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with additional C routines; the C language is more flexi-
ble and powerful than any higher level geometric scripting
language we could design ourselves.

10 Results

We have constructed a placement editor for real-time inter-
active walkthrough of large building databases. One of our
primary goals was to work with oil"-the-shelf input and dis-
play hardware, a goal which required the use of a software
framework to allow the user to perform unambiguous 3D
manipulation with 2D devices.

Our solution is based on object associations, a. frame-
work that provides the flexibility to combine pseudo-physical
properties with convenient teleological behavior in a mix-
ture tailor-made for a. particular application domain or a
special set of tasks. We have found that such a mixture of
the “magical” capabilities of geometric editing systems with
some partial simulations of real, physical behavior makes a
very attractive and easy-to-use editing system for 3D virtual
environments. The combination of goal-oriented alignments,
such as snap~dragging, with application specific physical be-
havior, such as gravity and solidity, reduce the degrees of
freedom the user has to deal with explicitly while maintain-
ing most of the convenience of a good geometrical drafting
program.

We found it to be practical to separate into two types
of procedures the mapping of 2D pointing to 3D motion
and the enforcement of the desired object placement be-
havior. These procedures are clearly defined and easy to
implement as small add-on functions in C. Geometric and
database toolkits allow high-level coding and ease of modi-
fication. Our object associations normally cause little com-
putational overhead to the WALKTHRU system. This is an
important concern, since keeping the response time of the
system fast and interactive is a crucial aspect of its usability
and user-friendliness

The result is a technique that makes object placement
quick and accurate, works with “drag-and-drop” as well as
“cut and paste” interaction techniques, can provide desir-
able local object behavior and an automated grouping facil-
ity, and greatly reduces the need for multiple editing modes
in the user interface. The resulting environment is devoid
of fancy widgets, sophisticated measuring bars, or multiple
view windows. To the novice user it seem that not much is

happening — objects simply follow the mouse to reasonable,
realistic locations. And that is how ideally it should be: any
additional gimmick is an indication that the paradigm has
not yet been pushed to its full potential. Some issues remain
to be fully resolved, such as dealing with association loops,
but our prototype demonstrates that this approach provides
a simple, flexible, and practical approach to constructing
easy-to-use 3D manipulation interfaces.

A prototype implementation in the context of a model
of a building with more than 100 rooms has proven to be
attractive and has reduced by a large factor the tedium
of placing furniture and wall decorations. One of the au-
thors has constructed scenes of rather cluttered offices with

many pieces of furniture, fully loaded with books, pencils,
coffee cups, etc. in five to ten minutes (see Figure C2).
The implementation in our specific WALKEDIT applica-
tion domain required only 5 programmer-defined procedures
to fully characterize most of the desired object behavior.
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Abstract

In this paper, a method of encapsulating camera tasks into well
defined units called “camera modules" is described. Through this

encapsulation, camera modules can be programmed and

sequenced, and thus can be used as the underlying framework for
controlling the virtual camera in widely disparate types of graphi-

cal environments. Two examples of the camera framework are

shown: an agent which can film a conversation between two virtual

actors and a visual programming language for filming a virtual
football game.
Keywords: Virtual Environments, Camera Control, Task Level
Interfaces.

1. Introduction

Manipulating the viewpoint, or a synthetic camera, is fundamental
to any interface which must deal with a three dimensional graphi-
cal environment, and a number of articles have discussed various

aspects of the camera control problem in detail [3, 4, 5, 19]. Much
of this work, however, has focused on techniques for directly

manipulating the camera.

ln our view, this is the source of much of the difficulty. Direct con-

trol of the six degrees of freedom (DOFS) of the camera (or more,
if field of view is included) is often problematic and forces the

human VE participant to attend to the interface and its “control

knobs” in addition to — or instead of — the goals and constraints
of the task at hand. In order to achieve task level interaction with a

computer-mediated graphical environment, these low-level, direct
controls, must be abstracted into higher levei camera primitives,

and in turn, combined into even higher level interfaces. By clearly

specifying what specific tasks need to be accomplished at a partic-
ular unit of time, a wide variety of interfaces can be easily con-
structed. This technique has already been successfully applied to
interactions within a Virtual Museum [8].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed tor
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
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2. Related Work

Ware and Osborne [19] described several different metaphors for

exploring 3D environments including “scene in han ," “eyeball in
hand," and “flying vehicle control" metaphors. All of these use a 6

DOF input device to control the camera position in the virtual envi-
ronment. They discovered that flying vehicle control was more use-

ful when dealing with enclosed spaces, and the “scene in hand”

metaphor was useful in looking at a single object. Any of these
metaphors can be easily implemented in our system.

Mackinlay et al [16] describe techniques for scaling camera motion
when moving through virtual spaces, so that, for example, users

can always maintain precise control of the camera when approach-
ing objects of interest. Again, it is possible to implement these
techniques using our camera modules.

Brooks [3,4] discusses several methods for using instrumented

mechanical devices such as stationary bicycles and treadmills to

enable human VE participants to move through virtual worlds
using natural body motions and gestures. Work at Chapel Hill, has,
of course, focused for some time on the architectural “walk-

through,” and one can argue that such direct manipulation devices
make good sense for this application. While the same may be said
for the virtual museum, it is easy to think of circumstances — such

as reviewing a list of paintings —-— in which it is not appropriate to
require the human participant to physically walk or ride a bicycie.

At times, one may wish to interact with topological or temporal
abstractions, rather than the spatial. Nevertheless, our camera mod-

ules wili accept data from arbitrary input devices as appropriate.

Blinn [2] suggested several modes of camera specification based

on a description of what should be placed in the frame rather than

just describing where the camera shouid be and where it should be
aimed.

Phillips et al suggest some methods for automatic viewing control
[18]. They primarily use the “camera in hand” metaphor for view-

ing human figures in the Jack” system, and provide automatic fea-
tures for maintaining smooth visual transitions and avoiding

viewing obstructions. They do not deal with the problems of navi-
gation, exploration or presentation.



Karp and Feiner describe a system for generating automatic pre-
sentations, but they do not consider interactive control of the cam-
era [l 2}.

Gleicher and Witkin [10] describe a system for controlling the
movement of a camera based on the screen-space projection of an
object, but their system works primarily for manipulation tasks.

Our own prior work attempted to establish a procedural framework
for controlling cameras [7]. Problems in constructing generalizable

procedures led to the current, constraint-based framework
described here. Although this paper does not concentrate on meth-
ods for satisfying multiple constraints on the camera position, this

is an important part of the overall camera framework we outline
here. For a more complete reference, see [9]. An earlier form of the
current system was applied to the domain of a Virtual Museum [8].

