
Cut-Through Delivery in Trapeze:
An Exercise in Low-Latency Messaging�

Kenneth G. Yocum Jeffrey S. Chase Andrew J. Gallatin Alvin R. Lebeck
Dept. of Computer Science

Duke University
Durham, NC 27708-0129

fgrant, chase, gallatin, alvyg@cs.duke.edu

Abstract

New network technology continues to improve both
the latency and bandwidth of communication in com-
puter clusters. The fastest high-speed networks ap-
proach or exceed the I/O busbandwidths of “gigabit-
ready” hosts. These advances introduce new considera-
tions for the design of network interfaces and messaging
systems for low-latency communication.

This paper investigates cut-through delivery, a tech-
nique for overlapping host I/O DMA transfers with net-
work traversal. Cut-through delivery significantly re-
duces end-to-end latency of large messages, which are
often critical for application performance.

We have implemented cut-through delivery in
Trapeze, a new messaging substrate for network mem-
ory and other distributed operating system services. Our
current Trapeze prototype is capable of demand-fetching
8K virtual memory pages in 200�s across a Myrinet
cluster of DEC AlphaStations.

1. Introduction

Advances in network technology continue to improve
the latency and bandwidth of communication in com-
puter clusters. The tighter coupling of cluster nodes
creates new opportunities to reduce the running time of
large-scale computations by using hardware resources
across the cluster in a coordinated way.

�This work is supported in part by NSF grant CDA-95-12356,
Duke University, and the Open Software Foundation. Jeff Chase is par-
tially supported by NSF Career AwardCCR-96-24857. Alvin Lebeck
is partially supported by NSF Career Award MIP-97-02547

Latency of network communication is an impor-
tant factor in determining the effectiveness of cluster-
based parallel computing, distributed file storage, net-
work memory, and other resource sharing schemes. Net-
work hardware and software are typically optimized for
high-bandwidth continuous data transfer or low-latency
exchanges ofsmall messages of a few hundred bytes.
However, in many instances, network communication
involveslarge messages on the order of one to ten kilo-
bytes. Latency of large messages is critical for page mi-
gration, block data transfer for parallel applications, or
demand fetching of virtual memory pages or file blocks.

This paper describes the design and implementation
of Trapeze, a new messaging system that delivers low
latency for both large and small messages. Trapeze was
designed primarily to handle page migration traffic in
the Global Memory Service (GMS), a cooperative mem-
ory system for clusters. The Trapeze prototype consists
of a messaging libary and custom firmware for Myrinet,
a high-performance cluster interconnect. GMS and the
Myrinet platform are described in Section 2.

Trapeze uses several important buffering and DMA
management optimizations to minimize the latency of
large messages, in this case page transfers. Many of the
optimizations used by Trapeze have been used in ear-
lier fast messaging implementations. This paper gives
an overview of Trapeze and focuses on a principal tech-
nique not described or evaluated elsewhere—calledcut-
through delivery. Cut-through delivery minimizes la-
tency by aggressively overlapping the four DMA trans-
fers needed to move a large message from one host to
another across a network (Figure 1): (1) sender’s host
memory to adapter, (2) sender’s adapter to network link,
(3) network link to receiver’s adapter, and (4) receiver’s
adapter to host memory.

Oracle Ex. 1013, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

4

2

P

Memory

BridgeAdapter

P

Memory

Bridge

1

Adapter

In
te

rc
o

n
n

e
c
t

Figure 1. Four DMA Transfers for a Network
Message

Cut-through delivery eliminates network adapter
store-and-forward latency by pipelining packets through
the adapter, similar to the waycut-through switch-
ing [13] eliminates store-and-forward latency in high-
performance network switches. With cut-through deliv-
ery, large messages flowthrough the network adapter;
the adapter can place data at the sink port shortly after
it arrives at the source, without waiting for the entire
packet to be transferred onto the adapter. In this way,
the DMA transfers from the source and to the sink are
overlapped, on both the sending and receiving sides.

