

US006315720B1

(12) United States Patent Williams et al.

(54) METHODS FOR DELIVERING A DRUG TO A PATIENT WHILE AVOIDING THE **OCCURRENCE OF AN ADVERSE SIDE** EFFECT KNOWN OR SUSPECTED OF **BEING CAUSED BY THE DRUG**

- (75) Inventors: Bruce A. Williams, Flemington; Joseph K. Kaminski, Hampton, both of NJ (US)
- (73) Assignee: Celgene Corporation, Warren, NJ (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/694,217

DOCKE

RM

- (22) Filed: Oct. 23, 2000
- (51) Int. Cl.⁷ A61B 5/00
- (52) (58)Field of Search 600/300, 304,
- 600/551; 395/202-210; 128/630; 706/23, 2, 3; 235/375

References Cited (56)

U.S. PATENT DOCUMENTS

5,299,121		3/1994	Brill et al	600/301
5,594,637	*	1/1997	Eisenberg et al	395/202
5,619,991	*	4/1997	Sloane	128/630
5,660,176		8/1997	Iliff	600/300

(10) Patent No.: US 6,315,720 B1 Nov. 13, 2001

(45) Date of Patent:

5,845,255 12/1998 Mayaud 705/3 6,014,631 1/2000 Teagarden et al. 705/3 6,045,501 * 4/2000 Elsayed et al. 600/300 6,055,507 4/2000 Cunningham 705/3 6,063,026 * 5/2000 Schauss et al. 600/300 6,128,620 10/2000 Pissanos et al. 707/102 6,131,090 * 10/2000 Basso, Jr. et al. 706/23 6,202,923 * 3/2001 Boyer et al. 235/375

* cited by examiner

Primary Examiner-Eric F. Winakur

Assistant Examiner-Nikita R Veniaminov

(74) Attorney, Agent, or Firm-Woodcock Washburn Kurtz Mackiewicz & Norris LLP

ABSTRACT (57)

Improved methods for delivering to a patient in need of the drug, while avoiding the occurrence of an adverse side effect known or suspected of being caused by the drug are disclosed. The methods are of the type in which prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber, pharmacy and patient have been properly registered in the medium before the patient is approved to receive the drug. Embodiments are provided wherein the patients are assigned to risk groups based upon the risk that taking the drug will lead to the side effect, and certain additional information, such as periodic surveys and diagnostic tests probative of the ongoing risk of the side effect developing are obtained before prescriptions for the drug are approved.

32 Claims, No Drawings

METHODS FOR DELIVERING A DRUG TO A PATIENT WHILE AVOIDING THE OCCURRENCE OF AN ADVERSE SIDE EFFECT KNOWN OR SUSPECTED OF BEING CAUSED BY THE DRUG

FIELD OF THE INVENTION

The present invention relates to improved methods for delivering a drug to a patient. More particularly, the present invention relates to novel methods for delivering a teratogenic or other potentially hazardous drug to a patient in need of the drug, while avoiding the occurrence of known or suspected side effects of the drug. The novel methods permit the distribution to patients of drugs, particularly teratogenic drugs, in ways wherein such distribution can be carefully ¹⁵ monitored and controlled.

BACKGROUND OF THE INVENTION

Many beneficial drugs are known or suspected of produc- 20 ing adverse side effects in certain individuals. These side effects may be manifest in the patient taking the drug, in a foetus (i.e. fetus) carried by the patient, or in a recipient (or foetus carried by a recipient) of the bodily fluids of the patient. In some cases, administration of the drug may be $_{25}$ acceptable in some patients, but absolutely contraindicated in other patients. For example, drugs known or suspected of causing birth defects if taken by a pregnant woman (i.e. teratogenic drugs), may nonetheless be beneficial for treating certain conditions. However, because of the teratogenic 30 properties of the drug, administration to pregnant women must be avoided. Other drugs are known which may be beneficially employed in the general population, but must be avoided by individuals having a certain preexisting condition, or those concurrently taking certain other 35 medication(s), due to adverse side effects which may develop in those individuals.

