Interposed Request Routing for Scalable Network Storage

Darrell C. Anderson, Jeffrey S. Chase, Amin M. Vahdat *
Department of Computer Science
Duke University
{anderson,chase,vahdat}@cs.duke.edu

Abstract. This paper explores interposed request
routing in Slice, a new storage system architec-
ture for high-speed networks incorporating network-
attached block storage. Slice interposes a request
switching filter — called a uprozy — along each
client’s network path to the storage service (e.g.,
in a network adapter or switch). The pproxy inter-
cepts request traffic and distributes it across a server
ensemble. We propose request routing schemes for
I/0 and file service traffic, and explore their effect
on service structure.

The Slice prototype uses a packet filter pproxy
to virtualize the standard Network File System
(NFS) protocol, presenting to NFS clients a uni-
fied shared file volume with scalable bandwidth and
capacity. Experimental results from the industry-
standard SPECsfs97 workload demonstrate that
the architecture enables construction of powerful
network-attached storage services by aggregating
cost-effective components on a switched Gigabit
Ethernet LAN.

1 Introduction

Demand for large-scale storage services is growing
rapidly. A prominent factor driving this growth is
the concentration of storage in data centers hosting
Web-based applications that serve large client pop-
ulations through the Internet. At the same time,
storage demands are increasing for scalable comput-
ing, multimedia and visualization.

A successful storage system architecture must scale
to meet these rapidly growing demands, placing
a premium on the costs (including human costs)
to administer and upgrade the system. Commer-
cial systems increasingly interconnect storage de-
vices and servers with dedicated Storage Area Net-

*This work is supported by the National Science Founda-
tion (EIA-9972879 and EIA-9870724), Intel, and Myricom.
Anderson is supported by a U.S. Department of Education
GAANN fellowship. Chase and Vahdat are supported by
NSF CAREER awards (CCR-9624857 and CCR-9984328).

DOCKET

_ ARM

works (SANs), e.g., FibreChannel, to enable incre-
mental scaling of bandwidth and capacity by attach-
ing more storage to the network. Recent advances
in LAN performance have narrowed the bandwidth
gap between SANs and LANs, creating an oppor-
tunity to take a similar approach using a general-
purpose LAN as the storage backplane. A key chal-
lenge is to devise a distributed software layer to
unify the decentralized storage resources.

This paper explores interposed request routing in
Slice, a new architecture for network storage. Slice
interposes a request switching filter — called a
puprozy — along each client’s network path to the
storage service. The pproxy may reside in a pro-
grammable switch or network adapter, or in a self-
contained module at the client’s or server’s interface
to the network. We show how a simple pproxy can
virtualize a standard network-attached storage pro-
tocol incorporating file services as well as raw device
access. The Slice uproxy distributes request traf-
fic across a collection of storage and server elements
that cooperate to present a uniform view of a shared
file volume with scalable bandwidth and capacity.

This paper makes the following contributions:

¢ It outlines the architecture and its implementa-
tion in the Slice prototype, which is based on a
pproxy implemented as an IP packet filter. We
explore the impact on service structure, recon-
figuration, and recovery.

It proposes and evaluates request routing poli-
cies within the architecture. In particular, we
introduce two policies for transparent scaling of
the name space of a unified file volume. These
techniques complement simple grouping and
striping policies to distribute file access load.

It evaluates the prototype using synthetic
benchmarks including SPECsfs97, an industry-
standard workload for network-attached stor-
age servers. The results demonstrate that the

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D
A

directory servers

/
name space ,
requests

v

.
/

‘ pulkyo P

client AR
—— Y
N \"/}}\s\}§
: 45
small file
read/write \\ /’,
\ //
fie O<Z7= / network
placement ~< ¢ storage
policy array

small-file servers

Figure 1: Combining functional decomposition and
data decomposition in the Slice architecture.

system is scalable and that it complies with
the Network File System (NFS) V3 standard, a
popular protocol for network-attached storage.

This paper is organized as follows. Section 2 out-
lines the architecture and sets Slice in context with
related work. Section 3 discusses the role of the
puproxy, defines the request routing policies, and
discusses service structure. Section 4 describes the
Slice prototype, and Section 5 presents experimental
results. Section 6 concludes.

2 Overview

The Slice file service consists of a collection of
servers cooperating to serve an arbitrarily large vir-
tual volume of files and directories. To a client, the
ensemble appears as a single file server at some vir-
tual network address. The uproxy intercepts and
transforms packets to redirect requests and to rep-
resent the ensemble as a unified file service.