3. CamDroid System Design

This framework is a formal specification for many different types
of camera control. The central notion of this framework is that

camera placement and movement is usually done for particular rea-
sons, and that those reasons can be expressed formally as a number

of primitives or constraints on the camera parameters. We can iden-

tity these constraints based on analyses of the tasks required in the
specific job at hand. By analyzing a wide enough variety of tasks, a

large base of primitives can be easily drawn upon to be incorpo-
rated into a particular task-specific interface.

3.1 Camera Modules

A camera module represents an encapsulation of the constraints
and a transformation of specific user controls over the duration that
a specific module is active. A complete network of camera modules

with branching conditions between modules incorporates user con-
trol, constraints, and response to changing conditions in the envi-
ronment overtime. ‘

Our concept of a camera module is simila.r to the concept of ashot
in cinematography. A shot represents the portion of time between

the starting and stopping of filming a particular scene. Therefore a
shot represents continuity of all the camera parameters over that

period of time. The unit of a single camera module requires an
additional level of continuity, that of continuity of control of the
camera. This requirement is added because of the ability in com-

puter graphics to identically match the camera parameters on either
side of a cut, blurring the distinction of what makes up two sepa-
rate shots. Imagine that the camera is initially pointing at character
A and following him as he moves around the environment. The

camera then pans to character B and follows her for a period of
time. Finally the camera pans back to character A. In cinematic

terms, this would be a single shot since there was continuity in the
camera parameters over the entire period. In our terms, this would

be broken down into four separate modules. The first module’s task

is to follow character A. The second module’s task would be to pan
from A to B in a specified amount of time. The third moduEe’s task

would be to follow B. And finally the last m0dule’s task would be

to pan back from B to A. The notion of breaking this cinematic shot
into 4 modules does not specify implementation, but rather a for-
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ma] description of the goals or constraints on the camera for each
period of time.

As shown in figure 1, the generic module contains the following
components:

 
  

 
Constraint LII!

  
Cutncrn

Paramotu rs

 
Figure 1: Genetic camera module containing a controller,
an initializer, a constraint list, and local state

' the local state vector. This must always contain the camera

position, camera view normal, camera “up” vector, and field
of view. State can also contain values for the camera parame-
ter derivatives, a value for time, or other local information

specific to the operation of that module. While the module is
active, the state's camera parameters are output to the ren-
derer.

- initiaflizer. This is a routine that is run upon activation of a

module. Typical initial conditions are to set up the camera
state based on a previous module's state.

- controller. ‘This component translates user inputs either

directly into the camera state or into constraints. There can be
at most one controller per module.

- constraints to be satisfied during the time period that the mod-

ule is active. Some examples of constraints are as follows:
- maintain the camera's up vector to align with world up.

- maintain height relative to the ground

- maintain the camera's gaze (i.e. view normal) toward a
specified object

- make sure a certain object appears on the screen.

- make sure that several objects appear on the screen

0 zoom in as much as possible

In this system, the constraint list can be viewed simply as a black
box that produces values for some DOFs of the camera. The con-

straint solver combines these constraints using a constrained opti-
mizing solver to come up with the final camera parameters for a
particular module. The camera optimizer is discussed extensively

in [9]. Some constraints directly produce values for a degree of
freedom, for example, specifying the up vector for the camera or

the height of the camera. Some involve calculations that might pro-
duce multiple DOFs, such as adjusting the VlBW normal of the cam-

era tolook at a particular object. Some, like a path planning

constraint discussed in [8] are quite complicated, and generate a
series of DOFs over time through the environment based on an ini-
tial and final position.



App] icatiun
Specific

Processes.‘
Object 1nlerfac:(s}

 
extended 313 system

Figure 2: Overall CamDroid System

3.2 The CamDroid System

The overall system for the examples given in this paper is shown in
figure 2.

The CamDroid System is an extension to the 3D virtual environ-
ment software testbed developed at MIT [6]. The system is struc-

tured this way’ to emphasize the division between the virtual
environment database, the camera framework, and the interface

that provides access to both. The CamDroid system contains the
following elements.

- A general interpreter that can run pre-specified scripts or man-
age user input. The interpreter is an important part in develop-
ing the entire runtime system. Currently the interpreter used is
TCL with the interface widgets created with TX [17]. Many
commands have been embedded in the system including the

ability to do dynamic simulation, visibility calculations, finite
element simulation, matrix computations, and various data-

base inquiries. By using an embedded interpreter we can do

rapid prototyping of a virtual environment without sacrificing
too much performance since a great deal of the system can
still be written in a low level language like C. The addition of

TK provides convenient creation of interface widgets and
interprocess communication. This is especially important
because some processes Inight need to perform computation
intensive parts of the algorithms; they can be offloaded onto

separate machines.
- A built-in renderer. This subsystem can use either the hard-

ware of a graphics workstation (currently SGIs and HPs are

supported), or software to create a high quality antialiased
image.

- An object database for a particular environment.
- Camera modules. Described in the previous section. Essen-

tially, they encapsulate the behavior of the camera for differ-

ent styles of interaction. They are prespecified by the user and
associated with various interface widgets. Several widgets can
be connected to several camera modules. The currently active

camera module handies all user inputs and attempts to satisfy
all the constraints contained within the module, in order to

compute camera parameters which will be passed to the ren-
derer when creating the final image. Currently, only one cam-
era module is active at any one time, though if there were

multiple viewports, each of them could be assigned a unique
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camera.

4. Example: Filming a conversation

The interface for the conversation filming example is based on the

construction of a software agent which perceives changes in lim-

ited aspects of the environments and uses a number of primitives to

implement agent behaviors. The sensors detect movements of
objects within the environment and can perceive which character is
designated to be talking at any moment.

In general, the position of the camera should be based on conven-
tional techniques that have been established in filming a conversa-
tion. Several books have dissected conversations and come up with

simplified rules for an effective presentation [1, 14}. The conversa-
tion filmer encapsulates these rules into camera modules which the

software agent calls upon to construct (or assist a director in the
construction of) a film sequence.

4.1 Implementation

The placement of the camera is based on the position of the two

people having the conversation (see figure 3). However, more
important than placing the camera in the approximate geometric
relationship shown in figure 3 is the positioning of the camera
based on what is being framed within the image.

 
Figure 3: Filming a conversation [Katz88].

Constraints for an over-the-shoulder shot:

° The height of the character facing the view should be approx-
imately 1/2 the size of the frame.

- The person facing the view should be at about the 2/3 line on
the screen.

- The person facing away should be at about the 1/3 line on the
screen.

- The camera should be aligned with the world up.
0 The field of view should be between 20 and 60 degrees.

