
MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

E. Rescorla, A. Schiffman

INTERNET—DRAFT Enterprise Integration Technologies

<draft—ietf—wts—shttp—O1.txt> Feb 1996 (Expires August—96)

The Secure HyperText Transfer Protocol

Status of this Memo

This document is an Internet—Draft. Internet—Drafts are working

documents of the Internet Engineering Task Force (IETF), its areas,

and its working groups. Note that other groups may also distribute

working documents as Internet—Drafts.

Internet—Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet—Drafts as reference

material or to cite them other than as “work in progress."

To learn the current status of any Internet-Draft, please check the

“1id—abstracts.txt" listing contained in the Internet—Drafts Shadow

Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),

munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or

ftp.isi.edu (US West Coast).

This document describes S—HTTP version 1.2. The original draft of

this specification, defining S—HTTP version 1.0, was distributed by

the CommerceNet Consortium in June 1994; in December 1994 a revised

specification describing S—HTTP version 1.1 was published as an

Internet Draft (draft—rescorla—shttp—OO.txt). In July 1995, an

updated version of that draft was published as an Internet Draft.

That document deprecated some unimplemented facilities, provides

additional clarifying material, and made minor corrections to the

12/94 version.

This document implements a decision reached at the December 1995 IETF

WTS meeting to break up the single S—HTTP document into two docu-

ments, one describing the S—HTTP messaging protocol and negotiation

syntax and one describing extensions to HTML to facilitate the use of

S—HTTP. The companion document is draft—ietf—wts—shtml—OO.txt [23].

Abstract

This memo describes a syntax for securing messages sent using the

Hypertext Transfer Protocol (HTTP), which forms the basis for the

World Wide Web. Secure HTTP (S—HTTP) is an extension of HTTP, provid-

ing independently applicable security services for transaction confi-

dentiality, authenticity/integrity and non—repudiability of origin.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 1/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 1]

MANGROVE 1004

2/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

The protocol emphasizes maximum flexibility in choice of key manage-

ment mechanisms, security policies and cryptographic algorithms by

supporting option negotiation between parties for each transaction.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 3/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 2]

MANGROVE 1004

4/99

MANGROVE 1004

4/7/2014

Int

1.

1.1.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

Introduction

The World Wide Web (WWW) is a distributed hypermedia system which has

gained widespread acceptance among Internet users. Although WWW

browsers support other, preexisting Internet application protocols,

the native and primary protocol used between WWW clients and servers

is the HyperText Transfer Protocol (HTTP) [18]. The ease of use of

the Web has prompted widespread interest in its employment as a

client/server architecture for many applications. Many such applica-

tions require the client and server to be able to authenticate each

other and exchange sensitive information confidentially. The original

HTTP specification had only modest support for the cryptographic

mechanisms appropriate for such transactions.

Secure HTTP (S-HTTP) provides secure communication mechanisms between

an HTTP client—server pair in order to enable spontaneous commercial

transactions for a wide range of applications. Our design intent is

to provide a flexible protocol that supports multiple orthogonal

operation modes, key management mechanisms, trust models, crypto-

graphic algorithms and encapsulation formats through option negotia-

tion between parties for each transaction.

Summary of Features

Secure HTTP supports a variety of security mechanisms to HTTP clients

and servers, providing the security service options appropriate to

the wide range of potential end uses possible for the World—Wide Web.

The protocol provides symmetric capabilities to both client and

server (in that equal treatment is given to both requests and

replies, as well as for the preferences of both parties) while

preserving the transaction model and implementation characteristics
of HTTP.

Several cryptographic message format standards may be incorporated

into S-HTTP clients and servers, particularly, but in principle not

limited to, PKCS—7 and PEM. S-HTTP supports interoperation among a

variety of implementations, and is compatible with HTTP. S-HTTP
aware clients can communicate with S-HTTP oblivious servers and

vice—versa, although such transactions obviously would not use S-HTTP

security features.

S-HTTP does not require client—side public key certificates (or pub-

lic keys), supporting symmetric session key operation modes. This is

significant because it means that spontaneous private transactions

can occur without requiring individual users to have an established

public key. While S-HTTP is able to take advantage of ubiquitous

certification infrastructures, its deployment does not require it.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 5/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 3]

MANGROVE 1004

6/99

MANGROVE 1004

4/7/2014

Int

1.2.

1.3.

1.3.1.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

S—HTTP supports end—to—end secure transactions, in contrast with the

original HTTP authorization mechanisms which require the client to

attempt access and be denied before the security mechanism is

employed. Clients may be "primed" to initiate a secure transaction

(typically using information supplied in an HTML anchor); this may be

used to support encryption of fill-out forms, for example. With S-

HTTP, no sensitive data need ever be sent over the network in the
clear.

S—HTTP provides full flexibility of cryptographic algorithms, modes

and parameters. Option negotiation is used to allow clients and

servers to agree on transaction modes (should the request be signed?

encrypted? both? what about the reply?); cryptographic algorithms

(RSA VS. DSA for signing, DES vs. RC2 for encrypting, etc.); and cer-

tificate selection (please sign with your "Mastercard certificate").

S—HTTP attempts to avoid presuming a particular trust model, although

its designers admit to a conscious effort to facilitate multiply-

rooted hierarchical trust, and anticipate that principals may have

many public key certificates.

Changes

This document describes S—HTTP/1.2. The prior draft described S-

HTTP/l.l. This version adds a number of minor changes, including a

new hash construction and a new way of binding cryptographic parame-

ters to HTML anchors. S—HTTP/1.2 messages will be readable by S-

HTTP/l.l agents and vice versa, provided that compatible algorithms
are used.

Processing Model

Message Preparation

The creation of an S—HTTP message can be thought of as a a function

with three inputs:

1. The cleartext message. This is either an HTTP message or some

data object.

2. The receiver's cryptographic preferences and keying material.

This is either explicitly specified by the receiver or subject

to some default set of preferences.

3. The sender's cryptographic preferences and keying material.

This input to the function can be thought of as implicit

since it exists only in the memory of the sender.

In order to create an S—HTTP message, then, the sender merges the

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 7/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 4]

MANGROVE 1004

8/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

sender's preferences with the receiver's preferences. The result of

this is a list of cryptographic enhancements to be applied and keying

material to be used to apply them. This may require some user inter-

vention. For instance, there might be multiple keys available to sign

the message. (See Section 7 for more on this topic.) Using this data,

the sender applies the enhancements to the message cleartext to

create the S—HTTP message.

The processing steps required to transform the cleartext message into

the S—HTTP message are described in Sections 2 and 3. The processing

steps required to merge the sender's and receiver's preferences are
described in Sections 4 and 5.

1.3.2. Message Recovery

The recovery of an S—HTTP message can be thought of as a function of

four distinct inputs:

1. The S—HTTP message.

2. The receiver's stated cryptographic preferences and keying

material. The receiver has the opportunity to remember what

cryptographic preferences it provided in order for this document
to be dereferenced.

3. The receiver's current cryptographic preferences and keying
material.

4. The sender's previously stated cryptographic options.

The sender may have stated that he would perform certain

cryptographic operations in this message. (Again, see sections

4 and 5 for details on how to do this.)

In order to recover an S—HTTP message, the receiver needs to read the

headers and discover what sorts of cryptographic transformations were

performed on the message, then remove them using some combination of

the sender's and receiver's keying material, in the process while

taking note of what enhancements were applied.

The receiver may also choose to verify that the applied enhancements

match both the enhancements that the sender said he would apply

(input 4 above) and that the receiver requested (input 2 above) as

well as the current preferences to see if the S—HTTP message was

appropriately transformed. This process may require interaction with

the user to verify that the enhancements are acceptable to the user.

(See Section 7 for more on this topic.)

1.4. Modes of Operation

Message protection may be provided on three orthogonal axes:

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 9/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 5]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 10/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

signature, authentication, and encryption. Any message may be signed,

authenticated, encrypted, or any combination of these (including no

protection).

Multiple key management mechanisms are provided, including password-

style manually shared secrets, public-key key exchange and Kerberos

[l9] ticket distribution. In particular, provision has been made for

prearranged (in an earlier transaction) symmetric session keys in

order to send confidential messages to those who have no key pair.

Additionally, a challenge—response (“nonce") mechanism is provided

to allow parties to assure themselves of transaction freshness.

1.4.1. Signature

If the digital signature enhancement is applied, an appropriate cer-

tificate may either be attached to the message (possibly along with a

certificate chain) or the sender may expect the recipient to obtain

the required certificate (chain) independently.

1.4.2. Key Exchange and Encryption

In support of bulk encryption, S—HTTP defines two key transfer

mechanisms, one using public—key enveloped key exchange and another

with externally arranged keys.

In the former case, the symmetric—key cryptosystem parameter is

passed encrypted under the receiver's public key.

In the latter mode, we encrypt the content using a prearranged ses-

sion key, with key identification information specified on one of the

header lines. Keys may also be extracted from Kerberos tickets.

1.4.3. Message Integrity and Sender Authentication

Secure HTTP provides a means to verify message integrity and sender

authenticity for a HTTP message via the computation of a Message

Authentication Code (MAC), computed as a keyed hash over the document

using a shared secret —- which could potentially have been arranged

in a number of ways, e.g.: manual arrangement or Kerberos. This

technique requires neither the use of public key cryptography nor

encryption.

This mechanism is also useful for cases where it is appropriate to

allow parties to identify each other reliably in a transaction

without providing (third—party) non—repudiability for the transac-

tions themselves. The provision of this mechanism is motivated by our
bias that the action of "signing" a transaction should be explicit

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 11/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 6]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 12/99

MANGROVE 1004

4/7/2014

Int

1.4.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

and conscious for the user, whereas many authentication needs (i.e.,

access control) can be met with a lighter—weight mechanism that

retains the scalability advantages of public—key cryptography for key

exchange.

4. Freshness

The protocol provides a simple challenge—response mechanism, allowing

both parties to insure the freshness of transmissions. Additionally,

the integrity protection provided to HTTP headers permits implementa-

tions to consider the Date: header allowable in HTTP messages as a

freshness indicator, where appropriate (although this requires imple-

mentations to make allowances for maximum clock skew between parties,

which we choose not to specify).

1.5. Implementation Options

In order to encourage widespread adoption of cryptographic facilities

for the World—Wide Web, Secure HTTP deliberately caters to a variety

of implementation options despite the fact that the resulting varia-

bility makes interoperation potentially problematic.

We anticipate that some implementors will choose to integrate an out-

board PEM program with a WWW client or server; such implementations

will not be able to use all operation modes or features of S-HTTP,

but will be able to interoperate with most other implementations.

Other implementors will choose to create a full—fledged PKCS—7 imple-

mentation (allowing for all the features of S—HTTP); in which case

PEM support will be only a modest additional effort. Without com-

pletely prescribing a minimum implementation profile (although see

section 8) then, we recommend that all S—HTTP implementations support

the PEM message format.

