[54] QUINOLINE TYPE MEVALONOACTONES
[75] Inventors: Yoshihiro Fujikawa; Mikio Suzuki; Hiroshi Iwasaki, all of Funabashi; Mitsuaki Sakashita; Masaki Kitahara, both of Shiraoka-machi, all of Japan
[73] Assignee: Nissan Chemical Industries Ltd., Tokyo, Japan
[21] Appl. No.: 631,092
[22] Filed: Dec. 19, 1990

Related U.S. Application Data

[63] Continuation of Ser. No. 233,752, Aug. 19, 1988.
[30] Foreign Application Priority Data

	1988	[JP	Japan 63-15585
	3, 1988	[JP]	Japan	63-193606
	20, 1997	[JP]	Japan	... 62-207224
[51]	Int. CI. ${ }^{6}$			A61K 31/47; C07D 215/12
[52]	U.S. Cl.			.514/311; 546/173
[58]	Field of			.. 546/173; $514 / 3$

References Cited
U.S. PATENT DOCUMENTS

5,753,675 5/1998 Wattanasin
514/311
Primary Examiner-Laura L. Stockton
Attorney, Agent, or Firm-Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.

ABSTRACT
Described herein are mevalonolactone derivatives having a quinoline ring of formula (I)

wherein the $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}, \mathrm{R}^{5}, \mathrm{Y}$ and Z variables are described therein.

5 Claims, No Drawings

QUINOLINE TYPE MEVALONOACTONES

This is a continuation of application Ser. No. $07 / 233,752$, filed on Aug. 19, 1988.

The present invention relates to novel mevalonolactones having a quinoline ring, processes for their production, pharmaceutical compositions containing them and their pharmaceutical uses particularly as anti-hyperlipidemic, hypolipoproteinemic and anti-atherosclerotic agents, and intermediates useful for their production and processes for the production of such intermediates.

Some fermentation metabolic products such as compactine, CS-514, Mevinolin or semi-synthetic derivatives or fully synthetic derivatives thereof are known to be inhibitors against HMG-CoA reductase which is a rate limiting enzyme for cholesterol biosynthesis. (A. Endo J. Med Chem., 28(4) 401 (1985))

CS-514 and Mevinolin have been clinically proved to be potentially useful anti-hyperlipoproteinemic agents, and they are considered to be effective for curing or preventing diseases of coronary artery sclerosis or atherosclerosis. (IXth Int. Symp. Drugs Affect. Lipid Metab., 1986, p30, p31, p66)

However, with respect to fully synthetic derivatives, particularly hetero aromatic derivatives of inhibitors against HMG-CoA reductase, limited information is disclosed in the following literatures:

WPI ACC NO 84-158675, 86-028274, 86-098816, 86-332070, 87-124519, 87-220987, 88-07781, 88-008460, 88-091798 and 88-112505.

The present inventors have found that mevalonolactone derivatives having a quinoline ring, the corresponding dihydroxy carboxylic acids and salts and esters thereof have high inhibitory activities against cholesterol biosynthesis wherein HMG-CoA reductase acts as a rate limiting enzyme. The present invention has been accomplished on the basis of this discovery.

The novel mevalonolactone derivatives of the present invention are represented by the following formula I :

wherein $R^{1}, R^{2}, R^{3}, R^{4}$ and R^{6} are independently hydrogen, C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, $\mathrm{R}^{7} \mathrm{R}^{8} \mathrm{~N}$ - (wherein R^{7} and R^{8} are independently hydrogen or C_{1-3} alkyl), trifluoromethyl, trifluoromethoxy, difluoromethoxy, fluoro, chloro, bromo, phenyl, phenoxy, benzyloxy, hydroxy, trimethylsilyloxy, diphenyl-tbutylsilyloxy, hydroxymethyl or - $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{l} \mathrm{OR}^{19}$ (wherein R^{19} is hydrogen or C_{1-3} alkyl, and 1 is 1,2 or 3); or when located at the ortho position to each other, R^{1} and R^{2}, or R^{3} and R^{4} together optionally form $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$; or when located at the ortho position to each other, R^{1} and R^{2} together optionally form - $\mathrm{OC}\left(\mathrm{R}^{15}\right)\left(\mathrm{R}^{16}\right) \mathrm{O}$ - (wherein R^{15} and R^{16} are independently hydrogen or C_{1-3} alkyl); Y is $-\mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}_{2}-6$ $\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-$; and Z is $-\mathrm{Q}-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12}$,