- The camera view should be as close to facing directly on to

the character facing the viewer as possible.
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Figure 4: Two interconnected camera modules for filming a conversation

Constraints for a corresponding over—the-shoulder shot:

- The same constraints as described above but the people
should not switch sides of the screen; therefore the person fac-
ing towards the screen should be placed at the 1/3 line and the
person facing away should be placed at the 2/3 line.

Figure 3 can be used to find the initial positions of the cameras if
necessary, but the constraint solver contained within each camera

module makes sure that the composition of the screen is as desired.

Figure 4 shows how two camera modules can be connected to auto-
matically film a conversation.

A more complicated combination of camea modules can be incor-

porated as the behaviors of a simple software agent. The agent con-
tains a rudimentary reactive planner which pairs camera behaviors
(combination of camera primitives) in response to sensed data. The
agent has two primary sets of camera behaviors: one for when

character 1 is speaking; and one for when character 2 is speaking.
The agent needs to have sensors which can “detect” who is speak-
ing and direct a camera module from the desired set of behaviors to

become active. Since ‘the modules necessarily keep track of the
positions of the characters in the environment, the simulated actors

can move about while the proper screen composition is maintained.

  Bebnvio1sforCI:arat.‘l.:r I talking Bcl1aviu1'sIorChamcIer1 lalkin  
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Figure 5: Conversation filming agent and its behaviors.

Figure 6 shows an over-the-shoulder shot automatically generated
by the conversation filming agent.

142

 
5. Example: the Virtual Football Game

The virtual football game was chosen as an example because there
already exists a methodology for filming football games that can be
called upon as a reference for comparing the controls and resultant

output of the virtual football game. Also, the temporal flow of the

football game is convenient since it contains starting and stopping
points, specific kinds of choreographed movements, and easily
identifiable participants. A visual programming language for com-

bining camera primitives into camera behaviors was explored.
Finally, an interface, on top of the visual programming language,
based directly on the way that a conventional football game is
filmed, was developed.

It is important to note that there are significant differences between

the virtual football game and filming a real football game.
Although attempts were made to make the virtual football game
rea1istic— three-dimensional video images of players were incor-
porated and football plays were based on real plays [15] —this vir-

tual football game is intended to be a testbed for intelligent camera
control rather than a portrayal of a real football game.

Sgrflmplemeritation
Figure 7 shows the visual programming environment for the cam-

era modules. Similar in spirit to Haeberli’s ConMan [11] or Kass’s
G0 [13], the system allows the user to connect camera modules,

 



and drag and drop initial conditions and constraints, in order to
control the output of the CamDroid system. The currently active
camera module's camera state is used to render the view of the

graphical environment. Modules can be connected together by
drawing a line from one module to the next. A boolean expression
cam then be added to the connector to indicate when control should
be shifted from one module to the connected module. It is possible

to set up multiple branches from a single module. At each frame,
the branching conditions are evaluated and control is passed to the
first module whose branching condition evaluates to TRUE.

Constraints can be instanced from existing constraints, or new ones
can be created and the constraint functions can be entered via a text
editor. Information for individual constraints can be entered via the

keyboard or mouse clicks on the screen. When constraints are
dragged into a module, all the constraints in the module are
inciuded during optimization. Constraints may also be grouped so

that slightly higher level behaviors composed of a group of low
level primitives may be dragged directly into a camera module.

lnitial conditions can be dragged into the modules to force the min-
imization to start from those conditions. Initial conditions can be

retrieved at any time from the current state of the camera. Camera
modules can also be indicated to use the current state to begin opti-

mization when control is passed to them from other modules.

Controllers can also be instanced from a palette of existing control-
lers, or new ones created and their functions entered via a text edi-

tor. If a controller is dragged into the module. it will translate the
actions of the user subject to the constraints within the module. For

example, a controller that will orbit about an object may be added
to a module which constrains the camera’s up vector to align with
the world up vector.

Camera Module 1

   

 
 

Q dofiaus3 'Pan flying vehicle

5!
Vida ‘ugh * quarterback *game camera ilald goal cam

G9 G9 =:
69 track bnfifil track receive:

lliflh H526 track :11:
G6 1 kf

lock rolgc W G66939
over the shoulder

Figure 7: Visual Programming Environment for camera
modules

The end~user does not necessarily wish to be concerned with the

visual programming language for camera control. An interface that
can be connected to the representation used for the visual program-

ming language is shown in Figure 7. The interface provides a
mechanism for setting the positions and movements of the players
within the environment, as well as a way to control the virtual cam-

eras. Players can be selected and new paths drawn for them at any

time. The players will move along their paths in response to click-
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ing on the appropriate buttons of the football play controller.
Passes can be indicated by selecting the appropriate players at the

appropriate time step and pressing the pass button on the play con-
troller.

Figure 8: The virtual football game interface

The user can also select or move any of the camera icons and the

viewpoint is immediately shifted to that of the camera. Essentially,

pressing one of the camera icons activates a camera module that
has already been set up with initial conditions and constraints for
that camera. Cameras can be made to track individual characters or

the ball by selecting the players with the middle mouse button.
This automatically adds a tracking constraint to the currently active

module. If multiple players are selected, then the camera attempts

to keep both players within the frame at the same time by adding
multiple tracking constraints. The image can currently be fine-
tuned by adjusting the constraints within the visual programming
environment. A more complete interface would provide more

bridges between the actions of the user on the end—user interface
and the visual programming language...

Figure 9: View from “game camera” of virtual football
game.



6. Results

We have implemented a variety of applications from a disparate set
of visual domains, including the virtual museum [8], a mission

planner [21], and the conversation and football game described in
this paper. While formal evaluations are notoriously difficult, we
did enlist the help of domain experts who could each observe and
comment on the applications we have implemented. For the con-

versation agent, our domain expert was MIT Prof.essor Glorianna

Davenport, in her capacity as an accomplished documentary film-
maker. For the virtual football game, we consulted with Eric Eisen-

dratt, a sports director for WBZ-TV, Boston. In addition, MIT
Professor Tom Sheridan was an invaluable source of expertise on

teleoperation and supervisory control. A thorough discussion of die

applications, including comments of the domain experts, can be
found in [9].

7. Summary

A method of encapsulating camera tasks into well defined units

called “camera modules” has been described. Through this encap-

sulation, camera modules can tie designed which can aid a user in a
wide range of interaction with 3D graphical environments. The

CamDroid system uses this encapsulation, along with constrained
optimization techniques and visual programming to greatly ease

the development of 3D interfaces. Two interfaces to distinctly dif-

ferent environments have been demonstrated in this paper.
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Abstract

We present an intuitive interface for painting on unparameterized
three-dimensional polygon meshes using a 6D Polhemus space
tracker as an input device. Given a physical object we first acquire
its surface geometry using a Cyberware scanner. We then treat the
sensor of the space tracker as a paintbrush. As we move the sensor
over the surface of the physical object we color the corresponding
locations on the scanned mesh. The physical object provides a

natural force-feedback guide for painting on the mesh, making it
intuitive and easy to accurately place color on the mesh.

