
1

File Server Scaling with Network-Attached Secure Disks

Garth A. Gibson†, David F. Nagle*, Khalil Amiri*, Fay W. Chang†, Eugene M. Feinberg*, Howard Gobioff†,
Chen Lee†, Berend Ozceri*, Erik Riedel*, David Rochberg†, Jim Zelenka†

*Department of Electrical and Computer Engineering
†School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890
garth+nasd@cs.cmu.edu

http://www.cs.cmu.edu/Web/Groups/NASD/

Abstract

By providing direct data transfer between storage and client, net-
work-attached storage devices have the potential to improve scal-
ability for existing distributed file systems (by removing the server
as a bottleneck) and bandwidth for new parallel and distributed file
systems (through network striping and more efficient data paths).
Together, these advantages influence a large enough fraction of the
storage market to make commodity network-attached storage fea-
sible. Realizing the technology’s full potential requires careful
consideration across a wide range of file system, networking and
security issues. This paper contrasts two network-attached storage
architectures—(1) Networked SCSI disks (NetSCSI) are network-
attached storage devices with minimal changes from the familiar
SCSI interface, while (2) Network-Attached Secure Disks (NASD)
are drives that support independent client access to drive object
services. To estimate the potential performance benefits of these
architectures, we develop an analytic model and perform trace-
driven replay experiments based on AFS and NFS traces. Our
results suggest that NetSCSI can reduce file server load during a
burst of NFS or AFS activity by about 30%. With the NASD archi-
tecture, server load (during burst activity) can be reduced by a fac-
tor of up to five for AFS and up to ten for NFS.

1 Introduction

Users are increasingly using distributed file systems to access
data across local area networks; personal computers with hundred-
plus MIPS processors are becoming increasingly affordable; and
the sustained bandwidth of magnetic disk storage is expected to
exceed 30 MB/s by the end of the decade. These trends place a
pressing need on distributed file system architectures to provide

clients with efficient, scalable, high-bandwidth access to stored
data. This paper discusses a powerful approach to fulfilling this
need. Network-attached storage provides high bandwidth by
directly attaching storage to the network, avoiding file server
store-and-forward operations and allowing data transfers to be
striped over storage and switched-network links.

The principal contribution of this paper is to demonstrate the
potential of network-attached storage devices for penetrating the
markets defined by existing distributed file system clients, specifi-
cally the Network File System (NFS) and Andrew File System
(AFS) distributed file system protocols. Our results suggest that
network-attached storage devices can improve overall distributed
file system cost-effectiveness by offloading disk access, storage
management and network transfer and greatly reducing the amount
of server work per byte accessed.

We begin by charting the range of network-attached storage
devices that enable scalable, high-bandwidth storage systems. Spe-
cifically, we present a taxonomy of network-attached storage—
server-attached disks (SAD), networked SCSI (NetSCSI) and net-
work-attached secure disks (NASD)— and discuss the distributed
file system functions offloaded to storage and the security models
supportable by each.

With this taxonomy in place, we examine traces of requests
on NFS and AFS file servers, measure the operation costs of com-
monly used SAD implementations of these file servers and
develop a simple model of the change in manager costs for NFS
and AFS in NetSCSI and NASD environments. Evaluating the
impact on file server load analytically and in trace-driven replay
experiments, we find that NASD promises much more efficient
file server offloading in comparison to the simpler NetSCSI. With
this potential benefit for existing distributed file server markets,
we conclude that it is worthwhile to engage in detailed NASD
implementation studies to demonstrate the efficiency, throughput
and response time of distributed file systems using network-
attached storage devices.

In Section 2, we discuss related work. Section 3 presents our
taxonomy of network-attached storage architectures. In Section 4,
we describe the NFS and AFS traces used in our analysis and
replay experiments and report our measurements of the cost of
each server operation in CPU cycles. Section 5 develops an ana-
lytic model to estimate the potential scaling offered by server-off-
loading in NetSCSI and NASD based on the collected traces and
the measured costs of server operations. The trace-driven replay
experiment and the results are the subject of Section 6. Finally,
Section 7 presents our conclusions and discusses future directions.