We do not claim that cut-through delivery is novel.
Indeed, variants of cut-through delivery are used in low-
cost network interfaces to reduce the need for expen-
sive buffer space on the adapter. Instead, we argue that
cut-through delivery is a fundamental issue in network
interface design that has not been adequately explored.
We show that cut-through delivery significantly reduces
large-packet latencies, and that the expected benefit of
cut-through delivery grows rapidly as the network link
speed approaches I/O bus speeds, as is the case with
modern high-speed networks. In our cluster, cut-through
delivery reduces 8KB page transfer latencies by 43% (to
177us) after all other known optimizations have been
applied. As technology advances, high-speed networks
will drive I/O bus design, maintaining the relevance of
this optimization. Finally, cut-through delivery is miss-
ing from other fast messaging systems we have seen.

This paper is organized as follows. Section 2 presents
the motivation and background for low-latency page
transfers, and sets Trapeze in context with other fast
messaging systems. Section 3 outlines the implemen-
tation of cut-through delivery in Trapeze for Myrinet.
Section 4 presents microbenchmark results to evaluate
the Trapeze prototype on a Myrinet/Alpha cluster. We

conclude in Section 5.

2. Overview of Trapeze

Trapeze was designed as a high-performance com-
munication substrate for cluster operating system ser-
vices such as cooperative virtual memory, rather than as
a full-featured messaging system. This role has dictated
the features of Trapeze and the character of the messag-
ing interface. However, cut-through delivery and other
optimizations used in Trapeze are applicable to any mes-
saging system or application that is sensitive to large-
message latency, including some parallel applications
built using message passing (e.g., MPI [11]) or software
distributed shared memory.

In this section we (1) discuss the importance of large-
message latency for a specific system that uses Trapeze,
(2) give an overview of Myrinet and the Trapeze messag-
ing system, and (3) relate Trapeze to other low-latency
messaging systems.

2.1. Importance of Latency for Network Memory

Our first use of Trapeze is as a messaging substrate
for theGlobal Memory Service(GMS) [9], a Unix ker-
nel facility that manages the memories of cluster nodes
as a shared, distributed page cache. The GMS imple-
mentation supports remote paging [5, 10] and coopera-
tive caching [6] of file blocks and virtual memory pages,
unified at a low level of the operating system kernel.

The purpose of GMS is not to support a shared mem-
ory abstraction, but rather to transparently improve the
performance of data-intensive workloads. GMS coor-
dinates memory usage across the cluster so that nodes
can satisfy paging and file operations with memory-to-
memory network transfers whenever possible, avoiding
disk accesses. The key insight is that improvements in
disk latency are limited by mechanical factors, whereas
network performance has improved at a rapid rate. For
example, even with a 100 Mb/s Ethernet interconnect,
a 266 MHz AlphaStation 500 running a GMS-enhanced
Digital Unix 4.0 kernel can demand-fetch a file block or
virtual memory page from the memory of a peer in 1.2
ms, an order of magnitude faster than the average 12ms

access time of a local fast/wide Seagate Barracuda disk.
However, the performance of data-intensive applica-

tions under GMS is still dominated by communication
latency. GMS may reduce I/O stall times by an order
of magnitude or more, but a 266 MHz Alpha 21164
CPU could issue up to a million instructions in a mil-
lisecond spent idling for a remote page fault. Moreover,

Oracle Ex. 1013, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

experience with GMS on several networks has shown
that large message latencies are often higher than ex-
pected. High bandwidth is most easily achieved with
continuous streams of packets that naturally pipeline in
the network and adapters, but this does not translate
into low-latency delivery of individual large messages
sent as a single packet. For example, a 155 Mb/s ATM
network can in principle deliver an 8K message in un-
der 400�s. In practice, the original GMS prototype
measured page transfer times above a millisecond us-
ing high-quality ATM adapters. The GMS developers
have explored pipelined subpage fetches [12] and other
approaches to masking fetch latency.

