a detailed analysis). Here, M is a 3 x 3 matrix
dependent only upon the masses and mass matrices of the
colliding bodies, and the locations of the contact points rel-
ative to their centers of mass. By our infinitesimal collision
time assumption, M is constant over the entire collision. Itis
useful to differentiate equation 7 with respect to the collision
parameter v, obtaining

u'(y) = Mp'(7)- (8)

4.3 Sliding mode

While the tangential component of u is non-zero, the bod-
ies are sliding relative to each other, and p’ is completely
constrained. Let #(7) be the relative direction of sliding
during the collision, that is 8 = arg(us + fuy).

Lemma 1 If the collision parameter 4 is chosen to be p,
then while the bodies are sliding relative to one another,

—pcosf
p'=| —psiné (9)
1
Proof: pi = %ﬁf— = %f-d‘::‘ = f, f—t—;, where f is the instan-

taneous force exerted by body 2 on body 1. Under sliding
conditions, fo = —(pucos@)f: = —(pcos 8)-‘%;—‘. Combining
results gives p, = —pu cos§. The derivation for p, is similar.

Finally, p, = gpj =1.0
It is now clear why p. is a good choice for the collision
parameter. By applying the results of lemma 1 to equation 8,

with 8 expressed in terms of u, and uy, we obtain:

ul =# : 2
z N

u; =M _“_té\/-;l-—lu_i (10)
1

u

This nonlinear differential equation for u is valid as long as
the bodies are sliding relative to each other. By integrating
the equation with respect to the collision parameter ¥ (i.e.
pz), we can track u during the course of the collision. Pro-
jections of the trajectories into the w-uy plane are shown
in figure 3 for a particular matrix M; the crosses mark the
initial sliding velocities.

The basic impulse calculation algorithm proceeds as fol-
lows. After computing the initial u and verifying that u.
is negative, we numerically integrate u using equation 10.
During this integration, u, will increase'. When it reaches
zero, the point of maximum compression has been attained.

1Baraff and others have noted that it is possible to construct
cases for which u, decreases as p, increases [3]. However, this sit-
uation seems to be extremely rare; it has not occurred in any of our
simulations.