This research was sponsored by DARPA/ITO through ARPA Order D306 under con-
tract N00174-96-0002 and in part by an ONR graduate fellowship. The project team is
indebted to generous contributions from the member companies of the Parallel Data
Consortium: Hewlett-Packard, Symbios Logic Inc., Data General, Compaq, IBM Cor-
poration, EMC Corporation, Seagate Technology, and Storage Technology Corpora-
tion. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of any supporting organization or the U.S. Government.

© 1997 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or commercial advan-
tage and that new copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc. Fax +1 (212) 869-0481, or <permissions@acm.org>.

Appears in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems
(Sigmetrics ‘97), Seattle, Washington, June 15-18, 1997.

Oracle Ex. 1021, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

2 Related Work

Distributed file systems provide remote access to shared file
storage in a networked environment [Sandberg85, Howard88,
Minshall94]. A principal measure of a distributed file system’s
cost is the computational power required from the servers to pro-
vide adequate performance for each client’s work [Howard88,
Nelson88]. While microprocessor performance is increasing dra-
matically and raw computational power would not normally be a
concern, the work done by a file server is data- and interrupt-inten-
sive and, with the poorer locality typical of operating systems,
faster microprocessors will provide much less benefit than their
cycle time trends promise [Ousterhout91, Anderson91, Chen93].

Typically, distributed file systems employ client caching to
reduce this server load. For example, AFS clients use local disk to
cache a subset of the global system’s files. While client caching is
essential for high performance, increasing file sizes, computation
sizes, and workgroup sharing are all inducing more misses per
cache block [Ousterhout85, Baker91]. At the same time, increased
client cache sizes are making these misses more bursty.

When the post-client-cache server load is still too large, it can
either be distributed over multiple servers or satisfied by a custom-
designed high-end file server. Multiple-server distributed file sys-
tems attempt to balance load by partitioning the namespace and
replicating static, commonly used files. This replication and parti-
tioning is too often ad-hoc, leading to the “hotspot” problem famil-
iar in multiple-disk mainframe systems [Kim86] and requiring
frequent user-directed load balancing. Not surprisingly, custom-
designed high-end file servers more reliably provide good perfor-
mance, but can be an expensive solution [Hitz90, Drapeau94].

Experience with disk arrays suggests another solution. If data
is striped over multiple independent disks of an array, then a high-
concurrency workload will be balanced with high probability as
long as individual accesses are small relative to the unit of inter-
leaving [Linvy87, Patterson88, Chen90]. Similarly, striping file
storage across multiple servers provides parallel transfer of large
files and balancing of high concurrency workloads [Hartman93];
striping of metadata promises further load-balancing [Dahlin95].

Scalability prohibits the use of a single shared-media net-
work; however, with the emergence of switched network fabrics
based on high-speed point-to-point links, striped storage can scale
bandwidth independent of other traffic in the same fabric
[Arnould89, Siu95, Boden95]. Unfortunately, current implementa-
tions of Internet protocols demand significant processing power to
deliver high bandwidth— we observe as much as 80% of a 233
MHz DEC Alpha consumed by UDP/IP receiving 135 Mbps over
155 Mbps ATM (even with adaptor support for packet reassem-
bly). Improving this bandwidth depends on interface board designs
[Steenkiste94, Cooper90], integrated layer processing for network
protocols [Clark89], direct application access to the network inter-
face [vonEiken92, Maeda93], copy avoiding buffering schemes
[Druschel93, Brustoloni96], and routing support for high-perfor-
mance best-effort traffic [Ma96, Traw95]. Perhaps most impor-
tantly, the protocol stacks resulting from these research efforts
must be deployed widely. This deployment is critical because the
comparable storage protocols, SCSI, and soon, Fibre Channel, pro-
vide cost-effective hardware implementations routinely included
in client machines. For comparison, a 175 MHz DEC Alpha con-
sumes less than 5% of its processing power fetching 100 Mbps
from a 160 Mbps SCSI channel via the UNIX raw disk interface.