2.2. Page Transfers on Myrinet

Our approach to minimizing page transfer costs is to
use a custom messaging system for Myrinet [3], a high-
speed wormhole-routed LAN. Our Myrinet configura-
tion consists of 8-port crossbar switches and adapters
(Network Interface Cards or NICs) that attach to our Al-
phaStation hosts through the 32-bit PCI I/O bus.

The Myrinet NICs are programmable, providing a
flexible interface to the host. The NICs include a 256K
block of dual-ported static RAM and a custom CPU and
link interface based on the third-generation LANai 4.1
chipset. The NIC SRAM is addressable from the host
physical address space; the host and LANai interact by
reading and writing locations of this shared memory.
The behavior of the adapter is determined by a firmware
program (a Myrinet Control Program or MCP) that is
written into the NIC SRAM from the host at startup.
Myrinet messaging latencies are determined primarily
by overhead in the MCP and host messaging software
and the time to transfer data on the host I/O bus.

Although Myrinet can handle a large transfer as a
single packet, experiments using the vendor-supplied
firmware (supporting a host message interface called
MyriAPI) showed that latency grew more steeply with
message size than we had expected. A one-way 8K
page transfer took over 400�s at best, almost a factor
of three higher than the minimum achievable latency.
Sending page transfers as Internet datagrams overMyr-
iAPI yielded demand-fault times of over 850�s in the
best case, even with a well-optimized network driver.

We investigated other message systems available for
Myrinet in the research community, e.g., Active Mes-
sages (AM) [17] and Fast Messages (FM) [15]. Like
MyriAPI, these systems support full-featured APIs de-
signed primarily to meet the needs of parallel applica-
tions. While they reported superior performance for

small messages, they did not support the DMA facil-
ities we needed for zero-copy page fetches, relied on
polling for detection of received messages, and were
not available for LANai 4.1 or Alpha-based hosts. Fi-
nally, where large-message latency timings were re-
ported, they were comparable toMyriAPI. Page trans-
fers and other large messages can be sent using bulk
transfer extensions (e.g., FM’s “streaming messages” in-
terface), which fragment transfers into pipelined packet
streams, but this did not meet our goal of transferring
a memory page and associated control information as a
single packet with the lowest possible latency and over-
head.

2.3. An Overview of Messaging with Trapeze

Our solution was to develop Trapeze, a simple, raw
transport layer designed to provide low latency for both
large and small messages. The Trapeze prototype con-
sists of custom Myrinet firmware (Trapeze-MCP) and
a host library that implements the messaging interface
(Trapeze-API). To allow kernel-kernel communication,
the host library is linked into the Digital Unix 4.0 ker-
nel, which includes a driver to initialize the device and
to field interrupts. The Trapeze-MCP manages the net-
work link, coordinates message buffering and DMA, and
optionally generates host interrupts for incoming pack-
ets.

The dominant design goal of Trapeze is to sup-
port low-latency, zero-copy transfers of virtual memory
pages across the interconnect. Our current implemen-
tation is capable of demand-fetching 8K pages with la-
tencies below 200�s, about fifty times faster than the
average access time for a high-quality disk. Trapeze im-
plements several optimizations to achieve this goal. In
this paper we limit our attention to the cut-through de-
livery technique, which pipelines individual large mes-
sages within the adapters, transparently to the hosts.

Focusing on page transfers allowed us to make sev-
eral simplifications to streamline the messaging system
and reduce our prototyping effort:

� Fixed-size message and payload buffers. A
Trapeze message is a 128-bytecontrol message
with an optional attachedpayloadof up to 8KB.
Control message buffers are contiguous, aligned
blocks of adapter memory; payload buffers are
frames of host physical memory.

� No protection. Trapeze currently supports only
a single logical communication endpoint or chan-
nel, intended for but not limited to kernel-to-kernel

Oracle Ex. 1013, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

communication. We assume that the interconnect
is secure and the hosts are trusted.