CR categories: 1.3.6 [Computer Graphics]: Methodology - Inter-
action Techniques. 1.3.7 [Computer Graphics]: 3D Graphics and
Realism - Color and texture; Visible surface algorithms.

Additional keywords: 3D painting, painting systems, direct ma-
nipulation, user-interface.

1 Introduction

Painting systems are a very common tool for computer graphics
and have been well studied for painting on 2D surfaces. While

many two dimensional techniques can be applied to painting on
3D surfaces, there are issues that are unique to 3D object painting.

The most important aspect in developing a 3D painting system is
maintaining an intuitive, precise and responsive interface. It is
crucial that the user be able to place color on the surface mesh
easily and accurately.

Many computer graphics studios (including Pixar and Indus-
trial Light and Magic) have developed their own 3D paint pro-
grams which use a mouse as the input device. These painting
systems are often used to paint textures onto the 3D computer
graphics models which they will then animate. The user paints on
some two-dimensional image representing the three dimensional
surface and the program applies an appropriate transformation to
convert the 2D screen space mouse movements into movements
of a virtual paintbrush over the 3D mesh. Hanrahan and Haeberli
describe such a system for painting on three-dimensional param-
eterized meshes using a two-dimensional input device in [5]. The
main feature of this system, and one which we retain in ours, is
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that painting is done directly on the mesh in a WYSIWYG (What
You See Is What You Get) fashion. The drawback of this system
is that the transformation from the 2D screen space to the 3D

mesh may not always be immediately clear.
This type of system could be extended to use a 3D input

device. Movements of a sensor through space would map directly
to movements of the virtual paintbrush. Such a system might be
difficult to use, however, because there would be no way to “feel”

when the paintbrush is touching the mesh surface. This problem
could be solved by providing the user with force—feedback, the
importance of which is well recognized (see [2], [10], [4]).

In our system, 3D computer models are built from physical ob-
jects, so these objects are available to serve as a guide for painting.
As 3D computer graphics applications have become widespread,
the demand for 3D models has lead to the development of 3D
scanners which can scan the surface geometry of a physical ob-

ject. Turk and Levoy have recently developed a technique for
taking several scans of an object and “zippering" them together
to create a complete surface mesh for the object [11]. If a sur-
face mesh has been derived from a physical object in this way,

the quickest, most intuitive method for specifying where to paint
the mesh would be to point to the corresponding location on the
surface of the physical object.

Our approach is based on this idea. Given a physical object
we scan its surface geometry. We then use a 6D Polhemus space
tracker as an input device to the painting system. As we move the
sensor of the tracker over the surface of the physical object, we

paint the corresponding locations on the surface of the scanned
mesh. The sensor of the space tracker can be thought of as a

paintbrush, providing a familiar metaphor for understanding how
to use our system.

The remainder of this paper is organized as follows. Section
2 describes the organization of our painting system. Section 3
details how our system represents meshes internally. Section 4
discusses the algorithms and methods we use for painting, reg-
istration, and combating registration errors. Our results are pre-
sented in section 5. Section 6 discusses possible future directions
of this work, and section 7 summarizes our conclusions about our
system.

2 System Configuration

,;,The block diagram in figure 1 depicts our overall system con-
figuration. Before we can paint, we must create a mesh represent-
ing a physical object. We use a Cyberware laser range scanner
to take multiple scans of an object and combine them into a sin-
gle mesh using the zipper software. The Polhemus Fastrak space
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Figure 1: 3D Painting System Configuration

 
tracking system tracks the location of a stylus as it is moved over
the physical object. The painter application maps these stylus
positions to positions on the zippered mesh.

The Cyberware Scanner uses optical triangulation to determine
the distance of points on the object from the scanning system. A
sheet of laser light is emitted by the scanner. As the object is
passed through this sheet of light, a camera, located at a known
position and orientation within the scanner, watches the object.
The scanner triangulates the depths of points along the intersection
of the object and the laser sheet based on the image captured by
the camera. As the object passes through the laser sheet, a mesh
of points representing the object as seen from this point of view
is formed.

The Polhemus Fastrak tracking system reports the 3D position
and orientation of a stylus used to select the area on the mesh
to paint. A field generator located near the object emits an AC
magnetic field which is detected by sensors in the stylus to deter-
mine the stylus’s position and orientation with respect to the field
generator. The painter "application continously polls the tracker
for the stylus’ poisiton and orientation at about 30 Hertz.

3 Data Representation

Previous work in 3D painting has only allowed painting on param-
eterized meshes, or on meshes that have texture coordinates previ-
ously assigned at each mesh point. Paint or surface properties ap-
plied to these meshes can be stored in a texture map, in the former
case using the parameter values at points on the mesh as texture
coordinates. While Maillot, Yahia, and Verroust have developed
a method for parameterizing smooth surface representations{9],
there are no general techniques for parameterizing arbitrary sur-
face meshes.

Although a single Cyberware scan results in a parameterized
triangle mesh, suitable for use by other 3D painting systems, such
a mesh is generally not a complete description of the object. This
incompleteness is due to self-occlusions on the object, making
some points on the object invisible to a rotational scan. By com-
bining data from multiple scans, Turk and Levoy’s zippering algo-
rithm [ll] produces a more complete mesh for the object. How-
ever, the resulting mesh is irregular and unparameterized, so we
lose the ability to store surface characteristics in texture maps.

To paint on unparameterized meshes, we store surface charac-
teristics (e.g. color and lighting model coefficients) at each mesh
vertex. When painting on the object, these surface characteris-
tics are changed only at the mesh vertices. We render the mesh
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using the SGI hardware Gouraud shading to interpolate the color
between the vertices of triangles composing the mesh. Because
we do not require regular or parameterized meshes, our algo-
rithm works with meshes acquired from many different kinds of
scanning technologies, including hand digitizers, CT scanners and
MRI scanners. CT and MRI scanners produce volume data rather
than a surface mesh and so an algorithm like marching cubes [8]
would be required to convert the volume data set into a suitable
mesh representation.

Since we only have color information at the vertices of the

mesh polygons, the polygons should be small enough to avoid
sampling artifacts when displaying the mesh. As Cook, Carpenter
and Catmull point out in their description of the REYES rendering
architecture [3], this is possible when polygons are on the order
of a half pixel in size. Due to memory constraints we typically
paint on meshes in which triangles are about the size of a pixel
when the mesh is displayed at a “reasonable” size (e.g. a quarter
of the size of the monitor). We have implemented controls for
scaling the display of the mesh so that it is always possible to
reduce its display size to achieve subpixel color accuracy.

