VLSI TECHNOLOGY

1. 688

er, n,

D

Α

Θ

R

Edited by S. M. Sze Bell Laboratories, Incorporated Murray Hill, New Jersey

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

Find authenticated court documents without watermarks at docketalarm.com.

This book was set in Times Roman by Information Sciences Corporation. The editors were T. Michael Slaughter and Madelaine Eichberg; the production supervisor was Leroy A. Young. The cover was designed by Joseph Gillians. The drawings were done by Bell Laboratories, Incorporated. Halliday Lithograph Corporation was printer and binder.

TK 7874 .V 566 1983

VLSI TECHNOLOGY

Copyright © 1983 by Bell Telephone Laboratories, Incorporated. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of Bell Telephone Laboratories, Incorporated.

1234567890HALHAL89876543

IZBN 0-07-065686-3

Library of Congress Cataloging in Publication Data Main entry under title:

VLSI technology.

ΟСΚ

Δ

(McGraw-Hill series in electrical engineering. Electronics and electronic circuits) Includes index.

I. Integrated circuits—Very large scale

integration.
I. Sze, S. M., date

II. Series.
TK7874.V566
1983
621.381'73
82-24947

ISBN 0-07-062686-3
Image: State Sta

Find authenticated court documents without watermarks at docketalarm.com.

CONTENTS

	List of Contributors	xi
	Preface	xiii
	Introduction	1
-		-
Chapter 1	Crystal Growth and Wafer Preparation	9
	C. W. Pearce	-
1.1	Introduction	9
1.2	Electronic-Grade Silicon	10
1.3	Czochralski Crystal Growing	14
1.4	Silicon Shaping	32
1.5	Processing Considerations	42
1.6	Summary and Future Trends	46
	References	47
	Problems	49
Chapter 2	Epitaxy	51
-	C. W. Pearce	51
2.1	Introduction	51
2.2	Vapor-Phase Epitaxy	52
2.3	Molecular Beam Epitaxy	74
2.4	Silicon on Insulators	80
2.5	Epitaxial Evaluation	85
2.6	Summary and Future Trends	88
	References	88
	Problems	92
		v

1048201

C11/ EA36

DOCKET

RM

Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Α

LA

R

М

vi CONTENTS

Chapter 3	Dielectric and Polysilicon Film Deposition	. 93
	A. C. Adams	73
3.	1 Introduction	00
3.:	2 Deposition Processes	93
3.:		94
3.4	4 Silicon Dioxide	99 106
3.4	5 Silicon Nitride	106
3.6		119
3.7		120
3.8	Summary and Future Trends	124
	References	125
	Problems	126
		128
Chapter 4	Oxidation	. 101
	L. E. Katz	131
4.1	~	
4.2		131
4.3		132
4.4	Oxide Properties	149
	Redistribution of Dopants at Interface	153
4.6	Oxidation of Polysilicon	157
4.7		159
4.8	Summary and Future Trends	160
	References	164
	Problems	165
		167
Chapter 5	Diffusion	
	J. C. C. Tsai	169
5.1		
5.2	Introduction	169
5.2	Models of Diffusion in Solids	170
5.5	Fick's One-Dimensional Diffusion Equations	172
5.5	Atomistic Diffusion Mechanisms	177
5.6	Measurement Techniques	184
5.7	Diffusivities of B, P, As, and Sb	193
5.8	Diffusion in SiO ₂	204
	Fast Diffusion in Polyconstelling Still	206
	Diffusion in Polycrystalline Silicon	207
	Diffusion Enhancements and Retardations	209
	Summary and Future Trends References	214
	Problems	215
		217

		Contents vii
Chapter 6	Ion Implantation	219
	T. E. Seidel	
6.1	Introduction	219
6.2		220
6.3	Ion Ranges	224
6.4	Disorder Production	235
6.5	Annealing of Implanted Dopant Impurities	242
6.6	Shallow Junctions (As, BF_2)	253
6.7	Minority-Carrier Effects	255
6.8	Gettering	255
6.9	Effects in VLSI Processing	258
6.10	Summary and Future Trends	260
	References	261
	Problems	264
Chapter 7	Lithography	267
*	D. A. McGillis	207
7.1	Introduction	267
7.2	The Lithographic Process	268
7.3	Optical Lithography	274
7.4	Electron Beam Lithography	281
	X-Ray Lithography	287
7.6	Other Lithography Techniques	294
7.7	Summary and Future Trends	298
	References	299
	Problems	300
Chapter 8	Dry Etching	303
	C. J. Mogab	
8.1	Introduction	303
8.2	Pattern Transfer	304
8.3	Low-Pressure Gas Discharges	312
8.4	Plasma-Assisted Etching Techniques	317
8.5	Control of Etch Rate and Selectivity	321
8.6	Control of Edge Profile	330
8.7	Side Effects	334
8.8	Dry Etching Processes for VLSI Technology	336
	Summary of Future Trends	341
	References	342
	Problems	

3

÷

DOCKET

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.