or
(wherein Q is $\left.-\mathrm{C}(\mathrm{O})-,-\mathrm{C}_{\mathrm{O}}{ }^{13}\right)_{2}-$ or $-\mathrm{CH}(\mathrm{OH})-$; W is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}-$ or $-\mathrm{C}^{2}\left(\mathrm{R}^{11}\right)(\mathrm{OH})-; \mathrm{R}^{11}$ is hydrogen or C_{1-3} alkyl; R^{12} is hydrogen or R^{14} (wherein R^{14} is physiologically hydrolyzable alkyl or M (wherein M is NH_{4}, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine)); two R^{13} are independently primary or secondary C_{1-6} alkyl; or two R^{13} together form $-\left(\mathrm{CH}_{2}\right)_{2}-$ or $-\left(\mathrm{CH}_{2}\right)_{3}-; \mathrm{R}^{17}$ and R^{18} are independently hydrogen or C_{1-3} alkyl; and R^{5} is hydrogen, C_{1-6} alkyl, C_{2-3} alkenyl, C_{3-6} cycloalkyl,

(wherein R^{9} is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, fluoro, chloro, bromo or trifluoromethyl), phenyl- $\left(\mathrm{CH}_{2}\right)_{m}$ (wherein m is 1,2 or 3), $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - (wherein n is 0,1 or 2).
Various substituents in the formula I will be described in detail with reference to specific examples. However, it should be understood that the present invention is by no means restricted by such specific examples.
C_{1-6} alkyl for $R^{1}, R^{2}, R^{3}, R^{4}, R^{6}$ and R^{9} includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl and t-butyl. C_{1-3} alkoxy for $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ and R^{6} includes, for example, methoxy, ethoxy, n-propoxy and i-propoxy.
C_{1-3} alkyl for R^{11} includes, for example, methyl, ethyl, n-propyl and i-propyl.
C_{1-3} alkyl for R^{13} includes, for example, methyl, ethyl, n-propyl and i-propyl.

Alkyl for R^{14} includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl and i-butyl.

M is a metal capable of forming a pharmaceutically acceptable salt, and it includes, for example, sodium and potassium.
$\mathrm{CO}_{2} \mathrm{M}$ includes, for example, $-\mathrm{CO}_{2} \mathrm{NH}_{4}$ and $-\mathrm{CO}_{2} \mathrm{H}$. (primary to tertiary lower alkylamine such as trimethylamine).
C_{1-6} alkyl for R^{5} includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, n-pentyl and n-hexyl.
C_{3-6} cycloalkyl for R^{5} includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
C_{2-3} alkenyl for R^{5} includes, for example, vinyl and i-propenyl.
Phenyl- $\left(\mathrm{CH}_{2}\right)_{m}$ - for R^{5} includes, for example, benzyl, β-phenylethyl and γ-phenylpropyl.

Phenyl- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - for R^{5} includes, for example, α-phenylethyl and α-benzylethyl.
C_{1-3} alkyl for R^{7} and R^{8} includes, for example, methyl, ethyl, n-propyl and i-propyl.

Further, these compounds may have at least one or two asymmetric carbon atoms and may have at least two to four optical isomers The compounds of the formula I include all of these optical isomers and all of the mixtures thereof.

Among compounds having carboxylic acid moieties falling outside the definition of $-\mathrm{CO}_{2} \mathrm{R}^{12}$ of the carboxylic acid moiety of substituent Z of the compounds of the present invention, those which undergo physiological hydrolysis, after intake, to produce the corresponding carboxylic acids (compounds wherein the $-\mathrm{CO}_{2} \mathrm{R}^{12}$ moiety is $-\mathrm{CO}_{2} \mathrm{H}$) are equivalent to the compounds of the present invention.

Now, preferred substituents of the compounds of the present invention will be described.

In the following preferred, more preferred still further perferred and most preferred examples, the numerals for the positions of the substituents indicate the positions on the quinoline ring For example, $\mathrm{N}{ }^{\prime}$ shown by e.g. 1^{\prime} or 2^{\prime} indicates the position of the substituent on the phenyl substituted at the 4 -position of the quinoline ring (the carbon connected to the quinoline ring is designated as 1^{\prime}). The meanings of the respective substituents are the same as the above-mentioned meanings.

Preferred substituents for R^{1}, R^{2} and R^{6} are hydrogen, fluoro, chloro, bromo, C_{1-3} alkyl, C_{1-3} alkoxy, C_{3-6} cycloalkyl, dimethylamino, hydroxy, hydroxymethyl, hydroxyethyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, phenoxy and benzyloxy.