HTTP Encapsulation

A Secure HTTP message consists of a request or status line (as in

HTTP) followed by a series of RFC—822 style headers followed by an

encapsulated content. Once the content has been decoded, it should

either be another Secure HTTP message, an HTTP message, or simple
data.

For the purposes of compatibility with existing HTTP implementations,

we distinguish S—HTTP transaction requests and replies with a dis-

tinct protocol designator ('Secure-HTTP/1.2'). However, if a future

version of HTTP (i.e., 'HTTP/2.0‘) subsumes this document use of a

new protocol HTTP designator would provide the same backwards compa-

tibility function and a distinction between such a future version of

HTTP and Secure—HTTP would be unnecessary.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 13/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 7]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 14/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

2.1. The Request Line

For HTTP requests, we define a new HTTP protocol method, 'Secure'.

All secure requests (using this version of the protocol) should read:

Secure * Secure—HTTP/1.2

All case variations should be accepted. The asterisk shown here is a

placeholder and should be ignored by servers; proxy—aware clients

should substitute the URL (and must provide at least the host+port

portion) of the request when communicating via proxy, as is the

current HTTP convention; (e.g. http://www.terisa.com/*) proxies

should remove the appropriate amount of this information to minimize

the threat of traffic analysis. See Section 8.2.2.1 for a situation

where providing more information is appropriate.

2.2. The Status Line

For server responses, the first line should be:

Secure—HTTP/1.2 200 OK

whether the request succeeded or failed. This prevents analysis of

success or failure for any request. All case variations should be

accepted.

2.3. Secure HTTP Header Lines

We define a series of new header lines to go in the header of the

Secure HTTP message. All except 'Content—Type' and 'Content—Privacy—

Domain' are optional. The message body shall be separated from the

header block by two successive CRLFs.

A_l data and fields in header lines should be treated as case insen-

sitive unless otherwise specified. Linear whitespace [6] should be

used only as a token separator unless otherwise quoted. Long header

lines may be line folded in the style of RFC822 [6].

This document refers to the header block following the S—HTTP

request/response line and preceding the successive CRLFS collectively
as "S—HTTP headers".

2.3.1. Content—Privacy—Domain

This header line exists to provide compatibility with PEM—based

Secure HTTP systems. The two values defined by this document are

'PEM' and ‘PKCS—7’. PKCS—7 [2] refers to the privacy enhancement

specified in section 3. PEM refers to standard PEM message format as

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 15/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 8]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 16/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

defined in RFCl42l [1]. Note that MOSS[25] could be accomodated sim-

ply by adding a Content—Privacy—Domain: MOSS.

2.3.2. Content—Transfer—Encoding

The PKCS-7 message format is designed for an 8-bit clear channel, but

may be passed over other channels using base—64 encoding (see RFCl42l

[l] for a description of base—64).

For 'Content—Privacy—Domain: PKCS—7', acceptable acceptable values

for this field are 'BASE64','8BIT', or ‘BINARY’. Unless such a line

is included, the rest of the message is assumed to be ‘BINARY’. (Note
that the difference between ‘BINARY’ and '8BIT' has to do with line

length.)

For 'Content—Privacy—Domain: PEM’, the only acceptable value for this

field is '7BIT', since PEM messages are already encoded for RFC-822

(and hence 7-bit) transport.

2.3.3. Content—Type

Under normal conditions, the terminal encapsulated content (after all

privacy enhancements have been removed) shall be considered to be an

HTTP/1.0 message. In this case, there shall be a Content—Type line

reading:

Content—Type: application/http

It is intended that this type be registered with IANA as a MIME con-

tent type. For backwards compatibility, ‘application/x—http' is also

acceptable.

However, the terminal content may be of some other type provided that

that type is properly indicated by the use of an appropriate

Content—Type header line. In this case, the header fields for the

last (most deeply encapsulated) HTTP or S-HTTP message should be

applied to the terminal content. It should be noted that unless the

(S—)HTTP message from which the headers are taken is itself

enveloped, then some possibly sensitive information has been passed
in the clear.

This is a useful mechanism for passing pre—enhanced data (especially

presigned data) without requiring that the HTTP headers themselves be

pre—enhanced.

2.3.4. Prearranged—Key—Info

This header line is intended to convey information about a key which

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 17/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 9]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 18/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

has been arranged outside of the internal cryptographic format. One

use of this is to permit in—band communication of session keys for

return encryption in the case where one of the parties does not have

a key pair. However, this should also be useful in the event that the

parties choose to use some other mechanism, for instance, a one—time

key list.

This specification defines three methods for exchanging named keys,

Inband, Kerberos and Outband. Inband and Kerberos indicates that the

session key was exchanged previously, using a Key—Assign header of

the corresponding method. Outband arrangements imply that agents

have external access to key materials corresponding to a given name,

presumably via database access or perhaps supplied immediately by a

user from keyboard input. The syntax for the header line is:

Prearranged—Key—Info: <Hdr—Cipher>‘,‘<CoveredDEK>’,‘<CoverKey-ID>

<CoverKey-ID> := <method>‘:'<key-name>

<CoveredDEK> := <hex—digits>

<method> := 'inband' I 'krb—'<kv> | 'outband'

<kv> := '4' I '5'

While chaining ciphers require an Initialization Vector (IV) [16] to

start off the chaining, that information is not carried by this

field. Rather, it should be passed internal to the cryptographic for-

mat being used. Likewise, the bulk cipher used is specified in this
fashion.

<Hdr—Cipher> should be the name of the block cipher used to encrypt

the session key (see section 4.4.7).

<CoveredDEK> is the protected Data Exchange Key (a.k.a. transaction

key) under which the encapsulated message was encrypted. It should be

appropriately (randomly) generated by the sending agent, then

encrypted under the cover of the negotiated key (a.k.a. session key)

using the indicated header cipher, and then converted into hex.

In order to avoid name collisions, cover key namespaces must be main-

tained separately by host and port.

2.3.5. MmC—Info

This header is used to supply a Message Authenticity Check, providing

both message authentication and integrity, computed from the message

text, the time (optional —— to prevent replay attack), and a shared

secret between client and server. The MAC should be computed over the

encapsulated content of the S-HTTP message. S-HTTP/1.1 defined that

MACS should be computed using the following algorithm ('||' means

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 19/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 10]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 20/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

concatenation):

MAC = hex(H(Message||[<time>]||<shared key>))

The time should be represented as an unsigned 32 bit quantity

representing seconds since 00:00:00 GMT January 1, 1970 (the UNIX

epoch), in network byte order. The shared key format is a local
matter.

Recent research [2l] has demonstrated some insecurities in this

approach, and this draft introduces a new construction. In the name

of backwards compatibility, we retain the previous constructions with

the same names as before. However, we also introduce a new series of

names (See Section 2.3.5 for the names) that obey a different (hope-

fully stronger) construction.

MAC = hex(H(K' II pad2 || H(K' II padl ||[<time>] || Message)))

padl = the byte 0x36 repeated enough times to fill out a

hash input block. (I.e. 48 times for MD5, 44 for

SHA)

pad2 = the byte 0x5c repeated enough times to fill out a

hash input block.

K‘ = H(<shared key>)

The original HMAC construction is for the use of a key with length

equal to the length of the hash output. Although it is considered

safe to use a key of a different length (Note that security cannot be

increased past the length of the hash function itself, but can be

reduced by using a shorter key.) [22] we hash the original key to

permit the use of shared keys (e.g. passphrases) longer than the

length of the hash. It is noteworthy (though obvious) that this tech-

nique does not increase the security of short keys.

The format of the MAC—Info line is:

MAC—Info: [hex(<time>)],<hash—alg>, hex(<hash—data>),<key—spec>

<time> := "unsigned seconds since Unix epoch"

<hash—alg> := "hash algorithms from section 4.4.5"

<hash—data> := "computation as described above"

<Key-Spec> := ‘null’ I 'dek' | <Key—ID>

Key—Ids can refer either to keys bound using the Key—Assign header
line or those bound in the same fashion as the Outband method

described later. The use of a ‘Null’ key-spec implies that a zero

length key was used, and therefore that the MAC merely represents a

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 21/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 11]

MANGROVE 1004

22/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

hash of the message text and (optionally) the time. The special

key—spec 'DEK' refers to the Data Exchange Key used to encrypt the

following message body (it is an error to use this key—spec in situa-

tions where the following message body is unencrypted).

If the time is omitted from the MAC—Info line, it should simply not
be included in the hash.

Note that this header line can be used to provide a more advanced

version of the original HTTP Basic authentication mode in that the

user can be made to provide a username and password. However, the

password remains private and message integrity can be assured. More-

over, this can be accomplished without encryption of any kind.

In addition, MAC—Info permits fast message integrity verification (at

the loss of non—repudiability) for messages, provided that the parti-

cipants share a key (possibly passed using Key-Assign).

2.4. Content

The content of the message is largely dependent upon the values of

the Content-Privacy—Domain and Content-Transfer—Encoding fields.

For a PKCS—7 message, with '8BIT' Content—Transfer—Encoding, the con-

tent should simply be the PKCS—7 message itself.

If the Content—Transfer—Encoding is 'BASE64', the content should be

preceded by a line that reads:

—————BEGIN PRIVACY—ENHANCED MESSAGE—————

and followed by a line that reads

—————END PRIVACY—ENHANCED MESSAGE—————

(see RFCl42l) with the content simply being the base-64 representa-

tion of original content. If the inner (protected) content is itself

a PKCS—7 message, than the ContentType of the outer content should be

set appropriately. Else, the ContentType should be represented as
‘Data’.

If the Content-Privacy—Domain is PEM, the content should consist of a

normal encapsulated message, beginning with:

—————BEGIN PRIVACY—ENHANCED MESSAGE—————

and ending with

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 23/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 12]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 24/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

—————END PRIVZ-\CY—ENHANCED MESSAGE—————

as defined in RFCl42l.

It is expected that once the privacy enhancements have been removed,

the resulting (possibly protected) contents will be a normal HTTP

request. Alternately, the content may be another Secure—HTTP message,

in which case privacy enhancements should be unwrapped until clear

content is obtained or privacy enhancements can no longer be removed.

(This permits embedding of enhancements, as in, for instance, sequen-

tial Signed and Enveloped enhancements.) Provided that all enhance-

ments can be removed, the final de—enhanced content should be a valid

HTTP request (or response) unless otherwise specified by the

Content—Type line.

Note that this recursive encapsulation of messages potentially per-

mits security enhancements to be applied (or removed) for the benefit

of intermediaries who may be a party to the transaction between a

client and server (e.g., a proxy requiring client authentication).

How such intermediaries should indicate such processing is described
in Section 6.2.4.

3. Message Format Options

3.1. Content—Privacy-Domain: PKCS—7

Content—Privacy-Domain ‘PKCS—7’ follows the form of the PKCS—7 stan-

dard (see Appendix).

