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Abstract

The ideal storage system is globally accessible, always available,
provides unlimited performance and capacity for a large number
of clients, and requires no management. This paper describes
the design, implementation, and performance of Petal, a system
that attempts to approximate this ideal in practice through a novel
combination of features. Petal consists of a collection of network-
connected servers that cooperatively manage a pool of physical
disks. To a Petal client, this collection appears as a highly available
block-level storage system that provides large abstract containers
calledvirtual disks. A virtual disk is globally accessible to all Petal
clients on the network. A client can create a virtual disk on demand
to tap the entire capacity and performance of the underlying phys-
ical resources. Furthermore, additional resources, such as servers
and disks, can be automatically incorporated into Petal.

We have an initial Petal prototype consisting of four 225 MHz
DEC 3000/700 workstations running Digital Unix and connected
by a 155 Mbit/s ATM network. The prototype provides clients
with virtual disks that tolerate and recover from disk, server, and
network failures. Latency is comparable to a locally attached disk,
and throughput scales with the number of servers. The prototype
can achieve I/O rates of up to 3150 requests/sec and bandwidth up
to 43.1 Mbytes/sec.

1 Introduction

Currently, managing large storage systems is an expensive and
complicated process. Often a single component failure can halt the
entire system, and requires considerable time and effort to resume
operation. Moreover, the capacity and performance of individual
components in the system must be periodically monitored and
balanced to reduce fragmentation and eliminate hot spots. This
usually requires manually moving, partitioning, or replicating files
and directories.

This paper describes the design, implementation, and perfor-
mance of Petal, an easy-to-manage distributed storage system.
Clients, such as file systems and databases, view Petal as a collec-
tion of virtual disksas shown in Figure 1. A Petal virtual disk is a
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container that provides a sparse 64-bit byte storage space. As with
ordinary magnetic disks, data are read and written to Petal virtual
disks in blocks. In addition, it has the following novel combination
of characteristics, which we believe will reduce the complexity of
managing large storage systems:

� It can tolerate and recover from any single component failure
such as disk, server, or network.

� It can be geographically distributed to tolerate site failures
such as power outages and natural disasters.

� It transparently reconfigures to expand in performance and
capacity as new servers and disks are added.

� It uniformly balances load and capacity throughout the
servers in the system.

� It provides fast, efficient support for backup and recovery
in environments with multiple types of clients, such as file
servers and databases.

Petal’s virtual disks allow us to cleanly separate a client’s view
of storage from the physical resources that are used to implement it.
This allows us to share the physical resources more flexibly among
many clients, and to offer important services such as “snapshots”
and incremental expandability in an efficient manner.

The disk-like interface offered by Petal provides a lower-level
service than a distributed file system; however, we believe that a
distributed file system can be efficiently implemented on top of
Petal, and that the resulting system as a whole will be as cost
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effective as a comparable distributed file system implementation
that accesses local disks directly. By separating the system cleanly
into a block-level storage systemand a file system, and by handling
many of the distributed systems problems in the block-level storage
system, we have an overall system that is easier to model, design,
implement, and tune. This simplicity is particularly important
when the design is expected to scale to a large size and provide
reliable data storage over a long period of time. An additional
benefit is that the block-level interface is useful for supporting
heterogeneous clients and client applications; that is, we can easily
support many different types of file systems and databases.

We have implemented Petal servers on Alpha workstations run-
ning Digital Unix connected by the Digital ATM network [2]. A
Petal client interface exists for Digital Unix and is implemented
as a kernel device driver, allowing all standard Unix applications,
utilities, and file systems to run unmodified when using Petal.
Our implementation exhibits graceful scaling and provides perfor-
mance that is comparable to local disks while providing significant
new functionality.

2 Design of Petal

As shown in Figure 2, Petal consists of a pool of distributed storage
servers that cooperatively implement a single, block-level storage
system. Clients view the storage system as a collection of vir-
tual disks and access Petal services via a remote procedure call
(RPC) [3] interface. A basic principle in the design of the Petal
RPC interface was to maintain all state needed for ensuring the in-
tegrity of the storage system in the servers, and maintain only hints
in the clients. Clients maintain only a small amount of high-level
mapping information that is used to route read and write requests
to the “most appropriate” server. If a request is sent to an inappro-
priate server, the server returns an error code, causing the client to
update its hints and retry the request.

