
Failure-Atomic File Access in an Interposed Network Storage System

Darrell Anderson and Jeff Chase
�

Department of Computer Science
Duke University�

anderson, chase� @cs.duke.edu

Abstract

This paper presents a recovery protocol for block I/O
operations in Slice, a storage system architecture for high-
speed LANs incorporating network-attached block storage.
The goal of the Slice architecture is to provide a network
file service with scalable bandwidth and capacity while
preserving compatibility with off-the-shelf clients and file
server appliances. The Slice prototype “virtualizes” the
Network File System (NFS) protocol by interposing a re-
quest switching filter at the client’s interface to the network
storage system (e.g., in a network adapter or switch).

The distributed Slice architecture separates functions
typically combined in central file servers, introducing new
challenges for failure atomicity. This paper presents a pro-
tocol for atomic file operations and recovery in the Slice ar-
chitecture, and related support for reliable file storage using
mirrored striping. Experimental results from the Slice pro-
totype show that the protocol has low cost in the common
case, allowing the system to deliver client file access band-
widths approaching gigabit-per-second network speeds.

1 Introduction

Faster I/O interconnect standards and the arrival of Gi-
gabit Ethernet greatly expand the capacity of inexpensive
commodity computers to handle large amounts of data for
scalable computing, network services, multimedia and vi-
sualization. These advances and the growing demand for
storage increase the need for network storage systems that
are incrementally scalable, reliable, and easy to administer,
while serving the needs of diverse workloads running on a
variety of client platforms.

Commercial systems increasingly provide scalable
shared storage by interconnecting storage devices and
servers with dedicated Storage Area Networks (SANs),

�
This work is supported by the National Science Foundation (CCR-96-

24857, EIA-9870724, and EIA-9972879) and by equipment grants from
Intel Corporation and Myricom.

e.g., FibreChannel. Yet recent order-of-magnitude improve-
ments in LAN performance have narrowed the bandwidth
gap between SANs and LANs. This creates an opportu-
nity to deliver competitive storage solutions by aggregating
low-cost storage nodes and servers, using a general-purpose
LAN as the storage backplane. In such a system it is pos-
sible to incrementally scale either capacity or bandwidth of
the shared storage resource by attaching additional storage
to the network.

A variety of commercial products and research proposals
pursue this vision by layering device protocols (e.g., SCSI)
over IP networks, building cluster file systems that manage
distributed block storage as a shared disk volume, or in-
stalling large server appliances to export SAN storage to a
LAN using network file system protocols. Section 2.1 sur-
veys some of these systems.

This paper deals with a network storage architecture —
called Slice — that takes an alternative approach. Slice
places a request switching filter at the client’s interface to
the network storage system; the role of the filter is to “wrap”
a standard IP-based client/server file system protocol, ex-
tending it to incorporate an incrementally expandable array
of network-attached block storage nodes. The Slice pro-
totype implements the architecture by virtualizing the Net-
work File System version 3 protocol (NFS V3). The request
switching filter intercepts and rewrites a subset of the NFS
V3 packet stream, directing I/O requests to the network
storage array and associated servers that make up a Slice
ensemble appearing to the client as a unified NFS volume.
The system is compatible with off-the-shelf NFS clients and
servers, in order to leverage the large installed base of NFS
clients and the high-quality NFS server appliances now on
the market.

The Slice architecture assumes a block storage model
loosely based on a proposal in the National Storage In-
dustry Consortium (NSIC) for object-based storage devices
(OBSD) [2]. Key elements of the OBSD proposal were
in turn inspired by research on Network Attached Secure
Disks (NASD) [8, 9]. Storage nodes are “object-based”
rather than sector-based, meaning that requesters address

Oracle Ex. 1022, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 1. The Slice distributed storage archi-
tecture.

data on each storage node as logical offsets withinstorage
objects. A storage object is an ordered sequence of bytes
with a unique identifier. The NASD work and the OBSD
proposal allow for cryptographic protection of object iden-
tifiers if the network is insecure [8].