Since we would like to use a mesh with small triangles, the
number of triangles in a typical mesh may be quite large. We
therefore need to augment the triangle mesh with a spatial data
representation that will allow us to find mesh vertices quickly.
To facilitate this, we uniformly voxelize space. Associated with
each voxel is a list of vertices on the mesh that are contained in

that voxel. Storing these voxels in a hash table gives us nearly
constant-time access to any vertex on the mesh, given a point
close to it. Alternatively we could have used a hierarchical repre-
sentation such as an octree for storing the spatial representation.

We do not use a simple 3D array indexed by voxel location
because most meshes will contain large empty regions in voxel
space. By using a hash table, we do not explicitly store the empty
regions of voxel space, which results in a tremendous reduction
in memory usage.

4 Methods

4.1 Object—mesh registration

When painting an object with our system, the user places the
object on a table in front of the workstation. Before we can paint
the mesh, we need to determine a transformation between po-
sitions reported by the tracking system in the coordinate space
of the physical object and points in the coordinate space of the
mesh. We would also like this transformation to ensure that rela-

tive orientations of the physical stylus and the virtual paintbrush
are the same. We can accomplish this by finding an affine, shear-
free transformation between the two coordinate spaces. We use a
method developed by Horn [6] for obtaining such a transforma-
tion.

Horn’s method determines a translation, rotation, and scaling
that will align points in one coordinate system to corresponding
points in another coordinate system, while minimizing the total
distance between the sets of points. The two sets of points may
be collected as follows. First, the mouse is used to select a point
on the mesh. Then, the stylus is used to point to the corresponding
point on the object, thus specifying a correspondence pair. Horn‘s
method requires three or more of these correspondence pairs to
determine the registration transformation.

Tjlrere are several sources of error in collecting the two sets
ofrpoints including inaccuracies in the tracking system, and in-
accuracies in matching the points on the mesh to points on the
object. However, as the number of correspondence pairs is in-
creased, small alignment errors in individual pairs are averaged
out and the total alignment error decreases. Unfortunately, speci-
fying correspondence pairs is tedious and time consuming.
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Figure 2: A large set of sensor sample points is collected by
running the sensor of the space tracker randomly over the surface
of the object. These sensor points are roughly hand-aligned with
the mesh, and then Besl’s algorithm is used to obtain a more
precise alignment.

An algorithm developed by Besl{1] overcomes this problem.
Although two sets of points are still required, it is not necessary
to specify the point-to-point correspondences between them. We
collect a large set of points in tracker space by sampling the po-
sition of the stylus while randomly moving it across the surface
of the physical object. We use a subset of the mesh vertices
as the other set of points. Besl’s algorithm determines the best
transformation between the two sets of points by iterating on the

following steps. First an approximate correspondence between
the two sets of points is computed, based on their proximity in
space. Then, Horn’s method is applied to these pairs of points
to align them more closely. On each successive iteration of the
algorithm, the proximity-based correspondence improves, which
in turn improves the transformation generated by Horn’s method.

Besl’s algorithm is guaranteed only to find a locally optimal
alignment, not a globally optimal one. Therefore, we need to
ensure that the sensor samples and the mesh are initially aligned
such that the globally optimal solution can be found. The ini-
tial alignment is done by hand as (see figure 2), and is often a
difficult and time consuming process. To speed this process, we

have added the ability to easily generate a rough alignment of the
sensor samples to the mesh. Once we have collected the large
set of sensor samples, we ask the user to specify three or more
correspondence pairs as described at the beginning of this section.
From these pairs we calculate the scale factor between the sensor
samples and the mesh. We also translate the centroid of the sensor
correspondence points so that it is aligned with the centroid of the
mesh. This produces a rough alignment of the sensor samples to
the mesh which can then be hand-refined to produce the initial

alignment required for Besl’s algorithm.
Our registration scheme is summarized as follows:

1. The user collects many samples of the physical object‘s
surface by running the stylus over the object.

2. The user selects three or more points on the mesh, and points
to their corresponding locations on the physical object with
the stylus. These correspondence pairs are used to compute
a rough alignment of the sensor samples collected during
step 1 to the mesh.

3. lf necessary, the user makes further hand adjustments to the
rough alignment of the sensor samples to the mesh using
the mouse to bring them into initial alignment.

4. Besl’s algorithm is run to refine the alignment of the sensor
samples to the mesh.

 
Figure 3: Paint is applied to all mesh vertices falling within the
brush volume. Here the vertices in the dark gray region are

painted.

4.2 Painting

To paint a three-dimensional surface we must determine where
new paint is to be applied. The tip of our paintbrush has a 3D
shape associated with it which defines the volume within which
paint is applied (see figure 3). In general this brush volume can
be any 3D shape. The most straightforward painting algorithm
would be to paint every vertex that falls within the brush volume.
We can think of this approach as filling the entire brush volume
with paint using a 3D scan-line algorithm to step through all the
voxels within the volume. The drawback of this approach is that

the mesh is likely to be relatively flat within this volume, therefore
not filling much of it. This volume-fill algorithm would search
through many empty voxels.

Our approach is to first find a vertex on the mesh that is within
the brush volume. We then perform a breadth—first flood fill of the
mesh from this seed point. The vertex on the mesh closest to the
ray extended along the brush direction from the sensor position is
used as the seed, as depicted in figure 4.

Although we poll the tracker for the position of its sensor at
about 30 Hertz, the sampling rate is not fast enough to produce a
smooth stroke as the brush is swept along the object. For the paint

to be applied smoothly, without gaps, we need to fill the surface
with paint along a stroke. The flood fill idea can be modified to
account for this, coloring vertices within the volume defined by
sweeping the 3D brush shape along a stroke connecting successive
sensor positions. in our system, we connect successive positions
using a linear stroke. Thus, for a sphere brush we would sweep
out a cylindrical volume with spherical end caps along the stroke.

One problem for the flood fill algorithm is that it can not cor-
rectly handle all surface geometries. Consider a surface with a
small indentation. If we place the brush directly above the inden-
tation we should be able to paint the surfaces on either side of it.
However, the flood fill brush will only paint one side of it, because
it floods out along the mesh surface from the seed point as shown
in figure 5(A). This problem could be prevented by performing a
volume-fill within the brush geometry, as in figure 4, rather than

flood filling out from the seed point along the mesh surface. In
practice, we have never encountered a surface geometry for which
thefefirface flood fill causes noticeable anomalies.