Message protection may proceed on two orthogonal axes: signature and

encryption. Any message may be either signed, encrypted, both, or

neither. Note that the 'auth' protection mode of S—HTTP is provided

independently of PKCS—7 coding via the MAC—Info header of section

2.3.5 since PKCS—7 does not support a 'KeyDigestedData' type,

although it does support a 'DigestedData' type.

3.1.1. Signature

This enhancement uses the 'SignedData' (or 'SignedAndEnvelopedData')

type of PKCS—7. When digital signatures are used, an appropriate

certificate may either be attached to the message (possibly along

with a certificate chain) as specified in PKCS—7 or the sender may

expect the recipient to obtain its certificate (and/or chain)

independently. Note that an explicitly allowed instance of this is a

certificate signed with the private component corresponding to the

public component being attested to. This shall be referred to as a

self—signed certificate. What, if any, weight to give to such a

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 25/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 13]

MANGROVE 1004

26/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

certificate is a purely local matter. In either case, a purely

signed message is precisely PKCS-7 compliant.

3.1.2. Encryption

3.1.2.1. Encryption -- normal, public key

This enhancement is performed precisely as enveloping (using either

'EnvelopedData' or 'SignedAndEnvelopedData' types) under PKCS—7. A

message encrypted in this fashion, signed or otherwise, is PKCS-7

compliant.

3.1.2.2. Encryption —— prearranged key

This uses the 'EncryptedData' type of PKCS—7. In this mode, we

encrypt the content using a DEK encrypted under cover of a prear-

ranged session key (how this key may be exchanged is discussed

later), with key identification information specified on one of the

header lines. The IV is in the Encryptedcontentlnfo type of the

EncryptedData element. To generate signed, encrypted data, it is

necessary to generate the 'SignedData' production and then encrypt it

(since PKCS-7 does not support a 'SignedAndEncryptedData' type).

3.2. Content—Privacy—Domain: PEM

This Content—Privacy—Domain simply refers to using straight PEM mes-

sages as per section 2.3.1. Note that clients and servers which

implement the original HTTP access authorization protocols (as pro-

posed by Tony Sanders and originally implemented by Rob McCool) can

be converted to use S—HTTP (using this Content—Privacy—Domain) simply

by changing the request/results lines to match S—HTTP and by adding

the following three lines to the header:

Content—Privacy—Domain: PEM

Content—Type: application/http

Content-Transfer—Encoding: 7BIT

It would be helpful (but not necessary) to remove the ‘authorization’

line. No cryptographic transformations are necessary.

3.2.1. Correspondence of PEM and S—HTTP Modes

S—HTTP message protection modes for the PEM Content—Privacy—Domain

necessarily follow the enhancement modes of PEM, that is: S—HTTP mes-

sages which are to be signed use PEM's MIC—ONLY (or MIC—CLEAR) mode;

S—HTTP messages which are to be both signed and encrypted (using RSA

key exchange) use PEM's misnamed ENCRYPTED enhancement mode.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 27/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 14]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 28/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

3.3. HTTP/1.1 Header Interaction

3.3.1. Overview

HTTP/1.1 [23], while as yet in draft form, describes a number of

header lines which have potential interactions with S—HTTP.

3.3.2. Content—Encoding

The Content—Encoding line is described as intended for compression or

encryption. Since S—HTTP has it's own syntax for describing encryp-

tion, that use is inapplicable here. Compression is also in general

inapplicable to encrypted data and, if desired, should be applied to

the inner content, rather than to the S—HTTP message.

3.3.3. Transfer—Encoding

Transfer—Encoding (and in particular the ‘chunk’ mode) is, as stated

in [23] intended to uniquely delimit the boundaries of the message.

Since the message formats used by S—HTTP unambiguously define the end

of the message, chunk transfer encodings are unnecessary, and it is

an error to use one in the outer content of an S—HTTP message. (And

redundant to use one in the inner content.)

3.3.4. Connection

The Connection header line is permitted in the header lines of S—HTTP

requests and should be treated exactly as if the requests were HTTP

requests. If the recipient of a message sees different values for the

Connection header in an S—HTTP message and the inner HTTP content,

the S—HTTP value should be ignored. However, if the Connection header

appears only in the S—HTTP message but not in the inner HTTP content,

it should be treated as if it appeared in the inner content.

If a server sees a Connection header in the S—HTTP header it should

acknowledge it in the S-HTTP header of it's response. If it sees it

in the HTTP header, it should acknowledge it in the HTTP header of

it's response.

3.3.5. Keep—Alive

The Keep—Alive header line is permitted in the header lines of S—HTTP

requests and should be treated exactly as if the requests were HTTP

requests. If the recipient of a message sees different values for the

Keep—Alive header in an S—HTTP message and the inner HTTP content,

the S—HTTP value should be ignored. However, if the Keep—Alive header

appears only in the S—HTTP message but not in the inner HTTP content,

it should be treated as if it appeared in the inner content.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 29/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 15]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 30/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

If a server sees a Keep—Alive header in the S-HTTP header it should

acknowledge it in the S-HTTP header of it's response. If it sees it

in the HTTP header, it should acknowledge it in the HTTP header of

it's response.

3.3.6. If-Mbdified-Since

This may be used by the proxy to indicate that the document may be in

it's cache and that it is prepared to serve the document to the

current requestor. Servers receiving this header and deciding not to

resend the document should respond using the 320 response code as
described in Section 6.2.5.

This header should only be placed in S-HTTP headers by proxies.

Clients wanting to use If—Modified—Since should place it in the HTTP
headers of the inner content.

3.3.7. Content—MD5

Servers may generate a Content—MD5 header to enable proxies to detect
when valid cache hits have occurred. Note that the Content—MD5 header

provides the possibility of traffic analysis and servers using this
should bear that risk in mind.

3.3.8. Other headers

No other HTTP/1.1 header lines should be placed in S-HTTP headers.

If they are found, it is an error. Servers should respond with the

421 BogusHeader error.

4. Negotiation

4.1. Negotiation Overview

Both parties should be able to express their requirements and prefer-

ences regarding what cryptographic enhancements they will

permit/require the other party to provide. The appropriate option

choices will depend on implementation capabilities and the require-

ments of particular applications.

A negotiation block is a sequence of specifications each conforming

to a four—part schema detailing:

Property -- the option being negotiated, such as bulk

encryption algorithm.

Value -- the value being discussed for the property, such
as DES—CBC

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 31/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 16]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 32/99

MANGROVE 1004

4/7/2014

Internet—Draft

4.2.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Secure HTTP

Direction —— the direction which is to be affected, namely:

during reception or origination (with respect to the nego-

tiator).

Strength —— strength of preference, namely: required,

optional, refused

As an example, the negotiation header:

SHTTP—Symmetric—Content—Algorithms: recv—optional=DES—CBC,RC2

could be thought to say: “You are free to use DES—CBC or RC2 for

bulk encryption."

We define new header lines lines (to be used in the encapsulated HTTP

header, not in the S—HTTP header) to permit negotiation of these
matters.

Negotiation Header Format

The general format for negotiation header lines is:

<Line> := <Field> ':' <Key—val>(';'<Key—val>)*

<Key—val> := <Key> '=' <Value>(',v4Value>)*

<Key> := <Mode>'—'<Action>

<Mode> := 'orig'|'recv'

<Action> := 'optional'|'required'|'refused'

The <Mode> value indicates whether this <Key—val> refers to what the

agent's actions are upon sending privacy enhanced messages as opposed

to upon receiving them. For any given mode—action pair, the interpre-

tation to be placed on the enhancements (<Value>s) listed is:

'recv—optional:' The agent will process the enhancement if

the other party uses it, but will also gladly process mes-

sages without the enhancement.

'recv—required:' The agent will not process messages
without this enhancement.

'recv—refused:' The agent will not process messages with
this enhancement.

'orig-optional:' When encountering an agent which refuses

this enhancement, the agent will not provide it, and when

encountering an agent which requires it, this agent will

provide it.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 33/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 17]

MANGROVE 1004

34/99

MANGROVE 1004

4/7/2014

Int

4.3.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

'orig—required:' The agent will always generate the
enhancement.

'orig—refused:' The agent will never generate the enhance-
ment.

The behavior of agents which discover that they are communicating

with an incompatible agent is at the discretion of the agents. It is

inappropriate to b_indly persist in a behavior that is known to be

unacceptable to the other party. Plausible responses include simply

terminating the connection, or, in the case of a server response,

returning ‘Not imp_emented 501'.

Optional values are considered to be listed in decreasing order of

preference. Agents are free to choose any member of the intersection

of the optional lists (or none) however.

If any <Key—Val> is left undefined, it should be assumed to be set to

the default. Any key which is specified by an agent shall override

any appearance of that key in any <Key—Val> in the default for that
field.

Parametrization for Variable-length Key ciphers

For ciphers with variable key lengths, values may be parametrized

using the syntax <cipher>'['<length>']'

For example, 'RSA[lO24]' represents a 1024 bit key for RSA. Ranges

may be represented as

<cipher>’['<boundl>'—'<bound2>']'

For purposes of preferences, this notation should be treated as if it
read

<cipher>[x], <cipher>[x+l],...<cipher>[y] (if x<y)

and

<cipher>[x], <cipher>[x—l],...<cipher>[y] (if x>y)

The special value ‘inf’ may be used to denote infinite length.

Using simply <cipher> for such a cipher shall be read as the maximum

range possible with the given cipher.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 35/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 18]

MANGROVE 1004

36/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft

4.

4.

4

Secure HTTP

4. Negotiation Blocks

As described in Section l.X.Y and in the previous section, every S-

HTTP request is (at least conceptually) preconditioned by the nego-

tiation options provided by the potential receiver. The two primary

locations for these options are

1. In the headers of an HTTP Request/Response.

2. In the HTML which contains the anchor being dereferenced.

In the case of a server, the scope and meaning of options is clear;

they precondition the server's response to the request in which the

options appear. However, since an HTTP response which contains an

HTML document (as opposed to error returns as discussed in Section

6.2.X) may contain multiple references, some mechanism is needed to

bind options to the various references.

Binding negotiation options to anchors using HTML extensions HTML is

the topic of the companion document draft-ietf-wts—shtml—OO.txt and
will not be treated here.

Here, we provide a syntax to bind a group of negotiation options to a

specific reference using standard HTML.

4.1. SHTTP—Cryptopts—Scope

This header line provides a list of named anchors in an HTML document

(assigned using the NAME tag) to which the following set of negotia-

tion headers (until the end of the headers or the next SHTTP—

Cryptopts-Scope header, whichever comes first). The names are pro-

vided as a comma separated list. For instance

SHTTP—Cryptopts—Scope: foo,bar,baz

As a special case, any headers which appear before the first SHTTP-

Cryptopts—Scope header are considered to to apply to all references
in the HTML document unless those references are otherwise bound.

Note that this is an all—or—nothing proposition. That is, if a

SHTTP—Cryptopts—Scope header binds headers to a reference, then none

of these default headers apply, even if some of the default headers

do not appear in the bound headers. Rather, the S—HTTP defaults found

in Section 4.5.11 apply.