To exploit the economics of large systems resulting from the
cobbling together of many client purchases, the xFS file system
distributes code, metadata and data over all clients, eliminating the
need for a centralized storage system [Dahlin95]. This scheme nat-
urally matches increasing client performance with increasing
server performance. Instead of reducing the server workload, how-
ever, it takes the required computational power from another, fre-
quently idle, client. Complementing the advantages of filesystems
such as xFS, the network-attached storage architectures presented
in this paper significantly reduce the demand for server computa-
tion and eliminate file server machines from the storage data path,
reducing the coupling between overall file system integrity and the
security of individual client machines.

As distributed file system technology has improved, so have
the storage technologies employed by these systems. Storage den-
sity increases, long a predictable 25% per year, have risen to 60%
increases per year during the 90s. Data rates, which were con-
strained by storage interface definitions until the mid-80s, have
increased by about 40% per year in the 90s [Grochowski96]. The
acceptance, in all but the lowest cost market, of SCSI, whose inter-
face exports the abstraction of a linear array of fixed-size blocks
provided by an embedded controller [ANSI86], catalyzed rapid
deployment of technology advances, resulting in an extremely
competitive storage market.

The level of indirection introduced by SCSI has also led to
transparent improvements in storage performance such as RAID;
transparent failure recovery; real-time geometry-sensitive schedul-
ing; buffer caching; read-ahead and write-behind; compression;
dynamic mapping; and representation migration [Patterson88,
Gibson92, Massiglia94, StorageTek94, Wilkes95, Ruemmler91,
Varma95]. However, in order to overcome the speed, addressabil-
ity and connectivity limitations of current SCSI implementations
[Sachs94, ANSI95], the industry is turning to high-speed pack-
etized interconnects such as Fibre Channel at up to 1 Gbps
[Benner96]. The disk drive industry anticipates the marginal cost
for on-disk Fibre Channel interfaces, relative to the common sin-
gle-ended SCSI interface in use today, to be comparable to the
marginal cost for high-performance differential SCSI (a difference
similar to the cost of today’s Ethernet adapters) while their host
adapter costs are expected to be comparable to high-performance
SCSI adapters [Anderson95].

The idea of simple, disk-like network-based storage servers
whose functions are employed by higher-level distributed file sys-
tems, has been around for a long time [Birrel80, Katz92]. The
Mass Storage System Reference Model (MSSRM), an early archi-
tecture for hierarchical storage subsystems, has advocated the sep-
aration of control and data paths for almost a decade [Miller88,
IEEE94]. Using a high-bandwidth network that supports direct
transfers for the data path is a natural consequence [Kronenberg86,
Drapeau94, Long94, Lee95, Menascé96, VanMeter96]. The
MSSRM has been implemented in the High Performance Storage
System (HPSS) [Watson95] and augmented with socket-level
striping of file transfers [Berdahl95, Wiltzius95], over the multiple
network interfaces found on mainframes and supercomputers.1

1Following Van Meter’s [VanMeter96] definition of network-attached
peripherals, we consider only networks that are shared with general local
area network traffic and not single-vendor systems whose interconnects are
fast, isolated local area networks [Horst95, IEEE92].

Oracle Ex. 1021, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

Striping data across multiple storage servers with indepen-
dent ports into a scalable local area network has been advocated as
a means of obtaining scalable storage bandwidth [Hartman93]. If
the storage servers of this architecture are network-attached
devices, rather than dedicated machines between the network and
storage, efficiency is further improved by avoiding store-and-for-
ward delays through the server.

Our notion of network-attached storage is consistent with
these projects. However, our analysis focuses on the evolution of
commodity storage devices rather than niche-market, very high-
end systems, and on the interaction of network-attached storage
with common distributed file systems. Because all prior work
views the network-based storage as a function provided by an
additional computer, instead of the storage devices itself, cost-
effectiveness has never been within reach. Our goal is to chart the
way network-attached storage is likely to appear in storage prod-
ucts, estimate its scalability implications, and characterize the
security and file system design issues in its implementation.

3 Taxonomy of Network-Attached Storage

Simply attaching storage to a network underspecifies net-
work-attached storage’s role in distributed file systems’ architec-
tures. In the following subsections, we present a taxonomy for the
functional composition of network-attached storage. Case 0, the
base case, is the familiar local area network with storage privately
connected to file server machines — we call thisserver-attached
disks. Case 1 represents a wide variety of current products,server-
integrated disks, that specialize hardware and software into an
integrated file server product. In Case 2, the obvious network-
attached disk design,network SCSI, minimizes modifications to
the drive command interface, hardware and software. Finally,
Case 3,network-attached secure disks, leverages the rapidly
increasing processor capability of disk-embedded controllers to
restructure the drive command interface.