One such drug which is known to produce adverse side effects, but which may nevertheless be beneficially employed in certain patients is thalidomide. Thalidomide is 40 a drug which was first synthesized in Germany in 1957. Beginning in 1958, it was marketed in many countries for use as a sedative, although it was never approved for use in the United States. After reports of serious birth defects, thalidomide was withdrawn from all markets by 1962. 45 However, during the years it was used, it was found to be effective in treating erythema nodosum leprosum (ENL), a condition of leprosy, and the U.S. Food and Drug Administration (FDA) has made the drug available for this specific use via a program of the Public Health Service. More 50 recently, investigators have found that thalidomide may be effective in treating AIDS wasting and aphthous ulcers occurring in AIDS patients. In addition, treatments for other diseases, such as a number of neoplastic diseases including cancers, rheumatoid arthritis, and macular degeneration, are 55 also believed to be possible. The FDA has recently approved an application by Celgene Corporation, which is the assignee of the present patent application, to market thalidomide for the treatment of ENL. The medical community anticipates that thalidomide will be used for treatment of 60 additional conditions and diseases, including those set forth above. However, due to the severe teratogenic risk of thalidomide, methods are needed to control the distribution of this drug so as to preclude administration to foetuses.

In this regard, U.S. Pat. No. 6,045,501, to Elsayed et al., 65 provides methods for delivering a drug to a patient while preventing the exposure of a foetus or other contraindicated

DOCKE

individual to the drug. According to the methods of this patent, prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. Improvements to this method may be useful, however, to minimize and simplify the demands on the pharmacy, thereby improving compliance with the system of distribution, and reducing the risk that the drug will be dispensed to a contraindicated individual.

Methods for monitoring and educating patients to whom a drug is distributed have been developed in connection with Accutane (isotretinoin). Accutane, which is a known teratogen, is a uniquely effective drug for the treatment of severe, recalcitrant, nodular acne. A pregnancy prevention program was developed, and the Slone Epidemiology Unit of Boston University designed and implemented a survey to evaluate these efforts. The survey identified relatively low rates of pregnancy during Accutane treatment, which suggests that such a program can be effective. With more than about 325,000 women enrolled to date in the Accutane survey, it is also clear that such a large-scale study can be conducted. Enrollment in the Accutane survey is voluntary, however. Accordingly, assessing the representativeness of the women who have been enrolled in the survey has been problematic, and it has been difficult to determine whether the survey results can be generalized to all female Accutane users. Thus, an improved survey is needed which would be representative of all users of a particular drug, such as thalidomide, who obtain the drug through legal distribution channels. There are also no mechanisms provided to assure compliance with the program or to limit distribution of the drug to participants in the survey.

Because drug sharing may frequently occur among AIDS patients, which may result in placing a foetus at risk, a program is needed which can be used to educate men and women about the risk of teratogenic drugs, such as thalidomide. In addition, a system is needed for the controlled distribution of a drug, in which of all users of the drug, including prescribers, pharmacies, and patients, may be accountable for their compliance with methods that may be established to minimize the risk that a contraindicated individual will be exposed to the drug. The present invention is directed to these, as well as other important ends.

SUMMARY OF THE INVENTION

The present invention is directed to improved methods for delivering a drug to a patient in need of the drug, while avoiding the occurrence of an adverse side effect known or suspected of being caused by the drug, of the type in which prescriptions for the drug are filled only after a computer readable storage medium has been consulted to assure that the prescriber is registered in the medium and qualified to prescribe the drug, that the pharmacy is registered in the medium and qualified to fill the prescription for the drug, and the patient is registered in the medium and approved to receive the drug. In one embodiment of the invention, there are provided improved methods comprising the steps of:

- a. defining a plurality of patient risk groups based upon a predefined set of risk parameters for the drug;
- b. defining a set of information to be obtained from the patient, which information is probative of the risk that such adverse side effect is likely to occur if the drug is taken by the patient;

- c. in response to the information set, assigning the patient to at least one of the risk groups; and
- d. entering the risk group assignment in the medium before the patient is approved to receive the drug.

