
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Cheating the I/O Bottleneck:
Network Storage with Trapeze/Myrinet

Darrell C. Anderson, Jeffrey S. Chase, Syam Gadde, Andrew J. Gallatin, and Kenneth G. Yocum,
Duke University

Michael J. Feeley,
University of British Columbia

Oracle Ex. 1011, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Cheating the I/O Bottleneck:
Network Storage with Trapeze/Myrinet

Darrell C. Anderson, Jeffrey S. Chase, Syam Gadde, Andrew J. Gallatin, and Kenneth G. Yocum�

Department of Computer Science
Duke University

fanderson, chase, gadde, gallatin, grantg@cs.duke.edu

Michael J. Feeley
Department of Computer Science
University of British Columbia

feeley@cs.ubc.ca

Abstract

Recent advances in I/O bus structures (e.g., PCI), high-
speed networks, and fast, cheap disks have signifi-
cantly expanded the I/O capacity of desktop-class sys-
tems. This paper describes a messaging system de-
signed to deliver the potential of these advances for
network storage systems including cluster file systems
and network memory. We describegmsnet, an RPC-
like kernel-kernel messaging system based on Trapeze,
a new firmware program for Myrinet network interfaces.
We show how the communication features of Trapeze
and gmsnet are used by the Global Memory Service
(GMS), a kernel-based network memory system.

The paper focuses on support for zero-copy page mi-
gration in GMS/Trapeze using two RPC variants im-
portant for peer-peer distributed services: (1)delegated
RPC in which a request is delegated to a third party,
and (2) nonblocking RPCin which replies are pro-
cessed from the Trapeze receive interrupt handler. We
present measurements of sequential file access from
network memory in the GMS/Trapeze prototype on a
Myrinet/Alpha cluster, showing the bandwidth effects
of file system interfaces and communication choices.
GMS/Trapeze delivers a peak read bandwidth of 96
MB/s using memory-mapped file I/O.

1 Introduction

Two recent hardware advances boost the potential of
cluster computing: switched cluster interconnects that
can carry 1Gb/s or more of point-to-point bandwidth,
and high-quality PCI bus implementations that can han-
dle data streams at gigabit speeds. We are develop-
ing system facilities to realize the potential for high-

�This work is supported by the National Science Foundation un-
der grants CCR-96-24857 and CDA-95-12356, equipment grants from
Intel Corporation and Myricom, and a software grant from the Open
Group.

speed data transfer over Myricom’s 1.28 Gb/s Myrinet
LAN [2], and harness it for cluster file systems, network
memory systems, and other distributed OS services that
cooperatively share data across the cluster. Our broad
goal is to use the power of the network to “cheat” the
I/O bottleneck for data-intensive computing on worksta-
tion clusters.

This paper describes use of the Trapeze messag-
ing system [27, 5] for high-speed data transfer in a
network memory system, the Global Memory Service
(GMS) [14, 18]. Trapeze is a firmware program for
Myrinet/PCI adapters, and an associated messaging li-
brary for DEC AlphaStations running Digital Unix 4.0
and Intel platforms running FreeBSD 2.2. Trapeze com-
munication delivers the performance of the underlying
I/O bus hardware, balancing low latency with high band-
width. Since the Myrinet firmware is customer-loadable,
any Myrinet network site with PCI-based machines can
use Trapeze.

GMS [14] is a Unix kernel facility that manages the
memories of cluster nodes as a shared, distributed page
cache. GMS supports remote paging [8, 15] and co-
operative caching [10] of file blocks and virtual mem-
ory pages, unified at a low level of the Digital Unix 4.0
kernel (a FreeBSD port is in progress). The purpose of
GMS is to exploit high-speed networks to improve per-
formance of data-intensive workloads by replacing disk
activity with memory-memory transfers across the net-
work whenever possible. The GMS mechanisms man-
age the movement of VM pages and file blocks between
each node’slocal page cache— the file buffer cache
and the set of resident virtual pages — and the network
memoryglobal page cache.

This paper deals with the communication mecha-
nisms and network performance of GMS systems us-
ing Trapeze/Myrinet, with particular focus on the sup-
port for zero-copy read-ahead and write-behind of se-
quentially accessed files. Cluster file systems that stripe
data across multiple servers are typically limited by

Oracle Ex. 1011, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the bandwidth of the network and communication sys-
tem [23, 16, 1]. We measure synthetic bandwidth tests
that access files in network memory, in order to deter-
mine the maximum bandwidth achievable through the
file system interface by any network storage system us-
ing Trapeze. The current GMS/Trapeze prototype can
read files from network memory at 96 MB/s on an Al-
phaStation/Myrinet network. Since these speeds ap-
proach the physical limits of the hardware, unnecessary
overheads (e.g., copying) can have significant effects on
performance. These overheads can occur in the file ac-
cess interface as well as in the messaging system. We
evaluate three file access interfaces, including two that
use the Unixmmapsystem call to eliminate copying.