3.1 Case 0: Server-Attached Disks (SAD)
This is the system familiar to office and campus local area

networks as illustrated in Figure 1. Clients and servers share a net-
work and storage is attached directly to general-purpose worksta-
tions that provide distributed file services.

3.2 Case 1: Server Integrated Disks (SID)
Since file server machines often do little other than service

distributed file system requests, it makes sense to construct spe-
cialized systems that perform only file system functions and not
general-purpose computation. This architecture is not fundamen-
tally different from SAD. Data must still move through the server
machine before it reaches the network, but specialized servers can
move this data more efficiently than general-purpose machines.
Since high performance distributed file service benefits the pro-
ductivity of most users, this architecture occupies an important
market niche [Hitz90, Hitz94]. However, this approach binds stor-
age to a particular distributed file system, its semantics, and its
performance characteristics. For example, most server-integrated
disks provide NFS file service, whose inherent performance has
long been criticized [Howard88]. Furthermore, this approach is
undesirable because it does not enable distributed file system and
storage technology to evolve independently. Server striping, for
instance, is not easily supported by any of the currently popular
distributed file systems. Binding the storage interface to a particu-
lar distributed file system hampers the integration of such new fea-
tures [Birrell80].

3.3 Case 2: Network SCSI (NetSCSI)
The other end of the spectrum is to retain as much as possible

of SCSI, the current dominant mid- and high-level storage device
protocol. This is the natural evolution path for storage devices;
Seagate’s Barracuda FC is already providing packetized SCSI
through Fibre Channel network ports to directly attached hosts
[Seagate96]. NetSCSI is a network-attached storage architecture
that makes minimal changes to the hardware and software of SCSI
disks. File manager software translates client requests into com-
mands to disks, but rather than returning data to the file manager to
be forwarded, the NetSCSI disks send data directly to clients, sim-
ilar to the support for third-party transfers already supported by
SCSI [Drapeau94]. The efficient data transfer engines typical of
fast drives ensure that the drive’s sustained bandwidth is available
to clients. Further, by eliminating the file manager from the data
path, its workload per active client decreases. However, the use of
third-party transfer changes the drive’s role in the overall security
of a distributed file system. While it is not unusual for distributed
file systems to employ a security protocol between clients and

1

3 24
Backplane Bus

Local Area Network

(Packetized) SCSI

Figure 1: Server-attached disks (SAD) are the familiar local area network distributed file
systems. A client wanting data from storage sends a message to the file server (1), which sends a
message to storage (2), which accesses the data and sends it back to the file server (3), which
finally sends the requested data back to the client (4). Server-integrated disk (SID) is logically the
same except that hardware and software in the file server machine may be specialized to the file
service function.

3

2

1

4

File Server

Controller

SCSI

Controller

SCSI

Network File System Protocol

Network Protocol

Network Driver

Local File System

SCSI Driver

SCSI InterfaceSystem MemoryNetwork Interface

Oracle Ex. 1021, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

servers (e.g. Kerberos authentication), disk drives do not yet par-
ticipate in this protocol.

We identify four levels of security within the NetSCSI model:
(1) accident-avoidance with a second private network between file
manager and disk, both locked in a physically secure room; (2)
data transfer authentication with clients and drives equipped with a
strong cryptographic hash function; (3) data transfer privacy with
both clients and drives using encryption and; (4) secure key man-
agement with a secure coprocessor.

Figure 2 shows the simplest security enhancement to
NetSCSI: a second network port on each disk. Since SCSI disks
execute every command they receive without an explicit authori-
zation check, without a second port even well-meaning clients can
generate erroneous commands and accidentally damage parts of
the file system. The drive’s second network port provides protec-
tion from accidents while allowing SCSI command interpreters to
continue following their normal execution model. This is the
architecture employed in the SIOF and HPSS projects at LLNL
[Wiltzius95, Watson95]. Assuming that file manager and NetSCSI
disks are locked in a secure room, this mechanism is acceptable for
the trusted network security model of NFS [Sandberg85].