.5. Negotiation Syntax

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 37/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 19]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 38/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft

4

4

4.

4

Secure HTTP

.5.1. SHTTP-Privacy-Domains

This header line refers to the Content—Privacy—Domain type of section

2.3.1. Acceptable values are as listed there. For instance,

SHTTP—Privacy—Domains: orig—required=pkcs—7;

recv—optional=pkcs—7,pem

would indicate that the agent always generates PKCS—7 compliant mes-

sages, but can read PKCS—7 or PEM (or, unenhanced messages).

All the negotiation headers described below can be considered to

apply to all privacy domains (message formats) or to a particular

one. To specify negotiation parameters which apply to all privacy

domains, those header line(s) should be provided before any privacy-

domain specifier. Negotiation headers which follow a privacy—domain

header are considered to apply only to that domain. Multiple

privacy—domain headers specifying the same privacy domain are permit-

ted, in order to support multiple parameter combinations.

.5.2. SHTTP—Certificate—Types

This indicates what sort of Public Key certificates the agent will

accept. Currently defined values are 'X.509' and 'X.509v3'.

5.3. SHTTP-Key-Exchange-Algorithms

This line indicates which algorithms may be used for key exchange.

Defined values are 'RSA', ‘Outband’, 'Inband', and 'Krb—'<kv>. RSA

refers to RSA enveloping. Outband refers to some sort of external key

agreement. Inband and Kerberos refer to the protocols of sections

5.4.1 and 5.4.2 respectively.

So, the expected common configuration of clients having no certifi-

cates and servers having certificates would look like this (in a mes-

sage sent by the server):

SHTTP—Key—Exchange—Algorithms: orig—optional=Inband, RSA;

recv—required=RSA

.5.4. SHTTP-Signature—Algorithms

This indicates what Digital Signature algorithms may be used.

Defined Values are 'RSA' and 'NIST-DSS' [17]. Since NIST-DSS and RSA

use variable length moduli the parametrization syntax of section 4.3

should be used. Note that a key length specification may interact

with the acceptability of a given certificate, since keys (and their

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 39/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 20]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 40/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

lengths) are specified in public-key certificates.

4.5.5. SHTTP—Message—Digest—Algorithms

This indicates what message digest algorithms may be used. Previ-

ously defined values are 'RSA—MD2' [7], 'RSA—MD5' [8], 'NIST—SHS'

[9]. New digest algorithms 'RSA—MD2—HMAC', 'RSA—MD5—HMAC', and

'NIST—SHS—HMAC' are defined as the construction of 2.3.5 using the

algorithms MD2, MD5, and SHA—1 respectively.

4.5.6. SHTTP—Symmetric—Content-Algorithms

This header specifies the symmetric—key bulk cipher used to encrypt

message content. Defined values are:

DES—CBC —— DES in Cipher Block Chaining (CBC) mode (FIPS 81 [ll])

DES—EDE—CBC —— 2 Key 3DES using Encrypt—Decrypt—Encrypt in outer CBC mode

DES—EDE3—CBC —— 3 Key 3DES using Encrypt—Decrypt—Encrypt in outer CBC mode
DESX-CBC -- RSA's DESX in CBC mode

IDEA-CBC -- IDEA in CBC mode [12]

RC2—CBC —— RSA's RC2 in CBC mode

CDMF—CBC —— IBM's CDMF (weakened key DES) [20] in CBC mode

Since RC2 keys are variable length, the syntax of section 4.3 should
be used.

4.5.7. SHTTP—Symmetric—Header—A1gorithms

This header specifies the symmetric—key cipher used to encrypt mes-

sage headers.

DES—ECB —— DES in Electronic Codebook (ECB) mode (FIPS 81 [ll])

DES—EDE—ECB —— 2 Key 3DES using Encrypt—Decrypt—Encrypt in ECB mode

DES-EDE3—ECB -— 3 Key 3DES using Encrypt—Decrypt—Encrypt in ECB mode
DESX-ECB -- RSA's DESX in ECB mode

IDEA-ECB -- IDEA

RC2-ECB -- RSA's RC2 in ECB mode

CDMF-ECB -- IBM's CDMF in ECB mode

Since RC2 is variable length, the syntax of section 4.3 should be
used.

4.5.8. SHTTP—Privacy—Enhancements

This header indicates security enhancements to apply. Possible

values are ‘sign’, ‘encrypt’ and 'auth' indicating whether messages

are signed, encrypted, or authenticated (i.e., provided with a MAC),

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 41/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 21]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 42/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

respectively.

4.5.9. Your—Key—Pattern

This is a generalized pattern match syntax for a large number of

types of keying material. The general syntax is:

Your—Key—Pattern : <key—use>,<pattern—info>

<key-use> := 'cover—key' I 'auth-key’ I ‘signing—key’ I 'krbID—'<kv>

4.5.9.1. Cover Key Patterns

This parameter specifies desired values for key names used for

encryption of transaction keys using the Prearranged-Key—Info syntax

of section 2.3.4. The pattern—info syntax consists of a series of

comma separated regular expressions. Commas should be escaped with

backslashes if they appear in the regexps. The first pattern should

be assumed to be the most preferred.

4.5.9.2. Auth key patterns

Auth—key patterns specify name forms desired for use for MAC authen-

ticators. The pattern—info syntax consists of a series of comma

separated regular expressions. Commas should be escaped with

backslashes if they appear in the regexps. The first pattern should

be assumed to be the most preferred.

4.5.9.3. Signing Key Pattern

This parameter describes a pattern or patterns for what keys are

acceptable for signing for the digital signature enhancement. The

pattern—info syntax for signing—key is:

<pattern—info> := <name—domain>,<pattern—data>

The only currently defined name—domain is 'DN—l485'. This parameter

specifies desired values for fields of Distinguished Names. DNs are

considered to be represented as specified in RFCl485, the order of

fields and whitespace between fields is not significant.

Pattern—data is a modified RFCl485 string, with regular expressions

permitted as field values. Pattern match is performed field—wise,

unspecified fields match any value (and therefore leaving the DN-

Pattern entirely unspecified allows for any DN). Certificate chains

may be matched as well (to allow for certificates without name subor-

dination). DN chains are considered to be ordered left—to-right with

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 43/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 22]

MANGROVE 1004

44/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

the issuer of a given certificate on its immediate right, although

issuers need not be specified.

The syntax for the pattern values is,

<Value> := <Dn—spec> (','<Dn—spec>)*

<Dn—spec> g= '/'<Field-spec>*'/‘

<Field—spec> := <Attr>'='<Pattern>

<Attr> := 'CN' I 'L' I ‘ST’ I '0' I

'OU' I 'C' I "or as appropriate"

<Pattern> := "POSIX 1003.2 regular expressions"

For example, to request that the other agent sign with a key certi-

fied by the RSA Persona CA (which uses name subordination) one could

use the expression below. Note the use of RFCl485 quoting to protect

the comma (an RFC1485 field separator) and the POSIX 1003.2 quoting

to protect the dot (a regular expression metacharacter).

Your—Key—Pattern: DN—l485,

/OU=Persona Certificate, O="RSA Data Security, Inc\."/

4.5.9.4. Kerberos ID Pattern

This specifies acceptable Kerberos realms for the sender of the mes-

sage being referred to by the negotiation headers. in the form of

the name of a Kerberos principal; i.e.:

<user>@<realm>

(This specification only supports the common ‘domain style’ of Ker-

beros realm names.) The pattern-info syntax consists of a series of

comma separated regular expressions. Commas should be escaped with

backslashes if they appear in the regexps. The first pattern should

be assumed to be the most preferred.

4.5.10. Example

A representative header block for a server follows.

SHTTP—Privacy—Domains: recv—optional=PEM, PKCS—7;

orig—required=PKCS—7

SHTTP—Certificate—Types: recv—optional=X.509;

orig—required=X.509

SHTTP—Key—Exchange—Algorithms: recv—required=RSA;

orig-optional=Inband,RSA

SHTTP—Signature—Algorithms: orig—required=RSA; recv—required=RSA

SHTTP—Privacy—Enhancements: orig—required=sign;

orig-optional=encrypt

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 45/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 23]

MANGROVE 1004

46/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

4.5.11. Defaults

Explicit negotiation parameters take precedence over default values.

For a given negotiation header line type, defaults for a given mode-

action pair (such as 'orig—required') are implicitly merged unless

explicitly overridden.

The default values (these may be negotiated downward or upward) are:

SHTTP—Privacy—Domains: orig—optional=PKCS—7, PEM;

recv—optional=PKCS—7, PEM

SHTTP—Certificate—Types: orig-optional=X.509;

recv—optional=X.509

SHTTP—Key—Exchange—Algorithms: orig—optional=RSA,Inband;

recv-optional=RSA,Inband

SHTTP—Signature—Algorithms: orig—optional=RSA; recv—optional=RSA;

SHTTP—Message—Digest—Algorithms: orig—optional=RSA—MD5;

recv—optional=RSA—MD5

SHTTP—Symmetric—Content—Algorithms: orig—optional=DES—CBC;

recv—optional=DES-CBC

SHTTP—Symmetric—Header—Algorithms: orig—optional=DES—ECB;

recv—optional=DES—ECB

SHTTP—Privacy-Enhancements: orig-optional=sign,encrypt, auth;

recv—required=encrypt;

recv—optional=sign, auth

5. New HTTP Header Lines

We define a series of new header lines which go in the HTTP header

block (i.e., in the encapsulated content) so that they may be crypto-

graphically protected.

5.1. Security-Scheme

This mandatory header line specifies the version of the protocol

(although it may be used by other security protocols). This header,

with a value of ‘S—HTTP/1.2‘ must be generated by every agent to be

compatible with this specification.

Note that this is a mandatory HTTP header, meaning that an agent com-

pliant with this specification must generate this line for every HTTP

message, NOT just S—HTTP messages.

5.2. Encryption-Identity

This header line identifies a potential principal for whom the mes-

sage described by these options could be encrypted; this permits

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 47/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 24]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 48/99

MANGROVE 1004

4/7/2014

Int

5.2.

5.2

5.3.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

return encryption under (say) public key without the other agent

signing first (or under a different key than that of the signature).

Or, in the Kerberos case, provides information as the agent's Ker-

beros identity. The syntax of the Encryption—Identity line is:

Encryption—Identity: <name—class>,<key-sel>,<name—arg>

<name—class> := 'DN—1485' | ‘krbID—'<kv>

The name-class is an ASCII string representing the domain within

which the name is to be interpreted, in the spirit of the new MOSS

drafts. There are two currently defined name classes, "DN—l485" and

"KRB—{4,5}". Key—sel is a selector for (possibly numerous) keys bound

to the same name—form. For name—forms where there is only one possi-

ble key, this field should be ignored. It is the intent here to

absorb the newly flexible MOSS name forms once they are firm. Name-

arg is an appropriate argument for the name-class, described in sec-
tions 5.2.1 and 5.2.2 below.