.3‘ Another problem with this algorithm is that mesh triangles
which are occluded to the paintbrush may be painted. The correct
solution to the problem would be to do a complete visibility test
before painting a vertex to ensure that the vertex was visible to
the brush. Because this test is very expensive and would hinder

interactive performance, we only check that the dot product of the
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Figure 4: Two methods for determining where to apply paint
within a spherical brush volume. The scan-line algorithm walks
through every voxel within the brush volume. The fiood—fi1l al-
gorithm extends a ray from the brush tip to the surface and then
floods paint out along the surface.

vertex normal and the brush orientation is negative. This ensures
that we only paint vertices that are facing the brush, but there
are still some cases where we might paint occluded triangles, as
shown in figure 5(B). In this case the flood fill seed point falls on
the left side of Peak B. As color floods out from the seed point
along the left side of Peak B, points that are occluded by Peak
A will be painted. The volume-fill approach would be no better
than the flood-fill approach at handling this mesh geometry. Both
methods fail because they do not check for occlusions between
the tip of the brush and the mesh surface.

With hundreds of thousands of polygons in a typical mesh it
would be impossible to redraw the entire mesh after each paint
stroke and maintain interactive performance. Instead, we only
redraw the triangles in which at least one vertex was painted. By
using the surface flood fill algorithm in combination with this lazy

update scheme we can interactively paint large meshes.

4.3 Brush effects

We have implemented several different brush volumes including
a sphere, cylinder and cone, and several different brush effects.
The sphere brush paints all vertices within a sphere centered at
the brush tip. The cylinder paints all vertices within a cylinder
centered at the brush tip and oriented in the direction of the brush.
The cylinder brush is typically used to fill large areas by stroking
it lengthwise along the surface. The cone brush paints all vertices
within a cone, with its apex at the brush tip and oriented in the
direction of the brush. By tilting this brush as we paint we can
achieve the effect of painting with an airbrush.

Another effect we implemented was to modulate the appli-
cation of color using 3D solid textures and 2D image textures.
To apply solid textures, we use the vertex location as an index
into a texture map and apply the corresponding texture color. For
2D textures we define a plane on which the texture resides and
perform an orthogonal projection of the unparameterized 3D mesh
points into the texture plane. This gives a mapping from the mesh
points into the texture. The user can control the position, orien-
tation and scale of the 2D texture plane through a mouse~driven
interface.

We have also implemented several compositing filters that are
applied to the paint as it is laid down on the surface. The simplest
filter is the "over" filter. Using this filter, the paint from the
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brush replaces the paint at each affected vertex. The “blend”
filter has a slider-selectable parameter or and performs standard

alpha blending between the old mesh color and the new paint
color. The “distance" filter is a special case of the blend filter for
which alpha is proportional to the distance of each affected vertex
from the tip of the brush.

Each of the brushes we have described so far only affects the
surface characteristics of the mesh. We can also Change the ge-

ometry of the mesh using a displacement brush. Our displacement
brush pulls mesh vertices within the brush geometry in the direc-
tion of the brush. Although this is an effective way to change the
surface geometry, it undermines the use of the physical object as
a painting guide. In practice, however, we have found that if we
apply small displacements, the physical object can still be used as
a guide. A problem with the current implementation is that it is
possible to produce objectionably long, thin triangles as we pull
the surface. We could alleviate this problem by re—poiygonalizing
the triangles as we elongate them during the displacement.

4.4 Combating registration errors

The accuracy of the registration between the sensor and the mesh
depends on several factors. The Polhemus Fastrak is only accu-
rate to within 0.03 inches. and the magnetic field generated by the
Polhemus is distorted by metallic objects as well as other electro-
magnetic fields in the work area. Furthermore, Besl’s registration
algorithm is dependent on an initial hand-alignment of the sen-
sor samples to mesh vertices. If this initial alignment is poor,
the registration transformation produced by Besl’s algorithm may
not be globally optimal. Registration errors can cause the virtual
brush tip to lie some distance away from the mesh even when the
Polhemus stylus is physically touching the object surface. In this
case it would be difficult to paint the surface with small brush
volumes.

One approach to overcome this would be to use a long, thin
cylindrical brush. The problem with this approach is that painting

Brush
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Figure 5: Mesh geometries which cause problems for the painting
algorithm.
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a fine line with such a long, thin brush would force us to ensure
that the brush is perpendicular to the mesh throughout the stroke.
Slight changes in brush orientation would change the size of the
area painted on the mesh.

An alternative approach is to give the user the option of “glu-
ing” the brush to the mesh. When painting, the location of the
brush is constrained to be the closest point on the mesh to the
sensor, rather than the sensor's location itself. We can think of
this as extending the tip of the brush so that it always touches the
mesh surface. Since the brush’s position is now forced to lie on
the surface, we can paint with very small brush shapes, even in
the presence of registration errors.

5 Results

We have been able to paint detailed textures on several different
meshes including the bunny and the wolf-head, shown in color
plates 2-8. The bunny mesh was created by zippering 10 Cyber-
ware scans of the ceramic bunny shown in plate 1; the final mesh
contains 69,451 triangles. Plate 2 shows sensor sample points
in the process of being initially aligned with the bunny mesh in
preparation for running Besl's registration algorithm. The purple
crosses represent sensor sample points.

A 3D checkerboard texture and 2D image texture of an orchid
were applied to the bunny shown in plate 3. While the triangles in
the original bunny mesh were about the size of a pixel, we found
that a finer mesh was necessary to capture fine detail in the image
texture. We refined the original bunny mesh by simply splitting
each triangle into four smaller triangles.

Plates 4-8 show several complete paintings we created with

our system. Most of the paintings took several hours to complete.
The wolf-head mesh in plate 8 contains 58,104 triangles while the

higher-resolution wolf—head mesh used in plates 6 and 7 contains
232,416 triangles. The bunny head mesh in plate 5 is a piece of
the high-resolution bunny mesh, while the low-resolution bunny
mesh was used in plate 4.

In creating the bumpy wolf shown in plate 7 we used almost
every painting tool we implemented. The bumps were created by
applying the displacement brush with a spherical brush volume
to the mesh. The distance filter was used in coloring the bumps

as they were extruded from the mesh. As in plates 3 and 6, the
orchid is a 2D image that was texture mapped onto the mesh.

6 Future Directions

One of the drawbacks of our system is that there is a non-trivial
amount of set-up time required to register the physical object to
the mesh. Registration can take several minutes and must be
done every time the user wants to paint an object. Furthermore,
if the object is moved after it has been registered. it must be re-
registered. The most time-consuming aspect is doing the final
hand alignment of the registration points to the surface mesh.

One solution to this problem would be to register the physical
object as it is being scanned by the 3D scanner. Assuming the
scanner always creates a mesh in the same coordinate system for
each scan, we can preregister the tracker coordinate system to this
mesh coordinate system using Besl’s algorithm. Then, scanning
any new object will automatically register it to the tracking system.
However, this approach fails when we combine multiple scans
using the zipper software, because the physical object must be
moved between scans and so we lose the correspondence between
the mesh and the object.