Figure 1 depicts the structure of a Slice ensemble.
Each client’s request stream is partitioned into three
functional request classes corresponding to the ma-
jor file workload components: (1) high-volume I/0O
to large files, (2) I/O on small files, and (3) oper-
ations on the name space or file attributes. The
uproxy switches on the request type and arguments
to redirect requests to a selected server responsible
for handling a given class of requests. Bulk I/O op-
erations route directly to an array of storage nodes,
which provide block-level access to raw storage ob-
jects. Other operations are distributed among spe-
cialized file managers responsible for small-file I/O

OCKET

LARM

and/or name space requests.

This functional decomposition diverts high-volume
data flow to bypass the managers, while allowing
specialization of the servers for each workload com-
ponent, e.g., by tailoring the policies for disk layout,
caching and recovery. A single server node could
combine the functions of multiple server classes; we
separate them to highlight the opportunities to dis-
tribute requests across more servers.

The pproxy selects a target server by switching on
the request type and the identity of the target file,
name entry, or block, using a separate routing func-
tion for each request class. Thus the routing func-
tions induce a data decomposition of the volume
data across the ensemble, with the side effect of cre-
ating or caching data items on the selected man-
agers. Ideally, the request routing scheme spreads
the data and request workload in a balanced fashion
across all servers. The routing functions may adapt
to system conditions, e.g., to use new server sites
as they become available. This allows each work-
load component to scale independently by adding
resources to its server class.

2.1 The pyproxy

An overarching goal is to keep the uproxy simple,
small, and fast. The pproxy may (1) rewrite the
source address, destination address, or other fields of
request or response packets, (2) maintain a bounded
amount of soft state, and (3) initiate or absorb pack-
ets to or from the Slice ensemble. The pproxy does
not require any state that is shared across clients,
so it may reside on the client host or network in-
terface, or in a network element close to the server
ensemble. The pproxy is not a barrier to scalability
because its functions are freely replicable, with the
constraint that each client’s request stream passes
through a single uproxy.

The pproxy functions as a network element within
the Internet architecture. It is free to discard its
state and/or pending packets without compromis-
ing correctness. End-to-end protocols (in this case
NFS/RPC/UDP or TCP) retransmit packets as
necessary to recover from drops in the pproxy. Al-
though the pproxy resides “within the network”, it
acts as an extension of the service. For example,
since the uproxy is a layer-5 protocol component, it
must reside (logically) at one end of the connection
or the other; it cannot reside in the “middle” of the
connection where end-to-end encryption might hide
layer-5 protocol fields.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.2 Network Storage Nodes

A shared array of network storage nodes provides all
disk storage used in a Slice ensemble. The uproxy
routes bulk I/O requests directly to the network
storage array, without intervention by a file man-
ager. More storage nodes may be added to incre-
mentally scale bandwidth, capacity, and disk arms.

The Slice block storage prototype is loosely based
on a proposal in the National Storage Industry
Consortium (NSIC) for object-based storage devices
(OBSD) [3]. Key elements of the OBSD proposal
were in turn inspired by the CMU research on Net-
work Attached Secure Disks (NASD) (8, 9]. Slice
storage nodes are “object-based” rather than sector-
based, meaning that requesters address data as log-
ical offsets within storage objects. A storage object
is an ordered sequence of bytes with a unique iden-
tifier. The placement policies of the file service are
responsible for distributing data among storage ob-
jects so as to benefit fully from all of the resources
in the network storage array.

A key advantage of OBSDs and NASDs is that they
allow for cryptographic protection of storage object
identifiers if the network is insecure [9]. This protec-
tion allows the uproxy to reside outside of the server
ensemble’s trust boundary. In this case, the dam-
age from a compromised pproxy is limited to the
files and directories that its client(s) had permis-
sion to access. However, the Slice request routing
architecture is compatible with conventional sector-
based storage devices if every uproxy resides inside
the service trust boundary.

This storage architecture is orthogonal to the ques-
tion of which level arranges redundancy to tolerate
disk failures. One alternative is to provide redun-
dancy of disks and other vulnerable components in-
ternally to each storage node. A second option is for
the file service software to mirror data or maintain
parity across the storage nodes. In Slice, the choice
to employ extra redundancy across storage nodes
may be made on a per-file basis through support
for mirrored striping in our prototype’s I/O routing
policies. For stronger protection, a Slice configura-
tion could employ redundancy at both levels.

The Slice block service includes a coordinator mod-
ule for files that span multiple storage nodes. The
coordinator manages optional block maps (Sec-
tion 3.1) and preserves atomicity of multisite op-
erations (Section 3.3.2). A Slice configuration may
include any number of coordinators, each managing
a subset of the files (Section 4.2).

DOCKET

_ ARM

2.3 File Managers

File management functions above the network stor-
age array are split across two classes of file man-
agers. Each class governs functions that are com-
mon to any file server; the architecture separates
them to distribute the request load and allow im-
plementations specialized for each request class.

o Directory servers handle name space opera-
tions, e.g., to create, remove, or lookup files and
directories by symbolic name; they manage di-
rectories and mappings from names to identi-
fiers and attributes for each file or directory.

e Small-file servers handle read and write opera-
tions on small files and the initial segments of
large files (Section 3.1).