The improved methods described herein provide advan- 5 tageous and effective means for monitoring, controlling and authorizing the distribution to patients of drugs known or suspected of causing adverse side effects. The methods of the present invention include a variety of checks and balances which serve to limit unauthorized and possibly inappropriate distribution of the drug. These methods are particularly applicable to distribution of teratogenic drugs, in which case the checks and balances may be particularly advantageous for preventing distribution of the drug to patients whose use of the drug may pose an unacceptable risk that a foetus carried by the patient or a recipient of the ¹⁵ bodily fluids of the patient will be exposed to such drugs. Accordingly, the present methods may be advantageously used to avoid exposure of foetuses to teratogenic drugs, thereby avoiding the terrible birth defects which may result 2.0 from such exposure.

The invention is not limited to the distribution of teratogenic drugs; other potentially hazardous drugs may also be distributed in accordance with embodiments of this invention and such drugs may be distributed in such a fashion that persons for whom such drugs are contraindicated will not ²⁵ receive them. These and other aspects of the invention will become more apparent from the present description and claims.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is directed generally to methods for the delivery of drugs known or suspected of causing an adverse side effect, especially teratogenic drugs, to patients. The term "drug," as used herein, refers to any substance 35 which is intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease, or to affect the structure or function of the body. The term "side effect" refers to any abnormality, defect, mutation, lesion, degeneration or injury which may be caused by taking the drug. The side effect may 40 be one which is likely to arise in the patient or in a foetus (i.e., fetus) carried by the patient. The side effect may also be one which is likely to arise in a recipient of the bodily fluid of the patient, or foetus carried by such recipient. The term "likely to arise" means that the side effect known or 45 suspected of being caused by the drug may be expected to occur at a higher incidence rate in a particular individual or group of individuals.

Generally speaking, the methods of the present invention may be desirably and advantageously used to educate and 50 reinforce the actions and behaviors of patients who are taking a drug, as well as prescribers who prescribe the drug and pharmacies which dispense the drug. As used herein, the term "prescriber" refers to any individual who is capable of prescribing drugs, including, for example, a medical doctor. 55 Such education and reinforcement of actions and behavior are often necessary to ensure proper prescribing and dispensing of the drug, as well as patient compliance with taking the drug. A wide variety of educational materials may be employed to ensure proper prescribing, dispensing and 60 patient compliance according to the methods described herein, including, for example, a variety of literature and other materials, such as, for example, product information, educational brochures, continuing education monographs, videotapes and the like which may describe the risks and 65 benefits associated with taking the particular drug and measures which may be taken to avoid those risks.

DOCKE

The methods described herein may be advantageously employed to avoid delivery of one or more drugs known or suspected of causing an adverse side effect to a patient for whom the drugs may be contraindicated. As used herein, the term "contraindicated" refers to any condition in a patient which renders a particular line of treatment, including the administration of one or more drugs, undesirable or improper. This condition may be preexisting, or may develop while the patient is taking the drugs, including conditions which may result directly or indirectly from treatment with the drugs. Thus, contraindicated drugs include, for example, teratogenic drugs whose administration, for example, to pregnant patients is importantly avoided due to the risks to the foetus. Drugs may also be considered "contraindicated," as the term is used herein, if use of a drug by patients who are also taking another drug is known or suspected of producing an adverse side effect in those patients, or in a foetus carried by such patients.

The methods of the present invention are especially advantageously employed for the delivery to a patient of a teratogenic drug. The delivery of a teratogenic drug to a patient may be advantageously achieved with the present methods while substantially (including completely) avoiding the delivery of the drug to a foetus. The term "substantially," as used in reference to avoiding the delivery of a teratogenic drug to a foetus, generally means that there is an avoidance rate of delivering the drug to a foetus of greater than about 50%. Preferably, the avoidance rate is greater than about 55%, with an avoidance rate of greater than about 60% being more preferred. Even more preferably, 30 the avoidance rate is greater than about 65%, with an avoidance rate of greater than about 70% being still more preferred. Yet more preferably, the avoidance rate is greater than about 75%, with an avoidance rate of greater than about 80% being still more preferred. In even more preferred embodiments, the avoidance rate is greater than about 85%, with an avoidance rate of greater than about 90% being vet more preferred. Still more preferably, the avoidance rate is greater than about 95%. In particularly preferred embodiments, a teratogenic drug may be delivered to patients with completely no delivery to foetuses (i.e., 100% avoidance rate).

