
Request for EX PARTE Reexamination

U.S. Patent No. 6,701,365

Exhibit B

The Open Group, Technical Standard, Protocols for X/Open PC

lnterworking: SMB, Version 2.0

Customer No.: 8791 Blakely, Sokoloff, Taylor 8: Zafman, LLP

Sunnyvale, California 940854040

Telephone (408) 720-8300

Fax (408) 720-8383

Page 1 of 535 LG Electronics Exhibit 1014

Technical Standard

Protocols for X/Open PC lnterworking

SMB, Version 2

Page 2 of 535

[This page intentionally left blank]

Page 3 of 535

/Open CAE Specification

Protocols for X/Open PC Interw orking: SMB, Version 2

X/Open Company Ltd.

Page 4 of 535

© September 1992 X/Open Company Lt'mited

All righls reserved. No part of this publication may be reproduced, stored in a retiievaj system,

or transmitted, in any form or by any means, electronj c. mechanical. photocopying. recording or

otherwi se. without the prior permission of the oopynight owners.

X/Open CAE Speci fimtion

Hotocols for X/ Open PC Interworkj rig: SIVIB, Version 2

ISBN: 187%D456

X/Open Document Number: C339

Published by X/Open Company Ltd ., U.K_

Any comments relating to the material contained in this document may be su bmi tted to X/Open
at:

></o, uea
Apex Plaza

Forbuiy Road

Reading
Berkshire, RG 1 IAX

United Kingdom

or by Electronic Mail to:

)G)Specs@xopen.org

X/Open CA E Sped fication ([$2

Page 5 of 535

ontents

Chapter

Chapter

2

21

22

221

222

3
31

32

33

331

332

333

34

35

351

352

353

354

355

36

37

37.1

37.2

37.3

38

381

382

39

310

3101

3102

311

3 12

Inirod uction

Why
This DoaJment..........,...

Oveiview of ooa.ment'ffffffffffffffffffffffffffffI

SMB File-shan'ngServiceMode1
SMBProIocol Pu‘

Seamty Oven/iew

Sharelevel Semiity ModL;fjfffffffffifffffffffffiffffffffififffffffffffififfifiiififilIII§fIIIIfiII
User—level Seaiiity

SMB Protocol Conventions

Summaryof
sivtsEnvi.—on.nentDemu03;ffIf.'fff.'.'ffffI.'.'.’.’ffffffffffffffffffffffffffiffffiflfffffffffIffff
Share—level and User—level Seoirity

Sharelevel SemiityMode

User-level Secufity Mode with Extended Protocols.............,..............

Usei‘—level Seamty with Core Piotocol
Connection

Naming
Resource Names

NetBIOSNames

Uniform Naming
Canonical

File

Open
WiteBehaviour

Locking

Opportunistic
Chaining ofExten(lecl SMB Requests

Exoeplion and

Disorderly LMXSession

Errorsand En'or
"l‘Iineouts.A...__.._A

Downwal‘(l-compaIJ‘biIity Support

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2

Page 6 of 535

mm§§§wBBBow5:fi555aaaEmooseowmmmbwNu_—
J11

Chapter

Chapter

Page 7 of 535

4

41

42

43

43 1

432

433

434

435

436

437

44

441

442

443

45

46

47

48

49

410

5

51

52

53

53 1

532

533

534

535

536

537

538

539

53 10

54

55

56

56 1

562

563

564

565

Contents

LMXConsideran'ons

LI\/IXUsemame

LI\/IXFilenameMapping

LI\/IXFile
SMBF1le Attributes

CAE File Access Permissions

File System Issues

CAE&xmdFHa“mmMw

Deleting or Renaming a

LI\/IXFile

Interlocking

LI\/IXSe1Ver Caching

SI\/[BEITor

Negotiated
Network

SI\/[B Format.‘.............
D ata O bjects and C onstants

SMB Command codéffffffff."fffffffffff.'.'ffffff.'.'f.T.'.'ffffff.'f.°f.'.'ffIII."

DataObjects
Time

DateF1elds.....‘....‘...

FileAttnibutesFielas‘.-.'::::...-:3:::::::::1::::::::::::::::::::::::::::2::
Buffers

File—sharingCoritro1-.7:.-.-:..:.-:3.-.'.>:::::::3:::::::::::1::::::::::::::::::::

Open Function
Resource Names. Path:-iarnest
File

Tiuneouts.‘..,.‘...

SI\/[BEIT0r

SMBErI0rClass Mappings............
Error Codes for the SUCCESSClass

ErrorCodes for the ERRDOSClass

ErrorCodes for the ERRSRVClass

ErrorCodes for the ERRI-[RD

X/Open CA E Sped fication ([EB

R966@%&&%$&&&££&&&&8%3888%8&§E8%BBEE8888wQfi

Con ten ts

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

6
61

62

63

64

7 1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7 10

7 11

7 12

8 1

82

83

84

85

86

87

91

92

93

94

10
D 1

D2

D3

D4

D5

D6

11
111

112

113

114

Core SMB Connection ManagementRequests
S'\/[Bnegpmt Speci
S'\/[B(oon Specification

S'\/[Bails Speci fication

S'\/[BexitSpecificaIjon

Q

Q8%8$
re SMB File Operation Requests
'\/[Bcreate Specification

'\/[BmknewSpecification

'\/[Bopen Speci
'\/[BreadSpecification

'\/[Bwrite

'\/1Blseek
'\/1BlockSpeci

'\/[BunJ0ck

'\/[Bflush Speci ficatjon
SMBclose

SI\/[BmvSpecification

SMBunJinkSpeci ficaljon

B@%@$@daddQ$$
Core SMB Directory and Attribute Operations

'\/[Bsearch Specifitntjon

\/[BgetatrSpecification
'\/[BsetatrSpecification

'\/[BdskattrSpecification

'\/[Bchkpath SpecificationQC/it/it/it/it/it/1 Qéaaeaaa
re SMB Spool Operation Requests 111
\/[Bsplopen Speci

113

\/[Bsplcl$e Speci 115

'\/[B1spltetqSpecification 117
C/)C/1C/1U)

Core Plus SMB File Operations 121
SMBnegpi0t Speci 121
SMBreadbt"aw 123

SMBwn‘tsebrawSpecification 125

SI\/lBl0ckneadSpecification 128
SI\/lBwn‘teur1lock Speci II)

SMBwn‘teclose Specification IQ

Extend ed 1.0 SMB C on nection Management Requ ests 135
SMBnegpi0t Speci 1%

1%
144

SI\/lB(oor1XSpecificacion 147

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 V

Page 8 of 535

Chapter

Chapter

Chapter

Chapter

Chapter

V1

Page 9 of 535

12
121

122

123

124

125

126

127

128

13
13 1

132

133

134

135

14
141

142

143

144

15

15 1

152

153

154

155

16
16 1

16 1. 1

16 1.2

16 1.3

16 1.4

16 1.5

16 15 1

16 152

16 1.53

16 1.54

16 1.6

16 1.7

162

163

164

165

166

Con tents

Extend ed 1.0SMB File Opeiations... .. 151
SMBopenXSpecificatjon 151

1%

SI\/lBreadXSpecification 16)

SMBwn‘tsebrawSpecification 1%

SMBwn‘teclose Specification 163

1%
SMBreadbmpxSpecification 171

SMBwn‘tsebmpxSpecification 174

Extend ed 1.0 SMB Directory and Attribute Op e1at1'ons.... 179
179

181

SI\/lBfun1'queSpeci 1&2

SMBgetattrE Speci 183

SMBsetartrESpecification 185

Extend ed 1.0 SMB Miscellaneous Requests 187
SMBoopy 187

SMBecho 191

SMBioctl Specification 193

191

Extend ed 2.0 From col Additions and Modifications........... 197

197

SMBoopy 2D1

SMBfindncIose Z2

Z13

SMBuloggo['fXSpecification Z34

Extend ed 2.0 Proto col SMBtrans2 207

Z37

Z19
210

212

Err01sEncour1teted When Creating 212

Encapsulat1'or10fEAsir1theSMBProtocol...............................,......... 212
212

CEASI;mctu1e 214

Ir1f0rmaI;ion Levels 214

Defined 214

X/Open CA E Sped fication ([EB

Contents

167

168

169

16 10

16 11

16 12

16 13

Appendix A
A.1

A2

A3

A p p endix B
B. 1

B.2

B3

B4

BA1

BA2

B.5

B.51

B52

B.6

B.61

B.62

B.7

B.7.1

B.7.2

B.7.3

B.8

Appendix C
C.1

C.2

Appendix D
D.1

D. 1.1

D.].2

Appendix E

Appendix F

SMB Transmission Analysis 251
E1

252

259

LAN Managei-Remote Administration Protocol 263
$3

RemoteAPI $4

LMXAooess ControlLists 25

Transaction API Request %7
Parameter $7

%7

Transaction API Response X8
Parameter Z8

ZB

13binLerTypt5 and Returned 271

272
272

272

273

The X/Op en 5 ecurity Package 277
E0Functions 277

U() 278

SMB Enciyption Techniques 279
279

SI\/[BnegprotResponse.................. 279

SI\/[Btcon, SIv[BtconX, 279

TOP/N etBIOS 281

RFC ICDI 349

Protocols for)(/Open PC Interworki ng: Slv[B, Version 2 vii

Page 10 of 535

Contents

Appendix 0 RFC 1002 419

Gloss-my 505

Index.. .. 511

V111 X/Open CAESpec1' fication (IE3

Page 11 of 535

eface

X/Open

X/Open is an independent. worldwide. open systems organisation supported by most of the

worlds largest information systems suppliers. user organisations and software companies. Its

mission is to bn' ng to users greater value from computing. through the practical rrnplementation

of open systems.

X/Opens strategy for achieving this goal is to combine existing and emerging standards into a

comprehensive. integrated. high—value and usable open system environment. called the

Common Applications Environment (CAB). This environment covers the standards. above the

hardware level. that are needed to support open systems, It provides for portability and

interoperability of applications, and so protects investment in existing software while enabling

additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAB in a set of specifications which include an evolving portfolio of

application programming interfaces (AP]s) which significantly enhance portability of

application programs at the source code level, along with definitions of and references to

protocols and protocol profiles which significantly enhance the interoperability of applications

and systems.

The X/Open CAB isimplemented in real products and recognised by a distinctive trade mark —

the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature. the main part of which is focussed on

specification development. but which also includes Guides. Snapshots, Technical Studies.

Brandi ng/Testing documents. industry surveys, and business ti tles.

There are two types of X/Open specification:

. CA E Specifications

CAB (Common Applications Environment) specifications are the stable specifications that

form t.he basis for X/Open-bra ncled products. These specifications are intended to be used

widely within the industry for product development and promrement purposes.

Anyone developing products that implement an X/Open CAB specification can enjoy the

benefits of a single. widely supported standard. In addition. they can demonstrate

compliance with the majority of X/Open CAB specifications once these specifications are

referenced in an X/Open component or profile definition and included in the X/Open

branding programme.

CAB specifications are published as soon as they are developed, not published to ooincicle

with the launch of a particular X/Open brand. By making iLS specifications available in this

way. X/Open makes it possible for confonnant products to be developed as soon as is

practicabl e. so enhandng the value of the X/Open brand as a procurement aid to users.

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 ix

Page 12 of 535

Preface

s Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently

are not yet supported by multiple sources of stable oonformant implementations, are

released in a controlled manner for the purpose of validation through implementation of

products. A Preliminary specification is not a draft specification. In fact, it is as stable as

X/Open can make it, and on publication has gone through the same rigorous X/Open

development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards

organisations, and product development t.eams are encouraged to develop products on the

basis of them. However, because of the nature of the technology t.hat a Preliminary

specification is addressing, it may be untried in multiple independent implementations, and

may therefore char1ge before being published as a CAB specification. There is always the

intent to progmss to a oorresponding CAE specification, but the ability to do so depends on

oonsensus among X/Open members. In all cases, any resulting CAE specification is made as

upwards—0ompatible as possible. However, complete upwards—oompatibility from the

Preliminary to the CAB specification cannot be guaranteed.

In addition, X/Open publishes:

~ Guides

These provide information that X/Open believes is useful in the evaluation, procurement,

development or management of open systems, particularly those that are X/Open-

oompliant. X/ Open Guides are advisory, not normative, and should not be referenced for

purposes of specifying or claiming X/Open conformance.

~ Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of

interest in areas relevant to X/Open's Technical Programme. They are intended to

communicate the findings to the outside world and, where appropriate, stimulate discussion

and actions by other bodies and the industry in general.

~ Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction

and thinking, in advance of possible development of a Specification, Guide or Technical

Study, The intention is to stimulate industry debate and prototyping, and solicit feedback. A

Snapshot represents the interim results of an X/Open technical activity. Although at the time

of its publication. there may be an intention to progress the activity towards publication of a

Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no

oomrnitment regarding future development and further publication. Similarly, a Snapshot

does r1ot represent any Commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents. CAE Specifications require revision, in this case as the subject

technology develops and to align with emerging associated international standards. X/Open

makes a distinction between revised specifications which are fully backward oompatible and
those w hich are not:

s a new Version indicates that this publication includes all the same (unchanged) definitive

information from the previous publication of that title, but also includes extensions or

additional information. As such, it replaces the previous publication.

X/Open CA E Speci fication ([$2

Page 13 of 535

Preface

s a new Issue does include changes to the definitive information contained in the previous

publication of that title (and may also include extensions or additional information). As such,

X/Open maj ntai ns both the previous and new issue as currentpublications.

Corrigenda

Most X/ Open publications deal with technology at the leading edge of open systems

development. Feedback from implementation experience gained from using t.hese publimtions

occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to

reported problems are communicated by means of Corrigenda.

The reader of this doarment is advised t.o check periodically if any Conigenda apply to this

publication. This may be done in any one of the following ways:

~ anonymous ftp to ftp.xcpen.org

~ ftpmail (see below)

~ reference to the Corrigend a list in the latest X/Open Publications Pri oe List.

To request Corrigenda information using ftpmail. send a message to ftpmail@xopen.org with the

following four lines in the body of the message:

open

Cd pub/Corrigenda

get index

quit

This will renu rn the index of publications for which Corrigenda exist. Use the same email

address to request a copy of the full corrigendum information following the email instru ctions.

This Document

Of all the types of computers, personal computers are the most abundant. Originally intended

to be a personal productivity tool, an ever—increasing number of them are being connected to

computer networks, thus becoming parts of distributed information systems.

Personal computers normally run under single—user operating systems with interfaces differing

from those specified in the X/Open Portability Guide. However, X/Open realises how

important it is to facilitate interworking between personal computers and X/Open—compliant

systems in a standardised way.

Two areas have to be addressed to achieve this goal: interoperability, and programming

interfaces to server functions facilitating applications portability. Interoperability means that

personal computers and X/Open—compliant systems can interchange information using the

same network protocols. Standardisation of programming interfaces to server functions, in

addition to standardisation of protocols, makes it possible to write distributed client/server‘

applications w hose server component will be portable to all X/Open—cornpliant systems.

For interoperability via asynchronous serial links, X/Open has already defined in the X/Open

Portability Guide, Issue 3a file transfer protocol and a set of features provided on X/Open-

cornpliant systems for terminal emulators. Now it is ti me t.o address interworking in local area
networks (LANS).

In the X/Open (PC)NFS and SMB Developers’ Specifications interoperability of personal

computers and X/Open—compliant systems is addressed. The applications portability

components. containing definitions of programmatic interfaces to server functions, are

documented in the X/Open CAE Specification, IPC Mechanisms for SMB and the X/Open CAE

Specification, Use of XTI to Access l\letBIOS.

Protocols for X/Open PC lnterwcrking: Slv‘[B, Version 2 xi

Page 14 of 535

Xll

Preface

When connecting personal computers and X/Open-compliant systems via standard transport

protocols, there appear to be two possibly overlapping but distinct market segments. In the first

one, personal computers are added to existing networks of X/Open—oompIiant systems which

already have a distributexl file system, the most widely-adopted one being the Network File

System originally designed by Sun Mjcrosystems. In the second one, X/Open—compliant servers

are added to LANs consisting primarily of personal computers. For personal computers runni ng

under D06 or OS/2operating systems, which is the vast majority, the generally accepted non-

proprietary protocol is the Server Message Block from Microsoft Corporation.

Therefore, for connecting personal computers to X/Open—oompIiant systems, both the (PC)NFS

(see the X/ Open Developers’ Speci ficatjon, Protocols for X/ Open PC Interworking: (PC)NFS)

and the SMB protocols have been adopted by X/Open.

The following diagram illustrates the relationship of the service protocols (defined in the

X/Open (PC)NFS and SMB Developers’ Specifications) to their underlying transport protocols.

It also reflects the organisation of the two documents. The (PC)NFS specification describes the

protocols for NFS, RFC and XDR. The SMB specification describes the protocols for Sl\/IB, the

mapping of NetBIOS over an OS] transport (TOP/NetBIOS) and the mapping of NeLBIOS over
an Internet Protocol Suite transport (RFC 1(1) 1/RFC KID.

Since SMB and NFS protocols do not easily map onto the seven layer OSI Reference Mod el. the

diagram does not use i 1..

X/Open CA E Sped ficaticn ([$2

Page 15 of 535

Preface

Throughout the specification “DOS" is used to refer to the MS-DOS or PCDOS persona]

oomputer operating system.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 X111

Page 16 of 535

rade Marks

Ethemet® is a registered trade mark of Xerox Corporation.

LAN Ma nagerm is a trade mark of Microsoft Corporation.

MS-DO6® is a registered trade mark of Microsoft Corporation.

NFS® is a registered trade mark of Sun Mjcrosystems.

OS/2® is a registered trade mark of International Business Machines Corporation.

PaIatino® is a registered trade mark of Linotype AG and/or its subsidiaries.

PONFSTM is a trade mark of Sun Microsystems.

UNIX® is a registered trade mark of UNIX System Laboratories Inc. in the U.S.A. and other
oountries.

X/Open“ and the “X” devioe are trade marks of X/Open Company Ltd. in the UK. and other
oountries.

XIV X/Open CAE Sped fication ([922

Page 17 of 535

eferen ced Documents

The following (1 oaiments are referenced in this specification:

IPC

X/Open CAB Specification. IPC Mechanisms for SM3

(Document No.: C 196 ISBN: 1—8’73:TD28€3.

NetBIOS

X/Open CAE Specification, Use of XT1 to Acoess NetBIOS. contained in X/Open CAE

Specification. X/Open Transport Interface (XII)

(Document No.: C 1% ISBN: 1-8’/'%D294).

OS/2

Microsoft 06/ 2Progiammer‘s Reference. Volume 4.

(PC)NFS

X/Open Developers’ Specification, Protocols for X/Open PC Interworkjng: (PC)NFS
(Document No.: DCIXD. ISBN: 1—8'7Z5ZD(I)6.

SMB

X/Open Developers’ Specification, Protocols for X/Open PC Interworkjng: Six/[B
(Document No.: D 110. ISBN: 1-8’733DOl—4j.

XNFS

X/Open CAB Specification. Protocols for X/ Open Interworkjngz)d\IFS. Issue 4
(Document No.: C218 ISBN: 1—8’7E33%9.

XPG3

X/Open Portability Guide. Issue 3 January 1933

Protocols for)(/Open PC Inlerworking: Slv[B, Version 2 xv

Page 18 of 535

xvi

Page 19 of 535

Referenced Documents

X/Open CA E Sped fication ([EB

Chapter I

troduction

1.1 Why Republish

A previous version of this specification has been published, The previous version described the

SMB protocol up to a dialect level called extended. Since that tr me, a new diaiect has been added

and several errors and omissions were found in the specifimtion. This version of the

specification corrects the errors and omissions and contains the definit.ion for the extended 20

SMB dialect. The extended protocol of the previous version of this document is now called

extended 10which is to bedistinguished from t.he new extended 20diaJect.

1.2 This Document

The relevant parts of this CAB Specification include the speci fication of the SMB protocol itself.

definition of the conventions used in mapping SMB redirector semantics onto X/Open

sernant_ics. specifications of the binding of the NetB106 interface to popular protocol stacks. and

selection of protocol profiles to pennil interoperability.

Information regarding Nel'_'B]O6 is provided beaiuse the great majority of Sl\/[B redirector

implementations of the SMB protocols rely on NetB]OS as well.

The interface to the NetBIO6 implementation on the CAE system is outside the scope of this

specification. Within this document only the NetBIOS service definition to the lntemet Protocol

Suite (RFC K131/ICDZ (see Appendices F and G) and an O6] transport (TOP/NetB106) (see

Appendix E on page $1) are considered.

In this second publication, the SMB definitions necessary for 1nter—prooess Communication (IPC)

from SMB redirectors to processes executing on the same CAE system as the LMX server have

been removed. These definitions are found in the X/Open CAE Specification. IPC Mechanisms
for‘ S]\/[B.

This specification does include the SMB protocol and the SMB Service definition to be

implemented by an LMX server. The SMB service definition of the SMB redirector as well as

user‘ interfaces necessary to access network resources are outside the scope of this specification.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 1

Page 20 of 535

Overview ofDocument Layout

1.3

Introduction

0 verview of D ocument Layout

Chapter 2p rovidefi an overview of the service and security model for the SI\/[B protoool.

Chapter Sdistusses the conventions related to the rules the SMB protocol maintains. This

chapter descuibes the environments maintained within the SMB protocol model as well as rules

governing file locking and user security.

Chapter 4 describes conventions that can be Followed for mapping the SMB protocol model

desclibed in Chapter 3into the CAB environment. This chapter provides guidelines for such

things as how filenames in the CAE environment are viewed by the SMB protocol environment.

Chapter Sdefines the basic structure, data items and constant definitions For the SMB protocol.

The cone dialect is defined in Chapter Bthrough Chapter 9

Additions t.o the core dialect that make up the core plus dialect are found in Chapter 10

Chapter llthrough Chapter 14define the extended lOSl\/TB dialect.

The additions for the extended 2OSMBdia]ect are covered in Chapter 15and Chapter 16

A description of the mapping of DOS and OS/ 2 system calls to SMB piotoool requests,
descliptjons of support of NetBIOS names on TCP/IP and OSI protocols, and additional SIVIB

protocols that may be used for LMX server administration are contained in the appendices to

this specification.

X/Open CA E Speci fication ([$2

Page 21 of 535

Chapter 2

MB File—shar1'ng Service Mode}

This CAE Specifimtion describes the X/Open LAN Manager (LMX) architecuire. the Server

Message Block (SMB) protocol. and their appliaability to interoperability between)UOpen—

oompliant LAN Manager implementations running in an)0Open Common Applications

Environment (CAE) and SMBredirectois iunni ng D06 or OS/2

LMX provides a file and pn‘nt—sharing service which preserves. as far as possible, the same

semantics as provided by a DOS or 08/2 system to an application. This service is provided by

mapping the Sl\/[B redirector semantics onto those supported by the CAB system in which the
LMXserver mns.

This model is in oontiasl to a l“Ile—shan'ng service, in which the LMX sewer provides a oomplete

emulation of the SMB redirector's file storage architecuire. but does not permit access to that

emulation from applications running on the same CAE system. The intent behind the LMX

approach is to permit applications existing on SMB redirectois and CAE systems to cooperate in

the processing of information. Within this architecture the SMB redirector can assume that only

the file contents are stored in the same format as in the SMB redirector’s operating system. That

is. directory information does not need to be stored on the CAB system in a file or have the same

layout as in the SMB redi rectors operating system.

I n Llvlxresouroes are shared by making the name of the resource available for aooess from the

network. For example. the LMXsen/er named XOPEN will make a resouroe DOCUMENTS that
contains this document available. This allows users on SMB redirectois to connect to this

resource and aooess this data. In this example the resource DOCUMENTS could point to a

directory tree that contains the files belonging to this document. The user will see this directory

and its files as if they are on the loail SMB redi rectors system.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 3

Page 22 of 535

SMB Protocol Prin cjples

2.1

SMB File-sharing Service Model

SMB Protocol Principles

File and print sharing are implemented using the SMB protocol. This protocol is used between

two types of system: SMB redirectors and LMX servers. ‘When a user‘ on an SIVEB redirector

wants to make use of SMB file and print services available in the network the user needs an SIVIB

redirector implementation of the SMB protocol. Upon request the SMB redirector will connect to

an LMXser'ver. Throughout this document the term LMX server dom not imply any particular‘

design.

The SMB protocol requires a reliable connection—oriented virtual circuit provided by a I\letBIOS

implementation.

Each LMXserver in the network will oflfer resources. V\/hen a user on an SMB redirector wishes

to use a resource, or resources, from an LMXser\rer, t.he user of the Sl\/[B redirector will cause the

SMB redi rector‘ to set up a single LMXsession with the desired l_.lvlXserver using NetBIOS. The

action of setting up the LMX session includes using NetBIOS to locate the system in the network

then negotiating t.l1e level of Sl\/{B support desired by the SMB redirector. If multiple resources

are desired by the SIVIB redirector, the SMB redirector will use the single LMXsession to perform

all SMB exchanges. So, if the user requests use of bot.h a file system share and a printer share on

the same LMX server, then only one LMX session exists between the Sl\/[B redirector and this

LMX server system.

Once the LMX session has been established the SMB redirector will take initiative to request

services offered by the LMX server by sending SMB requests across the LMXsession. Each SIVIB

request is executed by the LMX server and the result is sent back to the SM3 redirector in an

SMB response. SMB redirector implementations may support multiple simultaneous
connections to diflferent LMX servers.

The Sl\/[B protocols can be dividexl into:

- core protocol

- core plusprotocol

- extended].OprotocoI

- extended 20protocoI

each one being a superset of the previous one. The extended protocols olfer a richer set of

functionality and are required for some of the IPC mechanisms described in the X/Open CAE

Speci fication, IPC Mechanisms for Sl\/TB.

In the extended protocols, mechanisms exist to l1ave users authorised by the LMX server (see

Section 22). If an SMB protocol supporting user authorisation is negotiated the LMXserver will

authorise the one user working on the SIVEB redi rector upon request of the SMB redirector. This

is commonly referred to as a logon procedure.

Once the level of protocol is negotiated, and if necessary the user has been authorised, the SIVIB

redirector will request access to a specific resource. The resource requested may be a directory

tree, spooled device, I/O device, etc. If the requested resource has been made available by the

LMX server for access by that user, file and spool operations can be executed (for example, open
file, show prim queue) from now on.

X/Open CA E Spec‘ fication ([$2

Page 23 of 535

SMB Pile-sharing Service Model Security Overview

2.2 Security Overview

The networks using the SMB protocol will contain not only multi—user systems with user—based

security models, but also single-user systems that have no concept of user IDs or permissions

Once these systems are connected to t.he network, however, they are in a multi—user

environment and need a method of access control. First, unsecure systems need t.o be able to

provide some sort of bona titles to other systems in the network which do have permissions.

Second, unsecure nodes need to control access to their resources by others.

The SMB protocol defines a mechanism that enables the network software to provide the

security where it is missing from the operating system, and supports user—based security where

it is provided by t.he operating system. The mechanism also allows systems with no concept of

user ID t.o demonstiate access authon sation to systems which do have a permission mechanism.

The LMXsen/erwill define the security mode that is being used; it cannot be negotiated by the

SMB redirector. \/Vithjn t.he SMB protocols two forms of secu rity exist:

- share—level security mode

Can be applied to restrict the access to a shared resou roe, placing access control at the level of
the resource.

- user—level security mode

Can assign user context to anyone establishing an LMX session. This way different access

rights can be granted to people connecting to the same resource. This form of sec1_m’ty can

only be used when an extended SMB protocol has been negotiated.

2.2.1 Share-levelsecurity Mode

A share—level security mode Ll\/lX5Cl\’Cl‘ makes a resource available to all users on the network.

Any user who knows the name of the LMX server, the name of the resource, and t.l1e password,

has the same access to everything (for example, read—0nJy) within a resource. The password is

optional.

For example, the LIVIX server named XOPEN olfeis the resource DOCUMENTS. This is a file

system subtree where each individual file or directory will have the same permissions for all

users, for example, read—only or read/write. Access to this resource is conu'olled by a password.

The LMXsen/er could make a second resource available with a dilferent password and different

access rights pointing to the same directory with the files belonging to this document.

2.2.2 User-level Security Mode

A user—level secuiity mode LMXsewer also maka a raouroe available, but in addition requirs

the user to provide a username and optional password in order to gai n access.

Thus the L1\/D(sewer is now able to allow dil‘fen'ng acass rights depending on the validated

user. The 2ICC$S fights may not only be specified per resource but may be set individually for

each file or directory acufisible via a risou me name. One user may have full access, anodier

read—only and perhaps anomer no actms to different fila and directoria within the shared
resource.

For example, on the LMX sewer named XOPEN with the resourm DOCLlIv[l-ENTS a user called
BOB could be me author of die doalment and a user (2llE(_l JAN a reviewer for the doaiment,

Now BOB can have read /write accfis to the document while JAN is only able to read me files

belonging to the douiment,

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 5

Page 24 of 535

SMB File-sharing Service Model

6 X/Open CA E Sped fication ([$2

Page 25 of 535

Chapter 3

MB Protocol Conventions

Much of the SMB protocol definition is design and implementation-indepenclent. In addition to

the SMB protocol and specific meaning of fields. the LMX server has to obey oertai n rules. This

chapter includesa summary of SJ\/[B5 and defines genencoonventions for LMXsen/ens, sich as:

].

Sbtooo.\J®C.JWi-1}-C«3l\)
31

SMIB Envinonments

user—level and share—level security modes

connect)‘ on protocol s

naming

wildaards and the interpretation ofwildtard pathnames

file attributes

locking. including opportunistic locking, and an implicit variety of locking for enhancing

the performance of applications which do not make explicit lock requests

chaining. and the mechanism for making multiple requests in a single SMB

exception and error handling

timeouts

downward—compatibility support

Summary ofSMBs

The following table lists the SlvIBs (requests and responses) which are required for van‘ ous levels

of the SMB protocol. The table gives the name of each request/response and a brief descn'pIjon.

the section of this specifimti on in which the SMB is desciibed. and indicates whether the request

is part of the core (C). oore plus (C+), extended 10 (E) or extended 20 (E3 SMB protocol. The

SMBs used to implement file and print shaiing are defined here. Additional SMBs can be found

in the X/Open CAB Specification, IPC Mechanisms for SMB and the appendices to this

specification.

In the following tables. the SMB names ending with capital X indicate that the SMB request

permits chaining (see Section 39on page 3,

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Page 26 of 535

Summary of SMB5 SMB Hotocol Conventions

$MBdskattr

SMBech0

SMBexit

SMBfdose

SMBfl‘irsr

SMBfindc1ose

SMBfindndose

SMBflush

SMBfi1m'que

SMBgetatr

SMBgetattrE

SMBIodcingX

SMBIodcread

Verify path is directory 8 7
Close file 7 10

Copy file 14. 1

Create/Open file 7 1
et the LMX sewer file 86

system information
Test an LMX sessi on

Indicate prooess exit
Close active search

‘ ctive seam

Close an active search

Notification of close for 15 4

an active search

Flush data for fi]e(s)
One-time active search

Get file attributes

Get extended file

'I"I"u:‘I I"

Lock multiple ranges
and X

Lock and read byte—range 103

Set current file pointer 76

SMBml<new

$MBmove

7.3

Extended open and X 12 1
Read flomfile 74

5MBreadbmpX Read block multiplexed 125

5MBsecpkgX Negotiate secu ii ty 1]. 2

packages and X

5MBtrans2(TRAN5ACT2_FINDFIR5T) Active search 163

5MBtrans2(TRAN5ACT2_FINDNEXT) Active search 164

5MBtrans2(TRA NSA CT2_MKDIR) Create new (1 iroctoiy 16 13

5MBtrans2(TRA NSA CT2_ OPEN) ' 16 2

SMBrrans2(TRA NSA CT2_3ETFSINF0)
information

SMBrran52(TRA NSA CT2_ QPATHTNFO) Query file infonnati on
SMBrrans2(TRA NSA CT2_3ETPA T1-UNFO) Set file information

SMBrrans2(TRA NSA CT2_ QFILEINFO) Query file infonnati on
SMBrrans2(TRA NSA CT2_SETF1LEINFO) Set file information

SMBrrans2(TRA NSA CT2_F1NDNOT7FYFJRST) Monitor file or di rectory

changes
Continue mor1iton'n-

(‘j The 5MBne-gprat response changes ifel flier extended dialect OFSMB is being negotiated.

8 X/Open CA E Sped fication ([$2

Page 27 of 535

SMB Protocol Con ven tions

SMBre-adbraw

SMBre2dX

SMBrmdlr

SMBse2rch

SMBse$$5el upX

SMBulogofl'X
$MBsetatr

SMBsetarl‘rE

$MBsplclose

$MBsplop
I

5MBtcanX

5MBtdi

SMBunl1'nk

SMBunl0ck

5MBwrite

5MBWIll6bmPX
5MBwu'tebraw

SMBwrlteclose

SMBwrlte.-unlock

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Page 28 of 535

Summary ofSMBs

. - tion Protoco

Read block raw

Read and X

Delete empty directory

Directory wildtard

lookup

Session setup and X

Set file aI1n'butes

Set extended file

attributes

Close and queue spool
file

Create spool file

Tree connect

Tree connect and X

Tree cl isoonnect

Delete file

Unlock bytenrange of file Z8
Wite to file 7.5

Wite block multiplexed 126

Wite and close file 105

Wite and unlock byte 104
range

SMB Environment Definitions

32

SMB Protocol Conventions

SMB E1lViI‘0Il11le1lt D efinitions

The following environments are defined for the purpose of specifying the SMB protoool. An

LMX server does not need to oonstruct such an environment, as long as the required semantics

are preserved.

The hierarchy of envi ronments is summarised below:

LMX Session Environment

User Environment (UID)

Resou roe Environment (TTD)

Prooess Environment (PID)

Multiplex Request Environment (MID)
File Environment (FID)

1 LMXSession Environment

This consists of one LMX session established between an Si\/[B redirector and an LMX

server. The LMXsession represents the logical connection between the SMB redi rectorand

the LMXserver. This connection is initiat.ed by the Sl\/[B redirector and is only considered

an LMX session after the SA/lBn egprot protocol exchange has successfully completed. Only

one protocol dialect can be negotiated on a single LMXsession.

An LMX session isimplement.ed using a NetBIOS session.

For each LMX session the maximum buffer size for subsequent Sl\/{B requests and

responses is set by the LMX server and sent to the SMB redirector. It is the SIVIB

redirector's responsibility not to send larger SMIB requests than expected by the LMX
server.

An LMX server may drop the LMX session after the last resou roe environment has been

terminated. V\/hen an LMX session beoomes inactive for some period of ti me and t.he LMX

server is not maintaining any file environment information for the Si\/[B redirector, the

LMXser\rer may choose to terminate the LMXsession. This allows other SMB redirectors

to connect and use the LMX session resource. It is the responsibility of the SMB redirector
to reestablish the LMXsessi on after it has been termi nat.ed due to this timeout.

If the LMX session environment is terminat.ed, all PIDS. TlDs and FlDs within it will be
invalidated.

User Environment, also called the Logon Environment

This is represented by a user ID (UID). A UID uniquely identifies a user within a given

LMXsession environment. \Mthin dialects of this document, there is exactly one UID per

LMXsession. An LMXserver exeaiting in user—level security mode uses this to identify

the scope and type of acoess allowed for this user. In share—level security mode this
environment is not used.

If the user environment is terminated in the extended 20dialect via SMBulogofl'X, all FIDs

and TlDs currently held by the UID are invalidated. In the extended LO dialect no
termination SMB exists other than the termination of the Li\/lxsession.

Resou rce Environment

This is represented by a TID. A TID uniquely identifies a resource being shared within the

LMXsession between the SMB redirector and the LMXserver. The TID is requested by the

SMB redirector and assigned by the LMX server. The resource being shared may be a

directory tree, spooled device, 1/0 device, etc. More than one TID may exist within a

single LMXsession environment.

X/Open CA E Speci fication ([$2

Page 29 of 535

SMB Protocol Conventions SMB Environment Definitions

In an LMXserver executing in share—level security mode, the TID also identifies the scope

and type of accesses allowed across t.he connection.

\/\xlthin the core Sl\/[B protocol it is possible for t.l1e LMX server to set a new maximum

bulfer size for subsequent SMB requests wit.hin this resource environment. The new

maximum buffer size is not only valid for the new resource environment. but for all
resources environments established within the l_.MXsession. It is the SIVIB redirector's and

the LMX server's responsibility not to send larger Sl\/[Bs than negotiated.

If a resource environment is terminated (via an SMBtdis request) all PIDs and FIDS within
it will be invalidated. The LI\/lXserver will close all files, free all locks, release all active file

searches and terminat.e all processes created on behalf of that TID.

4 Process Environment

T‘his is represented by a process ID (PID). A PID uniquely identifies an SMB redirector

process or thread within a given l_.lvD(session environment. Most SMB requests include a

PID to indicate which process initiated the request.. SI\/[B redirectors inform LMX servers

of the creation of a new process by simply introducing a new PID. The LMX server does

not mai ntai n any process relationships.

\/\xlthin the core SMB protocol the SMBexit request terminates the process environment.

Otherwise, there is no mechanism for the LMX server to determine a process exit on the

SMB redirector. It is the SMB redirector's responsibility to close a resource when the last

SMB redirector process referencing the resource closes it.

Files opened by one process may be manipulated by another process in the same resource

environment (that is, possessing the same TID).

If in the SMB core protocol a process environment is terminated, the LMX server will

invalidate all FIDs created by that PID.

5 File Environment

This is represented by a file ID (EID). An EID identifies an open file and is unique within a

given LMX session environment. Another Li\/lXsession environment may be given an FID

of the same value, but the FID will refer to a different open instance of the same or different

file. The scope of the FID is the user environment. This means a file may be opened and its

FID passed to another process (using a different PID in the same LMX session) for use

without being opened by this process. The second process must use the same UID and

TID as the process which opened the file.

Ila file environment is terminated (via an SIVIB request) or invalidated, all locks placed on
that FID will be released.

6 Multiplexed Request

This is represented by a multiplexed ID (MID). This is not an environment, but a part of

the SMB request that needs t.o be discussed at this time. An MID uniquely identifies an

SMB request within the Li\/lXsession. By using the MID, an SMB redirector is able t.o send

multiple requests to the l_,MXserver and determine which SMB response is associated with

each SMB request. There is no tennination of the Multiplex Request Environment. It is

maintained for the SI\/IB redirect.or's use only. The core and core plus protocol do not use
an MID.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 I I

Page 30 of 535

Share-level and User-level Security Modes

33

331

332

SMB Protocol Conventions

Share-lev el and User-level S ecurity Mod es

Share-level Security Mode

The following section applies to the access of LMX servers that use sharelevel security. By

default all SMB requests are refused as unauthorised. \/Vhen an administrator of t.he LMXserver

chooses to allow access to resources, he or she would establish each share with the following
attributes:

- The resource type (see Section 536on page 45:) that will be used in SMBtcon and SMBr‘conX
requests.

- The mapping of the resource type t.o the resource on t.he CAE system (for example, file

system subtrees will be identified on the CAB syst.em with the root of the offered subtree

being the directory shared).

- An indication of which access to this resource is permitted (for example, read—only).

- Optionally, a password (to be supplied in the 5MBtc0n or 5MBtconX request) is required

before access to the resource is permitted.

Note that when a file system subtree is shared, all files underneath that directory are then

alfected. If a particular file is within the range of multiple olfers, connecting to any of the offers

gains access to the file; the access rights gai ned (for example, read versus read /write) will depend

upon the attributes of the olfer that the SMB redirector connected to. The LMX server will not

check for nested directories with more restrictive permissions.

For example, if the LMX server is olfering a read/write share JAZZ. corresponding to path

/usr/jazz, and a read—only share JAZZCAT, corresponding to path /usr/jazz/catalog, an SIVIB

redirector which connected to the JAZZ share would be permitted read/write access to the file

catalog/ruyrecs, even though that file is also contained within the scope of a read—only share.

User-level Security Mode with Extended Protocols

LIVDC servers with user—based file security (in user-level security mode) will require the Si\/TB

redirector to praenta username and password (if any) along widw me requated UID value prior

to acofisi ng resources.

A usema me and password are sent by me SMB redirector and vali(lated by the LMX server via

the SMBse5ssetupX protocol. lf the username and password are valid the Ll\/lXserver responds

widr a UID that is used to identify die user on all subsequent SMB requats and prove to the
LIVDC server that this user has been authenticated. The SMB redirector must associate the LllD

widr the user and indude the LIID for all network rtsou roe acusses made by that user.

The SMBtron and SMBtronX protocols are still used to define the directory subtree or odwer‘

resource available to the user, but the Llx/[Xserver uses the LllD to allow differing types ofacofis

to the satire resourtm under a given TID. Note that a single SMB redirector may issue multiple

Sl\/[Biron or SMBtmnXin order to gain acrms to multiple shared resouros.

An LMX server in user-level security mode will still require administrative action to make a

share available. The attn‘ buta of me share are the satire as for share-level sealrity mode, except

that a single password is no longer used for the share.

If the LMX server‘ responds to an SMBn egprot requat and selects the extended protocol, it will

indicate in the Si\/TB rfiponse the security mode in effect. This allows the SMB redirector to

know whether die User Logon information is needed in me SMBsesssetrrpXrequ$t.

X/Open CA E Speci fication ([$2

Page 31 of 535

SMB Protocol Conventions Share-level and User-level Security Modes

Each LMX server may maintain a list of valid users. It may then verify every access by these
users.

From the LMXserver"s point of view, the UID is therefore not associated with a particular shared

resource, but with the authenticated user. The UID may be used to access any shared resource

oontrolled by the LMXserver which has been connected to via the TREE CONNECT‘ protocol.

333 User-level Security with Core Protocol

There is no support within the cone protocol to allow user-level security for SMB redirectors that

are only capable of working with the core protocol. A n Ll\/[X server in user-level seoirity mode

may decline connections with an SMB redirector requesting only the core protocol.

In an effort to be flexible. the LMX server may select to support the coreorrly SMB redirector by

mapping the SMB redirector into the user'—level security environment. This mapping could be

performed by the following steps:

1 If the SMB redirector's system name is defined as a username (and the password supplied

with SMBtcon matches), the user logon will be performed using that value.

2 If the above fails, the LMX server may reject the request or assign a default usemame

(probably allowing limited access).

3 The UID will then be ignored and all access will be validated assuming the usemame
selected above.

The above allows LMXser've1‘s in user-level security mode" to accommodate Sl\/[B redirectors

supporting only the SMB core protocol.

1 The lern‘l TREE CONNECT is used to represent either the 5MB!ccn or SMBtoanX request usage.

Protocols for X/Open PC Interworki ng: SMB, Version 2 13

Page 32 of 535

Connection Protocols

34

14

SMB Botocol Conventions

Connection Protocols

No network traffic is generat.ed when an LMXserver makes resources available for sharing. The

required information is si mply stored until requests from SM3 redirectors arrive.

The Sl\/[B protocol makes use of a NetBIOS transport facility. NetBIOS defines a set of network

transport facilities. The interface is outside the scope of this document. The NetBIOS functions

can be implemented over a variety of transport protoools, however within this document only

the mapping of NetB1OS over TCP and UDP (see Appendices E and G) and NetBIOS over ISO

transport services (see Appendix E on page 3]) are considered.

To establish an LMX session the SIVIB redirector will establish a NeI'_BIOS session with t.l1e LMX

server. Therefore the LMXserver listens on the LMXNetBIOS name (see Section 35on page 15.

After the LMXsession has been established the SIVIB redirector will negotiate the SMB protocol

level sending an SMBne-gprot. The SMBne-gprot must be the first SMB request sent on the

Ner_BIOS session. In the SMBnegprot response the LMX server will specify the maximum buffer

size that the SMB redirector is allowed to request or send. Due to the nature of the NeLBIOS

transport service the maximum bulfer size will be in the range of]K to 64K Each SIVIB

request or response will be sent as a single NetBIOS message.

V\/hen t.he user of the SMB redi rector issues a command to connect to a particular share, the SIVIB

redirector generates an SMBrcon or SMBtconX request containing the name of the shared

resource and the associated password. The password could be empty. If the LMX server is in

userulevel seourity mode the username and password will be supplied via the SMBsessseiupX

request. If no SMRses55etupX request is received, the LMX server may use the SIVIB redirector's

system name as described in Section 333on page 13to perform user authorisation.

V\/hen runningin share—level security mode, on receiving the $MBtcon or SMBtconX request, the

LMX server verifies the resource narne/password combination and retu ms either an error oode

or an identifier (the TID).

The resource name is included in the TREE CONNECT request and the identifier (TTD)

identifying the connection is retumed. The meaning of this identifier (TID) is LMX server-

specific; the SI\/[B redirector must not &ociate any specific meaning to it.

The SIVIB redirector must associate the identifier with the devioe name being redirected

(specified by the user in the command which initiated the TREE CONNECT) and include the
TID for all future network resource aooesses.

X/Open CA E Sped fication ([$2

Page 33 of 535

SMB Protocol Conventions Naming

3 5 N am in g

VVlthin the SMB protocols three types of name formats can be distinguished:

- NetBIOS names

- names according to the Uniform Naming Convention (UNC)

a long filenames

An LMXserver supports the following hierarchy of names for file and pri nt sharing:

The fiist layer, U16 LMX servername, is used by the SMB redirector to identify the specific LMX

server desired. This LMXser'vername is typically used by the user on the SMB redirector when

he wants to connect to a particular resource maintained by that LMXser\/er. The mapping of the

L.T\/[Xservername to the NetBIOS name may be obtained by converting the LMXservemarne to

upper case, padding up to the fifteenth byte with 0(3) and adding CXED in U16 sixteenth byte,

This approach restricts the length of the LMXservemame to 15cha1acters.

351 Resource Names

Each LMX server supports a collection of r5ource names. A resource name represents a resource

provided by the LMXserver. This name is at a minimum in 83format (refer to Section 353on

page 169, however, actual restrictions on this name are implementation—speci fic. Examples of
resources are:

- file system subtrees

- primers

- IPC facilities (outside the scope of this specification, see the X/Open CAE Specification, IPC
Mechanisms for SMB)

- administrative data, which can be accessed and modified via remote administration (see

Appendix Bon page E3

- direcdy accessible devices (outside the scope of this specification)

A resource name is also commonly referred to as a share name. The resource name for IPC
facilities PCS and the resource name for administrative data ADMINS are reserved and cannot
be used for other services.

35.2 NetBIOS Names

NetBIOS names are used to establish a NetBIOS session between the LMX sewer and the SIVIB

redirector, the LMX session. Other NetBIOS names are used for messaging services, as

described in the X/Open CAE Specification, IPC Mechanisms for SIVIB. A NetBIOS name has a

length of 16 bytes. NetBIOS names have no structure; that is, there is no concept of network

number, host number, socket number, and so on. Each participant in a communication uses a

NetBIOS name. NetBIOS names are dynamically claimed and relinquished. There are two types

of NetBIOS name: unique, which can be claimed by only one system at a time, and group, which

can be claimed by several systems ata time.

Since NetBIOS names are used to connect systems with the Sl\/[B protocol, some structure on the

NetBIOS name is imposed. For the LMX sen/ername, the fiist fifteen bytes normally comprise

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 15

Page 34 of 535

Naming

35.3

35.4

35.5

SMB Hotocol Conventions

the l_.lvlXservername in all u pper—case characters. Any remaining bytes are padded with trailing

blanks (ASCII 0(2) to bring the total length of the NetBlOS name to 15 bytes. LMX

servernames are usually simple, unstructured names, such as XOPENPCIC, T‘OOl_,SVR,
JASONZ.

The sixteenth byte is used to distinguish vari ous uses of the SMB protocol, as follows:

Ora) Used by the SMB redirector to name its end of a file—sharing connection; also used for

the sending end of messaging circuits and the sending and reoeiving ends of class 2

mailslot datagrarns (see the X/Open CAE Specification. IPC Mechanisms for Sl\/TB). A

NetBIOS name ending in Oz(Dis also said to be in redirector format.

CR3) Used by LMX servers as the NetBlOS name to which they listen for inooming

oonnections (LMX network name). A NetBlOS name ending in O><Z3is also said to be in
server format.

It is important to note that a single system may use all forms at various times. depending upon

the type of i nteraction and the system with which itis interacting.

So, as an example. the SMB redirector will use a NetBlOS name ending in Oc(I)as the caller name

and a NetBlOS name ending i n O<Z)for the l_.MXser\/ername.

Uniform N aming C onvention

UNC names are constructed from names having an 83format that are separated by a backslash

(\). An 83formal name consists of two components: a one to eight—byte basename must be

present and an optional one to tl1i'eebyte extension may be added. If the second component is

specified, the two oomponents are separated by a period 0, henoe the term 83format. Within

an 83f0rmat name the following bytes are illegal:

o "./\ []: | <>+=;,"?O<Z)(spaoe)

o bytesless thanO<Z)

Note that the characters * and ?are used in some SMIB requests as wildmrd chaiacters.

Canonical Pathnames

For all of the dialects defined in dis douiment, except for the extended 2O SMB protocol, file

and directory names need to follow the Uniform Naming Convention (UNC). The backslash (\)

separator is die directory separator. Two special directory nams, . and . , , must be recognised.

They have me usual CAE meanings; . points to its own directory, .. points to its parent

directory. In the root directory of the file system subtree, . and . . are not praent.

Note that it is the Lix/D(server’s raponsi bi Iity to ensure that virtual root as defined by the TID.

Long Names

The extended 20protocol allows for the creation of long file and directory names with a total

length up to 255 characters. These names are caseinsensitive and may be case—preserving

(implementatJ‘on—dependent). That is, the names File and file will represent the same name.

Long names have a free format, compared to UNC names‘ It is possible to create a long name

for a file which contains multiple instances of the component separator‘ .. Directories are still

delimited by the \ character‘.

X/Open CA E Speci fication ([$2

Page 35 of 535

SMB Protocol Con ven tions

36

37

1/Wdcards

Wild cards

Some SIVIB requests support wildcard filenarnes as the last 83 or long filename format of a

pathname. These are filenarnes which refer to a number of files based on a pattem—match

defined by the wildcard string. Only filenarnes which are acceptable under the filename

convention (see Section 4.2on page E can be matched by wildcards.

Each part of an 83format name — t.l1e basenarne and the extension (if applicable) - is treated

separately. For long filenames the . in the name is significant even though there is no longer a
restriction on the size of each of the components on either side of the . .

o The *character matches an entire part, as will an empty specification of that part. If received,

it is interpreted to mean filling the remainder of the oornponent in the name wit.h ? and

performing the search with this wildcard character‘. Any characters that oocur after the * are

ignored.

- The 7 character matches exactly one character. Multiple ? characters at the end of a part
match that number of characters or fewer.

For example, the strings ABC.|X| and A.|X would match the wildcard *.| XI, but ABCT
would not; AB.C and ABC.C would match A?'?.C, but ABCD.C would not; ".* would match all
filenames.

Some SMBS, such as SMBmv and SMBcopy. use wildcards to transform filenames. In this case,

two wildcard patterns would be supplied; the non—speciaJ characters in filenames matching the

first wildcard would be replaced with the non—special charact.ers in the same relative positions

from the second wildcard, and the wild fields would be left unchanged.

For example, the wildcards *.F and *.FOR would transform ABCF to ABCFOR, but ABC.F1
would not match the first wildcard and would not be transformed; A'?l3?'?.C and X7Y??.|X|

would transform A]B2C to XIYZTXF, but A]B2I34.C would not mat.ch the first wildcard.

File Paradigm

All resource type information is stored using a file paradigm. For the resource type the

following file types are defined:

~ regular files on file system subtrees

~ spool files for printers

Other types defined that are ou tside the soope of this speci fication are:

~ named pipes for IPC facilities

~ majlslots for IPC facilities

~ devioes or1 directly acoessible devioes

Note that di rectories are never treated as files, but require special SMB requests to be read.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 17

Page 36 of 535

File Paradigm

37.1

37.2

SMB Hotocol Conventions

Regular Files

In Sl\/{B requests the following attributes are known:

this attribute is set, write access is denied. 0 herwise read and write
access isallowed.

The file is excluded from normal directory searches.

The file is excluded from normal directory searches.

11-byte volume label to identify a file system subtree. It is implemented

as a special file and must reside on the root directory of the file system

subtree. Some SMB redirectors expect this to be a file.

The file is a directory.

If this attribute is set it indicates that the file has been changed since the

last backup. Typically it is set whenever t.he file has been written to and

will be cleared by backup programmes.

read—only e

hidden file

system file
Volume ID

directory
archive fil e

The volume ID attr1' bute cannot be specified together with other attributes. The other attributes

can be set concunendy. Files without any attribute set are referred to as regular files.

Open Modes

There are two groups of file exclusion which can be selected via the SMB protocol when a file is

opened. A file opened in any deny mode may be opened again only for‘ accesses allowed by the

deny mode. The two groups and their subtypes are:

C 00 up 1

DENY N ONE A nyone else may read and /or write.

DENY ALL Deny other users any access to this file.

DENY READ Other users may access for writing.

DENY V\/RITE Other users may access for reading.

The deny modes provide exclusion at the file level. A file opened in any deny mode may be

opened again only for the access allowed by the deny mode. This exclusion applies to all

sutsequent opens of the file even if it is from the same process requesting the original deny

mode open. "Hie DENY READ and DENY ALL modes deny opening a file for execution

(reference Section 5 3Son page 44).

Subsequent opens of a file may specify more restrictive deny modes as long as the new

exclusions do not conflict with the existing deny modes granted.

X/Open CA E Spec‘ fication ([$2

Page 37 of 535

SMB Protocol Con ven tions File Paradigm

The following table outlines aooess to the file:

-' a ng ew open reques ng

eny Mode access
ENY ALL R/W

REA

Gooup2

Compatibility VK/lthi n an LMXsession, once a file has been opened in compatibility mode, all

subsequent opens of that file by any process must be in compatibility mode

until the last open instance has been closed. If a process opened a file For any

access, another process using the same LMX session may open the same file

for any access.

Across LMXsessions. compatibility mode opens are mapped as follows:

The rules for group lopen moda apply.

37.3 Write Behaviour

The SMB protocols make assumptions on the state of written data; that is, whatever data is

written is assumed to be what will be read at a later instant. The actual placing of the data onto

the storage medium is a function of the LlvlXsei\/er. Yet, the SMB protocols do allow the SMB

redirector to make suggestions about the placing of the data.

There are two types of wn‘te behaviour:

\M‘ite through The data is to be placed on the storage medium prior to the response to the

w rite request.

\M‘ite behind It is acceptable to cache the data internally to the sewer and respond to the

w rite request immediately.

These wn‘te behaviour modes are only availabe in the extended dialects of the SMB protocols.

The core and core plus dialects assume a write through behaviour.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 l9

Page 38 of 535

Locking Con ven tions

38

381

382

SMB Hotocol Conventions

Locking Conventions

Byte Locking

The Sl\/[B protocol supports a form of record locking for read acoess or write access. This lock

covers a range of bytes and cannot overlap any other locked range. Aocess to a locked range of

bytes from a process which did not obtain the lock is prevented. Processes need not take a lock

to deterini ne ifany other process had t.l1at range locked as well.

Opportunistic Locking

Opportunistic locking is a performance enhanoement available in the extended protoools which

enabla an Si\/[B redirector to reduce the number of SI\/[B requats to a minimum when it is the

only SIVTB redirector acoessing a file opened in non—exdusive mode. This form of locking allows

the SMB redi rector to cache locking requests as long as no omer protfi is attempting to actms

the file. The support of opportunistic locking is the one instance within the SI\/[B protoools

where the Lt\/D(server will make requests of me SMB redirector.

An SMB redirector requests an oppoitunistic lock (or oplock) in two ways:

L by setting bit 5 (and optionally bit 6for additional notifications such as file deletion) in the

smb_flg field of the SMB header (see Section 5 Ion page 33 of the SMBopen, SMBcreate or

SMBmknew oore SMB requests. The oplock is gianted by bit Sbeing set in the smb_flg field

of the SIVTB rtsponse. If bit 5is not set i n the response then the oplock was not granted.

2 by setting bit 1 (and optionally bit 2) of the smb_l‘1ags field in the SMBopenX extended SIVTB

request. The oplock is granted by bit l5ofsmb_action being set in the response.

An opportunistic lock may only be granted if no other SMB redirector has the file open. An LMX

server need not implement oppoitunistic locking; such an implementation would simply deny

all oplock requests.

The LMXsei\/er must break the oplock and notify the SMB redirector in the fol lowing oases:

. another prooess attempts to open the file

o if bit 6and bit Zwere set in the oplock request and an operation that changfi the file (for

example, SMBunlink, SMBmv, SMBmove) was reoeived by the LMX server

When an LI\/[Xseiver decida to break an oplock, it must perform the following steps:

L Hold off the requatwhich caused it to break the oplock.

2 Send to the SMB redirectorwhich has me oplock an SMBiockingX request with l\/l]D = — L

3 Permit the SMB redirector to flush any data that was cached by sending the appropn'ate

Si\/[B VVRJTE requtsts. The SMB redirector must flush any cached byterange locks as well,

Thae lock requsts man be embedded in the SMBlockingX request which must be issued in

raponse to the broken oplock noti fiaation.

4 Finally, the SIVTB redirectorsends an SMBlocl<ingX requfit rsponding to me requat issued

in step L if the SMBloclu‘ngX request contaj ned any lock requests, a response by the LMX

sewer must be geneiated. If me request did not contain lock requats, no response by the

LI\/lXsewer is geneiated. Note that the SMBiodo'ngX requat should contain no unlock

requests, as the SMB redirectorwas not explicitly locking to the Livlxseiverwhile it had an

opportunistic lock.

The SMB redirector with the oplock may choose to close the file during step 3pro<msing. If it

doa so, the LI\/D(seiver may giant an opportunistic lock to the new requesting SIVTB redirector if
all other conditions are met.

X/Open CA E Speci fication ([$2

Page 39 of 535

SMB Protocol Con ven tions Locking Conventions

If the SMB rediiector has issued an SMB CLOSE request on the file at the same time the LMX

server has attempted to break the oplock, the Sl\/[B redirector will ignore the SMBlocldngX

request; the LMX server must handle the SM3 CLOSE request ooirectly and not expect a

response to its attempt to cancel the oplock.

It is possible that notification of a broken oplock (the SMBlockJ'ngX request), and some other
request from the SMB redirector, cross on the network. In this case, the LMX server must note

that the notification is outstanding and cause all Sl\/[B requests to fail (by returning zero—length

data, for example). The SMB redirector will respond to the broken oplock notification and retry
the SMB request.

An LMX server is permitted to detect aeoess to an opportunistically-locked file from an LMX

seiver—resident process and break the lock: however, this functionality is not mandatoiy.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 21

Page 40 of 535

Chainjng ofExtended SMB Requests

39

SMB Protocol Conventions

Chaining of Extended SMB Requests

Certai n extended SMB protocol requests (those whose names end with X) can have an additional

Sl\/[B request chai ned to them; however, each SIVIB request which permits chaining allows only a

subset of the pcxssible SIVIB requests to be chained. The chaining of SM3 requests allows for a

reduction in the number of request/response actions t.hat need to be taken in some instances.

For example, if an application on t.he Sl\/[B redirector requests a lock of a byte range followed by

a read of the data in this byte range, the SMB redirector may choose to cache the sending of the

locking request until the actual read occurs then send an SMBl0ckingX, SMBreadX chained
request.

The following rules must be obeyed by chai ned SMB requests:

1
The chained SMB request does not repeat the SMB header information. Rather, it starts

with its own smb_wct field. The 5mb_com2field in each SMB. . . X request specifies the Sl\/[B

command code for the chained SMB request.

All chained SMB requests and their data must fit within the negotiated maximum buffer
size. This size limitation also applies t.o the amount of data in the SIVIB request.

There is one SMB request sent containing the chained SIVIB requests and there is one SIVIB

response to the chained SMB requests. The LMX server must not elect to send separate

SMB responses t.o each of the chained Sl\/113 requests.

All chained SIVIB responses must fit within the negotiated maximum buffer size. This

limits the maximum value on an embedded READ, for example. It is the Sl\/[B redirector's

responsibility not to request more bytes than will fit withi n the multiple SMB response.

If the last request of a chained series is a chained SMB request (that is, SMB. the
smb_com2 field must be OXCIIT (also referred to as the NIL oommand).

The LMX server will implidtly use the result of the prior SMB requests in chained SIVIB

requests. For example, the TID obtained via SMBtconX would be used in a chained

SMBopenX, and the FID obtained ir1 the SMBopenX would be used in a chained SMBread. ll

chained requests reference an FID, the 5mb_fid field in each SMB request must oontain the

same FID value. In other words, each SMB request can only reference the same FID (and

TID) as the other SMB request in the combined request. The chained SMB requests can be

thought of as performing a single (multi—part) operation on the same resource.

The first SMB request to encounter an error will stop all further processing of chained SIVIB

requests. The LMXserver shall not undo SIVIB requests that succeeded.

Suppose SMBopenX and Sll/lBl‘€‘£id were requested; if the LMXserver were able t.o open the

file successfully but the read encountered an error, the file would remain open. This is

exactly the same as if the SMB requests had been sent separately.

If an error occurs while prooessi ng chained SMB requests, the SIVIB response element of the

chained SMB responses in the buffer will be the one which enoount.ered the error. Other

unprocessed chained SMB requests will have been ignored when the LMX server

encountered the error ar1d will not be represented in the chained SMB response. More

specifically, the last valid smb_com2 (if not the NIL command) will represent the SIVIB
command code on which the error occurred. If no valid smb_com2is present, then the error

occurred on the first S1\/[B request and 5mb_c0m oontains the SMB command code which
failed. In all cases, the ener class and code are returned in the 5mb_rcls and 5mb_err fields

of the SIVIB header at the start of the Sl\/[B response.

Each chained SMB request and SMB response contains the offset (from the start of the SIVIB

header) to the next chained SMB request/response in its own 5mb_o1?2 field. This permits

X/Open CA E Speci fication ([$2

Page 41 of 535

SMB Protocol Conventions Chaining ofExtended SMB Requests

chaj ned SMB requests to be built without packing them. There may be spaoe between the

end of the previous SIVIB request (as defined by smb_wcr and smb_ bcc) and the start of the

next chaj ned SMB request; this simplifies the building of chained SMB requests.

10 The data in each SM3 nesponse is expected to be truncated to the negotiated maximum

number of 512 byte blocks which will fit (aligned at a fQrbit boundaiy) in the maximum

bulfer size, wi Lh any remaj rting bytes in the final buffer.

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 Z3

Page 42 of 535

Exception and Error Handling

310

3101

310.2

24

SMB Protocol Conventions

Exception and Error Handling

Exception handling within the SIVIB environment is built upon the various environments (see

Section 32on page 1Q. \/Vhen any environment is terminated in either an orderly or disorderly
fashion, all oontai ned environments are terminated.

Disord erly LMX Session Dissolution

The rules for disorderly LMX session termination are as follows:

- An LMXser\rer may terminate the LMXsession to an SMB reclirector at any time if the SIVIB

redirector is generating invalid S1\/[B requests. However, wherever possible the LMX server

should first retum an error oode to the SMB redirector indicating the cause of the LMX
session abort.

- If an LMX server gets a hard error on an LMX session (such as a send failure) all LMX

sessions from that SMB redirector may be aborted.

An SMB redirector is expected to reestablish an LMX session in the case where it was dropped

by the LMXsen/er due to inactivity.

On write—behind activity, a subsequent WRITE or CLOSE of the file will return the fact that a

previous WRITE failed. Normally, write—bel1ind failures are limited to hard disk errors and file

system ou t—of—spaoe cond i tions.

Errors and Error Handling

In the case of success for file and print sharing, the LMXserver must retum en‘or class SUCCESS

and error code SUCCESS. For si tuati ons where no error is defined by the SMB protocol, the error
class ERRSRV and error oode ERRen‘or are to be retu med.

The contents of SMB response parameters omer man me Si\/[B header fields are not guaranteed

in the case of an error retum. In particular, the LMX server may choose to return only the Si\/TB

header portion from the SMB requgt in the SMB rrsponse; mat is, the Si\/[B header fields

smb_ wt! and smb_bcc (see Section 5 Ion page 37) may both be zero (0.

X/Open CA E Speci fication ([$2

Page 43 of 535

SMB Protocol Conventions Timeouts

311 Timeouts

The extended protocols provide for timeouts on the LMX sewer. SIVIB requests which may
timeout include:

- opens to directly aooessible devioes

- byte—range locking

- lead or write on directly aooessible devioes, mailslots and named pipes (refer to the X/Open
CAE Specification, IPC Mechanisms for SMB)

If an LMX server cannot support timeouts, then the error <ERRSRV, ERRtimeout> is retumed,

just as if a timeout had occurred, if the resource is not available immediately upon request. A

timeout can indicate a delay time, an indefinite delay, or that a system default should be used.

Default timeouts apply to direct access devices, mailslots and named pipes only.

312 D ownw ard -com patibility Support

The core and extended SMB protocol requests ar1d responses ale variable length. Thus

additional fields may be added in the smb_Vwv[] and the 5mb_bufl] areas in future dialects (see

Section 5 1on page 3'3. LMXsen'ers must be implemented such that additional fields in either

of these areas will not cause the SMB request to fail. If additional fields are encountened, which

are not recognised by the LMX server's level of implementation, they should be ignored. This

allows for future upgradeof the SMB protocol and eliminates the need for reserved fields.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 25

Page 44 of 535

SMB Hotocol Conventions

% X/Open CA E Sped fication ([$2

Page 45 of 535

Chapter 4

MX Considerations

This chapter highlights possible behaviours of LMX servers and deals with aspects that are

caused by hosting LMX servers i n the CAE.

The conventions an LMXserver must ad here to are:

]. user‘ mapping from SJ\/[B redirectors to CAE environment

2 filename mapping, which defines the mapping from the namespace provided by the SMB

canonical pathna me format to t_he namespaoe of CAE

3 acoess and attribute mapping. which defines the mapping from CAE access rights to SMB
file attributes and vice versa

4 locking. which defines the mapping from the Sl\/IE§supported locking operations to those

locki rig operations supported by CAE

Other items where LMXser\/ers may choose differing approaches are:

1 Sl\/[B protoool dialect (ordialects) and password encryption

consequences of the CAE file system

LMXser\/er caching

method of support for printer spooling(fir-D‘-C<3l\)
usage of the underlying network. including the choioe of the network protocol.

interoperability with other filesharing principles and extensions beyond a single
subnetwork

41 LMXUsemame Mapping

CAE file system security is based on a user or process having a CAB UID and one or more CAE

GlDs (refer to the X/Open Portability Guide. Issue 3 Volume 2 X31 System Interface and

l-leaders). Personal computers remotely accessing a CAE file system via an LMXser‘ver must not

oomprornise the CAE file system security.