Because file data still travels over the potentially hostile gen-
eral network, NetSCSI disks are likely to demand greater security
than simple accident avoidance. Cryptographic protocols can
strengthen the security of NetSCSI. A strong cryptographic hash
function, such as SHA [NIST94], computed at the drive and at the
client would allow data transfer authentication (i.e., the correct
data was received only if the sender and receiver compute the
same hash on the data).

For some applications, data transfer authentication is insuffi-
cient, and communication privacy is required. To provide privacy,
a NetSCSI drive must be able to encrypt and decrypt data.
NetSCSI drives can use cryptographic protocols to construct pri-
vate virtual channels over the untrusted network. However, since
keys will be stored in devices vulnerable to physical attack, the
servers must still be stored in physically secure environments. If
we go one step further and equip NetSCSI disks with secure copro-
cessors [Tygar95], then keys can be protected and all data can be
encrypted when outside the secure coprocessor, allowing the disks
to be used in a variety of physically open environments. There are
now a variety of secure coprocessors [NIST94a, Weingart87,

White87, National96] available, some of which promise crypto-
graphic accelerators sufficient to support single-disk bandwidths.

3.4 Case 3: Network-attached Secure Disks (NASD)
With network-attached secure disks, we relax the constraint

of minimal change from the existing SCSI interface and imple-
mentation. Instead we focus on selecting a command interface that
reduces the number of client-storage interactions that must be
relayed through the file manager, offloading more of the file man-
ager’s work without integrating file system policy into the disk.

Common, data-intensive operations, such as reads and writes,
go straight to the disk, while less-common ones, including
namespace and access control manipulations, go to the file man-
ager. As opposed to NetSCSI, where a significant part of the pro-
cessing for security is performed on the file manager, NASD
drives perform most of the processing to enforce the security pol-
icy. Specifically, the cryptographic functions and the enforcement
of manager decisions are implemented at the drive, while policy
decisions are made in the file manager. Because clients directly
request access to data in their files, a NASD drive must have suffi-
cient metadata to map and authorize the request to disk sectors.
Authorization, in the form of a time-limited capability applicable
to the file’s map and contents, should be provided by the file man-
ager to protect higher-level file systems’ control over storage
access policy. The storage mapping metadata, however, could be
provided dynamically [VanMeter96a] by the file manager or could
be maintained by the drive. While the latter approach asks distrib-
uted file system authors to surrender detailed control over the lay-
out of the files they create, it enables smart drives to better exploit
detailed knowledge of their own resources to optimize data layout,
read-ahead, and cache management [deJonge93, Patterson95,
Golding95]. This is precisely the type of value-added opportunity
that nimble storage vendors can exploit for market and customer
advantage. With mapping metadata at the drive controlling the lay-
out of files, a NASD drive exports a namespace of file-like objects.
Because control of naming is more appropriate to the higher-level
file system, pathnames are not understood at the drive, and path-
name resolution is split between the file manager and client. While
a single drive object will suffice to represent a simple client file,
multiple objects may be logically linked by the file system into
one client file. Such an interface provides support for banks of

Figure 2: Network SCSI (NetSCSI) is a network-
attached disk architecture designed for minimal changes
to the disk’s command interface. However, because the
network port on these disks may be connected to a hostile,
broader network, preserving the integrity of on-disk file
system structure requires a second port to a private (file
manager-owned) network or cryptographic support for a
virtual private channel to the file manager. If a client
wants data from a NetSCSI disk, it sends a message (1) to
the distributed file system’s file manager which processes
the request in the usual way, sending a message over the
private network to the NetSCSI disk (2). The disk
accesses data, transfers it directly to the client (3), and
sends its completion status to the file manager over the
private network (4). Finally, the file manager completes
the request with a status message to the client (5).

Net

Controller

Net Security

Net

Net Security

Access Control

File System

File Manager
Net

Controller

Net Security

Private Peripheral Channel

Local Area Network

Private Peripheral Channel

Local Area Network

2

3
5

1

4

Oracle Ex. 1021, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

striped files [Hartman93], Macintosh-style resource forks, or logi-
cally-contiguous chunks of complex files [deJong93].