The drug delivery methods of the present invention preferably involve, inter alia, registering in a computer readable storage medium prescribers who are qualified to prescribe the involved drug, including, for example, teratogenic drugs. Once registered in the computer readable storage medium, the prescriber may be eligible to prescribe the drug to patients in need of the drug. Generally speaking, in order to become registered in the computer readable storage medium, the prescriber may be required to comply with various aspects of the methods described herein including, for example, providing patient education and counseling, and the like, as described in detail below. The registration of the prescriber in the computer readable storage medium may be achieved by providing the prescriber, for example, by mail, facsimile transmission, or on-line transmission, with a registration card or form, preferably together with appropriate educational materials concerning, for example, the particular drug for which the prescriber is being registered to prescribe, as well as suitable methods for delivering the drug to the patient, including the drug delivery methods described herein. The prescriber will preferably complete the registration card or form by providing information requested therein, and the registration card or form will preferably be returned to the manufacturer or distributor of the drug, or other authorized recipient of the registration materials, for

example, by mail, facsimile transmission or on-line transmission. Information which may be requested of the prescriber in the registration card or form may include, for example, the prescriber's name, address, and affiliation, if any, with one or more health care institutions. The prescrib- 5 er's information in the registration card or form is then entered into the computer readable storage medium. It is contemplated that the registration of the prescriber into the computer readable storage medium may also be achieved, for example, by telephone, and/or through the use of an 10integrated voice response system. Suitable computer readable storage media which may be employed for registration of the prescribers (as well as the pharmacies and patients, as discussed below) will be apparent to one of ordinary skill in the art, once armed with the teachings of the present $_{15}$ application.

In accordance with the methods described herein, pharmacies who are qualified to fill prescriptions for the particular drug being prescribed including, for example, teratogenic drugs, are also preferably registered in a computer 20 readable storage medium. The computer readable storage medium in which the pharmacies are registered may be the same as, or different from the computer readable storage medium in which the prescribers are registered. Once registered in the computer readable storage medium, the phar- 25 macies may be eligible to dispense the involved drug to patients who are in need of the drug. Generally speaking, in order to become registered in the computer readable storage medium, the pharmacy may be required to comply with various aspects of the methods described herein including, 30 for example, registering the patient (preferably also in a computer readable storage medium), ensuring that the patient complies with certain aspects of the drug delivery methods, as well as other aspects of the present methods, as described in detail below. As with the registration of the 35 prescriber in the computer readable storage medium, the registration of the pharmacy may be achieved by providing the pharmacy, for example, by mail, facsimile transmission, or on-line transmission, with a registration card or form, preferably together with appropriate educational materials 40 concerning, for example, the particular drug for which the pharmacy is being registered to dispense, as well as suitable methods for delivering the drug to the patient, including the drug delivery methods described herein. The pharmacy may then have the registration card or form completed by pro- 45 viding the information requested therein, which thereafter may be returned to the manufacturer or distributor of the drug, or other authorized recipient of the registration card or form, for example, by mail, facsimile transmission or on-line transmission. Information which may be requested 50 of the pharmacy in the registration card or form may include, for example, the pharmacy's name, address, and affiliation, if any, with any health care institution such as, for example, a hospital, health care organization, and the like. The pharmacy's information in the registration card or form is then 55 preferably entered into the computer readable storage medium. It is contemplated that the registration of the pharmacy into the computer readable storage medium may also be achieved, for example, by telephone and/or through the use of an integrated voice response system.

As noted above, the drug delivery methods described herein also preferably involve the registration of the patient in a computer readable storage medium. The computer readable storage medium in which the patients are registered may be the same as, or different from the computer readable 65 storage medium in which the prescriber and/or pharmacy is registered. Generally speaking, in order to become regis-

ΟΟΚΕ

tered in the computer readable storage medium, the patient may be required to comply with various aspects of the methods described herein. The registration of the patient may be carried out by the registered pharmacy, for example at the time of the patient's initial visit to the pharmacy. It has been found, however, that it may be more efficient, and better compliance with the methods of the present invention may be provided, if registration of the patient is carried out by the registered prescriber of the drug at the time the initial prescription is generated.