Slice file managers are dataless; all of their state is
backed by the network storage array. Their role is to
aggregate their structures into larger storage objects
backed by the storage nodes, and to provide memory
and CPU resources to cache and manipulate those
structures. In this way, the file managers can benefit
from the parallel disk arms and high bandwidth of
the storage array as more storage nodes are added.

The principle of dataless file managers also plays a
key role in recovery. In addition to its backing ob-
jects, each manager journals its updates in a write-
ahead log [10]; the system can recover the state of
any manager from its backing objects together with
its log. This allows fast failover, in which a surviving
site assumes the role of a failed server, recovering its
state from shared storage {12, 4, 24].

2.4 Summary

Interposed request routing in the Slice architecture
yields three fundamental benefits:

o Scalable file management with content-based re-
quest switching. Slice distributes file service re-
quests across a server ensemble. A good request
switching scheme induces a balanced distribu-
tion of file objects and requests across servers,
and improves locality in the request stream.

Direct storage access for high-volume 1/0. The
pproxy routes bulk I/0 traffic directly to the
network storage array, removing the file man-
agers from the critical path. Separating re-
quests in this fashion eliminates a key scaling
barrier for conventional file services [8, 9]. At
the same time, the small-file servers absorb and

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

aggregate I/ O operations on small files, so there
is no need for the storage nodes to handle small
objects efficiently.

o Compatibility with standard file system clients.
The pproxy factors request routing policies out
of the client-side file system code. This allows
the architecture to leverage a minimal comput-
ing capability within the network elements to
virtualize the storage protocol.

2.5 Related Work

A large number of systems have interposed new sys-
tem functionality by “wrapping” an existing inter-
face, including kernel system calls [14], internal in-
terfaces [13], communication bindings [11], or mes-
saging endpoints. The concept of a prozy mediating
between clients and servers [23] is now common in
distributed systems. We propose to mediate some
storage functions by interposing on standard storage
access protocols within the network elements. Net-
work file services can benefit from this technique be-
cause they have well-defined protocols and a large
installed base of clients and applications, many of
which face significant scaling challenges today.

The Slice pproxy routes file service requests based
on their content. This is analogous to the HTTP
content switching features offered by some net-
work switch vendors (e.g., Alteon, Arrowpoint, F5),
based in part on research demonstrating improved
locality and load balancing for large Internet server
sites [20]. Slice extends the content switching con-
cept to a file system context.

A number of recent commercial and research ef-
forts investigate techniques for building scalable
storage systems for high-speed switched LAN net-
works. These system are built from disks dis-
tributed through the network, and attached to ded-
icated servers [16, 24, 12], cooperating peers [4, 26),
or the network itself [8, 9]. We separate these sys-
tems into two broad groups.

The first group separates file managers (e.g., the
name service) from the block storage service, as in
Slice. This separation was first proposed for the
Cambridge Universal File Server [6]. Subsequent
systems adopted this separation to allow bulk I/O
to bypass file managers [7, 12], and it is now a basic
tenet of research in network-attached storage de-
vices including the CMU NASD work on devices for
secure storage objects [8, 9]. Slice shows how to
incorporate placement and routing functions essen-
tial for this separation into a new filesystem struc-
ture for network-attached storage. The CMU NASD

DOCKET

_ ARM

project integrated similar functions into network
file system clients [9]; the Slice model decouples
these functions, preserving compatibility with ex-
isting clients. In addition, Slice extends the NASD
project approach to support scalable file manage-
ment as well as high-bandwidth I/O for large files.

A second group of scalable storage systems lay-
ers the file system functions above a network stor-
age volume using a shared disk model. Policies
for striping, redundancy, and storage site selection
are specified on a volume basis; cluster nodes coor-
dinate their accesses to the shared storage blocks
using an ownership protocol. This approach has
been used with both log-structured (Zebra [12] and
xF$S [4]) and conventional (Frangipani/Petal [16, 24]
and GFS [21]) file system organizations. The clus-
ter may be viewed as “serverless” if all nodes are
trusted and have direct access to the shared disk,
or alternatively the entire cluster may act as a file
server to untrusted clients using a standard network
file protocol, with all I/O passing through the clus-
ter nodes as they mediate access to the disks.

The key benefits of Slice request routing apply
equally to these shared disk systems when untrusted
clients are present. First, request routing is a key to
incorporating secure network-attached block stor-
age, which allows untrusted clients to address stor-
age objects directly without compromising the in-
tegrity of the file system. That is, a uproxy could
route bulk I/O requests directly to the devices,
yielding a more scalable system that preserves com-
patibility with standard clients and allows per-file
policies for block placement, parity or replication,
prefetching, etc. Second, request routing enhances
locality in the request stream to the file servers, im-
proving cache effectiveness and reducing block con-
tention among the servers.