1. DN—1485 Name Class

The argument is an RFC—l485 encoded DN.

.2. KRB-* Name Class

The argument is the name of a Kerberos principal, i.e.:

<user>@<realm>

This specification only supports the common ‘domain style’ of Ker-
beros realm names.

Certificate—Info

In order to permit public key operations on DNs specified by

Encryption—Identity headers without explicit certificate fetches by

the receiver, the sender may include certification information in the
Certificate—Info header line. The format of this header line is:

Certificate—Info: <Cert—Fmt>','<Cert—Group>

<Cert—Fmt> should be the type of <Cert—Group> being presented.

Defined values are 'PEM' and 'PKCS-7'. PKCS-7 certificate groups are

provided as a base—64 encoded PKCS-7 SignedData message containing

sequences of certificates with or without the Signerlnfo field. A PEM

format certificate group is a list of comma-separated base64-encoded
PEM certificates.

Multiple Certificate—Info lines may be defined.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 49/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 25]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 50/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

5.4. Key-Assign

This header line serves to indicate that the agent wishes to bind a

key to a symbolic name for (presumably) later reference.

The general syntax of the key—assign header is:

Key—Assign: <Method>,<Key—Name>,<Lifetime>,<Ciphers>;<Method—args>

<Key—name> := <string>

<Lifetime> := ‘this’ | ‘reply’

<Method> :='inband' I ‘krb-'<kv>

<Ciphers> := ‘null’ | <Cipher>+

<Cipher> := "Header cipher from section 4.4.7"

<kv> := '4‘ I '5‘

Key—Name is the symbolic name to which this key is to be bound.

Ciphers is a list of ciphers for which this key is potentially appli-

cable (see the list of header ciphers in section 4.4.7). The keyword

‘null’ should be used to indicate that it is inappropriate for use

with ANY cipher. This is potentially useful for exchanging keys for

MAC computation.

Lifetime is a representation of the longest period of time during

which the recipient of this message can expect the sender to accept

that key. ‘this’ indicates that it is likely to be valid only for

reading this transmission. ‘reply’ indicates that it is useful for a

reply to this message (or the duration of the connection, for future

versions of HTTP that support retained connections). If this appears

in a CRYPTOPTS block, it indicates that it is good for at least one

(but perhaps only one) dereference of this anchor; the validity

period for such a key is a local matter.

Method should be one of a number of key exchange methods. The

currently defined values are ’inband’, ’krb—4’ and 'krb—5', referring

respectively to Inband keys (i.e., direct assignment) and Kerberos

versions 4 and 5 respectively. Method—args will depend on methods.

This header line may appear either in an unencapsulated header or in

an encapsulated message, though when an uncovered key is being

directly assigned, it may only appear in an encrypted encapsulated

content. Assigning to a key that already exists causes that key to be
overwritten.

Keys defined by this header are referred to elsewhere in this specif-

ication as Key—IDs, which have the syntax:

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 51/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 26]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 52/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

<Key-ID> := <method>':'<key—name>

5.4.1. Inband Key Assignment

This refers to the direct assignment of an uncovered key to a sym-

bolic name. Method—args should be just the desired session key

encoded in hexidecimal. E.g.:

Key—Assign: inband,akey,reply,DES—ECB;Ol23456789abcdef

Short keys should be derived from long keys by reading bits from left

to right.

Note that inband key assignment is especially important in order to

permit confidential spontaneous communication between agents where

one (but not both) of the agents have key pairs. However, this

mechanism is also useful to permit key changes without public key

computations. The key information is carried in this header line must

be in the inner secured HTTP request, therefore use in unencrypted

messages is not permitted.

5.4.2. Kerberos Key Assignment

This permits the binding of the shared secret derived from a Kerberos

ticket/authenticator pair to a symbolic keyname. In this case,

method—args should be the ticket/authenticator pair (each base64—

encoded), comma separated. E.g.:

Key—Assign: krb—4,akerbkey,reply,DES—ECB;<krb—ticket>,<krb—auth>

5.5. Nonces

Nonces are opaque, transient, session-oriented identifiers which may

be used to provide demonstrations of freshness. Nonce values are a

local matter, although they are might well be simply random numbers

generated by the originator. The value is supplied simply to be

returned by the recipient.

5.5.1. Nonce

This header is used by an originator to specify what Value is to be

returned in the reply. The field may be any value. Multiple nonce

header lines may be used, each to be echoed independently.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 53/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 27]

MANGROVE 1004

54/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

5.5.2. Nonce-Echo

The header is used to return the value provided in a previously
received Nonce: field.

6. (Retriable) Server Status Error Reports

We describe here the special processing appropriate for client

retries in the face of servers returning an error status.

6.1. Retry for Option (Re)Negotiation

A server may respond to a client request with an error code that

indicates that the request has not completely failed but rather that

the client may possibly achieve satisfaction through another request.

HTTP already has this concept with the 3XX redirection codes.

In the case of SHTTP, it is conceivable (and indeed likely) that the

server expects the client to retry his request using another set of

cryptographic options. E.g., the document which contains the anchor

that the client is dereferencing is old and did not require digital

signature for the request in question, but the server now has a pol-

icy requiring signature for dereferencing this URL. These options

should be carried in the header of the encapsulated HTTP message,

precisely as client options are carried.

The general idea here is that the client will perform the retry in

the manner indicated by the combination of the original request and

the precise nature of the error and the cryptographic enhancements

depending on the options carried in the server response.

The guiding principle in client response to these errors should be to

provide the user with the same sort of informed choice with regard to
dereference of these anchors as with normal anchor dereference. For

instance, in the case above, it would be inappropriate for the client

to sign the request without requesting permission for the action.

6.2. Specific Retry Behavior

6.2.1. Unauthorized 401, PaymentRequired 402

The HTTP errors ‘Unauthorized 401', 'PaymentRequired 402' represent

failures of HTTP style authentication and payment schemes. While S-

HTTP has no explicit support for these mechanisms, they can be per-

formed under S-HTTP while taking advantage of the privacy services

offered by S-HTTP. [There are other errors for S-HTTP specific

authentication errors.]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 55/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 28]

MANGROVE 1004

56/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

6.2.2. 420 SecurityRetry

This server status reply is provided so that the server may inform

the client that although the current request is rejected, a retried

request with different cryptographic enhancements is worth attempt-

ing. This header shall also be used in the case where an HTTP request

has been made but an S—HTTP request should have been made. Obviously,

this serves no useful purpose other than signalling an error if the

original request should have been encrypted, but in other situations

(e.g. access control) may be useful.

6.2.2.1. SecurityRetries for S-HTTP Requests

In the case of a request that was made as an SHTTP request, it indi-

cates that for some reason the cryptographic enhancements applied to

the request were unsatisfactory and that the request should be

repeated with the options found in the response header. Note that

this can be used as a way to force a new public key negotiation if

the session key in use has expired or to supply a unique nonce for

the purposes of ensuring request freshness.

6.2.2.2. SecurityRetries for HTTP Requests

If this header is made in response to an HTTP request, it indicates

that the request should be retried using S—HTTP and the cryptographic

options indicated in the response header.

6.2.3. 421 BogusHeader

This error code indicates that something about the S—HTTP request was

bad. The error code is to be followed by an appropriate explanation,

e.g.:

421 BogusHeader Content-Privacy—Domain must be specified

6.2.4. 422 SHTTP Proxy Authentication Required

This response is analagous to the 420 response except that the

options in the message refer to enhancements that the client must

perform in order to satisfy the proxy.

6.2.5. 320 SHTTP Not Mbdifed

This response code is specifically for use with proxy—server interac-

tion where the proxy has placed the If—Modified—Since header in the

S—HTTP headers of its request. This response indicates that the fol-

lowing S-HTTP message contains sufficient keying material for the

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 57/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 29]

MANGROVE 1004

58/99

MANGROVE 1004

4/7/2014

Int

6.2.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

proxy to forward the cached document for the new requestor.

In general, this takes the form of an S—HTTP message where the actual

enhanced content is missing, but all the headers and keying material

are retained. (I.e. the optional content section of the PKCS7 message

has been removed.) So, if the original response was encrypted, the

response contains the original DEK re—covered for the new recipient.

(Notice that the server performs the same processing as it would have

in the server side caching case of 8.1.X except that the message body

is elided.)

6. Redirection 3XX

These headers are again internal to HTTP, but may contain S—HTTP

negotiation options of significance to S—HTTP. The request should be

redirected in the sense of HTTP, with appropriate cryptographic pre-

cautions being observed.

6.3. Limitations On Automatic Retries

Permitting automatic client retry in response to this sort of server

response permits several forms of attack. Consider for the moment

the simple credit card case:

The user views a document which requires his credit card.

The user verifies that the DN of the intended recipient is

acceptable and that the request will be encrypted and

dereferences the anchor. The attacker intercepts the

server's reply and responds with a message encrypted under

the client's public key containing the Moved 301 header. If

the client were to automatically perform this redirect it

would allow compromise of the user's credit card.

6.3.1. Automatic Encryption Retry

This shows one possible danger of automatic retries —— potential

compromise of encrypted information. While it is impossible to con-

sider all possible cases, clients should never automatically reen-

crypt data unless the server requesting the retry proves that he

already has the data. So, situations in which it would be acceptable

to reencrypt would be if:

1. The retry response was returned encrypted under an inband key

freshly generated for the original request.

2. The retry response was signed by the intended recipient of the

original request.

3. The original request used an outband key and the response is

encrypted under that key.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 59/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 30]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 60/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

This is not an exhaustive list, however the browser author would be

well advised to consider carefully before implementing automatic

reencryption in other cases. Note that an appropriate behavior in

cases where automatic reencryption is not appropriate is to query the

user for permission.

6.3.2. Automatic Signature Retry

Since we discourage automatic (without user confirmation) signing in

even the usual case, and given the dangers described above, it is

prohibited to automatically retry signature enchancement.

6.3.3. Automatic MAC Authentication Retry

Assuming that all the other conditions are followed, it is permissi-

ble to automatically retry MAC authentication.

7. Other Issues

7.1. Compatibility of Servers with Old Clients

Servers which receive requests in the clear which should be secured

should return 'SecurityRetry 420' with header lines set to indicate

the required privacy enhancements.

7.2. URL Protocol Type

We define a new URL protocol designator, 'shttp'. Use of this desig-

nator as part of an anchor URL implies that the target server is S-

HTTP capable, and that a dereference of this URL should be enveloped

(e.g., the request is to be encrypted). Use of these secure URLs

permit the additional anchor attributes described in the following
section.

Note that S—HTTP oblivious agents should not be wi_ling to derefer-

ence a URL with an unknown protocol specifier, and hence sensitive

data will not be accidentally sent in the clear by users of non-
secure clients.