An LMX server must provide a mechanism to map a user to a CAE UID and CAE GlDs. This

mapping may be different for share—level and user—level security mode (refer to Section 33on

page 12). For example. an Ll\/lXserver running in user—level security mode may map each user

to its own unique CAE UID and CAE GIDs. while an LMXser\/er running in sharelevel security

mode may map all users to a common CAE UID and CAE GlDs. "lhis mapping of a usemarne

and password into the CAE environment may use the CAE user aocount system t.o hold the

usemames and passwords. OI‘. there may be a separate user account system for users of SMB

redirectors that maps these users into the CAB environment. Regardless of the approach taken.

an LMX server must guarantee that a user does not have any more access permissions than a

CAE process with the same CAE UID and CAE GIDs.

When runningin user—level security mode. the UID used in the SMB requests may be relative to

the LMXsession. The LMX sewer therefore needs to map each pair lLl\/IX session. UID) to the
individual CAE UID and CAE G1Ds.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 27

Page 46 of 535

LMX Fiiename Mapping

4.2

LMX Considerations

LMX Filenain e Mapping

This convention governs the mapping between Sl\/[B pathnames (see Section 354 on page 16

and names maintained in the file system on the CAB system. The SMB5essseiupX request uses a

bit (bit 4in the smb_flg; see Section 5 lon page 37) in the SIVIB header which indicates whether or

not the pathnamee in subsequent Sl\/[B requests have been translated to SMB canonical

pathnames. LMX sewers must support this bit being set.

In addition to this flag, in the extended protocols anot.her bit (bit 3in the 5mb_flg) in the SMB

headerindicates whether the SMB redirector desires case—i nsensitive pathnames. If this bit is set,

operations should be case—insensitive. l_.MXservers must support this bit being set.

If an LMX server does not support the functionality of either bit 3or bit 4 when not set, the

sewer may choose to ignore these bits and attempt to use the pathname provided in the SMB

request in the mannerit would for the oondition where the bi ts are set. This means that when an

SMB redirector performs a request with one (or both) of these bits cleared and the sewer‘ does

not support that form of pathname, the SMB redirector will receive an error condition produced

by the normal functioning of the LMXserver (thatis, file not found).

\/Vlth regard t.o both these flags, the l_.MX server must generate pathnamee in SMB responses

which match the request.ed form. If the SMB redirector did not request canonical pathnamee, the

LI\/lXsewer must not map pathnames in responses, but simply use the local representation.

Pathnamee following the Unifonn Naming Convention (see Section 354 on page 16 from the

SMB redirector side are to be mapped by the LMX sewer into the CAB file system. Characters

with values larger or equal to O<8)may not be supported or converted from upper to lower—case

(and vice versa) by LMX sewers. All other characters are mapped aooording to the following
rules:

1 Frlenames with . and extension are used as is.

2 Convert all characters of value less than 0(8) to lower case (unless case—sensitive mode

was requested).

3 The di rectory separator \ is converted to /.

4 Accept the special names . and .. as is.

5 Leave any other special characters as they are. If any forbidden characters (see below)

remain in a name, reject the request.

Names of files on the CAB system are mapped by the LMX server to canonical pathnames

according to the following rules. An LMX server implementafion may map a wider range of

CAE filenamee into a canonical pathname bypassing some of the restrictions below. However,

all mappings need to obey rules one to three.

1 Names which are all lowercase are split into frlename and extension at the first period (.).

If case—insensi tive mode was requested, all characters of value less than O<8)are converted
to upper case.

2 The special files . and . . are not translated and are used as is.

3 The di rectory separator / is converted to \.

4 Ifcase-i nsensitive mode was requested. names containing an upper-case letter are invisible

and inaccessible from the Sl\/[B redirector. If case—sensitive mode was requested files of
mixed case are visible to the Sl\/[B redirector.

5 Basenames longer than 8characters are invisible and inaooessible from the SMB redirector

depending on the dialect chosen. The extended 20 dialect allows for longer file and

X/Open CA E Speci fication ([$2

Page 47 of 535

LMX Considerations LMX Fiiename Mapping

directory names.

6 Namfi containing a leading . (that is, a null basename part) are invisible and inaocasible
from the SMB redirector.

7. Namfi containing a trailing . (thatis, a null extension with an extension separator present)
are invisible and inaeible from the SMB redirector.

8 Namfi containing more than one . areinvisible and inaccessible from the SMB recli rector.

9 Namfi containing more than three characters following a . are invisible and inaccessible
from the SMB redirector.

IO Namfi oontaining chaiacters not permitted in canonical pathnames are invisible and

inaccessible from the SMB redirector. Thoseillegal characters are:

(as anything but a separator for the extension)

" " (the space chaiacter, ASCII 0(2)

any valueless than ASCII 0(2)
(XE (X53 0(5) O<2A 0&3? "7", CXSA Oxffl

O(f§3 ";", (XI (X33 "=", O<CC "<", O<33 (X2 "" O<7C "
(X23

Examples:

USERS\ ACN\MA]N.C

not aocessi bl e: trailing dot>

not acoessi bl e: upper-case letter>

not acoessi bl e: upper-case letter>

not aocessible: extension too long>
not accessible: [00 man (lots>

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 E

Page 48 of 535

LMX File Mapping LMX Considerations

43 LMX File Mapping

4.31 SMB File Attributes

4.32

4.3.3

SMB file attributes (see Section 37 on page 17) are not the same as CAE file attributes. The

mapping of the read—only and directory attributes is the minimum set of required functionality.

Any other attributes not supported by the LMXserver may be i gnored. If the read—only attiibu te

is specified, the SMB redirector has no write permission. For files created, the Ll\/lXser\/er will

turn oil“ the CAB write permission. If the directory attribute is specified, the requested name will

map to a CAB directory. LMX sewers may support more SMB file attributes but are not allowed

to use d ifferent semantics for the read—only and directory attribute.

Changing the read—only atuibute via SMBsetarr or SMBser‘attrE will affect the write mode of the

file from the LMXse1‘ver's perspective; hence, in user—level security mode the UID specified must

map t.o that of a CAB process with appropriate privilege.

CAB File Access Permissions

CAE provida a rrmask (refer to the X/Open Portability Guide, Issue 3 Volume 2. XS] System

Interface and Headers) to define the default file ar:c& permissions to be used when a new file is

created. Arr Ll\/Ixserver must provide a mechanism to define the rrmask to be used for CAE files

created on behalfof the users. The mechanism is implementation-dependent. For example, an

implementation may provide a common umask for all users or may define a rrmask per user.

In CAE environments, it is necessary to have both the read and search attributes on a directory

to be allowed to view and transverse the directory (refer to the)(/Open Portability Guide, Issue

3 Volume 2 XS] System Interface and Headers). An LMX server‘ must provide support that
allows for SMB redirectors to create directoria that man be viewed and transversed.

V\/hen the LMXserver opens a file on behalfa user (that is,the SMB r‘edirector’s user mapped to a

CAE LIID and CAE GlDs) the CAE acofis permissions for that file must be obeyed.

File System Issues

CAE provides a method whereby the maximum allowed size of an individual file can be

controlled. This control is provided via ulimit (refer to the X/Open Portability Guide. Issue 3

Volume 2 XS] System Interface and Headers)‘ An LMX server may provide support where this

feature can be used to govern the maximum file size allowed for all users of the LMXserver or
even individual users.

If this support is provided, it is not possible to retrieve the value for ulimit from SMB redirectors.
Therefore, SMB redirectors cannot tell the difl’erence between a file size restriction or a file

system bei ng out—of—space. The manner by which an LMXser\'er handles the CAE ulimit feature

is implementat.ion—dependentt

The LMX server will report either the free space of a single file system or the total free space of

all file systems that the shared file system subtree, aocessible from the SMB redirector. may span.

Thus it is possible to get into a state where a directory path on the LlvlXserver has run out of free

space, but another directory path has not. In this state, SMB redirectors will report to the user

that there is free spaoe available on the server and yet the user will not be able to write data to

files on the file system subtree or vice versa.

It is possible in a CAE environment that the LMX server has no control over the creation time

given to a particular file. Therefore, sipport for the setting of the creation time provided by an

SMB redi rector is implernentau‘ on—dependent.

X/Open CA E Speci fication ([$2

Page 49 of 535

LMX Considerations

434

435

43.6

43.7

LMX File Mapping

\/Vnen retu rni ng available space on the LlvlXserver to the SMB redirector (see Section 86on page

107), it may be necessary for the Sl\/[I3 server to report an allocation unit that is larger than the

512byte units of the CAB system in order to avoid overflowing the number of allocation units

available in the SMB response. This can result i n a rounding error for the free space information.

Some CAE syst.erns provide no way for a program to block until the local file cache has actually

flushed to the disk, but simply indicate that a flush has been scheduled and will complete soon.

An LMX server should nonetheless take steps to maximise the probability that the data is truly
on disk before the SMB redirector is notified.

CAB Special Files

L.MXsen/ers may allow access to CAE special files, such as CAE—defined FIFOS or character and

block special files (refer to the X/Open Portability Guide, Issue 3 Volume 2)6] System Interface

and I-leaders). Support for speci al file access is not a requirement for Llvlxservers.

Deleting or Renaming a File

The specification for deleting or renaming a file via an SMB requat (for an example, see Section

7', l2on page Er2or Section 7 l lon page E) specify that for a file to be deleted no other prooess

may have the file open. In a CAE environment, it may not be possible for the LlvD(server to

determine whether another CAE application has the file to be deleted open. Therefore, it is

implementation—dependent whether the LlvD(sewer‘ will not allow an SMB redirector‘ to delete

or rename a file while another CAE application has the file open for use. Additionally, it is

possible for a CAE application to delete or rename a file while an Sl\/[B redirector‘ has the file

open for use. The actions taken by the LMX server‘ under‘ dr¢5e circumstances are

i mplementati on—dependen t.

Long Filenames

When using the extended 20 protoool dialect, an Ll\/[X server may support the use of long
filenames. These are filenames which do not oonfonn to the 83format (refer to Section 3Er5on

page 16. It is possible that the CAE system on which the LMX server is exearting does not

support filenarnes to the maximum length allowed in the long filename definition. In this case.

the LMX sewer may support names longer than the 83format yet restrict the maximum length

of the name to the length supported by the CAE system. As an example. suppose the CAB

system supports names up to fourteen characters in length. An LMXser'\/er‘ on (his system is

allowed to provide long name support to the SMB redirectors and restn'ct the maximum length

of such names to fourteen characters. It is not required that an LMX server supporting long

filenames guarantees support of the maximum name length in the long filename definition.

Extend ed A ttrlbutes

The extended 2O protocol allows for the storage and retrieval of extended attributes on a file

stored on the Llx/[X sewer. Extended attributes are name=t/alue pairs where the length of the

oornbinatjon of the name=t/alue pair will not exceed $Ebytes. Both the name and the value

portion of the pair are free format and applitaijorrspecific. The application will store and

retrieve the information based on the name. Support for extended attributes is optional.

Some SMB redirectors will store a oollection of default extended attributes (EAs) when the

support for extended attributes is provided by the LMXser‘ver. Known examples of names and
values for EAs stored are:

.COMMENTS= An ASCIIZ string giving some general discussion on the oontents of the file.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 31

Page 50 of 535

LMX File Mapping LMX Considerations

HISTORY: A n ASCIIZ suing indicating creation and change history for the file.

.KEYPHRASES= A collection of key words or phrases that pertain to the file.

.SUB_ECT= A sulject Ii ne for the file.

TYPE: The type of the file; that is, it is a document file, plain text or a spreadsheet.

For moving or copying files in an environment where LMX servers may or may not be

supporting EAS, SIVIB redirectors will oopy all of the data contents of a File between servers and

warn the user about loss of EA information. The specifics of the Sl\/{B enor codes that must be

supported by the LMX seiver to generate this warning are discussed in Chapter 160:) page 237.

E X/Open CA E Speci fication ([$2

Page 51 of 535

LMX Considerations LMX File Locking

44 LMX File Locking

The locking model and functionality provided by the SMB protocols (and t.hus expected by SIVIB

redirector processes) and the model being used by applications cunning in a CAE environment

are quite dilferent. This mismatch makes it impossible to requiie an LMX server to properly

mediate interlocking between an SMB redirector process and CAE application accessing the
same fil e.

Some forms of interlocking mediation are pwible. lf an LMXse1'ver chooses to support file

locking, it should support at least the features described in this section.

The SMB protocol does deny modes on open (see Section 37.2on page 18 and byte-range locks.

The cone Sl\/[B protocol supports only one type of byte—range lock via the SMBlock request that

excludes that byte—range from any other lock, read orwrite access by other SMB redirectors. The

extended protocols support additionally read—only locks via SMBloclu'ngX.

The CAE does not define any forms of deny mode as in the Sl\/{B protocols. The CAE, however,

specifies two forms of locks (see the X/ Open Portability Guide, Issue 3 Volume 2 XS] System
Interface and Headers):

F_RDLCK Lock byte range allowing multiple readers (shared lock); a process may write to

the range (with or without an F_RDLCK) if no other process has an F_RDLCK on

that range. The file must have been opened with lead access.

F_ WRLCK Lock byte range allowing R/W (read and write) for lockj ng process only (exclusive

lock). The file must have been opened with write access.

These locks are advisory, rather than mandatory. \/with advisoiy locking, cooperating processes

must acquire locks to determine whether any other process has locked that range as well.

4.4.1 Interlocking Behaviour

D eoy Modes

An LMX server must mediate deny modes between multiple SMB reclirector processes. But it

cannot completely enforce those access denials agai nst other LMX setver—resident applimtions,

since those other processes may not be making lock requests against the file. and the CAB does

not provide a mandatoty locking function. LMXservers may provide some forms of deny—mocle

between an SMB redirector and a CAE application.

When interlocking for deny modes is SLI|)|)0I‘[Cd, the LMX sewer may place the following locks

when an SMB redirector requests a byterangelock:

: requested mode

Opens for DENY ALL with all access modes, DENY
' TE with READ access mode, and COMPAT'_lBlLlT'Y

ith all access modes.

Opens for DENY NONE or DENY READ with READ
ocess mode.

Opens for DENY NONE, DENY READ or DENY WRITE
ith VVRITE and R/W access modes. In the case of

DENY VVRITE with R/Wacoess, the record to be locked

ill be promoted to F_ WRLCK. A recent] to be unlocked
in be (1 . . . -_ .- n .

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 33

Page 52 of 535

LMX File Locking

44.2

44.3

LMX Considerations

Although LMX servers acquire an advisory lock prior to each READ or V\/RITE when

interlocking is in effect, application developers should use byte-range locks whenever

cooperating with CAE applications. This specification requires an L.MXserver to retum an error

ifan access to a locked range takes place, which will cause many applications to fail.

Byte-range Locking

LMXservers must provide byte-range locking to SMB redirectors. There are some restrictions

on the ability of an LMX server to oompletely ernulat.e t.l1e required functionality of the SIVIB

byte— range lock as it interacts with the access mode in which the file was opened. A file opened

read—only access cannot have ar1 F_ WRLCK placed on it, as a CAB advisory write lock requires

write permission. Because of this, an LMX server cannot simulate the Si\/[B redirector R/W

record locking semantics for read—only access.

Since the semantits of the SMB byte—range lock are mandatory rather than advisory, an LMX

server must cause accesses by an SMB redirector to locked byte ranges to fail. Ideally, LMX

servers would also cause access to those ranges from LMX sen/er-resident processes to fail. This

am only be accomplished if the LMX server—resident process is ccoperaljve, that is, places

advisory locks on byte ranges of interest. and if the LMX server places advisory locks on behalf

of SIVEB redi rector SMB requests.

The semantia of SMB locking require that an SMB redirector attempting to access (without

locking) a range of bytes al ready locked by an LMXserver—resident process must receive an error

for that request. This means that an l_.MXserver must place advisory locks for all SMB redirector

SMB requests. These implicit locks exist solely for the ti me required for the requested operation

and do not persist beyond that time. If an SM13 redirector has already explicitly requested a lock,

the l_.MXserver need only maintain that lock and permit the SMB redirector to explicitly release
it.

SMB byte—range locks can be larger than CAE file locks. The LMX server must support byte-

range locks beyond standard CAE offsets.

Locking Timeouts

The extended dialects requests for locking define timeout values that indicate how long the

SMB redirector would like to wait before a lock attempt is failed. Support for these timeout

values is not a requirement for an LMX server and may be ignored. If an LMX server cannot

support timeouts. then the error <ERRSRV, ERRtimeout> is retumed,just as if a timeout had

occurred, if the resource is not available immediately upon request.

Read-only Locks

In me extended protocols, an LMX server‘ may choose not to support read-only locks. It will

then treat any request for such a lock as though a read /write lock has been requated.

X/Open CA E Spec‘ fication ([$2

Page 53 of 535

LMX Considerations

45

46

4.7

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

LMX Server Caching

LMX S erv er Caching

An LMX server may perform its own internal caching in an effort to increase performance for

SMB redirectors. A simple example of this would be if the LMX server responds to write

requests prior to making the CAE call necessary to write t.he data in the CAE system. This action

by the LMX server is referred to as write—behind in the remainder of this door.rment. By

responding prior to writing the data, it means the SMB redirector may receive t.he response prior

to the data being reflected in the CAB file system. If an Ll\/lXserver does caching, it is required
thatit maintain this internal cache in such a manner that other SI\/[B redirectors will see the same

data if they make a read request prior to the CAE write by the server. Itis not required that after

an Sl\/[3 redirector performs a write request., and receives the write response, that the data is

reflected immediately to other CAE applications on the LIVJX server system. If an LMX server

performs write—behind, it is required that the server honour SMBflu5h requests and not respond

to these requests prior to flushi ng all appropriate. internally—cached data to the CAE file system.

LMXPrintSpooIing

The SMB protocols allow for status information on printjobs submitted to the LMX server. The

LMX server, however, may choose to deal with print requests by a number of methods. One

example would be for the LMX server to queue print requests internally to the server and then

issue the requests to the CAE print spooling environment onejob at a time, waiting for eachjob

to complete before the next is spooled. This approach allows the LMX server to maintain state

information concerning print requests that can be retumed to the Sl\/[3 redi rector when

necessary. Another approach is to couple the LMXserver print queueing support with the CAB

print spooling support. Depending on the degree the two are merged, it may not be possible for

the LMX server to maintain the exact status of the print request, but a reasonable status must be

estimated when necessary.

The print spooling protocols defined in Chapter 9 allow for the transmission of printer setup

data, and give an indication of the type of data contained in the file (that is, text or graphics).

An l_.MXserver implementation may choose to use or discard the pri nt.er setup data. The text or

graphics mode indicator may be used by the LMX server to perform printer initialisation, or

ignored.

SMB Error Codes

Chapter Sdefines a number of constants and descriptions of possible meanings for SMB error

codes. In subsequent chapters. as each SMIB is described, a table mapping possible error

conditions to error codes is provided. If an LMX server implementation experiences an error

condition that is not described in the table for the specific SMB, the LMXserver may return any
of the error codes defined in this docr.rment that best describe the error condition.

The ERR}-[RD class may cause an SMB redirector to notify the user of the error via an exception

handling routine. \M1ere the ERR]-IRD and ERRDOS class of eriors overlap, the LMX server

implementation has the option to use either cl ass.

Page 54 of 535

Security Policy

48

49

4.10

LMX Considerations

Security Policy

An LMX server must provide a security policy. It may provide eit.her share—level security, user-

level security, or a combination approach (refer t.o Section 22on page 5and Section 33on page
12).

Another aspect of secu rity is the support for encryption of user passwords. A n]_.l\/IX server may

choose t.o support the encryption technique described in Appendix D or Section 112 on page

lffl It is also acceptable for an LMXserver not to support password encryption at all.

Negotiated Dialect

An LMX server may choose t.o support only one, a combination of, or all of the SMB dialects

described in this document. Since the process of negotiating an SMB dialect is open—ended it is

also possible t.hat an LMXserver supports dialects not descri bed in this specification.

N etw ork Issu es

This specification assumes the l_.l\/D(server implementation uses the transport support described

in Appendix E on page $1 (TOP/NetBIOS), Appendix F on page 349 (RFC 1CD]) and Appendix

G on page 419 Itis for this reason that these RFCs are republished in this document.

For the binding of NetBIOS to t.he TCP/IP protocol suite (refer to Appendices F and C) only

those aspects for B—node functionality are required.

An implementation may choose to support the full I\/I—node functionality, as that is a superset of
B-node.

For the binding of NetBIOS to OS] transport (refer to Appendix E on page 3]) the Net_BIOS user

agent is optional.

This specification defines a default method by which LMX servemames are mapped to NetBIOS

names (refer to Section 352on page 15). It is possible that an LMXserver implementation and

compatible SMB iedirector implementation may use additional methods of mapping LMX
servernames to NetBIOS names.

SMB protocols are only specified to run on a single LAN subnetwork. but interoperation in

connected subnetworks is not precluded,

X/Open has defined other types of PC connectivity support; refer to the X/ Open Developers

Specification, Protocols for X/Open PC Interworking: (PC)NFS. (PC)NFS and SIVEB protocol

implementations, or other connwtivity implementations, on the same server are not required to

interwork with respect to additional features beyond those provided by X31 (for example,

extended DOS file open modes). Additionally, if the CAB system is supporting access to other

CAE systems via XNPS (reference X/Open CAE Specification, Protocols for X/Open

Interworkj ng: XNFS), it may be possible to configure an LI\/lXserver to allow Si\/H3 rediiectors

access to the resources of the other CAE systems via the XNFS connection, but this is not a
requirement.

X/Open CA E Speci fication ([$2

Page 55 of 535

Chapter 5

ata Objects and Constants

This chapter describes the SMB format. common data stiuctu res, tlag fields and other objects

oommonly used in Sl\/[3 requests and responses. It also defines various symbolic constants and

indicates their (required) values. Throughout the specification the following definitions will be
used:

8biI field A n octet: someti mes referred to as a byte.

16 bit Two 8bit fields with the least significant 8bit field fu‘st (littleendian).

Ebit Two 16bit elements with the least significant 16bit element fiist (littleendian).

5.1 SMB Format

All SMB requests and responses (except where noted) have a common header, as follows:

_ 1 HI '

5mb_coin oommand code

5mb_rcls error class

5mb_reb reserved for future

16bit field 5mb_err error code

8bit field _ flags
16bit field _ resen/ed for future

16bit field _ ' authenticated resource identifi

16bit field _ ' caller's process ID
16bit field _ ' unautlienticated user ID

16bit field 5mb_nu'd multiplex ID

8bit field 5mb_wct oount of 16bit fields that fol] T

16bit field 5mb_vwv[variable number of 16bit field

16bit field 5mb_bcc oount of8bit fields that follow

8bit field 1b_bufl] variable number of 8bit fields

The structure defined fnom smb_idf through smb_wcl is the fixed portion of the SMB structure

sometimcs referred to as me SI\/[B header. Following the header mere is a variable number of

16bit fields (defined by smb_wrt), and following that is smb_brc which defina an additional
variable number of 8bit fields. The SMB header fields are defined as follows:

smb_idf S1\/[Bidenti fication string, always O(lfl°,O<53C)(4(l,C)<42

smb_rom Sl\/[Bcommand code (see Section 52on page 4).

smb_rcls Error class (see Section 56on page 49, set in the Sl\/[B raponse only.

smb_ err Error code (see Section 56on page 49, set in the Sh/[B response only.

smb_flg A bit-enooded field. The flag bits are defined as follows:

Bit O When set (returned) by the Ll\/DC server in the SMBne-gprol raponse,

this bit indicata mat the LMX server supports the SMBIodcread and

SMBwr1‘leunlock requats.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 37

Page 56 of 535

SMB Format

smb_tid

smb_pr'd

smb_uid

Page 57 of 535

Bitl

Bit2

Bit3

Bit4

Bit5

Bit6

Bit7

Data Objects and Constants

Used only in requests when an extended SMB protocol is negotiated.

\/when set, the SMB redirector guarantees a receive buffer is already

posted; this has implications for the type of underlying transport

service which may be used in sending a response.

Reserved; MBZ (I\/lust Be Zero).

\/Vhen on, all pathnames ir1 the protocol must be treated as case-

insensitive. If one of the extended protocols is negotiated and the bit

is set off, the pathnames are case—sensitive. The LMX server can

assume the valueis always set to on.

Used only in the SMBses55etupX request. \/Vnen on, the SMB

redirector indicates that all pathnames will be specified as canonical

pathnames, already obeying the file naming conventions (see Section

35 on page 13. When off, pathnames are in the LMX server

repnesentation, The LMX server can assume the value is always set
to on.

Used only in the SMBopen, SMBcreare and 5MBmknew

requests/responses. When set in a request, the SMB redirector asks

that t.he file be opportunistically locked, a feature of the extended

SMB protocols. If the LMX server places the opportunistic lock, this

bit is set in the SMB response. This bit is referred to as the oplock bit.

Used only in the SMBopen, SMBCN;-are and SMBmlmew requests when

an extended protocol is negotiated; meaningful only if bit 5is also

set. When set, the SMB redirector is asking to be notified of any

operation which can modify the file (for example, delete, setting of
attributes, rename, etc.). This allows the redirector to cache the

complete file. If not set, the SMB redinector need only be notified if
another open request is received for the file. This bit is referred to as

the opbatch bit.

Always set in responses. The smb_com (command code) field usually
contains the same value in a request from the SMB redirector to the

LMXserver as in the matching Sl\/[B response from the LMX server to

the SMB redirector. This bit unambiguously distinguishes the SMB

request from the SMB response. On a multiplexed LMXsession on a

system where both l_.MXserver and SIVIB redi rector are active, this bit

can be used by the system's Sl\/[3 delivery system to help identify

whether this protocol should be routed to a waiting SMB redirector
or to the LMXserver.

Used by the LMX server to identify a resource (for example, a file system
subtree). The value O<l.‘ll”f is reserved. The LMX server is responsible for

enforcing use of a valid TID where appropriate (see Section 32on page 10.

Generated by the Sl\/[3 redirector to uniquely identify a process within the

Sl\/[3 redirector‘s system. An SMB response will always contain the same

value in smb_pid (and smb_mid) as in the cor1espondingSMB request.

User identifier, It is used by the extended protocol when the LMX server is

executing in user—level security mode to validate access on requests which

reference named resources (such as file open). Refer to Section 32on page D

Section 33on page 12and Section 43 lot) page fDfor additional information.

Thus differing users accessing the same TTD may be granted differing access to

X/Open CA E Spec‘ fication ([EB

Data Objects and Constants

smb_mid

Protocols for X/Open PC Interworking: SIv‘[B, Version 2

Page 58 of 535

SMB Format

the resources defined by the TID based on 5mb_uid. The username and

password requested are valid ated by the LMX sewer via the SMB5esssetupX

exchange (refer to Section 113on page 144). The LMX server returns a value

in 5mb_uid that will be used by the SMB reclirector to represent the user

identity requested.

Note that O<flfe (-3 is reserved as an invalid UID. In share—leve| security
mode this field is not used

This field is used for multiplexing multiple Sl\/[Bs on a single LMX session‘

The PID (in smb_pid) and the MID (in smb_mid) uniquely identify a request and

are used by the SMB redirector to oorrelate inooming SMIB responses to

previously sent SMIB requests (refer to Section 3200 page 10.

SMB Command Codes

5.2 SMB Command Codes

Data Objects and Constants

This table shows the mapping between the symbolic name for an SMB request or response and

the value to be placed in the smb_com field of the Sl\/[B header. The Pmtoool oolumn indicates the

protocol class to win" ch the request belongs:

C Corepmtoool; all dialects.

C+ Core plus protocol as generated by the].CBdiaJect.

E Extended protocol; only those dialects defined as extended 1.0

E2 Extended protocol; only those dialects defined as extended 20

— Not generated by dialects of LAN Manager; included for reference purposes only.

Page 59 of 535

SMBmkdir

SMBrmdir

SMBopen
SMBcreate

SMBclase

SMBflu$h

SMBunl1‘nk

SMBmv

SMBge1atr
SMBseratr

SMBre.ad

SMBwn're

SA/{Block

SMBunlock

SMBcIemp
SMBmknew

SMBchkpth
SMBeX1‘t

SMBIseek

SMBIockread

SMBwn'Ieunlock

SMBre.adbraw

SMBre.adbmpx
SMBre.adbs

SMBwn'rebraw

SMBwn'IebmpX
SMBwn'reb5

SMBwn'rec

rmerved

SMBseIatrrE

SMBge1attrE

SMBIockJ'ngX
SMBI1-ans

SMBH-anss

0000000000000
x1§<8

E'1E'1E'1L'—"1

E'1E'1E'10L'—"1E'1

X/Open CA E Sped fication ([EB

Data Objects and

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2

Page 60 of 535

Constants

SA/{Bioctl

SMB1‘octl5

SMBcopy
SMBmove

SA/{Becho

SMBwrm-close

SMBopenX
SMBre.adX

SMBwrm-X

SMBtrans2

SMBtranss2

SMBfin dclose

SMBfin dn close

SMBIogon
SMBbind

SMBunbind

SMBge1accas
SA/{Blink

SMBfork

SMBge1path
SMBre.adh

SMBrdchk

SMBmknod

SMBrh'nk

SMBge1larr
SMBtcon

SMBtd1‘s

SMBn£-gprot

SMBsesssetupX

SMBulogoflX
SMBtconX

SMBdskat tr

SMBse.arch

SMBflfirst

SMBfum‘que
SMBfclose

SMBsplopen

SMBsplwr

SMBsplda$e

SMBsp}re1‘q
SMBSendS

SMBsendb

SMBFM/dname

SMBcam:eJf

SMBgelm2c
SMB$ends!rt

SMBSendend

E'JE'JE'JE1E1E1E1L'—‘1fi1E'1fi'1E'1L‘—"1
[\)[\)[\)[\)

OOOOOOOOOOEUEUWOOWEWOOO

SMB Command Codes

41

SMB Command Codes Data Objects and Constants

Note: The SMBtran5 request is used within the extended SIVIB protocols only for services

described in the X/Open CAE Specification, IPC Mechanisms for SMB and is outside

the scope of this specification.

42 X/Open CA E Sped fication ([$2

Page 61 of 535

Data Objects and Constants Data Objects

5.3 D ata 0 bjects

This section defines various fields, objects and structures used in more than one SIVIB request or
response.

531 Time Fields

There are two time field formats; one 16 bits in length, and one Qbits in length. Many SMBG

contain a 16bit quantity whose value indicates a particular time. Unless otherwise specified, the

time is encoded in the following fomiat:

hhhhh Bits 1 1- l5contain the current hou r; range isOZ3

mmmmmm Bits 5 lOcontain the current minute; range isO$

xxxxx Bits 04 contain the current seconds in units of two seconds: range is 029

Other SMBs contain a 32bit value which repraenls a time, in seoontls, relative to midnight on

January 1, 1913 (the Epoch). This Bzbitvalueis a signed, but always positive, figbitintegeixand

is split into two 16bit values in the SMB. The low-order 16bit values are always fiist, followed

immediately by me high—order 16bit valua. This pair is usually referred to as time low and

time high.

5.3.2 D ate Fields

Many Sl\/lB6 contain a 16bit value indicating a particular date. Unless otherwise specified, due

date is encoded in the following format:

yyyyyyy Bits 9 15 contain the current year, less 1%) range is O 119. Indimung IEEDZI-38

Note that the base year is not 1970

mmmm Bits 580onta1n the current month: range 1- 12 where lis January.

ddddd Bits O40onta1n the current day ofthe month; range l—3L

533 File Attributes Fields

Many SMBs contain one or more 16bit values, each of which encodes file attributes. Unless

otherwise specified, the attributes are enooded in the following format:

Bit O The file is read—only.

Bit 1 The file is hidden.

Bit2 Thefileisasystem file.

Bit 3 The file is a Volu me identifier.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 ‘B

Page 62 of 535

Data Objects

534

535

Data Objects and Constants

Bit4

Bit5

All other bits are reserved and Must Be Zero. If none of the attribute bytes are set, the file

attributes refer t.o a regular file. Note that use of this field is governed by the File Attributes

oonventjons (see Section 43 1on page K).

The file is a directory.

The file is flagged as changed since last archive.

Buffers

Many of the oore SM]3s contain typed buffers in the 5mb_buffield. A buffer‘ COI'ISi5LS of a single 8

bit field, indimting the type of buffer‘, followed by a st.ring of 8bit fields, which are the oontents

of the bufler. Tl1e buffer‘ type defines the termination method for the bufler contents. The bulfer
types are:

01 Data Block. The buffer oontains a 16bit value oontaining the length of t.he data block,

followed by that number of 8bit fields of data. This buffer‘ is not null—termi nated.

Dialect. The bufler is a null—terminat.ed suing of bytes making up a dialect name (see

Section 540:1 page 48.

ASCIIZ. The buffer is a null—terrninated st.ring of ASCII characters.8328
Variable Block. The buffer‘ oontains a 16bit value oontaining the length of the data block,

followed by that number of 8bit fields of data. This buffer‘ is not null—termi nated.

File-sharing C ontrol

SM]?s which open fila make use of a 16bit value to control the extent of file sharing to be

permitted. This 16bit value has me following format:

Bits 8 13and bit 15are resewed and should be ignored by the LMXsetv er.

w W‘itetht‘ough mode. Neither read—ahead nor wn‘te—behind caching for this file is

permitted. An l_.MXsewer should not respond to any SMB request involving this file

until all data related to the SMB request is on stable store (that is, on disk). This mode

is generated in extended protocols only.

r Reserved. Ignored by the LMXsetVer.

xxx Exclusion mode. Values are:

0 DOS oompatibility mode (exclusive to an LMX session, but that LMXse:£ion

may have multiple opens).

1 DENY ALL (exclusive to this operation).

2 DENY WRITE. Other users may access the file in READ mode. Open for

executing is not allowed.

3 DENY READ. Other users may access the file in ‘WRITE mode.

4 DENY NONE. Allow other users to access the File in any mode for which they

have permission.

X/Open CA E Sped fication ([$2

Page 63 of 535

Data Objects and Constants Data Objects

56 Illegal. SMB redirectors should not specify these values.

7 FCB open mode (see below).

yyyy Type of access requested. Values are:

0 Open the file for reading.

1 Open the file for writing.

2 Open the file for reading and writi ng.

3 Open the file for executing (extended protocols only).

4 14 Illegal. SMB redirectors should not specify these values.

15 Illegal. except for FCB open (see below).

For the exclusion modes see Section 3 720m page 18

Special semantics, called an FCB open, are associated with a file—shating control value of O<OfI’f.

This type of open will cause a DOS compatibility open with the read/wiite modes set to the

maximum permissible. Generally, this will cause any access violations to be detected when the

first lead and/or wiite is attempted, rather than dun‘ ng open processing.

The open for execute bit maps to read—only. and wiites to these files from SMB iedirectois are
not allowed whi le that attribute is set.

536 Resource Types

In SMBrcon and 5MBtconX an ASCIIZ buffer (type (M) is used to specify the resouroe type. The

following are acoeptable:

A: File system share.

LPT I; Spoolable devioe.

COMM Character mode device.

IPC 35 Mailslots or named pipes.

SMBapenX oontai ns a 16bit field denoting a resource type. The permissible values for this field
are:

0 File or di rectory, as determined by the attribute field 5mb_artr related to the same file.

1 Stream mode named pipe — see the X/Open CAE Speci fimtion. IPC Mechanisms for SMB.

2 Message mode named pipe — see the X/Open CAE Speci fimtion, IPC Mechanisms for SMB.

3 Printer (1 evice.

4 Character mode devioe. When an extended protocol has been negotiated, it allows a device

to be opened (via 5MBopenX) for diiver—level I/O. This provides direct aocess to real—time
and interactive devices such as modems, smnneis, etc.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 45

Page 64 of 535

Data Objects

537

538

5.3.9

Data Objects and Constants

Named Pipes, Mailslots and Messaging

Named pipes, mailslots and messaging are IPC mechanisms defined in the X/ Open CAE

Specification, IPC Mechanisms for SIVIB which are outside the scope of this specification. To

support named pipes and mailslots extended SI\/[B protocol elements are required that will use

specific msoutce types as defined above. Two such types of devices ate defined:

COM]\/I Communication devices like modems or tetminals.

LPTI Printer devices which will beacoessed directly.

Access Modes

Some SMBS which open files return an indication of the type of access granted to the nequestor.

This 16bit field takes the following values:

0 Read—ot1ly acoess granted.

1 Wlite—only acoess gtanted.

2 Read/write acoess granted.

23 Reserved; do not use.

0 pen Function

The open function field mntrols the way a file should be treated when it is opened for use by

oettain extended SMBrequt5ts. This 16 bit field is bi t—encoded:

BitsO 1 This field detennines the action to be taken if the file exists. The valus and meanings
for this field are:

0 The requst should fail and an error reuirned indicating the ptiorexistence of the
file.

l The file should be appended to,

2 The file should be nunaited to zero (Q length

3 Rfietved; this value should not be used.

lfme file dos not exist and this bit is clear, the requst should fail; if this bit is set, the
file should be created.

Bit 4

All other bits are re_<;et\/ed and should be ignoted by the Ll\/D<server.

Resource N an1es,Pathnan1es, Filenames and N elw ork Patl1na.m es

A pathname is a Ito Efibyte long UNC name that routes to a ditectoiy.

A filename is an 83l’on*nat or long filename format name that routes to a file. In the case of the

extended 20dialect a filename may be up to flbytes in length. A pathname may be included

to specify a directoiy where (he file resides.

A network pathname is a filename proceeded by the LMX sewemame and has the following
f0I‘mal::

\\< LMX.sewemame>\<pathname>\< fiJename>

where:

<LMXsetvername> is a one to fifteen byte L.MXsetvername.

X/Open CA E Speci fication ([$2

Page 65 of 535

Data Objects and Constants Data Objects

<pathnamé> is a collection of component names in either the 83 format or in a long
filename format.

<(!i|ename> is the (!i!1aJ ggor long glename format name.

5310 File Identifiers

Many SMB requests and responses contain a 16bit file identifier (FID). These are created by the

L.MXsewe1' upon an open request and need to be maintained by the SIVIB redirector. All values

but—1(C)<FFFF') are valid. The — 1is used to specify all FIDs or no FID, depending on the context

by which it is used.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 47

Page 66 of 535

SMB Dialects

5.4

5. 5

Data Objects and Constants

SMB Dialects

To distinguish between various levels of SMB protocols the SMB redirector will send in the

$MBnegpr0t request (see Section 6 1 on page 58 a set of dialect strings from which the LMX

server will select one t.o be used for the LMXsession. The currently known dialect strings are:

MICROSOFT NETWORKS 1.03 coreplusdialect

extended LOprotocol

extended LOprotocol

MI CROSOFT NETWORKS 3 . O

LANMAN 1 . O
MICROSOFT NETVVORKS 30 and LANMAN 1O specify the same SMB protocol dialect.

MICROSOFT NETWORKS 30is used by DOS SMB redirectors and LANMAN lOis used by

OS/2Si\/[B redirectors. The MICROSOFT NETTVVORKS l(I3string specifies a slightly extended

version of the core protocol. The l_.M].2(CI2protoool specifies the second extension to the

protocols. T‘his dialect is used to provide longer names to files and other file characteristics to
the SMB environment.

Timeouts

Some of the SMB protocols allow for the operation to time out prior to its success or failure. This

timeout feature allows SIVIB redirectors to attempt to open devices which may not open

immediately. For example, ar1 application that requires the services of a modem may be running

on the SMB redirector system. An LMX server may provide a modem pool and allow SMB

redirector access to this modem pool. \/Vhen the SMB redirector attempts to open a modem

device, the open request may be queued until a modem is free. By specifying a timeout on the

open request, the SMB redirector is able to return a busy error to the user‘ of the modem

application when all of the modems are busy rather than wait indefinitely.

Timeout values within the SMB protocol are typically 32bit values representing the number‘ of

milliseconds the Sl\/{B redirector would like before the request is returned with an error

(exceptions are noted in the text when a timeout is defined). Some timeout values are reserved

for the following function:

0 Return immediately if the request cannot be satisfied at this time.

— 1 \/Vaitindefiititely.

-2 ‘\/Kait for an LMX server—defined default. This default time is implementation—dependent.

Suggested defaults depend on the type of activity requested. For example, writes may have

an infinite timeout, but opens may have a timeout in the range of 10to Z)sec0nds.

X/Open CA E Spec‘ fication ([$2

Page 67 of 535

Data Objects and Constants SMB Error Codes

5.6 SMB Error Codes

This section specifies the error class and error code values for the SMB headers. In SMB
responses t.he error class will be set in the SI\/[B header field smb_rcls. The error‘ code will be set
in the SIVIB header field 5mb_err. If a value is not listed it is considered reserved for future use.

Some of the error codes will only occur when SMPS are used to implement the X/Open CAE

Specification, IPC Mechanisms for Sl\/TB, which is outside the scope of this specification.

In the case of success, t.he LMX server must return error class SUCCESS and error code

SUCCESS. An undefined error (for example, caused by a comupted SI\/TB, internal Ll\/lXserver
error) should be i n error class ERRSRV and error code ERRerror.

56.1 SMB Error Class Mappings

Unless otherwise stated, the following error classes may be returned.

Error is considered to be operating sys

Error is generated by the LlvlXserver.
Error is a hardware error.

Reserved.

Reserved.

Reserved.

Reserved.

Command was not in the SMB format.

The ERRXOS, ERRRMXJ, ERRRMCX2 and ERRRMX3 error classes are not used in the SIVIB

protocols defined in this speci fication.

56.2 Error C odes for the SU CCESS Class

The following error codes may be generated with the SUCCESS error class.

re reques .

Message was lfered (used In Messaging).

Message was logged (used in Messaging).

 S

BUFFERE

LOGG ED

DISPLAYED

HI‘ "4 ‘I I-h\ I

Note: Messaging is described in the X/Open CAE Specification, IPC Mednanisms for Sl\/[B

and is outside the scope of this specification.

5.6.3 Error Codes fortlle ERRDOS Class

In general, the ERRDOS class is used to return OS—speci fic errors to SMB redirectors. Since me

SMB redirector needs to understand these encr codes for all LMX servers, it is impossible to

define CA E—specific errors. Instead, the list of possible error‘ codes, with some explanatory text,

appears below. An LMX server may elect to return one of these more specific error oodes any

time a system—sped fic error occurs.

The Name column gives the symbolic name for the error. The Value column indicates the

numeric Value for the constant, and a description follows in the Description column. A hint to

the CAE error code (see Chapter 213 Error Numbers, of the X/Open Portability Guide. Issue 3

Volume 2 XSI System Interface and I-leaders) that may be mapped to the SMB encr code is

given in the description text.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 49

Page 68 of 535

SMB Error Coda

._'?Rdiff(levi ce

EQRI]Ofil as

3?Rbad shale

Page 69 of 535

Data Objects and Constants

Invalid function. The LI\/D(sewer’s 06 did no

seek mode. FEINVA L]

File not found. The last component of a file‘

pathname could not be found. [ENOENT]

Diiectory invalid. A dinectory component in .

pathname could not be found. IENOENT]

Too many open files. The l_.IvlXsei\/er has n
FTDsavai'lab1e. [EMFILE]

Aoeess denied. the requestor's context does no

permit the requested function. This includ

the following oonditions: invalid renam

command, write to FID open for read-only

read on FID open for wtite—only. attempt t

delete a non—empty di rectory. [EPERM]

Invalid FID. The FID specified was no

recognised by the L.MXserver. [EBADF]

Insufficient LMX sewer memory to perfori

the requested function. [ENOMEM]

Invalid memory block addre$. IEFAULT]
Invalid environment.

Invalid open mode.
Invalid data (generated only by [M call
within the LMXserver). IEZBIGI
Reserved.

Invalid dn‘ve specified. [ENXIOI

A Delete Directory request attempted t

iemove the LlVfXsewer's Current dinectory.

Not the same device (for example. a renam

acioss different file systems was attempted)
[EXDEV]

A File Search command can find no more fil N

matching the specified criteiia.

The sharing mode specified for an Open

conflicts with existing FID on the file
[ETXTBSY]

A Lock request oonflicted with an existing loo

or specified an invalid mode. or an Unloc

iequest attempted to remove a lock held by

another process. [EDEADLOCK]

The file named in a Create Directoiy, Mak

New File or Link request already exists. Th

error may also be generated in the Create an
Rename transaction. EEXI

X/Open CA E Sped fication ([EB

Data Objects and Constants SMB Error Codes

ERRbad pipe Na med pipe i nval Id.

ERRpipebusy All instances of the requesied pipe are bu sy.

ERRpipeclosi ng Na med pi pe close in progress.

ERRnotconne<:ted No process on the other end of the named pipe
ERRmoredata There is more data to be rem med.

ERROR_EAS_DlDNT_F'lT There are no extended attributes. or [h
number of attributes available did not fit int

the SMB response.

ERROR_EAS_NOT_SUPPORT‘ED The LMX sewer does not support storage 0
extended attn‘ bu tes.

5.6.4 Error C odes for the ERRSRV Class

The following error codes may be generated with the ERRSRV errorclass:

 oondirions: resource other than file system space exhausted

(for example,TIDs), first command on me LMX session was

not SMBM-gprot, mul riple SMBnegpr0ts attempted, or intern
LI\/IXserver error.

Bad password - name/pa.5swor'd pair in an SMBtco
SMBtconX or SMRses5serupXai‘e i nvalid.
Reserved.

The requestor does not have the neoessary EICIIESS righ

within the specified context for the requested function. Th

context is defined by the TID or the UID. [EACCES]

The TID specified in a oommand was invalid.
Invalid Lix/[Xservername i n SMBr‘ron or SMBironX

Invalid devioe - printer request made to non—pn‘nte

connection or non—pn‘nter requat made to printe
connection.

49 Print queue full (that is, too many queue items) - returned b

open print filer

ERRqtoobig 3) Print queue full (that is, no space or queued item too big).

ERRirivpfid 52 Invalid print file specified in smb_fidr

ERRsmbcmd 64 "Die LMX server did not reoognise the command ood
received.

ERRsrver‘nor‘ 85 The LMXserver' encountered an internal error.

ERRfilespecs 67 The FID and pathname parameters contained ar1 invali
combination of values.

ERRbadlink % Reserved.

ERRbad errnits €9 The access permissions specified for a file or directory at‘

not a valid combination. The LMX sewer‘ cannot set th

r uested attribute.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 51

Page 70 of 535

SMB Error Coda Data Objects and Constants

Nam

ERRbad pi (1 Reserved.

RRsetattrmo(le The attribute mode in the Set File Attribute request i
invalid.

RRpaused 8 Message server is paused. (Reserved for messaging.)

ERRmsgofl° E Not receiving messages. (Reserved for messaging.)

ERRnoroom 83 No room to bulfer me.$age. (Reserved for messaging.)

ERRnnuns 87 Too many remote usemames. (Reserved for messaging.)

ERRljmeout $ Operaljon timed out.

ERRnoresource E No resources currently avaj Iable for SMB request.

ERRtoomanyuid ED Too many UIDs active on this LMXsession.

ERRbaduid 9] The UID given (smb_tu'd) is not known as a valid ID on thi
Ll\/IXsessi on.

ERRuseMPX 21) Temporarily unable to support Raw mode operation, u «
MPXmode.

ERRuseSTD Temporarily unable to support Raw mode operation, u a
standard read /w rite.

ERRoontMPX E Continue in IVIPX mode.

ERRBadPW Z4 Reserved.

unction not supported.

56.5 Error Codes forthe ERRHRD Class

The following error oocles may be generated for hard errors on the LMX server with the

ERR]-[RD error‘ class CAE error mapping hints to each of these errors are noted at the end of the

error cl escription.

The ERR]-[RD error class may cause an SMB redirector to notify the user of the error condition

via an exoeptjon handling routine. V\/here ERR]-IRD and ERRDO6 error classes overlap, the

LivD(server irnplernentati on has the optj on to choose an appropriate class for the error.

ERRn0write 19 Attempt to write on writeproteaed diskette. [EROFS]

ERRbadunit 3) Unknown uni t. [ENODEV]

ERRn0tready 21 Drive not ready. IEUCLEAN]
ERRbadcmd 22 Unknown command.

ERRdata A Data error (CRC). [EIO]

ERRbadrec[24 Bad request structu re length. [ERANGE]
ERRseek 25 Seek error.

ERRbadmedia Unknown media type.
ERRbadsector 27 Sector not fou nd.

ERRn0paper 28 Printer outof paper.
ERRW rite 8 ‘Write faul t.

ERRr'ead 3) Read fault.

ERRgeneraJ 31 General hardware failure.

ERRbadshare Q An open confli as with an existing open. [ETXTBSY]

6 A Lock request conflicted with an existing lock or specifi

an invalid mode, or an Unlock request attempted to rernov

a lock held by another process. [EDEADLOCK]

i X/Open CA E Speci fication ([$2

Page 71 of 535

Data Objects and Constants SMB Error Codes

 ERRwror1gdi The wrong disk was found in a d :1‘

ERRFCBUna No FCBS are available to process I

ERR.sh2u‘ebu A sharing bu {fer has been exceed -

ERRdi5kfu|l No space on file system. [ENOSPC

Protocols for X/Open PC lnlerworking: Slv‘[B, Version 2 33

Page 72 of 535

Data Objects and Constants

54 X/Open CA E Sped fication ([$2

Page 73 of 535

Chapter 6

ore SMB Connection Management Requests

This section deftnes the elements of the core SMB protocol related to oonnection management.

They are:

SMBn egprot negotiate protocol

SMBtcon tree connect

SMBtdis tree disoonnect

SMBexir piooess exit

61 SMBnegprotSpecificatio1i

SMBnegprot Detailed Description

This core protoool request is sent as the fiist request to establish the L.lvD(sessi on, negotiating the

protocol dialect that the SMB redirector and LMX sewer will use when communiaating with
each other. The SMB redirector sends a list of dialects that he can 00mmum'cal.e with. The LMX

server responds with a selection of one of those dialects (numbered Oto n) or — lindicating that

none of the dialects were aooeptable. Exactly one negoljate message must be sent on each

NetBlOS session: subsequent negotiate requests must be rqected with an error response and no
action will betaken.

The Sl\/[B protoool does not impose any particular structure on the dialect stii ngsl lmplementois

of particular protocols may choose to include. for example, veision numbers in the stnng. An

LMXseiver may choose to support one or more of the dialects identified in Section 54 on page

48 The fields desctibed here are only valid when the core protocol has been negotiated. The

other Sl\/[B dialects impose some differences on the SMBnegprot format: refer to the sections

diswssing the different dialects for information on these differences.

SMBnegprot Deviations

None.

SMBnegprot Field D escrlptions

Field desciiptions for the cone protoool (5MBnegpro!) are as follows:

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 55

Page 74 of 535

SMBnegprot Specification Core SMB Connection Management Requests

SMBnegprot ErrorCode D escriptions

If any error occurs, the server will retum <ERRSRV, ERRenor>; otherwise. <SUCCESS,
SUCCESS> will be retumed.

SMBnegprot Preconditions

The Sl\/[B redirector attempting to negotiate a protocol must have established a NetBIOS session
with the server.

SMBnegprot Postcond itious

The Sl\/[B redirector that negotiated this protocol must be able to handle all aspects of the dialect

negotiated‘

SMBnegprot Side Effects

The l_.I\/IX server will keep reooirl of which dialect the SM3 redirector negotiated and will use

only that dialectin oonveisations with the SMB redirector.

Conventions

None.

56 X/Open CA E Sped fication ([$2

Page 75 of 535

Core SMB Connection Management Requests SMBtcon Specification

62 SMBtcon Specification

SMBtcon D etailed D escdptioo

This core piotoool request is sent to establish direct aooess to a resource on an LMX server. The

exact behaviour of this request and the semantics of the password argument depend upon the

security mode of the l_.MXserver.

- share—level security mode

The password establishes the user’s rights to aooess this iesouroe. It must match the

password (if any) defined by the server administrator when the iesouite was made available

for sharing (offered).

- user—level security mode

Based on the negotiated dialect, an L.MXserver in user—leve| security must behave in one of

two differentways:

— If one of the extended SMB protocol dialects was selected the SMB redirector has already

issued an $MBses55etupX request. This request oontai ned a username and password and

resulted in the l_.MX server assigning a Valid UID (refer to Section 332 on page 12). In

this case, the password field will be meaningless and must be ignored.

— If the cone or core plus dialect was selected, the SIVIB iedirector will issue an SMBtcon

request as if the LMXserver were in share—level security mode. The LIVJX server may

select to support a mapping to user—|eve| security (refer to Section 333on page 13. The

password supplied with the SA/iBtcon request can be used for this validation.

SMBtcon D eviations

None.

SMBtcon Field Descriptions

mi n= 4 : smb_maxxmt
smb_path _ TID

smb_password _ O
5mb_path An ASCIIZ buffer (type Oét refer to Section 534 on page 44) containing a

resource name preceded by the LMX sen/emame. The format is like a

network pathname (refer to Section 5390:] page 463. For example. a resource

called src residing on a server called liuserverl would be referenced by
\\ lmserver1\ src.

smb_pa$sward An ASCIIZ (type O4) bulfer oontaining the password for the resource. Total

length of the bulfer must be less than or equal to 15 bytes. For the extended

protocols the encrypted password string can be u p to 24bytes.

smb_device An ASCIIZ (type O4) buffer oontaining the resou roe type. Refer to Section 5136

on page 45

Protocols for X/Open PC lnterworki rig: Slv‘[B, Version 2 57

Page 76 of 535

SMBtcon Specification Core SMB Connection Management Requests

smb_maXxmt A 16 bit integerdefining the largest message that the Sl\/[B iedirector can send
to the LMXserver and vice versa.

TID (Tree ID) A 16bit integer used by the LMX server in subsequent SIVIB

redirector requests to refer to a resource relative to smb_path. Most access to

the server requires a valid TID, whether the resource is password protected or

not. The smb_tid field in the Sl\/[B header of this nequest is ignored. The value
Ckflflis reserved.

SMBtcon ErrorCode Descriptions

CAECod'DO6 cu

 verythj ng worked. no problems.

A memory related resou roe has depleted.

e CAB path related to the resource is not
valid.

ERRinvde\/ice Resource type mismatch for connect.

ERRaccess User not authorised to access specified resou rce.
ERRermr Ran out of TTDs.

ERRermr First command on the NetBIOS session wasn't

SMBnc-gprot.
ERRerror LMXserver internal ertor.

ERRbadpw Bad password, name/password pair in an
3MBtcon is invalid .

'nv netname Invalid resource name sup

SMBtcot1 Preconditions

L The SMB redirector attempting to set up this SMBtcon must have established an LMX
session with the LI\/lXsetvet‘.

2 The path, password and device name must all be valid instances of those types.

SMBtcot1 Postconditinns

L If there are no errots the T'lD is valid to be used in future SM13 requests until it is nullified

with an SMBtdis request. Otherwise, the TID should not be used in future ttansactions.

2 If there are no ermts the smb_maXXmt size will reptesent the negotiated maximum bulfer
size for the LMXsession.

SMBtcot1 Side Effects

None.

Conventions

a Resource Names (see Section 539on page 46 applies to the smb_path field.

$ X/Open CA E Speri fication ([$2

Page 77 of 535

Core SMB Connection Management Requests SMBtdis Specification

63 SMBtdis Specification

SMBtdis Detailed Description

This cote protocol request is sent to invalidate the resource (file or print) sharing connection

identified by the TID.

SMBtdis Deviations

None.

SMBtdis Field D escriptioos

There are no parameters of interest besides the TID (passed in the smb_tid field of the SMB

header). Ifan invalid TID is sent, the sewer will ignore the request and return an error.

SMBtdis Error Code D escrip lions

e UID given (smb_uid) is not known as a valid
ID on this LMX session.

TID specified in oommand was invalid.
LMXsetvet inteinal error.

SMBtdis Preconditions

1 The SMB redirector attempting to invalidate this TID must have established an LMX
session wit.h t.he LMXservet‘_

2 The SMB redirector attempting to invalidate this TID should have established this TID as a
valid one with the LMXserver.

SMBtdis Postconditions

1 If there are no errots then the TID will be invalidated and the SMB redirector should not

use the TID again.

2 If an error other than TID Invalid occurs, the TID will be invalidated and the SMB

redirector should not use the TID again.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 $

Page 78 of 535

SMBtd1'_5 Specification Core SMB Connection Management Requests

SMBtdis Side Effects

The TID that was sent no longer has any meani ng to the LI\/D(se1ver.

Conventions

None.

60 X/Open CA E Sped fication ([$2

Page 79 of 535

Core SMB Connection Management Requests SMBexit Specification

64 SMBexit Specification

SMBexit Detailed Description

This cone protocol request informs the LMX server that ar1 SMB redirector process has
tenninated.

The LMXser\/er will release any locks and close any resources ow ned by the exiting process.

Note that there is no process creation SMB request. PIDs are assigned by the Sl\/[B tedirector.

SMBexit D eviations

An LMXserver should aooept this request from any LMX session regardless of dialect.

SMBexit Field Descriptions

The sinb_pid field fmm the SMB header indicates the pmoess to be terminated.

SMBexit Error Code D escrip (ions

verything worked, no pro
cl TID.

D U ITIG OEl'|€|' €|‘|‘0f' 0C0.lI'f'€C]-
SMBexit Preconditions

The SMB redirector must have registered a UID and established aTID with the LivfXse|\/er.

SMBexit Postconditions

None.

SMBexit Side Effects

None.

Conventions

None.

Protocols for X/Open PC Interworking: Siv‘[B, Version 2 61

Page 80 of 535

Core SMB Connection Management Requests

Q X/Open CA E Sped fication ([$2

Page 81 of 535

Chapter 7

ore SMB File Operation Requests

This section defines the elements of the oore SMB protoool related to normal file access. "lhey
are:

SMBcre-are open a file: create it if itdoesn‘t exist

SMBm}cnew create and open a new file: fail ifit exists

SMBopen open an existing file

SMBM-ad read from a fil e

SMBwrite write l.O a file

SMBl$ee!(set the current position in a file

SMBlod< lock a range of bytes in a file

SMBuniock unlock a range of bytes in a file

SMBflush foroe any bulfets of a file to disk

SMBdase close a file

SMBmv rename a file

SMBuniink delete a file

7.1 SMBcreate Specification

SMBcneate D elalled D escn'p tlon

This cote protocol request is used to create and open a new regular file. or open an existing

regular file and truncate its length to zero. The file-sharing mode for the open operation cannot

bespecified. The FJD ret.umed can be used in subsequent oommands.

SMBcneate D eviatlons

1 The archive, system and hidden file attribute bits may be ignored, in acoordance with the

File Attribute mapping convention (see Section 43 1on page 3:).

2 The create time specified is used to set the LMXsewer’s last modify time for the file.

SMBcneate Field Descrlp lions

sin b_ com SMBcreate

sin b_ wt! 3

smb_vwv[O] smb_attr

smb_vwv[1-2) smb_time

sin b_ bcc mi n=2

sin b_ bu!‘[] smb_ u athname

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 63

Page 82 of 535

SMBcreate Specification Core SMB File Operation Requmts

smb_attr T‘his is a file attribute field (see Section 533 on page 43). It defines the

attributes to be given to the newly-created file. The bits 3and 4(volume label

and directory) are r1ot allowed to be set. If the file already exists, this field is

ignored.

smb_time A @-bit integer which sets the LMXserver's idea of the last modify time for

the file. A value of zero indicates a null time field (see Section 53 1on page
42).

smb_pathname An ASCIIZ (typeO4) bu lfer oontaining the name of the file to be created.

smb_fld T‘his signed integer is the FID returned by the LMX seiver for the opened file.

The SI\/[B redirector will use that FID in other requests to refer to this

particular file.

64 X/Open CA E Speci fication ([$2

Page 83 of 535

Core SMB File Operation Requests

SMBcreate Erro r Code D escri pfioos

ERRnoaccess

ERRnoaccess

ERRbadsha1'e

EFAULT ERRenror

EINTR ERRetTor

ERRnoacoess

ERRnofids

ERRnofids

ERRbad file

ERRetTor

ERRbad path
ERRCITOF

ERReI Tor

ERRacoe-as

ERRinvn1'd

ERRin\/device

ERRaccess

ERRacoess

ERRbad uid

SUCCESS

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Page 84 of 535

SMBcreate Specification

ile does not exist and the directory in which the

file is to be created does not permit writing.

Search permission is denied on a component of

the path-prefix.

File exists and write permission is denied.

File exists, mandatory file/record locking is set,

and there are outstanding record locks on the
file.

Path points outside the allocated address space

of the process.

A signal was caught duri rig the operation.

Named file is an existing directory.

Maximum number of file descriptors are

currently open in this proass.

System file table is full.

Component of path—prefix does not exist or

pathname is null.

File must be created. and the system is out of

resources necessary to create files.

omponent of pat.|1—prefix is not a directory.

amed file is a character—special or bl ock—special

e and the device associated with this special
e does not exist: or O_NDELAY is set, file is a

FO, O_\/VRONLY is set and no process has the

e open for reading.

amed file resides on read—only file system.

ile is a pure procedure file that is being
- ecuted.

D specified in command is invalid.

ile creation request made to a share that is not a

file system subtree.

Named file exists as a directory, q)ecial file or

named pipe.

\/Vite and Create permissions required, or the

file attributes specified a volume label.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

Everything worked, no problems.

SMBci‘eate Specification Core SMB File Operation Requmts

SMBcreate Preconditions

1 The Sl\/[3 redirector has sent a valid SMB request with a valid TID for a file system subtree
and Valid UID.

2 The SMB rediiector must have WI‘ll.'B permission on the Files parent directory in order to

create a new file, or write permission on the file itself in older to truncate it. The

permission is gianted via the seouiity mode ufl (refer to Section 33on page 13.

SMBcreate Postcouditioos

1 The LMXserver obeys the mules for mapping the new file into the CAE file system. If the

read—only attribute is set, the CAE wiite permission bits for the mode of the file are turned
olf.

2 The l_.MXserver‘s last modify time for the file will be set according to smb_tJ'me. If smb_ti'me

was zero, the last modify time for the file will be left unchanged.

3 The SMB rediiector will be granted read/write access to the file if it was created (even if

the read—only bit was set). If the file existed, aooess rights will be granted according to the

existing acoess mode.

4 The newly—created or truncated file is opened in the DOS lB¢’i(l /write oompatibility mode.

SMBcreate Side Effects

File is cieated or truncated.

Cooven tio as

s Attribute (see Section 431on page 3:).

~ Filename (see Section 35on page 15.

~ Opportunistic Locking (see Section 382on page Z).

% X/Open CA E Sped fication ([$2

Page 85 of 535

Core SMB File Operation Requests SMBmknew Specification

7.2 SMBn1knew Specification

SMBml-mew Detailed Description

This 00:13 protocol request is equivalent t.o the SMBcre-are request except that it will fail if the

named file alieady exists.

SMBml-mew D eviations

1 The archive, system and hidden file attribute bi ts are ignored.

2 The create time specified is used to set the LMX server's last modify time for the file.

SMBml-mew Field Descriptions

sm b_com

sm b_wct

sm b_vwv [0]

sm b_vwv [1- 2
sm b_bcc

smb_attr A file attribute field (refer to Section 5330:] page 413 containing attiibutes to

begiven to the new file. The bits Band 4 (volume label and directory) are not
allowed to be set

smb_1'ime A 132-bit integer to be used as the file creation time.

smb_path An ASCIIZ (type O4) buffer oontaining the name of the file to be created.

smb_fid A 16bit integer containing the FID the SMB redirectorwill use to refer to the

opened file.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 57

Page 86 of 535

SMBmkn ew Specification Core SMB File Operation Requmts

SMBm[-mew Error-CodeD escdptioos

escnptron

rch permission is denied on a component

he path-prefix. or the parent directory does n

ermit writing.

equested permission is denied for the nam
E

O_CREAT and O_EXCL are set and the file exis

Path points outside the allocated address spa

of the process.

A signal was caught during the operation.

Maximum number of file descriptors

currently open in this process.

System file table is full.

Component of path-prefix does not exist.

le system is out of resou roes necessary to crea
es.

,omponent of path—prefix is not a directory.

amed file resides on re:-1d—only file system.
ite and create permissions for the di recto

equired.

D specified in command isinvalid.

ile creation request made to a share that is not

e system subtree.

he LJID given (smb_uid) is not known as a val
D on this LMXsession.

-verything worked . no problems

SMBmkoew Preconditions

1

2

3

The Sl\/[3 redireaor has sent a valid SMB request, with a valid UID and valid TID for a file

system sul)[l‘ee.

The SMB redireaor must have appropriate permissions in order to create the new file.

The named file must not exist before the request is sent.

SMBmkoew Postconditloos

1

2

Ln

A new file with the given pathname will be created and opened. or an error will be
returned.

The LMXser'ver obeys the rules for mapping the new file into the CAE file system If the

read—only file attribute is set. the CAB write permission bit of the mode for the new file
must be turned off.

The LMX server's last modify time for the file will be set to smb_1lme. If smb_rlme is zero.

the LMX server will assign the current ti me.

The SMBredireaor is granted read/write acoess to the file regardless of smb_artr.

The newly—created fil e is opened in DOS read /w ri te compatibility mode.

X/Open CA E Sped fication ([$2

Page 87 of 535

Core SMB File Operation Requests SMBmknew Specification

SMBm[-mew Side Effects

None.

Cooven tio as

s Attribute (see Section 431on page 3:).

~ Fllename (see Section 3500 page 15.

~ Opportunistic Locking (see Section 382or1page Z).

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 @

Page 88 of 535

SMBopen Specification Core SMB Fiie Operation Requmts

7.3 SMBopen Specification

SMBopen Detailed Description

This core protocol request is used to open an existing regular File and obtain an HD which is

used to refer to the file in subsequent requests. It cannot be used to open directories or LMX

named pipes (refer to the X/Open CAE Specification, IPC Mechanisms for SMB).

