
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover art© 1994 M.C. Escher I Cordon Art - Baarn - Holland. All rights reserved.

Foreword by Grady Booch

w
~4 • - :....t

Lindsay Corporation
IPR2015-01039

Exhibit 1019 - 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Material from A Pattern Language: Towns/Buildings/Construction by Christopher Alexander,
copyright © 1977 by Christopher Alexander is reprinted by permission of Oxford University
Press, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals .

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or !omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein .

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa­
tion, please contact:

Pearson Education Corporate Sales Division
201 W. 103rd Street
Indianapolis, IN 46290
(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Design Patterns : elements of reusable object-oriented software I Erich Gamma ... [et al.].

p. cm.-(Addison-Wesley professional computing series)
Includes bibliographical references and index.
ISBN 0-201-63361-2
1. Object-oriented programming (Computer science) 2. Computer software-Reusability.

I. Gamma, Erich. II. Series.
QA 76.64.D47 1994
005.1'2-dc20

Copyright © 1995 by Addison-Wesley

94-34264
CIP

All rights reserved. No part of this publication may be reproduced , stored in a retrieval system, or
transmitted, in any form , or by any means, electronic , mechanical , photocopying, recording , or other­
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Cover art© M.C. Escher/Cordon Art - Baam - Holland. All rights reserved .

Text printed on recycled and acid-free paper.

ISBN 0201633612

23 2425262728 CR W 05 04 03 02

23rd Printing March 2002

Lindsay Corporation
IPR2015-01039

Exhibit 1019 - 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 INTRODUCTION CHAPTER 1

and the distribution of responsibilities. Each design pattern focuses on a particular
object-oriented design problem or issue. It describes when it applies, whether it can be
applied in view of other design constraints, and the consequences and trade-offs of its
use. Since we must eventually implement our designs, a design pattern also provides
sample C++ and (sometimes) Smalltalk code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on practical
solutions that have been implemented in mainstream object-oriented programming
languages like Smalltalk and C++ rather than procedural languages (Pascal, C, Ada) or
more dynamic object-oriented languages (CLOS, Dylan, Self). We chose Smalltalk and
C++ for pragmatic reasons: Our day-to-day experience has been in these languages,
and they are increasingly popular.

The choice of programming language is important because it influences one's point
of view. Our patterns assume Smalltalk/C++-level language features, and that choice
determines what can and cannot be implemented easily. If we assumed procedural
languages, we might have included design patterns called "Inheritance," "Encapsu­
lation," and "Polymorphism." Similarly, some of our patterns are supported directly
by the less common object-oriented languages. CLOS has multi-methods, for example,
which lessen the need for a pattern such as Visitor (page 331). In fact, there are enough
differences between Smalltalk and C++ to mean that some patterns can be expressed
more easily in one language than the other. (See Iterator (257) for an example.)

1.2 Design Patterns in Smalltalk MVC

The Model/View /Controller (MVC) triad of cla·sses [KP88] is used to build user inter­
faces in Smalltalk-SO. Looking at the design patterns inside MVC should help you see
what we mean by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object, the View is
its screen presentation, and the Controller defines the way the user interface reacts to
user input. Before MVC, user interface designs tended to lump these objects together.
MVC decouples them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/ notify protocol between
them. A view must ensure that its appearance reflects the state of the model. Whenever
the model's data changes, the model notifies views that depend on it. In response, each
view gets an opportunity to update itself. This approach lets you attach multiple views
to a model to provide different presentations. You can also create new views for a model
without rewriting it.

The following diagram shows a model and three views. (We've left out the controllers
for simplicity.) The model contains some data values, and the views defining a spread­
sheet, histogram, and pie chart display these data in various ways. The model commu­
nicates with its views when its values change, and the views communicate with the
model to access these values.

Lindsay Corporation
IPR2015-01039

Exhibit 1019 - 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-ECTION 1.2 DESIGN PATTERNS IN SMALLTALK MVC 5

views

w

a b c
x 60 30 10
v 50 30 20
z 80 10 10

model

en at face value, this example reflects a design that decouples views from models. But
--e design is applicable to a more general problem: decoupling objects so that changes
- one can affect any number of others without requiring the changed object to know
- ails of the others. This more general design is described by the Observer (page 293)

ign pattern.

__ other feature of MVC is that views can be nested. For example, a control panel of
ons might be implemented as a complex view containing nested button views. The

~~r interface for an object inspector can consist of nested views that may be reused in
" ebugger. MVC supports nested views with the Composite View class, a subclass of
- ew. Composite View objects act just like View objects; a composite view can be used
•. erever a view can be used, but it also contains and manages nested views.

- gain, we could think of this as a design that lets us treat a composite view just like
·e treat one of its components. But the design is applicable to a more general problem,
-. ·ch occurs whenever we want to group objects and treat the group like an individual

. This more general design is described by the Composite (163) design pattern. It
you create a class hierarchy in which some subclasses define primitive objects (e.g.,

-= i on) and other classes define composite objects (Composite View) that assemble the
--'.mitives into more complex objec~~-

- :c also lets you change the way a view responds to user input without changing its
...:ual presentation. You might want to change the way it responds to the keyboard, for

ple, or have it use a pop-up menu instead of command keys. MVC encapsulates
response mechanism in a Controller object. There is a class hierarchy of controllers,
· git easy to create a new controller as a variation on an existing one.

Lindsay Corporation
IPR2015-01039

Exhibit 1019 - 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

6 INTRODUCTION CHAPTER 1

A view uses an instance of a Controller subclass to implement a particular response
strategy; to implement a different strategy, simply replace the instance with a different
kind of controller. It's even possible to change a view's controller at run-time to let the
view change the way it responds to user input. For example, a view can be disabled so
that it doesn't accept input simply by giving it a controller that ignores input events.

The View-Controller relationship is an example of the Strategy (315) design pattern.
A Strategy is an object that represents an algorithm. It' s useful when you want to
replace the algorithm either statically or dynamically, when you have a lot of variants
of the algorithm, or when the algorithm has complex data structures that you want to
encapsulate.

MVC uses other design patterns, such as Factory Method (107) to specify the default
controller class for a view and Decorator (175) to add scrolling to a view. But the
main relationships in MVC are given by the Observer, Composite, and Strategy design
patterns.

1.3 Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and useful,
aren't sufficient. They simply capture the end product of the design process as rela­
tionships between classes and objects. To reuse the design, we must also record the
decisions, alternatives, and trade-offs that led to it. Concrete examples are important
too, because they help you see the design in action.

We describe design patterns using a cons~~tent format . Each pattern is divided into
sections according to the following template. The template lends a uniform structure
to the information, making design patterns easier to learn, compare, and use.

Pattern Name and Classification
The pattern's name conveys the essence of the pattern succinctly. A good name
is vital, because it will become part of your design vocabulary. The pattern's
classification reflects the scheme we introduce in Section 1.5.

Intent
A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or
problem does it address?

Also Known As
Other well-known names for the pattern, if any.

Motivation
A scenario that illustrates a design problem and how the class and object structures

Lindsay Corporation
IPR2015-01039

Exhibit 1019 - 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