7.3. Server Conventions

7.3.1. Certificate Requests

We define the convention that issuing a normal HTTP request:

GET /SERVER-CERTIFICATE[—<DN>] <http—version>

shall cause the server to return the corresponding certificate. <DN>

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 61/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 31]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 62/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

is the base-64 encoding (to protect whitespace) of the fully-

specified canonical ASCII form for the DN of the requested certifi-

cate (as in RFC 1485). If no DN is specified, then the server shall

choose whatever certificate it deems most appropriate. The server

should sign the response with the key corresponding to the DN sup-

plied, if the DN is unspecified by the request.

7.3.2. Policy Requests

Servers should (but not must) store the policies of the Policy Cer-

tification Authorities, if available, corresponding to their various

certificates. The convention for retrieving such policies via HTTP is

the request:

GET /POLICY—<DN> <http—version>

Again, <DN> is the DN (encoded as per section 7.3.1) of the certifi-

cate corresponding to the requested policy. It is recommended that

this document be (pre—) signed by the PCA.

7.3.3. CRL Requests

Servers should (but not must) store the CRLs of the PCAS correspond-

ing to their various certificates. The convention for retrieving such
CRLs is:

GET /CRL—<DN> <http—version>

Again, <DN> is the DN (encoded as per section 7.3.1) of the certifi-

cate corresponding to the requested CRL.

7.4. Browser Presentation

7.4.1. Transaction Security Status

While preparing a secure message, the browser should provide a visual

indication of the security of the transaction, as well as an indica-

tion of the party who will be able to read the message. While reading

a signed and/or enveloped message, the browser should indicate this

and (if applicable) the identity of the signer. Self—signed certifi-

cates should be clearly differentiated from those validated by a cer-

tification hierarchy.

7.4.2. Failure Reporting

Failure to authenticate or decrypt an S—HTTP message should be

presented differently from a failure to retrieve the document. Com-

pliant clients may at their option display unverifiable documents but

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 63/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 32]

MANGROVE 1004

64/99

MANGROVE 1004

4/7/2014

Int

7.4

7.4.

8.

8.1.

8.1.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

must clearly indicate that they were unverifiable in a way clearly

distinct from the manner in which they display documents which pos-

sessed no digital signatures or documents with verifiable signatures.

.3. Certificate Management

Clients shall provide a method for determining that HTTP requests are

to be signed and for determining which (assuming there are many) cer-

tificate is to be used for signature. It is suggested that users be

presented with some sort of selection list from which they may choose

a default. No signing should be performed without some sort of expli-

cit user interface action, though such action may take the form of a

persistent setting via a user preferences mechanism (although this is

not recommended).

4. Anchor Dereference

Clients shall provide a method to display the DN and certificate

chain associated with a given anchor to be dereferenced so that users

may determine for whom their data is being encrypted. This should be

distinct from the method for displaying who has signed the document

containing the anchor since these are orthogonal pieces of encryption
information.

Implementation Notes

Preenhanced Data

While S—HTTP has always supported preenhanced documents, in previous

versions it was never made clear how to actually implement them.

This section describes two methods for doing so: preenhancing the

HTTP request/response and preenhancing the underlying data.

1. Motivation

The two primary motivations for preenhanced documents are security

and performance. These advantages primarily accrue to signing but may

also under special circumstances apply to confidentiality or repudi-
able authentication.

Consider the case of a server which repeatedly serves the same con-

tent to multiple clients. One such example would be a server which

serves catalogs or price lists. Clearly, customers would like to be

able to verify that these are actual prices. However, since the

prices are typically the same to all comers, confidentiality is not

an issue. (Note: see Section 8.2 below for how to deal with this case

as well).

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 65/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 33]

MANGROVE 1004

66/99

MANGROVE 1004

4/7/2014

Int

8.1.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

Consequently, the server might wish to sign the document once and

simply send the cached signed document out when a client makes a new

request, avoiding the overhead of a private key operation each time.

Note that conceivably, the signed document might have been generated

by a third party and placed in the server's cache. The server might

not even have the signing key! This illustrates the security benefit

of presigning: Untrusted servers can serve authenticated data without

risk even if the server is compromised.

2. Presigned Requests/Responses

The obvious implementation is simply to take a single

request/response, cache it, and send it out in situations where a new

message would otherwise be generated.

8.1.3. Presigned Documents

It is also possible using S—HTTP to sign the underlying data and send

it as an S—HTTP messsage. In order to do this, one would simply take

the signed document (a PKCS—7 or PEM message) and attach both S-HTTP

headers (e.g. the S—HTTP request/response line, the Content—Privacy—

Domain) and the necessary HTTP headers (including a Content—Type

that reflects the inner content) and send the message out. For exam-

ple:

SECURE * Secure-HTTP/1.2

Content—Type: text/html

Content—Privacy—Domain: PKCS—7

Content—Transfer—Encoding: base64

--—--BEGIN PRIVACY-ENHANCED MESSAGE----—

Random signed message here...
—————END PRIVACY—ENHANCED MESSAGE—————

8.1.4. Recursive Encapsulation

Consider a slight variation of the previous situation, where confi-

dentiality is also required. This can be dealt with via a recursive

encapsulation. That is, the S—HTTP message shown above can be used as

the inner content of a new S—HTTP message, like so:

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 67/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 34]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 68/99

MANGROVE 1004

4/7/2014

Internet—Draft

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Secure HTTP

SECURE * Secure—HTTP/1.2

Content—Type: application/http

Content-Privacy-Domain: PKCS—7

Content—Transfer—Encoding: base64

—————BEGIN PRIVACY—ENHANCED MESSAGE—————

Encrypted version of the message above...
—-—--END PRIVACY—ENHANCED MESSAGE-—--—

To unfold this, the receiver would decode the outer S—HTTP message,

reenter the (S—)HTTP parsing loop to process the new message, see

that that too was S—HTTP, decode that, and recover the inner content.

Note that this sort of approach can also be used to provide freshness

of server activity (though not of the document itself) while still

providing nonrepudiation of the document data if a NONCE is included

in the request.

8.1.5. Preencrypted Messages

Although preenhancement works best with signature, it can also be

used with encryption under certain conditions. Consider the situation

where the same confidential document is to be sent out repeatedly.

The time spent to encrypt can be saved by caching the ciphertext and

simply generating a new key exchange block for each recipient. [Note

that this is logically equivalent to a multi— recipient message as
defined in both PEM and PKCS—7 and so care must be taken to use

proper PKCS—l padding if RSA is being used since otherwise, one may

be open to a low encryption exponent attack.[26]

8.2. Proxy Interaction

The use of S—HTTP presents considerable challenges to the use of HTTP

proxies. While simply having the proxy blindly forward responses is

straightforward, it would be preferable if S—HTTP aware proxies were

still able to cache responses in at least some circumstances. In

addition, S—HTTP services should be usable to protect client—proxy

authentication. This section describes how to achieve those goals

using the mechanisms described above.

8.2.1. C1ient—Proxy Authentication

When an S-HTTP aware proxy receives a request (HTTP or S—HTTP) that

(by whatever access control rules it uses) it requires to be S—HTTP

enhanced, it should return the 422 response code (X.Y.Z).

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 69/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 35]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 70/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

When the client receives the 422 response code, it should read the

cryptographic options that the proxy sent and determine whether or

not it is willing to apply that enhancement to the message. If the

client is willing to meet these requirements, it should recursively

encapsulate the request it previously sent using the appropriate

options. (Note that since the enhancement is recursively applied,

even clients which are unwilling to send requests to servers in the

clear may be willing to send the already encrypted message to the

proxy without further encryption.) (See Section X.Y.Z for another

example of a recursively encapsulated message)

When the proxy receives such a message, it should strip the outer

encapsulation to recover the message which should be sent to the
server.

8.2.2. Proxy Caching of S—HTTP Messages

Although it is often considered that security in general and confi-

dentiality in specific obviate caching, this is only true under cer-

tain circumstances. For example, when confidentiality is being used
to restrict access to some class of documents to a broad class of

users, and those users are behind a single proxy, it is obviously

advantageous if that proxy can cache such documents. S—HTTP's message

orientation makes this a fairly straightforward proposition, provided

that the parties cooperate.

8.2.2.1. Client Behavior

All the client needs to do is to provide enough URL information to

the proxy to enable the proxy to detect when potentially cached data

is being requested. In order to do this, the client simply provides

the whole URL HTTP style instead of the URI—less URL described in

Section 2.1. Note that this provides the proxy with the URI. Conse-

quently, clients which don't trust their proxy to receive that infor-

mation or are worried about traffic analysis by the proxy should not

enable caching in this way. (An insecure channel to the proxy can be

defended against using a recursive encapsulation.)

8.2.2.2. Proxy Behavior

When forwarding requests, the proxy merely needs to recognize URLs
that are in it's cache and add the If-Modified-Since header as it

does for HTTP.

When forwarding responses, the proxy needs to detect the 320 response

and reassemble a valid S—HTTP response from the cached data and the

new keying material provided by the server. The proxy should check

the Content-MD5 header if supplied to ensure that a valid cache hit

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 71/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 36]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 72/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

has occurred and retry the request minus the If—Modified—Since header
if the Content—MD5s do not match.

8.2.2.3. Server Behavior

The server needs to detect the If—Modified—Since header provided by

the proxy and generate the content—less message described in X.Y.Z.

The logic for this decision should be the same logic that is applied
in HTTP.

9. Implementation Recommendations and Requirements

All S—HTTP agents must support the MD5 message digest and MAC authen-

tication. As of S—HTTP/1.2 All agents must also support the RSA—MD5—
HMAC construction.

All S—HTTP agents must support Outband key exchange.

Support for encryption is recommended; agents which implement encryp-

tion must support the in—band key exchange method and one of the fol-

lowing three cryptosystems (in ECB and CBC modes): DES, RC2[40] and
CDMF .

Agents are recommended to support signature verification; server sup-

port of signature generation is additionally recommended.

Note that conformant implementations of the protocol (although not

recommended ones) can avoid the use of public key cryptography

entirely.

10. Protocol Syntax Summary

We present below a summary of the main syntactic features of S-

HTTP/l.2, excluding message encapsulation proper.