SMBopen Deviations

The archive, system and hidden file attribute bits in the output attribute field are treated

according to Section 4.3 lon page CD

SMBopen Field D escriptions

sm b_com SMBopen _ 5MBopen
sm b_wct 2 _ 7

sm b_vwv [O] smb_mode _ 5mb_fid

sm b_vwv[1] smb_iattr _ 5mb_0attr
smb_bcc mjn=2 _ 5mb_time

sm b_buF[] smb_path _ 5mb_si'ze
5mb_acce$5

smb_made A file—shan'ng ccntml field which indicates the access modes and deny modes

being requested (see Section 53501) page 44).

smb_iattr Attributes to be assigned to the file. Ignored.

smb_path An ASCIIZ (type O4) buffer containing the name of the file to be opened.

smb_fid A 16bit signed integer containing the FIDretun1ed for the opened filer

smb_aat1r Attributes currently assigned to the file (see Section 53Z3on page 43.

5mb_1'ime A &—bit integer time of the last modifimtion to the opened file (see Section

531onpage43.

smb_size A Z32rbit signed integer which contains the current size of the opened file. in

bytes.

smb_access An access mode field (see Section 5137 on page 463 indicating the access

permission set actually granted to the opening process.

X) X/Open CA E Speci fication ([$2

Page 89 of 535

Core SMB File Operation Requests

SMBopen ErrorCodeDescr-iptions

EACCES ERRnoaccess

EAGAIN ERRbadshare

EFA ULT ERRerTor

EINTR

EISDIR

ERReiTor

ERRnoaccess

ERRnofids

ERRnofids

ERRbad file

ERRbad path
ERRerTor

ERRerror

ERRinv(|evioe

ERRbaduid

ERRnoacoess

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2

Page 90 of 535

SMBopen Specification

- rch permission is denied on a oomponent of

he path-prefix.

equested access permission is denied for the
amed file.

<iIe exists, mandatory file/record locking is set,

:](l there are outstanding record locks on the

th points outside the allocated address space

f the process.

‘ signal was caught dun‘ rig the open operation.

amed file is a directory and oflag is write or
read/write.

Maximum number of file descriptors are

currently open in this process.

System file table is full.

File does not exist, or oomponent of pathname
does not exist.

Component of paih—prefix is not a directory.

Genenc Ll\/[XserVer open failure.

Named file resides on read—only file system and

requested access permission is write or
read/write.

File is a pure procedure file that is being
executed and requested access permission

specifies write or read/write.

Permission oonflict between requested

permission and permissions for the shared

resouroe; for example. open for write of a file in

a read—only file system subtree.

TID specified in command is invalid.

File creation requst made to a share that is not a

file system subtree.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

Open mode failure. See rules for Compatibility

and DENY mode opens.

71

SMBopen Specification Core SMB File Operation Requests

SMBopen Preconditions

]. The SMB redirector has sent a valid SIVIB request, with a valid UID ar1d a valid TID.

2 The file being opened must exist.

3 The pathname specified is not an Ll\/D(named pipe.

SMBopen Postconditions

]. The file will be opened in the requested mode with the returned FID, or an error will be
retu med.

2 The file will be opened only if the user has the appropriate permissions and there is no

oonflict between already—granted aooess or deny modes and the requested acoess or deny
modes.

SMBopen Side Effects

The file exclusion mode requested will be in elfecft for sulxequent open commands.

Conventions

~ Access (see Section 4320:] page 3).

~ Attribute (see Secljon 43 lon page 3).

~ Filename (see Section 35on page 13.

~ Opportunistic Locking (see Section 382on page Z).

72 X/Open CAE Sped fication ([$8

Page 91 of 535

Core SMB File Operation Requests SMBread Specification

7.4 SM Bread Specification

SMBread D etailed D esctiptioo

This core protocol request will read bytes from a regular file and, if an extended protocol is

negotiated, from a named pipe, mailslot or directly accessible devioe. End-of-file is indicated by

retuming fewer bytes than requested; a read starting at or beyond end—0f—fiJe returns zero bytes.

SMBread D eviations

None.

SMBread Field Descrip tions

5 smb_ WC!“ 5

smb_fld 5mb_vwr/[CH smb_c0unt

smb_bytec0unt 5mb_vwV[1—4] rsvd (MBZ)

smb_oE3et 5mb_bcc length of data +
smb_coun tlefi‘ 5mb_bufI] smb_ci'ata

smb_fid A 16bit signed integer indicating the file from which sinb_daia should be read.

smb_byiecauni A 16bit unsigned integer indicating the amount of data to be read. The SMB

nedirector will ensure that the amount requested will fit in the negotiated
maximum buffersize.

smb_ai_‘Tset A 32-bit unsigned integer defining me file pointer position.

smb_counileft A 16bit unsigned integer. This field is advisory, and some SMB rediiectors

will set i[to zero, in which case it should be ignored. If the value is not zero.

then it is an estimate of the total number of bytes that will be read, induding

those read by this request. This additional information may be used by the

l_.MXserver to optimise bulifer allocation and /or read—ahead.

smb_couni A 16bit unsigned integer giving the actual number of bytes returned to the

SMB redirector. This must be equal to smb_bytecount, u nless:

L Encl—of—file was reached before reading 3mb_byiecouni bytes. The number

of bytes actually read, along with that data, is returned.

2 5mb_afl"set pointed at or beyond encl—of—file. A zero (0 value is returned.

rsvd These four l6bit fields are reserved and must be zero.

smb_data A Data Block (type OD bulfer oontaining die actual data read from the file (see

Section 534on page 44).

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 73

Page 92 of 535

SMBread Specification

74

Core SMB File Operation Requmts

SMBread ErrorCode Descriptions

 escnp

‘ problem has OCClJ|Te(l in the physical 1/O.

e devioe associated with the file de.scn'ptor is a

lock-special or character-special file and the

alue of the file pointer is out of range.

‘ n FID was validated by the LMX sewer but

nacceptable to the system.

_NDELAY set and (a) read from empty CAE

FO attempted. or (b) file open on the LMX
rver and a record lock on the file exists.

I e read would block and deadlock would

esult.

on

 ERReiTor

ERRnoaccess File is open on the LMX server in enforoed—lock
mode. a record lock exists on the file, and the file

was opened with O_NDELAY set.

Attempt to read from a portion of the file that
the LMX server knows has been locked or been

Opened in deny—read.

Read permission required.

Attempt to read from an FID that the LMX

server does not have open.

Corrupt SMB request has been encountered.

Attempt to read from an open spool file.

Invalid T‘lD in request.

The UID given (5mb_uid) is not known as a valid
ID on this LMXses.sion.

verything worked, no problem

ERRnoacoess

ERRbad acoas

ERRbad fid

ERREITOI‘

ERRI nvdevioe

ERRI nv nicl

ERRbaduid

SMBread Preconditions

l. The SMB redirector has sent a valid SMB request.

2 The SMBredirector's read requestwill fit in an SMB buffer of the negotiated size.

3 The SMB redirector must have a valid TTD for a file system resource with the appropriate

permissions for the read operation.

4 The SMBredirector must have a valid FID and at least read access.

SMBread Postconditions

1. If the read was successful, the LMX server has returned to the SMB redirector either the

data for all of the requested read or all the data that was available up to the EOF.

2 If the read failed, the LIVDC server has returned to the SMB redirector an SMB response

indicating the reason for the fajlu re of this read or a previous block operation.

X/Open CA E Speci fication ([$2

Page 93 of 535

Core SMB File Operation Requests 5MBread Specification

SMBread Side Effects

None.

Conventions

~ Locking (see Section 44on page 3.

Protocols for X/Open PC Interworking: SIVIB, Version 2 75

Page 94 of 535

SMBwrite Specification

7.5

Core SMB File Operation Requmts

SMBw1ite Specification

SMBwi-ite Detailed Description

This oore])D0t0OOl request writes bytes from a iegular file and, if an extended piotocol is

negotiated, to a named pipe, mailslot or direcdy aooessible device. It can also be used to truncate

a file to a given point or extend a file beyond its current size.

SMBW1-ite Deviations

None.

SMBW1-ite Field D escriptions

5 smb_ wct 1

smb_fld smb_ vwv [0] sm b_count
smb_ bcc Osmb_bytecount

smb_oE3et

smb_coun ilefi‘

length of data + 3

smb_fid The FID to be written to.

smb_bytecouni An unsigned integer indicating the number of bytes to be written. If this value
is zero, the file should be truncated or extended to the size indicated in

smb_o11‘"sei. If extended, the bytes between the old and new EOFwi|| be zero.

smb_al_‘Tset A 2-bit unsigned integer defining rlie file position at which the data should be
written

smb_counileft A 16bit unsigned integer. This field is advisory, and some SMB rediiectors

will set it to zero, in which case it should be ignored. If the value is not zero.

then it is an estimate of the total number of bytes that will be written.

including those written by this request. This additional information may be

used by the Lix/IXsewer to optimise buffer allocation or perfonn write-behind.

smb_data A Data Block (type 0]) bulfer containing the actual bytes to be written (see

Section 534on page 44).

smb_couni A 16bit unsigned integer containing the actual number of bytes written. If

this is less than sinb_bytecouni but no explicit error is retumed, then

insuificient file system space prevented more than 5mb_count of bytes from

beingwritten.

X/Open CA E Speci fication ([$2

Page 95 of 535

Core SMB File Operation Requests

SMBwr-ite ErrorCodes

SMBwrjte Specification

SUCCESS

EPIPE

EDEADLK

ERRbad unj t

ERRen‘o1‘

 ERANGE ERRen‘or

ENOLCK ERRnoaccess

ERRbad access

ERRbad fid

ERRerTor

ERR} nvdevioe

ERR} nv nid

ERRbad uid

SMB\VFI[e Preconditions

escnp

‘ problem occurred during physical I/O.

‘ n error ocmrred on the FID being written to.

A valid smb_fid mapped to an LMX server FID

not accepted by the operatj ng system.

Resources for 1/O temporarily exhausted

The file has grown too large (size exceeds ub'mJ't)
and no more data can be written to the file. An

5mb_count of 0 will be returned to the Sl\/[3

redi rector in the count field of the Sl\/[B response.
This indicates to the SMB redirectors that the file

system is full.

No space on the file WSICITI; 5mb_caunt will be 0,

indicating the file WSICIT1 is full.

Wite to a named pipe with no reader.

The write would block due to locking. but
_NDELAY was set.

ttempted write size is outside of the minimum

and maximum ranges that can be written to the

supplied FID.

A record lock has been taken on the file, or the

SMB redirector has attempted to write to a

portion of the file that the L.l\/D<'.server knows

has been locked, opened in deny—wn‘te open

mode. or opened in read-only mode.

\M1te permission required.

Invalid FID speci fied.

Cormpt SMB request was received.

Attempt to write to an open spool file.

Invalid T‘ID specified.

The UID given (5mb_uid) Is not known as a valid
ID on this LMXsession.

verything worked, no problem

on

1. The SMB redirector‘ has sent a valid SMB request.

2 The SMB redirector"s write request will fit in an SMB buffer.

3 The SMB redirector must have a valid TID to a regular file system resource with

appropn'ate permissions for the write operation.

4 The SMBredirector‘ must have a valid FID with at least write access.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

Page 96 of 535

SMBwrite Specification Core SMB File Operation Requmts

SMBw1-ite Postcoodifions

1 If the write was successful, the LMX server has retumed to the SM3 rediiector either a
count value for a write of the entire amount or a count value for less than the entire write

amount if File system space is exhausted or the file has reached the maximum file size.

2 If the write failed, the LMX server has returned to the SMB redirector an SMB request

indicating the reason for the fajlu re of this write or a previous block operation.

SMBW1-ite Side Effects

The data is not necessarily reflected in the file system until an SMBHu5h or the FID is closed.

Conventions

~ Locking (see Section 44on page 33.

78 X/Open CA E Sped fication ([$2

Page 97 of 535

Core SMB File Operation Requests SMBlseek Specification

7.6 SMB1seek Specification

SMBlseek Detailed Description

The SMBlseek core protocol request sets the current file pointer for a regular file. The response

retums the new file pointer expressed as the oflset from the start of the file, and may be beyond

the current end—oF—file. An attempt to seek to a position before the beginning—of—file sets the file

pointer to beginrLing—of—file.

Note that the current file pointer at the start of this oommand reflects the offset plus data length

specified in the previous read, write or seek request, and the pointer set by this command will be

replaced by the offset specified in the next read, write or seek command.

SMBlseek D eviations

None.

SMBlseel-(Field D escriptions

sm b_com

sm b_wct

sm b_vwv [O] _

sm b_vwv[1] _ 0

sm b_vwv [23]
smb_fid The FID whose pointer is to be manipulated.

smb_made A 16bit field indicating where (beginning=O, current position: L end=3 the

seek is to take place.

smb_al_‘Tset A 33bit signed integer: In the request. indicates how far to move from the

position indicated by 5mb_mode. Positive values move forward in the file

towards EOF; negative values move backward through the file towards BOF.

In the response, indicates the resulting position after the move, relative to
BOF.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 E

Page 98 of 535

SMBl5eel< Specification Core SMB File Operation Requmts

SMBlsee[-(ErrorCode Descriptions

escnp on

D is valid but not aooepted by the systei

nvalid 5mb_mode.

annot seek on this file (named pipe).

e SMB redirector has supplied an invalid FID.

I e SMB reclirectofis oontexl does not permit
his access.

I D specified in Command isinvalid.

‘ ttempt to seek on a non—regular file.

I e LMX sewer has reoeived a Corrupt SM3
‘equest.

ERRbadui e UID given (smb_ul'd) is not known as a valid
D on this LI\/lxsession.

verythj ng worked, no problem

SMBlseek Precoodi tions

1 The SIVIB redirector has sent a valid SMB request with a valid TID for a file system
resouroe.

2 The SMBredireaor must have acquired a valid FID from the L.l\/D(sewer.

3 The SMBredireaor has specified a valid smb_mode value.

SMBlseek Postconditions

1 If the 5MBiseek was successful. the L.MXsewer has returned to the SMB redirector the new

file pointer])(EiLiOl].

2 If the SMBlseek was unsuccessful. the LMX sewer has retumed an error indicating the

fajlu re of this operation or of a previous bl ock operation.

SMBlseek Side Effects

The current file position maintained by the LMX server is changed to the offset retumed to the
Sl\/[B redi rector.

Conventions

None.

8) X/Open CA E Sped fication ([$2

Page 99 of 535

Core SMB File Operation Requests SMB}ock Specification

7.7 SMB1o ck Specification

SMBlock D etailecl D escdptioo

This command is sent by an SMB redirector process to look a given byte range of a regular file. A

lock prevents attempts to lock. read or write the byte range by any other SMIB redirector.

Multiple non—overlapping lock rangefi are allowed on the same file. Overlapping locks are not

allowed. Byte ranges beyond the current end—of—fiJe may be locked; however. such locks will not

cause allocation of file space. A look may only be unlocked by the process (PID) that performed
the lock.

8 MBlock D eviations

Refer to Section 4.4on page 33

SMBlock Field Descriptions

sm b_com SMBlor:k

sm b_wct 5

sm b_vwv [O] smb_l'id

sm b_vwv[1- 2 smb_count
smb_fid The FID to be locked.

smb_coum A 132-bit unsigned integer containing the number of bytes in the lock range.

smb_ affset A 132-bit unsigned integer oontaining the offset to the start of the lock range.

SMBlock Error C ode D escrlp (ions

system.

EACCES ERRn0am:ss File acoess rights do not match requested locks.

FAFCFQ FRRlock A lock has already been taken out on this record.

ENOLCK E‘.RRloc|< Insufficient resources to place the requested
lock.

EDEADLK ERRerTor "Hie lock request would block and cause a

deadlock with another process.

ERRbadfid An invalid FID was specified.

ERR|ock Byte range is already locked by another sewing

ERRerTor

ERRInv nj cl

ERRInvdev i oe

ERRl)e(l uid

SUCCESS

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 81

Page 100 of 535

SMB}ock Specification Core SMB Fife Operation Requmts

SMBlock Preconditions

1 The SMB rediredtor has sent a valid SMB request with valid aooess to the file system
subtree.

2 The SMB redirector must have a valid FID.

SMBlock Postcooditions

The given byte range of the file will be locked preventing aooess by other SMB iedirectors not

using the same FID.

S MBlock Sid e Effects

Only requests using the PID as sent in the SMB1ock request may aooess the locked record (5).

Conventions

~ Locking (see ‘Section 44on page 33.

& X/Open CA E Sped fication ([$2

Page 101 of 535

Core SMB File Operation Requests SMBunlock Specification

7.8 SM Bunlock Specification

SMBunlock D etailed D escdptioo

This cone protocol request is used to unlock a byte range. The byte range specified must be

exactly the same as that specified in a previous suooessful lock request from the same SMB

redirector process (that is, the PID must be the same). An unlock request for a range that was
not locked is t.reated as an error.

SMBunlock D eviations

None.

SMBunlock Field Descriptions

smb_ com SMBunlock

smb_wct 5

smb_vwv [O] smb_fid

smb_vwv[1-2 smb_count
This request is identical in format to SMB1ock (see Section 7.70:) page 81).

SMBunlock Error C ode D escrlp lions

Additional applicable ernoroodes can be found in the specification of SMBlod< (see Section 7.7on

e reoord cannot be unlocked

lock on this range does not exis

vetythingwolkecl, no problem

SMBunlock Preconditions

1 The SIVIB redirector has sent a valid SMB request with a valid TID for a file system
resource.

2 The SMB redirector must have a valid FID.

3 The byte range and PID specified must exactly match a byte range and PID specified in a

previous successful lock operation on this FID_

SMBunlock Postcooditions

The specified byte range of the file will be unlocked, or an error will be returned.

Protocols for)(/Open PC Interworki rug: Slv[B, Version 2 83

Page 102 of 535

SMBunlock Specification Core SMB File Operation Requmts

SMBu nlock Side Effects

The record is now open for reading/writing/locking by other SMB redirectors.

Conventions

~ Locking (see ‘Section 44on page 33.

81 X/Open CA E Sped fication ([$2

Page 103 of 535

Core SMB File Operation Requests SMBflu5h Specification

7.9 SMBflush Specification

SMBflusl1 D etailed D escri ption

This cone request flushes data and allocation information for a specified file or for all files open
under this LMX session.

SMBflusl1 D eviatious

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

oomplete soon An LMX server should nonetheless take steps to maximise the probability that

the data is tiuly on disk before the SMB redirector is notified.

An LMX server may always Flush all files supported on the L.MXse5sion even if a single—file

flush was requested.

SMBflusl1 Field D escriptions

sm b_com

sm b_wct

sm b_vwv [0]
sm b_bcc

smb_fild The FID to be flushed. If this field is set to Odflf (that is, — 1), all files open in
the LlvfXsession environment will be flushed.

SMBflush Error Code D escrl n (ions

DOS Class
Bad TID.

The speci fled FID is not open.
Other CAE errors mapped Ilene.

The UID given (smb_uid) is not known as a valid
SMBflusl1 Preconditions

1 The SMB redirector must have issued a valid SMB request with a valid UID and valid TID
for a shared resource.

2 The specified FID must be open, or it must be Odl‘tF_

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 $

Page 104 of 535

SMBflush Specification Core SMB File Operation Requmts

SMBflush Postconditions

1 All modified data and retrieval state information is scheduled to be flushed to stable store.

2 Bulfered named pipe data, if any, is flushed through to the cooperating processes.

SMBflush Side Effects

Eventually. the data will be written to stable store.

Conventions

None.

% X/Open CA E Sped fication ([$2

Page 105 of 535

Core SMB File Operation Requests SMBclose Specification

7.10 SMBclose Specification

SMBclose Detailed Description

This core protocol request is sent by an SMB redirector process to invalidate the given FID for

that process. All locks held by the SIVIB redirector prooees on that FID will be released as part of

the close. The FID cannot be used by the SMB redirector for further file aooess requests.

SMBclose D eviations

None.

SMBclose Field Descriptions

smb:wct
smb_ vwv [O]

smb_fid The FID to be closed.

smb_time An LlvD(server may optionally update the last modification time for the file to

smb_t1'me. A zero (Q or CXHITHH 5mb_u'me results in the LMXserver using the
default value.

SMBclose EFFOFC ode D escrlptions

ERRi nv ni cl

ERRinv(levice

ERRbaduid e UID given (smb_tu'd) is not known as a valid
ID on this LMXsession.

SMBclose Preconditions

L The Slv[B re(_lirector has senta valid SMB requst, with a valid UID and TID.

2 The Slv[Bre(_lirector has senta valid FID foran open file.

Protocols for)(/Open PC Interworking: Slv‘[B, Version 2 87

Page 106 of 535

SMBcIo5e Specification Core SMB Fiie Operation Requmts

SMBclose Postconditions

1 If the file being closed was written to, all the modified buffers for the file will be flushed to

the file system.

2 Any remaining locks on the FID (including opportunistic locks) will be removed.

3 The last modify time for the file will be set to the time specified by the SMB redirector.

4 The FID will be invalidated for further file access nequests.

SMBclose Side Effects

None.

Conventions

None.

$ X/Open CA E Sped fication ([$2

Page 107 of 535

Core SMB File Operation Requests SMBmv Specification

7.11 SMBn1v Specification

SMBmv D elailed D escriptiou

This core protocol request changes the name of or1e or more files or directories. Multiple files

may be renamed in response to a single request, as SMBmV supports filenames with wildcards in

the last 83component of the pathname; wildcards elsewhere in pathnames are not permi tted.

Every file that matches the attribute field and the first pathname is renamed according to the

second pathnarne, provided that file does not already exist (see Section 38on page 17 for more
details of the name transformation).

Wldcards are not allowed in the destination path for directories. A move of a directory cannot

have a destination located in the directory itself or any subdirectory within the source directory.

In these conditions the error <ERRDOS, ERRbadpath> is to be returned.

If a "‘is received it indicates to the LTVIX server to fill the remainder of the component with ?.

Any characters provided after the *will be ignored and the usual '? wildmrd mapping applies.

A file to be renamed can be open. If it is opened by the requesting process, the open must be in

compatibility mode. Otherwise, the rename fails with <ERRDOS, ERRnoaccess>. If the file is

opened by another process, that process has an oplock on the file, and the process has asked for
extended notification, the rename request will block until after the oplock has been broken. If

the process with the oplock closed the file, the rename takes place; if not, it fails.

There must not already be a different file existing with the new name. If there is, the rename will

fail. If wildmrds are used in a rename operation, and only some of the renames fail for any

reason, the request will fail silently; that is. no error will be returned.

Because an LMX server may serve multiple requests on the same resou rce simultaneously, there

may be interactions between the execution of this request and ongoing searches of the same

resource (SMBsearch, SMB1first, SMBfum'que, SMBfclose). Although there is no prohibition on

renaming directories actively being searched, an LMX server may cause the search to appear to

have reached the end of the directory since no more entries will be found .

SMBmv D eviations

Some l_.MX servers will ignore the attribute field; others treat it according to the Attribute
oonverlljon.

An]_.MXserver may choose t.o retu rn the error <ERRDOS, ERRdil'fdevice> if the move requested

spans two different CAE file systems.

SMBmv Field Descrip lions

smb:wct
sm b_vwv [O] smb_attr
smb_bcc min = 4

sm b_buF[] smb_oldpath

smb_attr A file attribute field. An L.MXserver should match file attributes against this

field when selecting files which match 3mb_o1dpath to rename. Items that

matdi this field are added with regular files [O the list ofitems moved.

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2 $

Page 108 of 535

SMBmv Specification

smb_oldpalh

smb_newpaih

Core SMB File Operation Requmts

An ASCIIZ (type 04) buffer oontaining the name of the file or files to be

renamed. Only the filename oomponent (not directory components) may
oontai n wildcards.

An ASCIIZ (type 04) buffer oontajning the new name(s) to be given to the
file(s) which match smb_oldpath.

SMBmv ErrorCode Descriptions

CAE Cod OS Class DOS Code

EN OTDIR ERRDOS ERRl)ad path

E\IOE.NT ERRDOS ERRbad file

EACCES ERRSRV ERRaccess

EEXIS1" ERRDOS ERRnoac0ess

EXDEV ERRDOS ERRdiffd evioe

EROPS ERR]-IRD ERRnown‘ re

E\/ILINK ERRDOS ERRnoaCoess

E\lOSPC ERRDOS ERRnoaccess

EBUSY ERRDOS ERRnoaccess

ETXTBSY ERRDOS ERRnoacoess

- ERRSRV ERRacoess

ERRSRV ERRCITOF

— ERRSRV ERRl)aduid

U CCESS SU CC :

SMBmv Pneconditions

]. S1\/[B,UlD and TID are valid ; TID is for a file system resou roe.

rJ>-LON

‘ component in the old pathname is not a

irectory.

e old file does not exist.

‘ component in a pathname denies the required
ermission.

e new file already exists.

‘ ttempt to rename to a dilferent devioe.

‘ trempt to write on a read—only file system.

I oo many links to old file.

e directory is full.

e old path is the mounted point for a file
stem.

The old path is the last link to an executing
programme.

An attempt was made to change a volume label.
Internal error.

The UID given (smb_uld) is not known as a valid
ID on this LMXsession.

verythi ng worked, no problem

5mb_ oldpath must refer to one or more files.

Transformation with smb_newparh must not match any existing files.

Process has appropriate permissions for all directories in both path arguments; write

permissions on last directory in each path argument.

SMBmv Postcooditioos

smb_oldpalh no longer points to any existing files. (This condition may not persist in the

presence of other file—shar1'ng activity, or if some of the new names oonfljcted with already-

exisring files.)

Page 109 of 535

X/Open CA E Sped fication ([EB

Core SMB File Operation Requests

SMBmv Side Effects

Seamhes involving renamed directories may be prematulely tenninated.

Cooven tio as

s Access (see Section 4320:) page 3:).

~ Attribute (see Section 431on page 3:).

~ Fllename (see Section 3500 page 15.

~ Opportunistic Locking (see Section 3820r1 page Z).

. Wldcards (see Section 3600 page 17).

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2

Page 110 of 535

SMBmv Specification

91

SMBunlinl< Specification

7.12

Core SMB File Operation Requmts

S M Bunlink S p ecificati on

SMBun[ink Detailed Description

This core protocol request is sent to delete a regular file or files. Read—only files may not be

deleted unless the read-only attribute is set in the SMBuniink requefit. \Mldcards in the filename

part of the pathname are supported.

The elfect of the SMBunb'nk will be LMX server implementation—depend ent. Normally only the

referenced filename can be deleted. If another SMB redinector has the file open, the oontents of
the file will remain available until that Sl\/{B redinector closes the handle to the file. lf

opporurnistic locking is supported and another SMB redirector has been granted an oplock on

the file, the prooess has asked for notification of the SMBunb'nk request. The SMBunlink request

beirtgprooessed will block u ntil the oplock has been broken (reference Section 382or1 page Z).

If a wildcard pathname matches more than one file, and not all of the files could be unlinked, the

request fails silently.

The 5mb_attr field may be applied as an additional filter on files matching the wildcard string in

smb_path. l_.MXservers may optionally provide this fil tering fu notion.

SMBun[ink Deviations

Only the specified directory entry is immediately deleted. The file oontents are deleted only

when all the file's directory entries have been deleted and all the FIDS associated with it have

been destroyed.

Some LMX servers may ignore the 5mb_attr field. Others will treat it in accordance with the

attribute convention (refer to Section 3 7on page 17).

LMX servers require the user t.o have write permission in the target file's parent directory.

SMBun[ink Field D escriptious

smb:wct
sm b_vwv [0]
sm b_bcc

sm b_bufI]

smb_attr A file attribute field. Some l_.MXse|\/ers treat it as indicating the attributes

that the target file must have.

smb_path An ASCIIZ (type O4) buffer indicating the file to be unlinked.

X/Open CA E Sped fication ([$2

Page 111 of 535

Core SMB File Operation Requests SMBunIjnk Specification

SMBun[ink ErrorCode Descriptions

irectory.

e specified file does not exist.

ERRaccess ‘ component in the path denies the required
ermission.

ERRnoaccess e specified file is a directory.

ERRnown‘te ‘ ttempt to modify a read —only file system.

ERRnoaccess e specified file is a directory.

ERRnoaccess e specified file is U16 last link to a shared text
e.

ERRaocess ttempt to delete a volume label, or delete
ermission required.

ERRinvdevioe ‘ tt.empt to unlink a non—regular‘ file.
ERRSRV ERRCITOF nternal error.

ERRSRV ERRbaduid I e UID given (smb_uid) is not known as a valid

SUCCESS SUCCESS

SMBu nli nk Precondi tioos

1 The SMB request. UID and TID are valid: t.he TID refers to a filesystem resou roe with write

permissions.

2 smb_path refers to one or more existing files.

3 The directory containing the files to be unlinked must allow writes by the requesting
process.

4 The files to be unlinked are not opened (except by the request process in compatibility
mode).

SMBun[ink Postconditiorrs

The file's directory entries are removed.

SMBun[ink Side Effects

None.

Cooven tio as

s Access (see Section 4320:) page 3:).

~ Attribute (see Section 431on page 3:).

~ Filename (see Section 13500 page 15.

~ Opportunistic Locking (see Section 382or1 page Z).

. V\/lldoards (see Section 36on page 17).

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 SB

Page 112 of 535

Core SMB File Operation Requmts

94 X/Open CA E Sped fication ([$2

Page 113 of 535

Chapter 8

ore SMB Directory and Attribute Operations

This section defines the elements of the core SMB protocol which manipulate directories and

attributes. They are:

SMBmkdir create an empty directory

SMBrmdtr delete an empty directory

SMBsearr:h perform a wildcard Iookup in a directory

SMBgetatr get file attributes

SMBsetatr set fil e attributes

SMBdskattr get information about the LMX servers file system

SMBchkpath ensure a path is valid and points to a directory

81 SMBrrrkdirSpecification

SMBmkdir Detailed Description

This oore protocol request creates a new directory which must not already exist. V\i*ite

permission is required in the specified di rectorys parent directory.

SMBmkdir Deviations

The LMXserver obeys the rules for mapping the new directory into the CAB file system (refer to

Section 43 ion page 3).

SMBmkdir Field Descriptions

5mb_path An ASCIIZ (typeO4) bu Efer oontajning the name of the directory to be created.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 %

Page 114 of 535

SMBmkdir Specification Core SMB Directory and Attribute Operations

SMBml-cdir ErrorCodeDesc1-iptions

escnp on

component of the path-prefix was no

irectory.

‘ component of the path—prefix did not exist.

‘ component of the path—prefix denied Search
ermission.

‘ tlempt to write a read—only file system.

e speci fied path already exists.

e parent's directory is full.

hysical I/Oen‘or on disk.

I 00 many links to the parent directory.

 nternal error.

I e UID given (smb_uid) is not known as a valid
D on this LMX session.

verythjng worked. no problems.

SMBml-cdi r Preconditions

1 Valid SMB request, UID and TID; TID is for a file system subtree.

2 The parent directory of the new directory must have the necessary access rights to Cueate a

directory.

SMBml-cdir Postconditions

The directory is created in the file system.

SMBml-cdi r Side Effects

None.

Conventions

~ Filename (see Section 3500 page 15.

% X/Open CA E Sped fication ([$2

Page 115 of 535

Core SMB Directory and Attribute Operations

82 SMBr111dir Specification

SMBrmdirD etailed D escdptioo

5MBrmdii' Specification

This core protocol request delet.es ar1 empty directory. The requesting UID must have write

permission in the target directoiys parent directory.

Because an LMX server may serve multiple requests on the same reoou roe simultaneously, there

may be interactions between the execution of this request and ongoing searches of the same

resource (SMBsearch, SMB1first, SMBfum'que, SMBfclt1se). Although there is no prohibition on

deleting directories actively being searched, an LMX server may cause the seaich to appear to

have reached the end of the directory since no more entries will be found.

SMBrmdirD eviations

None.

SMBrrndirField Descriptions

sinb_path

SMBrmdirEn-or C ode D escrip (ions

An ASCIIZ (type O4) buffer oontaining the name of the directory to delete

EN OENT

FAFFFQ FRRnoaotms

EROFS

EBUSY

E‘.RRnown‘ te

ERRnoaccess

 EEXIST ERRnoacoess

ERReiTor

ERRbad uid

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

Page 116 of 535

irectory. I
e specified directoiy does not exist.

oomponent in the path denia the required

permission.

Attempt to modify a read-only file system.

"Die directoiy is in use and cannot be iemoved at
this time.

Attempt to remove a non-empty din-:-ctoiy.
Internal error.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

ivetythingworked, no problem

SMBrmdjr Specification Core SMB Directory and A ttribute Operations

SMBrmdirPreconditions

1 Valid SMB request, UID and T1D;TID refers to a file system subtree.

2 The UID has write aooess to the parent directory of the target.

SMBrmdirPostcooditions

The directoiyis deleted.

SMBrmdirSide Effects

An in—progress search from another prooess may receive an inconsistent View of the resource.

Conventions

~ Access (see Section 4320:) page 3:).

~ Fllename (see Section 35on page 15.

% X/Open CA E Sped fication ([$2

Page 117 of 535

Core SMB Directory and Attribute Operations SMBseai'ch Specification

8 3 S M Bsearch Sp ecification

SMBseaoch D etailed D escri p tfon

This core protocol request searches a directory for one or more regular files matching a wildcard

template. Two forms of the SMBsearch request exist: SearchFr'r5t and Se-archNext.

Every search begins when an SMB redirector sends a SearchFir5t request to the LMX server

asking for n files that match a specified wildcard template. The LMXserver sends a response

oontaining the directory information for up to n files found which match the template. The
response oontains a search handle defined below.

The SMB redirector may then resume the search at any search handle of a previous $MB5e-arch

response. The LMX server responds to SearchNext with the directory information for up to n

additional matching files, picking up from the point indicated by the search handle.

The SI\/[B redirector does not indicate when a search is complete; that is, there is no Se-archD0ne
request.

SMBseaoch D eviations

Since the SIVIB redirector never closes a search, the LMX server must use some heuristics in

determining when to release resources associated with a search. These heuristia should never

result in a search being declared terminated by the LMX server while it is still possible for the

SMB redirector to oontinue it. Some possible heuristics are:

1 An SMBexit request from the same process is received.

2 The TID containing the search is broken.

3 The LMXsession contai ning the search times ou t.

4 An error of any sort is retu med in response to an $MB5£-arch request.

For the root directory of the directory subtoee located by the TTD the directory entries . and ..

are not retumed to the SMB redirector. If a volume label is returned it should be a printable

string. Some SMB redirector applications will print this string, but no other semantics are
associated with it.

The system, archive and hidden bits of the file attribute fields are treated in accordance with the

Attribute convention (see Section 43 lon page CC).

An LMX server must guarantee never to return information on a given file twice in the same

SMBsearch sequence. provided find_ buf_5earch_id contents are not reused by the Sl\/[B redirector.

Some CAE systems can rearrange the information within a directory without the LMX server's

knowledge; for example. entries may be moved around to pack a directory, etc. Because of this,

LI\/lXservers may not be able to guarantee that all files are reported once; that is, some files

matching smb_pathname and 5mb_attr may not be reported to the SMB redirector.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 %

Page 118 of 535

SMBsearch Specification Core SMB Directory and Attribute Operations

3 MBseaoch Field D escr-ip tions

Request Format:

smb:wct
sm b_vwv [O] smb_count : 5mb_count
smb_vwv[1] smb_attr _ rnin=3
sm b_bcc 5mb_data

smb_cour1t A signed integer. In the request, the maximum number of entries to find and

return in the response (:1): in the response, the number of entries actually

returned. If no matching entries were found between the point where this

particular Se-arcltFir5t or SearchNert began, a zero (Q should be returned. The
number of entries retu rned will be the minimum of:

— the number of entries requested

— the number‘ of (complete) entries that will Fit in the negotiated SMBbufl°er

— the number of entries that match the requested name pattern and
attributes

smb_attr An attribute field. If supported, the L.MXserver will only return directory

entries whose attributes match this Field as well as the wildcard pathname.

Unless this field specifies the volume label, normal files whose names match

the wildcard are always retumed. If this field specifies the volume label, only
the volume label information is returned.

smb_patl1naJne An ASCIIZ (type 04) bulfer oontaining the wildcard path to search. Only the

last oomponent of the pathname may oontai n a w ildcard.

smb_search_id A Variable Block (type C13, 21 or Obytes in length. If this is a zero—byte Data

Block, it isa Searcl1First request; otherwise it is a Searclwext request containing

the i‘ind_bu{_5eard1_id (see below) returned in the last dir_ii1i"o structure in a

previous Search!-‘irst or SearchNeXt response.

smb_data A Variable Block (type 03 containing an array of dir_ii1i"o structures, tightly

packed. The total size of the array is 43*smb_catmi.

The dir_ii1i"o structure contains information about each file which matched the wildcard

smb_patl1naJne (and . optionally, the 5mb_atir attributes). The .S[lUC[U re oontai ns:

.'n_. in Field Name

{in d_ buf_search_1‘d

find_ buf_attr

find_ buf_ time find_ buf_da1e A 16bit date field, indicati ng the date of last modification.

find_buf_51'ze A 32-bit integergiving the size of the file.

find_buf_pname A blank—padded string, 13 characters in length, giving the

name of the file in printable form. For example, AB.T'x

A‘. (

1(1) X/Open CA E Speci fication ([$2

Page 119 of 535

Core SMB Directory and Attribute Operations SMBsearch Specification

The find_buf_5earch_id referred to as the searvsh handle above appears in two places: in the

SearchNext request, and at the beginning of each dir_info structure. It contains state information
the l_.lvlXserver needs to continue a search. Its structure is as follows:

eserved for SMB redirector use. This field must

he appropriate search handle of t_he response.

l6byte field reserved for Ll\/D(server use. Usually maintain

te to continue searches; see paragraph below.
DOS SMB redirectors using the . ' RK PROGRAM LQ MICROSOFT
NETVVORKS LCI3 and MICROSOFT NETVVORKS 30 used the sr_5ervd.ata field in order to

enhance the performance of the search sequence. If those SMB redirectors exist on the network,

then the sr_servdata field is defined and the Llx/[Xsen/er must maintain the following structure of
information:

A compressed ll—byte string maintaining the search pattern for the directory

search. This will include any meta—character's for the search. The . in DOS

filenames (preceding the 3byte filename extension) is ssumed, in that it is no

maintained in the string but rather inserted prior to the last Scharacters of th

field. The first Scharacters are blank padded unless meta—charactets are used. l

the case of meta-characters, a * is expanded out into the appropriate number 0
question marks.

An unsigned byte. No assumptions are made on this value except that it shoul u
be non—zero.

An unsigned 16bit integer which maintains t.|1e directory index value for thi

search entry. This value starts counting from zero and continues in a Iinea

sequenoe. Some SMB redirectors are known to modify this value t.o allow ther

to resume a directory search atan arbitrary location.

An unsigned 16bit integer that may be used by the LMX server. It should not
zero.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 101

Page 120 of 535

SMBsearch Specification Core SMB Directory and Attribute Operations

SMBseaoch ErrorCode Descriptions

EA CCES ERRDOS ERRnoacoess o permission for the speci ed pathname.

EIO ERRHRD ERRdata hysiczal I/O error on disk.

E\/IFILE ERRSRV ERRnoresource Exhausted process file handle supply.

E\lF'ILE ERRSRV ERRnoresoun:e Exhausted system file handle supply.

E\lOE.NT SUCCESS SUCCESS 'gnore(l (a file disappeared or didn't exist).

E\l OTDIR ERRDOS ERRbad path Component in pathname was not a directory.
EOF ERRDOS ERRnofiJe5 Search can find no more files.

ERRSRV ERREITOF LMXserver internal error.

ERRDOS ERRbadfid 5earch_id was not active.

ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

SUCCESS SUCCESS Eve hi worked,no Jroblems.

SMBseaoch Preconditions

1 Valid SMB. UID and TID; the T‘ID refers to a file system su btree.

2 The UID has appr'opn‘ate permission on all directories in smb_par}1name.

3 The LMXserver has not declared the search tenninated.

SMBseaoch Postconditions

1 After a Seard1Fir5t request, the various directories under‘ search are opened as necessary,
and su fficient state is maintained to continue the search.

2 After a SearchNext, the retained state information is updated to permit oontinuing the

search without retuming dir_info on the same file twice.

SMBseaoch Side Effects

Various directories are open for reading as long as the search is active. This may delay other

requests from other SMB redirectors (for example, SMBrmdir).

Conventions

o Access (see Section 4320:] page 10.

o Attribute (see Section 43 Ion page 10.

o Frlename (see Section 35on page 13.

o Wldmrd (see Section 36on page 17).

If X/Open CA E Speci fication ([$2

Page 121 of 535

Core SMB Directory and A ttribu te Operations SMBgetatr Specification

84 SM Bgetatr Specification

SMBgetair D etailed D escription

This cone protoool request is used to obtai n information about a regular file or directory.

SMBgetair D eviaiioos

1 The aithive, system and hidden file attiibute bits are treated according to the attribute

mapping oonvention.

2 The 5mb_time\/alue returned will be the file's last modified time (as set by a previous close
operation).

SMBgetair Field Descriptions

smb_path An ASCIIZ (type O4) buffer containing the name of the regular file or directory

for WlliCl] information is requested.

smb_attr A 16bit attribute field describing the filer

smb_ti'me A 132-bit time giving the last modify time for the file.

smb_ size A 132-bit integer containing the current size of the file in bytes.

SMBgetatr Error Code D escrip Lions

permission.

ERRerroi' A signal was caught dun‘ rig some system call.

ERRbadfile File cloa not exist, or component of pamname
does not exist.

E‘.RRbad path Component of path—prefix is not a di rectory.

ERRnoaccess Read permission required.

ERRinvti(l TID specified in command isinvalid.

ERRinvdevioe nvalid resource type: TTD was not for a file

ERRbad uid

SUCCESS

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 KB

Page 122 of 535

SMBgetatr Specification Core SMB Directory and Attribute Operations

3 MBgetatr Preconditions

1 The SMB redirector has the appropfi ate permission to the file system su btree.

2 smb_path refeis to an existing file or directory.

SMBgetatr Postconditions

The smb_attr and smb_time fields are accurate for files and directofies; 5mb_size is conect only for

filafi and is meaningless for directonies.

SMBgetatr Side Effects

None.

Cooven tio as

s Attribute (see Section 431on page 3:).

~ Filename (see Section 35on page 15.

104 X/Open CA E Speci fication ([$2

Page 123 of 535

Core SMB Directory and A ttribu te Operations $MBsetatr Specification

85 SM Bsetatr Specification

SMBsetatr D etailed D escription

This cone protocol request is used to set i nformaticn about an existing regular file or directory.

SMBsetatr D eviations

1 The archive, system and hidden file attribute bits ate treated according to the file attributes

conventions. Reference Section 43 lon page EDfor additional information on file attribute

handling.

2 The smb_ti'me specified will become the last modify time for the file.

SMBsetatr Field D escriptions

smb:wct
sm b_vwv [O]

smb_vwv[1-2

smb_vwv[3 '3 reserved (i\/IBZ)
smb_bcc min=2

smb_buf[]

smb_attr A file attribute field, to be given to die file (see Section 35 on page 15 for
details of the Attribute convention).

smb_ti'me A 132-bit time giving the last modify time for the file. A value ofoindicates the

last modify time should be unchanged.

smb_patii An ASCIIZ (type O4) buffer containing the name of the regular file or directoiy
for wliidi information is to be set.

smb_nu1 An ASCIIZ (type O4) buffer containing the null stiing.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 KB

Page 124 of 535

SMBsetatr Specification Core SMB Directory and Attribute Operations

SMBsetatrErnorCode Descriptions

escnp on

- rch permission is denied on a oomponent of

he path-prefix‘

e UID does not have approptiate privilege

:](l is not the owner of the file and the read—only

ttn' bu te flag was changed.

‘ signal was caught dun‘ rig the system call.

ile does not exist, or oomponent of pathname
u oes not exist.

omponent of pat.h—prefix is not a directoty.

I e UID does not have apptoptiate privilege
:](l is not the owner of the file and time is non-
em.

I e file system oontaining the file is read—only.

D specified in command is invalid.

e T'lD does not refer to a file system subuee.

e UID given (5mb_uid) Is not known as a valid
D on this LMXsession.

verything worked, no problem

SMBsetatr Preconditions

1. The SMBre(lirector has sent a valid SMBrequestwith avalid UID and a valid T‘]D for a file

system subtree.

2 smb_path refers to an exist] ng file or directoty.

3 The specified UID or TlD represents approptiate privilege to perform the act)‘ on.

SMBsetatr Postcondlilons

The file attribute and time will be set accordingly, or an ermr will be tetumed.

SMBsetatrStde Effects

1. If the read-only attn‘ bu te was changed. the access mode for the file will have been changed

accordingly. For example, when the read—only attn‘ bu te is removed the LMXserver will set

those wtite permission bits for a file not explicitly masked out by the current umask value.

2 The last modify time for the file will be changed ifthe speci fied time was non-zero.

Conventions

- Access (see Section 432on page '3).

- Attribute (see Section 43 lon page 3).

- Filename (see Section 35on page 15).

KB X/Open CA E Sped fication ([$2

Page 125 of 535

Core SMB Directory and Attribute Operations 5MBdsi<attr Specification

86 SMBdskattr Specification

SMBdsk attr D etailed D escription

This core protocol request returns some information on the resources associated file system
su btree.

SMBdsk attr D eviatioos

An I_.MXserver may return zero (C) in the smb_vwv[4] (mediaidentjfiercode)

SMBdsk attr Field D escrlptions

From SMB redirector i redirectol

ield Value

smb_com

5mb_wct

5mb_vwv[O] number of allocatio
units/server

5mb_vwv[1] number 0
blocks/allocation unit

smb_vwv[Z block size (in bytes)

smb_vwv[3] number of fr :
allocation units

5mb_vwv [4] reserved (medi .

identi fier code)
smb_bcc O

SMBdsl<atir E1-mrCode Desci-I Lions

e file system has been removed from me
. stem.

The file system has been removed from the
system.

Physical l/OCITOF on disk.

Read permission is required.

Invalid TID specified.

ERRinvdevioe Invalid resource type (that is, no file system

subtree) specified.
ERREITOI‘ Other CAE and intemai errors.

ERRbeduid The UID given (smb_w'd) is not known as a valid
ID on this LMXsession.

SUCCESS Eve: hjn worked no roblems.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 D7

Page 126 of 535

SMBdskattr Specification Core SMB Directory and Attribute Operations

SMBdsk attr Preconditions

The SM3 Iequest, UID and TID must be valid and nepresent the appropfiate aooess rights to

[')€l‘fOl‘ITI the action.

SMBdsk attr Postconditions

None.

SMBdsk attr Side Effects

None.

Conventions

~ File System Issues (see Section 4.3300 page 33.

KB X/Open CA E Sped fication ([$2

Page 127 of 535

Core SMB Directory and Attribute Operations SMBchkpath Specification

87 SMBchkpath Specification

SMBchkpath D etailed D escriptioo

This core pnotocol request verifies that a path exists and is a directory. For example, SIVIB

redirectors which maintain a concept of a working directory might use SMBchkpath to verify the

validity of a change working directory command. Note that an LMX sewer does not have a

concept of working directory. The SMIB redirector must always supply a full pathname (relative
to the TTD).

SMBchk path D eviations

None.

SMBchk path Field D escri ptions

smb_path An ASCIIZ (type 04) buffer containing the name of the directony to be

checked.

SMBchl(path E1-rorCode Descrip lions

ERRDO8 a mponent of the path was not a diiecto

ERRDO8 specified directory does not exist.

ERRDO8 A component of the path lacked search permission.

ERRSRV ERRacoes5 N0 read permission in specified directory.

ERRDO8 ERRbadpath The specified path wasn't a directory.

ERRDO8 ERRn0fids System file table full.

ERRDO8 ERRnofids I_.l\/[Xsession has too many open files.

ERRHRD ERRdata Physical 1/0 error on disk.
ERRSRV ERRjnvnid Invalid TID specified.
ERRSRV ERRerror Internal error.

ERRSRV ERRbaduicl The UID given (smb_u1’d) is not known as a valid ID
on this LMX session.

SUCCESS veiything worked, no problems.

SMBchk path Preconditions

SMB request, UID and TID are valid and represent the appropriate access rights to perform the
action.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 KB

Page 128 of 535

SMBchkpath Specification Core SMB Directory and Attribute Operations

SMBchk path Postcooditions

If no error is relumed, 5mb_path refenred to a valid existing directory which is readable by the
SMB redirector.

SMBchk path Side Effects

None.

Conventions

~ Fllename (see Section 3500 page 15.

110 X/Open CA E Sped fication ([$2

Page 129 of 535

Chapter 9

ore SMB Spool Operation Requests

This section defmes the elements of core SMB protocol which support spooling and printing

operations. They are:

SMBspiopen create a new spool file

SMBspiwr write l.O a spool file

SMBspiciase close a spool file a nd queue it for spooling

SMBspiretq tetum i nformatjon on the spool queue

9.1 SMBsplopeu Specification

SMBspiop en Detailed Description

This oore protocol request will create a spool file. The file will be deleted onoe it has been

printed. The Lb/D< server will grant write permission to the creator of the file. No other LMX

session will be given any access permissions to the file.

All users will have read permission on the print spool queue. but only the print LMX server has

write permission to it.

SMBspiopen Deviations

Some l_.l\/lXSel‘V€l‘S do not distinguish between text and graphics modes.

SMBspiopen Field Descriptions

sin b_ com SM39piopen
sin b_ wt! 2

smb_vwv[O] smb_psdien
smb_vwv[1] smb_mode

smb_ba‘ min = 2

sin b_ buf smb_ident

smb,P3dlen A 16 bit integergiving the length of printer setup data to be sent. This means

that the First smb,P5dien bytes of data ser1t to this spool file will be treated by

the LMXserver as setup data.

smb_mode A 16bit field providing additional oontml over the printing of this file. The

field can have the following values:

0 Text mode. Some LMX servers expand ASCII TABS to spaces in this
mode.

1 Graphics mode. The LMXserver treats the data as raw octets and will not

interptet or change it.

Protocols for X/Open PC Interworking: Siv‘[B, Version 2 111

Page 130 of 535

SMBspiopen Specification

112

Core SMB Spool Operation Requests

smb_ident An ASCIIZ (type 049 bulfer oontaining a suggested name for the spool file.

The LMX server may ignore, truncate, or otherwise use this information in any
way.

smb_fld The FID of the spool file. Data written to this FTD will be spooled.

SMBsplopen ErrorCode Descrip tions

ERRerror The Ll\/lX server cannot find the spool queue fo
this file.

lnsuificient resources to create the piintjob.

The queue is full: no entry is available to creat

thejob.
The LMX server has exhausted some resour i

and cannot create the ptintjob.

ERRqfull

ERRqtoobig

ERRerror

ERRnoacoess

iofids

ERRnofids

ERRerI‘oI‘

Search permission is denied on a component 0

the path—prefix.

A signal was caught during a system call.

Maximum number of file descriptors ar

mrrently open in this process.

System file table is full.

The spool file or spool queue resides on a read

only file system.

The T‘iD does not refer to a printer resource.

The UID given (smb_uid) is not known as a vaii
ID on this LMXsession.

Even thin ; worked n

ERRin\/devioe

ERRbaduid

SUCCESS

SMBspiopen Preconditions

The SMB request, UID and T'iD are valid and represent the appropriate acoess nghts for the
action.

SMBspiopen Postconditions

L Ifsucoessfiil, smb_i‘i1 oontains the FID to be used in subsequent 5MBspiwr requests for this

spool file.

2 Although some resources were reserved to create the spool file, riiere is no guarantee mat

sufficient resources exist for a given amount of data to be spooled within this spool file.

SMBspiopen Side Effects

A spool file has been created on the l_l\/IXserver.

Conventions

- Print Spooling (see Section 46on page E.

X/Open CA E Speci fication ([$2

Page 131 of 535

Core SMB Spool Operation Requests SMB5piwr Specification

9.2 SMBsplwr Specification

SMBsplwrDetai[ed Description

This cone protoool request appends the data block to the spool file specified by the FID. The first

block sent to a spool file must contain the printersetup data; the lengt.h of this data was specified

in the $MBspiopen request. Additional data may appearwith the fiist block sent.

SMBsplw r D eviatioos

It is possible that LMX servers are such that if an SMRsplwr request oontained a message of

length greater than the maximum transmit size for t.he TJD specified. the LI\/IX server would

abort the LMXsession to the Sl\/[B redirector (see Section 6 1on page 55and Section 62on page

57). Rather than aborting, the LMX server could aooept an amount of data which is the lesser of
the amount the Sl\/[B iedireetor indicated would be sent and the size of the data in the buffer.

SMBsplwrField Descriptions

Field Val

smb_fid The FID foraspool file. Obtained in an 5MBsplopen response.

smb_data A Data Block (type OI) bulfer, containing data to be written to the spool file.

The first bytes of the fiist 5mb_data field sent to a new |y—opened spool file are

oonsidered [0 be pn'nter setup data; the length of this setup data is specified in

the 5u1b_p3d1m field of the 5MBsplopen request.

SMBs lwrE1-ror Code Descri lions

ERRbadfid FJD is valid, but no longer aooepted by the

underlying operati ng system.
ERRl)adfid Invalid FID.

ERRnoam:ss A temporaty resouroe limitation prevented this

data from being written.

ERRwrite A physical I/Oerrorhas occ_n‘ve(_l.

E‘.RRqtoobig A part of the spooler subsystem failed due to

lack of file system space.

ERRinvnid me TID in the oommand is invalid.ERRbaduic| e UID given (smb_uid) is not known as a valid
ID on this LMXsession.

' I l(

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 113

Page 132 of 535

SMBsp}wr Specification Core SMB Spool Operation Requests

SMBsplwrPreconditioos

1 The SMB request. UID and TID are valid and nepresent the appropriate aooess rights for the
action.

2 The spool file specified by 5mb_fid must have been opened with SMRsp!apen.

SMBsplw r Postconditions

If no error is retumed, the data sent in the request will be written to the spool file.

SMBsplw r Side Effects

None.

Conventions

~ Print Spooling (see Section 46on page E.

114 X/Open CA E Sped fication ([$2

Page 133 of 535

Core SMB Spool Operation Requests SMB5p/close Specification

9.3 SMBsplcIose Specification

SMBsplclose D etailed D escriptioo

This cone protoool request invalidates the specified FID and queues the file for spooling. The FID

must reference a spool file.

SMBsplclose D eviations

None.

SMBsplclose Field Descriptions

5mb_fid The FID of the spool file to be closed and queued for spooling.

SMBsplclo5e Error C ode D escrip lions

I e LMXserver could not use a valid FID

e FID in the request is not valid.

e FID doa not refer to an open spool fil
e TID in the command isinvaiid .

me UID given (smb_uid) is not known as
D on this LMXsession.

veiything worked, no problem

SMBsplclose Preconditions

L The SMB request. UID and TID are valid and represent the appropriate access rights for the
acti on.

2 smb_fid must refer to a spool file opened with SMB5piopen.

SMBsplclose Poslconditions

L If no errors have occurred, the spool file will be closed and thejob scheduled.

2 If an error has occurred, it is possible that the data was not printed and may have been lost.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 115

Page 134 of 535

SMBsp}c]ose Specification Care SMB Spool Operation Requests

SMBsplclose Side Effects

1 The data is spooied. Refer to Section 4.6on page 36

2 Duiing or after the piinting of the File, the resoumes consumed by it will be released.

Conventions

~ Print Spooling (see Section 46on page E.

116 X/Open CA E Sped fication ([$2

Page 135 of 535

Core SMB Spool Operation Requests SMBspiretq Specification

9.4 SMBsplretq Specification

SMBsplretq D etailed D esci-iption

This core protocol request obtains a list of the elements currently in the print spool queue on the

LMXserver. Zero or less than the requested number of elements will be returned only when the

beginning or end of t.he queueis encountered.

SMBsplretq D eviatioos

Some LMX servers cannot search the queue backwards, and will respond to requests for

backward searches with a forward search inst.ead. The in interoept bit in the smb_status field of
smb_data will never be used.

SMBslpretq Field Descriptions

smb:wct
sm b_vwv [O] smb_maXcouni smb_count

sm b_vwv[1] smb_st_i'ndex _ smb_res_i'ndex
smb_bcc O _ min = 3

smb_maXcormt A 16bit integer specifying the maximum number of entries to return. If

positive, search forward in the queue; if negative, search backwards. If

smb_maXcouni entries require more data than can fit in a message, those entries

which fit are returned and no error is generated.

smb_st_index A 16bit integer indicating the first entry in the queue to retum. A value ofO

indicates the start of the queue; other values should only come from the

smb_res_index field of previous SMB5pIretq responses.

smb_ count A 16bit integer indicating how many entries were actually returned.

smb_res_index A 16bit integer giving the index of the entry following the last entry returned;

it may be used as the start index in a subsequent request to resume the queue

listing.

smb_data A Data Block (type 01) buffer‘ oontaining an array of 5mb_count queue element

structures. Each queue element is 28 bytes in length and contains the

following fields:

16 bit field smb_da

16 bit field smb_ii

8bit field smb_sia

16 bit field smb_fil

Ebit field smb_siz

8bit field smb_res
8bit field

smb_date A 16bit field oontajning the date for when the file was

created. Refer t.o Section 532011 page 48

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 117

Page 136 of 535

SMBsph'etq Specification Core SMB Spool Operation Requests

smb_time A 16bit field telling Lime for when the file was created.

Refer to Section 53 1on page 43

smb_5tatus An 8bit field indicating the Files stat.us in the print spool

queue as follows:

O<O1 held or stopped

O<C2 printing

O<CI3 awaiting print

O<O4 in interoept (never used)

O<CX3 file had error

O<CB printer error

O<O7—()(fl° reserved; do r1ot use

smb_file A 16 bit integer containi ng the spooljob ID, as generated or1

the LMX server during the processing of the SMBsplopen

request for this spool file.

5mb_5ize A I2rbitinteger containi ng the size of the filein by tes.

5mb_re5 An 8bit reserved field; l\/[BZ G\/lust BeZero).

smb_name A l6byte string identifying the spool file. This may be the

originating SMB redirectors name or the spool filename.

The spool filename is created by the LMX sewer when an

SMRsplopen request is received. This string is leltjustifiexl
and NULL-filled in the field.

SMBsplretq Ermr Code Descriptions

e UID given (smb_uid) is not known as a valid
D on this LMXses3ion.

hin worked, no roblems.

SMBspl1-eiq Preconditions

L The maximum SMBsi2e permits at least $* smb_max_count bytes of data in addition to the

SMB header and request subhead er.

SMBspl1-eiq Poslconditioris

None.

118 X/Open CA E Speci fication ([$2

Page 137 of 535

Core SMB Spool Operation Requests SMBsplretq Specification

SMBsplretq Side Effects

None.

Conventions

This is a request where the UID and the TID need not be valid for service.

~ Print Spooling (see Section 46on page E.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 119

Page 138 of 535

Core SMB Spool Operation Requests

120 X/Open CA E Sped fication ([$2

Page 139 of 535

Chapter 10

ore Plus SMB File Operations

This section defines the elements of the core plus SMB protocol which provide for file

operations. They are:

SMBnegpmt negotiate modifimtions when the core plus dialect is selected by the LMX
sen/er

S1\/lBn?2dbmpX lead block multiplexed

SMBWritebmpX write block multiplexed

SMBn2-adbraw lead block law from a file

SMBWrilebraw write block raw to a file

SMBlod<read lock a byte range and read il

SMBwritetmlock write l.O a byte range and unlock it

SMBwriteclose write l.O a file and close it

10.1 SMBnegprotSpecification

SMBnegprol Detailed Description

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and

LMX server will use when communicating with each other. The SMB redirector sends a list of

dialects that it can use for communication. The Ll\/Di server responds with a selection of one of

those dialects (numbered 0 to n) or -1 indicafi ng that none of the dialects were acceptable.

Exactly one negotiate message must be sent on each NetBIOS session: subsequent negotiate

requests must be rejected with an error response and no action will be taken. The rules for the

use of SMBn£-gprol outlined in Section 6 Ion page 55hold here as well.

SMBnegprol Deviations

None.

SMBnegprol Field D escrlp tions

Field desciiptions for other dialects of the SMB protocol (SMBnegprol) are:

SMBn egprot _ 5MBn egprot
O _ 13

min=2 _ smb_index

dialecto _ smb_rsvd0

smb_blkmode

smb_rsvdl

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 121

Page 140 of 535

SMBnegpi*ot Specification Core Pius SMB File Operations

The fields are defined as:

dialectn A Dialect (type C2 bulfer oontaining the name of a dialect (refer to Section 54

on page 48.

smb_index The dialect selected by the LMX sewer; corresponds to the indexth dialect

stn' ng in the request, where the first string is numbeied O

smb_rsvd0 Reserved; l\/[BZ (]\/lust Be Zero).

smb_blkmode VK/hether or not SMBre-adbraw and SMBwritebraw are supported.

Bit 0 If set, SMBN-adbraw is supported.

Bit 1 If set, SMBbwr1‘febraw is supported.

Bit 2 15 Reserved; Must BeZero.

Some SMB redirectors when negotiating the core plus dialect i gnoie these bits

and assume both Sl\/[Bs are aooeplable.

smb_rsvd I Reserved; l\/[BZ (]\/lust Be Zero).

smb_bcc This area is ignored in the cone plus dialect.

Note that bit Oof the 5mb_flg field in the SMB header of the response will be inteipreted by the
SMB redi rector to indicate support for SMBlocl<read and SMBwn'i‘eunlock.

SMBnegprotErrorCode Descriptions

If any error ooours, the l_.I\/IX server will ietum <ERRSRV, ERRerror>; otherwise, -<SUCCESS,
SUCCESS> will be relumed.

SMBnegprotPreconditions

The Sl\/[B redirector attempting to negotiate a protocol must have established a Net_BIOS session
with the LMX server.

SMBnegprotPostconditious

The Sl\/[B redirector that negotiated this protocol must be able to handle all aspects of the SIVIB

dial ect negotiated.

SMBnegprot Side Effects

The LMXserver will keep a record of which dialect the SMB redirector negotiated and will use

only that dialectin oonveisations with the SMB redirector.

Conventions

None.

122 X/Open CA E Speci fication ([$2

Page 141 of 535

Core Plus SMB File Operations SMBreadbraw Specification

10.2 SM Breadbraw Specification

SMBread braw D etailed D escription

The read block raw request is used to maximise the performance of reading a large block of data

from a file on the L.MXsen/er. Any supported file type can be lead via SMBreadbraw. Up to

$535 bytes can be read in one request/response regardless of the maximum negotiated bulfer
size‘

V\/hen the Sl\/{B redirectorsends t.his request, it guarantees no other request will be issued on the

same LMXsession until the response is received from the Llvlxseiver. Given this guarantee, the

Ll\/[X server responds by sending just the requested data in a single tiansport message. No

header of any sort is generated‘ Bemuse the entire response is sent as a single message, the SIVIB

redirector can determine how much data was actually sent.

If t.he request is to read more data t.han is present in the file, the head response will be of the

length actually read from the file. If the read begins at or alter EOF, or some other error is

enoountertxl, a zeiolength message is sent in response. An SIVIB redirector will send a read

request other than SA/lBreadbratv to find out what happenerl, at which time an EOF indication or
error is returned in the response to that request.

If an erior should OCOJI‘ at the SIVIB redirector end, all data must be reoeival and thrown away‘
The LMXserver will not be informed.

SMBread braw D eviations

Support for the timeout field for file types other than named pipes is optional‘ If timeouts are

not supported, all requests are tieated as non—blockjng.

SMBreadbraw Field Descriptions

smb:wct
sm b_vwv [0]

sm b_vwv [1- 2

sm b_vwv [3] smb_maXcnt

sm b_vwv [4] smb_miJicnt

sm b_vwv [5 6] smb_ timeout

sm b_vwv [7] smb_rsvd
sm b_bcc O

smb_fid The FID for the read.

smb_ai_‘Tset A 32bit unsigned integer giving the offset into the file, in bytes. at which the

lead is to begin.

smb_maXcnt An unsigned 16bit field indicating the number of bytes to be read.

smb_mincnt If a timeout is specified, this is the minimum number of bytes that must be

lead for the request to retum before timing out.

smb_ti'meout A Evbit integer giving the number of milliseconds to wait for at least

smb_mincnt bytes of data to be read. A value of zero (Q indicates the read
should not block. A timeout of -1 means the LMX sewer should wait

indefinitely. A timeout of —2indicates the default timeout for the named pipe

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 JZ3

Page 142 of 535

SMBreadbraw Specification

124

Core Pius SMB File Operations

should be used.

smb_rsvd A 16bit reserved field, which should beignoied.

The response contains no headeis or other overhead, and is a single message oontajning the

bytes that were read. A zeiolength message indicates either 5mb_0l}3et pointed beyond the
current EOF or some other €l‘lDI' ooourred.

SMBreadbraw ErnorC ode Descriptions

No en‘ors may be relumed in the response to this request. Instead. any en‘ors are saved until the

next request for this file, at which time they will be returned.

SMBread braw Preconditions

1 The SMB redirector has sent a valid SIVIB request with a valid TID for a readable resource.

2 The FID is valid and the process has read access.

SMBread braw Postcondi tions

The LMXserver has retumed to the SMB redirector either all of the requested raw data, all of the

data up to the EOF, or a response with no data.

SMBread braw Side Effects

Since the LMX sen/er is not allowed to return errors with this SMB request, a return of Obytes

am indicate either EOF. file system read error, outstanding break or block, or that the LMX

sewer is temporaiily out of some required resouroe. In the case of a 0 byte return, the SIVIB

iedirector should follow up with an SMBread or SMBreadmpx iequest at which time the LMX

sewer can retum an errorif necessary.

Conventions

~ Locking (see Section 44on page 33.

X/Open CA E Sped fication ([$2

Page 143 of 535

Core Plus SMB File Operations SMBwrr'tebraw Specification

10.3 SM Bwritebraw Specification

SMBwr-itebraw Detailed Description

The write block raw message exchange provides a high—per'lormanoe mechanism for‘ transferring

large amounts of data to be written to a file on the LMX server. Any supported file type,

including spool files, may be written with this exchange.

The SMBwrr'tebraw exchange behaves much like an SMBwrr'r‘ebmpX exchange, exoept that instead

of additional data being sent in secondary requests, all the additional data is sent in a single raw

message; that is, the first segment of data is sent in the primary request, and the remainder in a

single message with no SMB head er or SMBwritebraw subhead er‘.

If all the data to be written fits in the primary request, a zero-length secondary request is still

sent: even if the secondary request is zero-length, a secondary response must be generated when

write-through mode was specified.

If the LMXserver is busy or otherwise unable to support the raw write of the remaining data, the

data sent with the primary request is still written (to stable store if write—through mode was set).