Central to GMS is an RPC-like messaging facility
(gmsnet) that works with the Trapeze interface to sup-
port the messaging patterns and block migration traffic
characteristic of GMS and other network storage ser-
vices. This includes a mix of asynchronous and re-
quest/response messaging (RPC) that ispeer-to-peerin
the sense that each “client” may also act as a “server”.
The support for RPC includes two variants important
for network storage: (1)delegated RPCsin which re-
quests are delegated to third parties, and (2)nonblock-
ing RPCin which the replies are processed bycontin-
uation procedures executing from an interrupt handler.
These features are important for peer-to-peer network
storage services: the first supports directory lookups for
fetched data, and the second supports lightweight asyn-
chronous calls, which are useful for prefetching. When
using these features, GMS andgmsnet cooperate with
Trapeze to unify buffering of migrated pages, eliminat-
ing all page copies by sending and receiving directly
from the file buffer cache and local VM page cache.

This paper is organized as follows. Section 2 gives an
overview of the Trapeze network interface and the fea-
tures relevant to GMS communication. Section 3 deals
with the gmsnet messaging layer for Trapeze, focus-
ing on the RPC variants and zero-copy handling of page
transfers. Section 4 presents performance results from
the GMS/Trapeze prototype. We conclude in Section 5.

2 High-Speed Data Transfer with Trapeze

The Trapeze messaging system consists of two compo-
nents: a messaging library that is linked into programs
using the package, and a firmware program that runs on
the Myrinet network interface card (NIC). The Trapeze
firmware and the host interact by exchanging commands
and data through a block of memory on the NIC, which
is addressable in the host’s physical address space using
programmed I/O. The firmware defines the interface be-
tween the host CPU and the network device; it interprets
commands issued by the host and controls the movement

of data between the host and the network link. The host
accesses the network using macros and procedures in the
Trapeze library, which defines the lowest level API for
network communication across the Myrinet.

Trapeze/Myrinet NIC

kernel

PCI

Global Memory Service

RPC-like message layer

File/VM system sockets

TCP/IP

Trapeze-API
network driver

user applications

Figure 1: Using Trapeze for TCP/IP and for kernel-
kernel messaging for network memory.

Like other network interfaces based on Myrinet (e.g.,
Hamlyn [4], VMMC-2 [13], Active Messages [9],
FM [21]), Trapeze can be used as a memory-mapped
network interface for user applications, e.g., parallel pro-
grams. However, Trapeze was designed primarily to
support fast kernel-to-kernel messaging alongside con-
ventional TCP/IP networking. The Trapeze distribu-
tion includes a network device driver that allows the
native TCP/IP protocol stack to use a Trapeze network
alongside thegmsnet layer. Figure 1 depicts this struc-
ture. The kernel-to-kernel messaging layer is intended
for GMS and other services that assume mutually trust-
ing kernels.

2.1 Trapeze Overview

Trapeze messages are shortcontrol messages(maximum
128 bytes) with optional attachedpayloadstypically
containing application data not interpreted by the mes-
sage system, e.g., a file block, a virtual memory page,
or a TCP segment. Each message can have at most one
payload attached to it. Separation of control messages
and bulk data transfer is common to a large number of
messaging systems since the V system [6].

A Trapeze control message and its payload (if any) are
sent as a single packet on the network. Since Myrinet has
no fixed maximum packet size (MTU), the maximum
payload size of a Trapeze network is configurable, and is
typically set to the virtual memory page size (4K or 8K).
The Trapeze MTU is the maximum control message size
plus the payload size.

Payloads are sent and received using DMA to/from
aligned buffers residing anywhere in host memory. The
host attaches a payload to an outgoing message using a
Trapeze macro that stores the payload’s DMA address
and length into designated fields of the send ring entry.
On the receiving side, Trapeze deposits the payload into
a host memory buffer before delivering the control mes-
sage.

Oracle Ex. 1011, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Key

Key

Key

Key

Key

Key

Send Ring

Host Memory
Frames

Receive Ring

Incoming
Payload Table

NIC Memory

Figure 2: NIC Memory Structures for a Trapeze end-
point.