10.1. S—HTTP (Unencapsulated) Headers

Content—Privacy—Domain: ('PKCS—7' | 'PEM')

Content—Transfer—Encoding: ('8BIT' | '7BIT' | 'BASE64')

Prearranged—Key—Info: <Hdr—Cipher>,<Key>,<Key—ID>

Content—Type: ‘application/http'

MAC-Info: [hex(timeofday)',']<hash-alg>','hex(<hash—data>)','

<key-spec>

10.2. HTTP (Encapsulated) Non-negotiation Headers

Key—Assign: <Method>','<Key—Name>','<Lifetime>','

<Ciphers>';'<Method—args>

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 73/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 37]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 74/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

Encryption—Identity: <name-class>','<key-sel>','<name—args>

Certificate—Info: <Cert—Fmt>','<Cert—Group>

Nonce: <string>

Nonce—Echo: <string>

10.3. Encapsulated Negotiation Headers

SHTTP—Cryptopts—Scope: <string>(,<string>)*

SHTTP—Privacy—Domains: ('PKCS-7' I 'PEM')

SHTTP—Certificate—Types: ('X.509')

SHTTP—Key—Exchange—Algorithms: ('RSA' I 'KRB—'<kv>)

SHTTP—Signature-Algorithms: ('RSA' I 'NIST—DSS')

SHTTP—Message—Digest—Algorithms: ('RSA—MD2' I 'RSA—MD5' I 'NIST—SHS'

' RSA-MD2-HMAC' , 'RSA-MD5-HMAC ' , ' NIST-SHS-HMAC ')

SHTTP—Symmetric-Content-Algorithms: (‘DES-CBC’ I 'DES-EDE-CBC’ I

' DES-EDE3-CBC’ I ' DESX-CBC ' I 'CDMF-CBC’ I ' IDEA-CBC ' I

'RC2—CBC')

SHTTP—Symmetric—Header—Algorithms: (‘DES—ECB' I 'DES—EDE—ECB' I

' DES-EDE3-EBC' I ' DESX-ECB ' I 'CDMF-ECB' I

‘IDEA-ECB' I 'RC2-ECB')

SHTTP—Privacy—Enhancements: ('sign' I ‘encrypt’ I 'auth')

Your—Key—Pattern: <key—use>','<pattern—info>

10.4. HTTP Methods

Secure * Secure-HTTP/l.2

10.5. Server Status Reports

Secure—HTTP/1.2 200 OK

SecurityRetry 420

BogusHeader 421 <reason>

10.6. Server Conventions

GET SERVER-CERT I FICATE-<B6 4 ~DN> <http—vers ion>

GET POLICY-<B64-DN> <http—version>

GET CRL—<B64~pN> <http—version>

11. An Extended Example

We provide here a contrived example of a series of S—HTTP requests

and replies. Rows of equal signs are used to set off the narrative

from sample message traces. Note that, since we use base—64 encoding

here for expository purposes, the example messages have the otherwise

unnecessary PEM-style "BEGIN/END PRIVACY-ENHANCED MESSAGE" delim-
iters.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 75/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 38]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 76/99

MANGROVE 1004

4/7/2014

Internet—Draft

11.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Secure HTTP

1. A request using RSA key exchange with Inband key reply

Alice, using an S—HTTP—capable client, begins with making an HTTP

request which yields the following response page:

200 OK HTTP/1.0

Server—Name: Navaho—O.l.2.3alpha

SHTTP—Cryptopts—Scope: foobar

Certificate-Info: MIAGCSqGSIb3DQEHAqCAMIACAQEXADCABgkqhkiG9wOBBWEAAKCAM

I IBrTCCAUkCAgC2MAO GCSqGSIb3DQEBAgUAMEOxCzAJBgNVBAYTAlVTMSAwH

gYDVQQKExdSUOEgRGFOYSBTZWN1cmlOeSwgSW5j Lj EcMBoGAlUECxMTUGVyc

29uYSBDZXJOaWZpY2FOZTAeFWO5NDAOMDkwMDUWMzdaFwO5NDA4MDIxODM4N

TdaMGcxCZAJBgNVBAYTAlVTMSAwHgYDVQQKExdSUOEgRGFOYSBTZWNlcmlOe

SwgSW5j Lj EcMBoGAlUECxMTUGVyc2 9uYSBDZXJOaWZpY2FOZTEYMBYGAlUEA

xMPU2VOZWMgQXNOCm9ub215MFwwDQYJKoZIhVCNAQEBBQADSwAWSAJBAMy8Q

cW7RMrB4sTdQ8Nmb2DFmJmkWn+el+NdeamIDElX/qw9mIQu4xNjlFfepfJNx

zPvAOOtMKhy6+bkrlyMEU8CAwEAATANBgkqhkiG9wOBAQIFAANPAAYn7jDgi

rhiIL4wnP8nGzUisGSpsFsF4/7z2P2wqne6Qk8Cg/Dstu3RyaN78vAMGP8d8

2H5+Ndfhi2mRp4YHiGHzOHlK6VbPfnyvS2wdjCCAccwggFRAgUCQAAAFDANB

gkqhkiG9wOBAQIFADBfMQswCQYDVQQGEWJVUzEgMB4GAlUEChMXUlNBIERhd

GEgU2VjdXJpdHksIEluYy4xLjAsBgNVBAsTJUxvdyBBc3N1cmFuY2UgQ2Vyd

GlmaWNhdGlVbiBBdXROb3JpdHkWHhCNOTQwMTA3MDAwMDAwWhCNOTYwMTA3M

jMlOTU5WjBNMQswCQYDVQQGEwJVUZEgMB4GAlUEChMXUlNBIERhdGEgU2Vjd

XJpdHksIEluYy4xHDAaBgNVBAsTElBlcnNvbmEgQ2VydGlmaWNhdGUwaTANB

gkqhkiG9w0BAQEFAANYADBVAk4GqghQDa 9Xi / 2 zAdYEqJVI cYhlLNl FpI 9tX

Qlm6zZ39PYXK8UhOjOES7kWRV8hCO4VqkOKWndWbzVtVOHQOmP8nOkkuBi+A

QvgFoRcgOUCAwEAATANBgkqhkiG9wOBAQIFAANhAD/5Uo7xDdp49oZm9GoNc

PhZcWle+nojLVHXWAU/CBkwfcR+FSf4hQ5eFulAjYv6Wqf430Xe9Et5+jgnM

Tiq4LnwgTdA8xQX4elJz9QzQobkE3XVOjVAtCFcmiin8ORBSAAAMYAAAAAAA
AAAAA==

Encryption—Identity: DN-1485, null, CN=Setec Astronomy, OU=Persona

Certificate,O="RSA Data Security, Inc.", C=US

SHTTP—Privacy—Enhancements: recv—required=encrypt

Don't read this.

(Note that this uses HTTP header syntax of section 4.4.1. An

appropriate HTTP request to dereference this URL would be:

GET /secret HTTP/1.0

Security—Scheme: S—HTTP/1.2

User—Agent: Web—O—Vision 1.2beta

Accept: *_~k

Key—Assign: Inband,1,reply,des—ecb;7878787878787878

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

MANGROVE 1004

77/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 39]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 78/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

The added Key—Assign line that would not have been in an ordinary

HTTP request permits Bob (the server) to encrypt his reply to Alice,

even though Alice does not have a public key, since they would share

a key after the request is received by Bob. This request has the

following S—HTTP encapsulation:

Secure * Secure—HTTP/1.2

Content—Transfer—Encoding: base64

Content—Type: application/http

Content—Privacy—Domain: PKCS—7

-——-—BEGIN PRIVACY-ENHANCED MESSAGE-—--—

MIAGCSqGS lb3 DQEHA6CAMIACAQAXgDCBqQIBADBTME O XC zAJBgNVBAYTAlVTMSAw

HgYDVQQKExdSUOEgRGFOYSBTZWNlcmlOeSwgSW5jLjEcMBoGA1UECxMTUGVyc29u

YSBDZXJOaWZpY2FOZQICALYWDQYJKOZIhVCNAQEBBQAEQCU/R+YCJSUSV6XLilHG

cNVzwqKcWzmT/rZ+duOv8Ggb7oO/d8H3xUVGQ2LsX4kYGq2szwj8Q6eWhsmhf4oz

lvMAADCABgkqhkiG9w0BBwEwEQYFKw4DAgcECFif7BadXlw3oIAEgZBNcMexKel6

+mNxx8YQPukBCLObWqS86lvws/AgRkKPELmysBi5lco8MBCsWK/fCyrnxIRHsloK

BXBVl sAhKkkus kl kCf/GbXSAphdSgG+d6LXrNZwHbBFOX 6A2hYS 63 I czd5bOVDDW

Op2gcgUtMJq6k2LFrs4L7HHqRPPlqNJ6j5mFP4xkzOCNIQynpDlrV6EECMIk/T7k
1 JLS ==

—————END PRIVACY—ENHANCED MESSAGE—————

The data between the delimiters is a PKCS—7 message, RSA enveloped

for Setec Astronomy.

Bob decrypts the request, finds the document in question, and is

ready to serve it back to Alice.

An appropriate HTTP server response would be:

HTTP/1.0 200 OK

Security-Scheme: S-HTTP/1.2

Content—Type: text/html

Congratulations, you've won.

<A href="/prize.html"

CRYPTOPTS="Key—Assign: Inband,alicel,reply,des—ecb;O20406080a0cOe0f

SHTTP—Privacy—Enhancements: recv—required=auth">Click here to

claim your prize

This HTTP response, encapsulated as an S—HTTP message becomes:

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 79/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 40]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 80/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

Secure—HTTP/1.2 200 OK

Content—Transfer—Encoding: base64

Content—Type: application/http

Prearranged—Key—Info: des—ecb,O3e5d6f7997eaa5b,inbandzl

Content—Privacy—Domain: PKCS—7

—————BEGIN PRIVACY—ENHANCED MESSAGE—————

MIAGCSqGSIb3DQEHBqCAMIACAQAwgAYJKoZIhvcNAQcBMBEGBSsOAwIHBAiDM8nY

HcK+IoCCARir/4frekvV8FJufQFzHJVn3rWXMYovumgzNXJQfPAr+oysnjmg5dtG

i96aMkhM4BF2lrebPHwii+PZoc3qiealibkRVzCnAiNie2EUzMgxlfh8Uro49I33

zTjqrkKngZeDCVUly2xll2FPrMpHm9/zafLKs9oznnkmOGGbz75mBomIrywuST7b

DYj52btqR24qdO573CPdBXQNkj3VI2lAuWqIINDZ49gKi5DZRTYW7zzMl3SExN5U

ECajW+zEcnuWOWxYOulDh8gywWzBvmi59sKwLe69FvJiuhQFtdL2wngiQRlGtdjF

tSwlGKmHJsrSonewRPJOSVBlmBRp+Pi6iwJns3K6ZOOhqwRp8jNkmoAO2DP8WNiO

—————END PRIVACY—ENHANCED MESSAGE—————

The data between the delimiters is a PKCS7 message encrypted under a

randomly—chosen DEK which can be recovered by computing:

DES-DECRYPT(inband:l,O3e5d6f7997eaa5b)

where 'inband:1' is the key exchanged in the Key—Assign line in the

original request.

11.2. A request using the auth enhancement

There is a link on the HTML page that was just returned, which Alice

dereferences, creating the HTTP message:

GET /prize.html HTTP/1.0

Security-Scheme: S-HTTP/1.2

User—Agent: Web—O—Vision 1.lbeta

Accept: *.*

Which, when encapsulated as an S—HTTP message, becomes:

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 81/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 41]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 82/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

Secure * Secure—HTTP/1.2

Content—Transfer—Encoding: base64

Content—Type: application/http

MAC—"n‘o:2ffcl20b,rsa—md5,1425a95lflbbf3bd8d6dc7d07ab73lbb,inband:alice1

Content—Privacy—Domain: PKCS—7

—————BEGIN PRIVACY—ENHANCED MESSAGE—————

MIAGCSqGSIb3DQEHAYBjROVUIC9wcml6ZS5odGlsIEhUVFAvMS4wClNlY3VyaXR5

LVNj aGVtZTogUy1 IVFRQLzEuMQpVc2VyLUFnZW500iBXZWItTylWaXNpb2 4gMS4x

YmVOYQpBY2NlcHQ6ICouKgoKAAA=
-——-—END PRIVACY—ENHANCED MESSAGE—--—-

The data between the delimiters is a PKCS—7 ‘Data’ representation of

the request.