The Slice architecture separates functions that are com-
bined in central file servers. The contribution of this paper
is to present a simple solution to the coordination and recov-
ery issues raised by this structure. Our approach introduces
a coordinator responsible for preserving atomicity of key
NFS operations, including file truncate/remove, extending
writes, and write commitment. The coordinators use a sim-
ple intention logging protocol, with variants for each oper-
ation type that minimize the common-case costs. We also
show how the protocol supports failure-atomic write com-
mitment for mirrored files in the Slice prototype. Mirroring
consumes more storage and network bandwidth than strip-
ing with RAID redundancy, but it is simple and reliable,
avoids the overhead of computing and updating parity, and
allows load-balanced reads [4, 12].

This paper is structured as follows. Section 2 summa-
rizes the Slice architecture. Section 3 describes mecha-
nisms for operation atomicity and failure handling. Sec-
tion 4 presents experimental results from the Slice prototype
on a Myrinet network, showing that the Slice architecture
and recovery protocols achieve file access performance ap-
proaching gigabit-per-second network speeds, limited pri-
marily by the client NFS implementation. Section 5 con-
cludes.

2 Overview

Figure 1 depicts the Slice architecture with NFS clients
and servers. The architecture interposes a “microproxy”
(� proxy) between the client IP stack and the Slice server en-

semble. The� proxy examines NFS requests and responses,
redirecting requests and transforming responses as neces-
sary to represent the distributed storage service as a uni-
fied NFS service to its client. For some operations, the
� proxy must generate new requests and pair responses with
requests. The� proxy may reside within the client itself,
or in a network element along the communication path be-
tween the client and the servers. In our current prototype
the � proxy is implemented as a packet filter installed on the
client below the NFS/UDP/IP stack.

The � proxy is a simple state machine with minimal
buffering requirements. It uses only soft state; the� proxy
may fail without compromising correctness. The� proxy
may reside outside of the trust boundary, although it may
damage the contents of specific files by misusing the au-
thority of users whose requests are routed through it. In this
paper we limit our focus to aspects of the� proxy internals
and policies that are directly related to operation atomicity
and the recovery protocol.

The coordinator plays an important role in managing
global recovery of operations involving multiple sites. A
Slice configuration may contain any number of coordina-
tors, with each coordinator managing operations for some
subset of files. The functions of the coordinator may be
combined with the file server, but we consider them sepa-
rately to emphasize that the architecture is compatible with
standard file servers.

Our implementation combines the coordinator with a
map serviceresponsible for tracking file block location. The
coordinator servers maintain aglobal block mapfor each
file giving the storage site for each block. The� proxies
read, cache, modify, and write back fragments of the global
maps as they executereadandwrite operations on files. The
global maps allow flexible per-file policies for block place-
ment and striping in the network storage array; although the
system may use deterministic block placement functions as
an alternative to the global maps, this paper includes a dis-
cussion of the maps to show how the recovery protocol in-
corporates them.

The � proxy intercepts read and write operations targeted
at file regions beyond a configurablethreshold offset. Log-
ical file offsets beyond the threshold are referred to as the
striping zone; the � proxy redirects all reads and writes cov-
ering offsets in the striping zone to an array ofblock storage
nodesaccording to system striping policies and the block
maps maintained by the coordinators. The policies and pro-
tocols include support formirrored striping (“RAID-10”)
for redundancy to protect against storage node failures, as
described in Section 3.2. The Slice storage nodes export
object-based block storage to the network; our prototype
storage nodes accept NFSread andwrite operations on a
flat space of storage objects uniquely identified by NFS file
handles. Although NFS file handles provide only a weak

Oracle Ex. 1022, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

form of protectionin our prototype, the architecture is com-
patible with proposals for cryptographic protection of stor-
age object identifiers for insecure networks [8].