The data structures in NIC memory include anend-
pointstructure shared with the host. A Trapeze endpoint
(shown in Figure 2) includes two message rings, one for
sending and one for receiving. Each message ring is a
circular array of 128-byte control message buffers and
related state, managed as a producer/consumer queue.
From the perspective of a host CPU, the NIC produces
incoming messages in the receive ring and consumes
outgoing messages in the send ring. The host sends a
message by forming it in the next free send ring entry
and setting a bit to indicate that the message is ready
to send. When a message arrives from the network, the
firmware deposits it into the next free receive ring entry,
sets a bit to inform the host that the message is ready to
consume, and optionally signals the host with an inter-
rupt.

Handling of incoming messages is interrupt-driven
when Trapeze is used from within the kernel. Each ker-
nel protocol module using Trapeze (i.e.,gmsnetand the
IP network driver) registers a receiver interrupt handler
upcalled from the Trapeze interrupt handler.

Trapeze is designed to optimize handling of payloads
as well as to deliver good performance for small mes-
sages. In a network memory system, page fault stall
time is determined primarily by the time to transfer the
requested page on the network. On the other hand,
bursts of page transfers (e.g., for read-ahead for se-
quential access) require high bandwidth. The Trapeze
firmware employs a message pipelining technique called
cut-through delivery[27] to balance low payload latency
with high bandwidth under load. With this technique,
the one-way raw Trapeze latency for a 4K page trans-
fer is 70�s on 300MHz Pentium-II/440LX systems with
LANai 4.1 M2M-PCI32 Myrinet adapters. On these sys-
tems, Trapeze delivers 112 MB/s for a stream of 8K pay-
loads; with 64K payloads, Trapeze can use over 95% of
the peak bandwidth of the I/O bus, achieving 126 MB/s
of user-to-user point-to-point bandwidth.1

1These bandwidth numbers define a “megabyte” as one million

2.2 Unified Buffering for In-Kernel
Trapeze

All kernel-based Trapeze protocol modules share a com-
mon pool of receive buffers allocated from the virtual
memory page frame pool; the maximum payload size is
set to the virtual memory page size. Since Digital Unix
allocates its file block buffers from the virtual memory
page frame pool as well, this allows unified buffering
among the network, file, and VM systems. For example,
the system can send any virtual memory page or cached
file block out to the network by attaching it as a payload
to an outgoing message. Similarly, every incoming pay-
load is deposited in an aligned physical frame that can
mapped into a user process or hashed into the file cache.
Since file caching and virtual memory management are
reasonably unified, we often refer to the two subsystems
collectively as “the file/VM system”, and use the term
“page” to include file blocks.

The TCP/IP stack can also benefit from the unified
buffering of Trapeze payloads to reduce copying over-
head bypayload remapping(similar to [11, 3, 17]). On
a normal transmission, IP message data is copied from
a user memory buffer into an mbuf chain [20] on the
sending side; on the receiving side, the driver copies the
header into a small mbuf, points a BSD-style external
mbuf at the payload buffer, and passes the chain through
the IP stack to the socket layer, which copies the payload
into user memory and frees the kernel buffer. We have
modified the Digital Unix socket layer to avoid copying
when size and alignment properties allow. On the send-
ing side, the socket layer builds mbuf chains by pinning
the user buffer frames, marking them copy-on-write, ref-
erencing them with external mbufs, and passing them
through the TCP/IP stack to the network driver, which
attaches them to outgoing messages as payloads. On
the receiving side, the socket layer unmaps the frames
of the user buffer, replaces them with the kernel pay-
load buffer frames, and frees the user frames. With pay-
load remapping, AlphaStations running the standardnet-
perfTCP benchmark over Trapeze sustain point-to-point
bandwidth of 87 MB/s.2

Since outgoing payload frames attached to the send
ring may be owned by the file/VM system, they must
be protected from modification or reuse while a trans-
mit is in progress. Trapeze notifies the system that it is
safe to overwrite an outgoing frame by upcalling a spec-
ified transmit completion handlerroutine. For example,
when an IP send on a user frame completes, Trapeze up-
calls the completion routine, which unpins the frame and

bytes. All other bandwidth numbers in this paper define 1MB as
1024*1024 bytes.

2Measured Alcor (266 MHz AS 500) to Miata (500 MHz PWS
500au), 8320-byte MTU, 1M netperf transfers, socket buffers at 1M,
software TCP checksums disabled (hardware CRC only): 732 Mb/s.