If ar1y other error ooours, the data is discarded. In either case. an appropriate erroris returned in

a secondary response, A primary response is only sent if the primary request was satisfied with

no errors and the LMXserver is prepared for a raw message.

SMBwr-iteb raw D eviations

The 5mb_ timeout and smb_remaJ'ning fields will not be supported with I/O devices.

SMBwr-iteb raw Field D escriptioos

SMB redi rectors using the core plus dialect of the SMB protocol use a slightly diflerent form of

the SMBwritebraw primary request, and expect a slightly modified primary response. Both forms
are shown below.

Primary SMBwrr'tebraw (core plus only):

sm b_com SMBwrr'tebraw _ 5MBwritebraw

sm b_wct IO _ 0

sm b_vwv [O] smb_l'id _ 0

sm b_vwv[1] smb_ icount

sm b_vwv [3 smb_rsvd

sm b_vwv [3 4] smb_oifset

sm b_vwv [5 6] smb_ timeout

sm b_vwv [7] smb_ Wmode

smb_vwv[8€3 smb_rsvd

smb_fid The FID of the file to be written to.

smb_r'r:aunr An unsigned 16bit field giving the total number of bytes Urat will be written

to the file. This value must be OOITECII in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

smb_ rs vd These fields are reserved and should be ignored by the l_ivlXsewer.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 l25

Page 144 of 535

SMBwrjtebraw Specification

smb_ oflset

smb_timeout

smb_wmode

smb_data

Core Plus SMB File Operations

A 2bit integergiving the position in the file at which the bytes in the request
should bewritten.

A 12bit integer giving t.he number of milliseconds the LMXserver may block

while trying to complete the wn' te. This value is ignored for regular files. For

1/O devices and named pipes (refer to the X/Open CAE Specification. IPC

Mechanisms for SMB). the LMX server will wait this much time to oompleue

the write. If smb_ timeout is — 1 the LMXserver will wait indefinitely; if it is -2
the server will wait the default amount of time for the file. An LMX server

may choose to treat all timeouts as O, that is, do not block.

A 16bit flag field contnolling the write mode. If bit 0 is set, write—through

mode is requested; t.he LMX server will write all data atomically and

acknowledge the write with the seoondary response. If clear. write-behind is

permitted; the LMX server need not write atomically and need not repon

completion. If bit 1is set, the LMXserver should fill in the smb_remai'ning field

in the primary response.

The actual data to be written. This is a stn' ng of bytes in no particular format.

Note that, in the ooie plus protocol dialect, there is no padding between the end of the
smb_vwv[] block and t.he data to be written.

Secondary SMBwn'tebraw:

smb_ count

Page 145 of 535

The total number of bytes written. If this is different from the smallest

3mb_tcounl sent by the SMB redirector, some error ocairned (for example, out

of free space on the file system).

)0Open CA E Speci ficati on ([EB

Core Plus SMB File Operations SMBwritebraw Specification

SMBwr-itebraw ErrorCode Descriptions

‘ -I U .

File opened in deny write mode. or write range

overlaps a lock.

ERRbad access Invalid open mode for the attempted operation.

ERRerTor Corrupt SMB.
ERRinvnjd Invalid TID.

ERRDOFESOUDCE The LMX sewer is temporarily out of a needed
resource.

ERRtimeout Requested operation timed out.

ERRuseMPX Can't do raw mode at this time; use

$MBwn'tebmpX.

ERRtrseST'D Can't do raw mode at this ti me; use SMBwrite or
}vIBwn'r‘eX.

ERRbaduid e UID given (smb_ui'd) is not known as a valid
D on this LMXsession.

SUCCESS hjn worked,no roblems.

SMBwr1'teb raw Preconditions

1 The primary SIVIB was valid and specified a valid TID for a writable resource.

2 The FID was valid , and the prooess |1ad write access to the file.

3 Before send ing the secondary message, the LMXseryer must have sent a primary response,

The LMX server has been able to write the accompanying data to disk, allocated the

needed memory for a buffer, and sent the response to the SIVIB redirector.

SMBwr1'tebraw Postconditions

1 If writethrotrgh mode is set, a primary response or secondary response indicates the data

in the primary response has been written to stable store (unless some error other than

ERRuseSTD or ERRuseIvfl3‘Xwas returned).

2 After a primary response is received, the LMX server is ready for a raw seoondary
message.

SMBwr1'tebraw Side Effects

None.

Conventions

o Locking (see Section 44on page (3.

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 127

Page 146 of 535

SMB}ockread Specification

10.4

Core Plus SMB File Operations

SM B10 ckread Specification

SMBlockread D etailed D esctiption

This lock and read protocol request has the effect of explicitly locking the bytes in the specified

range and then reading them. The lock is maintained until explicitly released by the SIVIB

redirector or t.he SIVIB redirector closes the File. Only the bytes actually read by this tequest are

locked, not the bytes specified in the advisory smb_counr!efi field.

Support for this SIVIB is optional; an LMX server should set the appropriate bit in the smb_flg

field of the SMBnegprot response (see Section 61 on page 55for other dialects of the SIVIB

ptotocol and Section 5 lon page 37).

SMBlockread D eviations

None.

SMBlockread Field D escri p tions

The raluest and rwponse format areidentical to that of SA/{Bread (see Section 7.4on page 73.

SMBlockread Erm r Code D escriptioos

For a more complete description of the potential error oodes resulting froth this SMB message

see Section 7.40:] page 73and Section 7700 page 8].

ERRnoacoess

ERR1)ad fid

ERRlock

No read access to TJD.

Invalid FWD.

The intended read range overlaps a lock held by

another p rooess.
No rad access for the file‘

Cormpt SMB.

TID is not for a file system subtree.
Invalid TID.

ERRbad access

ERRen‘or

ERR] nvdevioe

ERR] nv nid

ERRbad uid
SMBlockread Preconditions

1 The SMB redirector has sent a valid SMB with a valid TJD for a readable file system
resouroe.

2 The FID is valid, and the process has read access to the file.

3 The range of bytes to be read is not already locked by some other process‘

X/Open CA E Speci fication ([$2

Page 147 of 535

Core Plus SMB File Operations SMBlockread Specification

SMBlockread Postcond itioos

1 The requested number of bytes (5mb_ bytecount) has been locked, read and returned, in that
order.

2 The current file position is left after the bytes read‘

SMBlockread Side Effects

1 Other SMIB redirector processes will be unable to access the locked reoortl until the SIVIB

redirector holding the lock has released it or unless they are using the same FID.

2 The LMX server may have pre— read the remaining bytes (5mb_counr!aR — smb_b_ytecaunr) to

increase the perfonnanoe of su tsequent reads from the same process.

Conventions

~ Locking (see ‘Section 44on page 33.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 IE

Page 148 of 535

SMBwriteunlock Specification

10.5

Core Plus SMB File Operations

SM Bw I‘itelJ1ll0C](Specification

SMBwr-iteu nlock D etailed D escdptioo

This write and unlock protoool request has the effect of writing to a range of byt.es and then

unlocking them. This request is usually complementary to an earlier usage of SMBlockread on

the same range of bytes. Only the range of bytes actually written to is unlocked, not the range

specified in the advisory smb_counHeR field. If an error OOCLlI‘S during the write, the byte range
should not be unlocked.

Aside from the lack of special handling of z.ero—length writes, this request behaves in an identical

fashion to a oore protoool SA/lBwriie request followed by a core protocol SMBunlock request.

Support for this SIVIB is optional; an LMX server should set the appropriate bit in the smb_flg

field of the 5MBnegproi response (see Section 6 lon page 55for other dialects of SMB protocol

and Section 5 lon page 37).

SMBwr-iteu nlock D eviations

See Section 7.5on page '/Band Section 7.8on page 83

SMBwr-iteunlock Field Descrip tions

The SMBwrir‘eunlock request and response format are identical to those of SMBwn're (see Section

75on page 76.

SMBwr-iteunlock ErrorCode Descriptions

For a list of other error codes generated dun" ng the handling of this SMB see Section 7.5on page

%and Section 7.8on page 83

I e requested range was lock
)rocress.

SMBwn'teun[ock Preconditions

1 The SIVIB re-director has sent a valid SIVIB request with a TID for a writable file system
subtree.

2 The FID must be valid and the process must have write access.

3 The write operation must succeed before the unlock operation is attempted.

SMBwn'teu nlock Postcooditions

1 E.it.|1er the write succeeded or an error was returned.

2 If the write succeeded, the byte range was unlocked.

X/Open CA E Speci fication ([$2

Page 149 of 535

Core Pfus SMB File Operations

SMBw1-iteu nlock Side Effects

Same as for SMBwn'te and 5MBunIock.

Conventions

~ Locking (see Section 44on page 3.

Protocols for X/Open PC Interworking: SIVEB, Version 2

Page 150 of 535

SMBwriteun1ock Specification

J31

SMBwrjteclose Specification Core Plus SMB File Operations

10.6 SMBw1iteclose Specification

SMBwr-iteclose D etailed D escri p tfon

The write and close protocol request is used to first write the specified bytes and then close the

file. Any supported file type, including spool files. may be specified in this request. This request

behaves identically to an SMBwn'te request followed by an SMBdose request. Any buflened data

must be flushed to stable store or to the device before the response is sent.

SMBwr-iteclose D eviations

See Section 7.5on page '/Band Section 1260:] page 1@fordetajls.

SMBwr-iteclose Field D escriptions

T ield Nam - ield V

sm b_com

sm b_wct

sm b_vwv [0]

sm b_vwv [1]

sm b_vwv [23]

sm b_vwv [4 5]

smb_vwv [6 11]
smb_fid The FID to be closed.

smb_coum In the request, the number of bytes of data to be written. In the response, the

number of bytes that were actually written.

smb_at‘Tset A 32-bit offset into the file, in bytes, at VVl]id] the data is to be written.

smb_tr'me A Z32.bit time value to be used as the last modify time for the file. A value of

zero indicates the last modified time should be unchanged.

5mb_r5vd This six 16bit field is only pnesent if smb_wcI is 12 These fields should be

ignored.

smb_pad A single 8bit field which is used to pad out the beginning of the 5rnb_data area

to a 3-bit address boundary.

smb_data A string of bytes, in no particular format, whose length is given by smb_caunt.
This is the data to be written.

SMBw riteclose ErrorC ode D escrlptions

Exactly the errors returned by SMBwri'teX and 5MBcla5e can be returned for this request. If an

error oomrs during the write operation, the file will still be closed. Only one error can be

returned in the response; if ermrs occur‘ during both the write and close operations, the close
error is reported.

l§ X/Open CA E Sped fication ([$2

Page 151 of 535

Core Plus SMB File Operations SMBwritec}ase Specification

SMBw1-iteclose Preconditions

1 The SMB redirector has sent a valid SIVIB with aT1D for a writable resource.

2 The FID is valid and the process has write access to the file.

SMBw1-iteclose Postconditions

1 The data in the call is written to the file. If an error occurred. it will be reported unless a
close error occurs as well.

2 The file is closed and any errors are reported.

SMBw1-iteclose Side Effects

Any buffered data for‘ the file is written, and any outstanding locks are released in random order.

Conventions

~ Locking (see Section 44on page 3.

Protocols for X/Open PC lnterworking: Slv[B, Version 2 J33

Page 152 of 535

Core Plus SMB File Operations

]34 X/Open CA E Sped fication ([$2

Page 153 of 535

Chapter 11

Extended 1. OSMB Connection Management Requests

This section defines those elements of the extended 1O SMB protocol dialects which support

oonnection and LMXsession management. They are:

SMBnegprot negotiate modifications when an extended dialect is selected by the LIVIX
sewer

SMBsccp!<gX negotiate security packages and related information

SMBses55etupX set up a session, log on a user

SMBtconX extended Tree Connect

11.1 SMBnegprotSpecification

SMBnegprol D etailed D escdp Lion

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and

L.l\/[Xsewer will use when communicating with each other. The SMB redirector sends a list of

dialects that it can use For communication. The LMXsei\/er responds with a selection of one of

those dialects (numbered 0 to n) or — 1 indicating that none of the dialects were acceptable.

Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate

requests must be rejected with an ermr response and no action will be taken. The rules to the

use of SMBnc-gprot outlined in Section 6 Ion page 56hold here as well.

SMBnegprolDevlations

None.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 K5

Page 154 of 535

SMBn egprot Specification Extended LOSMB Connection Management Requmts

SMBnegprotField D escriptioos

Field descriptions for other dialects of the SMB protocol (SMBnegprot) are:

' @_

SMBI1 egprof
13

5mb_r'nd£-X

5mb_secmode

5mb_maXxmt

5mb_maxmu

5mb_maXvc5

5mb_b1kmode

5mb_sesskey
5mb_srv_ tim :

The fields are defined as:

dialectn

smb_ index

sinb_ secmode

sinb_ Inaxxmt

Page 155 of 535

A Dialect (type C8 bulfer oontaining the name of a dialect (refer to Section 54

on page 48.

The dialect selected by the Ll\/IX sewer; corresponds to the Indcxth dialect

string in the request, where the first string is numbered 0

This flag field desdibes the LMXsewer's security mode.

Bit O Ifset. the LMX sewer is in user—|eve| security mode; if clear, share-
level.

Bit 1 If set, the Ll\/IX server supports password encryption in SMB form

(see Section 1]_3on page 144and Appendix D on page 273.

Bit 2 If set, the LMXser“ver supports the SMB5ecpkgX attended secun'ty

package negotiation (see Section lL2on page 13).

Bit 3 15 Reserved; MBZ (Must BeZero).

The LMX sewer’s nraxinrunr SMB buffer size in bytes. Minimum value is 1K

byte. This pnovidessufficient room for most requests and responses. All SMB

requests including chained requests must fit in this buffer size.

This is the maximum SMB message size which the SMB redirector can send to

the LMX sewer. This size may be larger than the s1nb_brrf'st‘ze value in the

SMBses55et upX request, sent to the LMXsewer from the SMB redirector, which

is the maximum SMB message size the LMX sewer may send to the SMB
Iedirector.

For example, if the Llx/IX sewers bulfer size (5mb_maxXmt in the SMBnt-gprot

response) were 4K byte and the SMB redirectors‘s buffer size were only Z<

byte (smb_bufsize in the SMBsesssetupX request), the SMB redirector could send

up to 4K byte of data in an SMBwn'te (or SMBwr1't:9() request but may request

no more than Z{ byte of data in SMBread (or SMBrt=adX) requests. The largest

X/Open CA E Speci fication ([EB

Extended LOSMB Connection Management Requests

smb_maxmuX

smb_maxvcs

smb_blkmode

smb_ses5ke_y

smb_srv_ time

smb_srv_date

smb_.srv_ tzone

smb_r5vd

smb_bcc

smb_c1j/ptkey

SMBnegprot Specification

response from the LMXserver would also be 2K byte.

The maximum number of simultaneous multiplexed reads supported per
l_.MXse5sion; must be at least 1

The maximum number of NetBIOS sessions supported per LMX session.
Mustbe 1.

Whether or not SMBre-adbraw and SMBwritebraw are supported.

Bit 0

Bit 1 If set, SMBbu/ritebraw is supported.

Bit 2 15 Reserved; MustBeZero.

Some Sl\/[B redirectois when negotiating LANMAN LO dialect ignore these

bits and assume both SM3s are aooeptable.

If set, SMBre-adbraw is supported.

A 12bit value of the LMXse5sion key; uniquely identifies an LMX session.

16bit current time aooording to the LMXserver (see Section 53 lon page 43.

16bit current date according to the Llvlxserver (see Section 532on page 43.

A 16bit value for the number of minutes t.he current time zone is away from
GMT.

A 12bit reserved field. Must be zero.

In the case of SMBne-gprot, the field gives the length of the token in

5mb_cIypikey.

This is an unformatted array of bytes which contains an opaque token to be

used for password encryption (see Section 1120:) page 119, Section 1l.3on

page 144and Appendix D on page 279.

Note that bit Oof the 5mb_flg field in the SMB header of the response will be interpreted by the
SMB redirector to indicate support for SMBlockread and SMBwriteunlock.

SMBnegprotErrorCode Descriptions

If any error ooours, the l_.I\/IX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be retumed.

SMBnegprotPreconditions

The SIVIB redirector attempting to negotiate a protocol must have established a NetBIOS session
with t.he LMX server‘.

SMBnegprot Postconditioas

The SIVIB redirector that negotiated this protocol must be able to handle all aspects of the SIVIB

dialect negotiated.

Protocols for X/Open PC lntenvorki rig: Slv[B, Version 2

Page 156 of 535

SMBnegpt*ot Specification Extended LOSMB Connection Management Requmts

SMBnegprot Side Effects

The I_.I\/IX server will keep reooid of which dialect the SM3 redirector negotiated and will use

only that dialectin oonveisations with the SMB redirector.

If the SMB redirectot‘ is t.o perform password encryption, it must store and use the smb_cr_ypfke_y

token in accordance with the enclyption function selected (see Section 1].2on page 1% or with

the SMB enctypti on mechanism (see Section 11.300 page 144 and Appendix D on page 275).

Conventions

None.

1% X/Open CA E Sped fication ([$2

Page 157 of 535

Extended LOSMB Connection Management Requests SMBsecpkgX Specification

11.2 SMBsecpkgX Specification

SMBsecpkgXD etailed D escriptiou

The SMBserpkgX extended protocol request is used to negotiate the security package to be used

for a given LMX session. Part of the negotiation determines the authentication and password

encryption algorithms required t.o establish the identity of the user sitting at the Sh/[B redirector

system. The SMRsecpkgX request and response are only used when the l_.I\/IX server is in user-

level security mode and both the SIVIB redirector and the LMXserver understand Extended User

Authentiaition (see Section 22on page 5.

The SMB redi rector will send an SMBsecpkgX request to the l_.MX server immediately after

receipt of an $MBn e-gprot response which set bits land 2i n the smb_secmode field, only if the Sl\/[B
redirector supports Extend ed User Authentication.

An LMX server may reject an SMBsesssetupX request which was not preceded by an acceptable

SMBsecpkgX exchange, or it may instead support SMBstyle authentication and encryption

mechanisms (see Section 1].3on page 144). An LMXserver may provide a mechanism to control
this choice, on either a per—server or per—share basis.

In addition to supporting negotiation of a security package and its components, the SMB5ecpkgX

exchange also supports a mechanism for authentication of the serving system to the SMB

redirector similar to the Sl\/[B redirector to the LMX server mechanism supported by the

combination of $MBnegprot and SMB5esssetupXrequests.

After the successful exchange of SMBsecpkgX request and response the SMB iedirector will use

as its UID for the LI\/lXsession the value of the smb_ui'd field in the response header. This is the

only case in which the LMXser\rer selects the value of smb_uid to be used for the LMX session‘

In all other cases (that is, no SMBsecpkgX exchange) the value of 5mb_uid is selected by the SMB
redirector.

SMBsecpkgX D eviations

Use of the $MR9ecpkgX exchange is only defined for the client-server dialogue pacl<age—type. An

LMX server may implement other packagetypefi without confli ct.

V\fithin the client—server pacl<age—type negotiation, only the X/Open secuiity package is defined.

An I_.IvIXserver may choose t.o support additional packages of that type.

SMBsecpkgX Field Descrip lions

sm b_com

sm b_wct

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23

smb_vwv [3]
smb_bcc

smb_buF[]

SMRsecpkgX
4

smb_com2

smb_ofl2

smb_pkgr_ype

smb_n umpkgs
mi n=4

smb_pkgIist 1

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

Page 158 of 535

5MBsecpkgX
4

5mb_com2

smb_0f2

smb_i'ndex

5mb_pkgargien

smb_pkgargs

SMBsecpkgX Specification

smb_pkgt_ype

smb_numpkgs

smb_pkgii5t

sinb_ inden‘

sinb_pkgarg1cn

sinb_pkgarg5

Extended LOSMB Connection Management Requmts

A 16 bit field containing the package—type being negotiated by this

SMBsecpkgX request and response. The only value defined is Q the package-

type for the dialogue between an Sh/[B redi rector and t.he LMX server.

A 16 bit integer containing the number of packages of type smb_pkgt_ype being

offered by the SMB redirector. T‘his must be greater than zero.

Each smb_pkgli5t is a structure describing a particular package. The structures

are concatenated together, with no padding, to four: the smb_ bufsection of the

request.

The 5mb_pkgii5t structure looks like:

ng ,ll’] yes.o pa agenamein
his structure.

ength of package-specific info (in

sinb_pkgnme me name of the package described

y this stmctu re. This is not

ckage—specific information The

rmat of this counted array is

lefined by the package name
a 'ated with it.

sinb_pkgargs
A 16bit integer containing the number of the package selected by the LMX

server. The first 5mb_p1<g1ist in the request corresponds to an 5mb_index value

of Q the seoond corresponds to 1; etc. If the LtvD(sei\/er can support none of

the offered packages, a — 1 is returned‘

A 16bit integer giving the length. in bytes, of the package—q)ecific information

being returned from the LMX sewer to the SMB redirector. This may be zero

for some packages.

This is an u nstru ctured army of bytes containing package—q)ecific information

in a format determined by the package selected by smb_index. The format may

be different from that of the 5mb_p1<garg5 in the request for the same package.

X/Open has defined one package of type 0 this package has smb_pl<gname X/OPEN‘ The

5mb_pkgarg5 for this package are defined below.

1410

Page 159 of 535

X/Open CA E Speci fication ([EB

Extended LOSMB Connection Management Requests

suing
16bit field

suing

suing
16bit field

suing

suing

16bit held

16bitfieId

type 01

type 01

type 01

SMBsecpkgX Specification

Xp_ese1

Xp_usel

Xp_our'nf

Xp_n uinf

Xp_ Cr

Xp_fla3s

Xp_naine

Xp_r=.-dialects

Xp_flJ

Xp_udia1ect5

Xp_ un

Xp_ Cs

Xp_t-sel

Xp_usel

A set of flags modifying use of this exchange.

Bit O Ifset, the LMXserver must respond to the challenge, Cs, contained in

this request. If clear, the SMB redirector does not require the LMX
server to authenticate itself.

Bits 1- l5Unclefined; MBZ (l‘\/lust Be Zero).

A nul|—temiinated string containing the username. This name, possibly

truncated, should be used by the LMX server to identify whidr user is to be
authenticated.

The number of bi—directional encryption function (referred to as E0) names

which follow in the plcgargs structure. This must be gneater than zero.

Each null—terminate(] string names a particular E0 function. The meaning of

these names must be agreed upon by implementors of SMB redirectors and
l_.MXserveis.

The number ofpassword encryption function (U0) names which follow. This

must be greater than zero.

Each nu|l—terminated stn'ng names a particular U() function. As with E()

functions, the meaning of these names must be mutually agreed upon by SMB

wed i rector and LMXserver systems.

This data (type Ol) bulfer oontains a challenge string. The response string,

xp_Cr, will be generated using the E() selected by the LMX server, and the

password stored on the LMX server for the user indicated by xp_trsemarne.

The SMB retlirector can use the password, as typed by the user, Xp_ouin!", and

the challenge response to ensure that the LMX server in fact knew the user’s

password as well. The particular algorithm for acoornplishing this depends

upon the E() and U() functions negotiated. This field is meaningless and

should be ignored ifbit Oof Xp_t’1ags is not set.

The index of the Xp_m which the L.MXserver has selected. This index is zero

based, in the same fashion as 5J.l)b_flldtLY (above). If none of the offered Xp_m

functions are supported by the LMX server, a — lwill be retumed in this field
and an error will be retu med .

The index of the Xp_un which the Ll\/IX server has selected. This index is

zero—based. If none of the offered Xp_ un functions are supported by the LMX
server, a — lwill be returned in this field and an errorwill be returned.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 141

Page 160 of 535

SMBsecpkgX Specification Extended LOSMB Connection Management Requmts

Xp_ouinf A data (type OD buffer, whose oontents are used in combination with the

user's password and the chosen U() to reproduce the password as stored on

the LI\/IX server. This string may be unused for some U() and would be of

zero length ilsuch a U() were selected.

Xp_nuinf A data buffer whose contents are to be used if the password for this user is

changed via some administrative protoooli Some LMX servers may not

support such an administrative protocol, and some U() functions require no

such data or permit reuse of such data: in any of these cases, the length of this
buffer will be zero.

Xp_Cr A data buffer containing the response to Xp_C5: see above, This field will be

ignored and should be of zero length if bit Oof Xp_flags was not set.

SMBsecpk XErrorCocle Descriptions

 ERRbadpennits For either the E(or U) functions, there was no

match between the functions supported on the
SMB redi rector and Livlxserver.

The SMB redirector has already negotiated this

package-type.

ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

verythi ng worked, no problem

 ERRen‘or

If the user named in the Xp_name field does not exist on the LlvfXserver, the L.l\/Désewer should

nonetheless generate a properly formatted response with data that appears to be valid. The SMB

redirector attempt to set up an LMXse-ssion should be rejected after the SMBs5ssetupX request is
received.

SMBsecp kgX Preconditions

The l_.MXsei\/er must have set bits land 20f the smb_secmode held in its SMBnegprot response on
this same NetBlOS session.

SMBsecpkgX Postconditions

If the optional SMB redirector challenge was used, the SMB redirector can rely upon the Ll\/IX

server actually knowing the user's password.

SMBsecpkgX Side Effects

All authentication exchanges alter this SMB exdaange will use the selected E() as an encryption

and decryption mechanism. All passwords passed over the connection after this SMB exchange

will be encoded using the selected U() and xp_ouinf/Xp_nuinfinformation.

142 X/Open CA E Speci fication ([$2

Page 161 of 535

Extended LOSMB Connection Management Requests SMBsecpkgX Specification

Conventions

~ Chajrting (see Section 39011 page 2.

Only SMBsesssetupX may be chained to SMBsecpkgX. Furthermore, this can only be sucoefisfully
done if:

1 Only one E() and U() function is offered in the SMB5ecpkgX request. If distinct functions
are offered, the SMB redirector cannot know a prion" which E() or U() function to use to

compute the enclypted user password.

2 The U () function does not require the use of Xp_ouinf to compute the encrypted password.

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 143

Page 162 of 535

SMBse5ssetupX Specification

11.3

144

Extended LOSMB Connection Management Requmts

SM Bsesssetupx Specification

SMBsesssetttpX D etailed D escriptiou

This extended protocol request is used to further set up the LMX session normally just

established via the SMBnegprot request/response. The SMBsess5etupX request serves two

puiposes: identification of the user for this LMXsession, and negotiation of Sl\/[B rediiectorside
communication parameters.

- Userldentification

The actual semantics for this request are governed by the security mode of the LMX sen/er,

SeeSection 22on page 5for a discussion of these modes.

In user—level secuiity mode, the SI\/[B redirector will establish a mapping between a parljcular

username on the LMX server and a UID which the SI\/[B redirector will use to represent that

user. A password may be ser1t by the SMB redirector to authenticate that the person using

the SMB redirector is indeed the username to be mapped to. Further, the password may be

encrypted to ensure security.

The LMXserver validates the username and password supplied and, if valid, it establishes a

mapping between the LMX session's UID and the actual UID corresponding to the specified

username and password. That actual UID will be used for access checks required by requests
issued on behalf of the UID on this LMXsession.

The value of the UID is relative t.o an LMXsession; it is possible for the same UID value to

iepresent two dilferent users on two different LMX sessions on the LMX sen/er, The LMX

server must map the pair of<LMXsession ID, UID> to the different accounts.

In share—level security mode, the username and password are unused. The LMX server

should use a unique, reserved account and corresponding actual UID to perform access

checks for all requests.

- SMB Redirector Communications Paiameters

The LMX server, in its response to the SMBnegprot request, has set some parameters for the

communication it was expecting from the SMB redirector. In the SMB5e5s5etupX request, the

SMB redirector must indicate the parameteis for the communication it is expecting from the

LMX server. These values may be different: for example, the LMX server may be able to

ieceive a maximum message size of 1G(bytes, while the Sl\/[B redi rector can only reoeive]K

bytes.

Some LMX servers may need to renegotiate bufler sizes alter the SMBses55etupX exchange,

This renegotiation is available thiough the SA/IBtcon request., but not through 5MBtconX,

SMBsesssetttpX D eviations

None.

X/Open CA E Speci fication ([$2

Page 163 of 535

sm b_com

sm b_wct

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23

smb_vwv[3]

smb_vwv[4]

smb_vwv[56]

smb_vwv[fl

smb_vwv[8E3
smb_bcc

smb_buF[]

Extended LOSMB Connection Management Requests

SMBsesssettrpX Field D escri p tio ns

SMRsesssetupX
10

mib_com2

smb_0&2

smb_bufsize

smb_mpi-(max
smb_ vc_num

smb_sesskey

smb_apasslen
smb_I‘SVd
mi n val=O

smb_apasswd

SMBsesssetupX Specification

5MBsesssetupX
3

5mb_com2

5mb_0f2

5mb_action
O

smb_com2and sinb_ofl"2descriptions can be found in Section 390:1 page 2

smb_ bufsize

sinb_ mpxm ax

smb_ VC_1)(U.D

sinb_ sesskey

smb_ apass!an

smb_ rs vd

smb_ apasswd

sinb_ aname

smb_ action

Page 164 of 535

The size of the largest message the SMB redirector is willing to receive. It

must be true that smb_buLsizes sinb_inaXxmt (see Section 6 lorr page 55).

The maximum number of requests which the SMB redirector will have

outstanding on a single LMX session. It must be true that SJI1b_J.l)pXJIlaX 5

SlI]b_II)aXJI1uX (see Section 6 Ion page 53.

Permits multiple LlvfXsessions to be associated with a single NetBIOS session.

If zero (C), this LMX session is the first or only NetBIOS session. If

smb_vc_num is zero (0 and there are other previously established LMX
sessions still connected from this SMB redirector, it is recommended that the

l_.MXserver abort the previous LMXsessi on to free up the resources held.

A &—bit integer whidi identifies to whidi LAM session that this NetBIOS

session is associated. Ignored when smb_vc_nuin is zero (C). This value would

be obtained from the smb_st-sskey field in the response to the SMBnt-gprot

associated with the Li\/[Xsession this Net.BIOS session is to be made a part of.

Length of the 5mb_apasswd field.

A 132-bit reserved field; die L.MXser\/ershould ignore this field.

A character‘ string containing the password, possibly encrypted. Ignored by

an LMXserW/er in share—level security mode.

An ASCIIZ (not type 04) buffer oontaining the username to be associated with

smb_uid and validated with sinb_apas5wd. Ignored by an LMX sewer in share-

level security mode. The length of this field is derived from the dilference

between sinb_boc and smb_apass1en.

A bit—encoded field indicating flre results ofa successful L.MXsession setup. If

bit Ois clear, everything went normally. If bit Ois set, the Ll\/IX session was

setup but a default or guest account was used instead of the account

requested. (An LlvfXserver in share—|evel security mode would set this bit).

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 145

SMBse5ssetupX Specification

146

Extended LOSMB Connection Management Requmts

SMBsesssetupX EcrorCode Descriptions

Internal LMXserver erTo .

Userna me and password pair was invaiid.

ERRSRV

ERRSRV

ERRSRV

o SMBnegprot request has been issued on thi
etBIOSsession.

ris request cannot be chained to the reques

hich preoecles it in this message.

erythi ng worked. no problems.

 ERRSRV

ERRSRV

SU CCESS SU CCESS

SMBsesssetupX Preconditions

1. The SMB redirector attempting the SMB5e5ssctupX must have established an LMX session

with the LMXser\/er and negotiated an extended protoool dialect.

2 The usemarrre and password must both be valid instances of those types.

3 smb_cam2must be a legal chained command.

4 There are many other preoonditions based upon the SM]3s that may be chained. These are

enumerated in the specifimtions for those SMBs.

SMBsesssetupX Postconditions

1. If there are no errors the value in 5r11b_uid is used as a valid UID in future SMBS.

2 There are many other postconditions based upon the SMBs that may be char‘ ned. These are

enumerated in the specifimtions for these SM]3s.

SMBsesssetupX Side Effects

Conversion of paths to a canonical pathnarne is controlled by bit 40f the 5mb_flg in the header of

this request (see Section 5 Ion page 37).

Conven tie in

o Opportunistic Locking (see Section 382on page EC).

o Clraining (see Section 39on page 2.

The SM]3s which may be chained after SMBsess5etupX are:

SMBchkpath 5MBfum’quc SMBopen SMBsearch 5MBtconX

SMBcopy 5MBgetatr 5MBopenX 5MBsetatr 5MBzm1i’nk

5MBcreate 5MBm1<dir 5MBrename 5MBsplopen 5MBtran5

5MBds!<aitr 5MBmknew 5MBrmdir 5MBsplretq NIL
5MBfl‘irst SMBH2 v

X/Open CA E Speci fication ([$2

Page 165 of 535

Extended LOSMB Connection Management Requests SMBtconX Specification

11.4 SMBtconX Sp ecificatjon

SMBtconX D etailed D escription

This extended protocol request will establish direct access to a resource (file system subtree,

spooled devioe, etc.) on an LI\/lXserver. The functionality provided by this request matches veiy

closely that of the core protocol SMBtcon request. The differences are:

1 SMBtconX permits another request to be chained to it (for example, SMBopenX).

2 A flag can beset in the SMBtconXrequest which will invalidate the TID in the request, then

acquire a new TlD for the requested resource and retu rn it.

3 The maximum reoeive buffer sizes cannot be renegotlated.

4 The resource type need not be explicitly identified

SMBtconX D eviatioos

None.

SMBtconX Field Descriptions

sm b_com _ SMBtconX

sm b_wct _ 2

sm b_vwv [O] _ _ 5mb_com2

sm b_vwv[1] _ _ 5mb_of2

smb_vwv[3 _ - _ min val=3

sm b_vwv [3] _ _ 5mb_service
sm b_bcc

sm b_bufI]
smb_com2and sinb_ofl"2descriptions can be found in Section 39on page Z

5mb_i’lags A 16bit field containing additional control flags. The only flag currently

defined is bit 0 ifset, the TlD in the iequest is to be closed (as ifan SMBtdi's

iequest were received for it) before the new resource is obtained.

smb_spasslen A 16bit field giving the length of the smb_spasswd field. If this value is zero,

smb_ bcc must contain the end—of—stn'ng tenninator (that is, a zero character) for

the password value.

smb_ spasswd A stiing of bytes containing the password for the resource. May be enciypted.

Refer to Appendix D on page ZR

smb_patli An ASCIIZ buffer (not type 04) containing the iesouire name pieceded by the

l_.MXservername (refer to Section 5390:] page 46. For example, a resource

called src residing on a server called lEl1S€1'V61‘1 would be referenced by

\\ lmserver1\ src. If not specified by the Sl\/[B rediiector, a zero byte must be
plesent.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 147

Page 166 of 535

SMBtconX Specification

148

Extended LOSMB Connection Management Requmts

smb_deV An ASCIIZ bulfer giving the resource type the SMB redi rector will use to refer

to the newly-attached resource. If this value is not of a well—known form to
the LMX server it is treated as a wildcard; in this case, the l_.MX server will

return the actual resource type (see Section 536 on page 43. in the

5mb_5erVice field of the response. If not specified by the SIVIB redirector, a zero

byte must be present.

smb_5ervi'ce An ASCIIZ buffer identifying the actual resource type corresponding to the

requested resource.

SMBtconX Eroor Code Descriptions

First command on the NetB]OS session was not

an SMBn egprot.
Lt\/D(seNer internal error.

Bad password; name/password pair in the
SMBtconX is invalid.

ERRinvnetname Invalid resource

SMBtconX.

verythi ng worked, no problem

name supplied in the

SMBtcoriX Preconditions

L The SMB redirector attempting to setup this SMBtconX must have established an Ll\/IX
session with the LMXsen/er.

2 The smb_path, smb_5passwd and smb_dev must all be valid instances of those types.

3 The process attempting to setup this SMBtconX must have negotiated an extended

protocol dialect (for example, LANMAN LOor LM LZGIB.

SMBtcoriX Postconditioris

L If there are no errors the TTD and service string are valid and may be used in future SMB

requests.

2 If bit 0 in smb_flags was set, the resource defined by the TID in the request has been
disconnected from this LMXsession.

SMBtcoriX Side Effects

None.

Conventions

- Filename (see Section 35on page 15).

- Chaining (see Section I39on page 2.

X/Open CA E Speci fication ([$2

Page 167 of 535

Extended LOSMB Connection Management Requests

Requests which may be chained to SMBtconX are:

SMBchkpath SMBfunique SMBmv

SMBcopy SMBgetatr SMBopen

SMBcre-are SMBmkdir SMBopenX
SMBd5kattr SMBmknew SMBrename

SMBfl'ir5t

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2

Page 168 of 535

.SMBrmdir

SMBse-arch

SMBsefatr

SMBsp1open

SMBtconX Specification

SMB5pIretq
SMBtrans

SMBunb’nk

NIL

149

Extended LOSMB Connection Management Requmts

L3) X/Open CA E Sped fication ([$2

Page 169 of 535

Chapter 12

Xten ded 1. OSMB File Operations

This section defines the elements of the extended IOSMB protocol which provide for normal

operations on files. They are:

SMBopenX open of a file with chaining

SMBloddngX locki ng on a file with chaining

SMBre2dX read from a file wi th chaini ng

SMBWri(ebraw write block raw to a file

SMBwrr‘:eclose write l.O a file and close it

SMBWri(eX write l.O a file with chaj ning

12.1 SMBope1rXSpecificatio11

SMBopenXDetailed Description

This extended protocol request opens a file. providing enhanoed functionality over that of

SMBopen.

SMBopenX D evlations

1 The archive. system and hidden file attnbute bits are treated acoording lo the file attributes

oonvention. Refer to Section 4.3 lon page 3:)

2 LMX servers which cannot maintain a creation time for their files will ignore the create
time field.

SMBopenX Field D ESCF] - Lions

_ open

smb_ wct

smb_vwv[O] smb_mm2

smb_vwv[1] smb_ofl2

smb_vwv[23 smb_flags
smb_vwv[3 smb_mode

smb_sattrsmb_vwv[4]

smb_vwv[5] smb_atlr

smb_vwv[6'7] smb_lime

smb_vwv[8] smb_ofim

smb_vwv[9 IO] smb_s1‘ze

smb_vwv[11- 12] smb_u‘meom‘

smb_vwv[13 14] smb_resv

smb_ba‘ min: 1

sin b_ bul‘[] smb_ u alhname

Protocols for X/Open PC Inlerworking: Slv‘[B, Version 2

Page 170 of 535

I 0pen
15

smb_ com2

smb_ of}?

3mb_fid

smb_alm‘bules

smb_ time

smb_size

smb_ access

smb_ type
smb_$!ale

smb_ action

smb_filer’d

smb_ resv
0

J51

SMBopenX Specification Extended LOSMB File Operations

smb_com2and smb_ofl‘2descn'pIJ'ons can be found in Section 39on page Z

smb_flags

smb_mode

smb_5attr

smb_ah‘r

smb_time

smb_ofun

smb_5ize

smb_timeout

smb_pathname

smb_fld

smb_attributes

smb_access

smb_type

smb_5tate

Page 171 of 535

Contiols vaiious special actions. If bit Ois set, the additional information

(smb_vwv[3 IQ) fields will be valid in the response. Bits 1 and 2 control

opportunistic locking (see Section 382 on page Z). The other bits are
reserved.

The open mode for the file (see Section 5 3 Son page 44).

The set of attributes that the file must have in order to be found while

searching to see ifit exists. Regardless of the contents of this field, noimal files

always match (see Section 533on page 43.

The set of attiibutefi that the new file is to have if the file needs to be created

(see Section 5 33on page 43.

In the request, this is the £bit integer time to be assigned to the file as a time

of creation (if the file must be created). In the response, this is the Qrbit

integer time of last modification. Refer to Section 53 Ion page 43

This open function field oontrols actions to be taken on the file during the

open (see Section 538on page 46.

In the request, this &-bit integer is the number of bytes to be reserved on file

creation or truncation. In the response, the Qrbitinteger contains the number

of bytes in the file after any open actions have been taken (see 5mb_olim

above). This field is advisoiy.

This @—bit integer is the number of milliseconds to wait on a blocked open

before returning without obtaining a resource. A value of zero (Q means no

delay (that is, do not queue the request). A value of — 1 indicates to wait

forever. See Section 3 11on page Z

An ASCIIZ buffer oontajni ng the name of the file to be opened.

An FID representing this open instance of the file.

A file attiibute field desciibing the actual attributes of the file after the open.

SeeSection 533on page 43

The actual aooess nights granted to this process (see Section 53 7on page 46.

A resource type field (see Section 536on page %

Describes the status of a named pipe as follows. Refer to the X/Open CAE

Specification, IPC Mechanisms for Slv[B.

Bit 15 Blocking. Zero (Q indicates that reads/wiites block if no data is

available; lindicatefi that reads/wiites return immediately if no
data is available.

Bit 14 Endpoint. Zero (C) indicates SIVIB redirector end of a named

pipe; lindicatm the I_.MXserver end of a named pipe.

Bits 1011 Type of named pipe. CDindicates the named pipe is a stream

mode pipe; Oli ndicates the named pipe is a message mode pipe.

Bits 89 Read Mode. G) indicates to lead the named pipe as a stream

mode named pipe; 01 indicates to read the named pipe as a

message mode named pipe.

X/Open CA E Speci fication ([EB

Extended LOSMB File Operations

smb_action

smb_fileJ'd

smb_resv

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2

Page 172 of 535

SMBopenX Specification

Describes the results of the open operation. T‘his 16bit field contains two
fields:

Bit 15 Lock Status. Set true only if an opportunistic lock was requested

by the SMB rediiector and was granted by the L.MXserver. This

bit should be false (C) if no look was requested. the lock could

not be granted, or the LMX sewer does not support

opportunistic locking.

BitsO1 Open Action. The LMX server should set this to match the

requested action from the 5mb_olim field:

1 The file existed and was opened.

2 The file did not exist and was therefore created.

3 The file existed and was tluncated.

This 16bit field is mserved; MBZ (Ivlust Be Zero).

Reserved; MBZ.

SMBopenX Specification

SMBopenXErrorCodeDescriptions

EFA U LT

EINTR

EISDIR

Page 173 of 535

ERRnoaccess

ERRshai‘e

ERRe1T0r

ERReiTor

ERRCITOF

ERRnoacoess

ERRen‘or

ERRnofids

ERRbad file

ERRe1Tor

ERRbad path
ERRCITOF

ERRinvn1'd

ERRi nvdevice

ERRbaduld

Extended LOSMB File Operations

of path—prefix denies search

permission.

Access permission is denied for the named file.

File exists, mandatory file/iecord locking is set,

and there are outstanding record locks on the
file.

The create could not occur due to the existence

of a file that did not have matching attributes
(smb_sartr) .

Path points outside the allocated address space

of the piooess.

A signal was caught dun‘ ng some system call.

Named file is a directoiy and access is write or
read/wn'I:e.

Maximum number of file descriptors are

currently open in this proass.

System file table is full.

File does not exist, or component of pathname
does not exist.

File must be created. and the system is out of

resources necessary to create files.

e requested File is a CAB special file and the lh])Ol1€fi[of pai.|1—prefix is not a directoiy.
J stem cannot support access to the file at this

time.

File resides on read—only file system and

requested access permission is write or
read/wi1'l'e.

File is pure procedure file that is being executed

and requsted acoas specifia write or
read/write.

Invalid TID.

Invalid resource type; TID does not refer to a

printershare.

The UID given (5mb_uid) is not known as a valid
ID on this LMXsession.

X/Open CA E Speci fication ([EB

Extended LOSMB File Operations SMBopenX Specification

SMBopenX Preconditions

The Sl\/[B redirector has sent a valid Sl\/[B request with a valid TID which is at least writable by

this process.

SMBopenXPostconditious

The named file was pmsibly created or truncated, and then opened.

SMBopenX Side Effects

If an opportunistic look was gianted, the notification mechanisms described in Section 382on

page Z)are active.

Cooven tio as

s Aocess (see Section 4320:) page 3:).

~ Attributes (see Section 4.3 lon page 33.

~ Filenamefi (see Section 3 Son page 15.

~ Opportunistic Locking (see Section 382on page Z).

s Chajrting (see Section 39on page 2.

The following are the only Valid chained requests for this SMB: SMBread, SMBreadX, SMBIOCH
and NIL.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 155

Page 174 of 535

SMB}ockjngX Specification

12.2

Extended LOSMB File Operations

SMB1ockingX Specification

SMBlockingX D etailed D escri p tion

This extended protocol request is used to lock and/or unlock one or more byte ranges of a

particular regularfile.

If the number of unlock ranges is non—zero, the byte ranges indicated by byte offset and length
will be unlocked.

If the number of lock ranges is non—zero, the byte ranges indicated by byte offset and length will

be locked, ifpossible. Locking byte ranges beyond the EOF is permitted. Aooess is permitted to

any SMB redirector using the file descriptor provided with the lock request, but only requests

using the PID that did the locking may do t.he unlocking. Aliempts to lock bytes that have been

previously locked will fail.

If the LMX server is unable to acquire all of the locks that the SIVIB redirector requested (after

waiti ng for the length of the timeout, ifspecified), all the locks aoquired with this request will be
removed and the entire request fails.

Closing a file with locks still in force causes the locks to be released in ar1 undefined order.

SMBlockingX D eviations

LMX servers may choose not to support lock timeouts, and may treat all requests as though a

timeout of Ohad been requested.

LMX servers may choose not to support read—orLly locks, and will treat any request for such a

lock as though a read /write lock had been requested.

Locking requests generated within the SI\/[B protoool have a 12bit unsigned olfset For the

beginning of the lock. The mappir1g of this olfset within the CAE system on behalf of the SIVIB

redirector is i rnpl ementafion-d ependent.

SMBlockingX Field D escriptions

sm b_com SMBl0r:kingX _ SMBlock1’ngX
sm b_wct 8 _ 2

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23

sm b_vwv [3]

sm b_vwv [4 5]

sm b_vwv [6]

sm b_vwv [7]
sm b_bcc

smb_buf[]

Page 175 of 535

smb_com2

smb_ofl2

smb_l'id

smb_locktype
smb_ timeout

smb_unlodmum

smb_locknum

10"(number of
lock/u r ilock

structs)

smb_unlkrng

smb_lkrn_-

smb_com2

smb_0f2
O

X/Open CA E Speci fication ([EB

Extended LOSMB File Operations SMBIocl<ingX Specification

smb_com2and smb_ofl‘2descn'pIJ'ons can be found in Section 39on page Z

smb_fld The FID t.o use to perfonn locks or unlocks.

smb_lockt_ype A bit—field which specifies the type of locks (mode) to be placed on the file.

The modeis ignored forperfonning unlocks. The bi ts are defined as follows:

Bit 0 If set, indicates read—ortly lock requested. If a read-only lock is

granted, other read—only lock requests on the same range of

bytes will be permitted, but read/wiite locks (bit Onot set.) will

be denied until all the read-only locks are released. Support for

this request is optional.

Bit 1 If set, this indicates that an oppoitunistic lock is being broken,

and in the response thereto, this bi t will be set by the LMX server

in an SMBlockingX iequest sent to the SMB redirector under the

oonditions outlined in Section 382on page Z)

Bits 215 Resenrecl; ignored by the LMX seiver on receipt of request, and

set to zeio by the Ll\/IX server when sending a request.

smb_iimeout A @-bit integer indicating the amount of time, in milliseconds, to wait in an

attempt to acquire all requested locks. A value of zero signals the l_.MXserver

not to wait at all but to retum an error immediately if any lock could be

obtained. A value of — 1 indicates the LMXserver should wait indefinitely to

obtain the locks. (Note that requests with — 1 timeouts oould easily lead to

deadlock.) Support for this field is optional; an LMX sewer may ignore all

values and behave as ifa timeout of O (that is, no wait) was always requested
(reference X/Open CAB Specification, IPC Mechanisms for Sl\/IB).

smb_unloclmum A signed 16bit field indicating the number of 5mb_unli<rng stiuctures attachtxl

to this request.

smb_locknum A signed 16bit field indicating the number of smb_ll<mg structures attached to
this request.

The 5mb_unU<rng and 5mb_lkrng stiuctures are identical. Each describes a range of bytes to be

unlocked or locked. respectively. The structure is:

I e PJD of the DIDCBSS ow njng the lock.

* Ebit unsigned integer containing the offset. in bytes. to

‘ I2—bit unsigned integer containing the length, in bytes, of

e range to be u nlocked or locked.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 157

Page 176 of 535

SMB}ockjngX Specification Extended LOSMB File Operations

SMBlockingX ErrorCode D escriptions

See Section 7. 7on page 81 and Section 7.8on page 83for other error codes.

IBWBS l’]O[OUH .

An invalid FID was specified.

A lock request conflicted with an existing lock,

the mode specified was invalid, or an unlod<

request was attempted by other than the owning
PID.

Invalid SMB request was sent.

Requested a lock on a non—file system subtree.

Invalid T'lD was specified.

The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

erything work at

SMBlockingX Preconditions

1. The SMB redirector has sent a valid SMB request.

2 The SMB redirector must have a valid TID to a file system su btiee.

3 The SMB redirector has specified a valid FID and has appnopiiate piivileges.

If the request is generated by the LMX sewer, the FID corresponds to a file which the SMB

iedirector had opened with an opportunistic lock.

SMBlockingX Postconditions

L Locking a range of bytes will fail if any subranges or overlapping ranges are locked. In

other words, if any of the specified bytes are al ieady locked . the lock will fail.

2 Eitherall of the requested ranges will be locked or nonewill. That is, ifa lock on any of the

specified ranges fails, any of the ranges pieviously locked by this iequest will be unlod<ed.

Locked ranges not locked by this request remain locked.

3 Ifthe lock request timed out, the response will return an ERRlock as if a lock could not be

obtained and a zero timeout was specified.

Ifthe request was generated by the Ll\/IX sewer, any data being cadaed on the SMB redirector

has been flushed and/or invalidated, and the LlvfXsewer can permit the operation which caused

the opportunistic lock break to complete.

SMBlockingX Side Effects

Any pmcess using the FID specified in the iequest has access to the locked bytes, but other

pmcesses will be denied the locking of the same bytes.

158 X/Open CA E Speci fication ([$2

Page 177 of 535

Extended LOSMB File Operations SMBIockingX Specification

Conventions

- Aotess (5% Section 4320:) page 3).

- Attribut% (5% Section 4.3 lon page CO.

- Locking (5% Section 44on page (Is).

- F1lenam% (5% Section 42on page 28.

- Opportunistic Locking (see Section 382on page Z),

- Chajnjng (5% Section 39on page E.

The SMBiockingX request may only have an SMBread or 5MBreadX chaj ned request.

Protocols for)(/Open PC lnterworking: SIVIB, Version 2 1%

Page 178 of 535

SMBreadX Specification

12.3

Extended LOSMB File Operations

SM Bread X Sp ecificatjon

SMBreadX D etailed D escri ption

The SMBrwdX extended protocol request is used to read data from any of the supported file

types mentioned in Section 3 7on page 17. The request allows reads to be timed out and olfers a

generalised altemative to the 5MBread request.

SMBreadX D eviatioos

Not all LMXser'ver's support all types listed in Section 536on page 45 Some LMXser\/ers may

ignore the smb_timeout and smb_remaim'ng fields for some types.

SMBreadX Field Descriptions

sm b_com

sm b_ wct

smb_vwv[O]

smb_vwv[1]

smb_vwt/[Z

smb_vwt/[34]

smb_vwv[5]

smb_vwv[6]

smb_vwv[7—8l

smb_vwv[9]

SMBreadX

IO

5mb_com2

5mb_ofl?

smb_fid

5mb_offset

5mb_maxcn t

5mb_mincn t

5mb_timeou t

5mb_countleft

sm b_com

sm b_wct

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23

sm b_vwv [3 4]

sm b_vwv [5]

smb_vwv[6]

smb_vwv[7— 10]
smb_com2and sinb_ofl"2descriptions can be found in Section 390:] page 2

sinb_ fid

sinb_ offset

sinb_ maxcnt

sinb_ mincn t

sinb_ timeout

Page 179 of 535

The FID from which the data should be read.

A 32bit integer containing the offset into the file (in bytes) at which the read
should start.

An unsigned 16bit field indimting the maximum number of bytes to read.

Note that a single SMBreadX request cannot return more than the rninimu in of

smb_maXcnt and the maximum negotiated bulfer size for the L.l\/IX session

(See Section]L3on page 144and Section 6 Ion page 553.

An unsigned 16bit value indicating the minimum number of bytes to return.

A 132-bit integer oontaining the number of milliseconds the LMXserver should

wait before returning. If smb_mr'ncni bytes are read before this time has

expired, the LMXserver should generate a response immediately. For regular

files this field is ignored.

V\/hen reading from a named pipe (refer to the X/Open Developers’

Specification, Protocols for X/Open PC Interworking: SMB), there are several

special values which the SMB redirector can specify in this field:

0 If no data is available in the named pipe, respond immediately with
5mb_dsize set to zero (C).

X/Open CA E Speci fication ([EB

Extended LOSMB File Operations

smb_coun tleft

smb_re-maining

SMBi'eadX Specification

— 1 Block forever until at least smb_mi'nrnt bytes of data are available, and
retu rn t.hat data.

-2 Use the default timeout associated with the named pipe being read

(reference X/Open CAE Specification, IPC Mechanisms for SE/IB).

>0 V\lait until smb_mincnt data bytes are available or the timeout occurs. If

there is a timeout. respond with a timeout error and whatever data was
available.

T‘his unsigned 16bit field contains a hint to the LEM server indicating

appro)dmately how many more bytes will be read from this FID before the

next non—read operation is requested for it. This is generated to help the LEM

server increase performance by reading ahead in the file in anticipation of

another $MBreadX request. An LMX server may ignore this field.

T‘his signed 16bit integer is always — 1for regular files. For named pipes and

CAE special files, this 16bit integer indicates the number of bytes that oould

be read from this file without blocking. This value need only be an

appro)dmaIJ'on, and it may become inaoounate after the response is sent back

to the SMB redirector. An LEM server may choose not to support this

functionality and always return —].

smb_dsi2e This unsigned 16bit field oontains the number of bytes of data actually read
and retu rned in this response.

smb_dofl' This unsigned 16bit field indiaites the offset from the SE/IB header to the start

of the returned data, in bytes. This permits van'able—sized padding.

smb_rsvd These two 16bit and four 16bit fields are padding that force the $MBreadX

response to be the same size as the SMBwri'te-X request. They must be zero.

smb_pad This field is between zero and three 8bit fields in length, as governed by the

smb_dofl" field. It may be used by an LMX server to pad the size of the

$MBrwdX response out to a 16 bit or Qrbit boundary which provides the best

performance

smb_data The actual data read from the file.

Protocols for X/Open PC Interworking: SE/[B, Version 2 161

Page 180 of 535

SMBreadX Specification Extended LOSMB File Operations

SMBreadX Eroor Code Descriptions

For more information pertaining to pot.ential error codes generated by this SMB request see

Section 7.4on page 73and Section 7. Don page 87.

ERRnoa 0: ‘ ocess denied. The requester’s context does not

permit the requested action or a read request is

in conflict with an exisij ng lock.

ERRbadfid Invalid FID. The SMB redirector has attempted

to use an FID not recognised by the Ll\/Déserver.

ERRlock Attempt to read bytes which were locked for
write.

ERRbadaoce.ss nvalid open mode for the attempted operation

(for example, reading a wn'te—only file).
ERRQITOF Error is returned to SMB redirectors for nor1—

specific errors such as ooirupt SMB requ$ts.

ERRinvnjd Error is returned to SMB redirectots attempting
some action with an invalid TID.

e requested named pipe operation timed ou t.

e UID given (smb_uid) is not known as a valid
on this Llvlxsession.

erythj ng worked, no problem

SMBreadX Preconditions

1 Sl\/[B request. UID and TID are valid and represent the appropn' ate aooess lights to perform
the act)‘ on .

2 The FID must be valid. and the SMB redi rector must have appropriate permissions for the

read operaljon.

SMBreadX Postconditions

1 The read data is retumed.

2 The LMX sen/er’s current file pointer (see Section 716 on page 7.3 is advanced by the

amount ofdata actually read.

SMBreadX S ide Effects

None for normal files.

For named pipes or CAE special files. the data that was read is removed: a repeated read at the
same offset will return new data.

Co nv e n no in s

- Chaining (see Section 39on page 23.

Only SMBclose request may be chained to the 5MBreadX request.

1& X/Open CA E Sped fication ([$2

Page 181 of 535

Extended LOSMB File Operations SMBwritebraw Specification

124 SM Bwiitebraw Specification

SMBwr-itebraw Detailed Description

The wri te block raw message exchange provides a high—perforrnanoe mechanism for transferring

large amounts of data to be written to a file on the LMX server. Any supported file type,

including spool files, may be written with this exchange.

The SMBwrirebraw exchange behaves much like an SMBwrir‘ebmpX exchange, exoept that instead

of additional data being sent in secondary requests, all the additional data is sent in a single raw

message; that is, the first segment of data is sent in the primary request, and the remainder in a

single message with no SMB head er or SMBwritebraw subheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still

sent: even if the secondary request is zero-length, a secondary response must be generated when

write-through mode was specified.

If the LMXserver is busy or otherwise unable to support the raw write of the remaining data, the

data sent with the primary request is still written (to stable store if write—through mode was set).

If any other error occurs, the data is discarded. In either case. an appropriate erroris returned in

a secondary response A primary response is only sent if the primary request was satisfied with

no errors and the LMXserver is prepared for a raw message.

SMBwr-iteb raw D eviations

The 5mb_iime-out and smb_remai'ning fields will not be supported with I/O devices.

SMBwr-iteb raw Field D escriptioos

Primary SMBwritebraw (extended other than core plus):

sm b_com ' _ 5MBwriiebraw

sm b_wcf _ 1

sm b_vwv [O] _ 5mb_re-maining
sm b_vwv[1] _ 0

sm b_vwv [23

sm b_vwv [3 4]

smb_vwv[56]

smb_vwv[fl

smb_vwv[8E3

smb_vwv[10]

smb_vwv[11]
smb_fid The FID of the file to be written to.

smb_r‘i:aunt An unsigned 16bit field giving U16 total number of bytes mat will be written

to the file. This value must be OOITECII in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

smb_ rs vd These fields are reserved and should be ignored by the l_ivlXsewer.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 1&3

Page 182 of 535

SMBwritebraw Specification

smb_oflset

smb_timeaut

smb_wm ode

sm b_dsize

smb_dofl'

smb_pad

smb_data

smb_re-maining

Extended LOSMB File Operations

A Qbit integergiving the position in the file at which the bytes in the request
should bewiitten.

A 12bit integer giving the number of milliseconds the LMX server may block

while tiying to complete the wii te. This value is ignored for regular files For

I/O devices and named pipes (refer to X/Open CAE Specification, IPC

Mechanisms for Siv[B). the LMX server will wait this much time to oomplete

the write. IF 5mb_l'imeout is — l the LMXserver will wait indefinitely; if it is -2
the server will wait the default amount of time for the file. An LMX sewer

may choose to treat all timeouts as O, that is, do not block.

A 16bit flag field contnolling the write mode. If bit Ois set, write—through

mode is requested; t.he LMX server will write all data atomically and

acknowledge the write with the seoondary response. If clear, write-behind is

permitted; the L.i\/JX server need not write atomically and need not repon

completion. If bit 1is set, the LMXserver should fill in the smb_remai'ning field

in the piimary response.

The number of data bytes in this request.

The offset in bytes from the beginning of the SMB head er to smb_data.

Between zero and three unused bytes; the SMB redirector may use these to

pad out the smb_data area to a pn0perly—aligned boundaiy.

The actual data to be written. This is a stn' ng of bytes in no particular format.

A 18bit integer which is always — lfor regular files or if bit lof 5mb_u/mode is

not set. Otheiwise, this is the number of bytes available to be read from the

I/O device or named pipe specified by the FTD. If the LMX server does not

support this functionality, — lshould always be retu med.

Secondaty SMBtvrllebraW:

smb_ count

Page 183 of 535

The total number of bytes written. If this is different from the smallest

smb_tcount sent by the SMB redirector, some error occurned (for example, out

of free space on the file system).

X/Open CAE Sped fication ([928

Extended LOSMB File Operations

SMBwi-itebraw ErrorCode Descriptions

SMBwritebraw Specification

ERR] nv nid

ERRnoresou rte

ERRti meout

ERRr_rseivlPX

ERRr_rseST'D

ERRbad uid

SMBwi-iteb raw Preconditions

‘ -I U .

File opened in deny write mode. or write range

overlaps a lock.

Invalid open mode for the attempted operation.

Corrupt SMB.
Invalid TID.

The LMX sewer is temporarily out of a needed
resource.

Requested operation timed out.
Can't do raw mode at

SMBwrirebmpx.

Can't do raw mode at this time; use 5MBwrite or
SA/iBwrireX.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

verything worked. no problems.

this time; use

1 The primary SIVIB was valid and specified a valid TID for a writable resouroe.

2 The FID was valid , and the prooess had write access to the file.

3 Before sending the secondary message, the LMXserver must have sent a primary response

The LMX server has been able to write the aooompanying data to disk, allocated the

needed memory for a bufler, and sent the response to the SMB redirector.

SMBwi-itebraw Postconditious

1 If wr1‘te—throLrgh mode is set, a primary response or secondary response indicates the data

in the primary response has been Written to stable store (unless some error other than
ERRr.rseSTD or ERRUseMPXwas retu med).

2 After a primary response is received, the LMX server is ready for a raw seoondary
message.

SMBwi-itebraw Side Effects

None.

Conventions

~ Locking (see Section 44on page 33.

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2

Page 184 of 535

SMBwriteciose Specification

12.5

Extended LOSMB File Operations

SMBw1iteclose Specification

SMBW1-iteclose D etailed D escri p tion

The write and close protocol request is used to fiist write the specified bytes and then close the

file. Any supported file type, including spool files. may be specified in this request. This request

behaves identically to an SMBwrite or SMBwriteX request followed by an SMBdo5e request. Any

buffered data must be flushed to stable store or to the device before the response is sent.

Since the call is related to either t.he SMBwrite or SMBwriteX request, the lengt.h of the request

may change: an SMB redirector may oonstruct the IBCIUBSE like SMBwrite, with six 16bit fields in
the variable word vector, or like SMBwriteX, with twelve 16bit fields in the smb_vwV. The LMX

server must be prepared to aooept either form.

SMBW1-iteclose D eviations

See Section 7.5on page '/Band Section 1260:) page 1@fordetails.

SMBW1-iteclose Field D escriptions

 smb:wct
smb_vwv[Q _

sm b_vwv[1] smb_count _ 0

sm b_vwv [23] smb_o1fset

sm b_vwv [4 5] smb_ time

smb_vwv[€~ 11] smb_rsvd

smb_bcc (1+ smb_rount)

smb_buF[] smb_ ad

smb_fid The FID to be closed.

smb_coum In the request, the number of bytes of data to be written. In the response, the

number of bytes that were actually written.

smb_ai_‘Tset A 32—bitof1°set into the file, in bytes, at VVllid] the data is to be written.

5mb_time A 33bit time value to be used as the last modify time for the file. A value of

zero indicates the last modified time should be unchanged.

5mb_r5vd This six 16bit field is only pnesent if smb_wci is 12 These fields should be

ignored.

smb_pad A single 8bit field which is used to pad out the beginning of the sinb_data area

to a 3-bit address boundary.

smb_data A suing of bytes, in no particular fonnat, whose length is given by smb_caunt.
This is the data to be written.

X/Open CA E Speci fication ([$2

Page 185 of 535

Extended LOSMB File Operations SMBwrite-clase Specification

SMBwr-iteclose ErrorCode Descriptions

Exactly the errors returned by SMBwriteX and SMBclose can be retumecl for this request. If an

error ooor.rrs during the write operation, the file will still be closed. Only one error can be

retumed in the response; if errors occur during both the write and close operations, the close
error is reported.

SMBwr-iteclose Preconditions

1 The SMB redirector has sent a valid SI\/IBwith aT1D for a writable resource.

2 The FID is valid and the process has write access to the file.

SMBwr-iteclose Postconditions

1 The data in the call is written to the file. If an error occurred. it will be reported unless a
close error occurs as well.

2 The file is closed and any errors are reported.

SMBwr-iteclose Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random ortler.

Conventions

~ Locking (see ‘Section 44on page 33.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 167

Page 186 of 535

SMBwriteX Specification

12.6

Extended LOSMB File Operations

SM Bwiitex Specification

SMBwriteX D etailed D escription

This extended protocol request is used to wiite to any supported file type (see Section 37on

page 17). The SMBwriteX command allows writes t.o be timed out and offers a generalised

alternative to the SMBwrite and SMRspiwr requests.

Note that a zero—|ength write does not truncate the file as was true of tl1e $MBwrite request;

rather a zeiolength write merely transfers zero bytes of information to the file. The SMBwrite

request may be used to tiuncate the file.

SMBwriteX D eviations

Some LMX servers may limit support of extended features for CAE special files. For example,

smb_timeout and/or 5mb_re-maining may not be supported and locking versus non—blocking may

be a oonfiguied parameter. etc.

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

complete soon. An LMX server should nonetheless take steps to maximise t.l1e probability that

the data is truly on disk before t.he SMB redirector is notified.

SMBwriteX Field D escriptious

sm b_wct

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23

sm b_vwv [3 4]

5mb_com2

smb_0f2

smb_count

smb_oifset smb_rema1'm'ng
smb_ timeout _ smb_rsVd

smb_ Wmode _ O

smb_countiali

smb_t‘svd

smb_d5t'ze

smb_doff
mi n=O

mb_pad

smb_ofl2

smb_l'id

smb_vwv [5 6]

smb_vwv [7]

smb_vwv [8]

smb_vwv [9]

smb_vwv[10]

smb_vwv[11]

51'!) b_ fid

51'!) b_ affset

The FID handle of the file to which the data should bewritten.

A Ebit unsigned integer giving the position in the file at which the data is to
bewritten.

smb_timeout A 32bit signed field giving the time (in milliseconds) within which a write

must complete. A value of zero (Q indicates the write should never block.

This field is ignoied for regular files.

For other than regular file types (refer to X/Open CAE Specification. IPC

Medianisms for SMB). this value has two special values. If the timeout is —],

the l_.MXsei\/er should block indefinitely waiting for the write. If the timeout

is -2 the Llx/IXsen'er should use the default timeout for the file type.