Further, when R_{6} is hydrogen, it is preferred that R^{1} and R^{2} together form methylenedioxy.

As preferred examples for R^{3} and R^{4}, when R^{4} is hydrogen, R^{3} is hydrogen, 3^{\prime}-fluoro, 3^{\prime}-chloro, 3^{\prime}-methyl, 4'-methyl, 4'-chloro and 4'-fluoro.

Other preferred combinations of R^{3} and R^{4} include 3'-methyl-4'-chloro, $3^{\prime}, 5^{\prime}$-dichloro, $3^{\prime}, 5^{\prime}$-difluoro, $3^{\prime}, 5^{\prime}$ dimethyl and 3^{\prime}-methyl-4'-fluoro.

Preferred examples for R^{5} include primary and secondary C_{1-6} alkyl and C_{3-6} cycloalkyl.

Preferred examples for Y include $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ and $-\mathrm{CH}=\mathrm{CH}-$.
Preferred examples for Z include

$-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12},-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})$ $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$ and $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OR}^{13}\right)_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$.

Now, more preferred substituents of the compounds of the present invention will be described.

As more preferred examples for $\mathrm{R}^{1}, \mathrm{R}^{2}$ and R^{6}, when both R^{2} and R^{6} are hydrogen, R^{1} is hydrogen, 5 -fluoro, 6 -fluoro, 7 -fluoro, 8 -fluoro, 5 -chloro, 6 -chloro, 7 -chloro, 8 -chloro, 5-bromo, 6 -bromo, 7 -bromo, 8 -bromo, 5 -methyl, 6 -methyl, 7-methyl, 8-methyl, 5-methoxy, 6-methoxy, 7-methoxy, 8 -methoxy, 5-trifluoromethyl, 6-trifluoromethyl, 7-trifluoromethyl, 8-trifluoromethyl, 6-trifluoromethoxy, 6-difluoromethoxy, 8-hydroxyethyl, 5-hydroxy, 6-hydroxy, 7-hydroxy, 8-hydroxy, 6-ethyl, 6-n-buty1 and 7-dimethylamino.

When R^{6} is hydrogen, R^{1} and R^{2} together represent 6-chloro-8-methyl, 6-bromo-7-methoxy, 6-methyl-7-chloro, 6-chloro-8-hydroxy, 5-methyl-2-hydroxy, 6-methoxy-7-
(c) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(d) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(e) (E)-3,5-dihydroxy-7-[4'-(4"'fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
(f) (E)-3,5-dihydroxy-7-[4'-(4'-fluoropheny1)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(g) (E)-3,5-dihydroxy-7-[4'-(4"'-fluorophenyl)-2'-cyclopropyl-6'-methyl-quinolin- 3^{\prime}-yl]-hept-6-enoic acid
(h) (E)-3,5-dihydroxy-7-[4'-(4"'fluorophenyl)-2'-cyclopropyl-6', 7^{\prime}-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(i) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-quinolin- 3^{\prime}-yl]-hept-6-enoic acid
(j) (E)-3,5-dihydroxy-7-[4'-(4'-chlorophenyl)-2'-(1' -methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(k) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(1) (E)-3,5-dihydroxy-7-[4'-(4'-chlorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(m) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
(n) (E)-3,5-dihydroxy-7-[4'-(4'-chlorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3"-yl]-hept-6-enoic acid
(o) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(p) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(q) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)- 40 quinolin- ${ }^{\prime}$ '-yl]-hept-6-enoic acid
(r) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(s) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)- 45 6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(t) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)$6^{\prime}, 7^{\prime}$-dimethoxy-quinolin- 3^{\prime}-yl]-hept-6-enoic acid
(u) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl- 50 quinolin-3'-yl]-hept-6-enoic acid
(v) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(w) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'- 55 methyl-quinolin-3'-yl]-hept-6-enoic acid
(x) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-quinolin- 3 '-yl]-hept-6-enoic acid
(y) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"- 60 methylethyl)-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid
(z) (E)-3,5-dihydroxy-7-[4'-(4"-fluoropheny1)-2'-cyclopropyl-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid

The mevalonolactones of the formula I can be prepared by 65 the following reaction scheme. The enal III can also be prepared by processes K, L and M .

30

40
IX

 $\xrightarrow[\mathrm{J}]{>}$

35

\rightarrow

都
45

60

$\xrightarrow[\mathrm{N}]{>}$

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