Oracle Ex. 1011, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

releases its copy-on-write protection.
However, to reduce overhead Trapeze does not gener-

ate transmit-complete interrupts. Instead, Trapeze saves
the handler pointer in host memory and upcalls the han-
dler only when the send ring entry is reused for another
send. Since messages may be sent from interrupt han-
dlers, a completion routine could be called in the context
of an interrupt handler that happened to reuse the same
send ring entry as the original message. For this rea-
son, completion handlers must not block, and the struc-
tures they manipulate must be protected by disabling
interrupts. Since completion upcalls may be arbitrar-
ily delayed, the Trapeze API includes a routine to poll
all pending transmits and call their handlers if they have
completed.

2.3 Incoming Payload Table

The benefits of high-speed networking are easily over-
shadowed by processing costs and copying overhead
in the hosts. To support zero-copy communication, a
Trapeze receiver can designate a region of memory as
the receive buffer space for a specific incoming payload
identified by a tag field. When the message arrives, the
firmware recognizes the tag and deposits the payload di-
rectly into the waiting buffer. Handling of tagged pay-
loads is governed by a third structure in NIC memory,
the incoming payload table(IPT).

GMS uses the Trapeze IPT for copy-free handling of
fetched pages in RPC replies, as described in Section 3.
Ordinarily, Trapeze payloads are received into buffers
attached by the host to the receive ring entries; since the
firmware places messages in the ring in the order they
arrive, the host cannot know in advance which generic
buffer will be selected to receive any given payload, and
the payload may need to be copied within the host if it
cannot be remapped. Early demultiplexing with the IPT
avoids this copy.

To set up an IPT mapping, the host calls a Trapeze
API routine to allocate a free entry in the IPT, initialize it
with the DMA address of the designated payload buffer,
and return a tag value (payload token) consisting of an
IPT index and a protection key. The payload token is a
weak form of capability that can be passed in a message
to another node; any node that knows the token can use
it to tag a message and transmit a payload into the buffer.
When the firmware receives a tagged message from the
network, it validates the key against the indexed IPT en-
try before initiating a DMA into the designated receive
buffer. The receiving host may cancel the IPT entry at
any time (e.g., request timeout); similarly, the firmware
protects against dangling tokens and duplicate messages
by cancelling the entry when a matching message is re-
ceived. If the key is not valid, the NIC drops the payload

and delivers the control portion with a payload length of
zero, so the receive message handler can recognize and
handle the error.

At present, the IPT maps only a few megabytes of
host memory, enough for the reply payloads of all out-
standing requests (e.g., outstanding page fetches). This
is a modest approach that meets our needs, relative to
more ambitious approaches that indirect through TLB-
like structures on the NIC [13, 26, 7]. We have con-
sidered a larger IPT with support for multiple transfers
to the same buffer at different offsets, as in Hamlyn’s
sender-based memory management[4], but we have not
found a need for these features in our current uses of
Trapeze.

3 Page Transfers in GMS/Trapeze

This section outlines a Trapeze-based kernel-kernel
RPC-like messaging layer designed to support coop-
erative cluster services. The package is derived from
the original RPC package for the Global Memory Ser-
vice [14] (gmsnet), extended to use Trapeze and to sup-
port a richer set of communication styles, primarily for
asynchronous prefetching at high bandwidth [24]. Al-
though the package is generic, we draw on GMS exam-
ples to motivate its features and to illustrate their use.

Since many aspects of RPC and messaging systems
are well-understood, we focus on those aspects that ben-
efit from the Trapeze features discussed in the previ-
ous section. In particular, we explain the features for
transferring pages (or file blocks) efficiently within the
RPC framework, and their use by the protocol operations
most critical for GMS performance: page fetches (get-
page) from the global page cache to a local page cache,
and page pushes or evictions (putpageor movepage)
from a local cache to the global cache.

Section 3.2 discusses the zero-copy handling of
fetched pages using the Trapeze incoming payload ta-
ble (IPT); Sections 3.3 and 3.4 extend the zero-copy re-
ply scheme to delegated and nonblocking RPC variants
useful in GMS and other peer-to-peer network services.
We illustrate use of nonblocking RPC to extend standard
read-ahead for files and virtual memory to GMS; this al-
lows processes to access data from network memory or
storage servers at close to network bandwidth.

3.1 Basic Mechanisms

Thegmsnetmessaging layer includes basic support for
typed messages, stub procedures, dispatching to ser-
vice procedures based on message types, and matching
replies with requests. The Trapeze receiver interrupt
handler directs incoming messages togmsnet by up-
calling a registered service routine; the service routine

Oracle Ex. 1011, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