X/Open CA E Speci fication ([$2

Page 187 of 535

Extended LOSMB File Operations

smb_wmode

smb_coun tleft

smb_rsvd

smb_dsi2e

smb_dofl'

smb_pad

smb_dala

smb_count

smb_remaim'ng

smb_rsvd

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

Page 188 of 535

SMBwrIteX Specification

A 16bit field oontaj ning flags, defined as follows:

Bit 0 If set., an LMX server must not respond t.o the SIVEB redirector

before the data is actually written to the disk (that is, write-

through).

If set, t.l1e LMX server should set smb_remat'm'ng correctly for

writes to named pipes orl/Odevioes.

Bit 1

Bit2 For named pipes only. If set, Rawwrihe-NamedPipe should be

used. (See the X/ Open CAE Specification, IPC Mechanisms for

Bit 3 For named pipes on]y. If set, this data is the start of a message.

All other bits are reserved and should be ignored.

T‘his unsigned 16bit field is an advisory field telling the LlvD(server

appro)dmately how many bytes will be written to this file before the next

non—write operation. It should include the number of bytes to be written by

this request. An l_.I\/IX server may ignote this field or use it to perform
optimisations.

A 16bit reserved field; MBZ.

An unsigned 16bit field giving the amount of data to bewti tten, in bytes.

A 16bit field giving the oflset from the start of the SMB header to the

beginning of the data to be written. Specifying t.his field allows an SIVIB

redirector to efficiently align the data bu lfer.

The 8bit fields between the end of the SMBwriteX header and the beginning of

the data as pointed to by smb_dofl'. These fields should be ignored.

The actual data to be written. This is not in a buller form; it is simply a string

of bytes.

A 16bit field giving the actual number of bytes wtitten. The value would be

dilferent from 5mb_d5ize if, for example, the file system became full or a file

size limit imposed by ulimit was reached (refer to Section 4.33on page K).

This 16bit integer should be — 1 for regular files. For named pipes and I/O
devices. if bit lof 5mb_wmode is set, the sewer should return the amount of

data available to be read on this named pipe after the read. This value may be

appro)dmate, and a server may simply force this field to be — 1

A 12bit reserved field. It should be zero (Q.

SMBwriteX Specification Extended LOSMB File Operations

SMBwriteX ErrorCode Descriptions

 escnp

I D non-writable or other prohibition of access.

nvalid FID. The SMB redirector has attempted

to use an FID not reoognised by the Ll\/Déseiver.

on

The wn‘te overlapped an existing byte—range

lock placed by another process.

Invalid open mode for the attempted operation

(for example, wiiljng a read-only file).
Error is returned to the SMB redirector for nor1—

specific errors such as ooirupt SMB requ$ts.
nvalid TID.

e requested operation timed ou t.

I e UID given (smb_uid) is not known as a valid
D on this LMX session.

verything worked. no problems.

SMBwriteX Precondi tioos

Sl\/[B request, UID and TID are valid and represent the appropfi ate acoess rights to perform the
action.

SMBwriteX Postcondi tions

If no error ocouried, the data was buffeted to be written to disk. The Current file pointer for this
file is advanced.

SMBwriteX Side Effects

A write—through write will cause the written data to be flushed to stable store, and may cause all
buffered data for the file to be flushed.

Cooven tio ns

Chalning (see Section 390:) page 2.

The following are the only valid requests which may be chained to an SMBwriteX iequest:

SMBread, SMBreadX, $MBlacki'ngX, SMBclose, SMBlockread and NIL.

170 X/Open CA E Speci fication ([$2

Page 189 of 535

Extended LOSMB File Operations SMBreadbmpx Specification

12.7 SMBreadbn1px Specification

SMBreadbmpx Detailed Description

The read block multiplexed request is used to maximise the performance of reading a large block

of data from the LMX server to t.he SMB redirector on a multiplexed LMX session. The

SMBreadbmpx request can be applied to any supported file type.

Each SMBreadbmpx request will cause one or more associated responses to be sent from t.he LMX

server. Each response contains as much of the remaining data to be read as will fit, and

responses are generated until all the requested data has been transmitted. The LMX server can

rely on the SM3 redirector t.o maintain synchronisation; if the Si\/[B redirector encounters a

problem while it is receiving responses to an $MBre-adbmpx request, it is responsible for

discarding all those responses and will not notify the LMXseNer in any way. After solving the

problem, the Si\/[B redirector may reissue the request; the LMX server need not retain state

concerning a completed $MBreadbmpX request. No acknowledgement of receipt from the SIVIB

redirector is nealed: the underlying transport is expected to ensure all responses arrive at the
SMB redirector in the conect order.

Note that the request and all responses make up a single complete Si\/[B exchange; thus, the TID,

PID and UID are expected to remain constant. Also, the SMBM-adbmpx exchange is supported on

multiplexed Netl3IOS sessions. \Nhat this means is that the SMB redi rector may issue other SIVIB

requests while the (multiple) $MBre-acibmpx responses are being sent from the LMXserver to the

SMB redirector. Because of this, the response must contain the MJD and PID of the original

SMBreadbmpx request.

During an SMBrwdbmpX exchange, the SMB redirector should not issue SIVIB requests which

conflict with this; for example, the SM3 redirector should not issue an 5MBdose request on the

same file for which it is still receiving $MBreadbmpx responses.

SMBreadbmpx Deviations

LMX servers may not support timeouts on all possible file types.

SMBreadbmpx Field Descriptions

sm b_com SMBreadbmpx _ SMBreadbmpX
sm b_wct 8 _ 8

sm b_vwv [O] smb_l'id _ smb_0i}3et

sm b_vwv [1- 2 smb_offset _ smb_tcount

sm b_vwv [3] smb_maXcnt _ smb_re-maining
sm b_vwv [4] smb_mincnt _ smb_rsVd

sm b_vwv [5 6] smb_ timeout _ smb_dsize

sm b_vwv [7] _ smb_doii"
sm b_bcc O _ mi r 1=O

smb_ o ad

smb_fid The FID of the file to be read fmm.

smb_al_‘Tset A Ebit integergiving the position ir1 the file at which to read (in the request)

or‘ the position in the file at which the data retumecl in this response began.

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2 171

Page 190 of 535

SMBreadbmpx Specification

smb_maXcnt

smb_mincnt

smb_timeout

smb_rsvd

smb_trount

smb_re-maining

smb_dsi2e

smb_dofl'

smb_pad

smb_data

172

Page 191 of 535

Extended LOSMB File Operations

I\/Ia>dmum number of bytes to return; the desired read size.

The minimum number of bytes to read. For regularfiles, this value is usually

zero. V\/hen the timeout is used, this is the minimum number of bytes which

will satisfy the read; if Fewer bytes are available, the request will block until

enough are av ail able or the timeout is reached.

A fBbit integer giving t.he number of milliseconds t.o wait for 5mb_minrnt

bytes of data to become readable. A timeout of zero (0 indicates the call

should never block. This value is ignored for regular files and may be ignored

for I/O devices. For named pipes, t.here are two special values: — imeans the

request should block forever until at least 5mb_minrnt bytes become available;

—2means t.he default timeout associated with the named pipe should be used.

These fields are reserved and should beignored in requests and set to zero in
responses.

An integer giving t.he total number of bytes expected to be returned in all

responses to this request. This value will usually start at smb_maXcnt and may

be reduced by file truncations while the read is in progress, etc. This value

must be acarrate in at least the last response generated (that is, contain the

actual number of bytes sent in all responses) but may be an overestimat.e in

earlier‘ responses.

If this value in the last response is less than smb_maxcnt, EOF was encountered

during the read. If this value is exactly zero (0, rj1e original offset into the file

began after EOF; in this case, only one response may be generated.

T‘his integer should be — 1 for regular files. For devices or named pipes this

indicates the numberof bytes remaining to be read from the file after the bytes
returned in the response were de—queued. LMX servers need not support this

function and should retu rn — lif they do not supportit.

The number ofdata bytes returned in the individual response.

The offset in bytes from the beginning of the SMB to the beginni ng of the data

being returned, This offset permits the LMX server to use an efficient

alignment of the data within the SMB response.

Zero (Q to three (3 bytes of padding. This is the space after the end of the

SMBrwdbmpx subheader which is unused because the data was aligned. The

smb_dofl”points to the first byte afier this bytestring.

The actual data bytes read.

X/Open CA E Speci fication ([EB

Extended LOSMB File Operations SMBreadbmpx Specification

SMBreadbmpx Error Code D escdptioos

See Section 1230:) page 18)for other erroroodes.

 EBADFID ERRDOS ERRbadfid The FID was valid but unacceptable to the

u nderlyi ng OS.

ERRlock Read overlapped a byte—range lock granted to

another pmcess.

Some oonflict in open mode occurred.
Invalid SMB.

Invalid TID.

A temporaiy resource limitation in the LMX

server caused this request to fail.
* timeout occurred.

I emporatily out of su fl"lci ent buffers.

I e UID given (smb_uid) is not known as a valid
D on this LMX session.

erything worked. no problem

ERRbad access

ERReiT0r

ERRI nv nid

ERRnoiesou me

ERRti meout

ERRuseST'D

ERRbad uid

SMBreadbmpx Preconditions

1 SMB request, UID and ND are valid and represent the appropriate aooess rights to perform
the action.

2 T‘heFlD isvalid.

SMBread bin px Postcond itioos

1 For I/Odevioes or named pipes the retu rned data was consumexl from the device.

2 After oompletion the curient file position pointer will be light after the lead data or at EOF.

SMBreadbmpx Side Effects

Because of the nature of the request, the operation may not be atomic on the LMX server;

iequests on the same file from other prooesses may change the iesults of this request.

Conventions

~ Locking (see ‘Section 44on page 33.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 173

Page 192 of 535

SMBwrr'tebmpx Specification

12.8

174

Extended LOSMB File Operations

SMBw1itel)n1px Specification

SMBwritebmpxD etailed D escriptioo

This extended protocol request provides a l1igh performanoe mechanism for writing large

amounts of data while other activity is being generated by the SIVIB redirector. The

SMBwriiebmpx operation can be performed on any supported file type.

Unlike most SMBS, there are two forms of both request and response: primary and secondary.

The collection of all requests and responses related to a given primary $MBwriiebmpx request is

called an SMBwn'rebmpx exchange.

An SMBwn'rebmpx exchange begins when the SMB redirector sends a primary request. This

request sets many of the parameters for the exchange and contains the first part of the data to be

written. If an error occurred while handling this request, the LMX server sends a seoondary

response indicating the erior and ends the exchange; otherwise, the LMXserver sends a primary

response indicaljng itis ready for more data. Then, if the amount of data to be written is greater

than what could fit in the primary request, the SIVIB redireclor sends seoondary requests until all

data has been sent. If the exchange was in writethrough mode, the LMX server sends a

secondary response; otherwise, the LMX server relies on the transport to ensure delivery of all

requests and does not generate an additional reply.

If an error occurs after the primary response is sent, any secondary requests must be discarded.

If write—through mode was requested, error information is returned to the SM3 redirector in the

secondary response. If not, the error is cached and returned in the response to the next request

issued by the SI\/[B redirector for that file.

Other requests may be issued on the same L.MXsession while the exchange is in progress. The

TlD, PID, UID and MID are expected to be identical in all requests and responses in a given

SMBwriiebmpx exchange.

If wri te—through mode is specifial, the I_.MXserver will collect all the data and write it to the disk

atomically; otherwise, in write—behi nd mode, the LMXserver need not make this guarantee.

SMBwr-iteb mpx D eviations

Ti rneou ts for 1/O devices are implementation—d epend ent

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

complete soon An LMX server should nonetheless take steps to maximise the probability that

the data is truly on disk before the SMB redirector is notified.

X/Open CA E Speci fication ([$2

Page 193 of 535

Extended LOSMB File Operations SMBwritebmpx Specification

SMBW1-itebmpx Field Descriptions

Primary Request/Response

ield Nam - ield V

sm b_com _ SMBIA/ritebmpx
sm b_wct _ 1

sm b_vwv [O] _ 5mb_re-maining
sm b_vwv[1] _ 0

sm b_vwv [23

sm b_vwv [3 4]

smb_vwv[56]

smb_vwv[fl

smb_vwv[8E3

smb_vwv[10]

smb_vwv[11]
sinb_ fid

5mb_tcaunt

The FID of the file to be written to.

An unsigned 16bit field giving the total number of bytes Urat will be written

to the file. This value must be oorrect in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

5mb_ rs vd These fields are reserved and should be ignored by the l_.ivD{ser\/er.

smb_ai_‘Tset A Ebit integergiving the position in the file at which the bytes in the request
should be written.

smb_timeout A Z32.bit integergiving the number of milliseconds the Lix/IXserver may block

while trying to complete the write. This value is ignored for regular files. For

1/O devices and named pipes (refer to the X/Open CAE Specification. IPC

Mechanisms for SMB). the Li\/K sewer will wait this much time to oomplete

the write. If 5mb_timeout is— 1, the LMXserver will wait indefinitely; if it is -2
the sewer will wait the default amount of time for the file. An LMXser\/er

may choose to trmt all timeouts as O that is, do not block.

Page 194 of 535

smb_winode A 16bit flag field controlling the write mode. If bit O is set, write—tl1mug|1

mode is requested; the LMX server will write all data atornically and

acknowledge the write with the secondary response. If clear, write—behind is

permitted; the LMX sewer need not write atomically and need not report

oompletion. If bit lis set, the LMXserver should fill in the sinb_rernaim‘ng field

in the primary response.

smb_ dsize The number ofdata bytes in this request.

smb_dofl" The offset in bytes from the beginning of the SMB header to 3mb_data.

smb_pad Between zero and three unused bytes; the SMB redirector may use these to

pad out the smb_data area to a pmper|y—aligned boundary.

smb_data The actual data to be written. This is a stn'ng of bytes in no particular format.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 175

SMBwritebmpx Specification Extended LOSMB File Operations

smb_re-maining A 16bit integer which is always — lfor regular files or if bit lof 5mb_wmode is

not set. Otherwise, this is the number of bytes available to be read from the

I/O device or named pipe specified by the FID. If the LMX server does not

support this functionality, — lshould always be retu med.

ttest/Response

 Secondat‘yRe

sm b_wct

sm b_vwv [O]

smb_vwv[1] smb_icormt _ 0

sm b_vwv [23] smb_oifset

smb_vwv [4—5] smb_rsvd

sm b_vwv [6] smb_d5r'ze

smb_vwv [7] smb_dofF
sm b_bcc mjn=O

smb_buF[] smb_pad

5mb_count The total number of bytes written. If this is different from the smallest

smb_tcount sent by the SMB redirector, some error ocarrred (for example, out

of free space on the file system).

All other fields are identical to the primary request.

SMB\v/ritebntpxlirrorcode Descriptions

For other error codes see Section 126 on page 1% If a secondary response is not being

generated by the LMX sewer, any error should be cadred and returned in the response to the

' m the sam rocess involvin this FID.

ERRnonesoume Unable to allocate enough buffer space.
ERRt1' n reou t Tl meou t OCOJ rred.

ERRuseST'D Some resouroe limitation prevents the LMX

server from supporting SMBwrr'tebmpX at this

ime; more limited write requests (5MBwrire,

MBwriieX) should be used instead.

ID given (smb_uid) is not known as a valid
D on this LMXsr5sion.

hi n; worked, no roblems.

SMBwr-iteb mpx Preconditions

1 The SMB redireaor has sent a val id SMB request with a valid TID fora writable resource.

2 The FID is valid and the process has w ri te actress.

176 X/Open CA E Speci fication ([$2

Page 195 of 535

Extended LOSMB File Operations SMBwritebmpx Specification

SMBwi-itebmpx Postcoodiiions

1

2

After t.he LMX server responds to the primary request to writebehind, the data in the

primary write-behind request has been written.

After t.he scwondary response, either an error was retumed or all the data was written

atomically,

After the last secondary request in a wi1’te—behi r1d mode exchange is reoeived, all the data

is available to be read but might not yet be written to stable store.

If wn‘te—throLigh mode was not specified, the LMXsen/er has cached any errors to be sent

as a response to the next request from this piooess related to this file.

SMBwi-itebmpx Side Effects

Because write—behind mode does r10t guarantee atomic write of all data, it is possible that this

exchange is interfered wit.h. It is possible. for example, that data from other processes could be

interspersed with the data written by an exchange‘

Conventions

None.

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 177

Page 196 of 535

178

Page 197 of 535

Extended LOSMB Ffle Operations

)0Open CAE Speci fication (L92

Chapter 13

Extended 1. OSMB Directory and Attribute Operations

This section defines the elements of the extended SMB protocol that support directoiy and

attribute acoess. They are:

SMBfl‘irst start/continue an extended wildcard directory lookup

SMBfc1ose end an extended wildcard directory lookup

SMBfum'que perform a one—tirne extended wildcard directory lookup

SMBgetattrE get extended file attributes

SMBseiattrE set extended file attributes

131 SMBffirstSpecification

SMBffi:st D etailed D escrlp (ion

The SMBfl‘i'r5t extended protocol request behaves exactly like the SMBsearch oore request, except

the LMX sewer can expect the SMB redirector to terminate the seaich by issuing an SMBfc1osc

request. Because of this expectation. the LMX server should not use heuristics to terminate the

search, and should instead preserve all search state and resources until the SMBfclo5e request is
received or the Ll\/IXsessi on is closed.

As i n the case of SMBsearch, there are two forms of the SMBfl‘3r5t request: Fi'ndF1'r5t. indicated by a

null 5mb_search_id, and Fz'ndNcXt, w hich has a val id 5mb_sea.rc}1_i'd speci fied.

If a Findfiirst request (an SMBH'_irst request whose smb_5earch_id is null) fails (no entries are

found). the LMX sewer should respond with a failure and terminate the search. No SMBfc1osc

request should be expected.

Otherwise, SMB!first behaves in all respects like SMBsearch.

SMBffi:stDeviations

See Section 83on page 99

SMBffi:st Field Descriptions

See Section 83on page 99

SMBffi:st Emor Code D escriptions

See Section 83on page 99

SMBffi:stPreconditlons

l. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action on asearchable disk resource.

2 The process has read /search permissions on all directories enoountered.

3 For a FL'ndNeXt request, the matching Fi'ndFir5t/FindNc-xi request must not have failed.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 179

Page 198 of 535

SMBt‘fiz'st Specification Extended LOSMB Directoty and Attribute Operations

SMBffirst Postconditions

1 If the FindFir5t fails, the search is terminated.

2 As long as SMBfl'irst requests continue to succeed, seaich state and FBSOUFCES are

majntaj ned ; di rectoties may remain open, etc.

3 After each FindNeXt, state information is updated ir1 such a way as to ensure the seanch can

continue without returning dir_info on the same file twice.

3 MBffirst Side Effects

Various directories may iemajn open for reading during the lifetime of an active search. This

may interfere with requests from other processes on involved directories.

Conventions

~ Aocess (see Section 4320:) page 3:).

~ Attributes (see Section 4.3 lon page 33.

~ Filename (see Section 35on page 15.

. Wldcard (see Section 36on page 1'3.

18) X/Open CA E Sped fication ([$2

Page 199 of 535

Extended LOSMB Directory and Attribute Operations SMBfcIose Specification

132 SM Bfclose Specification

SMBfc[ose D etailed D escription

The 5MBfclase extended protocol request terminates an active search begun by 5MBfl5r5t.

SMBfc[ose D eviations

None.

SMBfc[ose Field Desciip tions

The SMBfc!ose request and response are identiml to the SMB5earch request and response (see

Section 83on page %. The Fields areinteipreted diflerently:

smb_com This should be $MBfdosein both request and response.

smb_count This 16bit integer should be ignored in the request and must be zero in the
iesponse.

5mb_attr This attiibu te field should be ignored.

smb_pathname This ASCIIZ (type 04) bulfer should be empty: that is, the bufler contains a

single ASCII NULL character.

smb_5earch_id This variable block (type (B bufler should be one of the find_buf_search_i’d

stiuctiu res retu rned in any response to the search being terminated. This
bufler identifies the seamh which is to be terminated.

smb_data This vaiiable block (type C5 should be zero length; that is, the length for the

bufler should be zero (0, and no data bytes should be appended.

SMBfc[ose Ecro r Code D escri pfioos

Same as for SMRsearrh (see Section 83on page 9}).

SMBfc[ose Preconditions

1 SMB request, UID and TID are valid and represent the appropriate aooess rights to perform
the action.

2 The search identified by smb_search_id must be active.

SMBfc[ose Postcouditioos

Any allocated resou roes for the identified search are released, and the search is no longer active.

SMBfc[ose Side Effects

None.

Cooven tio :15

None.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 181

Page 200 of 535

SMBfum'que Specification

133

Extended LOSMB Directory and Attribute Operations

SMBfunique Specification

SMBfunique Detailed Description

The SMBfunique extended LOprotocol request behaves exactly like the SMB5e-arch core request,

except the l_.I\/IX server can tenninate the search immediately after sending the response. The

SMBfum’que request, while it does support a wildcard smb_pathname, is designed to return

information on only a few (possibly one) files‘ If more files match than can fitinto the response,

the l_.MXserver can disregard them.

SMBfuniq ue Deviatio us

See Section 83on page %

SMBfunique Field D escdptions

See Section 830:1 page 5}} The LIVIX server should expect that smb_5earch_id will always be a

zerolength van" able block (type (5 buffer.

SMBfunique ErrorCode Descriptions

See Section 83on page %

SMBfu niq ue Preconditions

1 SMB request, UID and TID are valid and represent the appropri ate aooess rights to perform
the action.

2 The process has read /search permissions on all directories er1oountered.

SMBfu niq Lie Postconditions

No state or resources are maintained on the l_.I\/IX server after the response is sent: the search is
oonsidered inactive.

SMBfunique Side Effects

Because SMBfimique is a one pass search, interaction with other requests due to directories

remaining open for long periods of time should be greatly reduced; however, they may not be
eliminated.

Conventions

~ Aocess (see Section 4320:) page 3:).

~ Attributes (see Section 4.3 lon page 33.

~ Filename (see Section 35on page 15.

. Wldcard (see Section 36on page 1'3.

X/Open CA E Sped fication ([$2

Page 201 of 535

Extended 1. OSMB Directory and Attribute Operations SMBgetattrE Specification

134 SMBgetattrE Specification

SMBgetattrE D etailed D escri p tioo

This extended LO protocol request returns extended attribute information for a given open

regular file.

SMBgetattrE D eviations

1 LMXservers which cannot maintain a creation date and time for their files will return the

last modify date and time instead‘

2 The attribute field is treated according to the Attiibute oonvention.

SMBgetattrE Field D escriptions

smb:wct _
sm b_vwv [O] _ _ 5mb_cdate
sm b_bcc _ 5mb_ctime

5mb_adate

5mb_ati'me

5mb_mdate

5mb_m time

5mb_datasize

5mb_allocsize

smb_fid The FID for which extended attribute information should be returned.

smb_cdaie A date field giving the creation (late for the file. See Section 53201) page 43

smb_ctiine A time field giving the creation time for the file. See Section 513 lon page 43

smb_adate A date field giving the last access date for the file.

smb_atime A time field giving the last access time for the file.

smb_mdate A date field giving the last modify date for the file.

smb_mtiine A time field giving the last modify time for the file.

smb_ datasize A 132-bit integer giving the current size of the file (offset to EOF) in bytes.

smb_a£!ocsize A Z32.bit integer giving the amount of space allocated to the file. LMXsei\/ers

on systems which do not support pre—al|o(:ation of space will set this field to
the same value as smb_ datasize.

smb_attr An attribute field giving the attiibutes of the file (see Section 1370:) page 17).

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 183

Page 202 of 535

SMBgetattrE Specification Extended LOSMB Directory and A ttribure Operations

SMBgetattrE ErrorCode Descrip lions

escnp on

nvalid or no longer an acoepcabl

‘ signal was caught during a sys

D specified in command is inv
I D not for a disk resource.
verythj ng worked, no problem

SMBgetatlrE Preconditions

L SMB request, UID and TID are valid and represent the appropriate access fights to perform
the action.

2 The FID must be valid.

SMBgetattrE Postconditions

None.

SMBgetattrE Side Effects

None.

Conventions

- Attribute (see Section 4.3 lon page 3).

184 X/Open CA E Sped fication ([$2

Page 203 of 535

Extended 1. OSMB Directory and Attribute Operations SMBSEt3ffl‘E Specification

135 SM Bsetattrfi Specification

SMBsetattrE D etailed D escri p tion

This extended 10 protocol request is used to set extended attiibute information for an open

regular file.

SMBsetattrE D eviatious

LMXser\/ers which cannot maintaj n a creation time for their files will ignore the create date and
time fields.

SMBsetattrE Field D escriptions

smb:wct
sm b_vwv [O] smb_fid

sm b_vwv[1] smb_cdate

sm b_vwv [21 smb_ctime

sm b_vwv [3] smb_adate

sm b_vwv [4] smb_atime

sm b_vwv [5] smb_mda re

sm b_vwv [6] smb_mtime
' =

smb_fid The FID whose extended attributes are to be changed.

smb_cdate A date field oontainjng the creation date for the file. See Section 532011 page
43

smb_ctiine A time field containing the creation time for the file. See Section 53 lon page
43

smb_adate A date field containing the last access date for the file.

$mb_at1'me A time field oontainjng the last access time for the file.

smb_mdate A date field containing the last modify date for the file.

smb_mtiine A time field oontainjng the last modify time for the file.

smb_ rs vd A reserved chaiacter suing; LlvfXservers should ignoie this field.

Protocols for X/Open PC Inlerworking: Slv‘[B, Version 2 1%

Page 204 of 535

SMBsetattrE Specification Extended LOSMB Directoiy and Attribute Operations

SMBsetattrE ErrorC ode D escriptions

escnp on

I e UID does not hmppropnate privilege
- id is not the owner of the file.

nvalid or no longer an acceptable FID.

‘ signal was caught dun‘ ng the operation.

e UID does not have appiopiiate privilege
:](] is not the ow ner of the file.

ile system is read—only.

I D specified in command isinvalid.

I D does not specify a disk resource.

verythjng worked. no problems.

SMBsetattrE Precoodi tions

1 SMB request, UID and TID are valid and represent the appropriate aooess rights to perform
the action.

2 T‘heFID isvalid.

SMBsetattrE Postcond itions

A file time and date will remain unchanged if the corresponding date ar1d time in the request
was zero.

3 MBsetattrE Side Effects

None.

Conventions

~ Access (see Section 4320:) page 3:).

1% X/Open CA E Sped fication ([$2

Page 205 of 535

Chapter 14

Xtended 1. OSMB Miscellaneous Requests

This section defines the remaining elements of the extended LOSMB protocol. They are:

SMBcopy copy one or more files

SMBecho test an LMX session

SMBiocti 1/0 d evioe control

SMBmove move one or more files by renaming

141 SMBc0py Specification

SMBcopy Detailed Description

This extended].Oprotoool request copies one or more files from a given path to a new path on a

single LMX server: The source path may include wildcards. The destination may be a directory

or a single file, but it may not include wildcards. If the destination is a directory. the souroe

file(s) are oopied into that directory: if the destination is a regular file. the souroe file(s) are

appended to it (possibly after the destination is truncated).

SMBcopy Deviations

None.

SMBcopy Field Descriptions

@

sin b_ com SMBcopy
sin b_ wt! 3

smb_vwv[O] smb_lid2

smb_vwv[1] smb_ofim

smb_vwv[23 smb_flags
sin b_ brc mi n=2

sin b_ bu!‘[] smb_path

smb_new_path

smb_tid2 The TID corresponding to smb_new_path. The TlD for 5mb_path is sent in

smb_lid in the SMB header. If 5mb_tid2is — 1, the TID in smb_tid should be used

for 5mb_new_palh as well; this permits $MBt'opy to be chained to SMBtconX.

5mb_ofun This is an open Function field (see Section 53800 page 46. If smb_neW_path is

a simple file smb_ofun applies at the start of the operation: in the case of

wildcards all sutsequenl files will then be appended. It is applied to each

copied file when 5mb_new_path is a directory.

smbjlags This 16 bit field contains a set of flags controlling the copy operations:

Bit 0 If set, the destination must be a file.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 187

Page 206 of 535

SMBcopy Specification

smb_path

smb_new_paih

smb_cci

smb_errfiIe

Page 207 of 535

Bit 1

Bit2

Bit3

Bit4

Bit5

Extended LOSMB Miscellaneous Requests

If set, the destination must be a directory.

Copy destination mode: O=bi nary (indicating the contents of the file

are not to be interpreted), 1=ASCIl (indicating DOS format text file).

This bit is ignored.

Copy source mode: O=binary (indicating the contents of the file are

not to be interpreted), 1=ASCII (indicating DOS format text file).

This bit is ignored.

lfset, all writes must be veri fied by comparing the copied destination

to the original source(s).

If set, indicates a tree copy is requested. A tree copy means the

oont.ents of the directory and any subdirectories are to be copied.

This bit only has meaning if the extended 20 SMB dialect was

negotiated.

All other bits are reserved and should be ignored.

An ASCIIZ buffer‘ containing the name of the file(s) to be copied; wildcard
characters are permitted. The path is interpreted relative to 5mb_ri'd in the
Sl\/[3 header.

An ASCIIZ bufler‘ containing the name of the destination to which the source

file(s) are to be copied. V\/ildcards may not be used. The path is interpreted

relative to smb_ ii'd2in the SMBcopy subhead er.

A 18bit integer oontaj ning the actual number of files oopied.

This is an ASCIIZ buffer which may oontain the name of the source file on

which ar1 error was encountered during a copy operation. \/Vhen a copy error

is encountered, the expanded source filename is returned in 5mb_errfile and the

error code is returned in 5mb_err (in the SMB header).

X/Open CA E Sped fication ([EB

Extended LOSMB Miscellaneous Requests

SMBcopy EmorCodeDesc1-iptions

ERRshare

ERRfileXisLs

ERRerDOI‘

ERRnoac0ess

ERRe1Tor

ERRnofids

ERRbad file

ERRCITOF

ERRbad path

ERRen‘or

ERRen‘or

ERRe1Tor

ERRInv nj cl

ERRinvdevioe

ERRi1ofiles

ERRbadshai e

ERRbac| uid

SUCCESS

SMBcopy Preconditions

SMBcopy Specification

of path—prefix denies search

permission.

There are outstanding record locks on the file.
Destination file exists.

A signal was caught dun‘ rig the open operation.

Can't oopy onto a directory.

Maximum number of file descriptors are

currently open in this process.

System file table is full.
File does not exist, or component of pathname
does not exist.

The system is out of resources neoefiry to
create files.

Component of either path-prefix is not a

directory.

One of the TTDS is not for a file system subtree.

Destination file system subtree is read—only.

Can't oopy onto programme being executed.
Invalid TJD.

One of the TlDs is not for a file system subwee.

No more files matching the specified ciiteiia.

Share conflict when cieati ng a destination file.

The UID given (smb_ui'd‘) is not known as a valid

1 The SMB i‘e(liI‘eCtor has sent a valid SMB with a valid 5mb_Ud and smb_tld2 for file system
subtrees: the smb_tid2iesoui oe must allow writes.

2 The SMB redirector has appropriate read/search permission on source and destination

paths. and w ri te permission on the destination file or into the destination directoiy.

SMBcopy Postconditions

Not all files yfailed.

SMBcopy Side Effects

Some files may be ov eiwiitlen if smb_ofim flags requested it.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 l$

Page 208 of 535

SMBcopy Specification Extended LOSMB Miscellaneous Requests

Cooven tio as

s Access (see Section 4320:) page 3:).

~ Fllename (see Section 3500 page 15.

. Wldcards (see Section 3600 page 17).

13) X/Open CA E Sped fication ([$2

Page 209 of 535

Extended LOSMB Miscellaneous Requests SMBecho Specification

14.2 SMBecho Sp ecificatiou

SMBeclJo D etailed D escri p tion

This extended protoool request is used to test an LMXse5sion by exchanging messages between

the SIVIB redirector and I_.MXserver. Since it is used to verify communications, the request may

be issued at any time during the life of an LlvlXsession, exoept before an $MBnegproi request has

been issued, and not while a raw exchange isin progress (for example, SMBwrite-braw).

The LMXser\/er will respond with the exact number of messages specified in the request.

SMBeclJo D eviatioos

None.

SMBeclJo Field Descriptions

Miami

sm b_com SMBecho

sm b_wct 1

sm b_vwv [O] smb_reverb
smb_reverb A 16bit integer indicating the number of responses the LMX server should

generate for this request. If zero, no response at all will be generated.

smb_data This string of bytes is test data which is specified by the SMB iedirector in its

request and returned by the LMXserver in every response. The string of bytes

is not formatted; the LMX sewer must be careful to exacfly reproduce it and

set smb_ bcc correctly in the responses.

smb_sequem:e A 16bit integer containing the sequence number of this particular response.

The first response would have smb_se-quence = L and the last response would

set smb_sequence to smb_reverb.

SMBecho Error Code D escripiions

escn) on

MX n has not been establisl

ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMXsession.

Requested function is not supported.

verythi ng worked, no problei -

 ERRnosu pport

No CAE errors are possible.

Protocols for X/Open PC lnlerworking: Slv‘[B, Version 2 191

Page 210 of 535

SMBecho Specification Extended LOSMB Miscellaneous Requests

SMBecho Preconditions

None.

SMBecho Postconditions

None.

SMBecho Side Effects

None.

Conventions

None.

182 X/Open CA E Sped fication ([$2

Page 211 of 535

Extended LOSMB Miscellaneous Requests SMBiocti Specification

14.3 SMBioctl Specification

SMBioctl D etailed D escription

This extended protocol request permits detailed control of 1/O devices by the SIVIB redirector.

The actual forms of control available are device—specific and implementation—dependent.

SMBioctl D eviatioos

Because the mapping between ioctl request numbeis and actual functionality varies from

implementation to implementation, it is impossible to provide this functionality in a portable

manner. Nonethel ess. SIVIB redi rectors using the LMXser\/er may generate SMBioctl requests.

An LMX server which does not support the SMBiortl request should return error code

ERRnosupport i n error class ERRSRV if it receives such a request.

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2 JQ3

Page 212 of 535

SMBmove Specification

14.4

Extended LOSMB Miscellaneous Requests

SMBniove Specification

SMBmove D etailed D escriptioo

This extended protocol request is used to move files between directories on the LI\/lXserver.

DifE£t0l‘leS as well as regular files may be moved into a new directory. The SMBmove protocol

removes t.he deviations of SMBmV and allows for relocating files to different file system subtrees.

A move of a directory cannot have a destination located in the directory itself or ar1y

subdirectory within the souice directory. In these oonditions the error<ERRDOS, ERRbadpath>
is to be retumed.

The source path may include wildcaids in the last component of the path. but the destination

path must specify a single file or directory (that is, no wildcards). If the destination is a

diiectory, the source file(s) are moved into that directory; if the destination is a iegular file, all

source files but the last one are lost, and the last one is renamed to the destination path. The

sequence in which files match a wildcard specification is undefined. so the specific file which

will be given the destination name cannot be specified.

SMBmove D eviations

None.

SMBmove Field Descriptions

sm b_wct

sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [23
sm b_bcc

sm b_bufI]

5mb_count
mi I 1=O

5mb_ern‘ile

smb_path

smb_tid2 The TTD corresponding to 3mb_new_patl1. The TID for 5mb_pati1 is sent in
5mb_iid in the SMB header. If 5mb_tid2is — L the TTD in smb_tid should be used

for smb_new_pati1 aswell: this permits 5MBmove to be chained to SMBtconX.

smb_ofim This is an open function field (see Section 5 380:] page 46. Ifsmb_new_pail1 is

a simple file 5mb_ofun applies at the start of the operation: in the case of

wildmrds all subsequent files will then be appended. It is applied to each

moved file when sinb_new_path is a directory.

smb_{lags This 16bit field contains a set of flags oontmlling the copy operations:

Bit 0

Bit 1

Bit 4

Ifset, the destination must be a file.

Ifset, the destination must be a directory.

Ifset, all writes must be verified by oompanng the copied destination

to the original sou ice (s).

All other bits are resen/ed and should be ignored.

X/Open CA E Speci fication ([$2

Page 213 of 535

smb_path

smb_new_path

smb_count

smb_errfile

Extended LOSMB Miscellaneous Requests SMBmove Specification

An ASCIIZ buffer ooncaining the name of the file(s) to be moved; wildcard
characters are permitted. The path is interpreted relative to smb_ti'd in the
Sl\/[3 header.

An ASCIIZ bufler oontaining the name of the destination to which the soume

file(s) ale to be copied. V\/ildcards may not be used. The path is interpreted
relative to smb_ tid2in the SMBmove subhead er.

A 18bit integer oontaj ning the actual number of files moved.

This is an ASCIIZ buffer which may oontai n the name of the souice file on

which ar1 error was encountered, the expanded source filename is ietumecl in
smb_errfile and the error code is retu med in smb_err (in the SMB header).

SMBmoveErrorCode Descriptions

CAE Cod OS Class DOS Code

EA CCES RRDOS ERRnoa 0:

EACCES RRDOS ERRnoaccess

EEXIST‘ <RRDOS ERRfilexists

EINTR RRSRV ERReiTor

E\/1LINK RRSRV ERRGITOF

EN OENT *RRDOS ERRbad file

E.\l OSPC ERRSRV ERRCITOI‘

‘I'll S '1' dpath

’ SRV ERRnoaccess

’ ' I OS ERRnoac0ess

' ' I O8 ERRnofiles

’ ' OS ERRbadshare

' ' SRV ERRCI Tor

' ' SRV ERRI nv nid

’ ' SRV ERRnosu pport
’ ' SRV ERRaocess

' SRV ERRbacl uid

. CCESS SUCCESS

Page 214 of 535

Protocols for X/Open PC lnterworking: SIv‘[B, Version 2

.- rch permission is denied on a oomponent of

either path-prefix.

No write access to destination directory.

Directory or file alneady exists.

A signal was caught dun‘ ng a system call.
Maximum number of links to a file would be

exceeded.

A component of either path—prefix does not

exist, smb_path does not exist, or smb_new_path is

a null stri ng.

Directory containing
extended.

A component of either path—prefix is not a

directory.

Read —only file system.

smb_path and smb_new_path are on different

logiml devioes.

No files match smb_path.

Share conflict when creating or appending to a
destination file.

Coriupt SMB request.
Invalid TJD.

Requested fu nction is not supported.

The resource represented by the TID does not
allow wiites.

The UID given (smb_uid) is not known as a valid
D on this LMXsessi on.

O €fI'O[‘S.

the link cannot be

SMBmove Specification Extended LOSMB Miscellaneous Requests

SMBmove Preconditions

1
The SMB redirector has sent a val id SIVIB request; both TIDs are for file system subtrees; the

SMB redirector has delete permission under the source TID and create permission under
the destination TID.

The source fi]e(s) or directory must exist.

Files must not be open by other SMB redirectors. If they are, the error <ERRDOS,
ERRbadshare> is retumed.

The SIVIB reclirector has write permission in the destination directory and delete (write)

permission in the source directory.

SMBmove Postcouditions

1

2

If the move succeeded, none of the matching sounce files can be found under the old
names, and the files are now aooessible under the new names.

If a move fails, the ieason for the failure is returned in smb_£-Irfile, along with an error

return No remaining moves are attempted, and 5mb_count reflects the actual number of
files moved.

SMBmove Side Effects

Moves of multiple files to a single regular file result in the loss of all but the last File.

Conventions

~ Access (see Section 4320:) page 3:).

~ Filenamee (see Section 3 Son page 15.

. V\/lldcards (see Section 360m page 17).

X/Open CA E Speci fication ([$2

Page 215 of 535

Chapter 15

Xten ded 2 OProtoco1 Additions and Modifications

This chapter‘ doo.rments the changes and additions to the extended LO dialect that take effect

when the extended 20dialect is negotiated. These SMBs and the SMBlran$2 (refer to Chapter 16

on page 337) oonstitute the additions to the extended LO dialect for the extended 20 dialect.

There is no affect on the SMBnegpror protocol for the extended 20 protocol. Refer‘ to the

extended].Oprotocol description for details.

15.1 SMBsesssetupX Specification

SMBsesssetuP3(D etalled D escriptlon

This extended 2O protoool request is used to further‘ set up the LMX session normallyjust

established via t.he SMBne-gprol request/response. The SMBse5$5elupX request serves one

additional purpose over the activities performed in the extended LOdialect. That purpose is to

allow the SMB redirector system to challenge the LMX server with an encrypuon key. The LMX

server must use the encryption key to reur rn a response. Based on the response val ue. the SMB

redirector can determine whether the LMX server is really the LMX server desired or an
imposter.

- Userldenti fiaation

The actual semantics for this request are governed by the security mode of the LMX server.

SeeSection 33on page 12fora disarssion of these modes.

In user—level security mode. the SMB redirectorwill establish a mapping between a particular

usernarne on the LMX server and a UID which the SMB redirector will use to represent that

user. A password may be sent by the SMB redirector to authenticate that the person using

the SMB redirector is indeed the usernarne to be mapped to. Further. the password may be

encrypted to ensure security.

The LMXserver validates the name and password supplied and. if valid, it generates a UID

O0rTeS])0n(ling to the specified username. That actual UID will be sent in all subsequent

requests by the SMB redirector and used by the LMX server for acoess checks required by
requests.

The value of the UID is relative to an LMXsession: it is possible for the same UID value to

represent two different users on two different LMX sessions on the LMX server: The LMX

server must map the pair of <LMXsession ID. UID> to the different accounts. In sharelevel

security mode. the username and password are not used. The LMX server should use a

unique. reserved aocou nt and corresponding UID to perform aooess checks for all requests.

- SMB redirector Communications Parameters

The LMX server, in its response to the 5MBnegpmr request. has set some parameters for the

00m mu niaation it was expecting from the SMB redirector. In the SMB$essseIupX request, the

SMB redireaor indicates the parameters for the communication it is expecting from the LMX

server. These values may be different: for example. the LMXser'ver may be able t.o receive a

maximum message size of 1G< bytes, while the SMB redirector can only reoeive]}< bytes.

Some LMXservers may need to renegotiate buffer sizes after the SMBsr5ssetrrpX exchange.

This renegotiation is available through the SMBlcon request. but not through SMBlconX.

Protocols for X/Open PC Intaworking: Slv‘[B, Version 2 197

Page 216 of 535

SMBsesssetupX Specification Extended 2OR"otocoi Additions and Modifications

SMBsesssetttpX D eviations

None.

SMBsesssetttpX Field D escri p tio ns

smb:wct
sm b_vwv [0]

sm b_vwv[1]

sm b_vwv [2]

sm b_vwv [3]

smb_vwv [4]

smb_vwv [5 6]

smb_vwv [7]

smb_vwv [8]

smb_vwv [9]
smb_bcc

smb_buF[]

sinb_ coin2

sinb_ ai_‘i2

sinb_ btifsize

sinb_ mpxin ax

sinb_ vc_n uin

sinb_ sesskey

sinb_ apass!an

sinb_ anciyptieii

sinb_ anciyptofl"

sinb_ anmsp []

sinb_ apasswd

Page 217 of 535

 sinb_0&2

smb_bufsize

sinb_mpxmax
sinb_ vc_num

sinb_sesskey

sinb_apassien

sinb_encryptlen

sinb_encryptof
mi‘ n val=O

sinb_apasswd

5mb_0f2

5mb_acti'on
I\/Iinj mum = O

5mb_encresp[]

Description can be found in Section 39on page 2

Description can be found in Section 39on page 2

The size of the largest message the SMB redirector is willing to receive. It

must be true that sinb_buLsizes sinb_inaXxmi (see Section 6 Ion page 55).

The maximum number of requests which the SMB redirector will have

outstanding on a single LMX session. It must be true that sinb_inpxinax 5

sinb_inaXinuX (see Section 6 Ion page 53.

Permits multiple Net.BIOS sessions to be associated with a single LMXsession.

If zero (0, this Ne(.BIOS session is the first or only NetBIOS session associated

with the NetBIOS session being set up. If smb_ vc_nui:n is zero (0 and there are

other previously established NetBIOS session still connected from this SMB

nedirector, it is recommended that the LMXser'ver abort the previous NetBIOS

session and free up the resources held.

A 132-bit integerwhich identifies to which L.MXsession this NetBIOS session is

associated. Ignored when sinb_vc_nuirn is zero (0. This value would be

obtained from the sinb_st-sskey field in the response to the SMBn£-gprot

associated with the L}\/[Xsession this Net.BIOS session is to be made a part of.

Length of the smb_apasswd field.

The size of the encryption key used to challenge the LMXser\/er.

The byte offset from the start of the SMB header to the encryption key.

The LMX server response to the encryption key challenge from the SMB
nedirector.

A character string containing the password, possibly encrypted. Ignored by

an LMXseNer in share—level secunty mode.

X/Open CA E Speci fication ([EB

Extended 2 OProtocoI A dditions and Modifications SMB5esssetupX Specification

smb_aname An ASCIIZ (not type 04) buffer oontaining the username to be associated with

smb_uid and validated with smb_apasswd. Ignored by an LMXserver ir1 share-

level security mode. The length of this field is derived from the diflerence

between smb_boc and 5mb_apa551en.

smb_action A bit—encoded field indicating the results of a successful LI\/lXsession setup. If

bit Ois clear, everything went normally. If bit Ois set, the LMX session was

setup but a default or guest account was used instead of an individual acoount

represented by the username provided. (An LMX server in share—level

security mode would set this bit.)

SMBsesssettrpX ErrorCode Descriptions

 ternal LM}(server error.

semame/password pair was invalid.

e LMXser\/er does not support this many
| Ds in one LMXsession.

o SMBne-gprot request has been issued on
‘s NetBIOS session.

‘s request cannot be chained to th

- uest which precedes it in this message.

verything worked, no problems.

SMBsesssetupX Preconditions

l. The process attempting to secure an LMX session must have established an LMX session

with the LMXserver and negotiated an extended dialect.

2 The usernarne and password must both be valid instances of those types.

3 smb_cam2rnust be a legal chained command.

4 There are many other preoonditions based upon the SM]3s that may be chained. These are

enumerated in the specifimtions for those SMBs.

SMBsesssetupXPostconditions

1. If there are no errors the UID is valid to be used in future SMBs.

2 There are many other postconditions based upon the SMBs that may be chained. These are

enumerated in the specifimtions for these SM]3s.

SMBsesssetupX Side Effects

Conversion of paths to a canonical pathname is controlled by bit 4 of the 5mb_flg flag in the

header of this request (see Section 5 Ion page 37).

Conventions

o Opportunistic Locking (see Section 382on page EC).

o Chaining (see Section 39on page 2.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 1%

Page 218 of 535

SMBse5ssetupX Specification Extended 2OR"otocol Additions and Modifications

The Sl\/[B5 which may be chai new] after SMB5esssetupX are:

SMBchkpath SMBfunique SMBopen $MBse-arch $MBtconX

SMBcopy $MBgetatr SMBopenX $MRsetatr SMBU nlink

$MBcre-are $MBmkdir SMBrename $MRsp)open $MBtrans

$MBdskattr $MBmImew SMBrmdir $MRsp)retq NIL
$MBfl'irst $MBmv

Z1) X/Open CA E Speci fication ([$2

Page 219 of 535

Extended 20ProtocoI Additions and Modifications SMBcopy Specification

152 SMBcopy Specification

SMBcopy Detailed Description

The SMBcopy protocol for the extended 20 dialect is unchanged from the extended].Odia]ect

except that the request may now be used to specify a oopy of entire directory subtrees (tree

copy) on the LMXserver. The tree copy mode is selected by setting bit 50f the smb_flags field in

the SMBcopy request (reference bit 5in SMBcopy Field D escdptioas on page 187). When the

tree oopy option is selected the destination must not be an existing file and the source mode

must be binary. A request with bit 50f the smb_flag5 field set and either bit Oor bit 3set is not

allowed and the LMXserver returns the error code <ERRDOS, ERRbadfile>. \/Wen the tree copy

mode is selected the smb_cct field of the response protocol is undefined.

Protocols for X/Open PC lnterworking: Siv‘[B, Version 2 Z31

Page 220 of 535

SMBfindnciose Specification Extended 2OR"otocoi Additions and Modifications

153 SMBfind nclose Specification

SMBfindnclose D etailed D escri p tion

The 5MBfindnclose pnotocol closes the association between a directory handle returned following

a resource monitor established using an SMBtrans2(FINDNOTTFYFIR5D request to the LMX

sewer and the resulting system dirwtory monitor. This request allows the LMX server to free

any resources held in support of the open handle.

SMBfindnclose Field D escriptions

smb_ handle The directory handle associated with a previous

SMBtran52(TRAN5ACT2_HNDNOTIFYF1R5D.

SMBfii1dnclose Error Code D 6SCI'lp[l0I1S

directory handle.

TID specified in command is invalid.
Other CAE error.

I)erati on sucoeed -.

SMBfindncIose Preconditions

None.

SMBfindncIose Postconditions

If the directory handle was valid, it is made invalid and resources used to support the directory

seamh operations have been freed.

SMBfindncIose Side Effects

None.

Conventions

None.

XE X/Open CA E Speci fication ([$2

Page 221 of 535

Extended 2 OProtocoI A dditions and Modifications SMBfin dclose Specification

154 SMBfind close Specification

SMBfindc[ose D etailed D escri p tion

The SMBfindclose protoool closes the association between a search handle returned following a

successful 5MBtran52(TRANSACT2_FINDFIRST) request to the LMX server and the resulting

system file search. This request allows the LMX server to free any resouroes held in support of

the open handle.

SMBfindc[ose Field D escriptions

smb_ handle The cl i rectory handle associated with a previous

SMBtran52(TRANSA C T2_FINDNOTIPYFIRSD .

SMBfir1dclose Error Code D escrlptions

directory handle.

TID specified in command is invalid.
Other CAE error.

I)erati on succeed -.

SMBfindc[ose Precoodi tions

None.

SMBfindc[ose Postconditions

If the directory handle was valid, it is made invalid and resources used to support the directory

searth operations have been freed.

SMBfindc[ose Side Effects

None.

Conventions

None.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 Z13

Page 222 of 535

SMBuioggofiX Specification Extended 2OR"otocoi Additions and Modifications

155 SMBuloggoffX Specification

SMBu[oggoffX Detailed Description

This protocol is used to logoff the user (identified by the UID value in smb_uid) previously

logged on via the SMB5ess9etupXprotocol .

The LMX server will remove this UID ftom its list of valid UIDs for this LMX session. Any

sutsequent protocol containing this UID (in smb_uid) reoeived on this l_.I\/IX session will be
ietumed with an acoess error.

Another $MBsess5etupX must be sent in order t.o reenstate the user on the LMXsession.

Ll\/lxsession termination also causes the UlDs registered on the l_.l\/IX session to be invalidated.

\/Vnen the LMX sewsion is reestablished, SMBses55etupX request must again be used to validate
each user.

The only valid protocol that can be chai ned in an SMBuloggoflX is $MBsessetupX.

SMBu[og offx Field Descriptions

 smb:wct
sm b_vwv [0]

sm b_vwv[1]

smb_ com2 The seoondany command value.

smb_al_‘i2 Offset from start of the SMB head er to the seoondaty command.

SMBuloggoffX Error Code D escrlp tions

I)eration succeeded.

SMBu [oggoffX Preconditions

None.

SMBu loggoffx Postcood itioos

If the user was previously logged on, his logon identity as specified in the 5MBse3sseiupX is
iemoved, but the LMXsession remains.

XX X/Open CA E Speci fication ([$2

Page 223 of 535

Extended ZOPIOIOCOI Additions and Modifications SMBuioggoflX Specification

SMBu [oggoffX Side Effects

Another SMBse5ssetupX must be sent (.0 log the user into the LI\/IXserver.

Conventions

None.

Protocols for)(/Open PC Interworking: Six/[B, Version 2 Z5

Page 224 of 535

Extended 2OR*otocoI Additions and Modifications

KB X/Open CA E Sped fication ([$2

Page 225 of 535

Chapter 16

Xten deal 2 OProtoco1 SMBtrans2

The 5MB1rans2 protocol is used to extend the original file—shan‘ng protocols with extended

attribute and long filename support. An HD obtained from the new requests may be used in

previously defined SMB requests and vice versa.

The format of enhanced and new commands is defined commencing at the smb_wcl field‘ All

messages will include the standard Sl\/[B header clel“tned in Section 5 1 on page 37. When an

error is enoountered. an Ll\/IX sewer may choose to retum only the header portion of the

response (i.e., smb_ wt: and smb_ bcc both contain zero).

161 SMBtrans2

 161.1 Request Formats

smb_wct _ smb_wct

smb_ vwv [O] smb_lpscn1 smb_ vwv [O] smb_1‘pscnI
smb_vwv[1] smb_ldscn1 smb_vwv[1] smb_1‘dscnI

smb_vwv[2] smb_mprcnI smb_vwv[2] smb_pscnl

smb_ vwv [3 smb_mdrcnI smb_ vwv [3] smb_p5cu‘f

smb_vwv[4] smb_msrcnl smb_vwv[4] smb_pSdl5p

smb_vwv[5] smb_flags smb_vwv[5] smb_dscnl
smb_vwv[67I smb_ilme-out smb_vwv[G smb_d5cu‘f

smb_vwv [8 smb_rsVd1 smb_vwv [7| smb_d5dl5p

smb_vwv[9] smb_p5cn! smb_vwv[8] smb_fid

smb_ vwv[Id smb_p50H smb_ bcc

smb_vwv[11] smb_ dscnt smb_param
smb_ vwv[12 smb_ dsolf sinb_ data

smb_vwv[13] smb_su wcnl

smb_vwv[14»I smb_selup I]
smb_bcc

smb_bul]] smb_name

smb_lpscnt A 16bit unsigned integer oontaining the total number of parameter bytes

being sent. "lhis value may be revised downward in any or all secondary

requests. The smallest value of smb_tpscnt sent during this transaction must

equal the sum of all the 5mb_pscnt fields in all requests sent during the
transaction.

smb_ldscnt A 16bit u nsigned integer containing the total numberofdata bytes being sent‘

This value may be revised downward in any or all seoondary requests. The

smallest value of 5mb_td5cnt sent during this transaction must equal the sum

ofall the 5mb_d5cnt fields in all requests sent during the transaction.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 Z37

Page 226 of 535

SMBtrans2

smb_mprcnr

smb_mdrcnr

smb_msrcnr

smb_flagS

smb_timeaut

smb_r5vd I

smb_pscnt

smb_pso1f

smb_pSdi'5p

smb_dscnr

smb_dsoE

smb_dsdi'5p

smb_fid

Page 227 of 535

Extended 20 Protocol SMBtrans2

A 16bit integer contai ning the maximum number of parameter bytes the SIVIB

tedirector expects to be retumed. The LMXserver may not exceed t.his lirnitin

its response.

A 16bit unsigned integer containing the maximum number of data bytes the

Sl\/[B redirector expects to be returned. The LMX server may not exceed this
limit in its response.

A 16bit integer containing the maximum number of setup fields the Six/[B

redirector expects to be retumed. The LMXserver may not exceed this Iimitin

its response. The value of 3mb_msrcnt must be less than or equal t.o Z5and is

stored in the low—order byte of the field; the high-order byte is reserved and
must be zero.

A 16bit field containing flags altering the behaviour of the request. The flags
are:

Bit 0 If set, the TTD on which this transaction was requested is closed

after the transaction is completed.

Bit 1 If set, the transaction is one way; that is, no final response should

be generated by the LMX server. An interim response, if

required by the flow of the transaction, should be produced

regardless of the setting of this bit.

Bits Z 15 Reserved; 1\/[BZ.

A 12bit integer specifying the number of milliseconds to wait for completion

of the requested operation before causing a timeout. A value of zero (Q

means no delay (that is, do not queue the request). A value of— lindicates to

wait forever. See Section 3 11on page E

A 16bit reserved field which must be zero.

A 16bit u nsigned integer indicating the number of parameter bytes being sent

in this particular request; i .e., the size of smb_param.

A 16bit integer giving the olTset., in bytes, from the start of the SMB header to

the beginning of the 5mb_param field. This permits 5mb_param to be preceded

in the request by pad bytes to result in better alignment of the bu lfer.

A 16bit integer giving the absolute displacement amongst all parameter bytes

for this transaction for the parameter bytes contained in this request. This is

used by the LMX server to correctly assemble all the parameter bytes received

even if the requests were received out of sequence.

A 16bit unsigned integer indicating the number of data bytes being sent in

this particular request; i .e., the size of smb_data.

A 16 bit integer giving the olfset, in bytes, from the start of the SMB header to

the beginning of the 5mb_dara field. This permits smb_data to be preceded in

the request by pad bytes t.o result i n better alignment of the buffer.

A 16bit integer giving the displacement amongst all data bytes for this

transaction of the data bytes contained in this request. This is used by the

I_.l\/1X server to correctly assemble all the data bytes received even if the

requests were received out of sequence.

A 16bit integer containing the FID for file-based requests. Otherwise the
valueisOtfl1°f.

X/Open CAE Sped fication (1922

Extended 2 0 Protocol $MBtran52

smb_5uwcnr

smb_5erup []

smb_bcc

smb_name

smb_param

smb_data

Page 228 of 535

SMBtran52

A 16bit integer containing the number of setup 16bit fields sent in the

primary request. This value must be less than or equal to Z5and is stored in

the low—order byte of the 16bit field; the high—order value is reseived and
must be zero.

An array of 16bit fields of setup data‘

Contains the total size in bytes of the data to follow, including any pad bytes

added for alignment. The length of this array is given by 5mb_swcnt and may
bezero.

A null—teiminated ASCIIZ string containing the transaction name. No pad

bytes are permiued before this field; it must immediately follow the 5mb_bcc
field.

An array of bytes beginning at 5mb_p5ofl” bytes into the request and containing

5mb_p5cnt bytes. Padding may precede this field, as 5mb_p5disp points to its

beginning; for the same reason, smb_param is not required to precede 5mb_dara

in each message.

An array of bytes beginning at 5mb_d5ofl” bytes into the request and containing

5mb_d5cnt bytes. Padding may precede this field, as 5mb_d5disp points to its

beginning; for the same reason, this field is not always required to follow
5mb_param.

161.2 Response Form at

smb_com SMBtran52

smb_ wcr Drsm b_5u wcn

smb_ vwv [C] Smb_ tprcn 1‘
smb_vwv[1] smb_tdrcnt

smb_ vwv [2] Smb_rsvd

smb_vwv[3] smb_prcnr

smb_ vwv [4] Smb_pr0i’f

smb_vwv[E] smb_prdi5p
smb_vwv[G smb_drcnr

smb_ vwv [7] smb_ droif

smb_vwv [8] smb_drdisp
smb_vwv[E] smb_5uwcnr

smb_vwv[10] smb_5ei‘up
smb_ bcc

smb_param
smb_data

The meaning of the parameters is identical to (he definitions above with the parameter names

changed; fo r example, smb_ tprcnt is the total number of parameter bytes being retu med , and is

used in the same way as 5mb_ tpscnz in the request messages.

As was the case in the request messages, the orden‘ ng of 5mb_param and smb_ data is not required.

since smb_prdisp and smb_drdisp are su ffici ent to locate each correctly.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 ZB

SMBtrans2 Extended 20 Protocol SMBtrans2

161.3 Tran section How

A small set of rules governs the flow of the various protocol elements making up a transaction,

including which request or response type to send at any particular time.

1
The SMB redirector sends the first (primary) request which identifies the total bytes

(parameters and data) which are to be sent., and contains the setup 16bit fields, and as

many of the parameter and data bytes as will fit in the maximum negotiated buffer size.

This request also identifies the maximum number of bytes (setup, parameters and data) the

LMX server may return when the transaction is completed. The parameter bytes are

immediately followed by the data bytes (the length fields identify the break point). If all

the bytes fit in the single bulfer. skip to step 4.

The LMX server responds with a single interim response meaning O.K., send the

remainder of the bytes, or (if error response) terminate the transaction.

The SMB redirector then sends a secondary request full of bytes to the LMX server. This

step is repeated until all bytes have been delivered t.o the l_.MXserver.

The l_.MXserver sets up and performs the transaction with the information provided.

Upon completion of the transaction, if bit lol 5mb_flag was not set in the primary request,

the LI\/lXserver sends back up to the number of parameter and data bytes requested (or as

many as will fit in the negotiated bulfer size). This step is repeat.ed until all bytes requested

have been returned. Fewer than the requested number of bytes (from smb_mdrcnt and

5mb_ mprcnt) may be returned .

The flow of a transaction when the request parameters and data do not all fit in a single buffer is:

SI\/[B redirector —> SMBtran52 request ((1 ata) >9 LMXserver

SI\/[B redirector <—< OK send remaini ng data <— LMXserver

SI\/[B redirector —> SMBtran52secondary request 1 (data) >—> LMXserver

SI\/[B redirector —> SMBtran52secondary request 2 (data) >—> LMXserver

SI\/[B redirector —> SMBtran52secondary request n (data) >—> LMXserver

(LMXserver sets u p and performs the
SMBtran53

SI\/[B redirector <—< SMBtran52 response 1 (data) <— LMXserver

SI\/[B redirector <—< SMBtran52 response 2 (data) <— LMXserver

SI\/[B redirector <—< SMBtran52 response 11 (data) <— LMXserver

The flow for the Transaction protocol when the request parameters and data do all fit in a single
buffer is:

SI\/[B redirector —> SMBtran52 request ((1 ata) >9 LMXserver

(l_.MXserver sets up and performs the
SMBtran53

SI\/[B redirector <—< SMBtran52 response 1 (data) <— LMXserver

(only one if all data fit in bulfer)
SI\/[B redirector <—< SMBtran52 response 2 (data) <— LMXserver

SI\/[B redirector <—< SMBtran52 response 11 (data) <— LMXserver

Note that the primary request through to the final response make up the complete protocol:

thus, the TID. PID, UID and MID are expected to remain constant and can be used by both the

LI\/lXserver and Sl\/TB redirector to route the individual messages of the protocol to the correct

process. Also, it is the responsibility of the LMX server to assemble the multiple requests into

the final complete request to execute. Similarly, the SMB redirector will assemble the response
sequence.

210 X/Open CA E Speci fication ([$2

Page 229 of 535

Extended 2 0 Protocol $MBtran52 SMBtran52

The simplest form of an SMBlrans2is to send a single primary request and (optionally) reoeive a

single, final response.

161.4 Service

The SMBtrans2pretocol allows transfer of parameter and data blocks greater than the maximum

negotiated buffer size between the SIVIB redirec.tor and the LMXser\/er.

The 5MBrran52 oomrnand soope includes (but is not limited to) IOCTL device requests and file

system requests which require t.he transfer of an extended attribute list.

The 5MBrran52 protocol is used to transfer a request for any of a set of supported functions or1

the LMX server which may require the transfer of large data blocks. The function requested is

identified by the first 16bit field in the SMBr‘rans2 5mb_5etup[] field. Other function—specific

information may follow the function identifier in the 5mb_5er‘up[] or in the 5mb_param fields. The

functions supported are not defined by the protocol, but by SIVIB redirector and LMX server

implementations. The protocol simply provides a means of delivering them and retrieving the
results.

The number of bytes needed in order to perform the SMBr‘rans2 request may be more than will fit

in the negotiated buffer size.

At the time of the request, the SMB redirector knows the number of parameter and data bytes

expected to be sent and passes this information to the Llvlxserver in the primary request fields

smb_r‘pscnt and 5mb_td5cnr‘. This may be reduced by lowering the total number of bytes expected

(5mb_tpscnr and/or smb_r‘dscnr) in the secondary request.

Thus when the amount of parameter bytes received (the total of each 5mb_pscm‘) equals the total

amount of parameter bytes expected (smallest 5mb_tp5cnt), then the LMX server has received all

the parameter bytes.

Likewise, when the amount of data bytes received (total of each 5mb_dscnt) equals the total

amount of data bytes expected (smallest smb_tdscnt), then the LMXse1yer has received all the

data bytes.

The parameter bytes should normally be sent first, followed by the data bytes. However, the

LMXserver knows where each begins and ends in each bu flfer by the offset fields (smb_p5ofl‘ and

smb_d5o)?) and the length fields (smb_pscnr and smb_dscnt). The displaoement of the bytes is also

known (5mb_p5di5p and smb_dsdi5p). Thus the L.MXser\rer is able to reassemble the parameter

and data bytes regardless of the order sent by the SMB redirector.

Ifall parameter bytes and data bytes fit into a single buffer, then no secondary request is sent.

The Sl\/[B redirector knows the maximum amount of data and parameter bytes the LMX server

may return from smb_mprcnt and 5mb_mdrcnt of the request. The LMX server informs the SMB

redirector of the actual amounts being returned in each bulfer of the response in the fields

smb_r‘prcnt and 5mb_r‘drcn 1‘.

The LMX server may reduce the expected bytes by lowering the total number of bytes expected

(5mb_rprcnr and /or 5mb_r‘drcn r) in any response.

When the amount of parameter bytes received (total of each 5mb_prcnr) equals the total amount

of parameter bytes expected (smallest 5mb_tprcm‘), then the SMB redirector‘ has received all the

parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_drcnt) equals the total

amount of data bytes expected (smallest smb_tdrcm‘), then the SMB redirector has reoeived all the

data bytes.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 211

Page 230 of 535

SMBtrans2

161.5

I6 1.51

161.52

161.53

212

Extended 20 Protocol SMBtrans2

The parameter bytes should normally be retumed first. followed by the data bytes. However, the

SMB redirector knows where each begins and ends in each buffer by the offset fields (smb_proE

and smb_droH) and the length fields (smb_prcnt and smb_drcn t). The displacement of the bytes

relative to the start of each response is also known (5mb_prdi5p and smb_drdi5p). Thus the SIVIB

redirector is able to reassemble the parameter and data bytes regardless of the order the
information is retu rned.

Extend ed A ttribute

An overview of EAs was given in Section 43 7on page 3]. The extended ZOSMB dialect allows

for the creation, viewing and manipulation of EAs. Support for EAs is optional and it is possible

for an LMX server to negotiate the extended 20 protocol dialect and not support EAs. In this

case, a null EA list is provided on all 5MBtran52 requests that return EAs and the error
<ERRDO6, ERROR_EA S_NOT_SUPPORTED> is r'et1_r med .

A null EA listis a zeroed EEA structure (defined below), or ir1 other words, four zero bytes.

Errors Encountered When Creating EAS

An LMX server is not required to support EAs when the extended 20dialect is selected. If the

L.MXser\/er‘ does not support EAs, the error <ERRDOS. ERROR_EAS_NOT_SUPPORT_ED> will

be returned when the SMB redirector attempts to set EAs on a file and a null EA list will be

retumed when EAs are requested by the SMB reclirector. In the case where EAs are supported,

when the LMXse1\/er is attempting to store EAs sent during the creation of the file and it is not

possible to store the EAs due to memory restrictions or file system space, the error oode

<ERRSRV, ERRerr'or> or the error code <ERRSRV, ERRnoresour'ces> may be returned. In this
case, the creation of the filewill fail and no EID will be returned to the SMB redirector.