The � proxy identifiesread andwrite operations in the
striping zone by examining the request offset and length.
Small files are not striped; these are files whose logical size
is below the threshold offset, i.e., that have never received
a write in the striping zone. Note that even large files are
not striped in their entirety; data written below the thresh-
old offset of a large file is stored along with the small files.
File regions outside the striping zone do not benefit from
striping, but the performance cost becomes progressively
less significant as file sizes grow.

In addition to the interactions required for I/O requests,
the � proxies cooperate with the network storage nodes and
the file’s coordinator to allocate global maps for extending
write operations, and to release storage onremoveandtrun-
cateoperations. These multisite operations introduce recov-
ery issues described in the next section. All other file oper-
ations pass through the� proxy to the NFS server as they
did before, and incur no additional overhead for managing
distributed storage.

This architecture scales to higher bandwidth and capac-
ity by adding storage nodes, since the NFS server is outside
the critical path of reads and writes handled by the block
storage nodes. It is also possible to scale or replicate other
file service functions within the context of the Slice request
switching architecture. For simplicity this paper assumes
that a single standard NFS file server manages the entire
volume name space.

The goal of the mechanisms described in this paper is to
deliver consistency and failure properties that are no weaker
than commercial NFS implementations. While the basic ap-
proach is quite similar to write-ahead logging that might
be taken on a journaling central file server with distributed
disks, we extend it to support multisite operations without
the awareness of the client, NFS file server, or the storage
nodes. Our approach to committing writes assumes use of
the NFS V3 asynchronous writes and write commitment
protocol, as described below. This paper does not address
the issue of concurrent write sharing of files, and Slice as
defined may provide weaker concurrent write sharing guar-
antees than some NFS implementations. However, the ar-
chitecture is compatible with NFS file leasing extensions
for consistent concurrent write sharing, as defined in NQ-
NFS [13] and early IETF draft proposals for the NFS V4
protocol.

2.1 Related Work

The Cambridge Universal File Server [5] proposed struc-
turing a distributed file system as a separate name service
and file block storage service. One system to take this

approach was Swift [6]. Slice is similar to Swift in that
each client reads or writes data directly to block storage
sites on the network, choreographed by a client distribution
agent using maps provided by a third-party storage media-
tor. Another system derived from the Swift architecture is
Cheops, a striping file system for CMU NASD storage sys-
tems [9, 8]. The Swift and Cheops work did not directly
address atomicity or recovery issues.

Amiri et. al. [1] show how to preserve read and write
atomicity in a shared storage array using RAID striping with
parity. This work focuses primarily on safe concurrent ac-
cesses to a fixed space of blocks. It does not address file
system consistency in the presence of host failures.

A number of scalable file systems separate some strip-
ing functions from other file system code by building the
file system above a striped network storage volume using
a shared disk model. This approach has been used with
both log-structured [11, 3] and conventional [15, 14] file
system structures. In these systems, multisite operations in-
cludingtruncateandremoveare made failure-atomic using
write-ahead metadata logging on the file server. The log-
structured approach also relies in part on a separatecleaner
process to reclaim space.

Relative to these systems, this paper shows how to fac-
tor out recovery functions so that multisite recovery may
be interposed in the context of a standard client/server file
system protocol, without modifying the client or server.

3 Atomic Operations on Network Storage

A multisite operation begins when the� proxy intercepts
an NFS V3write, remove,truncate(setattr) or commitre-
quest from a client. To handle the request, the� proxy may
redirect the request or generate additional request messages
to nodes in the Slice ensemble, including storage nodes, the
coordinator for the target file, and the NFS server. Figure 2
illustrates the message exchanges for the multisite opera-
tions discussed in this section.