As an example of a possible NASD access sequence, consider
a file read operation depicted in Figure 3. Before issuing its first
read of a file, the client authenticates itself with the file manager
and requests access to the file. If access is granted, the client
receives the network location of the NASD drive containing the
object and a time-limited capability to access the object and for
establishing a secure communications channel with the drive.
After this point, the client may directly request access to data on
NASD drives, using the appropriate capability [Gobioff96].

In addition to offloading file read operations from the distrib-
uted file manager, later sections will show that NASD should also
offload file writes and attributes reads to the drive. High-level file
system policies, such as access control and cache consistency,
however, remain the purview of the file manager. These policies
are enforced by NASD drives according to the capabilities con-
trolled by the file manager.

3.5 Summary
This taxonomy, summarized in Table 1, splits into two

classes — SAD and SID offer a specific distributed file system
while NetSCSI and NASD offer enhanced storage interfaces. The
difference between SID and NASD merits further consideration.
Many of the optimizations we propose for NASD, such as short-
ened data paths and specialized protocol processing, can also be
implemented in a SID architecture. However, SID binds storage to
a particular distributed file system, requires higher-level (or multi-
ple-SID) file management to offer network striped files and, by not
evolving the drive interface, inhibits the independent development
of drive technology. For the rest of this paper, we focus on SAD,

NetSCSI, and NASD and present a coarse-grained estimate of the
potential benefit of network-attached storage. The results suggest
that by exploiting the processing power available in next genera-
tion storage devices, computation required from the file manager
machines can be dramatically reduced, enabling the per-byte cost
of distributed file service to be reduced.

4 Analysis of File System Workload

To develop an understanding of performance parameters crit-
ical to network-attached storage, we performed a series of mea-
surements to (1) characterize the behavior and cost of AFS and
NFS distributed file server functionality; and (2) identify and sub-
set busy periods during which server load is limiting.

4.1 Trace Data
Our data is taken from NFS and AFS file system traces sum-

marized in Table 2. The NFS trace [Dahlin94] records the activity
of an Auspex file server supporting 231 client machines over a one
week period at the University of California at Berkeley2. The AFS
trace records the activity of our laboratory’s Sparcstation 20 AFS
server supporting 250 client machines over a one month period3

2Some attribute reads were removed from the NFS trace by the Berkeley
researchers based on a heuristic for eliminating excessive cache consis-
tency traffic. Because this change is pessimistic to our proposed architec-
ture, we choose to continue to use these traces, already familiar to the
community, rather than collect new traces.
3The trace covers three periods of activity - 9/9-10, 9/13-15, and 9/20-10/3.

1

2Backplane Bus

Local Area Network

5 3 4

Figure 3: Network-attached secure disks (NASD) are designed to offload more of the file system’s simple and
performance-critical operations. For example, in one potential protocol a client, prior to reading a file, requests
access to that file from the file manager (1), which delivers a capability to the authorized client (2). So equipped,
the client may make repeated accesses to different regions of the file (3, 4) without contacting the file manager
again unless the file manager chooses to force reauthorization by revoking the capability (5).

5

NASD File Manager

Access Control

Network Interface

Network Protocol

Network Driver

Object Storage

Controller

Network Security

Security

Case 0 Case 1 Case 2 Case 3

FM per byte X X

FM per operation X

FM on open/close X

specialization X X X

Table 1. Comparison of network-attached storage architectures. SAD
and SID require the file manager (file server) to handle each byte of data,
but SID allows specialization of the hardware and software to file service.
NetSCSI allows direct transfers to clients, but requires file manager
interaction on each operation to manage metadata.

NFS trace AFS trace

Number of client machines 231 250

Total number of requests 6,676,479 1,615,540

Read data transferred (GB) 8.1 2.9

Write data transferred (GB) 2.0 1.6

Trace period 9/20/93-9/24/93
40 hours

9/9/96-10/3/96
435 hours3

Table 2. Description of the traces used in the experiments. The NFS
trace was collected in a study performed at the University of California
at Berkeley. The AFS trace was collected by logging requests at the AFS
file server in our laboratory.

Oracle Ex. 1021, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