Figure 3 illustrates the software structure of Petal. Each of the
ovals represents a software module. Arrows indicate the use of
one module by another. Two modules, the liveness module and the
global state module, manage much of the distributed system aspect
of Petal. The liveness module ensures that all servers in the system
will agree on the operational status, whether running or crashed, of
each other. This service is used by the other modules, notably the
global state manager, to guarantee continuous, consistentoperation
of the system as a whole in the face of server and communication
failures. The operation of the liveness module is based on majority

Recovery ModuleLiveness Module

Global State
   Module

Data Access
   Module

Virtual to Physical
     Translator

Figure 3: Petal Server Modules

consensus and the periodic exchange of “I’m alive” and “You’re
alive” messages between the servers. These message exchanges
must be done in a timely manner to ensure progress but can be
arbitrarily delayed or reordered without affecting correctness.

Petal maintains information that describes the current members
of the storage system and the currently supported virtual disks.
This information is replicated across all Petal servers in the system.
The global state manager is responsible for consistently maintain-
ing this information, which is less than a megabyte in our current
implementation. Our algorithm for maintaining global state is
based on Leslie Lamport’s Paxos, or “part-time parliament” algo-
rithm [14] for implementing distributed, replicated state machines.
The algorithm assumes that servers fail by ceasing to operate and
that networks can reorder and lose messages. The algorithm en-
sures correctness in the face of arbitrary combinations of server and
communication failures and recoveries, and guarantees progress as
long as a majority of servers can communicate with each other.
This ensures that management operations in Petal, such as creat-
ing, deleting, or snapshotting virtual disks, or adding and deleting
servers, are fault tolerant.

The other three modules deal with servicing the read and write
requests issued by Petal clients. The data accessand recovery mod-
ules control how client data is distributed and stored in the Petal
storage system. A different set of data access and recovery mod-
ules exists for each type of redundancy scheme supported by the
system. We currently support simple data striping without redun-
dancy and a replication-based redundancy scheme calledchained-
declustering[13]. The desired redundancy scheme for a virtual
disk is specified when the virtual disk is created. Subsequently,
the redundancy scheme, and other attributes, can be transparently
changed via a process calledvirtual disk reconfiguration. The
virtual-to-physical address translation module contains common
routines used by the various data access and recovery modules.
These routines translate the virtual disk offsets to physical disk
addresses. The rest of this section will examine specific aspects of
the system in greater detail.

2.1 Virtual to Physical Translation

This section describes how Petal translates the virtual disk ad-
dresses used by clients into physical disk addresses. The basic
problem is to translate virtual addresses of the form<virtual-
disk-identifier, offset> to physical addresses of the form<server-
identifier, disk-identifier, disk-offset>. This translation must be
done consistently and efficiently in a distributed system where
events that alter virtual disk address translation, such as server
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failure or recovery, can occur unexpectedly.
Figure 4 illustrates the basic data structures and the steps in the

translation procedure. There are three important data structures: a
virtual disk directory (VDir), a global map (GMap), and a physical
map (PMap). The dotted lines around the virtual disk directory and
the global map indicate that these are global data structures that are
replicated and consistently updated on all the servers by the global
state manager. Each server also has a physical map that is local to
that server. Translating a client-supplied virtual disk identifier and
offset into a particular disk offset occurs in three steps as shown in
Figure 4.

1. The virtual disk directory translates the client-supplied virtual
disk identifier into a global map identifier.

2. The specified global map determines the server responsible
for translating the given offset.

3. The physical map at the specified server translates the global
map identifier and the offset to a physical disk and an offset
within that disk.

To minimize communication, in almost all cases, the server that
performs the translation in Step 2 will be the same server that
performs the translation in Step 3. Thus, if a client has initially
sent the request to the appropriate server, that server can perform
all three steps in the translation locally without communicating
with any other server.

There is one global map per virtual disk that specifies the tuple
of servers spanned by the virtual disk and the redundancy scheme
used to protect client data stored on the virtual disk. To tolerate
server failures, a secondary server can be assigned responsibility
for mapping the same offset when the primary is not available.
Global maps are immutable; to change a virtual disk’s tuple of
servers or redundancy scheme, the virtual disk must be assigned a
new global map. Section 2.3 describing reconfiguration provides
more details about this process.