Encapsulation ofEA5 in the SMB Protocol

There are two forms of structures that may be returned when passing EAs in the SMB protocol.
The first is the full extended attribute structure. or FEA st.ruc.ture, and the second is a shorter

form for getting the extended attribute names available. or the GEA structure. The GEA

st.ruc.ture is used only in SMB requests. FEA structures are used in both SMB requests and
responses.

Extended attributes are carried in the SMB requests and responses in these FEA and GEA

st.ruc.tures. To contain multiple EAs a “list" structure is used. Both the FEA and GEA structures

are encapsulated in this list structure. The list structure is a Ebit integer size value followed by

the FEA or GEA structure. This size value includes its own field length and is the total length of
all contai ned structures in the list.

FEA Structure

The FEA structure contains the values for extended attributes (EAs) on a file. An extended

attribute is a "name"."value" pair where the name is an ASCIIZ string and the value is an

unformatted binary area. It is up to the user application to impose format on the value

information. This structure is used t.o carry EAs inside the SMB protocol. When the text below

references an EA listinside the protocol, this is the structure containing the user—defined EA.

X/Open CA E Speci fication ([$2

Page 231 of 535

Extended 2 0 Protocol $MBtran52 SMBtran52

The "name","value" pajris represented by the following stiuctu re:

 single byte that specifies EA flags. The only t

defined at this time is F'E,A_NEEDEA which is equal to

O<&) When set l.O 1. the FEA_NEEDEA flag indicates
that EAs are needed on the file.

A single byte that specifies the length of the EA name

not including the nu ll—tenninati rig character.

A 16bit unsigned integer specifying the length of the EA
value.

Zerotenninated siting of cbNameLen+l bytes. This

data immediately follows the cbValueLen field.

Variable number of EA value bytfi. This data
immediatelv follows the cbName field.

The encapsulated FEA list as it is stored in the SMB protocol is illustrated below.

PEA Length

As can beseen above, a null FEA list has a length value of 8fo]|owed by a zero flags l"1eld,a zero

name length and a zero value length.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 2 13

Page 232 of 535

SMBtrans2 Extended 20 Protocol SMBtrans2

16 1.54 GEA Structure

The GEA structure contains the names for EAS on a file. An EA name is an ASCIIZ 5tn' ng.

The EA name is represented b the followin structure:

A single byte that speci es the length of the

not inciudi ng the null-termi nating character.

The byte location of the name. This name inn
follows the cbName-Len field.

The enmpsulated GEA list is shown below as it is stored in the SM3 protoool .

GEA Length (E-bit integer)

Name Length

8'i—
Nu1l—tenninateci name

 Nu1l—tenninatecl name

161.6 Information Levels

Many of the extended 2O protocols have an information level passed as an argument. This

information level is descnbed here. The information level controls the amount and type of
information on a file that is returned to the SMB redirector. The information level has the

following valid values and meanings:

1 DOScompatib|e. This returns information in a manner consistant with DOS or the other

dialect levels. Specifimlly, no extended attribute information is returned to the SMB
redirector.

2 This value indicates that the size of the oornplete extended attribute list (that is. name and

value pair) is to be retu med to the SMB redirector in an EA encapsulating structu re, but the

FEA list is not included. This is performed by induding a null PEA list (that is. all sizes

zero) in the smb_ data field of ihe response.

3 This indicates that the complete collection of FEA structures contained in an EA

encapsulating structure is to be returned to the SMB redirector. The FEA structures

returned are stored in the smb_daIa field of the SMB response.

161.7 Defined SMBtrans2 Protocols

This section specifies the defines used by the SMBtran52protoo0l.

The following function codes are transferred in 5mb_5etup [Q and are used by the LMX server to

identify the specific function required.

214 X/Open CA E Speci fication ([$2

Page 233 of 535

Extended 2 0 Protocol $MBtran52

Manjf

TRANS C 2_ Cx(I)

TRANSACT2_FINDFlRST C‘xO1

TRANSA CT2_FINDNEXT O(C2

TRANSA CT2_QFSINFO O(O3

TRANSA CT2_SETFSINFO O(O4

TRANSA CT2_ QPATHINFO O(()3

TRANSA CT2_SETPATHINFO CXCB

TRANSA CT2_ QFILEINFO CXO7

TRANSA CT2_SETFILEINFO O(C8

TRANSA CT2_FINDNOTYFYFIRS T 0(0)

TRANSA CT2_F1NDNOTYFYNEXT O<0‘

TRANSACT2_MKDIR O((IJ

Protocols for X/Open PC Interworking: SIv‘[B, Version 2

Page 234 of 535

SMBtran52

en or cneate a e.

Find the first file in a directoiy.

Conunue search ofa dinectoiy.

Queiy information about a file systein

Set information on a file system.

Query information about a special file or

directoiy.

Set information on a special file or

directory.

Query information about a file.
Set Information on a file.

Commence moni toring changes on a file

or directoiy.

Continue monjtori ng changes on a file

or directoiy.

Create a di rectoly.

215

TRANSA CT2_OPEN Extended 20 Protocol SMBtrans2

162 TRANSACT2_0PEN

The function code TRANSA CT2_OPEN in smb_serup[O] in the primary 5MBrran52 requests

identifies a request to open or create a file with extended attributes.

Primary Request Fo rm at

smb_wct Value = 15

smb_rpscnt Total number of parameter bytes being sent.

5mb_rdscnt Total size of extended attribu te list.

5mb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = O No data returned.

smb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

smb_n'meaur Maximum millimnds to wait for resource to open.

smb_r5vdl Reserved. Must be zero.

smb_p5cnl Value = tpscnt. Parameters must be in primary request.

smb_psofl‘ Offset from the start of an SIvfl3 header to the parameter bytes.

smb_d5cnl Number of data bytes being sent in this bu ffer.

5mb_d5ofl° Offset from the start of an SMB header to the data bytes.

smb_5uwcnt Value = 1

smb_5etUPlOl Value = TRANSACT2_OPEN.

smb_bcc Total bytes followingincluding pad bytes.

smb_param[] The parameter block for the the "IRANSA CT2_OPEN function is the open-

specific information in the following format:

216 X/Open CA E Sped fication ([E

Page 235 of 535

Extended 2 0 Protocol SMBtran52

5””-P‘“"’lO 1| °P‘”’-E352 BitO If set additional

smb_ data []

5mb_param [23] opm_mode

smb_param [45] open_sattr

sm b_param [6 7] open_at'tr

smb_param [8 11] open_tlme

$mb_param[12- 13] opa1_ofim

smb_param[14 17] opm_s1'ze

smb_param[1821] opai_rsvd[5]

TRANSA CT2_ OPEN

return

information.

Bit 1 If set, set single user total file

lock (ifonly access).

Bit 2 If set, the LMX sewer should

notify the SMB redirector on

any action which can modify
the file (SMBunltnk, SMB5etatr,

.SMBmv, etc.). If not set. the

Ll\/IX sewer need only notify
the SMB redirectcr on another

open request.

Bit 3 Ifset. return total length of EAs
for the file.

File open mode. Reference Section 535

on page 44
The set of attributes that the File must

have in order to be found while

withing to see if it exists. Regardless
of the contents of this field, normal files

always match.

File attributes (for cneate). Reference

Section 533on page 43
Create Lime. Reference Section 53 1 on

page 43

Open function.

Bytes to reserve on create or truncate.

This field is advisory only.
Resewed. Must be zero.

5mb_param [223] opai_pat}1name[] File pathname.

FEAI_JSTstiuctu re for the file opened.

Secondary Request Format

There may be zero or more of these.

5111 b_ wct

smb_ tpscnt

smb_ tdscnt

smb_p5cnt

smb_psatl"

smb_p3disp

smb_ dscnt

smb_ dsatf‘

Value = 9

Total number of parameter bytes being sent.

Total number ofdata bytes being sent.

Value = 0 All parameters were in the primary request.

Value = O No parameters in secondary request.

Value = O No parameters in secondary request.

Number ofdata bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes

Protocols for)(/Open PC Interworking: Slv[B, Version 2

Page 236 of 535

217

TRANSA CT2_OPEN

218

smb_dsdi5p

smb_fld

smb_bcc

smb_data[]

Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_prcnt

smb_proE

smb_prdi5p

smb_drcnt

smb_droE

smb_drdi5p

smb_5uwcnt

smb_bcc

smb_param []

Page 237 of 535

Extended 20 Protocol SMBtrans2

Byte displacement for these data bytes.

Value = O<HI'f. No FID in this request.

Total bytes followingincluding pad bytes.

Data bytes.

Value: 10

Total parameter length retu ned.

Value = O No data bytes.

Number of parameter bytes returned in this bulfer.

Offset from the start of ar1 SMB header to the parameter bytes.

Val ue = 0 Byte displaoement for these parameter by tee

Value = O No data bytes.

Value = O No data bytes

Value = O No data bytes

Value = O No setup retum fields.

Total bytes followingincluding pad bytes.

The parameter block for the the TRA NSACT2_OPEN function response is the

open—specific retum infonnaljon in the following Format:

X/Open CA E Sped fication ([EB

Extended 2 0 Protocol $MBtran52

smb_param [4 7]

sm b_param [8 1 1] ——open_si2e

smb_param [12- 13] --open_access

smb_param I 14 15] +open_ type

smb_param| 16 17] +open_srate

smb_param| 18 19] open_acu’an

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Page 238 of 535

— open_ time

TRANSA CT2_ OPEN

fi smb_param O 1 open_ * .

smb_param|2—3] -—open_atin'bute Attributes of file or device. Reference

Section 53Z3on page 43
Last modification time. Reference

Section 53 lon page 43

f2bit integer specifying the current file
size.

Access permissions actually allowed.

Reference Secti on 53 7on page 46

File type. Reference Section 536 on

page 45

State of IPC device (for example, named

pipe). Reference X/Open CAE

Specification, IPC Mechanisms for SMB.

gt 05! ng. Egro (Q
indicates that reads/writes

block if no data is

available; lindicates that
reads/writes return

immediately if no data is
available.

Bit 14 Endpoint. Zero (C)
indicates SMB redirector

end of a named pipe; 1
indicates the LMX sewer

end of a named pipe.

Bits 1011 Type of named pipe. (1)

indicates the named pipe

is a stream mode pipe; O1

indicates the named pipe

is a message mode pipe.

Read Mode. CD indicates

to read the named pipe as
a stream mode named

pipe; 01 indicates to read

due named pipe as a

masage mode named

pipe.
Action taken.

Bit 15 Lock Status. Set true only

if an opportunistic lock

was requested by the SMB

redi rector and was granted

by the LMX sewer. This

bit should be false (C) if no

lock was requested. the

Bits 89

219

TRANSA CT2_OPEN

Page 239 of 535

Extended 2OProtocoI SMBtrans2

lock could not be granted,
or the LMX sewer does

not support opportunistic

locking.

Open Action. The LMX
sewer should set this to

match the requested action
from the 5mb_ofun field:

1 The file existed and

was opened.

2 The file did not exist

and was therefore

cieated.

3 The file existed and

was (in nmted.

A unique number for this instance of the
file. Similar to a file node number. "Unis

value is informational only. If the LMX

sewer does not support the value it may
be set to zero.

16bit integer offset into FEALIST data
of first error which ocouried while

setting the extended attributes.

16bit integer specifying the total EA

length For the opened file.

BitsOl

smb_param IZJZSI open_fi!eid

sm b_param [24 25] open_offermr

smb_param [12 13] ++open_EA length

V\/here:

+ items relumed only if bit Oof open_flag52is set in primary request

++ items relumed only if bit 30f open_flag52is set in primary request

X/Open CA E Sped fication ([EB

Extended 2 OProtocoI $MBtran52 TRANSACT2_FINDFIRST

163 TRANSACT2_FINDFlRST

The function code TRANSACT2_F1NDFlRSTin 5mb_5etup[O] in the primary SMBtrans2 request

identifies a request to find the first file that matches the specified file speci fimtion.

Primary Request Format

5mb_wct Value = 15

5mb_tp5cnt Total number of parameter bytes being sent.

5mb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

5mb_mdn:nt Maximum return data length.

5mb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

5mb_timeout Value = 0 Not used for find fust.

5mb_rsvdl Reserved. Must be zero.

5mb_pscnt Value = 5mb_tpscnt. All parameters must be in primary request.

smb_pso1f Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dso1f Offset from the start of an SMB header to the data bytes.

smb_5uwcnt Value= 1

smb_5etUPl0l Value = TRANSACT2_FINDFIR$T.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRAN$ACT2_F1NDFlRST function is the find

first—spedfic information in the following format:

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 $1

Page 240 of 535

TRANSA CT2_1-TINDFIRST Extended 20 Protocol SMBt1‘zm52

smb_param l0 ll gd!S(_At(r1'!u1‘e !ard1 attribute.
smb_param [213] findfirst_Sr2u-chCount Number of entries to Find.

smb_param [34] findfirsl_flags Find flags:

Bit O Ifset, close Search after this

request.

Bit l Ifset, close search ifend of
search reached.

Bit 2 If set. the SMB redirector

requires resume key for

each entry found.

smb_param [5 6] fin dfirst_FileInfoLeVe! Seardi level .

smb_param ['7- Id fin dfirst_1svd Reserved. Must be zero.

smb_param [11] fin dfirst_FileName[] Beginning of name of the File to find.

5mb_param [] 5mb_data I] Additional Fi I e] nfobevel —depend ent
match information For a search

requiring extended at.tt1’bute

matching the data buffer contains
the FEALIST data for the search

This location follows after the

find!irst_FfleName field .

Secondary ReqLtestFormat

There may be zero or more of these.

smb_wcr Value = 9

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_p5cnt Value = C) All paramet.ers in primary request.

smb_psoJf Value = O No parameters in secondary request.

smb_psdisp Value = O No parameters in secondary request.

smb_dscnt Number ofdata bytes being sent in this buffer.

smb_d5oE Offset froth the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Value = O<flTI". N0 FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_fid Value = Ckflff. N0 FID in this request.

smb_data[] Data bytes (size = value of smb_dscm‘).

Z X/Open CAE Speci fication ([922

Page 241 of 535

Extended 2 OH‘otocoI SMBtran52 TRANSA CT2_FINDFIRST

Firstllesponse Format

smb_wcr‘ Value = 10

smb_tprcnt Value = 10

smb_rdrcnt Total length of retum data buffer.

smb_r5vd Reserved. Must be zero.

smb_prcnr Number of parameter bytes returned in this buffer.

smb_proff Offset from the start of an SMB header to the parameter bytes.

smb_prdr'sp Value = 0 Byte displaoement for parameter bytes.

smb_drcnr Number of data bytes returned in this bulfer.

smb_dmfi Offset from the start of an SMB header to the data bytes.

smb_drdr'5p Byte displacement for these data bytes.

smb_5uwcnt Value = ONO setup retu rn fields.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRANSA CT2_F1NDFIRSTfuncti on response is the

find first—speci frc return information in the following format:

5mb_param d st_ r'r_ an e irectory search handle.

5mb_param [O] l‘indfir5t_searc}rcormt Number of matchj ng entries fou nd.

smb_param [O] l‘indfirst_eo5 End of search indicator.

5mb_param[O] l‘Indfirst_olTerror Error‘ offset if EA error.

5mb_param [O] l‘Indfirst_lastnamc Ifzero, the LMX sewer does not require
findnext_FileI\’amc[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found

entry retu med .

5mb_data[] Return data bytes (size = value of smb_dscnt). The data block contains the

|eve|—dependent information about the matdles found in the search. If bit Zin

the findfirst_flags is set, each retumed file descriptor block will be proceeded

by a four—byte resume key.

Subseqtrer1tResponse Format

smb_wct Value = 10

smb_tprcnt Value = 8

smb_tdrcnt Total length of return data buffer‘.

5mb_prcnt Value = O

5mb_pmif Value = Q

5mb_prdr'5p Value = Q

5mb_drcnt Number ofdata bytes returned in this bulfer.

smb_dmtf Offset from the start of an SMB header to the data bytes.

Protocols for)(/Open PC lnterworking: Slv‘[B, Version 2 13

Page 242 of 535

TRANSA CT2_FINDFIRST Extended 20 Protocol SMBtrans2

smb_drdi5p Byte displacement for these data bytes.

smb_5uwcnr Value = O No setup retum fields.

smb_bcc Total bytes followinginclucling pad bytes.

smb_data[] Return data bytes (size = smb_dscnr). The data block contains the level-
dependent information about the matches found in the search. If bit 2in the

findfir5f_flags is set, each retumed file descriptor block will be proceeded by a

fou r—byte resume key.

E4 X/Open CA E Sped fication ([$2

Page 243 of 535

Extended 2 0 Protocol $MBtran52 TRANSA CT2_PINDNEXT

164 TRANSACT2_FINDN EXT

The function code TRAN$ACT2_F1NDNEXTin 5mb_5etup[O] in the primary SMBtrans2 request

identifies a request to oonti nue a file Search started by a TRAN$ACT2_F1NDFIRSTseanch.

Primary Request Format

5mb_wct Value= 15

5mb_tp5cnt Total number of parameter bytes being sent.

5mb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

5mb_mdn:nt Maximum return data length.

5mb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

5mb_timeout Value = 0 Not used for End next.

5mb_rsvdl Reserved. Must be zero.

5mb_pscnt Value = 5mb_tpscnt. All parameteis must be in primary request.

smb_pso1f Offset from the start of ar1 SMB header to the paiameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dso1f Offset from the start of ar1 SMB header to the data bytes.

smb_5uwcnt Value= 1

smb_5etUPl0l Value = TRANSACT2_FINDNEXT

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRAN$ACT2_F1NDNEXT function is the find

next—speci fic information in the following format:

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 K

Page 244 of 535

TRANSA CT2_1-TINDNEXT

Locatio

$mb_pa.ra.m 1- art_

smb_param I 3 4]

franc

Extended 20 Protocol SMBtrans2

inectoty seatch handle.
l‘indnert_Searc}1Count Number ofentfies to Find.

smb_param|56] l‘indnert_Ffle1nfoI_.eve[Searchlevel.

smb_param|7— 10] l‘indnert_RmumeKey Server reserved resume key.

smb_param| 11- 12} l‘indnert_flags

smb_param[13] findnert_FfleName[]

Find flags:

Bit O lfset, close seatth after this

request.

Bit 1 Ifset, close search if end of
search reached.

Bit2 If set, the SMB redirector

requires resume key for

each entry found. If clear,
rewind after seatth.

Beginning of name of File to resume
search.

Additional FileIrLfoLevel—dependent
match information. For a seamh

requiring extended attribute

matching the data buffer oontains
the FEALIST data for the seach.

smb_param [] smb_dara []

Secondary Req LtestFormat

There may be zero or more of these.

smb_wct Value = 9

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_p5cnt Value = 0 All parameters in primary request.

smb_p5ofi Value = O N0 parameters in secondary request.

smb_pSdisp Value = O N0 parameters in secondary request.

smb_d5cnt Number of data bytes being sent in this bu tfer.

smb_d5o1f Offset froth the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Search handle retumed from TRANSACT2_FINDFIRST

smb_bcc Total bytes following including pad bytes.

smb_data [] Data bytes (size = smb_dscn 2‘).

Page 245 of 535

X/Open CAE Speci fication ([EB

Extended 2OProtocoI SMBtran52 TRANSA CT2_PINDNEXT

First Response Format

smb_wct Value = 10

smb_rprcnt Value = 6

smb_tdrcnt Total length of return data buffer.

smb_r5vd Reserved. Must be zero.

smb_prcnt Number of parameter bytes returned in this bu lfer.

smb_pro1? Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdisp Value = 0 Byte displaoement for parameter bytes.

smb_drcnr Number of data bytes retumed in this buffer.

smb_drolT Offset from the start of ar1 SMB header to the data bytes.

smb_drdi'5p Byte displacement for these data bytes.

smb_5uwcnt Value = O No setup return fields.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRANSA CT2_F1NDNEXTfu notion response is the

find next-specific netum information in the following format:

% smb_param dncx't_5ear count umber of match] ng en tn‘ es fou nd.

5mb_param[1] findneXr_eos End of search indicator.

5mb_pamm[Z findne!rr_ofl'error Error offset if EA error.

5mb_pamm[3 findfir5t_lasmame If zero, LMX server does not require
findneXt_FileName[] in order to continue

search. If not zero, offset from start of
ietumed data to filename of last found

entry retu med .

smb_param[4] smb_data[] Return data bytes (size = 5mb_d5cnr).
The data block contains the level-

dependem information about the
matches found in the search. If bit 2in

the findfirst_flag5 is set, each returned file

descriptor block will be proceeded by a

four-byte resume key.

SubsequentRespoose Format

smb_wct Value = 10

smb_tprcnt Value = 6

smb_tdrcnr Total length of return data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = O

smb_profl‘ Val ue = O

smb_prdisp Value = 0

Protocols for X/Open PC lntaworking: Siv‘[B, Version 2 37

Page 246 of 535

TRANSA CT2_FINDNEXT Extended 20 Protocol SMBtrans2

smb_drcnt Number of data bytes retumed in this bufler,

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displ aoement for these data bytes.

smb_5uwcnt Value = O No setup retum fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Return data bytm (size = smb_dscnt). The data block contains the level-
dependent information about the matches found in the search. If bit 2in the

findfir5t_flags is set, each retumed file descriptor block will be proceeded by a

fou r—byte resume key.

X X/Open CA E Sped fication ([$2

Page 247 of 535

Extended 2OProtocoI $MBtran52 TRANSA CT2_ QFSINFO

165 TRANSACT2_QFSINFO

The function oode TRANSACT2_Ql-TSINFO in 5mb_5etup[O] in the primary $MBtran52 requests

identifies a request to query information about a file system.

Primary Request Format

5mb_wct Value = 15

5mb_tp5cnt Total number of parameter bytes being sent.

5mb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

5mb_mdn:nt Maximum return data length.

5mb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

5mb_timeout Value = 0 Not used for SMBtrans2(TRANSACT2_QFSINFO).

5mb_rsvdl Reserved. Must be zero.

5mb_p5cnt Value = 2 Parameters are in primary request.

5mb_p5o1f Offset from the start of ar1 SMB header to the parameter bytes.

5mb_d5cnt Value = O No data sent with SA/IBtrans2(TRA NSACT2_ QFSINFO).

5mb_d5oE Value = O No data sent with qfsi nfo.

5mb_5uwcnt Value = 1

5mb_5etUPl0l Value = TRANSA CT2_QFSINFO.

5mb_bcc Total bytes following including pad bytes.

5mb_param [] The parameter block for the TRANSACT2_QFSINFO function is the (]fSirtf0—

specific information in the following format:

Location Name l\/Ieanjn

DosQF‘ileInfo in the Microsoft OS/2

Programmers Reference, Volume 4

Response Format

smb_wct Value = 10

smb_tprcnt Value = O

smb_tdrcnt Total length of mm in data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = O No return parameter bytes for TRANSA CT2_QFSINFO.

smb_pmIf Offset from the start of an SMB header to the parameter bytes.

smb_prd1'sp Value = 0 Byte displacement for parameter bytes.

smb_drcnt Number ofdata bytes retumed in this bulfer.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 E

Page 248 of 535

TRANSA CT2_QF.S'INFO Extended 20 Protocol SMBtJ‘an52

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displacement for these data bytes.

smb_5uwcnt Value = O No setup retum fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Return data bytes (size = smb_dscnr). The data block contains the level-

dependent information about the file system.

Z3) X/Open CA E Sped fication ([$2

Page 249 of 535

Extended 2 0 Protocol 5MBtran52 TRA NSA CT2_SETF5INFO

166 TRA NSA CT2_S ETFSIN F0

The function oode TRAN$ACT2_SETF$INFO in smb_5etup[O] in the primary SMBtrans2 requests

identifies a request to set information for a file system subtree.

Primary Request Format

5mb_wct Value = 15

smb_tpscnt Total number of parameter bytes being sent.

smb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

5mb_mdrcnt Value = O No data returned.

5mb_msrcnt Value = O No setup fields to return.

smb_flags Bit Oand bit lmust be zero.

smb_timeaut Value = 0 Not used for setfsinfo.

smb_rsvdI Reserved. Must be zero.

smb_pscnt Value = AL All parameters must be in primary request.

smb_p5ofl’ Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent ir1 this bu ffer.

smb_dsoE Offset from the start of ar1 SMB header to the data bytes.

smb_suwcnt Value = 1

smb_5etUPlO] Value = TRANSACT2_SETFSlNFO.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRA NSACT2_SETFSINFO function is the

setfs1'nfo—spetific information in the following format:

Location Name Meani n

DosQP||eTnfo in the Microsoft OS/2

Progmmmefs Reference, Volume 4

5mb_data[] Level —d epenclent file system infonnaljon.

Secondary Req uest Format

There may be zero or more of these.

smb_wct Value = 9

smb_tpscnt Total number of parameter bytes being sent.

5mb_tdscnt Total number ofdata bytes being sent.

5mb_pscnt Value = 0 All parameters in primary request.

5mb_psalf Value = O No parameters in secondary request.

smb_psdi5p Value = O No parameters in seoondary request.

Protocols for X/Open PC lnterworki ng: SMB, Version 2 231

Page 250 of 535

TRANSA CT2_Sl-ETFSINFO Extended 20 Protocol SMBtJ‘an52

smb_d5cnt Number of data bytes being sent in this bu fl.°er.

smb_d5o1f Offset from the start of ar1 SMB header to the data bytes.

smb_d5di5p Byte displacement for these data bytes.

smb_fld Value = O<HI'f. No FID in request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = 5mb_d5cnt).

Response Format

smb_wct Value = 10

smb_tprcnt Value = O

smb_tdrcnt Value = O No data bytes.

smb_rsvd Reserved. Must be zero.

smb_prcnt Val ue = O N0 return parameters For setfsirtfo.

smb_proE Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdi5p Value = 0 Byte displacement for parameter bytes.

smb_drcnt Value = O No data bytes.

smb_dro1f Value = O No data bytes.

smb_drdi5p Value = O No data bytes.

smb_5uwcnt Value = O No setup retum fields.

smb_bcc Value = 0

Z? X/Open CA E Sped fication ([$2

Page 251 of 535

Extended 2 0 Protocol 5MBtran52 TRA NSA CT2_ QPATHINFO

167 TRANSACT2_QPATHIN F0

The function code TRA NSACT2_QPATHINFO in smb_setUP[0l in the primary SMBtran52 requests

identifies a request to query information about specific file or subdirectoiy.

Primary Request Format

smb_wct Value = 15

smb_tp5cnt Total number of parameter bytes being sent.

smb_td5cnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnr Value = O No setup fields to return.

smb_flags Bit Oand bit lmust be zero.

smb_timeaur Value = Q Not used for qpathinfo.

smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = 5mb_tpscnt. All parameters must be in primary request.

smb_p5o1f Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this bu tfer.

smb_dso1f Offset from the start of ar1SMB header to the data bytes.

smb_suwcnt Value = 1

smb_5etUP[Ol Value = TRANSACT2_QPATHINFO.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRANSACT2_QPATI-HNFO function is the

qpathinfospecific information in the following format:

Location Name Meanit

5 I] qpalht'n[o_F.SlnfoLevel ev o1 otmauonrequtr . fer

to DosQF‘i|eInfo in the l\/[icrosoft

OS/2 Programmers Reference,
Volume 4

5mb_param[2—5] qparhinfo_rsVd Reserved. Must be zero.

5mb_param[8} qparhinfo_PathName[} File/directory name.

smb_data[] Additional FileInfol_eve|—depend entinformation.

Secondary Req ttestFormat

There may be zero or more of these.

smb_wct Value = 9

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0 All parameters in primary request.

Protocols for X/Open PC lntenvorki ng: Slv[B, Version 2 Z33

Page 252 of 535

TRANSA CT2_QPATI-{INFO Extended 20 Protocol SMBtrans2

smb_p5o1f Value = O N0 parameters ir1 secondary request.

smb_p5di5p Value = O N0 parameters in seoondary request.

smb_d5cnt Number of data bytes being sent ir1 this buffer.

smb_d5o1f Offset from the start of ar1 SMB header to the data bytes.

smb_d5di5p Byte displacement for these data bytes.

smb_fld Value = Otflff. No FID in request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = 5mb_d5cnr).

First Response Format

smb_wct Value = 10

smb_tprcnt Value = 2

smb_tdrcnt Total length of return data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2 Parameter bytes retumed for TRANSA CT2_QFSINFO.

smb_proE Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdi5p Value = 0 Byte displaoement for parameter bytes.

smb_drcnt Number of data bytes retumtxl in this bufler,

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displacement for these data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRANSACT2_QPATHlNFO response is the

qpathinfo—specific return information in the following format:

Location Name Meani

5mb_param qpa n o_o error irroro se I error.

5mb_data[] Return data bytes (size = 5mb_d5cnt). The data block contains the requested

|eve|—dependent information about the path.

Subsequent Response Format

5mb_ wct Value = 10

5mb_tprcnt Value = 2

5mb_tdrcnt Total length of retum data buffer.

5mb_ rs vd Reserved. Must be zero.

5mb_pn:nr Value = O

5mb_pmfl" Value = O

5mb_prdisp Value = O

Z34 X/Open CA E Sped fication ([$2

Page 253 of 535

Extended 20ProtocoI SMBtran52 TRA NSA CT2_ QPATHINFO

smb_drcnt Number of data bytes retumed in this bulfer.

smb_dro1f Offset from the start of an SMB header to the data bytes.

smb_drdi5p Byte displ aoement for these data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes followingincluding pad bytes.

smb_data[] Return data bytes (size = 5mb_dscnt). The data block contains the requested

level-dependent information about the path.

Protocols for X/Open PC lnterworking: SIVIB, Version 2 Z5

Page 254 of 535

TRANSA CT2_Sl-ETPATHINFO

168

Extended 2OProtocoI 5MBtrans2

TRANSACT2_S ETPATHIN F0

The function oode TRANSACT2_SETPATF-UNFO in 5mb_setup [O] in the primary SMBrrans2

requestsidentifies a request to set information for a file or directory.

Primary RequestFormat

5mb_wct

smb_tpscnt

smb_td5cnt

5mb_mprcnt

5mb_mdrcnt

smb_msrcnt

smb_flags

smb_timeaut

smb_rsvd I

smb_pscnt

smb_p5ofl°

smb_dscnt

smb_dsoE

smb_suwcnt

smb_5etup [O]

smb_bcc

smb_param []

5mb_data[]

Value = 15

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value = O No data returned.

Value = O No setup fields to return.

Bit Oand bit lmust be zero.

Value = 0 Not used for setpathinfo.

Reserved. Must be zero.

Value = smb_tpscnt. All parameters must be in primary request.

Offset from the start of an SMB header to the parameter bytes.

Number of data bytes being sent in this bu tfer.

Offset from the start of an SMB header to the data bytes.

Value: 1

Value = TRANSACT2_SETPAT'HTNFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_SETPATH]NFO function is the

setpathi nfcyspeci fit‘ information in the fol lowing format:

Location Name Meani ni
smb_param [2- 5] setpa ihin{o_rsvd

5mb_param [6]

Reserved. Must be zero.

setpaihin{o_pa1'hnamc[I Pathname to set information on.

Additional FileInfoLevel—dependent information.

Secondary Req uest Format

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

5mb_pscnt

5mb_psatf

smb_psdi'5p

Page 255 of 535

Value = 9

Total number of parameter bytes being sent.

Total number ofdata bytes being sent.

Value = 0 All parameters in primary request.

Value = O No parameters in secondary request.

Value = O No parameters in seoondaiy request.

X/Open CAE Sped fication ([922

Extended 2 0 Protocol SMBtran52 TRA NSA CT2_Sl-ETPATHINFO

smb_d5cnt Number of data bytes being sent in this bu Ifer.

smb_dso1? Offset from the start of an SMB header to the data bytes.

smb_d3di5p Byte displaoement for these data bytes.

smb_fid Value = Ocffff. No FID in this request.

smb_bcc Total bytes followingincluding pad bytes.

smb_data[] Data bytes (size = 5mb_d5cn r).

Response Format

smb_wct Value: 10

smb_tprcnt Value = 2

smb_tdrcnt Value = O No data bytes

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2 Parameter bytes being retumed.

smb_pro1f Offset from the start of an SIvfl3 header to the parameter bytes.

smb_prdisp Value = 0 Byte displacement for parameter bytes.

smb_drcnt Value = O No data bytes.

smb_drofl’ Value = O No data bytes.

smb_drdi5p Value = O No data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRANSA CT2_$ E TPA Tl-UNFO fu notion response is

the setpathinfo—speCi fic netum information in the following format:

5mb_param[O1] 5etpat11info_ofl"ermr Offset into FEALIST data of fiist en‘or

which occuned while setting the
extended attn‘ bu tes.

Protocols for X/Open PC lnterworking: Slv[B, Version 2 237

Page 256 of 535

TRANSA CT2_QFILEINFO

169

Extended 20 Protocol SMBtrans2

TRANSACT2_QFILEINFO

The function code TRANSACT2_QFlLEINFO in 5mb_5etup[O] in the primary SMBrrans2 requests

identifies a request to query information about a specific file.

Primary Request Format

smb_wcr Value = 15

smb_tpscnr Total number of parameter bytes being sent.

smb_td5cnr Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnr Value = O No setup fields to return

smb_flags Bit Oand bit lmust be zero.

smb_timeaur Value = 0 Not used for qfileinfo.

smb_r5vdI Reserved. Must be zero.

smb_pscnt Value = 4All parameteis are in primary request.

smb_p5ofl’ Offset from the start of an SMB header to the paiameter bytes.

smb_dscnt Number of data bytes being sent ir1 this bu tfer.

smb_dsoE Offset from the start of ar1SMB header to the data bytes.

smb_suwcnr Value: 1

smb_5erUPl0l Value = TRANSACT2_QFILEINFO.

smb_bcc Total bytes following including pad bytes.

smb_param []

5mb_data[]

The parameter block for the TRANSACT2_QFILElNFO function is the

qfil einfo—specific information in the following format:

Location Name Meani

;
smb_param[Z3] qflleInfo_F1'IelnfoI_.evcl Level ofinformaijon required. Refer

to DosQFilelnfo in the Microsoft

06/ 2 Progrlmmers Reference,
Volume 4

Additional FileIr1foLevel—depen(lent information.

Secondary Req uest Format

There may be zero or mole of these.

smb_wct

smb_tpscnt

smb_tdscnt

5mb_pscnt

smb_psatf

Page 257 of 535

Value = 9

Total number of parameter bytes being sent.

Total number ofdata bytes being sent.

Value = Q

Value = O

X/Open CAE Sped fication ([EB

Extended 2 OProtocoI $MBtran52 TRA N5ACT2_Q1-TILEINFO

smb_psdi5p Value = O

smb_dscnt Number of data bytes being sent in this buffer.

smb_d5olf Offset from the start of ar1 SMB header to the data bytes.

smb_dsdi5p Byte displ aoement for these data bytes.

smb_fld The FID.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = 5mb_d5cnt).

First Response Format

smb_wct Value = 10

smb_tprcnt Value = 2

smb_tdrcnt Total length of retum data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2 N0 paramet.er bytes Ietumed for qfil einfo.

smb_proE Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdi5p Val ue = 0 Byte displacement for these paramet.er by tes.

smb_drcnt Number of data bytes retumixl in this bufler,

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displ aoement for these data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRAN$ACT2_QFILEINFO response is the

qfileinfo—specific return information in the following format:

Location Name Meaning

5mb_param[O 1] qfildnfo_ofl}:rmr Error offset if EAerm_—

5mb_data[] Return data bytes (size = 5mb_d5cnt)i The data block contains the requested

|eve|—dependent information about the file.

Subsequent Response Format

5mb_ wct Value = 1Q

5mb_tp1-mt Value = 2

5mb_tdrcnt Total length of retum data buffer.

5mb_ rs vd Reserved. Must be zero.

5mb_prcnt Value = Q

5mb_pmfl" Value = Q

5mb_prdi'sp Value = Q

5mb_ drcnt Number of d ata bytes retu med in this bu lfer.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 Z9

Page 258 of 535

TRANSA CT2_QFILEINFO Extended 20 ProtocoI SMBtran52

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displacement for these data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Return data bytes (size = 5mb_dscnt)‘ The data block contains the requested

level-dependent information about the file.

24) X/Open CA E Sped fication ([$2

Page 259 of 535

Extended 20ProtocoI SMBtrans2 TRA NSA CT2_SETFILEINFO

1610 TRA NSACT2_SETFILEIN F0

The function oode TRA NSACT2_SETFILEJNFO in smb_5etup[O] in the primary SMBtrans2

requests identifies a request to set information for a speci fic file.

Primary Request Fo rm at

smb_wct Value = 15

smb_tpscnt Total number of parameter bytes bei ng sent.

smb_tdscnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

smb_mdrcnr Value = O No data returned.

smb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

smb_timeour Value = 0 Not used for setfileirtfo.

smb_rsvdl Reserved. Must be zero.

smb_p5cnt Value = 6 Parameters must be in primary request.

smb_p5ofl‘ Offset from the start of an SMB header to the parameter bytes.

smb_d5cnt Number of data bytes being sent in this buffer.

5mb_d5ofl° Offset from the start of an SMB header to the data bytes.

smb_5uwcnt Value: 1

smb_5etUPl0l Value = TRANSACT2_SETFILEINFO.

smb_bcc Total bytes followingincluding pad bytes.

smb_param[] The parameter block for the TRANSACT2_SE.'TFILEINFO function is the

setfileinfo-specific information in the fol lowing format:

Lomtion Name Meani n

5mb_param[2—3 5etfilein{o_FilcInfoLevel Level of information required. Refer
to DosQFileInfo in the Microsoft

OS/2 Programmer’s. Reference,
Volume 4

5mb_param[4-5 5etfileinfo_lOFlag Flag field:

O<CD1O V\.hte through.

Odfl) No cache.

smb_data[] Additional FilelnfoLevel-dependent information. For level = 2 smb_data[]
oontai ns the FEAL.ISTstiuct11re to set for this file.

Protocols for X/Open PC lnterworking: SI\/[B, Version 2 241

Page 260 of 535

TRANSA CT2_SETFILEINFO Extended 20 Protocol SMBtJ‘an52

Secondary Request Format

There may be zero or more of these.

smb_wct Value = 9

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_p5cnt Value = O

smb_p5o1f Value = O N0 parameters ir1 seoondaiy request.

smb_p5di5p Value = O

smb_d5cnt Number of data bytes being sent in this buffer.

smb_d5o1f Offset from the start of ar1 SMB header to the data bytes.

smb_d5di5p Byte displacement for these data bytes.

smb_fld The FID.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_d5cn r).

Response Format

smb_wct Value = 10

smb_tprcnr Value = 2

smb_tdrcnr Value = O No data bytes.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2 Parameter bytes being retumed.

smb_proE Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdi5p Val ue = 0 Byte displaoement for these paramet.er by tee.

smb_drcnt Value = O No data bytes.

smb_dro1f Value = O No data bytes.

smb_drdi5p Value = O No data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_param [] The parameter block for the TRANSA C T2_SETFILEINFO fil nction response is

the setfil einfo—speCi fic tetum information in the following format:

smb_param [O 1] setfileinfo_ofi"error Offset into FEALJST‘ data of fust error

whjd1 occurted while setting the
extended attributes.

242 X/Open CA E Sped fication ([$2

Page 261 of 535

Extended 2 OProtocoI $MBtran52 TRA NSA C T2_FINDNO TIFYFIRST

1611 TRANSACT2_FINDNOTIFYFIRST

The function code TRANSACT2_FlNDNO'UFYFIR$Tin smb_setup[O] ir1 the primary SMBirans2

request identifies a request to oommenoe monitoring changes to a specific file or directory.

Primary Request Format

5mb_wct Value = 15

smb_tp5cnt Total number of parameter bytes being sent.

5mb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

5mb_mdn:nt Maximum return data length.

5mb_msrcnt Value = O No setup fields to return.

5mb_flags Bit Oand bit lmust be zero.

5mb_timeout Specifies duration to wait for changes.

5mb_rsvdl Reserved. Must be zero.

5mb_pscnt Value = tpscnt. All parameters must be in primary request.

5mb_psolf Offset from the start of ar1 SMB header to the parameter bytes.

5mb_dscnt Number of data bytes being sent in this buffer.

5mb_dsolf Offset from the start of ar1 SMB header to the data bytes.

5mb_5uwcnt Value = 1

5mb_5etUPl0l Value = TRANSACT2_FWDNOUFWIR5T

5mb_bcc Total bytes following including pad bytes.

5mb_param [] The parameter block for the TRANSACT2_FINDNOTlFYF1RSTfunction is the

find f1rst—speci fic information in the following format:

Lomtion Name Meartin

5m _param O 1] findnfir5t_Attrib

5mb_param[2—3] findnfir5t_ChangcCozmt Numberofchanges towajt for.

5mb_param[45l findnfir5t_LeveI Information level required.

5mb_param [6 9| findfir5t_r3vd Reserved. Must be zero.

5mb_param[IO] findnfir5t_Path5pec[] Path to monitor.

5mb_data[] Additional level—dependent match data.

Secondary Request Format

There may be zero or more of these.

5mb_ wct Value = 9

5mb_tp5cnt Total number of parameter bytes being sent.

5mb_td5cnt Total number ofdata bytes being sent.

5mb_pscnt Value = C) All parameters in primary request.

5mb_psatl" Value = O No parameters inseoondary request.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 243

Page 262 of 535

TRANSA CT2_1-TINDNOTIFYFIRST

244

smb_p5di5p

smb_dscnt

smb_d5olf

smb_d5di5p

smb_fld

smb_bcc

smb_data[]

Extended 2OProtocoi SMBtrans2

Value = O No parameters in seoondary request.

Number of data bytes being sent in this bu fl.°er.

Offset from the start of ar1 SMB header to the data bytes.

Byte displ aoement for these data bytes.

Value = O<HI'f. No FID in this request.

Total bytes following including pad bytes.

Data bytes (size = 5mb_dscnr).

First Response Format

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_prolf

smb_prdi5p

smb_drcnt

smb_drolf

smb_drdi5p

smb_5uwcnt

smb_bcc

smb_param []

smb_data[]

Value = 10

Value = 6

Total length of Ietum data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.

Offset from the start of ar1 SMB header to the parameter bytes.

Val ue = 0 Byte displaoement for these parameter by tes.

Number of data bytes retumixl in this bulfer,

Offset from the start of ar1 SMB header to the data bytes.

Byte displ aoement for these data bytes.

Value = O No set up retum fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACT2_FINDNO'HFYFIRST function

response is the find first—specific ietum infoimati on in the following format:

Location Name Meanj n

5mb_param [o 1] 1indnfim_l;and1c
5mb_param[23] fir2dnfimt_c}3angc-count Number of changes which occumed

within timeout.

EiToroffset if EA ermr.smb_param [4 5] 1‘indnfiz‘st_o1'ferI0r

Data bytes (size = smb_dscnt). The data block contains the level-dependent

information about the changes which occurred .

Subseq uent Response Format

5111 b_wct

5111 b_tprcnt

5111 b_tdrcnt

5111 b_rsvd

smb_prcnt

smb_pmIf

Page 263 of 535

Value = 10

Value = 6

Total length of ietu in data buffer.

Reserved. Must be zero.

Value = 0

Value = O

X/Open CA E Sped fication ([EB

Extended 2 OPt‘0t0c0I SMBtran52 TRA NSA C T2_FINDN0TIFYFIR5T

smb_prdi5p Value = O

smb_drcnr Number of data bytes retumed in this bufler.

smb_drofi Offset from the start of an SMB header to the data bytes.

smb_drdi5p Byte displaoement for these data bytes.

smb_suwcm‘ Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnr). The data block contains the level-dependent

information about the changes which occurred.

Protocols for X/Open PC lnterworki ng: SMB, Version 2 245

Page 264 of 535

TRANSA CT2_FINDNOTIFYNEXT Extended 2OProtocoi SMBtrans2

1612 TRANSACT2_FINDNOTIFYN EXT

The function oode TRANSACT2_F1NDNO7YFYNEXT in smb_5etup[O] in the primary SMBirans2

request identifies a request to continue monitoring changes to a file or directory specified by a
TRANSA CT_FINDNOTIFYFIRSTrequest.

246

Primary Request Format

smb_wct Value = 15

smb_tp5cnt Total number of parameter bytes being sent.

smb_td5cnt Total number of data bytes being sent.

5mb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = O No set.up fields to return.

smb_flags Bit Oand bit lmust be zero.

smb_ timeout Duration of monitor period.

smb_rsvdI Reserved. Must be zero.

smb_p5cnt Value = 0 All parameters ir1 primary request.

smb_psofl’ Offset from the start of ar1 SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent ir1 this bu tfer.

smb_dsoE Offset from the start of ar1SMB header to the data bytes.

smb_5uwcnt Value = 1

smb_setUP[0l Val ue = TRANSA CT2_FINDNOTTFYNEXT

smb_bcc Total bytes followingincluding pad bytes.

smb_param []

5111 b_ data []

The parameter block for the TRANSA CT2_FINDNOTTFW\fEXTfunction is the

find next—specific information in the following format:

smb_param [O 1] findnnex't_D1'rHa.ndIe Directory monitor handle.

smb_param [2113] findnneXt_ChangeCount Number ofchanges towait for.

Data bytes (size = smb_dscnt).
information.

Additional |evel—clependent monitor

Secondary RequestFormat

There may be zero or more of these.

5111 b_ wct

sinb_ tpsmt

sinb_ tdsmt

smb_pscnt

smb_psatf

smb_p3disp

Page 265 of 535

Value = 9

Total number of parameter bytes being sent.

Total number ofdata bytes being sent.

Value = 0 All parameters in primary request.

Value = O No parameters in secondary request.

Value = O No parameters in secondary request.

X/Open CAE Sped fication ([EB

Extended 2 0 Protocol $MBtran52

smb_d5cnt

smb_d5o1f

smb_d5di5p

smb_fld

smb_bcc

smb_data[]

TRANSA CT2_FINDNOTIFW\lEXT

Number of data bytes being sent in this bu fl.°er.

Offset from the start of ar1 SMB header to the data bytes.

Byte displ aoement for these data bytes.

Search handle.

Total bytes following including pad bytes.

Data bytes (size = 5mb_dscnr).

First Response Format

smb_wct

smb_rprcnt

smb_rdrcnt

smb_rsvd

smb_prcnt

smb_proE

smb_prdi5p

smb_drcnt

smb_droE

smb_drdi5p

smb_5uwcnt

smb_bcc

smb_param []

smb_data[]

Value = 10

Value = 4

Total length of Ietum data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.

Offset from the start of ar1 SMB header to the parameter bytes.

Val ue = 0 Byte displaoement for these paramet.er by tes.

Number of data bytes retumtxl in this bufler,

Offset from the start of ar1 SMB header to the data bytes.

Byte displ aoement for these data bytes.

Value = O No set up retum fields.

Total bytes following including pad bytes.

The parameter block for the TRAN5ACT2_FINDNOTlFYNEXT function

response is the find notify next—speCific Ietum information in the following
format:

Location Name Meanj n

sm _param new _c gecoun e

moni tor period.

smb_param [Z3 finctnneXt_ofi’ermr E1Tor offset if EA ermr.

Data bytes (size = smb_dscnt). The data block oontains the level-dependent

information about the changes which occurred.

Subseq uent Response Format

Page 266 of 535

smb_wct Value = 10

smb_tprcnt Value = 4

smb_tdrcnt Total length of ietu m data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = O

smb_pmIf Value = O

smb_prdisp Value = 0

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 247

TRANSA CT2_1-TINDNOTIFYNEXT Extended 20 Protocol SMBtJ‘an52

smb_drcnt Number of data bytes retumecl in this bufler,

smb_droE Offset from the start of ar1 SMB header to the data bytes.

smb_drdi5p Byte displ aoement for these data bytes.

smb_5uwcnt Value = O No set up retum fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt). The data block oontaj ns the level —dependent

information about the changes which occurred.

248 X/Open CA E Sped fication ([$2

Page 267 of 535

Extended 2 OProtocoI 5MBtran52 TRA NSA C T2_MKDIR

1613 TRANSACT2_MKDIR

The function code T'RANSACT2_MKDIR in smb_5etup[C3 in the primary SMBrrans2 requests

identifies a request to create a directory with extended attributes.

Primary Request Form at

5mb_wcr Value = 15

5mb_tpscnt Total number of parameter‘ bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnr Maximum return parameter‘ length.

5mb_mdrcnr Value = O No data returned.

5mb_msrcnt Value = O No setup fields to return.

smb_flags Bit Oand bit lmust be zero.

smb_tr'meaur Value = Q

smb_r5vdl Reserved. Must be zero.

smb_p5cnt Value = 0 All parameters in primary request.

smb_psofl‘ Offset from the start of an SI\/fl3 header to the parameter bytes.

smb_d5cnt Number‘ of data bytes being sent in this bu ffer‘.

smb_dsofl° Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1

smb_5erUP[O] Value = TRANSACT2_MKDIR.

smb_bcc Total bytes followingincluding pad bytes.

smb_param[] The parameter block for the TRANSACT2_MKDIR l1,rnct.ion is the mkdir—

specific information in the following format:

Location Name Meani

s
smb_param[4] mlcdr'r_dr'mamc[] Beginning of directory name.

$mb_data[] Data bytes (size = 5mb_dscnt). FEALJST‘ structure for the directory to be
created.

Secondary RequestForn:rat

There may be zero or more of these.

smb_ wct Value = 9

smb_tpsmt Total number of parameter bytes being sent.

smb_tdsmt Total number ofdata bytes being sent.

smb_psr:nt Value = C) All parameters in primary request.

smb_psatf Value = O No parameters in secondary request.

smb_psdr'sp Value = O No parameters in secondary request.

Protocols for)(/Open PC lrrterworking: Slv[B, Version 2 249

Page 268 of 535

TRANSA CT2_MKDIR Extended 20 Protocol SMBtrans2

smb_dscnt Number of data bytes being sent in this bu fl.°er.

smb_d5o1f Offset from the start of ar1 SMB header to the data bytes.

smb_dsdi5p Byte displ aoement for these data bytes.

smb_fld Value = O<HI'f. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = 5mb_d5cn 1‘).

Response Format

smb_wct Value = 10

smb_tprcnt Value = 2

smb_tdrcnt Value = O No data bytes.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2 Parameter bytes being retumed.

smb_proE Offset from the start of ar1 SMB header to the parameter bytes.

smb_prdi5p Val ue = 0 Byte displacement for these parameter by tee.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TR/1NSACT2_MKDIR function response is the

mkdir—specific retum information in the following format:

smb_param[O 1] mkdir_oHcrror Offset into FEALIST data of fimt error

which occurred while setting the
attended attn‘ butes.

E) X/Open CA E Sped fication ([$2

Page 269 of 535

Appendix A

MB Transmission Analysis

A.] Introduction

This appendix describes the mapping between DOS an(l OS/2 system (2115 on an SMB

redirector‘. and the associated SIVIB requests sent from the SMB redi rector to an LMXseiver. The

DOS SMB redirector is assumed to be using the oore SM3 protoools. and the OS/2 SMB

redirector is assumed l.O be using the LAN Manager‘ extended Sl\/[B protoools. While an OS/2

SMB redirector‘ will use core SMB requests to oommuniaite with a core LMX server, and a DOS

LAN Manager client will use extended SMB requests to oommuniaite with an OS/ Zserver. these
situations will not be considered here.

The mappings given here do not completely describe the behaviour‘ of all SMB redirectois: they

do not take into account various optimisations which Sl\/[B redirectors may do which will result

in behaviour which differs from that described here. In particular, the extended SMB protocol

contains a number of facilities which allow a redirector to improve performance. These include:

SMB chaining. opportunistic locking. caching and various specialised SMB requests. such as

Read Block Multiplex, W1‘ te Block Multiplex, Read Block Raw and Wite Block Raw. Redirectors

which make use of these facilities may not behave exactly as described here.

It should also be noted that the OS/2 SMB redirector and file system make extensive use of

internal buffers and heuristics that make it difiimlt to determine an exact mapping between

O6/ZAP] calls and SMB emissions. The listed API calls give an indication of which SMBs are

sent when invoked, and where possible. an explanation is given regarding any special
circumstances.

DOS and OS/Zsystem mils which are not listed here will not normally result in SMB requests

being transmitted.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 251

Page 270 of 535

DOS Functions SMB Transmission Analysis

A.2 D OS Functions

- I '

Print Cha racter

Reset Disk

Open File (FCBI/O)

Close File (FCBI/O)

Search For First Entry

Search For Next Entry

Delete File (FCB I/O)

Sequential Read (FCBI/ O)

Sequential Wite (FCB]/ O)

Create File (FCB I/O)

Rename File (FCBI/O)
Get Default Drive Data

Get Drive Data

Random Read (FCBI/O)

Random Write (FCB I/O)

Get File Size (FCBI/O)

Random Block Read (FCB 1/ O)

Random Block Wil.e (FCB 1/O)

Get Disk Free Space

Create Directory

Remove Directory

Cha age Current Di rectory
Create File Handle

Open File Handle
Close File Handle

Read Via File Handle

Wite Via File Handle

Delete Di rectory Entry
Move File Pointer

Set/Get File Attributes

Load a nd Execute Program me/Load Overlay
End Process

Find First File

Find Next File

Change Directory Entry
Set/Get Date/Time of File

Create Temporary File Handle
Create New File

Unlock/Liock File

Get Assign List Entry
I h B i ‘ ‘

E X/Open CA E Sped fication ([$2

Page 271 of 535

SMB Transmission A naiysis DOS Functions

Change CuroeutDirectory

Function number 0(3).

SMB smt SMBchkpth.

Reason Change cl i rectory.

Change Dioectory Entry

Function number O(56

SMB seat SMBmv.

Reason Rename file.

Close File (FCB I/O)

Function number O(10

SMB smt SMBclose.

Reason Close fil e (PCB I/O).

CloseFile Handle

Function number Odie.

SMB smt SMBclose, SMBsplclose (primer device).

Reason Close file.

Coeate Directory

Function number O(CQ

SMB smt SMBmkdir.

Reason Make di rmtory.

Coeate File (FCB I/O)

Function number O(16

SMB smt SMBcre-ate.

Reason Create file.

Coeate Fi[eHandle

Function number 0(3)

SMB smt SMBcre-ate.

Reason Create file.

Protocols for X/Open PC Inlerworking: Slv‘[B, Version 2 253

Page 272 of 535

DOS Functions SMB Transmission Analysis

C oeate New File

Function number 0(5).

SMB smt SMBmknew.

Reason Create file.

Delete D ioectory Entry

Function number O(4].

SMB smt SMBunlini<.

Reason Delete fil e.

Delete File (FCB I/O)

Function number O(13

SMB smt SMBunlini<.

Reason Delete file (FCB 1/O).

End Process

Function number O(4lc.

SMB smt SMBeXjt

Reason Exj t programme.

Find First File

Function number Oczle.

SMB smt SMBse-arch.

Reason Find first matching filename.

Find Next File

Function number Oczlf.

SMB smt SMBse-arch.

Reason Find next matching filename.

Fl u s h B u ffe r

Function number O(%

SMB smt SMBflush.

Reason Commit file.

254 X/Open CA E Speci fication ([$2

Page 273 of 535

SMB Transmission A naiysis DOS Functions

Get Assign List Entry

Function number Ocflf‘.

SMB smt SMBtcon, SMBtdis.

Reason Redirect devioe, cancel redirection.

Get DefaultD rive Data

Function number Oc lb.

SMB seat SMBdskattr.

Reason Get data on the default drive.

Get Disk Free Space

Function number Ocifi

SMB seat SMBdskattr.

Reason Get free space on disk.

GetD1-ive data

Function number O(19.

SMB seat SMBdskattr.

Reason Get data on a drive.

Get File Size (FCB I/0)

Function number O(Z3

SMB smt SMBse-arch.

Reason File size in records.

Load and Execute Program me/Load Overlay

Function number O(4b.

SMB smt SMBopen, 5MBread, SMBciose.

Reason Load /execu te program me.

Move File Pointer

Function number ()(42

SMB smt SMBIseek.

Reason Set position in File.

Protocols for X/Open PC Interworking: Siv‘[B, Version 2 255

Page 274 of 535

DOS Functions SMB Transmission Analysis

Open File (1-‘CB I/O)

Function number O(O.°.

SMB sent SMBopen (read /wiite/share set [0 Cxfl).

Reason Open file (FCB 1/0).

Open File Handle

Function number 0(3).

SMB sent SMBopen, SMBspIopen (printer devioe).

Reason Open file.

PrintCharacter

Function number O(%

SMB smt SMRsp)open, SMBsp!wr, SMBspicio5e.

Reason Pri nLer output-

Random Block Read (PCB I/O)

Function number O(Z7

SMB sent SMBread.

Reason Random block read (PCB I/O).

Random Block Write (FCB I/0)

Function number 028

SMB sent 5MBwriiei

Reason Random block write (PCB I/O).

Random Read (FCB I/0)

Function number ()(2].

SMB sent SMBread.

Reason Random head (FCB I/O).

Random Write (FCB I/0)

Function number ()(22

SMB sent SMBwr:'iei

Reason Random write.

2-5 X/Open CAE Sped fication ([E

Page 275 of 535

SMB Transmission A nalysis DOS Functions

Read Via File Handle

Function number Ocif.

SMB smt SMBre-ad.

Reason Read file.

Remove D irectory

Function number Ocih.

SMB smt SMBrmdir.

Reason Remove directory.

Rename File (FCB I/O)

Function number O(17'.

SMB seat SMBmv.

Reason Rename fil e.

Res et D isk

Function number O(O:l.

SMB smt SMBflush.

Reason Disk reset (flush file buffets).

Search FocFirst Entry

Function number O(1].

SMB smt SMBse-arch.

Reason Search first matching enuy.

Search FocNext Entry

Function number O(12

SMB smt SMBse-arch.

Reason Search next matching en try.

Sequential Read (FCB I/O)

Function number O(14

SMB smt SMBre-ad.

Reason Sequential read (PCB 1/0).

Protocols for X/Open PC Inlerworking: SIv‘[B, Version 2 257

Page 276 of 535

DOS Functions SMB Transmission Analysis

Sequential Write (FCBI/0)

Function number O(15

SMB smt SMBwritei

Reason Sequential write (PCB I/O).

Set/GetDate/Time ofFiIe

Function number O(57

SMB smt SMBse-arch, SMRsetatr.

Reason Get/set file date and time.

S et/G et File A ttri b utes

Function number O(43

SMB smt SMRsetatr.

Reason Change file aotiibu tes.

Terminate Program m e

Function number O(CI)

SMB smt SMBeXjt

Reason Programme Lermi nate.

Unlock /Lock File

Function number O(&.

SMB smt SMBlock. SMBunlock.

Reason L0ck/ Un] ock file.

Write Via File Handle

Function number OMD

SMB smt SMBwrite, SMBspiwr (printer device).

Reason V\l'ite file.

& X/Open CA E Sped fication ([$2

Page 277 of 535

SMB Transmission A nalysis OS/2Functions

A.3 OS/2Functi011s

The SIVIB requests geneiated from OS/2 redirectors will valy based on the protocol dialect

negotiated. This vaiiation is highlighted in the sequences below by listing the Sl\/[B request that

will be sent if the extended lOdialec1 was negotiated first followed by the SMB request for the
extended 20diaJect.

D osBufReset

SMB sent SMBflush.

Reason Flush file bu lffer.

D osC hD i r

SMB sent SMBchkpth.

Reason Change the curient worki rig di iectory.

D osClose

SMB sent SMBdose, SMBwrireclose, 5MBwrite.

Reason Close FID.

If the file I/O is buffered, a DosClose will cause the data in the buffers to

be flu shed. This type of situation may cause an 5MBwn‘tec!ose or
SMBwriie to besent.

D osD el ete

SMB sent 5MBunl1’nk.

Reason Delete a file.

D osD evI0 C tl

SMB sent 5MBi0crl, SMBioctls.

Reason Pass a devioe—speci fie 1/O oontnol request to a driver.

D osExecPgm

SMB sent SMBopen, SMBre-ad, SMBdose. SMBtrans2(TRANSACT2_OPEN) may be

used for the open function instead of SMBopen for the extended 20
dialect.

Reason Stan a piogiammeas a child process.

DosFileLocks

DosEXecPgm makes use of OS/2s standard file I/O functions.

SMB sent SMB1ock SMBlockingX. SMBlockre-ad, SMBunlock, SMBwn‘ieu nlock.

Reason Set or reset a byte lock range in an open file.

An $MBwn'teun1od< is sent after unlocking bytes which werejust written
ou 1.. 5MBlockread is used to lock and then read ahead.

Protocols for)(/Open PC lnterworking: Slv‘[B, Version 2 E

Page 278 of 535

OS2Punctions

DosFir1dClose

SMBsmr

Reason

D osFi ad First

SMBsenr

Reason

D osFi ad First2

SMBsenr

Reason

DosFi ad N ext

SMBsml‘

Reason

DosFi udN 0 tifyClose

SMB smr

Reason

DosMkDir

SMBsmr

Reason

DosMove

SMBsmr

Reason

DosOpeo

SMB sent

Reason

Page 279 of 535

SMB Transmission Analysis

SMBfclose and possibly SMBfindnclose.

Close an active directory search handle. If change notification was
involved, the SMBfindn close will be sent to cancel further notifications.

SMBlfirsr or SMBrrans2(TRA N5ACT2_FIND FIRST).

Find the first file in a directory matching the search pattem.

SMBlrans2(TRANSA CT2_FINDFIRSD. A n SMBfindclase may follow.

Find the filst file in a directory matching the search pattern. If no
additional seaichs are desired the SMBfindclose will be used to allow the

server to free resources associated with the find.

SMB)‘firsr or SMBrrans2(TRA NSA CT2_FlNDNEX7).

Get the next file from the search pattern.

If this function is used or1 a suFficiently large directory it will eventually
send an 5MBfind request.

5MBfin dn close.

To indicate to the Llvlxseiver that directory search requests are complete.

5MBmkdir 5MBrrans2(TRA NSA CT2_MKDIR) .

Create a new directory.

SMBmv.

Rename or move a file.

SMBopenX, SMBopm, 5MBcreare, SMBreadX or
SMBrrans2(TRANSA CT2_OPEN).

Open a devioe/file for I/O.

Dr1sOpm may send an 5MBreadX read ahead. DosOpen will send an

SMBopenX instead of an 5MBopen when ir1 protected mode. SMBopen has

no capabilities for cheating a file when opening, so Dc1sOpen may send an
SMBCN,-are.

X/Open CAE Speci fication ([EB

SMB Transmission A nalysis OS/2Functjons

D o s Q C u rD i r

SMB smr SMBchkprh.

Reason Determine the current directory of a logical drive.

D o s Q PS I n fo

SMB smr SMBdskartr or SMBrrans2(TRA NSA CT2_QFSINFO).

Reason Retrieve file system information data.

D osQ I-‘ilelnfo

SMB smr SMBgerartrE or SMBtrans2(TRANSA CT2_QFILEINFO) .

Reason Reuieve a file i nformaljon reoord.

DosQI-‘ileMode

SMB smt SMBgetatr.

Reason Get a file's attribute by te.

D osRead

SMB smr SMBread, SMBreadX, SMBreadbraw, SMBreadbmpx.

Reason Read characters from an FID.

SMBreadbraw is used to send a block of data which is larger than the data

size which was negotiated.

DosRead Asyn c

SMB smr 5MBre-ad, SMBreadX, SMBreadbraw, SMBreadbmpx.

Reason Read characters from an FID asynchronously.

Same behaviour as DosRead.

D osRm D i r

SMB sen‘ SMBrmdir.

Reason Delete a subdirectory.

DosSet1-‘ilelnfo

SMB San‘ SMBserattrE.

Reason Change a file's directory information.

Protocols for)(/Open PC Interworki ng: Slv[B, Version 2 $1

Page 280 of 535

OS£Punctjons SMB Transmission Analysis

DosSetFileMode

SMB smt SMRsetatr.

Reason Change a F]! e's attribute.

D o sWri te

SMB sent SMBwn'te, SMBwriteX, SMBW/ritebraw, SMBwritebmpx.

Reason \/Kfite characters to an FID.

SMBwritebraw is used to send a block of data which is larger than the data

size which was negotiated.

D osWri teA sync

SMB sent SMBwn'te, 5MBwriteX, SMBW/ritebraw, SMBwritebmpx.

Reason \/Kfite characters to an FID asynchronously.

Same behaviour as Dos Wife.

3 X/Open CA E Sped fication ([$2

Page 281 of 535

Appendix 3

AN Manager Remote Administration Protocol

B.1 Overview

This section describes the mechanism used by LAN Manager to implement remote

administration functions and acoess oontrol lists. The protoools described here are those which

are provided by the extended dialects. They are included here so that an irnplemenI.or can build

an LMXsen/er which can handle this class of Sl\/TB redirector requests‘ However. their inclusion

in this specifiaiti on does not imply any X/Open endorsement of these mechanisms as the basis

for future)OOpen network management functionality.

All administrative functions in the LAN Manager are provided by a set of shared library

routines. often referred to as LAN Manager AP] routines. Many of these routines have a

servername argument which the caller uses to distinguish a local administrative operation (one

which applies to the LMX server on the local machine) from a remote operation (one which

applies to the server on another machine).

In the case of a remote operation the SMB redirector packages up iLS arguments, and sends them

to the appropriate LMX sewer. The LMX sewer then calls the oorresponding LAN Manager AP]

routine locally. packages the results. and sends them back to the SMB redirector: The

mechanism resembles a specialised, private, remote prooedure call facility between the SMB
redirector and the LMXserver.

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 $3

Page 282 of 535

Remote API Protocol

B.2

LA N Manager Remote A dministration Protocol

Remote API Protocol

1 All remote AP] operations are done using the share name lPC$ The Sl\/[B redirector will

automatically connect to that shareif neoessaiy in order to do a remote API call.

2 All remote AP] operations are done using the Transaction SIVEB $MBtran5.

3 The 5mb_name field of the Transaction Sl\/[B is always \PIPE\LANMAN. The server uses

this to identify a remote API request. The SMB resembles a normal named pipe operation,

which is also done using a Transaction SMB. However, the smb_setup[O] field, which

would normally contain the desired named pipe operation, is ignored; the

\PIPE\LANI\/IAN name field is sufficient to identify a remote AP] operation.