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 83/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 42]

MANGROVE 1004

84/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

Appendix: A Review of PKCS-7

PKCS-7 ("Cryptographic Message Syntax Standard") is a cryptographic

message encapsulation format, similar to PEM, which was defined by

RSA Laboratories as part of a family of related standards. They

state: "The PKCS standards are offered by RSA Laboratories to

developers of computer systems employing public key cryptography. It

is RSA Laboratories‘ intention to improve and refine the standards in

conjunction with computer system developers, with the goal of produc-

ing standards that most if not all developers adopt."

PKCS-7 is only one of two encapsulation formats supported by S—HTTP,

but it is to be preferred since it permits the least restricted set

of negotiable options, and permits binary encoding. In the interest

of making this specification more self-contained, we summarize PKCS-7
here.

PKCS-7 is a superset of PEM, in that PEM messages can be converted to

PKCS-7 messages without any cryptographic operations, and vice—versa

(given PKCS-7 messages which are restricted to PEM facilities).

Additionally, PEM key management materials such as certificates and

certificate revocation lists are compatible with PKCS—7's.

PKCS-7 is defined in terms of OSI's Abstract Syntax Notation (ASN.1,

defined in X.208), and is concretely represented using ASN.l's Basic

Encoding Rules (BER, defined in X.209). A PKCS-7 message is a

sequence of typed content parts. There are six content types, recur-

sively composable:

Data —— Some bytes, with no enhancement.

SignedData —— A content part, with zero or more signature

blocks, and associated keying materials. Keying materials

can be transported via the degenerate case of no signature
blocks and no data.

EnvelopedData —- One or more (per recipient) key exchange

blocks and an encrypted content part.

SignedAndEnvelopedData —— The obvious combination of

SignedData and EnvelopedData for a sing_e content part.

DigestedData —— A content part with a single digest block.

EncryptedData —- An encrypted content part, with key

materials externally provided.

Here we will dispense with convention for the sake of ASN.l—impaired

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 85/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 43]

MANGROVE 1004

86/99

MANGROVE 1004

4/7/2014

Int

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

readers, and present a syntax for PKCS-7 in informal BNF (with much

gloss).

and length fields.

<Message> = (<Content>)+

<Content> = <Data> | <SignedData> | <EnvelopedData> |

<SignedAndEnvelopedData> |

<DigestedData> | <EncryptedData>

<Data> := <Bytes>

<SignedData> := <DigestAlg>* <Content> <Certificates>*

<CRLs>* <SignerInfo>*

<EnvelopedData> := <RecipientInfo>+ <BulkCryptAlg>

Encrypted(<Content>)

<SignedAndEnvelopedData> := <RecipientInfo>* <DigestAlg>*

<EncryptedData> <Certificates>*

<CRLs>* <SignerInfos>*

<DigestedData> := <DigestAlg> <Content> <DigestBytes>

<EncryptedData> := <BulkCryptAlg> Encrypted(<Bytes>)

<SignerInfo> := <CertID> Encrypted(<DigestBytes>)

<RecipientInfo> := <CertID> <KeyCryptAlg> Encrypted(<DEK>)

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

In the actual encoding, most productions have explicit tag

MANGROVE 1004

87/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 44]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 88/99

MANGROVE 1004

4/7/2014

Internet—Draft

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Secure HTTP

References

[1] Linn J. "Privacy Enhancement for Internet Electronic Mail:

Part I: Message Encryption and Authentication Procedures",

RFC1421, Feb 1993.

[2] RSA Data Security, Inc. "Cryptographic Message Syntax Standard",

PKCS—7, Nov 1, 1993.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CCITT Recommendation X.509

Authentication Framework".
(1988), "The Directory —

Kent, S.

Part II: Certificate—Based Key Management", RFC1422,

"Privacy Enhancement for Internet Electronic Mail:
Feb 1993.

RSA Data Security, Inc. "Extended Certificate Syntax Standard",

PKCS—6, Nov 1, 1993.

Crocker, D. "Standard For The Format Of ARPA Internet Text Messages",

RFC822, August 1982.

Kaliski, B. "The MD2 Message—Digest Algorithm", RFC1319, April 1992

Rivest, R. "The MD5 Message—Digest Algorithm", RFC1321, April 1992

Federal Information Processing Standards Publication (FIPS PUB)

180, "Secure Hash Standard", 1993 May 11.

Federal Information Processing Standards Publication (FIPS PUB)

46-1, Data Encryption Standard, Reaffirmed 1988 January 22

(supersedes FIPS PUB 46, 1977 January 15).

Federal Information Processing Standards Publication (FIPS PUB)

81, DES Modes of Operation, 1980 December 2.

Lai, X. "On the Design and Security of Block Ciphers," ETH Series in

Information Processing, v. 1, Konstanz: Hartung-Gorre Verlag, 1992.

Hardcastle—Kille, S.

RFC1485, July 1993.

"A String Representation of Distinguished Names",

pgformat.doc (V 2.6). Obtainable from net-dist.mit.edu/pub/PGP.

Berners—Lee, T., Connolly, D., "Hypertext Markup Language — 2.0",

draft—ietf-html-spec—O4, June 1995 (working draft)

Berners—Lee, T. "Uniform Resource Locators (URLs)", RFC1738, Dec 1994

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 89/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 45]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 90/99

MANGROVE 1004

4/7/2014

Int

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

ernet—Draft Secure HTTP

[17] Federal Information Processing Standards Publication (FIPS PUB)

186, Digital Signature Standard, 1994 May 19.

[18] Berners-Lee, T., Fielding, R. T., Nielsen, H., "Hypertext

Transfer Protocol —— HTTP/1.0", draIL—ietI—htLp—v10—spec—OO,

March 1995. (working draft)

[19] Kohl, J., and Neuman, C., "The Kerberos Authentication Service (V5)",

RFC15lO, September 1993.

[20] Johnson, D.B., Matyas, S.M., Le, A.V., Wilkins, J.D., "Design of the

Commercial Data Masking Facility Data Privacy Algorithm," Proceedings

1st ACM Conference on Computer & Communications Security,

November 1993, Fairfax, VA., pp. 93-96.

[21] Bellare, M., Canetti, R., Krawczyk, H., "Keying Hash Functions for

Message Authentication", Preprint.

[22] Krawczyk, H. personal communication.

[23] Need reference for HTTP/1.1

[24] Rescorla, E., Schiffman, A., "Security Extensions For HTML",
draft—ietf—wts—shtml—O0.txt.

[25] MOSS

[26] Hastad, J., "On Using RSA With Low Exponents in a Public Key

Network," Advances in Cryptology—CRYPTO 95 Proceedings,

Springer—Verlag, 1986.

Security Considerations

This entire document is about security.

Acknowledgements

The authors wish to thank our colleagues at Enterprise Integration

Technologies, RSA Data Security, TIS, BBN, HP Labs Bristol, NCSA,

Spyglass, MIT, CERN, Open Market, Spry, Digi:al, W3C and elsewhere

for their review of earlier drafts. We also wish to thank the many

users who shared their experience with the S—HTTP reference implemen-

tation distributed by the CommerceNet Consortium.

This work was initiated at Enterprise Integration Technologies Cor-

poration and funded in part by the ARPA MADE (Manufacturing Automa-

tion and Design Engineering) program, under contract management by

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 91/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 46]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 92/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

the USAF Wright Laboratory. In addition to the funding support, we

appreciate the administrative and intellectual resources of the spon-

sors and the research community they maintain.

Authors‘ Address

Eric Rescorla <ekr@terisa.com>

Terisa Systems, Inc.
4984 El Camino Real

Los Altos, CA 94022

Phone: (415) 919-1753

Allan M. Schiffman <ams@terisa.com>

Terisa Systems, Inc.
4984 El Camino Real

Los Altos, CA 94022

Phone: (415) 919-1755

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 93/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 47]

MANGROVE 1004

94/99

MANGROVE 1004

4/7/2014

Internet—Draft

1.

.3.

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Secure HTTP

Table of Contents

. Modes of Operation ..

Implementation Options

HTTP Encapsulation ..

The Request Line ..

The Status Line

Secure HTTP Header Lines

.2. Content—Transfer—Encoding ..

. Message Format Options ..

Content-Privacy-Domain: PKCS—7

Content-Privacy-Domain:

HTTP/1.1 Header Interaction

.2. Content—Encoding ..

.3. Transfer—Encoding ..

.4. Connection

.5. Keep—Alive ..

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

MANGROVE 1004

95/99

MANGROVE 1004

4/7/2014

Rescorla, Schiffman

http://tools.ietf.org/html/draft-ietf-wts-shttp-01

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

[Page 48]

MANGROVE 1004

96/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

3.3.6. If-Modified-Since .. 16

3.3.7. Content—MD5 .. 16

3.3.8. Other headers .. 16

4. Negotiation .. L6

4.1. Negotiation Overview .. 16

4.2. Negotiation Header Format .. 17

4.3. Parametrization for Variable—length Key Ciphers 18

4.4. Negotiation Blocks .. 19

4.5. Negotiation Syntax .. 19

5. New HTTP Header Lines .. 24

5.1. Security—Scheme .. 24

5.2. Encryption-Identity .. 24

5.3. Certificate—Info .. 25

5 5 Nonces .. 27

6. (Retriable) Server Status Error Reports .. 28

6.1. Retry for Option (Re)Negotiation .. 28

6.2. Specific Retry Behavior .. 28

6.3. Limitations On Automatic Retries .. 30

7. Other Issues .. 31

7.1. Compatibility of Servers with Old Clients 31

7.2. URL Protocol Type .. 31

7.3. Server Conventions .. 31

7.4. Browser Presentation .. 32

8. Implementation Notes .. 33

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 97/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Rescorla, Schiffman [Page 49]

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 98/99

MANGROVE 1004

4/7/2014 draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

Internet—Draft Secure HTTP

8.1. Preenhanced Data .. 33

8.2. Note:Proxy Interaction .. 35

8.2.1. Client—Proxy Authentication .. 35

8.2.2. Proxy Caching of S—HTTP Message .. 36

9. Implementation Recommendations and Requirements 37

10. Protocol Syntax Summary .. 37

11. An Extended Example .. 38

Appendix: A Review of PKCS-7 .. 43

References .. 45

Security Considerations .. 46

Acknowledgements .. 46

Authors‘ Address .. 47

MANGROVE 1004

http://tools.ietf.org/html/draft-ietf-wts-shttp-01 99/99