The physical map is the actual data structure used to translate
an offset within a virtual disk to a physical disk and an offset
within that disk. It is similar to a page table in a virtual memory
system and each physical map entry translates a 64 Kbyte region of
physical disk. The server that performs the translation will usually
also perform the disk operations needed to service the original
client request. The separation of the translation data structures
into global and local physical maps allows us to keep the bulk of

the mapping information local. Doing so minimizes the amount
of information that must be kept in global data structures that are
replicated and, therefore, expensive to update.

2.2 Support for Backup

Petal attempts to simplify a client’s backup procedure by providing
a common mechanism that can be applied by clients to automate
the backup and recovery of all data stored on the system. The
mechanism Petal provides is fast efficient snapshots of virtual disks.
By using copy-on-write techniques, Petal can quickly create an
exact copy of a virtual disk at a specified point in time. A client
treats the snapshot like any other virtual disk, except that it cannot
be modified.

Supporting snapshots requires a slightly more complicated
virtual-to-physical translation procedure than described in the pre-
vious section. In particular, the virtual disk directory does not
translate a virtual disk identifier to a global map identifier, but
rather to the tuple<global-map-identifier, epoch-number>. The
epoch-number is a monotonically increasing version number that
distinguishes data stored at the same virtual disk offset at different
points in time. The tuple<global-map-identifier, epoch-number>
is then used by the physical map in the last step of the translation.

When the system creates a snapshotof a virtual disk, a new tuple
with a later epoch number is created in the virtual disk directory.
All accesses to the original virtual disk are then made using the
new epoch number. The older epoch number is used by the newly
created snapshot. This ensures that any new data written to the
original virtual disk will create new entries in the new epoch rather
than overwriting the data in the previous epoch. Also, read requests
can find the data most recently written to a particular offset by
looking for the most recent epoch.

Creating a snapshot that is consistent at the client application
level requires pausing the application for the brief time, less than
one second, it takes to create a Petal snapshot. An alternative
approach would not require pausing the application and would
create a “crash-consistent” snapshot, that is, the snapshot would
be similar to the disk image that would be left after an application
crashed. Such snapshots could later be made consistent at the
application level by running an application-dependent recovery
program such asfsck in the case of Unix file systems. We are
considering implementing crash-consistent snapshots, but they are
currently not supported.

Snapshots can be kept on-line and facilitate the recovery of ac-
cidentally deleted files. Also, since a snapshotbehaves exactly like
a read-only local disk, a Petal client can use it to create consistent
archives of data using utilities such astar .

2.3 Incremental Reconfiguration

Occasionally, it is desirable to change a virtual disk’s redundancy
scheme or the set of servers over which it is mapped. Such a
change is often precipitated by the addition or removal of disks and
servers. This section describes how Petal incorporates new disks
and servers, and how existing virtual disks can be reconfigured to
take advantage of these new resources. The former processes are
described only from the point of view of adding new resources
but are easily generalized to the removal of resources. The latter
process is referred to asvirtual disk reconfigurationand is the
primary focus of this section.

The addition of a disk to a server is handled locally by the given
server. Subsequent storage allocation requests automatically take
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the new disk into consideration. However, for load balance, it
is desirable to redistribute previously allocated storage to the new
disk as well. This redistribution is most easily accomplishedas part
of a local background process that periodically moves data among
disks. We have not yet implemented such a background process in
Petal. Nonetheless, existing data is redistributed to newly added
disks as a side-effect of the virtual disk reconfiguration.

The addition of a Petal server is a global operation composed
of several steps involving the global state management module
and the liveness module. First, the new server is added to the
membership of the Petal storage system. Thereafter, the new server
will participate in any future global operations. Next, the sets
of servers used by the liveness module for determining whether
a particular server is up or down is adjusted to incorporate the
new server. Finally, existing virtual disks are reconfigured to take
advantage of the new server, using the process described below.

Given the virtual-to-physical translation procedure already de-
scribed in Section 2.1, and in the absenceof any other activity in the
system, virtual disk reconfiguration can be trivially implemented
as follows:

1. Create a new global map with the desired redundancy scheme
and server mapping.

2. Change all virtual disk directory entries that refer to the old
global map to refer to the new one.

3. Redistribute the data to the servers according to the transla-
tions specified in the new global map. This data distribution
could potentially require substantial amounts of network and
disk traffic.