Ensuring that the object does not move once it has been regis-
tered is can make painting awkward and unnatural. Allowing the
object to be moved would let the user to paint more comfortably.
One way to permit such object movement would be to attach an-
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other sensor of the space tracker to the object and then track the
movement of the object in addition to the movement of the brush.

A disadvantage of our approach is that we can only paint
meshes for which we have a corresponding physical object. Thus,
we can not directly paint a mesh created with a modeling or CAD
program for example. However, several new rapid prototyping
technologies have recently been developed for synthesizing 3D
objects directly from computer models [7] [12]. Although it would
he a considerable expense, with such a prototyping system we
could create a physical object representing almost any mesh and
then use it as a guide for painting on the mesh.

Another problem is that the user is moving the sensor along
the physical object while paint is only being applied to the mesh
on the monitor. Thus, the user must look at two places at once to
see where the paint is being applied. This problem is reduced by
placing the physical object in front of the monitor while painting.

One of the problems with polygon meshes is that they are
hard to animate. Many animators are used to manipulating the
control points of curved surface patches, not the vertices of an
irregular mesh. Furthermore, they want to manipulate only a few
control points, not the 100,000’s of vertices in our typical mesh.
One solution we are investigating is to fit NURBS patches to our
meshes. The boundaries of these patches would be specified by
tracing them using our system. In this case we would replace our
space-filling brushes with an algorithm that chains together mesh
vertices lying along the path traced out by the stylus.

7 Conclusions

We have developed an intuitive 3D interface for painting on 3D
computer models, using the sensor of a Polhemus 6D tracker as
a paintbrush. The fundamental feature of our system is that a
physical object provides a force feedback guide for painting. Our
system is fast enough to paint a mesh in real time as the sensor
is moved over the physical surface, giving the user a sense of
directly painting on the mesh. With this system there is no need
to perform a transformation from 2D input space to the 3D mesh
surface, as is required by other 3D painting systems that use a 2D
input device. Also unlike other 3D painting systems, the meshes
we paint do not need to be parameterized in any way. With our
system an artist who is experienced with painting on 3D physical
objects can almost directly apply that experience to painting on
surface meshes.
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Abstract

We present a modeling technique based on the metaphor of

interactively sculpting complex 3D objects from a solid

material, such as a block of wood or marble. The 3D model

is represented in a 3D raster of voxels where each voxel
stores local material property information such as color and

texture. Sculpting is done by moving 3D voxel-based tools
within the model. The aflected regions are indicated

directly on the 2D projected image of the 3D model. By

reducing the complex operations between the 3D tool
volume and the 3D model down to primitive voxel—by-voxel

operations, coupled with the utilization of a localized ray
casting for image updating, our sculpting tool achieves
real-time interaction. Furthermore, volume-sampling

techniques and volume manipulations are employed to
ensure that the process of sculpting does not introduce

aliasing into the models.

1. Introduction

In this paper we present a free-form interactive modeling
technique based on the-concept of sculpting a voxel-based
solid material, such as a block of marble or wood, using 3D
voxel-based tools. There are two motivations for this work.

First, although traditional CAGD and CAD have made great

strides as design tools in many engineering disciplines,

modeling topologically complex and high1y—detailed objects
are still difficult to design in most traditional CAD systems.

Second, sculpting tools have shown to be useful in scientific

and medical applications. For example, scientists and

physicians often need to explore the inner structure of their
simulated and sampled datasets by gradually removing
material to reveal a section of interest.
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The use of the sculpting metaphor for surface—based

geometric modeling has been studied extensively [2, 8, 9,
11]. However, the concept of sculpting a volumetric object

is relatively recent. Galyean and Hughes [4] generalized the

2D painting metaphor to volume sculpting by extending the
2D canvas to 3D volumetric clay. They employed marching

cube polygons as an intermediate model representation and

presented a novel localized marching cube rendering
algorithm for achieving real—time interaction. The merit of
their localized rendering algorithm is discussed further in

Section 6. Although their algorithm is quite nice for

generating clay or wax like sculptures, it cannot generate
realistic looking objects such as those appeared in our daily
environment. The use of numerically controlled (NC)

milling machine as a volume sculpting tool has also been

investigated [10, 14]. NC milling produces extrusion cut
volume based on some geometric attributes of the rendered

image or NC paths. Thus, the resulting model can only be
viewed from the direction from which the rendered image

was generated.

We developed a volume sculpting tool that is easy to use. A
user does not need to possess the mathematical knowledge

of surface modeling using CAGD techniques or solid

modeling. Furthermore, models generated with our

technique are free-formed and can be topologically

complex. Although our models lack the precision that is

required for accurate product manufacturing, such as a
crankshaft, they are adequate as first—pass model designs or

for applications where model precision is not greatly

important, such as furnitures. Our interactive volume

sculpting tool employs a ray casting algorithm for

rendering. it achieves real-time interaction by employing a

localized ray casting for image updating. Hence, a shape

designer might be compelled to convey his/her design idea

by sculpting a 3D model rather than drawing it on a 2D
sketch board. In this way, during modeling the designer is

able to transform (e.g., rotate) the object in space and see

the design from different angles. In addition, our volume

sculp_ting tool is suitable for manipulating sampled and
simulated datasets. Furthermore, volume-sampling and

volume-manipulations are used to ensure that the process of

sculpting does not introduce aliasing into the models.



2. Object Representation

Unlike a traditional CAD model which commonly consists

of a collection of surface patches, we employ the volume

graphics approach [6] by modeling every object as voxel
data, represented as a 3D volume raster. The volume raster

grid is uniformly spaced along each of the three orthogonal

axes, but the grid might be anisotropic, that is, the spacing

constant might be different for the different axes. By
simply changing the spacing constant of the model raster

grid, one can alter the physical size of the 3D model. Since

sample points in the volume raster are defined only at

discrete locations in space, a reconstruction process is
needed to reproduce the original continuous model.

Commonly, the reconstruction is performed in a piecewise

fashion by defining_ a trilinear interpolation function

f(x, y, 2) over the eight neighboring grid points,

llxllyllzlli (lIl,L)*J,lZl)= tlxlilylalzlli (l_X_l’l)’l:lZl)=
(lxllyltzl), tfxllylelzll. (lIl»Ffl»L=J). (TIl»HlafZl)-
Of course, one can achieve better reconstruction by

employing a larger interpolation neighborhood and use a

higher-order interpolation function.