When the operation is complete at all sites, the� proxy
passes through an NFS V3 response to the client. If any
participant fails during this sequence — the� proxy, a stor-
age node, the coordinator, or the file server — a recovery
protocol is initiated. The recovery protocol is specific to the
particular operation in progress, and it may either complete
the operation (roll forward) or abort it (roll back). If the sys-
tem aborts the operation or delays the response, a standard
NFS client may reinitiate the operation by retransmitting the
request after a timeout, unless the client itself has failed.

The basic protocol is as follows. At the start of the op-
eration, the� proxy sends to the coordinator anintentionto
perform the operation (e.g., Figure 2, messages� and �).
The coordinator logs the intention to stable disk storage and
responds, authorizing the� proxy to carry out the operation.

Oracle Ex. 1022, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2. Message exchanges for multisite Slice/NFS operations. Dotted line message exchanges
are avoided in common cases. Square endpoints represent synchronous storage writes.

When the operation is complete, the� proxy notifies the co-
ordinator with acompletionmessage, asynchronously clear-
ing the intention (e.g., messages� and �). If the coordinator
does not receive the completion within a specified period, it
probes one or more participants to determine if the opera-
tion completed, and initiates recovery if necessary. A failed
coordinator recovers by scanning its intentions log, com-
pleting or aborting operations in progress at the time of the
failure.

This is a variant of the standard two-phase commit pro-
tocol [10] adapted to a file system context with idempotent
operations. The details for each operation vary significantly.
In particular, each operation allows optimizations to avoid
most messaging and logging delays in common cases, as
described below. Slice further improves performance by
avoiding multisite operations for small files stored entirely
on the file server, i.e., files that have never received writes
beyond the configurable threshold offset. In this way, the
system amortizes the costs of the protocol across a larger
number of bytes and operations, since it incurs these costs
only to create and truncate/remove large files, and to com-
mit groups of writes to large files.

The following subsections describe the protocol as it ap-
plies to each type of multisite operation. We then set the
protocol in context with conventional two-phase commit.

3.1 Write Commitment

An NFS V3commitoperation stabilizes pending or un-
stable writes on a given file. The NFS V3 protocol allows a
server failure to legally discard any subset of the uncommit-
ted writes and associated metadata, provided that the client
can detect any loss by comparing verifier values returned
by the file service in its responses towrite andcommitop-
erations. NFS V3 clients buffer uncommitted writes locally
so that they may re-execute these writes after a server fail-
ure. Clients may safely discard their buffered writes after a
successfulcommit. Note that the verifier value returned by
write andcommitis not itself significant; the service guar-
antees only that the verifier changes after a failure.

To handle acommiton a file that has unstable writes in
the striping zone, the� proxy executes a message exchange
with each storage node that owns uncommitted writes on
the file (Figure 2, message). The � proxy also completes
the writes, which may involve an exchange with the coor-
dinator (map service) and/or the NFS server. The� proxy
pushes any updates to the file’s map back to the coordinator
(message
). If the write enlarged the file, it pushes the new
file size to the NFS server via asetattr(message
). When
all operations have completed successfully, the� proxy re-
sponds to the client with a valid verifier.

The � proxy detects any failures by comparing response
verifiers against a stored copy of the previous verifier re-
turned by each participant. If any participant fails, the
� proxy reports the failure by changing the response veri-

Oracle Ex. 1022, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

fier to theclient. If the � proxy itself loses its state, it may
report failure for acommitthat has successfully completed
at all sites. This forces the client to reinitiate writes unnec-
essarily, but is otherwise harmless.

Intention logging is unnecessary forwrite and commit
on unmirrored files. This is because the file service remains
in a legal state throughout the write sequence andcommit.
The exact ordering of operations is not strictly important;
the commitis complete only when the client discarded its
buffered writes after receiving a valid response. If a failure
occurs, the client itself is responsible for restarting the write
sequence after receiving a negative response or no response
to itscommitrequest.

3.2 Mirrored Writes

Writes to a mirrored file are replicated using a read-any-
write-all model. Without loss of generality we assume that
the replication degree is two. A replication degree of two
guarantees that a file is available unless two or more stor-
age nodes fail concurrently, or the file’s coordinator fails to-
gether with one storage node and a client who was actively
writing the file.