The challenge is to perform reconfiguration incrementally and con-
currently with the processing of normal client requests. We find it
acceptable if the procedure takes a few hours but it must not de-
grade the performance of the system significantly. For example, if
a virtual disk is reconfigured because a new server has been added,
the performance of the virtual disk should gradually increase dur-
ing reconfiguration from its level before reconfiguration to its level
after reconfiguration. We will describe our reconfiguration algo-
rithm in two steps. First, we describe the basic algorithm and then
a refinement to that algorithm. The refined algorithm is what is
actually implemented in our system.

In the basic algorithm, steps one and two, described above, are
first executed. Next, starting with the translations in the most recent
epoch that have not yet been moved, data is transferred to the new
collection of servers as specified by the new global map. Because
of the amount of data that may need to be moved, reconfiguration
can take a long time to complete. In the meantime, clients will wish
to read and write data to a virtual disk that is being reconfigured.
To accommodate such requests, our read and write procedures are
designed to function as follows. When a client read request is
serviced, the old global map is tried if an appropriate translation
is not found in the new global map. This ensures that translations
that have not yet been moved will still be found in the old global
map. Any client write requests will always access only the new
global map. Also, since we move data starting with the most recent
epoch, we ensure that read requests will not return data from an
older epoch than that requested by the client.

The main limitation of the basic algorithm is that server map-
pings for an entire virtual disk are changed before any data is
moved. This means that almost every client read request submitted
that is based on the new global map will miss in the new global
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Figure 5: Chained-Declustering

map and will have to be forwarded to the old one. This will usu-
ally require additional communication between servers and has the
potential to seriously degrade the performance of the system.

The refined algorithm solves the limitation of the basic algorithm
by relocating only small portions of a virtual disk at a time. The
basic idea is to break up a virtual disk’s address range into three
regions:old, new, andfenced. Requests to the old and new regions
simply use the old and new global maps, respectively. Requests
to the fenced region, however, use the basic algorithm we have
described above. Once we have relocated everything in the fenced
region, it becomes a new region and we fence another part of the
old region. We repeat until we have moved all the data in the old
region into the new region.

By keeping the relative size of the fenced region small, roughly
one to ten percent of the entire range, we minimize the forward-
ing overhead. To help guard against fencing off a heavily used
subrange of the virtual disk, we construct the fenced region by
collecting small non-contiguous ranges distributed throughout the
virtual disk, instead of a single contiguous region.

2.4 Data Access and Recovery

This section describes Petal’s chained-declustered[13] data access
and recovery modules. These modules give clients highly available
access to data by automatically bypassing failed components. Dy-
namic load balancing eliminates system bottlenecks by ensuring
uniform load distribution even in the face of component failures.
We start by describing the basic idea behind chained-declustering
and then move into detailed descriptions of exactly what happens
on each read and write operation.

Figure 5 illustrates the chained-declustered data placement
scheme. The dotted rectangle emphasizes that the data on the
storage servers appear as a single virtual disk to clients. Each
sequence of letters represents a block of data stored in the stor-
age system. Note that the two copies of each block of data are
always stored on neighboring servers.Furthermore, every pair of
neighboring servers has data blocks in common. Because of this
arrangement, if Server 1 fails, servers 0 and 2 will automatically
share Server 1’s read load; however, Server 3 will not experience
any load increase. By performing dynamic load balancing, we can
do better. For example, since Server 3 has copies of some data
from servers 0 and 2, servers 0 and 2 can offload some of their
normal read load on Server 3 and achieve uniform load balancing.

Chaining the data placement allows each server to offload some
of its read load to the server either immediately following or pre-
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ceding the given server. By cascading the offloading across multi-
ple servers, a uniform load can be maintained across all surviving
servers. In contrast, with a simple mirrored redundancy scheme
that replicates all the data stored on two servers, the failure of
either would result in a 100% load increase at the other with no
opportunities for dynamic load balancing. In a system that stripes
over many mirrored servers, the 100% load increase at this single
server would reduce the overall system throughput by 50%.

Our current prototype implements a simple dynamic load bal-
ancing scheme. Each client keeps track of the number of requests
it has pending at each server and always sends read requests to the
server with the shorter queue length. This works well if most of
the requests are generated by a few clients but, obviously, would
not work well if most requests are generated by many clients that
only occasionally issue I/O requests. The choice of load balancing
algorithm is currently an active area of research within the Petal
project.