The arguments for the remote API call are encapsulated in the Transaction request SMIB; return

values are encapsulated in the Transaction response SMB. In both the request and the response,

all binary values are stored in little—endian order, least significant byte first. There are no pad

bytes other than those explicitly specified in desciiptor strings; therefore, items may be located

at an arbi traiy byte boundaiy — there are no alignment restrictions.

The request and response Transaction SMBs oontajn a parameter section and a data section. The

arguments for a remote API call are split into two parts. and placed in these sections of the

request Transaction. The Transaction response message contains the results of the call, split

between the parameter and data sections of the Transaction response. A number of fields in the

Transaction SMB identify the size and location of these sections within the SMB, and also allow a

single Transaction request or response to be split into several messages (refer to X/Open CAE

Specification, IPC Mechanisms for Sl\/IB).

X/Open CA E Speci fication ([$2

Page 283 of 535

LAN Manager RemoteAdministration Protocol LMX Access Control Lists Mapping

B.3 LMX Access Control Lists Mapping

Access control lists (ACLs) are used by LMX servers running in user—level security mode.

Though the implementation of ACl_,s is outside the scope of the specification the Following list is

a set of possible access permissions, which is used by LAN Manager implementations.

User—Ieve| seouiity allows access permissions to be set for each shared resource (for example, file

system subtree, individual file, spooler, devioe, etc). Each shared resou roe has a list of users and

gioups, with the permissions allowed for each user or ; rou) on that resource.

Permission to read data from a resource and, by
default. execute the resource.

Permission to wiite data to the resource.

Permission to execute the resource.

Permission to create an instance of the resource

(for example, a file); data can be wiitten to the

iesource when creati ng it.
(1 elete Permission to d elete the resource.

change attiibutes Permission to modify the resources attiibutes

(for example, the date and time a file was last
modified).

change permissions Permission to modify the permissions (read,

write, create, execute and delete) assigned to a

resource for a user, group or application.

cl eny access No permissions.

allow spool requests

Since the X/Open CAE does not provide an access control list (ACL) mechanism, the usual CAE

access ooniiol mechanisms should be used instead. Following the principle of least suipiise, a

mapping is defined for access mechanisms which oannot easily be piovided under CAE systems.

The CAE access control mechanisms are used to permit interoperability for applications which
ieside on both PCs and on CAE hosts.

A mapping from (SMB) UID and username/password supplied by the client to CAE User ID

(uid) and Group lD(s) (git!) is established by the SMB5ess5ctupX and will be maintained by the

Llx/[Xserveix The mapped—to CAE User ID and one or mote Group IDs are used for all accesses

on the CAE system in the usual manner.

The dilferences between the functionality provided by ACLs and the access control mechanisms
for LMXsewers descn‘ bed above include:

1. ACL permissions apply to shared resources. This includes file system directones as well as

individual files. CAE pennissions apply to individual files and directoiies but are not
extended to subtiees.

2 For each resource, ACL permissions can be listed for any number of individual useis, for

any number of gmups, and for anyone else. A CAE file or directoiy specifies permissions

for the owner, one gmup and everyone else.

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 K

Page 284 of 535

LMX A ccms Control Lists Mapping LAN Manager Remote A dministration Protocol

The following table shows the mappir1g between the ACL permissions and CAE permissions:

read (N are 1)

create wlite on parent

delete wlite on parent

change attribu res not supportable

change pemiissior1s (N ale 2)

deny access no permissions

allow spool requests not supportable

Notes:

1 Execute permission for LMX sewers requires only read permission, as the client

need only be able to read the file beforeit can execute it.

2 Not an assignable access right. The owner of a file and users with appropriate

privileges always have P access and cannot relinquish it; no other user can

acquirePaccess.

3 Not a specific tight, but the absence of rights‘ Not.e that the privileged user

always has all rights and can relinquish none of them.

ACLs could be partially implemented for LMX sewers by placing the required checks into the

LMXserver itself. The list would be used to further restrict (but not grant) access to files and

directories beyond the restrictions imposed by the usual CAE access control mechanisms. A

client may have access to a resource only ifit does not conflict with CAE permissions and if it is

specified in the AC]... There may be cases where the ACL indicates that a user should have

access, but the CAE secuiity would have to be circumvented to honour it. The access will be

denied in accordance with the CAE in these cases. This permits access security to be maintained

on both the server and client system equivalently; if a user local on the CAE system is denied

access, access should be denied for the useron a client system as well‘

X/Open—compliant system implementations which support native ACLs as an enhancement

may use that mechanism instead of the normal CAB access control mechanisms if desired, as

long as the ACLs do not grant permission where the expected CAE access mechanisms would
have denied it.

EB X/Open CA E Spec‘ fication ([$2

Page 285 of 535

LA N Manager Remote A dministration Protocol Transaction API Request Format

B.4 Transaction A PI Request Format

B.41 Param eter Section

The parameter section (smb_param) of the Transaction request contains the following:

o AP] number: 16bitinteger

o parameter descriptor stri ng: null—terminated ASCII string

o data descriptor st.ring: null—terminated ASCII string

o parms: subroutine arguments, as described by the parameter descriptor string

o auxiliary data descriptor string: optional null—terininated ASCII string

The API number identifies which API routine the SMB redirector wishes the LMX server to all

on its behalf. A list ofAPI numbers is given in Section B.8on page 275

The parameter descriptor string describes the types of the arguments in the data section

(5mb_data), as given ill the original call to the routine on the SMB redirector.

The data descriptor st.ring describes the format of a data structure, or data buffer, which is sent

to the API routine‘ The API routine on the SIVIB redirector is normally given a pointer to this

buffer. Note that this descriptor string is also used by the server to determine the format of the
data buffer to besent back from the API (all.

The palms field contains the actual subroutine arguments, as described by the parameter

descriptor string.

The auxiliary data descriptor string describes the format of a seoond, auxiliary data structure

which is either sent to or received from the API routine, in addition to that defined by the data

descriptor string. The data described by this descriptor string is located in the data section

(5mb_data) of SMBtran5, immediately following the data described by the primary data

descriptor.

B.42 Data Section

The data section (smb_dara) of me SMBrrans requst contai ns the following:

. the primary data buffer, as d$cri bed by the data descriptor‘ string i n the parameter section

. the auxiliary data buffer (optional), as dacribed by the auxiliary data drscriptor‘ in the

parameter section

Protocols for X/Open PC Interworking: Slv‘[B, Version 2 $7

Page 286 of 535

Transaction API Response Format

B.5

B.51

B.52

LA N Manager Remote A dministration Protocol

Transaction A PI Response Format

Param eter Section

The parameter section (5mb_param) of the SMBtrans response contains the following:

- Status: a 16bit integer. This is the retum status as if the requested LAN Manager AP1 routine

would be executed on the responders system. Zero normally indicates success.

- Converter word; 16bit integer, used by the requestor‘s system to adjust the pointer in the
data section. "Dre use of this field is described below.

- Parms: return parameters, as described by the parameter descriptor string in t.he request

message. Only those parameters which are identified in the parameter descriptor‘ string as

being receive pointers (that is, which will be modified by the server) are actually returned
here.

D ata S ecti o n

The data section (smb_daia) of due SMBirans requst contai ns:

- the primary rem med data buffer‘, as dam bed by the data drscriptor in the request message

a the auxiliary data buffer (optional), as dacribed by the auxiliary data dtscriptor‘ in the

request message

X/Open CA E Speci fication ([$2

Page 287 of 535

LA N Manager Remote A dministration Protocol

B.6

B.61

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Descriptor Strings

Descriptor Strings

A descriptor string is a null—terminated ASCII string. Descriptor string elements oonsist of a

letter describing the type of the argument, possibly followed by a number (in ASCII

representation), specifying the size of the argument. Each item in the descriptor string describes
one data element.

D escriptor String Types

The following describes the characters which may be encountered in a descriptor string, and the

format of the corresponding data described by the descriptor string.

B Byte

If followed by one or more digits (that is, B 13) this refers to an array of bytes. One or more

bytes will belocated in the corresponding data area. Note that this type will not be found iii

the parameter descriptor string (that is, it will not be used to describe subroutine

arguments), since single bytes cannot be pushed onto the stack by the SIVIB redi rector.

16bit integer

If followed by one or more numbers (that is, W4) this refers to an array of 16bit integers

One or more 16bit integers will be located in the corresponding parameter or data area.

Ebit integer

If followed by one or more numbers (that is, D3 this refers to an array of C2-bit integers

One or more E-bit integers will be located in the corresponding parameter or data area.

Null-terminated ASCII string

The corresponding parameter or data area oontaj ns a nuIl—ter'minated ASCII string. This

type has a different meaning when applied to returned data. (See below.)

Byte pointer

The original argument list or data structure contained a pointer to one (that is, b) or more

(that is, b8 bytes at this position. The bytes themselves are located in the corresponding

parameter or data area. This type has a different meaning when applied to returned data.

(See below.)

V\.brd pointer

The original argument list or data structure oontai ned a pointer to one (that is, w) or more

(that is, w2) 16bit integers at this position. The integers themselves are located in the

ooriesponding parameter or data area. This type has a dilferent meaning when applied to

returned data. (See below.)

Dword pointer

The original argument list or data structure contained a pointer to one (that is, d) or more

(that is, d3 C2-bit integers at this position. The integers themselves are located in the

ooriesponding parameter or data area. This type has a dilferent meaning when applied to

returned data. (See below.)

Receive byte pointer

The original argumentlist contained a pointer to one (that is, g) or more (that is, g8 bytes at

this position, whidi are to reoeive return values from the AP] (all. The Transaction request

oontains nothing at this position in the corresponding parameter or data area; the response

message contains data.

Page 288 of 535

D escripror Strings

h

LA N Manager Remote A dminisrration Protocol

Receive word pointer

Contains data in the parameter section. The original argument list contained a pointer to

one (that is, h) or more (that is, h2) 16bit integers at this position, which are to receive

return values from the API call. The Transaction request contains nothing at this position in

the corresponding parameter or data area; the response message contains data in the

parameter section.

Receive dword pointer

The original argument list contained a pointer t.o one (that is, i) or more (that is, ifs) Qrbit

integers at this position, which are to receive retum values from the API call. The

"Transaction request contai ns nothing at this position in the corresponding parameter or data

area; the response message contains data in the parameter section.

Null pointer

The original argument list or data structure contained a null pointer at this position. There

is nothi ng stored at this position in the corresponding parms or data area.

Send data bulfer pointer

The original argument list contained a pointer at this position to a data structure containing

more data arguments to the API call. This item appears only in a parameter descriptor

string. The format of the secondary data structure is described in the data descriptor string

(contained in the parameter section of the Transaction request message). The data itself is

oontai ned in the data section of t.he Transaction request message.

Length of send buffer

The original argument list contained a 16bit integer argument at this position which

specified the lengt.h of the send bulfer. This item appears only in a parameter descriptor

string. No value is placed in the corresponding parameter area.

Receive data buflfer poi nter

The original argumentlist contained a pointer at this position to a data structure which was

to be filled in by the API call. This item appears only in a parameter descriptor string. The

format of the secondary data structure is described in the data descriptor string (oontainrxl

in the parameter section of the Transaction request message). The data itself is contained in

the data section of the Transaction response message.

Length of receive buffer

The original argument list contained a 16bit integer argument at this position which

specified the length of the receive buffer. This item appears only in a parameter descriptor

string. The corresponding parameter area contains a 16bit integer specifying the length of
the receive buffer.

Parameter number

The corresponding parameter or data area contains a 16 bit short i nteger.

Entries read

The original argumentlist contained a pointer t.o a 16bit integer at this position, which is to

receive the number of en tries returned by the API call in the receive buffer. The Transaction

request oontains nothing at this position in the ooriesponding parameter or data area; the

response message contains the numbers of entries retumed in the receive data bulfer.

X/Open CA E Spec‘ fication ([$2

Page 289 of 535

LA N Manager Remote A dministration Protocol

B.62

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2

Descriptor Strings

N Number of auxiliary structlrres

T‘his Field is only found in data descriptor strings. The presence of the Field indicates that

there will be auxiliary data sent (if found in a send data descriptor string), or received (if

found in a receive data descriptor string). The conesponding data block contains a 16bit

integer specifying the number of auxiliary data structures to be sent (for a send data bulfer),
or whi ch have been received (for a receive data bufler).

K Unstructured data block

T‘his will normally be the only item in a descriptor string.

F Pill

The corresponding data area contains one (that is. F) or more (that is, F3) fill bytes at this
position.

PointerTypes and Returned Data

Lower—case letters are considered pointer types. These pointer types z, b, w and d have a

dilferent meaning if t.|1ey are used to describe returned information. In this case the pointers

occur in a data descriptor string or auxiliary data descriptor string and describe data to be

returired in the data section (5mb_dar‘a) of the SMBr‘rans response message. In this case the item

referred to by the pointer is not the array or string itself, but a Ebit integer. The high—order 16

bits are to be ignored and the low—order 16bits contain an olfset. The olfset subtracted by the

converter word points to the array or string within the returned data bulfer itself.

The data descriptor describes one instance of the returned data structure. The response buffer

may contain several of these data structures, each ofwhich is a fixed size. Together. these make

up the fixed—length portion of the retumed data area. The returned data buffer may also contain

data pointed to by the various pointer types described above. This data may contain strings, and

is likely to be of variable length. The fixed—length data is always placed at the beginning of the

returired data buffer; the plaoernent of the variablelength data is up to the server.

The responder must place vari able—length data at the end of the data buffer and set the pointers

accordingly. Since the total lengt.h of the data buffer is only known at the end of processirlg,

there may be a gap between the fixed—length data and the variable—length data. To avoid

sending this gap accross the network the rfiponder may position the variablelength data to a

position immediately following the fixed—length data. The pointers in the data descriptor string

do not need to get updated if the “converter word" in the response parameter section is set to

the value that the requestor must subtract from all pointer values referencing data in the

vari able—length section.

271

Page 290 of 535

Examples

B.7

B.7.1

B.7.2

LA N Manager Remote A dministration Protocol

Examples

The following examples may help clarify details of the protocol, Some details have been

simplified for ease of explanation. Note that the format of some data structures may dilfer in

vari ous versions of LAN Manager.

NetShareD el

This is one of the simplest examples of a remote API call. Suppose an SMB redirector

programme does the following call:

NetShareDel (SERVER, C, C):

This all deletes the outstanding share C on the sewer machine SERVER.

The parameter section of the Transaction request message contains:

4 AP] number for the NetShareDel function.

z\/V: Parameter descriptor string. Note that the seivername argument is not specified in the

descriptor. There are two arguments: a string specifying the name of the share to be

deleted, and a reserved 16 bit integer M32 (Must BeZero).

Data descriptor stting. There is no data buffer in the arguments, so this descriptor

stringis empty.

parms: The actual subroutine arguments, as described by the parameter C]6SCl‘i ptor stn' ng;

C: A null—terminated string.

0 A 16bitword.

There is no auxil iaiy data descn' ptor string.

The data section of the Transaction request message is em pty,

The parameter section of the Transaction rwponse message contai ns:

(16 bit word .)

converter word: Oin this case.

retum status:

retum parms: There are no return parameters in this case, so this section will be empty.

The data section of the Transaction response message is empty.

N e tS hare A dd

This example uses a send buffer:

stiuct sha re_i nfo_2 bu f:

NetShareAdd (SERVER, 2, &buf, si 2eof(bul']:

The parameter section of the Tra nsaction requst mtfisage contains:

3 AP] number for die NetShareAtld function.

\/MST: Parameter descriptor stn‘ ng.

Bl33V\/2VVV\N\kBEB: Data d¢5cn'ptor string. This oorresponds to the elements of the
sham-_im’o_2stiuctuie.

parms: The actual subroutine arguments, as described by the parameter

daciiptor suing:

X/Open CA E Speci fication ([$2

Page 291 of 535

LA N Manager‘ Remote A dministmtion Protocol Examples

2 The second argument.

Note that there is no data here corresponding to the sT portion

of the parameter descriptor string.

There is no auxiliary data descri ptor stn' ng.

The data section of the Transaction request message contains the contents of the share_r’nf0_2
structure:

~ thirteen bytes (from the shi2_netname field)

~ one byte (from shJ'2_pad I)

~ one 16bit word (from shi2_iype)

~ null-terminated ASCII string, copied from the one pointed to by 5hr'2_remark

~ one 16bit word (from shi2_permissions)

~ two 16bitwords (5hi2_maX_u5e5 and 5h1'2_currenr_u5es)

~ null-terminated ASCII string, copied from the one pointed to by 5hr'2_path

~ nine bytes (from shJ'2_pa55wd)

~ one byte (from shJ'2_pad2)

The paramet.er section of the Transaction response message contai n5:

~ return status (16bit word)

~ oonverter word: Oin t.his case

~ retu m parms: there are no return parameters in this case, so this section will be empty

The data section of the Transaction response message is empty.

B.7.3 NetShareE1ium

This example has both return parameters and return (1 ata:

struct share_info_ 1 buf[10];

NetShareEnum(SER'\/ER, L &buf. sizeof(buf), &nentr1'es, &tota]);

The parameter section of the Transaction request message contains:

0 API number for the NetShareEnum function.

\M'Leh: Parameter descriptor string.

B133\/V2: Data descriptor string (for returned data, in this case).

parms: The actual su brou tine arguments, as described by the parameter (1 escriptor string:

1 Second argument

sizeof(buI): This is a send parameter because the server needs to know how

much space it has available in which to return results

Note that the other arguments are result parameters, and are thus not

passed to the server:

There is no auxiliary data desciiptor string.

The data section of the Transaction request message is em pty,

Protocols for X/Open PC Interworki rig: SIv‘[B, Version 2 273

Page 292 of 535

Examples LAN Manager Remote Administration Protocoi

The parameter section of the Transaction response message contai n5:

~ retum status (16 bi t word)

~ oonverter wold: (possibly set by server)

~ entries retu rned (16 bit word)

~ total number of available entries (16 bit word)

The data section of the response Transaction message contains a number of share-_inf0_i

stnuctures. The number of such structures is given by the entries returned return parameter.
Each structure contai ns:

~ thi rteen bytes (the shi1_nefname field)

~ one byte (5hi1_pad I)

~ one 16bit wold (5hi1_iype)

~ the 5hii_re-mark field. This is a Four-byte value. The two low-order bytes oontai n the olfset

within the data section of the null—terminated ASCII string. The value may need adjusting:
the converter word value must be subtracted from this olfset in order to obtai n the true offset

of the string.

s a possible gap following the fixed—ler1gth data. This is up to the server.

~ the null—tenninated stiing pointed to by the shf i_remark field

274 X/Open CA E Speci fication ([$2

Page 293 of 535

LA N Manager Remote A dministration Protocol A PI Numbers

B.8 A PI N lJIl11)eI‘S

The following are the API numbers used to specify the vaiious remote LAN Manager routines‘

They are included here so that an implementor can build an LMX server which can handle this

class of SMB redirector requests. However, their inclusion in this specification does not imply
an X/ en endorsement of these mechanisms as the basis for future X/ Jen network3’

management functionality. (A routine name beginning with R identifies a routine which gets

special handling by the LMXsei-ver, rather than simply calling the local veision of the routine.)

Protocols for X/Open PC Interworking: Slv‘[B, Version 2

Page 294 of 535

O RNetShareEnum 44 RNetAocessSetI nfo

1 RNetShareCetlnfo 45 RNetAocessAdd

2 \'etShareSetInfo 46 RNetAocessDel

3 \'etShareAd cl 47 \letCroupEnum

4 \'etShareDeI 48 \letCroupAdd

5 \'etShareCheck 49 \letCroupDel

6 \'etSessionEnu m 53 \letCroupAdd User

7 \'etSessionCetl n f0 51 \letCroupDelUser

8 \'etSessionDel Q \letCroupCetUsers
9 \'etConnectionEnu m 53 \letUserEnu m

10 \' eIF1leEnum 54 RNetUserAdd

1 1 \' eIF1leGetlnfo 55 \IetUserDel

12 \' eI:FileC| ose 56 \IetUseiGeLI nfo

13 RNetSer\rerGei'_lnfo 57 RNetUserSednlo

14 \'etServerSetInfo $ RNetUserPasswordSet

15 \'etServerDiskEnu m 59 \IetUseiGetC roups

16 \'etServerAdminCommand ED \let‘WkstaLogon

17 \'etAuditOpen 61 \let‘WkstaLogol'f
18 \'etAuditCl ear Q \let‘WkstaSet.UID

19 \' el:E.rrorLogOpen 63 \let‘WkstaCeI'_1nfo

3) \' el:E.rrorLogClear 64 \let‘WkstaSeLl nlo
21 \'etCharDevEnu m % \letUseEnu m

22 \'etCharDevG et_Info Q3 \letUseAdd

23 \'etCharDevCont: 01 67 \letUseDeI

24 \'etCharDevQEnu m @ \letUseCet_I nfo

E \'etCharDevQGet_Info 89 DosPn' ntQEnum

% \'etCharDevQSeLI nfo 73 DosPn' ntQCetl nfo

27 \'etCharDevQPu rge 71 DosPn' ntQSet_I nfo

28 RNel.CharDevQPu rgeSell 72 DosPn' ntQAd cl

E \'ed\/1essageN ameEnu m 73 DosPn' ntQDel

33 \'ed\/1essageN ameCeI;1nfo 74 DosPn' ntQPause

31 \'ed\/1essageN ameAdd 75 DosPn' ntQConti nue

Q \'ed\/1essageN ameDel 76 DosPn' nt.bbEnu m

33 \'ed\/1essageN ameFwd 77 DosPn' ntbbCed nlo

34 \'ed\/1essageN ameUnFwd 78 RDosPrint_bbSetlnfo

% \'eIj\/1essageBuffei ‘Send 79 DosPn' ntbbAd (1

'£ \'etl\/lessageFileSend 83 DosPn' nt.bbSched ule

37 \'ed\/1essageLogFi leSet 81 RDosPrint_bbDel

E \'ed\/1essageLogFi |eGet Q RDosPrint_bbR=iuse
Q \'etServioeEnu m 83 RDosPrint_bbContinue

40 RNetSer\ri oelnslall 84 DosPn' n|Dest_Enu m

4 1 RNetSer\ri oeControl 85 DosPn' n|DestC eI;I nfo

42 RNetA0cessEnum % DosPn' nIDestControl

43 RNetAocessC-etlnfo 87 NetP1‘ofileSave

AIfi1Vumba$

g§g88988£&@98@%
K13

Page 295

\' eI;P1‘ofileLoad

\'etStatisti (‘SC et

\'etStatisti csClear

\'eIRemoteTOD

\'eI:BiosEr1um

\'eIJ3iosCed nfo

\'etServerEnu m

I_NetServerEr1u m
\'etServioeCeI;I nfo

\' etSpI QmAbort

\' etSpI QmClose

\'etSpI QmEndD0c

\'etSpI QmOpen

\'etSpI QmStat1:Doc

\'etSpI Qm\/\,H te

DOSPI1‘ ntQPU rge

of 535

LA N Manager Remote A dministration ProtocoI

X/Open CA E Sped fication ([EB

Appendix C

be X/Open Security Package

The X/Open security package, as defined in this appendix, permits the LMX server [0 select

encryption functions from lists sent by the SMB redirector. This appendix defines some

suggested E0 and U() dialect names and the functions associated with those names.

The definitions in this section are not a part of the X/ Open speci fication of the SMB protocols at

the present time. and might not become a part of the X/Open specification in the future.
Nonetheless. it is reoom mended that the dialect names defined here are used as defined; if other

encryption functions are supported, names defined in this appendix should not be used for
them.

C.I E()Functior1s

The E () function is used to respond to the server and (optional) Sl\/[B redirector challenges. It

cryptographiaally combines the challenge string and the password string (in server form, see

Section C.2to produce the response string. The function should be chosen so that it is difficult or

expensive to derive the password string from the challenge string and response string. even if

the cryptographic function is not secret.

The following table gives the E() dialect name and a definiljon for the function t.o be used if that
dialectis selected,

NULL Value is the password string (in server form), unchanged. Used when the network

is known to be secure agai nst eavesdropping (for example, link encryption).

DES2 The password String is used as a key to encrypt the challenge string using the DES
block mode algorithm. The DES function is applied as described in Appendix D on

page 279

UNIX The server—form password string is used as input to the well-known UNIX

password encryption algorithm3. Instead of using a data block of all zeros. the
challenge string is used: the salt is two NULL characters.

--
2 U.S. De];>ar1.mer1toi'Cotnnr1e-roe Data Encryption Standard.

3 Morris. Robert and "Ihompson. Ken: Password Security: A Case History. Bell Laboratories Technitzl Memorandum. April 3
1978 Reprinted in UNIX Programmers" Manual. Sevmth Edition. Volume 2 page 5.5 New York: Holt. Rlnehart and Winston
(1933-

Protocols for X/Open PC Itrterworking: SIv‘[B, Version 2 277

Page 296 of 535

U() Functions

C.2

The X/Open Security Package

U() Functions

The U0 function is used to transform a cleartext password into the form in which it is stored on

the server (that is, server—form). Many X/Open-compliant systems store passwords in an

enciypted form, and many of t.hese functions are one—way; that is, the transfonnation from

cleartext to cryptotext is not reversible. Negotiation of the U () function permits the SIVIB

redirector to ieproduoe the ciyptotext password given the clear password as typed by the user.

Some U () functions require additional data aside from the password and username. If the server

selects such a U () function, it will retum the necessary additional data in the SMB5ecpl§gX

nesponse. Some LMX server implementations support a mechanism for changing a user's

password via some additional protocol; those LMX server implementations should also return

any additional data required for that prooess.

The following table defines U() dialect names and the functions to be performed if that dialect is

selected. The contents of the Xp_ouJ'nf and xp_nuinf fields of the $MBsecpkgX iesponse are also
desciibed.

NULL

UNIX

The server—form of the password is identical to the cl eartext form.

The well—known UNIXpassword encryption algorithm is used. The xp_ouinf field

oontains the two—character salt required by the algoiithm. If the LMX server

supports password changes via protocol. the xp_nuinf field should be the new salt

to be used if the SMB redirector changes passwords.

X/Open CA E Sped fication ([$2

Page 297 of 535

Appendix D

MB Encryption Techniques

D .1 SMB A utlreirtication

The SMB authentication scheme is based upon the server knowing a particular encrypted form

of the users password. the client system constructing r.hat same encrypted form based upon user

input. and the client passing that encrypted form in a secu re fashion to the server so that it can

verify the client's knowledge.

The scheme uses the DES“ encryption function in block mode: that is. there is a function E (K. D)

which accepts a 7—byte key (K) and 8byte data block (D) and produces an 8byte encrypted data

block as its value. If the data to be encrypted is longer than 8l)ytes, the encryption function is

applied to each block of 8bytes in sequence and the results appended together. If the key is

longer than 7bytes. the data is first connpletely encrypted using the first 7bytes of the key. then

the second 7bytes. etc.. appending the results each time. In other words:

E(KOK1-DOD1)=E(K0-DD)E(K0~D1)E(Kl~D0)E(K1-D1)

D.l.l SMBnegprotResponse

The SMBnc-gprot response field smb_ cryptkey is the result of computing:

C8=E(P7.S&

where:

o P7is a ibyte string which is non-repeating. This is usually a combination of the time (in

seconds since January L 191:) and a counter which is incremented after each use.

- S8is an 8l)yte string whose value is ? ? ? ? ? ? ? ? (eight question marks).

D .l.2 SMBtco1t, SMBtconX, SMBsesssetupX Requ ests

The client system may send an encrypted password in any one of these requests. "Dre server

must validate that encrypted password by performing the same computations the client did to

create it. and ensuring the strings match. The server must compute:

P16=E(P14 S8

and:

P2zkE(P21,C8l

where:

o P14is a 14byte string containing the user's password in cleartext, padded with spaces.

o S8is the Bbyte well—know n string (see above).

—
4 US. Department of Commerce Data Encryption Standard.

Protocols for X/Open PC lnterworking: Slv‘[B, Version 2 279

Page 298 of 535

SMB Authentication SMB Encryption Techniques

s P21 is a 21—byte string obtained by appending 5 null (C) bytes to the string P16, just
oomputed.

s C8 is the value of 5mb_cr_yptl(ey sent in the SMBn egprot response for thi s oonnecljon.

The final string, P24, should be compared to the encrypted string in the request:

~ the smb_pas5wd Held in $MBtcon

~ the smb_spa55wd field in SMBtconX

~ the smb_apas5wd field in $MBses5setupX

If they do not match. itis possible the client system was incapable of encryption; if so, the string

should be the user's password in cleartext. The server should try to validate the string, treating

it as the user's unencrypted password. If this validation fails as well, the password (and the

request) should be rejected.

X/Open CA E Sped fication ([$2

Page 299 of 535

A ppen dix E

OP/NetBIOS

This appendix reprocluoes, in full and unedited, the MAP/TOP Users Group Technjcal Repont

Specufication of NetBIOS Interface and Name Service Support by Lower Layer OS] Protocols.

Version LO September 27. 1%

Protocols for X/Open PC Interworking: SIv‘[B, Version 2 $1

Page 300 of 535

TO PA\IetBIOS

MAP/TOP Users Group Technical Report
Specification of NetBIOS Interface and Name Service

Support by Lower Layer OSI Protocols

Version 1.0, September 27, 1939

1 INTRODUCTION

In addition to the universal interoperability TOP products offer, many users
have purchased products that conform to proprietary and de facto networking
standards. For IBM personal computers and compatibles, a de facto networking
standard is the Network Basic Input Output System, or NetBIOS. A majority of
popular network applications for these computers require a NetBIOS—compatible
interface.

Many vendors recognize this fact and understand the need to preserve
investments in these applications while allowing the support of new TOP based
applications. Several of these vendors have introduced or plan to introduce

TOP products with a NetBIOS-compatible interface.

In order to prevent these vendors from developing separate and incompatible

implementations, the TOP NetBIOS Migration Technical Committee has defined a
unifornu way‘ to support the NetBIOS interface in TOP systems. All products
that conform to this specification interoperate with each other, and networks
composed of such products support both TOP applications and current PC

software packages. The PC applications operate without modification on the

local network and, in many cases, as described in section 3.4, across the TOP
internetwork. In order to support TOP applications, an implementation must
conform to the TOP V3.0 Specification in addition to this NetBIOS support
specification.

The specification defined. by the TOP NetBIOs Migration Technical Committee
consists of this specification. It is logically divided into two parts. The
first part defines a mapping of the NetBIOS Interface to 180 Transport
Services and Data Link Services. The second part defines a naming protocol

for the NetBIOS environment over TOP-recognized subnetworks that support

NetBIOS name support services.

Sections 3 through 6 and Appendix I comprise the first part. Section 2,
“Reference Documents," specifies the documents that the Technical Committee

considers to define the NetBIOS interface and the ISO transport services.
Readers should become familiar with these documents, as the remaining
sections assume a knowledge of both the NetBIOS interface and ISO transport
services and ISO transport profiles.

Section 3 describes the general principles behind the mapping of NetBIOs
commands to transport services. section 4, “Special Considerations,"
discusses several significant issues in the NetBIOS/transport mapping.
Sections 5 and 6 detail the mapping. “NetBIOS Commands" describes the
mapping of each NetBIOS command to ISO transport services. It identifies the

level of support required for each NetBIOS command, and it indicates the
specific transport service requests associated with each command. Section 6,
“Transport Service Indications and Confirmations," describes the response
of the NetBIOS interface to each transport service indication and
confirmation” Finally, Appendix 1, ‘‘State Tables,” presents state tables

that precisely define the mapping between NetBIOS “sessions’ ' and class four
transport connections.

Sections 7 through 9 and Appendices II through. V define the NetBIOS Name
Service Protocol. Appendix VI is provided for future errata or clarifications

discovered during product implementation and interoperability testing.

E X/Open CAB Speci ficaljon (1%

Page 301 of 535

TOP/NetBIOS

2 R-REINCEIS AND DEFINITIONS
The first step in defining a mapping between the NetBIOS interface and ISO

transport services is to agree on a definition of the NetBIOS interface and
OSI services. This section. lists the reference documents that the SIG has

agreed to use as the definition for NetBIOS and transport.

2.1 The NetBIOS Interface

For the purposes of the mapping specified by this specification, the NetBIOS
interface is defined by the first section, “NetBIOS," in the first edition

(April 1987) of the IBM publication NetBIOS Application Development Guide
(IBM product number 68X2270). When that section directs readers to adapter

specific sections for exact details of certain commands (ADAPTER STATUS, for
example), those details can be found in this specification. Note that the IBM

specification defines the exchange of NCB5 [Network Control Blocks - contents

and error responses) between a NetBIOS Client and NetBIOS service provider.
The contents of the NCBs and error responses are the same for NetBIOS
Interfaces for DOS and 08/2 environments; however, the NCB transfer mechanism
for these two environments is different and is not covered in this

specification.

2.2 OSI Services

— ISO 8072-1986: Open Systems -- Transport Service Definition

— ISO 8072—ADD1: Transport Service Definition —— Addendum 1:
Connectionless—Mode Transmission

—-ISO 8073-1986: Connection Oriented Transport Protocol Specification

— ISO/DIS 8602: Protocol for Providing the Connectionless—Mode Transport
Service

— ISO 8473/N4S42: Protocol for Providing the Connectionless—mode Network
Service

— ISO 8648: Internal Organization of Network Layer

—-ISO 8348, ADl, AD2: Network Service Definition, Connectionless Data

Transmission, Network Layer Addressing

— ISO 8802/2: Logical Link Control

—-ISO 8802/3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD)

— ISO 8802/4: Token Passing Bus Access Method

— ISO 8802/5: Token Ring Access Method

2.3 Definitions

2.3.1 Reference Model Definitions

This specification makes use of the following concepts defined in the
ISO/OSI’s Basic Reference Model [ISO 7498]:

DUA [SO Directory User Agent

35A [50 Directory Service Agent

DIB Directory Information Base

ES End System

IS Intermediate System

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 K

Page 302 of 535

TO P/NQIBIOS

LSAP Link Layer Service Access Point

NSAP Network Service Access Point

PDU Protocol Data Unit

psel presentation selector

SNPA Subnetwork Point of Attachment

SNPDU Subnetwork Protocol Data Unit

ssel session selector

TPDU Transport Protocol Data Unit

TSDU Transport Service Data Unit

tsel transport selector

2 3.2 Other Definitions

The following terms/concepts used in this specification, which are not
defined in ISO 7498, are as follows:

NCB Network Control Block

NDUA NetBIOS Directory User Agent

NDSE NetBIOS Directory Service Entity

NSP NetBIOS Name Service Protocol

NSPDU NetBIOS Name Service Protocol Data Unit

2.3.3 Service Conventions Definitions

This Protocol Specification makes use of the following terms from the OSI
Service Conventions Technical Report (ISO TR 8509):

1. Service provider

2. Service user

2.3.4 Additional Definitions

For the purposes of this specification, the following definitions apply:

1. Group Name: a name which can be shared among multiple owners; a name
which is not unique. This definition derives from the NetBIOS group name
concept, rather than from the ISO/CCITT group entry.

2. Local Matter: a decision made by a system concerning its behavior in the
Directory System that is not prescribed or constrained by this
specification.

3. Protocol Address: the complete protocol address of an object or entity,
consisting of its transport address.

4. Byte and Octet: used interchangeably in the specification.

3 GENERAL PRINCIPLES

Before embarking on a detailed description of the mapping between the NetBIOS
interface and ISO transport services, it is important to understand several
general principles upon which this specification is based. The NetBIOS
interface is best supported at the ISO transport layer; NetBIOS “sessions"
best map to class 4 transport connections, and NetBIOS Datagrams best map to

connectionless transport data requests except in the case of broadcast
datagrams (broadcast name services) where a Data Link level mapping is
required. The NetBIOS general commands, with one exception, do not require

$4 X/Open CAB Speci ficaljon (1%

Page 303 of 535

TOP/NetBIOS

any exchange of peer—to—peer protocol data units. The following subsections
discuss each of these principles in more detail.

3.1 NetBIOS Supported on a Transport Service

The best level in the OSI reference model at which to map the NetBIOS

interface is the level whose services most closely parallel the services
offered by the NetBIOS interface. That is the OSI transport level. The

NetBIOS interface requires reliable, sequenced data delivery, a service only
available at the transport level and above. The NetBIOS interface, however,

does not provide upper level services such as token management,
synchronization and activity management. The only OSI level above the network
level and below the session level is, of course, the OSI transport level, and

it is to this level that the NetBIOS interface best maps.

Readers should be cautioned that the NetBIOS interface definition (see above)
often refers to the NetBIOS interface as a “session” level interface. These

references exist because the protocols that support the original NetBIOS
interface (on the original PC Network Adapter) were developed before the OSI
reference model was widely understood. The highest level protocols on the
adapter were called “session” protocols despite the fact that they do not

provide OSI session services. Throughout this specification, terms which
refer to the NetBIOS view of a “session” will be placed in quotation marks.

Terms which refer to the OSI View of a session will remain unquoted.

In addition to its data transfer services, NetBIOS provides name service

support. The specific naming services NetBIOS provides differ fundamentally
from the current ISO directory services. No reasonable mapping between
NetBIOS name support and ISO directory services exists, so NetBIOS name
support does not affect the choice of protocol level at which. to map the

NetBIOS interface. A protocol that provides NetBIOS naming services is

specified in the Sections 7 through 9.

Choosing to map NetBIOS to the transport level does provoke another concern:
the NetBIOS assumption of confirmed data delivery. NetBIOS data transfer

between “sessions” is a confirmed service, while ISO transport services
provide only unconfirmed data delivery (see “Confirmed Data Delivery" in
the following section).

One important consequence of mapping the NetBIOS interface to transport

services is that NetBIOS “addresses" equate to transport selectors. A
NetBIOS “address“ is a NetBIOS name; NetBIOS names correspond to transport
selectors. The transport address is the combination of a network service
access point (NSAP) address and. a transport service access point selector
(T—Selector). The NSAP address for a name is an NSAP address on the network

node at which the name exists; the T-Selector for a name is equal to the full
NetBIOS name itself. Since the NetBIOS interface requires that names be
exactly sixteen characters long, T—Selectors used by NetBIOS names are also

sixteen bytes long. The correspondence between a NetBIOS name and a transport
address (an NSAP address and T—Selector pair) is detailed in part two of this

specification.5

3.2 NetBIOS “Sessions” as Transport Class Four Connections

Since the NetBIOS interface best maps to the transport level, NetBIOS

“sessions“ correspond to transport connections. Furthermore, since NetBIOS
“sessions“ require reliable data. delivery with. automatic error detection

5 Sections 7-9 and Appendices IT-\7

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 K

Page 304 of 535

TOP/NetBIOS

and recovery, when operating over a connectionless network service, they
require class four (TP4) transport connections. Since this specification
assumes a connectionless network service, the NetBIOS “session" support
commands map to TPA1 services. LISTEN and CALL commands establish a TP4
connection; SEND, CHAIN SEND, RECEIVE and RECEIVE ANY commands transfer data
on that connection, and HANG UP commands terminate the connection. The

“NetBIOS Commands" and “Transport Service Indications and Confirmations"
sections of this specification. describe the operations required to support
each of these commands. Appendix I, “state Tables," details the mapping
between “sessions” and TP4 connections.

3.3 NetBIOS Datagrams as Connectionless Transport Unitdata Requests

Data transfer with NetBIOS datagrams, unlike NetBIOS ‘‘sessions'‘, is a
connectionless mode of transmission. Naturally, therefore, NetBIOS datagrams
correspond to data transfers using the connectionless mode transport service.
NetBIOS datagrams may be sent as broadcast datagrams or as multicast
datagrams to group names. In order to support broadcast dataqrams and

datagrams to group names, the NetBIOS interface requires some form of
multicast or broadcast addressing. Currently, the ISO transport and network
layers do not support multicast or broadcast network addresses.

TOP support for multicast and broadcast addressing is only available through
the ISO 3302 link level protocols, so broadcast datagrams and datagrams to
group names must use link level addressing. Section 4.3 of this paper,

“Broadcast Datagrams and Datagrams to Group Names," details the addressing

techniques used.

Because NetBIOS datagrams may contain as many as 512 bytes, the NetBIOS
interface requires the lower level services to support a datagram size able

to include both the 512 bytes of data and header information for NetBIOS,

Transport, Network and Data link Layers. This requires a minimum frame size
of 650 octets.

Detailed documentation of the support required for SEND DATAGRAM, SEND
BROADCAST DATAGRAM, RECEIVE DATAGRAM and RECEIVE BROADCAST DATAGRAM can be

found in the “NetBIOs Commands“ and “Transport Service Indications and
Confirmations” sections below.

3.4 Guidelines and Constraints

1. There are three levels of NetBIOS interface services which imply
different constraints on the networked NetBIOS based application

interconnectivity, see Figure 2.

—Level A - NetBIOS Connection Services: These services rely on the
Connection Oriented Transport and Connectionless Network Protocols,
thus following full communication beyond the local network.

—-Level B —- NetBIOS Connection and Point—to—Point Datagram Services:
These services are a superset of Level A services. As they rely on the
Connectionless Network Protocol, communication is possible beyond the
local subnetwork. However as the Connectionless Transport is used, the

loss of NetBIOS Datagram, if it occurs, would not be recovered from by
the Transport Layer.

—-Level C — Extended NetBIOS Services: These services are a superset of

Level B services which adds the support of the NetBIOS broadcast and

multicast datagram services. As these added services do not use the
Connectionless Network Protocol, no direct communication (i.e , no OSI

Routing) is possible beyond the local subnetwork. As a consequence
any NetBIOS based application requiring Level C Services will have to

be distributed only within a single Subnetwork.

% X/Open CAB Speci ficaljon (1%

Page 305 of 535

TOP/NQIBIOS

2. The use of NetBIOS Name Services and the manner in which they are
distributed imply the following constraints.

a. Name Services scope support based on multicast mechanism is limited
to a local subnetwork (the same as NetBIOS native networking).

b. The expected way to extend the local scope of NetBIOS naming is to
integrate the NetBIOS Name Servers into an OSI Directory Services
Environment .

3.5 NetBIOS General Commands

Normally, the NetBIOS general commands do not require any peer—to—peer
protocol support. For example, no mapping to an ISO protocol is required for
RESET, CANCEL, UNLINK and SESSION STATUS commands. The type of support

required for each of these commands is detailed below in “NetBIOS
Commands.“

However, one general command, ADAPTER STATUS, sometimes requires
communication with a remote system. when the ADAPTER STATUS specifies a
remote name, the local system must communicate with the remote system in

order to obtain the status. This communication uses the naming protocol
defined in NetBIOS Name Service Protocol Specification, so complete
documentation of this procedure can be found Appendix V.

The ADAPTER STATUS command also returns a buffer with fields that only apply

to specific adapters. The values that adapters conforming to this
specification should use for these fields are stipulated in “ADAPTER
STATUS" in Appendix V.

4 SPECIAL CONSIDERATIONS

A straightforward mapping from the NetBIOS interface to ISO transport
services does not resolve all the major NetBIOS/transport issues. It does not
specify how transport services provide zero octet sends, confirmed data

delivery, how they prevent data loss during hang ups, how they deliver
broadcast datagrams and. datagrams to group names, how they affect NetBIOS
timeouts, how they resolve connections between group names, or how they

support permanent node names. This section discusses each of these topics.

This NetBIOS “Session' ’ (mapping) Protocol resides above the transport layer

and makes use of the services provided by‘ the transport protocol. This
protocol specifies use of two-octet NetBIOS headers for data transfer

requests (TSDUs). The headers are fixed. and. always present.6 The specific
values for the header are given in Table 1. The headers are used to solve the
issues of zero octet length messages and data loss during hang ups, as

described in the following subsections. The most significant octet is
transmitted first.

ormal data (connection—oriented or connectionless)

close request (connection—oriented only)
close response (connection-oriented only)

TABLE 1. NetBIOS Header Values

6 .

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Note that l-IetB1OS “Session‘ ’ header is applied E0 the first TPDU only, and not all the TPDU5 when a
TSDU is segmented into multiple TPDU5.

Page 306 of 535

TO P/NQIBIOS

Note: A TSDU with an invalid header will be ignored.

Once the transport circuit is established, all the connection oriented data

TSDUs generated by the NetBIOS interface/protocol layer will contain a two
octet fixed header, carrying NetBIOS opcode as defined above. Additionally
all non name service NetBIOS datagram TSDUs contain the two octet fixed

header with value O1OOH. Note, however, that this does not apply to TSDUs
generated by the Name Service Protocol described in sections 7 through 9.

Also, note that the header applies to TSDUs, not TPDUs or TIDUs.

4.1 Zero Length Data and Normal Data Transfer

The NetB]OS data transfer requests are mapped into data TSDUs with NetBIOS
header of OIOOH for normal data as well as zero length data. Implementations

must evaluate the length of TSDU5 to determine whether or not it has zero
length “user data”.

4.2 confirmed Data Delivery

The issue with mapping the NetBIOS interface to transport services is
guaranteeing data delivery on “sessions". When a NetBIOS SEND or CHAIN
SEND command completes, the local user is assured that the remote user has
actually received the data. The ISO transport services, however, provide no
indication to the sender of actual data delivery; they do not have a T—DATA

confirmation primitive. Software implementing a NetBIOS interface does not
necessarily know when to indicate that a SEND command has completed.

This behavior can create a problem because, in some application programs, the
sender may take actions based on an assumption that the receiver has

possession of the data. Taking these actions before the receiver actually
does have the data may cause the application program to fail. Fortunately,
most NetBIOS application programs do not require true confirmed data
delivery; they only need assurance that data is not lost when the “session"
is closed. This specification, therefore, provides a means of preventing data

loss during hang up (see below] . Implementations are, of course, free to add
a confirmed data delivery service during normal data transfer. The details of
such a service are a local matter.

4.3 Data Loss During Hang Up

Because the NetBIOS interface cannot depend. on ISO transport services to
guarantee data delivery at all times, the interface must prevent data loss
during hang up. The NetBIOS definition states that a HANG UP command does not
complete until all outstanding SEND and CHAIN SEND commands on the

“session“ have completed (either successfully or unsuccessfully). Because
NetBIOS confirms data delivery by completing the SEND command, NetBIOS users
are guaranteed that either all data will be delivered prior to the hang up,

or that an unsuccessful SEND or CHAIN SEND completion will alert them to data
that could not be delivered.

The transport T—DISCONNECT request, on the other hand, is not graceful. It
does not wait for all data sent to be delivered to the user. Without

confirmed data delivery, the transport user has no way of knowing whether or
not data has been delivered to the receiver before the disconnect completes.

To prevent data loss, the NetBIOS interface must delay the transport
disconnect until all data has been delivered to the user. To find out when

all data has been successfully delivered, the interface that wishes to hang
up sends a simple close request packet to the remote interface. This close
request is sent “in stream" as a normal data TPDU with NetBIOS opcode of
OZOOH. when the remote interface has received. all of these data. messages
followed by a “close request" message and successfully delivered data

E X/Open CAB Speci ficaljon (1%

Page 307 of 535

TOP/NQIBIOS

messages to the remote user, it sends a “close response“ back to the local

interface, with NetBIOS opcode of O300H. When the local interface receives
the close response, it knows that all data has been delivered. At that point
it issues a I‘- DISCONNECT request and completes the HANG UP command.

The close request and close response are each sent as a single data TSDU with

two octet of transport data for the NetBIOS header. The appropriate headers
are given in Table 1.

The case of close request collision is handled in a fashion similar to OSI

Session Protocol. Under these circumstances, close indication is given to

each end point. The action taken by each end point depends on its role at the
time the connection was established. The end point which originally issued
the connect request should immediately send a close response. The end point
which originally accepted the connect request should not send its close
response until a close response has been received from the other end point.

In addition to sending the close request, the NetBIOS interface initiating a
hang up starts a timer. If that timer expires before the interface receives a
close response, the “session“ is terminated abnormally‘ and. the interface

immediately issues a T-DISCONNECT request. The interface also aborts the

“session“ if it receives a T—DISCONNECT indication without having sent a
close response.

The close operation is detailed in the state tables of Appendix I.

4.4 Broadcast Datagrams and Datagrams to Group Names

An. important issue in. mapping the NetBIOS interface directly to transport
services is NetBIOS datagrams to group names and NetBIOS broadcast datagrams.
In order to support broadcast datagrams and datagrams to group names, the

NetBIOs interface requires some fornl of multicast or broadcast addressing.
Currently, however, the ISO transport and network layers do not support

multicast or broadcast network addresses. These datagrams, therefore, cannot
be transferred by the current ISO transport or network level protocols. Note
that here “broadcast" refers to NetBIOs BROADCAST DATAGRAM commands, not
true media level broadcasts.

ISO support for multicast and broadcast addressing is available through the
ISO 8802 link level protocols, so broadcast datagrams and datagrams to group

names may be transferred by the link level. when the NetBIOs interface wishes
to send either type of multicast datagram, it directs the datagram to
TOP/NetBIOS Specific Media Access Control (MAC) Multicast Address [see

Appendix IVJ7. The interface uses the node's normal MAC address as the
source MAC address. Address recommendations for Token Ring networks are

provided in Appendix IV “well Known Addresses’ ’ .

In order to differentiate these NetBIOS datagrams from non- NetBIOS “pure”

OSI traffic, the interface also uses a special Logical Link Control (LLC)
service access point for NetBIOS multicast datagrams. By‘ using a separate
LSAP, nodes avoid the possibility of conflict between invented NetBIOS
protocol for multicast/broadcast datagrams and an ISO multicast/broadcast

service which might be provided through the regular ISO LSAP in the future.

The specific LLC service access point defaults to the recommended value of
ECHE; however, conforming implementations must give users the ability to

7. The Specific Multicast Address for IEEE 302.3 is 09.00.6A.00.01.00. This MAC address is part of the
block of Ethernet addresses assigned to AT&T; AT&T has agreed to contribute it to the NetBIOS Special
Interest Group ‘This address must be configurable

B. This value of LSAP is from public domain, and this value must be configurable.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 E

Page 308 of 535

TO P/NQIBIOS

configure it to any other value. The selected service access point serves as
both the source and destination LLC address. Note that all the nodes on the

subnetwork have to be configured with the same LSAP value for this purpose;

inconsistent LSAP values will prevent intercommunication.

This addressing allows NetBIOS to send and receive multicast datagrams, but
the interface requires additional addressing information. l\1etBIOS must know
the source and destination names for each datagram sent to a group name, and

it must know the source name for each broadcast datagram. For point-to-point
communications, this information is normally available through the T-
Selector.

In order to provide complete addressing information, NetBIOS multicast
datagrams continue to use the connectionless transport and connectionless
network protocols. Thus each datagram still has local and remote I‘—Selectors

associated with it, and, as is the case with normal datagrams, these T-
Selectors indicate the local source and destination names. At the network

level, multicast datagrams use the same source NS‘-AP as normal datagrams; the

destination NSAP, however, is a special NSAP which indicates the destination
i s a mul I: i cas t NSAP. The recommended NSAP addre s s i s

49.nn.nn.O9.00.6A.O0.01.00.01, where [nn.nn=00.00] represents the subnetwork

number. Note that these datagrams use a special LLC service access point and
this NSAP address is not reported in the 1351-18 protocol. Thus, strict TOP-
conformant (i.e., non-NetBIOS) implementations of the ISO Connectionless
Network Protocol which do not support this special multicast NSAP need not
send or receive these datagrams. See Appendix V1 for all the “well known
addresses.’ ‘

Strictly speaking, NetBIOS multicast datagrams have their own protocol stack
invented by the NetBIOS SIG for operation over the ISO datalink layer. This

stack, which includes the connectionless transport layer and full network

layer (not the inactive subset) protocols, separates from the standard stack
at the LLC level, and the two stacks are kept separate by distinct LLC
service access points. Implementations, of course, are free to combine these
two logical stacks into a single physical stack. Such a combination allows

efficient use of common code. A protocol model of this NetBIOS implementation

under OSI environment is given in Figure 19. Figure 2 provides a NetBIOS
architecture based on the protocol model presented in Figure 1.

As an important consequence of using link level addressing, NetBIOS

sacrifices the ability to send multicast datagrams across the TOP internet.
NetBIOS broadcast datagrams and datagrams to group names are restricted to
the local subnetwork.

Another issue with NetBIOS broadcast datagrams (but not datagrams to group

names) is the selection of a remote T- Selector to which they should be sent.
Since there is no destination name for these datagrams, the remote T—Selector
cannot be determined from the name as it is for normal datagrams. Broadcast
datagrams, therefore, use a destination T-Selector equal to the ASCII Value
for an asterisk (2Al-l) followed by fifteen bytes equal to the ASCII value for
a space (201-I) .

Table 2 summarizes the addresses NetBIOS requires for multicast and point-
to-point datagrams. The actual recommended value for the TOP/NetBIOS
Multicast and Functional address are defined in Appendix IV.

—
9. The dotted line in Figure 1 indicates the boundary between OSI Standard Protocol and NetBIOS specific

support protocol.

E X/Open CAB Speci ficaljon (1%

Page 309 of 535

TOP/NQIBIOS

IBM NetB1OS Application Development Guide. April 1937
(DOC No. 6BX2270 SGQX-2270-00)

NeLBIOS Mapping Rules
NetBlOS SIG Defined Mapping between NetBIOS Serivces and

..H"§?F}XiUS.5‘?VX??°..”

Connection—orie
ISO 9072 Transp-

Definition
ISO B073 Transp.

S-eciiicat

Connectioniess Datagram Servic
ISO B072-RD1 Transport Service
Connection1ess—mode Transmissio
ISO B602 Protocol for

NGLBIOS
Mu1ticast/
Broadcast
Data-ram

Network Connectionless
ISO 3646 Internal Organization oi Network Layer
ISO 9343 Network Service Definition
ISO B348—AD1 Network Service Definition Connectionless

Data Transmission

ISO B348-ADZ Network Service Definition Network Layer Addressin-ISO 3473 Protocol for Connectionless—mode Network Service
ISO 9473 TC 97/SC 6 N 3453 Provision of Underlying Services
assumed by 3473
ISO 9542 TC 97/SC 6 N 4053 End System to Indermediate System

Routing Exchange Protocol for use with 6473

NeLBlOS SIG
defined
protocol Eo
support of
multicast,
broadcast
and NetBIOS
Group Names

Data Link
ISO B902/2 Logical Link Control
150 B802/3 CSMA/CD Access Method
ISO B802/4 Ibken Passing Bus Access Method
ISO B602/5 Token Rin- Access Hethod

Figure 1. NetBIOS Protocol Model

_ _ 2 Point-Point 2 Multicast/BroadcastConnection Services . .
3 Datagram Services 3 Datagram Services

TOP/N€tEIO5
NetBIOS Session and Name Service Protocols

Connectionless
Multicast

Transport Protocol
Nbn Std Ext OSI 8602

Connectionless

Transport Protocol
03] 8602

Transport Class 4
OS] 8073

Full IP
Multicast NSAP

Restricted Err Report

Full IP
OST 8473

IEEE 802.2 LLC type 1 Service

IEEE 802.3, 802.4 and 802.5

Figure 2. OSI/NetBIOs Architecture

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Page 310 of 535

291

TO P/NQIBIOS

Type Point-to-Point

.ource MAC address source adapter’- source adapter’s

best. MAC address dest. adapter’s TOE/NetBIOS Multicast
CSMA/CD) Address

lest. MAC address dest. adapter’s TOP/NetBIOS Functional
Token Ring) Address

Source LLC SAP El-i ECI-i

Destination LLC SAP EH ECH

source NSAP ource adapter’s source adapter’s
Destination NSAP est. adapter’s multicast NSAP
Source T—Selector ource name calling name
Dest. T—Selector estination name called name or “*<l5 su>"

TABLE 2. Default NetBIOS Addresses

4.4.1 Network Header — Multicast NPDUs

The network header for the PDUs for multicast traffic will be as per OSI 8473

Specification with the error bit turned off.

4.5 Send and Receive Timeouts

The NetBIOS interface defines send and receive timeouts for its “sessions”.

These timeouts limit the amount of time the interface should wait for a SEND,

CHAIN‘ SEND or RECEIVE command to complete. Application. programs that use
these timeouts usually‘ base their values on local subnetwork “sessions”.

Since the original NetBIOs does not support internetworking, application
programs are unlikely‘ to account for internetwork transit delay" when they

specify a send or receive timeout value. Implementations that map the NetBIOS
interface to ISO transport services should adjust the send and receive
timeout values appropriately for “sessions" in case they cross subnetwork
boundaries. The definition of “appropriately“ in. this case is left as a
local matter.

4.6 “sessions" with Group Names

Another consideration in the mapping of NetBIOS to transport is the
establishment of “sessions” with group names. This specification requires
support of “sessions’ ’ between group names. NetBIOS LISTEN and CALL commands

with group names for the local name are accepted by the interface. The LISTEN
command responds to any T-CONNECT indication specifying the correct T-

Selector, and the CALL command results in a T—CONNECT request with. the
appropriate local T—Selector. Additionally, the interface accepts LISTEN and
CALL commands with group names for the remote name. The LISTEN command

matches any T—CONNECT indication with the appropriate remote T—Selector, and
the CALL command results in a T-CONNECT request with a remote T-Selector

equal to the remote group name. In all cases, communication occurs through
standard ISO protocols attached to the normal ISO LSAP.

The only significant concern in connecting group names is the NSAP address
used in a T-CONNECT request when an application program Calls a remote group

name. That NSAP address should be the specific address (i.e., not generic or
group address) of one system on which the group name exists. When the group
name exists on more than one system, the choice of which remote NSAP address
to use is, for the purposes of this specification, arbitrary. In cases where

an NDSE receives multiple responses, it is a local matter how one is chosen

for use. In the case where an NDUA is responding to an NDSE, the NDUA may
choose one address to put into the response PDU. The approach to be used to
make the choice is a local matter.

§ X/Open CAB Speci ficaljon (1%

Page 311 of 535

TOP/NQIBIOS

4.7 Permanent Node Names

A permanent node name, which consists of ten octets of zeros followed by six
octets of Mac address, should be treated the same as any other NetBIOS name.

Calls to permanent node names, for example, should attempt to discover the
address of the remote name just as they would for normal names. The six non-
zero bytes in a permanent node name cannot be assumed to correspond to the
Ethernet or MAC—layer address of the adapter (but may actually be). Those

same six bytes, however, should be returned as the unit identification number
by the ADAPTER STATUS command (see below).

An adapter must, of course, successfully register its permanent node name
with the NetBIOS naming services each time it is initialized.

5 NetBIOS CO}-’[M.A_N:)S

The previous three sections specify a definition for the NetBIOs interface
and ISO transport services, outline the general principles for mapping the
two to each other, and discuss significant complications arising from the
mapping. This section begins a detailed description of that mapping. It

identifies the level of support required for each NetBIOS command, and it

indicates the specific transport service requests and responses associated
with each command. NetBIOS commands not listed in this section (TRACE and

FIND NAME, for example] are not part of the NetBIos interface as defined in
section 2.1. This specification does not specify support for these additional
commands.

Most NetBIOS commands require some initial validation before the interface
accepts them. This initial validation may include verifying that the correct
adapter was specified, that a name has a valid format, that a local name
exists, that a name number is valid, that a “session” exists, etc.. The
NetBIOS interface definition described in section two, of the referred IBM

document, includes an adequate description of this validation. Consequently,
this specification omits any description of the validation procedures.
Conforming implementations, however, must perform validation for each command
as it is described in the NetBIOS interface definition.

Conforming implementations must be able to process NO WAIT commands issued

from a post routine call by NetBIOS when a previous NO WAIT command has
completed.

5 . l RESET

Implementations conforming to this standard accept and process RESET
commands. A RESET command resets the adapter status, deletes all names except

the permanent node name, and terminates all “sessions”. It does not reset
traffic and error statistics.

The only protocol interactions resulting from a RESET command are requests to
delete NetBIOS names and T— DISCONNECT requests to close NetBIOS connections.
Implementations need not delete names belonging to non- NetBIOS programs or

protocols, nor must they close non- NetBIOS connections. This specification
does not attempt to specify the operation of non-NetBIOS names and
connections .

The RESET command may also specify the number of commands and the number of
“sessions” ‘ to be supported by the adapter. Conforming implementations must
accept and process these parameters. If the RESET command specifies a value

of zero for either parameter, the minimum number of sessions and the number
of commands are configured to implementation specific values.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 E

Page 312 of 535

TO P/NQIBIOS

5.2 CANCEL

Conforming implementations accept and process CANCEL commands. Processing is

identical to that specified in the NetBIOS definition. Cancelling a CALL,
SEND, CHAIN SEND or HANG UP commands results in an immediate T—DISCONNECT

request on the affected connection. Cancelling any other valid command does
not require any protocol interaction.

5.3 ADAPTER STATUS

ADAPTER STATUS commands for both local and remote adapters are accepted and

processed. Local status requests need not require protocol interaction
(details are left up to individual implementations); remote status requests,
however, use the services of the NetBIOS naming protocol. The format of
adapter status request/response is given in Appendix III.

when responding to an ADAPTER STATUS command, the NetBIOS interface fills in
a buffer with appropriate status information. Several fields within that
buffer apply only to specific adapters or specific network topologies. Since
it is not the intent of this specification to restrict implementations to

these few specific technologies, this specification must leave the exact

support of the ADAPTER STATUS command as a local matter. Implementations
should strive to use values for the status fields as close as possible to the
values indicated below.

— Unit identification number: The six non-zero bytes of the adapter‘s
permanent node name. These bytes do not necessarily form the Ethernet or
MAC layer address of the adapter.

—External option status: One byte whose Value is a local implementation
choice.

—Results of last self test: One byte indicating the results of the last
self-test. A binary value of l28 (801-I) indicates that the test was
successfully passed.

—software version: Two bytes containing binary values for the major and
minor Version number of this specification to which the adapter conforms.

The version number for this specification is 1.0.

—Duration of reporting period: Two bytes whose value is a local
implementation choice. It is suggested that if the interface reports the

MAC statistics indicated by the next eight items, this field contains the

binary value of the time, in minutes, since the adapter began recording
the statistics. This value rolls over after reaching a value of <2**l6—1>
minutes. If the interface does not report MAC statistics, it is suggested
that this field contains zero.

—Number of CRC errors received: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of 1*/LAC-layer packets (frames) with CRC
errors received by the adapter. This value is not necessarily restricted

to NetBIOS frames, and it does not roll over after reaching <2**16-1>
errors.

—Num.ber of alignment errors received: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or

the binary value of the number of MAC- layer packets (frames) with
alignment errors received by the adapter. This value is not necessarily
restricted to N'etBIOS frames, and it does not roll over after reaching
<2**l6-l> errors.

— Number of collisions encountered: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or

$4 X/Open CAB Speci ficaljon (1%

Page 313 of 535

TOP/NQIBIOS

Rofixobfi

Page 31

the binary value of the number of MAC—layer collisions detected by the
adapter. This value is not necessarily restricted to NetBIOS frames, and
it rolls over after reaching <2**16—l> collisions.

Number of unsuccessful transmissions: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC- layer packets (frames) whose
transmission was aborted by the adapter. This value is not necessarily
restricted to NetBIOs frames, and it rolls over after reaching <2*Wl6-1>.

Number of successfully transmitted packets (frames): Four bytes whose

value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of MAC—layer packets

(frames) successfully transmitted by the adapter. This value is not
necessarily restricted to NetBIOS frames,
<2**32-1> packets.

and it rolls over after reaching

Number of successfully received packets: Four bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC—layer packets (frames) successfully

received by the adapter. This value is not necessarily restricted to

NetBIOs frames, and it rolls over after reaching <2'*32—l> packets.

Number of retransmissions: Two bytes whose value is a local implementation
choice. It is suggested that they either contain zero or the binary value
of the number of MAC-layer packets (frames) retransmitted by the adapter.

This value is not necessarily restricted to NetBIOs frames, and it rolls
over after reaching <2**16—1> retransmissions.

Number of times the receiver exhausted its resources: Two bytes whose

value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of times the receiver did
not have sufficient buffers to receive an incoming MAC—layer packet. This
value is not necessarily restricted. to NetBIOS frames, and. it does not
roll over after reaching <2**16—1>.

Reserved. for internal use: Eight bytes whose value is a local
implementation choice.

Free NCBs: Two bytes containing the binary value of the number of
additional NetBIOS commands the adapter can currently accept.

Configured maximum NCBs: Two bytes containing the binary value of the
maximum number of commands
the last RESET

that the adapter can support,
command or initialization.

as configured by

Maximum number of NCBs: Two bytes containing the binary value of the

maximum number that the adapter can accept in the next RESET command for
the “maximum number of commands supported” parameter.

Reserved for internal Four whose value is local

implementation choice.
use: bytes a

Pending sessions: Two bytes containing the binary value of the number of
currently active or pending “sessions”.

Configured maximum sessions: Two bytes containing the binary value of the
maximum number of “sessicns“ that the adapter can support, as configured
by the last RESET command or initialization.

Maximum number of sessions: Two bytes containing the binary Value of the
maximum number that the adapter can accept in the next RESET command for
the “maximum number of sessions supported" parameter.

Maximum ‘‘session'‘ data packet size: Two bytes containing the binary
value, in octets, of the maximum TPDU size supported by the adapter, minus

‘X/Open PC[nte1wo1'king: SMB, Version 2 E

4 of 535

TOP/NetBIOS

the maximum TP header size.

—-Quantity of names in local name table: Two bytes containing the binary

value of the current number of NetBIOS names claimed by the adapter. This
value does not include the adapter‘s permanent node name, nor does it
include any names used by’ programs or protocols other than the NetBIOS

interface. This number also indicates the maximum number of name entry
pairs {the next two fields) which can follow.

——Name: the sixteen byte NetBIOS name.

—-Name status: Two bytes, the first of which contains the binary value for
the NetBIOS name number, and the second of which contains the name's

status. The most significant bit of this second byte indicates whether the
name is a unique name (if the bit is clear) or a group name (if the bit is

set). The three least significant bits of the status denote the condition

of the name. The remaining bits of the name status are undefined, and
their values are a local implementation choice. The following list
summarizes the values for this field.

Oxxxxxxx name is a unique name

lxxxxxxx name is a group name

xxxxxooo name is trying to register

xxxxxloo name is registered

xxxxxlol name is de—registered

xxxxxllo name has been detected as a duplicate

xx>oo<111 name has been detected as a duplicate and is pending de-
registration

5. 4 UNLINK

This specification does not provide support for the UNLINK command (nor, in
fact, for remote program load). A conforming implementation‘s response to an
UNLINK command is left as a local choice.