Block maps for a mirrored file have dual entries for each
logical block, with one entry for each block replica. The
� proxy writes each block to a pair of storage nodes selected
according to some placement policy, which is not important
for the purposes of this paper. A mirrored write is consid-
ered complete only after it has committed; i.e., both storage
nodes confirm that the block is stable, and (if applicable) the
file’s coordinator (map service) confirms that the covering
map fragment is stable.

Mirrored writes use the intention protocol to reconcile
replicas in the event of a failure. If a participant fails while
there are incomplete mirrored writes, then it is possible that
the write executed at one replica but not the other. In prac-
tice, this does not occur unless a client fails concurrently
with one or more server failures, since an NFS V3 client
retransmits all uncommitted writes after a server failure, as
described in Section 3.1.

The mirrored write protocol piggybacks intention mes-
sages for mirrored writes on the� proxy’s request for the
map fragment covering the write. Before returning the re-
quested map fragment, the coordinator logs the intention
record and updates a conservative in-memoryactive region
list of offset ranges or map fragments that might be held by
each� proxy, and that may have incomplete writes. These
intentions are cleared implicitly by acommitrequest cov-
ering the region;commitcauses the� proxy to discard all
covered map fragments for a mirrored file.

If a client (or its � proxy) fails, any uncommitted mir-
rored writes are guaranteed to be covered by the coordina-
tor’s active region list. The coordinator can reconcile the

replicas for these regions by traversing the region list; any
conflict within the active regions may be resolved by select-
ing one replica to dominate. In principle, the system can
serve one copy of the file concurrently with reconciliation,
even if a storage node fails. If the coordinator fails, it re-
covers a conservative approximation of its active region list
from its intentions log.

In practice, most intention logging activity for mirrored
writes may be optimized away. Slice logs these intentions
only when a mirrored file first comes into active write use,
e.g., when a� proxy first requests map fragments with in-
tent to write. If a file falls out of write use (no map frag-
ment requests received since the lastcommitcompletion),
the coordinator marks the file as inactive by logging awrite-
completeentry. This protocol adds a synchronous log write
to the write-open path for mirrored files, but this cost is
amortized over all writes on the file. It allows a recover-
ing coordinator to identify a superset of the mirrored files
that may need reconciliation after a multiple failure.

One drawback of the protocol is that a buggy or mali-
cious client might cause the active region list to grow with-
out bound by issuing large numbers of writes and never
committing them. This is not a problem with clients that
correctly buffer their uncommitted writes, since the num-
ber of writes is limited by available memory; in any case,
standard clients commit writes at regular intervals under the
control of a system update daemon. For malicious clients,
the system may avoid this problem by weakening replica
consistency guarantees for mirrored files with writes left un-
committed for unreasonably long periods.

3.3 Truncate and Remove

The protocol fortruncateandremoverelies on the NFS
server to maintain an authoritative record of the file length
and link count. The� proxy first consults a set of attributes
for the target file (Figure 2, message�); the attributes must
be current up to the “three second window” defined by NFS
implementations (see Section 3.4. If the target file’s log-
ical size shows that it has data in the striping zone, the
� proxy issues an intention to the coordinator (message�)
before issuing the NFS operation to the file server (mes-
sage �). Once the operation has committed at the NFS
server, the protocol contacts the storage nodes and coordi-
nator (map service) to release storage (message), then reg-
isters a completion with the coordinator (message�). In our
current prototype the� proxy executes the entire protocol,
but it could be done directly by the coordinator, simplifying
the � proxy and saving one message exchange (the intention
response and the completion).

If the intention expires, the coordinator probes the NFS
server (using agetattr) to determine the status of the op-
eration. If the operation completed on the NFS server, the

Oracle Ex. 1022, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