An additional advantage with chained-declustering is that by
placing all the even-numbered servers at one site and all the odd-
numbered servers at another site, we can tolerate site failures. A
disadvantage of chained-declustering relative to simple mirroring
is that it is less reliable. With simple mirroring, if a server failed,
only the failure of its mirror server would result in data becoming
unavailable. With chained-declustering, if a server fails, the failure
of either one of its two neighboring servers will result in data
become unavailable.

In our implementation of chained-declustering, one of the two
copies of each data block is denoted theprimaryand the other is
denoted thesecondary. Read requests can be serviced from either
the primary or the secondary copy but the servicing of write re-
quests must always start at the primary, unless the server containing
the primary is down in which case it may start at the secondary.
Becausewe lock copies of the data blocks before reading or writing
them to guarantee consistency, this ordering guarantee is necessary
to avoid deadlocks.

On a read request, the server that receives the request attempts
to read the requested data. If successful, the server returns the
requested data, otherwise it returns an error code and the client tries
another server. If a request times out due to network congestion
or because a server is down, the client will alternately retry the
primary and secondary servers until either the request succeeds
or both servers return error codes indicating that it is not possible
to satisfy the request. Currently, this happens only if both disks
containing copies of the requested data have been destroyed.

On a write request, the server that receives the request first
checks to see if it is the primary for the specified data element. If
it is the primary, it first marks this data element asbusyon stable
storage. It then simultaneously sends write requests to its local
copy and the secondary copy. When both requests complete, the
busy bit is cleared and the client that issued the request is sent a
status code indicating the success or failure of the operation. If the
primary crashes while performing the update, the busy bits are used
during crash recovery to ensure that the primary and secondary
copies are consistent. Write-ahead-logging with group commits
makes updating the busy bits efficient. As a further optimization,
the clearing of busy bits is done lazily and we maintain a cache
of the most recently set busy bits. Thus, if write requests display
locality, a given busy bit will already be set on disk and will not
require additional I/O.

If the server that received the write request is the secondary for
the specified data element, then it will service the request only
if it can determine that the server containing the primary copy is
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Figure 6: Petal Prototype

down. In this case, the secondary marks the data element asstale
on stable storage before writing it to its local disk. The server
containing the primary copy will eventually have to bring all data
elements marked stale up-to-date during its recovery process. A
similar procedure is used by the primary if the secondary dies.

3 Implementation and Performance

Our Petal prototype is illustrated in Figure 6. Four 225 MHz DEC
3000/700s running Digital Unix act as server machines. Each runs
a single Petal server, which is a user-level process that accessesthe
physical disks using the Unix raw disk interface, and the network
using UDP/IP Unix sockets. Each server machine is configured
with 14 Digital RZ29 disks, each of which is a 3.5 inch SCSI device
with a 4.3 Gbyte capacity. Each machine uses one of the disks for
write-ahead logging and the remaining to store client data. The
disks are connected to the server machine via two 10 Mbyte/s fast
SCSI strings using the Digital PMZAA-C host bus adapter.

Four additional machines running Digital Unix are configured
as Petal clients to generate load on the servers. Each client’s kernel
is loaded with the Petal device driver for accessing Petal virtual
disks. This allows clients to access Petal virtual disks just like local
disks. Both the servers and clients are connected to each other via
155 Mbit/s ATM links over a Digital ATM network.

The entire Petal RPC interface has 24 calls and many of these
calls are devoted to management functions, such as creating and
deleting virtual disks, making snapshots, reconfiguring a virtual
disk, and adding and deleting servers. These calls are typically
used by user-level utilities to perform tasks such as virtual disk
creation and monitoring the physical resource pools in the system
to determine when additional servers or disk should be added.

Petal RPC calls that implement management functions are infre-
quently executed and generally take less than a second to complete.
In particular, create and snapshot operations take about 650 mil-
liseconds. Delete and reconfiguration take about 650 milliseconds
to initiate, but their total execution time is dependent on the actual
amount of physical storage associated with the specified virtual
disk.

In the remainder of the section, we will report on the perfor-
mance of accessing a Petal virtual disk and the behavior of file sys-
tems built on Petal. Our primary performance goals are to provide
latency roughly comparable to a locally attached disk, through-
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