The shared disk model is used in many commercial
systems, which increasingly interconnect storage de-
vices and servers with dedicated Storage Area Net-
works (SANs), e.g., FibreChannel. This paper ex-
plores storage request routing for Internet networks,
but the concepts are equally applicable in SANs.

Our proposal to separate small-file [/O from the re-
quest stream is similiar in concept to the Amoeba
Bullet Server [25], a specialized file server that op-
timizes small files. As described in Section 4.4,
the prototype small-file server draws on techniques
from the Bullet Server, FFS fragments [19], and
SquidMLA [18], a Web proxy server that maintains
a user-level “filesystem” of small cached Web pages.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 Request Routing Policies

This section explains the structure of the uproxy
and the request routing schemes used in the Slice
prototype. The purpose is to illustrate concretely
the request routing policies enabled by the architec-
ture, and the implications of those policies for the
way the servers interact to maintain and recover
consistent file system states. We use the NFS V3
protocol as a reference point because it is widely
understood and our prototype supports it.

The pproxy intercepts NFS requests addressed to
virtual NFS servers, and routes the request to a
physical server by applying a function to the re-
quest type and arguments. It then rewrites the IP
address and port to redirect the request to the se-
lected server. When a response arrives, the yproxy
rewrites the source address and port before forward-
ing it to the client, so the response appears to orig-
inate from the virtual NFS server.

The request routing functions must permit recon-
figuration to add or remove servers, while minimiz-
ing state requirements in the uproxy. The pproxy
directs most requests by extracting relevant fields
from the request, perhaps hashing to combine mul-
tiple fields, and interpreting the result as a logical
server site ID for the request. It then looks up the
corresponding physical server in a compact routing
table. Multiple logical sites may map to the same
physical server, leaving flexibility for reconfiguration
(Section 3.3.1). The routing tables constitute soft
state; the mapping is determined externally, so the
uproxy never modifies the tables.

The pproxy examines up to four fields of each re-
quest, depending on the policies configured:

o Request type. Routing policies are keyed by the
NFS request type, so the gproxy may employ
different policies for different functions. Table 1
lists the important NFS request groupings dis-
cussed in this paper.

File handle. Each NFS request targets a spe-
cific file or directory, named by a unique identi-
fier called a file handle (or fhandle). Although
NFS fhandles are opaque to the client, their
structure can be known to the pproxy, which
acts as an extension of the service. Directory
servers encode a fileID in each fhandle, which
the pproxies extract as a routing key.

Read/write offset. NFS I/0 operations specify
the range of offsets covered by each read and

DOCKET

_ ARM

write. The pproxy uses these fields to select
the server or storage node for the data.

e Name component. NFS name space requests
include a symbolic name component in their ar-
guments (see Table 1). A key challenge for scal-
ing file management is to obtain a balanced dis-
tribution of these requests. This is particularly
important for name-intensive workloads with
small files and heavy create/lookup/remove ac-
tivity, as often occurs in Internet services for
mail, news, message boards, and Web access.

‘We now outline some pproxy policies that use these
fields to route specific request groups.

3.1 Block I/O

Request routing for read/write requests have two
goals: separate small-file read/write traffic from
bulk I/0, and decluster the blocks of large files
across the storage nodes for the desired access prop-
erties (e.g., high bandwidth or a specified level of
redundancy). We address each in turn.

When small-file servers are configured, the proto-
type’s routing policy defines a fixed threshold offset
(e.g., 64KB); the pproxy directs I/O requests be-
low the threshold to a small-file server selected from
the request fhandle. The threshold offset is neces-
sary because the size of each file may change at any
time. Thus the small-file servers also receive a sub-
set of the I/O requests on large files; they receive
all I/O below the threshold, even if the target file
is large. In practice, large files have little impact
on the small-file servers because there tends to be
a small number of these files, even if they make up
a large share of the stored bytes. Similarly, large
file I/O below the threshold is limited by the band-
width of the small-file server, but this affects only
the first threshold bytes, and becomes progressively
less significant as the file grows.

The pproxy redirects I/O traffic above the thresh-
old directly to the network storage array, using some
placement policy to select the storage site(s) for each
block. A simple option is to employ static strip-
ing and placement functions that compute on the
block offset and/or fileID. More flexible placement
policies would allow the pproxy to consider other
factors, e.g., load conditions on the network or stor-
age nodes, or file attributes encoded in the fhandle.
To generalize to more flexible placement policies,
Slice optionally records block locations in per-file
block maps managed by the block service coordina-
tors. The uproxies interact with the coordinators

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