In preferred form, the prescriber will typically have a registration card or form filled out for the patient, which includes information on the patient, such as the patient's name, sex, mailing address, date of birth, and the like. Information on the prescribing prescriber and dispensing pharmacy, such as the information described above for the registration thereof, may also be desirably entered on the patient registration card or form. The completed card or form may then be forwarded to the manufacturer or distributor of the drug, or other authorized recipient of the registration form, for example, by mail, facsimile transmission or on-line transmission. Where registration is by mail or facsimile, entry of the registration into the computer readable storage medium may preferably include the use of optical character recognition (OCR) software. It is also possible that the registration of the patient into the computer readable storage medium may also be achieved, for example, by telephone and/or through the use of an integrated voice response system.

Preferably, information will also be collected from the patient that may be probative of the risk that a known or suspected side effect will occur if the drug is taken by the patient. This information may then be compared with a predefined set of risk parameters for the drug, which in turn define a plurality of risk groups, so that analysis of the information will permit assignment of the patient to at least one of the risk groups. Preferably, this risk group assignment is then also entered into the computer readable storage medium. This assignment may be performed by the prescriber, who may then include the risk group assignment on the patient's registration card or form, or may be performed by another individual, such as a nurse, technician, or office personnel, who preferably interprets the information and assigns the patient to one of the risk groups, accordingly.

As discussed above, it is preferable that a plurality of risk groups, each based upon a predefined set of risk parameters, be established for the drug which is to be administered. As will be evident to those of skill in the art, the risk parameters to be considered and the risk groups defined by those parameters, will be based upon factors which influence the risk that a known or suspected adverse side effect will occur if the patient receives the drug, and will vary depending upon the drug in question. Where the drug is a teratogenic drug, for example, such risk parameters may include elements which would impact the risk of a foetus being exposed to the drug, such as the age, sex and reproductive status of the patient. For example, a first risk group may comprise female patients of child bearing potential; a second risk group may comprise female patients of non-child bearing potential; a third risk group may comprise sexually active male patients; and a fourth risk group may comprise sexually inactive male patients. Additionally, there may be a risk group established for patients to whom administration of the drug may be strictly contraindicated, and patients assigned to such a group will not be approved to receive the drug. For other drugs, different factors, such as those influencing the likelihood that certain preexisting conditions may exist, or

the likelihood of certain other drugs being used concomitantly with the prescribed drug, may define the relevant risk parameters.

By assigning each patient to a risk group, the steps that will be taken to minimize the chance that the drug is 5 dispensed to a contraindicated patient, and to minimize the risk that a known or suspected adverse side effect will occur, can be tailored to suit the circumstances of that particular patient. For example, depending upon which risk group a patient is assigned to, additional information may be col- 10 lected from the patient. As discussed more fully below, such additional information may be in the form, for example, of a patient survey. Such additional information may also include the results of certain diagnostic tests which have been performed. Based upon the additional information, the 15 patient's risk group assignment may then remain the same, or the patient may be assigned to a different risk group, which may in turn require that further additional information be collected from the patient.

In accordance with the present invention, the monitoring 20 of two, three or more drugs either administered to or proposed for administration to a patient may also be accomplished in order to avoid or diminish the likelihood of the occurrence of one or more side effects. Thus, combinations of drugs which, when administered to an individual patient, 25 may give rise to an increased likelihood of side effects, may be registered in a computer readable storage medium, and the patient's risk group assignment may be reflective of this increased risk. A physician is registered to prescribe at least one of the drugs for a patient and a pharmacy is registered 30 to fill such prescription. In this way, through assignment of such patient to one or more risk groups, the avoidance of harmful drug interactions may be attained.