Multiple volumes are supported in our volume sculpting

system. Thus, a sculptor can walk in a gallery of multiple

unfinished sculptures and work on different pieces in one

session. In addition to having a world coordinate system for
the entire scene, a local coordinate system is associated with
each volume in the scene. Transformation between the

world coordinate system and each volume coordinate

system is facilitated by conversion matrices stored within
each volume. Translations and rotations of each volume are

performed by simply concatenating the new transformation

matrix to the one stored in the volume, thereby defining a

new current local coordinate system and new conversion
matrices.

This modeling approach is an alternative to conventional

surface—based graphics and has advantages over the latter by
being able to store a view independent model and its

attributes such as texture and antialiasing information, and

is suitable for the representation of 3D sampled data such as

those acquired from medical scanning devices. More

importantly, for volume sculpting applications, it supports
the visualization of internal structures, and lends itself to the

realization of block operations and constructive solid
modeling.

3. User Interaction

The following is a typical interaction sequence of our
system:

1) User loads in the initial volume data.

2) User positions and orients the object to the desired view.

3) System projects the 3D object onto a 2D image from the
selected view.

Repeat 4) and 5):

4) User moves a 3D tool to the desired region.
5) System performs the actual action locally.

Like a sculptor, the user first selects the approximate size

and shape of the material. Our database contains a variety

of geometric primitives and also a set of sampled and

simulated datasets. The geometric datasets were

synthesized from geometric descriptions into their volume

graphics representation using the volume-sampling

technique [15]. The process of volume-sampling bandlimits

the continuous object by convolving it with a radially

symmetric 3D filter. As a result, the surface of the filtered

object has a smoothly varying density function from object

to empty space. Hence, the corresponding discrete

representation is free of object space aliasing.

Once the loaded volume data is rotated and oriented, it is

projected using a volume rendering algorithm of ray

casting. The rendering process is explained in detail in

Section 6. On the projected image, the user either moves a

3D tool to the desired region for carving the object, or

draws out the desired region for sawing. Carving is the

process of taking a pre-existing tool to chip or chisel the

object bits by bits, while sawing is the process of removing

a whole chunk of material at a time, much like a carpenter

sawing off a portion of a piece of wood. For sawing, the

user first needs to draw out the desired sawing region

directly on the projected image. Then, this 2D region is

extruded in the direction perpendicular to the view plane to

form a volume. A slider bar is provided to the user to

specify the depth of extrusion.

From our experience, using a 2D input device such as a

mouse is easier for the user to grasp than a 3D input device,
such as an lsotrack. Furthermore, unless a collision

detection is implemented, the position of the tool specified
by the 3D input device can penetrate the surface of the solid

model. Although the penetration of object surface is fine

for a heat—gun metaphor, such as the one used in [4], it is

inappropriate for our click-and-invoke carving and sawing
metaphor.

4. Carving

In our system, a set of carving tools are available to the user.

Each of these carving tools is pre-generated using a volume-
sampling technique [15] and stored in a volume raster of

20 X 28x20 resolution. Figure 1 illustrates three

commonly used tool volumes. The user can adjust the

physical size of these tools by changing the constant

spacing of their raster grid. Rotation and translation of the
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Figure 1: Commonly used carving tools

tool volume requires a simple matrix multiplication to

update the object coordinate system with respect to the
world coordinate system. Since both the object and the

carving tool are represented as volume tasters, the process
of carving involves positioning the tool volume with respect

to the object in 3D space and performing a boolean
subtraction between these two volumes.

As we have mentioned, the user specifies the position of the

tool on the 2D projected image. This 2D position is then

mapped onto a 3D position in the world space by using the
projection depth, depth, of the pixel. This projection depth
is essentially the z-buffer information. Hence, the 3D world

position (x, y, z) corresponding to the 2D view position
(Lt, v) is calculated as: .

(us Va depth)view _> (x: )’» Z)worl'd-

Next, the carving tool volume, which is volume-sampled, is

subtracted from the object volume. Our algorithm does not

require these two volumes to be aligned with respect to each
other or having the same grid resolution. The algorithm

starts by first determining the cubiodal sub-volume of the
object that is overlapped by the tool volume. Then, for each
grid point within that cubiodal sub—volume, a new data
value is computed and assigned to reflect the affected

region. Specifically, for each grid point (i, j,k) within the
cubiodal sub-volume, the new sample value f(i, j,k) is

computed from:

f-abject“: js ‘T .fabjecr(iv ja ftoo1(-xrs Y’, Z’)
where

(is js k)object % (xii yfe z’)toola

i,j,ke Integer, x’,y’,z’E Real.

Since our volume—sampled model is a density function

d(x, )7, 2) over R3, where it is 1 inside the filtered object, 0

outside the filtered object, and 0 < at < 1 within the soft

region of the filtered surface, the boolean afrfi‘ operator is
based on algebraic sum and algebraic product [3, 15], which
is employed to preserve continuity on the sculpted model:

Adt'fj‘B=A—AB. (4)

Note that instead of the drfi’ operator, an L) operator defines
as:

ALJB=A+B—AB (5)

can be used to add the tool volume to the object. This is a

nice feature when one needs to patch up a hole or add some

details to the model. Other set operations between the tool

volume and the object are also possible, thereby

implementing full voxblt (3D bitblt) capabilities {5]. Since
point (x’, 3/,2’) does not usually fall on a grid point of the
tool volume, a reconstruction method similar to the ones
discussed in Section 2 is needed to interpolate

free! (xis Y,’ 3,)-

5. Sawing

Unlike carving, sawing requires the additional process of

generating the tool volume on the fly. In our system, the
user is able to draw any size circle, polygon, and Bezier

curve to indicate the region to be sawed. Then, this 2D

region is extruded to form the tool volume. However, to
prevent object space aliasing, proper sampling and filtering
must be used in generating this tool volume. Although we

have previously developed a volume sampling technique
[15] to accomplish this, it requires a time consuming 3D

convolution process. To achieve interactive speed, we have

developed a new volume sampling technique. Instead of
gathering contribution from the portions of the tool that fall
under the filter kernel when the kernel is centered over a

sample point, the density of each point of the tool is splatted
in 3D space to the affected neighboring sample points. If R
is the radius of the splat kernel, then each splat affects a

region of (ZR — 1) x (2R — 1) x (ZR — 1) neighborhood in
3D. An analogous 2D splatting is shown in Figure 2. The

splatting of a density point (a, ,3, y) to its neighboring
sample grid points is formulated as:

forallo:—R<i<a+R, (6)

for trll;3'~R<j<t3+R,

andfor ally~R <k<y+R,

.f100l'(£rj9k)=h(| ll-_a9j_}3sk_7ll)

where h is a hypercone filter centered at (i, j,k). The

hypercone filter has a spherical filter support and is
weighted such that its maximum contribution is at the center
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