� Best-effort delivery. Packets are never dropped
by the Myrinet network itself, which provides link-
level flow control by backpressure from a bottle-
neck interface. However, to avoid deadlocking the
interconnect, the MCP will drop received packets
if the host fails to keep up with incoming traffic
on the link. It is the responsibility of the mes-
sage sender and receiver to coordinate end-to-end
flow control and recovery from dropped messages,
if any is needed.

Table 1 lists the Trapeze-API routines used for the ex-
periments in this paper. These routines interact with the
Trapeze-MCP through an endpoint structure containing
a pair of buffer rings: asend ringfor outgoing messages
and areceive ringfor incoming messages. Each ring
is an array of 128-byte control message buffers in the
NIC SRAM, managed as a circular producer/consumer
queue. Each ring entry includes space for the message
contents and header fields for control information.

The host Alpha processor accesses control message
contents directly using programmed I/O. The Trapeze-
API tpz get sendmsg and tpz get rcvmsg rou-
tines each return a pointer (msg t) to a ring entry;
the application (e.g., the GMS kernel module) has ex-
clusive access to the buffer until it releases it with
tpz release msg. The intent is that the caller moves
message data directly between processor registers and
the valid locations of the buffer.

Payload frames can be attached to entries in ei-
ther ring. The Trapeze-API attaches a payload frame
(vm page t) by storing the frame physical address into
the ring entry in a form that the MCP can use to request
DMA to or from the frame. If a payload is attached to
an outgoing send ring entry, the MCP sends the payload
contents along with the message. Frames attached to
the receive ring are used as buffers for incoming pay-
loads. An incoming control message is deposited in the
next available receive ring entry; any payload is trans-
ferred via DMA to the frame attached to that entry, or
discarded if no frame is available.

2.4. Related Messaging Systems

The basic structure of Trapeze is similar to AM, FM,
and other fast messaging systems designed to minimize
latency of small messages by eliminating operating sys-
tem overheads and network protocol processing (e.g.,
Hamlyn [4], U-net [1], SHRIMP [2], and others). Our

work was also influenced by the Osiris [8] and FRPC
work [16], which identify adapter design issues for low-
latency messaging on high-speed networks.

Some of these systems include bulk data transfer fa-
cilities optimized for high bandwidth, but none of the
published work describes cut-throughdelivery optimiza-
tions or identifies low latency for large packets as an ex-
plicit design goal. The FRPC and Osiris platforms had
I/O buses offering much higher bandwidth than the net-
work links, thus large-packet latency was limited by link
bandwidth. Trapeze is similar in spirit to its predeces-
sors, but it provides more specialized functionality and
an explicit emphasis on optimizations for large packets
on modern high-speed networks.

3. Cut-Through Delivery in Trapeze

The Trapeze-MCP uses cut-through delivery to en-
sure maximum utilization of the network link and the
PCI I/O bus when transferring message payloads using
DMA. Cut-through delivery simply means that the MCP
always initiates DMA as soon as possible, in order to
maximize overlapping of the DMA transfers needed to
move a packet between the link and the host.

Send DMA

Network Traversal

Receive DMA

Store−and−Forward
Delivery

Cut−Through
Delivery

Time

Figure 2. Cut-Through Delivery vs. Store-
and-Forward on the AlphaStation 500

The MCP initiates DMA transfers by storing to
LANai registers and then waiting for the DMA unit to
signal completion by interrupting the LANai processor.
There are four possible DMA operation types: host to
NIC or NIC to host on the PCI bus, and link to NIC or
NIC to link on the network interface. The Myrinet net-
work link is bidirectional, but only one transfer at a time
can take place on the PCI bus. Thus there are effectively
three DMA functional units.

The Trapeze-MCP uses a resource-centered structure
(Figure 3) to maximize utilization of the three DMA
units. On each iteration through its main loop, the MCP

Oracle Ex. 1013, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Operations on Message Rings and Slots
msg t tpz get sendmsg() Allocate a send ring entry for an outgoing message; fail if no entry is available. The caller

builds the message (including header) in the buffer with a sequence ofstore instructions.
msg t tpz get rcvmsg() Receive the next incoming message; fail if no message is pending. The caller reads the

message contents with a sequence ofload instructions.
msg t tpz release sendmsg()
msg t tpz release rcvmsg()

Release a ring entry. On the send ring, this sends the message in the entry.