It is preferred that for any given risk group, there may be defined a predetermined additional set of information which 35 is to be collected from the patient. This additional set of information may be obtained prior to the initial dispensation of the drug to the patient and/or may be obtained from the patient on a periodic basis. This information may include information not previously obtained from the patient, or may 40 simply reiterate previously asked questions, and repeat diagnostic tests which were conducted previously. The information may relate to the patient's conduct, or may relate to the patient's past or ongoing medical treatment, such as other procedures or medication which the patient may have 45 received or is still receiving. For example, the additional set of information may be in the form of a survey or questionnaire regarding the patient's behavior and compliance with risk avoidance measures and may thus be probative of whether the risk of occurrence of an adverse side effect has 50 increased, decreased or remained the same. Based upon the responses by the patient, the patient's risk group assignment may, if appropriate, be changed accordingly. Alternatively, where side effects which are known or suspected of being caused by a combination of drugs, the questions asked of the 55 patient may be probative of the likelihood that the patient may take such a combination of drugs. Similarly, where sharing of drugs by the patient may be a matter of concern, the survey may be probative of the risk that the patient may be sharing the hazardous drug with another, and hence 60 increase the risk that a contraindicated individual may receive the drug.

The additional information may also include the results of certain diagnostic tests which have been performed on the patient. Such diagnostic tests may be probative, for example, 65 of the risk of exposure of a foetus to a teratogenic drug, may test for the presence of a risk factor for the adverse side

DOCKE

effect of concern, or may be probative of the onset of that side effect. Where the use of combinations of more than one drug are known or suspected of causing an increased risk of the occurrence of a side effect, the diagnostic testing may include testing for the presence of one or more of those drugs, or evidence of the use by the patient of such other drugs. Additionally, diagnostic tests may be probative of the concentration of one or more drugs, including the prescribed drug or drugs, to assure that appropriate dosing is maintained.

Such diagnostic testing may be conducted on any bodily fluid or waste product of the patient, including the blood, serum, plasma, saliva, semen or urine, as well as the feces. Diagnostic testing may also be performed on a biopsy of any tissue of the patient or may include genetic testing, which may be indicative of a genetic predisposition to a particular adverse side effect. Other forms of diagnostic testing, such as diagnostic imaging, or tests which may be probative of the proper functioning of any tissue, organ or system are also contemplated. Preferably, the additional information and/or diagnostic test results are obtained and entered in the computer readable storage medium before the patient is approved to receive the drug. Additionally, where the information indicates that the risk of the adverse side effect occurring outweighs the potential benefit of the drug, the patient may be assigned to a risk group that will preclude approval of dispensation of the drug to that patient.

In accordance with the methods of the present invention, therefore, the delivery of the drug to the patient may involve the following steps. As a prelude to prescribing and dispensing the drug to the patient, the prescriber and the pharmacy are registered in one or more appropriate computer readable storage media, as described above. If the prescriber is not registered in the computer readable storage medium, the prescriber will be ineligible to prescribe the drug. Similarly, if the pharmacy is not registered in the computer readable storage medium, the pharmacy will be ineligible to dispense the drug.

In the course of an examination of a patient, including patients suffering from one or more diseases and/or disorders such as, for example, erythema nodosum leprosum (ENL), the prescriber may determine that the patient's condition would be improved by the administration of a drug such as, for example, a teratogenic drug, including thalidomide. Prior to prescribing the drug, the prescriber preferably counsels the patient, for example, on the various risks and benefits associated with the drug. For example, the prescriber preferably discusses the benefits associated with taking the drug, while also advising the patient on the various side effects associated therewith. In embodiments of the invention wherein the prescriber assigns the patient to a specific risk group, the disclosure is preferably tailored to that risk group assignment. Thus, a patient who may acquire or impart a condition or disease for which the drug is contraindicated is preferably counseled by the prescriber on the dangers associated therewith and advised as to risk avoidance measures which may be instituted. Preferably the patient is provided full disclosure of all the known and suspected risks associated with taking the drug. For example, in the case of teratogenic drugs, the prescriber preferably counsels the patient on the dangers of exposing a foetus, either one which may be carried by the patient or one carried by a recipient of the bodily fluids of the patient, to the teratogenic drug. Such counsel may be provided verbally, as well as in written form. In preferred embodiments, the prescriber provides the patient with literature materials on the drug for which a prescription is

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.