Payload Operations
tpz attach sendmsg(msg t,vm page t,
io completion t,caddr t)

Attach a payload frame to a ring entry. The frame contents shall be sent with the message
as a payload, and the completion routine will be called, with its arguments, either when
the send entry is re-used, or when tpzcheckxmit complete(msgt) is called.

tpz attach rcvmsg(msg t,vm page t) Attach a frame for a payload receive buffer to a receive ring slot.
vm page t tpz detach sendmsg(msg t)
vm page t tpz detach rcvmsg(msg t)

Detach a payload buffer from a ring entry. Used to extract the source buffer for a send
message, or to retrieve the payload received with an incoming message.

void tpz check xmit complete(void) Calls io completion routines to free payload frames for transmitted packets.

void tpz set payload len(msg t,int)
int tpz get payload len(msg t)

Set the length of the payload to be transmitted, or retrieve the payload length of a received
packet.

Table 1. Trapeze Messaging API Subset

asks:which of the three DMA engines are idle now, and
how can they be used?

The alternative functional view is best illustrated
by the current LANai Active Messages prototype
(LAM) [14]. LAM’s sending and receiving sides ex-
ecute as separate loops using a simple coroutine facil-
ity. Each iteration through the loop asks:is the current
packet ready for the next stage of processing?If a corou-
tine detects that the previous step in processing a packet
has not yet completed, it transfers control to the other
coroutine using a special LANaipunt instruction. The
functional LAM structure achieves near-optimal pipelin-
ing of the DMA transfers for successive outgoing pack-
ets, but it does not provide any DMA overlap for indi-
vidual packets on either the sending or receiving sides.

3.1. Cut-Through Delivery

The resource-centered approach of the Trapeze-MCP
enablesintra-packetDMA pipelining, to reduce the la-
tency of individual packets. The NIC is viewed as a
cut-through device rather than a store-and-forward de-
vice, overlapping the transfer of the message across the
sending host I/O bus, the network, and the receive host
I/O bus. As shown in Figure 2, the pipelining of cut-
through delivery can reduce message transfer time com-
pared to store-and-forward delivery by hiding the la-
tency of transfers on the host I/O bus, which is the bot-
tleneck link in our configuration.

Cut-through delivery works for both incoming and
outgoing packets as follows. On the sending side, the
MCP initiates DMA of an outgoing packet onto the net-

work link as soon as a sufficient number of bytes have
arrived from host memory over the PCI bus. On the re-
ceiving side, the MCP initiates DMA of the incoming
packet into host memory as soon as a sufficient num-
ber of bytes have been deposited in NIC SRAM from
the network link. Cut-through delivery performs this
pipelining on a single packet, rather than fragmenting
into smaller packets and incurring additional packet han-
dling overheads.

Cut-through delivery must be implemented carefully
to prevent the DMA out of the adapter from overrunning
the DMA into the adapter, on either the sending or re-
ceiving sides. The Trapeze MCP initiates the outgoing
DMA as a series of shorterpulses. The MCP initiates
an outgoing pulse as soon as a threshold number of in-
coming bytes (set by thepulse thresholdparameter) have
arrived and the outgoing DMA engine is available. The
LANai exposes the status of active DMA transactions to
the firmware through counter registers foreach DMA
engine; the Trapeze-MCP main resource loop queries
these counters to trigger outgoing DMA pulses.

3.2. Discussion

The primary goal of cut-through delivery is to overlap
I/O bus transfers with network transfers. This must be
balanced against the bus cycles consumed to acquire the
bus for a larger number of smaller transfers, which re-
duces the bus bandwidth available for transferring data.
Historically, LANs achieved only a fraction of the I/O
bus bandwidth, and cut-through delivery would have
negligible effect on large message latency. Therefore,

Oracle Ex. 1013, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