5.5 ADD NAME

Conforming implementations accept and process ADD NAME commands. The NetBIOS

interface translates the ADD NAME command into an appropriate request for the

NetBIOS naming services. when the interface receives a confirmation from the
naming services, it translates the confirmation‘s result to ari appropriate
NetBIOS return code and completes the ADD NAME command. Details of name
registration can be found in NetBIOS Name Service Protocol (Section 9).

5. 6 ADD GROUP NAME

Conforming implementations accept and process ADD GROUP NAME commands. The
NetBIOS interface translates the ADD GROUP NAME command into an appropriate

request for the NetBIOS naming services. when the interface receives a

confirmation from the naming services, it translates the confirmation’s
result to an appropriate NetBIOS return code and completes the ADD GROUP NAME
command. Details of name registration can be found in NetBIOS Name Service
Protocol (Section 9).

5. 7 DELETE NAME

Conforming implementations accept and process DELETE NAME commands according
to the NetBIOS interface definition. If the name has active “sessions",
the interface marks the name for‘ eventual deletion and returns the DELETE

NAME command with a return code of “command completed, name has active

% X/Open CAB Speci ficaljon (1%

Page 315 of 535

TOP/NQIBIOS

“sessions“ and is now de—registered” (OEH). when all the active
‘ ‘ have closed or aborted, the interface actually deletes the name.

If the name has pending commands other than active “session” commands,

those commands are returned immediately with a “name was deleted" (171-I)
completion.

‘ ‘ sessions

When the NetBIOS interface deletes the name (either immediately or after all
active “sessions” have closed), it sends an appropriate request to the

NetBIOS naming services. Details of name deletion can be found in NetBIOS
Name Service Protocol (Section 9).

5.8 CALL

Conforming implementations accept and process CALL commands. When it
receives a CALL command, the implementation first finds the transport address
corresponding to the remote NetBIOS name. To find this address, it sends a

resolve name request to the naming services. If the naming services cannot
discover the name's address, the interface completes the CALL command with a
return code of “no answer (cannot find name called)” (14H) .

If the name resolution is successful, the interface continues processing by

attempting to establish a transport connection with the remote system. It
formulates an appropriate T—CONNEC"[' request to pass to the transport
services. The called transport address for the indication consists of the
NSAP address of the node on which the remote name resides, along with a T-

Selector equal to the remote name. If the remote name is a group name, the
NSAP address is that of one node on which the remote name resides, it is not

the NetBIOS rnulticast NSAP address. If the remote group name exists on more
than one node, the choice of which NSAP address to use is arbitrary (see
‘ ‘Sessions with Group Names‘ ‘ in section 5.6 above) .

When the interface receives a T—CONNECT confirmation, it completes the CALL
command successfully. If the interface receives a T—DISCONNECT indication
instead, it examines the reason code of the indication. If the remote TS-user
initiated the disconnect, the interface completes the call with a “session

open rejected” (121-I) return code. If the transport provider initiated the
disconnect, or name resolution fails, the interface completes the call with a
“no answer (cannot find name called)” [141-I) return code.

5.9 LISTEN

Conforming implementations accept and process LISTEN commands. when the
implementation receives a LISTEN for a valid local name, it holds onto the
command until it receives an appropriate T-CONNECT indication (see following
section). At that point, the interface completes the LISTEN command. The

interface may also complete the LISTEN command if it is cancelled or if the
local name is deleted; in these cases the LISTEN completes unsuccessfully.

5.10 HANG UP

Conforming implementations accept and process HANG UP commands. When an
implementation receives a HANG UP command, it immediately terminates any
pending RECEIVE commands and one RECEIVE ANY command for the “session’ ’ with
a “session closed" (OAI-I) return code. Any subsequent RECEIVE, SEND, CHAIN
SEND, or even HANG UP commands for the “session” are also immediately
terminated with this same return code. The local interface also starts a

timer as soon as it receives a I-LANG UP. If the HANG UP has not completed when
this timer expires, the interface aborts the “seesion‘ ’.

It sends a close request to the remote interface and waits for a close
response. when the interface receives the close response, it successfully
completes the I-LANG UP command and issues a T—DISCONNECT request.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 $7

Page 316 of 535

TO P/NQIBIOS

If the interface receives a close request after it has sent one, then a
“close collision" has encountered. Under such situation, if the local
interface is the initiator of the “session”, it will send a close response

and then wait for a close response, and the norrr_ANG UP process continuesas described above.

However, if the local interface is the acceptor of the “session", in a
“close co1lision" situation, it will not issue a close response until it

has received one. Following that it will wait for a T-DISCONNECT indication
in order to complete the HANG UP process successfully.

If the interface receives a close request or a T—DISCONNECT indication before
the close response, it aborts the “session” by‘ completing all pending
commands with “session ended abnormally” (181-I) return codes, and, if
necessary, issuing a T—DISCONNECT request.

5.ll SEND

Con forming implementations accept and process SEND commands . Wi th each SEN)
command during normal data transfer, the interface sends a T—DATA request to
transport. The user data for that request is the data contained in the SEND
command’s buffer preceded. by the two octet NetBIOS header. (Note that the

NetBIOS header is attached to datagram as well as connection oriented Virtual
Circuit traffic.) If the interface has some knowledge of when the data is
actually delivered to the user, it may withhold completion of the SEND until

it knows of actual data delivery. If the interface has no such knowledge, it

may complete the SEND at any time. The exact mechanism for determining when
to complete the SEND command is a local matter.

If the NetBIOS interface has received a close request from the remote

interface prior to receiving the SEND command from the local user, it accepts
the SEND command but does not issue the T—DATA request. Since the data cannot
be delivered to the remote user anyway, there is no need for the transport
request. Of course, the interface also withholds completion of the SEND
command until the close process completes. A SEND command retained in this

manner is returned with an error code indicating that the session terminated.

5.12 CHAIN SEND

Conforming implementations accept and process CHAIN SEND commands. with each

CI-IAIN SEND command, the interface sends a T-DATA request to transport. The
user data for that request is the combination of both. of the command‘s
buffers, preceded by the two octet NetBIOS headers. If the interface has some
knowledge of when the data is actually delivered to the user, it may withhold
completion of the CHAIN SEND until it knows of actual data delivery. If the

interface has no such knowledge, it may complete the CHAIN SEND at any time.
The exact mechanism for determining when to complete the CHAIN SEND command
is a local matter.

If the NetBIOS interface has received a close request from the remote

interface prior to receiving the CHAIN SEND command from the local user, it
accepts the CHAIN SEND command but does not issue the T—DATA request. Since
the data cannot be delivered to the remote user anyway, there is no need for
the transport request. Of course, the interface also withholds completion of
the CHAIN SEND command until the close process completes. A CHAIN SEND

command retained in this manner is returned with an error code indicating
that the session terminated.

5.13 RECEIVE

Conforming implementations accept and process RECEIVE commands. When a user
issues a RECEIVE command, the interface first looks for any user data

§ X/Open CAB Speci ficaljon (1%

Page 317 of 535

TOP/NQIBIOS

received for the “session“ that has not yet been given to the user. If such
user data exists, the interface copies the data into the RECEIVE command‘s
buffer and completes the command. If the user data copied was the last of a

T-DATA indication, the command completes successfully. If data still remains
from the indication, the RECEIVE completes with. a “message incomplete"
(OSH) return code.

If there is no data to satisfy the RECEIVE command, the interface simply

keeps the command until data arrives or a time-out occurs. The RECEIVE may
also complete if it is cancelled, if the “session" is closed. A RECEIVE
command is not completed as a result of the local name being deleted.

5.14 RECEIVE ANY

Conforming implementations accept and process RECEIVE ANY commands. when a

user issues a RECEIVE ANY command, the interface first looks for‘ any‘ user

data received for an appropriate “session" that has not yet been given to
the user (see “T—DATA indication" below). If such user data exists, the

interface copies the data into the RECEIVE ANY command’s buffer and completes
the command. If the user data copied was the last data in a message, the

command completes successfullyu If data still remains to be delivered the

RECEIVE ANY completes with a “message incomplete" (O6H) return code.

If there is no data to satisfy the RECEIVE ANY command, the interface simply
keeps the command until data arrives or a time—out occurs. The RECEIVE ANY

may also complete if it is cancelled or if the local name is deleted.

5.15 SESSION STATUS

Conforming implementations must accept and. process SESSION STATUS commands

according to the NetBIOS definition. The field referred to as “state of the
session" is not identical to the state of the NetBIOS/TP4 mapping described
in Appendix I. The correspondence between the value returned. by‘ SESSION
STATUS and the mapping state is:

LISTEN pending (Olfl) STA Ol

CALL pending (O2Hl STA 02
Session established (OBH) STA 03,

pending (04Hl STA 04,
complete (OSH) STA 06
Ended Abnormally (OSH) STA 07

TABLE 3. Session Status Command Mapping

5.16 SEND DATAGRAM

Conforming implementations accept and. process SEND DATAGRAM commands. when

the implementation receives a SEND DATAGRAM, it first finds the transport
address corresponding to the remote NetBIOS name. To find this address, it
sends a resolve name request to the naming service module. If the naming
services cannot resolve the name's address, the interface simply completes
the SEND DATAGRAM command with an unsuccessful response code.

If naming services successfully resolves the remote name, and that name is a
unique name, the NetBIOS interface sends a T—UNITDATA request with an
appropriate destination transport address. That address consists of the NSAP
address of the node on which the name resides, along with a T— Selector equal

to the remote name. The interface then completes the SEND DATAGRAM command.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 E

Page 318 of 535

TO P/NQIBIOS

If the remote name is a group name, the interface also sends a T—UNITDATA
request. In this case, however, the connectionless transport protocol. will
use the special multicast NSAP, and it will direct the datagram to the

NetBlOS multicast MAC address and LLC service access point (see “Broadcast
Datagrams and Datagrams to Group Names" in section 4.4). The datagram is not
directed to a specific NSAP address of a node owning the group name. As with
unique names, the destination T-Selector is equal to the remote name. After
sending the T—UNITDATA request, the interface completes the SEND DATAGRAM
command successfully.

5.17 SEND BROADCAST DATAGRAM

Conforming implementations must also accept and process SEND BROADCAST
DATAGRAM commands . Since a SEND BROADCAST command does not specify a

destination name, there is no need for name resolution. The interface simply
sends a T—UNITDATA request to transport services with the special broadcast

T-Selector for the destination T-Selector. The connectionless transport
protocol will use the multicast NSAP, and it will direct the datagram to the
NetBlOS multicast MAC address and LLC service access point (see “Broadcast

Datagrams and Datagrams to Group Names” in section four above). After
sending the T—UNITDATA request, the interface completes the SEND BROADCAST
DATAGRAM command successfully.

5.18 RECEIVE DATAGRAM

Conforming implementations must accept and process RECEIVE DATAGRAM commands.
when the interface receives a RECEIVE DAIAGRAM command, it holds the command
until an incoming datagram satisfies the command, the command is cancelled,
or the local name is deleted. “T-UNITDATA indication" in the following
section describes the actions the interface takes to successfully complete a
RECEIVE DATAGRAM command.

5.19 RECEIVE BROADCAST DATAGRAM

Conforming implementations must accept and process RECEIVE BROADCAST DATAGRAM
commands. when the interface receives a RECEIVE BROADCAST DATAGRAM command,

it holds the command until an incoming datagram satisfies the command, or the
command is cancelled. The command is also completed if the name is deleted.
“T-UNITDATA indication" in the following section describes the actions the
interface takes to successfully complete a RECEIVE BROADCAST DATAGRAM
command.

6 TRANSPORT SERVICE INDICATIONS AND CONFIRMATIONS

In addition to generating appropriate transport service requests and

responses, the NetBIOS interface must also respond appropriately to incoming
transport service indications and. confirmations. This section. describes the
responses to all of these service primitives.

In. many implementations, the ISO transport services support upper layers

other than the NetBIOs interface. some transport service implementations, for
example, may support both the NetBIOS interface and the ISO session protocol.
This specification does not address the complications multiple upper layers
introduce, and the primitives discussed below are assumed to be intended
solely for the NetBIOS interface. For example, there is no attempt to

describe how transport services know to pass a T-CONNECT indication to
NetBIOs instead of to the ISO session services.

6.1 T-CONNECT Indication

when the NetBIOS interface receives a T-CONNECT indication, it looks for a

pending LISTEN command. to match the indication. A. matching LISTEN command

ED X/Open CAB Speci ficaljon (1%

Page 319 of 535

TOP/NQIBIOS

must have a local name equal to the called T— Selector, and it must either
have a remote name equal to the calling T-Selector or an unspecified
(wildcard) remote name. If both a. specific LISTEN and a. wildcard LISTEN

match, the specific LISTEN takes precedence.

If the interface watches a pending LISTEN command, it completes the command
successfully and sends transport a T- CONNECT response. If no matching LISTEN
exists, the interface sends transport a T—DISCONNECT request.

6.2 T—CONNECT Confirmation

When the NetBIOS interface receives a T—CONNECT confirmation, it completes
the appropriate CALL command successfully.

6 . 3 T-DISCONNECT Indication

The actions the NetBIOS interface takes when it receives a T—DISCONNECT

indication depend on the state of the affected “session“. If that
“session“ has a CALL pending, the CALL command is completed with a
“session open rejected” (12H) or a “no answer (cannot find name called)"

(l4H) return code. which return code is returned depends on the reason given
in the T—DIsCONNECT indication. If the reason indicates that the remote TS

user invoked the disconnect, the interface returns the call with a

“reject"ed return code; otherwise, it uses the “no answer" return code.

If the “session“ is established when the T-DISCONNECT indication arrives,

the interface completes any pending commands with the “session ended
abnormally" (l8H) return code. The interface also takes this action if the
“session“ is in the process of hanging up.

The only time an interface expects to receive a T-DISCONNECT indication is
after sending a close response. In this case, the interface completes all
pending commands with a “session closed” (OAH) return code. Additionally,
if any RECEIVE ANY commands apply to the “session“, one of those commands
is also completed with “session closed”. If no commands are pending on the
“session‘ ‘, the interface waits for the user to issue another command. when

the user issues a command, that command is completed with a “session
closed" return code.

6.4 T—DATA Indication

A T—DATA indication tells the NetBIOS interface that data, a close request or
a close response has arrived for a “eession”.

When the interface receives such an indication during normal data flow, it
looks for a pending RECEIVE command with which to pass the data on to the
user. If no RECEIVE command for the “session" is available, the interface

looks for a pending RECEIVE ANY for the “session’s” local name. If none are

found, the interface then looks for a pending RECEIVE ANY for an unspecified
(wildcard) name.

If the interface finds any command to satisfy the T—DATA indication, it
copies the data into the command’s buffer and completes the command. If all
of the user data from the indication. fits in. the buffer, the command is
completed successfully. If only part of the user‘ data fits in the buffer
specified by the command, the interface returns the command with a “message
incomplete" (OSHJ return code. The interface then looks for another pending

RECEIVE or RECEIVE ANY command in which to place the remaining data. The

interface continues in this fashion until all of the data has been given to
the user or until it can no longer find suitable commands.

If the interface cannot find a pending RECEIVE or RECEIVE ANY command, it

keeps whatever user data is left until the user issues an appropriate

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 331

Page 320 of 535

TO P/NQIBIOS

command .

If the NetBIOS interface receives a T—DATA indication, witl1 a normal data
NetBIOS header, after lt has received a HANG UP command from the local user

but before that HANG UP has completed, the T—DAIA indication is simply
ignored and the data discarded.

6.5 T—UNITDATA Indication

T—UNITDATA indications contain incoming NetBIOS datagrams. when the NetBIOS
interface receives a T-UNITDATA indication, it examines the destination T-

Selector to determine if the datagram is a broadcast datagram or if it is
addressed to a specific name (see “Broadcast Datagrams and Datagrams to
Group Names“ in section four above).

If the received datagram is a broadcast datagram, the interface looks for

pending RECEIVE BROADCAST DATAGRAM commands. If none exist, the interface
discards the T— UNITDATA indication. If an appropriate NetBIOS command does
exist, the interface copies the data from the T—UNITDATA indication to the
command’s buffer. If all the data fits in the buffer, the interface returns

the RECEIVE BROADCAST DATAGRAM command with a successful completion. If the
data exceeds the size of the buffer, the interface returns the command with a

“message incomplete" (OSH) return code, and the remaining data is lost.

If the received datagram is directed to a specific name, whether that name is
a group name or a unique name, the NetBIOS interface ensures that the

destination name is registered on its adapter. If the name does not exist on
the local adapter, the interface discards the T—UNITDATA indication.

If the specific name exists on the local adapter, the interface searches for

a pending RECEIVE DATAGRAM command for that name. If none exists, the

interface then looks for a pending RECEIVE DATAGRAM command with an
unspecified (wildcard) local name. If the interface is still unsuccessful, it
discards the T-UNITDATA indication.

If an appropriate pending NetBIOs command does exist, the interface copies
the data from the T—UNITDATA indication to the command's buffer. If all the

data fits in the buffer, the interface returns the RECEIVE DATAGRAM command

with a successful completion. If the data exceeds the size of the buffer, the
interface returns the command with a “message incomplete" (O6H) return code

and the remaining data is lost.

6.6 T—EXPEDITED Data

This option is negotiated in the transport call request PDU as described in
the MAP/TOP V3.0 specification. NetBIOS itself does not use Expedited Data,
therefore T—EXPEDITED DATA Requests are never generated. If a T—EXPEDITED
DATA indication is received, it is ignored.

7 NetBIOS NAME SERVICE PROTOCOL — OVERVIEW

This part, the remaining sections of this specification. and. Appendices II

through V, defines a naming protocol for TOE networks that will support

NetBIos name support services.

7.1 Architecture

The NetBIOS Name Service is a distributed name service which provides
facilities for naming objects in the internet environment, and for relating
those names to useful attributes, such as protocol addresses.

The name service protocol provides a. mapping of NetBIOS Names to their

protocol (transport) addresses. The protocol is based on query/response
primitives and a distributed. information base. Every node on. the network

d X/Open CAB Speci ficaljon (1%

Page 321 of 535

TOP/NQIBIOS

maintains information regarding the services or names posted on that node.
When a new name is to be added on any node, that node queries other nodes on
the network to ensure that the name can be added. A. similar process is
followed to obtain the address of an object.

In a simple topology consisting of a few NetBIOS nodes on a broadcast based
network, the name service protocol makes use of multicast addresses to
register and resolve names. The name service element on NetBIOS nodes is

called the NetBIOS Directory Service Element (NDSE) . In a more complex
topology having a large number of nodes, an internetworking environment or
the presence of an OSI directory service, the use of a NetBIOS Directory User
Agent (NDUA) is useful (but not required). If there exists an NDUA on the
network, the NDSES communicate with the NDUA using point—to—point datagram

communications. N'DUAs become the focal point of name service activity. NDUAs
are expected to have the capability to interface with an OSI Directory User
Agent (DUA) or interface with other NDUAs.

In the case when NDSEs cannot communicate with an NDUA, they revert back to
rnulticast based communication among N'DSEs. This limits the address
resolution to the local subnetwork, since multicasts are not transported
across subnet boundaries.

Figures 3 and 4 provide an example of a simple network topology.

The scenarios presented in this subsection depict the network activities
involved for various name service related actions for internetwork

communications and call—back type applications.

/- \\' DSA

-(DUA\ /

%A____/at
/ \

/ \
,,-14 \;

Application NDUA 1 (_ 3 NDUA 2 ApplicationX ,. H Y

/_“""\ /_“""\ /"“‘\ /’'fi‘\

{/ A \ l/ B \ / c \ D \
x ' J K NDSE J

Subnetwork Internet Subnetwork
1 Connect i on 2

Figure 3. Name Service Example

NDSE Local NetBIOS Directory Service Entity. present on every node.

NDUA NetBIOS Directory User Agent, zero or more present on a subnetwork. At

least one is needed for internet name service. It may also provide the
interface to the ISO Directory Services (DUA—DSA), if present. It may
also communicate with another NDUA using the name service protocol.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 3:8

Page 322 of 535

TO P/NQIBIOS

DIE 1 DIE 2

Names common to

both the scopes

Figure 4. Name Scopes

The above topology, Figure 3, contains two subnetworks (1 and 2) with the

associated NDUAS (NDUAl and NDUA2 respectively). The following points

identify the administrative actions of NDUAs to provide internetwork name
resolutions.

— It is not possible for application programs using the NetBIOS interface to

identify whether they wish to advertise in an internet environment.
Therefore, NDUAs based on administrative filtering will update names in
their directory information base (DIB) using DSA/DUA when the application
programs register or unregister. The administrative filter mechanism is a
local matter. It is expected that the names registered in the DIBs will

be of “server" types providing services across internet boundaries.

— Application programs based on the call—back feature will also require
administrative support. For example if the application X wishes to
communicate with Y, and if it is necessary for both these applications to

call each other, then the following steps can be taken by the respective
NDUAS.

— X will be posted on network 1 by application X, similarly Y will be
posted on network 2 by application Y. Both these names will be entered

in the DIB by their respective N'DUAs.

— Y will be posted by NDUA1 in the DIB with a pointer to the entry made by

NDUA2. Similarly, X will be posted by NDUA2 in the DIB with a pointer to
the entry made by NDUA1. This will serve the purpose of determining the
uniqueness of “globally“ known names within the scopes in which they
are referenced.

— If X & Y are unique names, then no other application can claim either of
these two names in the two networks and associated DIBs, see Figure 4.

—-Note that the information provided by the name service, particularly when

using NDUAs will be “loosely consistent" in the sense that it may not be
absolutely current.

7.2 High Level Feature Descriptions

The following set of features are provided by the NetBIOs Name Services. some
of these features are specifically developed for the NetBIOs environment, and
for internetworking and performance reasons. A brief and high level
description of each of the features follow.

—NetBIOS: The name service supports a flat, NetBIOS compatible name space.

Names need be unique only within the context of the local subnet.

EH X/Open CAB Speci ficaljon (1%

Page 323 of 535

TOP/NQIBIOS

—-Standards: The name service requires minimum functionality from underlying
layers, a simple standard datagram transfer service is all that is needed.
Also, name service is architected with. migration to the ISO directory

service in mind. A deliberate effort is made to ensure that we provide ISO
compatible name services in. a way that allow a smooth. transition. to a
“real” ISO directory service when it is fully specified.

—-Internetworking: The name services provide support for internetwork

communication. Access to the name service is transparent to the
application programs. Internet name resolution is supported. All intranet
name resolution is supported by‘ the distributed database, multicast, or
point-to-point mechanisms. The name service is integrated with ISO
transport service to allow the exchange of information relative to transit

delay associated with a particular resource (eg. 1200 baud link). Transit
delay information. is important to allow support of NetBIOS applications
with dependencies on Receive—Time—Out or Send—Time—Out (RTO/STD).

——Graceful Degradation: Loss of a single node affects only local calls to

that node. Loss of a NetBIOS Directory service Entity (NDSE) on a node
affects only local calls to that node. Loss of an NDUA. affects only
internet name resolution. Name resolution continues after the loss of an

NDUA by using the multicast operation mode of the name service.

— Remote Adapter Status: The name service is integrated with support for
Remote Adapter Status. A user can issue a status request on a NetBIOS name
and will receive the status information associated with the node on which

that end. point exists, even. if the node is on. another subnetwork. Note
that additional information regarding complete use of this service is
provided in Appendix III.

— Compatibility: The NetBIOS names are used for T- Selectors (transport
service access point identifiers.) This provides a simple, efficient and
effective mapping between NetBIOS names and T—Selectors which becomes a
part of the transport address (t-selector+nsap address with null ssap and
null psap). NetBIOS is implemented on ISO Transport Class 4 (8073) and ISO

Connectionless Transport (8602). Thus, NetBIOS based products and other
TOP applications can coexist on the same network and on the same node.

— Set of Functions: A set of functions are defined. The name service makes

use of three types of messages, request/advise, response and pending.

Names, or objects, are associated with a set of attributes which include,
among other things, full transport address (with null psel and null ssel)
of the object.

The set of functions supported are:

a. Register Name

b. Register Group Name

c. Adapter Status

d, Unregister Name

e. Resolve Name

f. Advise Name Conflict (Generation and Response)

g. Advise NDUA Present

7.3 Scope and Purpose

This specification presents the NetBIOS Name Service Protocol (NSP). The NSP
is the basic transfer mechanism for exchanging name service requests between

systems. The NSF mechanism and protocol is specified here to support the
needs of the NetBIOS Name Service. It is currently used only by the NetBIOS

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 335

Page 324 of 535

TO P/NQIBIOS

directories, but it is constructed to allow for expansion to other directory
applications.

It consists of high-level operations that support name registration,
resolution and attribute association.

7.4 Underlying Services

The NetBIOS Name Service Protocol is based on datagram services provided by
CLTP (see Figure 2) with a maximum TPDU size of 1024 octets.

7.5 NetBIOS Name Service (NS)

Operations supported by the NS include name registration and resolution, the
storage, and the deletion of attribute information associated. with names.

These operations were conceived with the ISO/CCITT Directory Services model

in mind, and should ease migration to that environment.

The following background information is useful when reviewing the protocol:

— the name of an object (usually an application entity) can be thought of as
a search key for retrieving information about the object;

— information takes the form of attributes which describe the

characteristics of an object (such as its protocol address);

— the distributed directory‘ database maintains this information in. records
known as attribute tuples, which are encoded in a Type-Length-Value
format.

7 . 6 Services

The NetBIOS Name Service Protocol primitives are summarized in Table 4:

& X/Open CAB Speci ficaljon (1%

Page 325 of 535

TOP/NQIBIOS

_RegisterGroupName

_UnregisterName

_ResolveName

B_AdapterStatus

8 NetBIOS NAME SERVICE PROTOCOL

8.1

This section describes

General

TABLE 4.

.Indication

.Response/

.ConEirm

_Request/
.Indication

.Response/

.Confirm

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Respon5e/

.Confirm

.Request/

.Indication

.Response/

.ConEirm

_Request/
.Indication

FUNCTIONS

NB:InitialAttributesList

NB_ResponseCode

NB_Name,

NB_Initia1ALtributesList

NB_ResponseCode

NB_Narne

NB_ResponseCode

NB_Name,

NB_RequestAttributesList

NB_ResponseCode,
NB_Narne ,

NB_ReturnedAttributesbist

NB_Name

NB_ReturnedAttributesbist

NB_Name,

NB_AdViseAttributeList

Service Primitives for Name Service Protocol

the functions performed as part of the name service.
All the functions described here are mandatory.

8.1.1 Response Semantics

The values given in the following sections for setting the
Semantics field in the name service PDUs serve as guidelines only.

Individual inplementations may choose to use different values. However,
example given assumes the use of the recommended values.

8.1.2 Multicast Requests versus Requests to NDUA

In general, the operation of these functions will depend on the
reaction to the presence of an NDUA. When these functions issue
requests, they operate as follows:

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Page 326 of 535

Response-

any

NDSE’s
remote

TO P/Ne£BIOS

1. If an NDSE does not know the address of an NDUA, it proceeds to Step 2.

Otherwise, the request is sent as a point-to-point datagram to the NDUA,
as follows:

a. DestinationAddress is set to the transport address of NDUA.

b. ProcedureTimeout is set to “T" seconds. The value of “T", as well

as the manner in which “T” may be configured, is left as a local
matter.

Responsesemantics is set to Unconditional Response.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as a point-to-point datagram to the NDUA. If no

response is received within “T" seconds, the request is
retransmitted every “T” seconds until such time as a response is
received. or until some maximum number of retransmissions has been

reached (see also section 8.7). The maximum number of times a given
request may be sent to an NDUA is denoted by “X" (X>=1). The value

of “X", as well as the manner in which “X” may be configured, is
left as a local matter.

f. If no response is received after “X” transmissions, proceed to Step

2. If a response is received, then the function will complete by

sending either a success or failure indication to the originator
depending on the response received, and Step 2 is not performed.

2. In the absence of an NDUA (or no response from NDUA after “X“ tries),

the request is sent as a multicast datagram to all other NDSE:s. as
follows:

a. DestinationAddress is set to the transport address that represents
“ALL NetBIOS DIRECTORY SERVICE ENTITIES". This address consists of
the t-selector reserved for NDSEs and the multicast NSAP. See

Appendix IV for details.

b. ProcedureTimeout is set to “T" seconds. The value of "T", as well

as the manner in which “T" may be configured, is left as a local
matter.

c. Responsesemantics is set as recommended for each function. Details

are given below for each function.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as multicast datagram to all NDSEs. If no

response is received within “T” seconds, the request is
retransmitted every “T" seconds until such. time as a response is
received or until some maximum number of retransmissions has been

reached (see also Section 3.7). The maximum number of times a given
request may be sent to NDSES is denoted by “Y" (Y >= 1). The value
of “Y", as well as the manner in which “Y” may be configured, is
left as a local matter.

E. If no response is received after “Y" transmissions, then the
function will complete either a success or failure indication to the

originator depending on the Responsesemantics used. (If Response on
Success was used, then Eailure is assumed. If Response on Failure was
used, then success is assumed, etc.)

If a response is received. then the function will complete by sending

either a success or failure indication to the originator depending on
the response received.

3:8 X/Open CAB Speci ficaljon (12%

Page 327 of 535

TOP/NQIBIOS

B.1.3 Actions of NDSE (or NDUA) on Receipt of Remote Request

In general, when an NDSE (or NDUA) receives a request PDU from other NDSEs or

N'DUAs it will. process the request and return a response PDU as appropriate.
The general actions of NDSE are as given below. More specific actions of NDUA
are given in Appendix V.

1. All the response PDUS must contain the same source reference that was
provided in the request PDU.

2. If for any reason, the NDSE expects a delay in processing the request

within the ProcedureTimeout value provided in the request PDU, it must
return a point—to—point pending PDU to the originator.

3. The NDSE must return the Response PDU based upon the type of request and

the Responsesemantics.

a. A response PDU is always returned if Unconditional Response was
requested.

)3. A response PDU is returned if the operation was a success (or a

partial success) and Response on Success was requested.

c. A response PDU is returned if the operation was a failure and
Response on Failure was requested.

8.2 Register Name Function

This function is responsible for verifying the unambiguity of a new (non-
group) name, registering the name on the network, and, optionally,
associating attributes with the name.

Name service clients are allowed to choose a name for their application

entities, but a name must be determined to be unambiguous; that is, not

already in useLV The function queries all relevant databases, local or
remote, to determine if the name is already in use. If the name is not found,
the function assumes that the name is unclaimed and registration succeeds. If

the name is found to already exist, the function aborts and returns a failure
indication to the originator.

The following actions are taken by this function:

1. If the name exists in the local (node) version of the specified database,
the entire procedure is aborted and a failure indication. is returned;
otherwise, the name is tentatively registered (put into “being
registered state") in the local database in order to avoid race
conditions with other systems adding the same name; and. this name is

defended by generating responses to the received Register Name Requests
and Register Group Name Requests as if the name were registered, but will
respond to the Resolve Name Request as if the name were not registered.

2. A request is sent to an NDUA or all NDSES, as described in Section 8.1.2.
Parameter values particular to the Register Name Request are set as
follows:

— Procedure is set to NB_RegisterName;

— DestinationAddress is set to the transport address of a valid NDUA,
otherwise to the transport group address that indicates “ALL NetBIOS
DIRECTORY ENTITIES”;

10. Note that this does not apply to group names which are ambiguous by definition. Group names are
registered using the Register Group Name Function.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 39

Page 328 of 535

TO P/NQIBIOS

—-ProcedureTimeout is set to “T" seconds;

—-Responsesemantic is set to Unconditional Response if NDUAH address is
specified, otherwise it is set to Respond-on-Failure. Note that the
NDSE trying to register a name will receive a response, success or
Eailure if there exists an NDUA on the network. Otherwise it will

receive a failure response with response code of Registration Error.

— NB_Name is taken from the original NB_RegisterNarne.Request;

— NB_Initial Attribute List contains at least two elements, i.e.,
protocol address and unique attribute.

3. If a failure response is received from any NDUA or NDSE, the name is
already in use on another node. In this case, the tentative registration

in the local database is cancelled, the procedure aborts, and a failure
indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA with

the same protocol address as specified in the current request) or if no
response is received from any NDSE, then the name is considered to be
claimed by the local node. The tentative registration of the name in the
local database is made permanent, and the procedure completes by sending
a success indication to the originator.

4. The return code is returned in the NB_ResponseCode.

See Appendix II for a set of sample PDU encoding generated by a typical
NB_RegisterName function.

8.3 Register Group Name Function

This function is responsible to verify the unambiguity of a new group name,
registering the name on the network, and, optionally, associate attributes
with the name.

Names on the network must normally be unique; that is, referring to only one
owner. In the case of group names, however, the name is allowed to be shared
by several owners so long as all the owners recognize the situation. This
function is used when an application specifically wishes to share a name with
other applications.

This function queries all relevant databases, local or remote, to determine
if the name is already in use as a unique name. If a unique version of the
name is not found, the function assumes that the name is free to be claimed
as a group name, and registration succeeds. If the name is found to already

exist in a unique form, the function aborts and returns a failure indication
to the originator.

This function performs the following actions:

1. If a unique version of the name exists in the local version of the
appropriate database, the entire procedure is aborted and a failure

indication is returned; otherwise, the name is tentatively registered

(put into “being registered state”) in the local database in order to
avoid race conditions with other systems adding the same name as a unique
name. While the name is tentatively registered, this node will defend the
name by generating responses to the Register Name Requests as if the name
were actually registered, but will respond to Resolve Name Requests as if

11. The operation of NDUA and NetBIOS Object Class definition is given in Appendix V.

310 X/Open CAB Speci ficaljon (1%

Page 329 of 535

TOP/NQIBIOS

the name were not registered.

2. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Register Group Name Request are
set as follows:

— Procedure is set to NB_RegisterGroupName;

— ProcedureTimeout is set to “T";

— Responsesemantics is set to Unconditional Response if an NDUA address
is specified, else it is set to Respond—on—Failure. Note that the NDSE

trying to register a name Rreceive a response, success or failure,if an NDUA exists on the rk. Otherwise it will receive a failure

response with response code of Registration Error;

——NB_Name is taken from the original NB_RegisterGroupName.Request;

— NB_Initial Attribute List contains at least two elements, i.e.,
protocol address and group attribute.

3. If a failure response is received. from any‘ NDUA_ or NDSE, the name is
already in use on another node as a unique name‘ In this case, the

tentative registration in the local database is cancelled, the procedure
aborts, and a failure indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA as a

group name) or if no response is received from any NDSE, then the name is
considered to be claimed by the local node. The tentative registration
of the name in the local database is made permanent, and the procedure
completes by sending a success indication to the originator.

4. The return code is returned in the NB_ResponseCode.

See Appendix II for a set of sample PDU encodings generated. by a typical
NB_RegisterGroupName function.

8.4 Unregister Name Function

This function is used to remove a registered name from the network.

This function attempts to update or remove both local and remote database

entries corresponding to this name. In the case of a unique name, all
attributes associated with the name are deleted from the entry, and the name

is released. In. the case of a group name, specific sets of attributes
contained in the Unregister Name Request (viz. transport address) are
deleted, and the name is released when the last set of attributes are
deleted.

Note that if the node just “disappears" without unregistering a name, it is
possible that cached entries and NDUA databases may contain invalid entries.
The name service is designed to be “loose1y consistent'‘ and allows for the
possibility of invalid entries, so the protocol will still function when a
node “disappears".

This function performs the following actions:

1. If the name does not exist in the local (node) version of the appropriate

database, the entire procedure is aborted and a failure indication is
returned.

2. A_request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Unregister Name Request are set
as follows:

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 31 1

Page 330 of 535

312

TO P/NQIBIOS

—-procedure is set to NB_UnregisterName;

— if the name is being unregistered in other
Directory Servi ce Agents (DSI-\s) then for

Identifier is included in the request;

domains (scopes) or

every DSA an Object

—-Responsesemantics is set to Unconditional Response if NDUA is
specified, or else it is set to No Response. In addition, when NDUA
receives such a request it re-multicasts this request on the local
subnetwork;

—-NB_Name is taken from the original NB_UnregisterName Request;

— NB_InitialAttributeList contains at least one element, viz., the
protocol (transport) address associated with the name.

3. The return code is in the NB_ResponseCode.

8.5 Resolve Name Function

This function is used to resolve a name to a set of attributes (most commonly
a Transport Address). If such an entry exists in a local or remote database,
the requested attributes are returned to the originator along with a success
indication. If the entry is found but not all requested attributes are known,
then those attributes which are known and requested are returned along with a

partial-success indication. If no such entry can be found, the procedure
returns a failure indication to the originator.

The following actions are taken by this function:

1. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Resolve Name Request are set as
follows:

—-Procedure is set to NB_ResolveName;

—-ProcedureTimeout is set to “T” seconds;

—-Responsesemantics is set to unconditional response if an NDUA address
is specified, otherwise it is set to Respond—on—Success;

—-Arguments for the remote NB_Resolvename procedure, if NDUA is
specified, are as specified below.

— NB_Name is taken from the original NB_ResolveName.Request;

—-NB_RequestAttributesList is taken from the same parameter on the
original NB_ResolveName Request.

2. If a failure response is received from any NDUA or if the request(s) to
NDSEs timed out without response, then the name is unknown. In this case,
the procedure aborts and a failure indication is returned to the
originator.

—It is possible that the resolve name response may contain fewer

attributes than requested. In such a case, the response code will be
of partial success. Such responses are also treated as a “successful
response“.

If a successful response is received from an NDUA or an NDSE, then the
requested, or received attributes, when fewer attributes are received,
are returned to the originator with an indication of success.

3. The return code, name and requested attributes are returned as the

NB_ResponseCode, NB_Name and NB_ReturnedAttributesList parameters,
respectively, with the above parameters being passed as

NB_ReturnedAttributesList.

X/Open CAB Speci ficaljon (1%

Page 331 of 535

TOP/NQIBIOS

A successful resolve name response must have the requested transport address

attributes. It is possible that, if the resolve name response is received
from NDUA it may contain more than one transport address when the name is a
group name. similarly, resolve name responses may come from several NDsE:s

when the name is a group name. Also, note that it is possible all the
attributes may not fit in a PDU. In that case the attribute list is
truncated based on local choice.

See Appendix II for a set of sample PDU encodings generated by typical
NB_ResolveName functions.

9.6 Name Conflict Advise Function

This function consists of two parts. The first part of the function requires
detection of conflict, and the second part requires the processing of the
“NameConflictAdvise” indication.

This function is used to detect names in “conflict”. It is possible, though
by remote chance, that a given subnetwork will contain two or more identical
unique names, or one or more identical group names along with at least one

identical unique name posted in the name service databases, such that every

node posting such name thinks that it has posted a unique name.

The function is defined in two parts. The first part is associated with the
detection of conflict. It requires that the node resolving a. name detects

more than one response to a resolve name request (either by waiting for or by
accepting more than one response.) If more than one response is received, for
a unique name, it indicates that the name is in conflict. The node detecting
the conflict sends a point-to—point advise (NameConflictAdvise PDU) back to
all but one (generally the first) responder indicating that that name posted
is in conflict.

The second part of the function is associated with the processing of a
“NameConflictAdvise‘ ' indication” when a node receives the conflict

indication, it will set the “Name—In—Conflict" attribute for that name.
when all the current sessions are terminated that are associated with a name

with the “Name—In—Conflict“ attribute set, the name should be

removed/unbound/deleted from its database by explicit user delete name
command. During this period, the node will not allow the use of that name for
any‘ other ACTIVITY other than for currently active sessions and adapter
status .

B.7 Pending Function

This Pending function is invoked by the receiver of a request PDU if it

expects a longer delay in processing the request than the procedure timeout
indicated in the request PDU. The response PDU is returned to the source of
the request with the type field set to “pending” and the procedure timeout
field set to a new timeout value.

3.8 NDUA Here Advise Function

This function generates the “NDUA here PDU” to announce the presence of an

NDUA on a subnetwork. This function is used only by NDUAs. An NDUA uses this
function to multicast a message when it first joins the subnetwork. It also
uses the function to send point-to-point messages to NDSE:s which may be
unaware of an NDUA’s presence. See Appendix V for further details.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 313

Page 332 of 535

TO P/NQIBIOS

8.9 Special Comments

8.9.1 Cache

Cache table cleanup may be a concern in various applications. However, the
mechanism chosen to cleanup the cache table may or may not be desirable,

depending on. a particular application. This protocol does not provide any
indication when a name is unadvertised, because there can be no guarantee

that such an indication will always be given.

It is possible to associate timers with every name in the cache table, so
that names are deleted after a finite amount of time. In addition, it also
possible to send “keep— alive“ PDUs periodically for every posted name.
However, both these techniques become cumbersome for a large network or

network with many posted names. Therefore, maintaining a cache is treated as
a local matter. Caches are set-up for reasons of performance. The protocols

do not specify or recommend a mechanism to maintain caches.

9 STRUCTURE AND ENCODING OF PDUS

9.1 Structure

All the Protocol Data Units shall conta' integral number of octets. The

octets in a PDU are numbered starting frinand increasing in the order they
are put into a TSDU. The bits in an octet are numbered from 1 to 8, where bit
1 is the low—order bit. Note that the name service PDUs do not carry the two
octet NetBIOS Header.

when consecutive octets are used to represent a binary number, the lower
octet number has the most significant value.

when the encoding of a PDU is represented using a diagram in this section,
the following representation is used:

1. octets are shown with the lowest numbered octet to the left, and higher

number octets to the right;

2. within an octet, bits are shown with bit 8 to the left and bit 1 {least

significant) to the right.

PDUs shall contain, in the following order:

1. the fixed part;

2. the variable part.

9.2 Fixed Part

9.2.1 General

The fixed part contains frequently occurring parameters such as the PDU type
and total length.

If any of the parameters of the fixed part have an invalid value, it
constitutes a protocol error and the offending PDU shall be discarded.

The format of the fixed part is shown in Figure 5.

314 X/Open CAB Speci ficaljon (1%

Page 333 of 535

TOP/NQIBIOS

Octet

1,2

Protocol Version Identifier 3

Type 4

Source Reference 5,6

7

3

Response Semantics 9

Response Code 10

Procedure Timeout 11

12

Figure 5. PDU Header - Fixed Part

9.2.2 Length Indicator

This field is contained in octets 1 and 2 of the PDU. The length is indicated
by an unsigned binary number, with a nmximum value of 65534, and the value
65535 (1111 1111 1111 1111 or -1] is reserved for future extensions. The

length. indicated shall be the header length in octets, but excluding the
length indicator field.

Note that this protocol defines PDUs as consisting entirely of header, since

there is no facility for carrying user data.

9.2.3 Protocol/Version Identifier

This field is contained in octet 3 of the PDU. The value of this field for

the first release shall be 0001 0001.

PDUs containing protocol/version identifiers with different values shall be
considered a protocol error.

9.2.4 Type

This field identifies the PDU type and is contained in octet 4. It is used to

define the structure of the variable part of the PDU. valid codes are given
in Table 5.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 315

Page 334 of 535

TO P/NQIBIOS

‘IVISE pdu

TABLE 5. Valid PDU Type Codes

All other values are reserved and shall constitute a protocol error.

9.2.5 Source Reference

This field is contained in octets S and 6. It identifies a specific
invocation of a request and is used by the initiator to correlate responses

with the appropriate requests. The value for this field is selected by the
initiator and is returned (but not interpreted) by the responder. The same
value is used in the successive retransmissions of the PDU.

9.2.6 FLAGS

This field is contained in octet 7.

Every bit in the octet signifies a flag. Only two flags are defined.

1. The NDUA Flag - the least significant bit (binary value 0000 0001). Since
NDUAs must also monitor and respond to broadcast messages destined to all

NDSEs, it is important to be able to distinguish which of those messages

were sent by an NDUA and which ones were sent from an NDSE. NDUA sets
this flag in all the PDUs it generates; NDSES reset this flag in all the
PDUs they generate.

2. The Internet Flag - the second least significant bit (binary value 0000

0010). This flag is set by NDUA in the response PDU if the object being
requested is across the LAN boundary, otherwise the flag is reset. This

flag is always reset in a request PDU”.

3. other values are reserved.

9.2.7 Quality of Service Field

This field is contained in octet 8.

when the value of this field is set to zero in the request PDU, the
destination entity is requested to provide the “fastest” answer, e.g. an

NDUA only checking its local table. when it is set to “255“, the responder
is expected to provide its best answer, e.g. an NDUA ignoring i cal table

and obtaining current information from NDSEs”. The responder, s rly, will
set this field. to zero or “255“ based. on. the answer provided. No other
intermediate values for this field are defined.

9.2.8 Response Semantics

This field is contained in octet 9 of the PDU. It is set by the initiator to
define the circumstances under which the responder should send a RESPONSE

PDU. Allowable values are given in Table 6, and the responder must adhere to
the rules given below. This field has meaning only in the request PDUs; in

 kuseful for End systems in two cases, (1.) for the selection of the proper NSAP address for. and (2) for the selection of proper timer values for connections.
13. The definition oi best is rather subjective. It implies that the responder is requested to make the most

thorough check, e.g not just looking at the cached value but to revalidate the cache.

316 X/Open CAB Speci ficaljon (1%

Page 335 of 535

TOP/NQIBIOS

response PDUs this field is copied from the request PDU.

esponse on uccess

esponse on Failure
nconditional Response

TABLE 6. Valid Response Semantics

All other values are reserved and shall constitute a protocol error.

The following rules shall be observed by the responder:

No Response
No response is expected.

Response—on—Success

The responder shall send a RESPONSE PDU only if the requested
operation resulted in success or partial success (i.e., response code
of S—success or S—partia1Results, see below).

Response—on—Failure
The responder shall send a RESPONSE PDU only if the requested
operation resulted in failure.

Unconditional-Response
The responder shall always send a RESPONSE PDU to indicate the result
of the requested operation.

9.2.9 Response Code

This field is contained in octet 10 of the PDU. This l—octet field is used to

indicate the outcome of a requested operation. The high—order bit indicates
success (Oxxx xxxx) or failure (lxxx xxxx), with the other bits encoded to
represent reasons. Table 7 shows a summary of the valid response codes.

I I
espons

S-success 000 0000

S—partia1Result- 000 0001

E-protocolError
E—nameNotFound
E-noAccess

E—registrationError
E—registrationNameInConflict
E-foundNameInConflict

TABLE 7. Valid Response Codes

S-success

The request has been successfully completed.

S-partialResults
The request has been partially completed, e.g. if the request was made

for 2 attributes only one was found and returned. Note that the

responding entity must not “make up" a value for an attribute that
it does not have.

E—protocolError

The request PDU violates the protocol (during normal operation this
error must not be generated, it is a diagnostic tool, e.g., it is used

when improper function code is received].

E—nameNotFound

The name in resolve name request is not found.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 317

Page 336 of 535

TO P/NQIBIOS

E—noAocess

The resources cannot be accessed, e.g. security or database not
accessible, or name not found.

E—registrationError
The register name request has been denied due to an already existing
unique name when. registering a unique or group name, or an already
existing group name when registering a unique name.

E-registrationNameInConflict

The register name request has been denied due to already existing
name/s in conflict.

E-foundNameInConflict

The resolve name request failed as the name found is in conflict.

9.2.10 Procedure Timeout

This field is contained in octet 11 of the PDU. It is interpreted as an
unsigned binary number with a maximum value of 255 (1111 1111). It specifies

the number of seconds the originator will wait before timing out the
procedure.

The timeout value of O is valid; it indicates infinity (no timeout).

9.2.11 Procedure

This field is contained in octet 12 of the PDU. It identifies the remote

procedure to be performed, and defines the format of the variable portion of
the PDU. Allowable values are given in Table 8.

gisterGroup\ame
Reg i sterName
solveName

meconf 1 i.ctAdvise

E DI RECTORY PROCEDURE -

TABLE 8. Valid Procedure Codes

All other values are reserved and constitute a protocol error.

9.3 The Variable Part

9.3 .1 General

The variable part is used to convey the parameters for the remote procedure,

or values being returned from such a call. If the variable part is present,
it may contain one or more parameters. Each remote procedure defines the

number, type and order of parameters to appear in the variable part. The
following are some of the most common parameters to appear in the variable
part. Their order of appearance differs with the exact procedure call, and
is defined in the PDU diagrams starting at sec. 9.5.

3 18 X/Open CAB Speci ficaljon (1%

Page 337 of 535

TOP/NQIBIOS

9.3.2 Name

This parameter is a variable length field used to unambiguously identify a

database entry. It is usually set by the initiator and must be formed

according to the rules for NetBIOS Names”. It is encoded in the format shown
in Figure 6.

Octet

|

Name Length Indicator I m
. ..|

|
. m+l

Name

I n-l

Figure 6. Encoding of the Name Parameter

9.3.3 Attribute Descriptor

This is a variable-length. parameter which describes an attribute. Attribute
descriptors may be specified by either the initiator (as in the case of a

NB_Reso].veNarne REQUEST pdu), or by the responder (as in the case of a
NB_Reso1veName RESPONSE pdu).

Attribute tuples are encoded in a standard typggth-value format as shown
in Figure 7.

Octet

Attribute Code I m
_ ..I

I

Attribute Length Indicator I m+1
. ..|

. m+2
Attribute Value

n-l

Figure 7. Encoding of an Attribute Descriptor

The Attribute Code field is a l-octet binary value allowing a maximum of 254
different attribute types. The value of 255 is reserved for possible future
extensions. The set of attribute Codes in the range of 0-127 are reserved for
TOP/NetBIOS use. The set of attribute codes in the range of 128-254 are
assigned for private use [vendor specific). An implementation that does not

recognize an attribute code will ignore the attribute. Table 9 lists the
valid attribute codes defined by TOP/NetBIOS.

14. NetBIOS Names are defined to be consistent with the NetBIOS specifications to a length of exactly 16OCCBES.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 319

Page 338 of 535

TO P/NQIBIOS

ndeAdminTrans-ort Address

* - values not including 1111 1111

TABLE 9. Disposition of Attribute Codes

An attribute (code) that is not recognized will be ignored. However, an
unrecognizable attribute doellnot cause the entire request to be ignored.
Recognized” attributes will still be registered (in the case of Registered
Name and Registered Group Name Requests) or returned with a response code S-

partia1Results (in the case of Resolve Name Requests).

The _Attribute Length field. is a l-octet binary value which indicates the
length, in octets, of the attribute value field. The value field may be up to

254 octets in length. The value of 255 is reserved for possible future
extensions.

The Attribute Value field contains the value of the attribute identified in

the attribute code field. Encoding formats for standard attributes are

specified in sec. 9.4.

9.3.4 Attribute Lists

In many operations, a list of attribute descriptors may be passed as
parameters or return values. When such a list appears, it is preceded by an
Attribute Count parameter. This parameter is a 1—octet binary value
indicating the number of attribute descriptors in the list (see the previous

section for the format of attribute descriptors). The field allows for a
maximum of 254 attribute descriptors in the list. Such lists may contain only
one item. The value 255 is reserved for possible future extensions.

The format of an attribute list is given in Figure 8.

15. Valid attributes, including private attributes! are recognized, and a list of valid attributes codes are
given in Table 9.

X/Open CAB Speci ficaljon (1%

Page 339 of 535

TOP/NQIBIOS

Octet

m

Attribute Code m+1

Repeated

"i" times Attribute Length Indicator | mr2

. m+3

Attribute value .

| n—l

Figure 8. Encoding of an Attribute List

9.4 Encodings for Selected Attributes

9 4.1 General

when attribute tuples are passed in the protocol, they are encoded using a

standard typ:!gth— value format called an attribute descriptor {see sec.
9.3.3 for details). The following sections specify the contents of the
Attribute Code, Attribute Length and Attribute Value fields for each of the
standard attributes.

The following attributes are defined:

1. UniqueName

2. Transport Address

3. Name In Conflict

4. vc Accept

5 . DG Accept

6. NodeAdminTransport Address

9.4.2 Encoding of the Attribute Code

In order to allow for new attributes to be added to the NetBIOS Name Service

Protocol with a minimum of central coordination, the attribute code field is

structured to represent a two—level hierarchy. The two levels are:

— attribute authority identifier (bit 8);

— attribute identifier (bits 1-7).

Attribute Authority Identifier

This field designates the authority responsible for allocating the attribute
identifiers under its control. when the value of this field is set to zero

(0), it indicates the value has been assigned by the TOP/NetBIOS SIG. The
other‘ values associated with this field set to «one (1) indicate these are

assigned locally for private use.

Attribute Identifier

This field designates the individual attribute within the domain of an
attribute authority. Each attribute within a domain must have a unique

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 $1

Page 340 of 535

TOP/NetBIOS

seven—bit code assigned by the reigning authority.

9.4.3 UniqueName

This attribute specifies whether the name corresponding to this entry is a
unique name (as opposed to a group name).

Attribute Code: 0000 0001

Attribute Length: l octet

Attribute Value: Boolean (Oxff=TRUE, 0xOO=FALsE)

9‘4_4 Transport Address

This attribute contains the Transport Address of the object. If this
attribute is requested for a recognized name in a resolve name request, at
least one transport address must be returned in the response. The encoding of
the Transport Address attribute value field is as Eollows:

Attribute Code: 0000 0010

Attribute Length: variable

Attribute Value: See Figure 9

Octet

Reserved Set to O m—2

Reserved Set to O m-1

tselector Length Indicator | m
. ..|

I
mrl

tselector .
n—1

I

I
nAddress Length Indicator | n

I
nrl

nAddress

I 9-1

Figure 9. Value Field of Transport Address Attribute

9.4.5 Name In Conflict

This attribute indicates that the name is in conflict within its domain.

Normally this attribute will be reset, when the name is added to the
database. However, when it is detected that this name is in conflict this

attribute is set. The name is said to be in conflict, when two or more

objects with the same name and at least one of which with unique name
attribute are present in the same domain“.

Z X/Open CAB Speci ficaljon (12%

Page 341 of 535

TOP/NQIBIOS

Attribute Code: 0000 0011

Attribute Length: 1 octet

Attribute Value: Boolean (Oxff=TRUE in conflict, OxOO=FALSE not in
conflict)

9 4.6 UcAccept

This attribute specifies whether the server for this name is currently
accepting VC connection requests, e.g., “listen" outstanding Eor that name.

This attribute is only maintained by NDSEs. If these attributes are requested
from NDUA then “partial results" may be returned”.

Attribute Code: OOOO 0100

Attribute Length: 1 octet

Attribute Value: Value (OxO1-Oxff=YES, 0xOO=NO)

9.4.7 DgAccept

This attribute specifies whether the server for this name is currently

accepting DG transactions, e.g. receive datagram/broadcast datagram
outstanding for that name. This attribute is only maintained by NDSES. If
these attributes are requested from NDUA then ‘‘partial results’' are
returned.

Attribute Code: 0000 0101

Attribute Length: 1 octet

Attribute Value: Boolean (0xfE=TRUE, 0x0O=FALSE)

9.4.8 NodeAdminTransport Address

This attribute contains the Transport Address of the end—point used by Node

Administration. This address is used for network management communication,
e.g., for remote adapter status. The recommended address will be NDSE
transport address. To obtain the “remote adapter status”, the originating

node will send out a query packet (Resolve Name Request) with this attribute
set, and the responding node will return the address of the administrative

entity (NDSE) on that node. The adapter status request is sent to this
address. If this attribute is requested for a recognized name in a resolve
name request, then this attribute must be returned in the response. The

Eormat of this attribute is the same as that of the “transport address"
attribute.

Attribute Code: 0000 0110

Attribute Length: variable

Attribute Value: See Figure 9

9.5 PDUS Eor NB_RegisterName and NB_RegisterGroupName

_16.

17.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Note that this attribute is not carried in any of the currently defined PDUQ, but this attribute may be
requested in a resolve name request, for administrative reasons. Internal implementation of this feature
is a local matter for NDUAS and NDSEB. However, it is necessary to maintain this information locally.
The intent oi the value tor this attribute is to represent the number of VC requests the object is
prepared. to accept. A value oi zero means the service is not available, and a value of oxfi means
maximum service. It is a local matter to determine the current value of this attribute to be returned in
the response PDU.

Page 342 of 535

9.5.1 REQUEST PDU

TO P/NQIBIOS

The format of the REQUEST PDU is shown in Figure 10.

Repeated
11]‘./I

$4

Page 343 of 535

times

Figure 10.

Octet

| 1
Fixed Part I thru

| 12

I

Name Length Indicator 13

| 14
Name .

. m—l

I
I

Initial—Attribute Count = i I m

I
Attribute Code I mul

_ . I . ..I

I

Attribute Length Indicator I m+2
. ..|

I
. m+3

Attribute Value

I n-l

REQUEST PDU Format for NB_RegisterName and
N3_RegisterGroupName

X/Open CAB Speci ficaljon (IE

TOP/NQIBIOS

9.5.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 11.

OCEEE

I
I
I

Fixed Part | thru

I

|12
I

Figure 1 RESPONSE PDU Format for NB_RegisterName and
NB_RegisterGroupName

9.6 PDUS for NB_Un isterName

9.6.1 REQUEST PDU

The format of the R EST PDU is shown in Figure 12.

Octet

1
Fixed Part thru

12

Name Length Indicator 13

14

m—l

Initial—Attribute Count = i m

Attribute Code m+1

Repeated

“i." times | Attribute Length Indicator m+2
| ..

m+3

. Attribute Value .

I | n-1

Figure 12. REQUEST PDU Format for NB_UnregieterName

9.6.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 13.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Page 344 of 535

TO P/NQIBIOS

Octet

I
I

I
Fixed Part I thru

I
|12
I

Figure 13. RESPONSE PDU Format for NB_UnregisterName

9.7 PDUs for NB_ResolveName

9.7.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 14.

Octet

thru
12

Name Length Indicator 13

14

n—l

Request—Attribute Count = ' n

Attribute Code m+1

Repeated _ ‘ _ _ . ..
"j" times

Attribute Length Indicator n+2

Figure 14. REQUEST PDU Format for NB_Re5olveName

9.7.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 15.

E X/Open CAB Speci ficaljon (1%

Page 345 of 535

TOP/NQIBIOS

Name Length Indicator

Returned—Attribute Count = i

Attribute Code

Repeated
"i" times

Attribute Value
Figure 15.

Octet

thru
12

13

14

m+1

m+2

rm-3

RESPONSE PDU Format for NB_ResolveName

Note that it is possible that the response PDU will contain fewer attributes
but

information

never more. Nodes

IPCI)

must

of a response
than requested,
protocol control
address;

9.8 PDUs for NB_NameConflictAdvise

The format of the ADVISE PDU is shown in Figure 16.

Fixed Part

not make use

Name Length Indicator

Figure 16.

Note that the Type Code ADVISE PDU Type.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Page 346 of 535

of

to determine

they must parse the data contained in the response.

Octet

thru
12

m—l

ADVISE PDU Format for NB_NameConflictAdvise

the source
a name ' S

TO P/NQIBIOS

9.9 PDU for NB_NDUAHere

The format for NB_NDUAHere, “I am here“ PDU is given Figure 17.

OCEEE

I
| 1

Fixed Part I thru

| 12

I

l3

I

Attribute Code I m+1
. |

Repeated I
"i" times Attribute Length Indicator I m+2

. I

I
m+3

Attribute Value
n-1

Figure 17. NDUA — I am here Advise PDU Format: NB_NDUAHere

Note that the Type Code = ADVISE PDU Type.

9.10 PDUS and Attributes

The intent of the following table is to provide general guidelines for the
set of attributes that are “meaningful" with. different PDU types. Note
that Register means both unique and group registrations and address implies

transport address. Attributes listed in square brackets imply optional. For
example, the resolve name request may request for NodeAdmin Transport
Address, or other attributes. The address attributes must be supplied in the
response PDU when requested in a request PDU.

§ X/Open CAB Speci ficaljon (1%

Page 347 of 535

TOP/NQIBIOS

Address

[NodeAc1min-Addres-

[VC Accept]
[DG Accept]
(name)
Addressfes)

Unique/Group

[VC Accept]
[DG Accept]
[NodeAdmin-Addres:

Figure 18. Sample PDUS and Attributes

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2

Page 348 of 535

TO P/NQIBIOS

APPENDIX I : STATE TABLES

This appendix is an integral part of the body of this specification. It

presents, in an unambiguous form, the actions taken by the NetBIOS interface
in. response to user commands and transport primitives. The state tables
detail the mapping between NetBIOS “sessions” and class four transport
connections. They do not describe general, name service, or datagram service
commands, nor do they attempt to show the interaction with NetBIOS name

services. The state tables also omit any description of the validation
procedures performed on each NetB10s command; those procedures are adequately
described in the NetBIOS interface definition.

The following subsections introduce the state tables by outlining the
notation, conventions, actions and variables used by the tables. The tables
themselves, which follow the text of this appendix, consist of six figures

that specify the incoming events, states, outgoing events, specific actions,

predicates and state tables. The actions defined by the state tables apply to
a single NetBIOS “session". Each NetBIOS “session“ operates under an
independent state table .

I.l Notation for State Tables

The state tables represent incoming events, states, and outgoing events with
their abbreviated names. Tables 10, 11, and 12 specify these abbreviated
names. The state tables represent specific actions with. the notation hfl,

where “n" is the number of the specific action in Table 10. Eredicates are

represented by the notation pn, where “n” is the number of the predicate in
Table 14. Notes are indicated by (n), where “n" is the note number at the
foot of the figure. Finally, the tables show boolean operations with the
characters “&" (logical and), “ " (logical or), and “!" (logical not).

I.2 Conventions for Entries in State Tables

The intersection of each state and incoming event in the state tables (Table
15) either is left blank, contains the notation “//”, or contains an entry.

If the intersection is blank, the incoming event is invalid. An invalid event
can only occur if the NetBIOS interface commits an error. If the intersection
contains “//,” it is logically impossible for the interface to receive the
incoming event. Impossible events either cannot occur, or can only occur if
an entity other than the NetBlOS interface (for example, the transport

provider) commits an error. (These entries are often a consequence of the
tabular presentation of the state tables.)

If the intersection of current state and incoming event contains an entry,
the incoming event is valid and the entry specifies the actions the NetBIOS

interface should take. Each valid entry either contains an action list or
one or’ more conditional action. lists. An. action list may include outgoing
events and specific actions, and it always specifies the resultant state. A
conditional action list consists of a predicate expression made up of
predicates and boolean operators, and an action list.

I.3 Actions to be Taken by the NetBIOs Interface

The NetBIOS interface takes the actions defined by the state tables (Table
15]. Where those tables do not specify an action (if the incoming event is

invalid or impossible), the action taken is a local matter.

For valid entries, if the intersection of the incoming event and state

contains an action. list, the NetBIOS interface takes the specific actions
specified in the table. It then changes state to the indicated resultant
state. If the intersection contains one or more conditional action Lists, for
each predicate expression that is true the NetBlOS interface takes the

fl X/Open CAB Speci ficaljon (1%

Page 349 of 535

TOP/NQIBIOS

specific actions in the order given by the action list for the predicate
expression. If none of the predicate expressions are true, the incoming event
is considered invalid and the actions taken are a local matter.

I.4 Variables

This specification defines several variables for the NetBIOS interface. The
state tables use these variables to clarify the effect of certain actions and

to clarify the conditions under which certain actions are valid. For purposes
of this specification, these variables are purely logical entities; the way
implementations actually represent them is a local matter.

—-Nsto — timeout value for SEND and CHAIN SEND commands

— Nrto — timeout value for RECEIVE commands

—-Vtca — False: the NetBIOS entity initiated the t— connect request
(transport connection initiator), True: the NetBIOS entity received the
t-connect indication (transport connection acceptor).

I.5 Incoming Events

 CALL NetBIOS CALL command from user

TCONind T—CONNECT indication primitive
TCONcnf+ T—CONNECT confirmation (positive) primitive
TDATAind T-DATA indication primitive
RECEIVE NEEBIOS RECEIVE OI RECEIVE ANY command from us:

SEND NetBIOS SEND or CHAIN SEND command from user
SENDcnf NetBIOS SEND or CHAIN SEND command confirmed
HANGUP NetBIOS HANG UP command from user

CLSreq Close request from remote interface
Chsrsp Close response from remote interface

TDISCind T-DISCONNECT indication primitive

NetBIOS send timeout expiration
etBIOS receive timeout ' '

ang up timeout expirat

TABLE 10‘ Incoming Events

Notes:

The exact definition of SEND or CHAIN SEND command confirmation (see
“SENDcnf“ above) is a local matter. It is whatever event causes the

interface to complete a SEND or CHAIN SEND command. Some implementations may

define this event to be coincident with the SEND event; others may define it
to occur when the buffer containing user data is returned. to the NetB1OS
interface, while still other implementations may define it to occur when the
transport provider receives a transport level acknowledgement of receipt of
the user data from the remote transport provider. Because the event cannot

be precisely defined in this specification, the following state tables do not
specify an implementation's actions when it receives a HANG UP command with
SEND commands pending. Implementations are free to handle this case in any
manner consistent with. the NetBIOS definition and with. this specification.
Regardless of its exact definition, this event does not apply to the

‘‘completion’‘ of close requests or close responses, despite the fact that
they, like user data, are sent in TSDUs.

Protocols for X/Open PC[nte1wo1'king: SMB, Version 2 $1

Page 350 of 535

TO P/NQIBIOS

I.6 Outgoing Events

remake Name —
T—CONN'ElCT re

TCONrsp+ T—CONNECT response posi lve primitive
LSTNcplt Complete NetBIOS LISTEN command “good“
CALLcplt Complete NetBIOS CALL command “good“

TDATAreq T-DATA request primitive
sENDcplt Complete NetBIOS SEND/CHAIN—SEND command “good“
RCVCPLC Complete NetBIOS RECEIVE/RECEIVE—ANY command “good”
CLSreq Close request to remote interface
CLSrsp Close response to remote interface

TDISCreq T-DISCONNECT request primitive

_HANGC-lt Com-lete NECBIOS HANG UP command ‘

TABLE 11. Outgoing Events

Notes:

The completion of a NetBIOS command is only considered an outgoing event if
the completion is successful, i.e., the command completes with a return code
of “good“ (OxOO). This distinction, though somewhat arbitrary, does make

the state tables more manageable.

I.7 States

0 OBS HOE EXLS

 anging up, waiting for CLOSE RESPONSE
aiting for disconnect

losed, waiting to notify user
sorted, waiting to notify user

Close Collison

TABLE 12. States

Notes:

For the correspondence between these states and the “state of the session"
returned in the SESSION STATUS command, please refer to “SE$SION STATUS” in
section five.

fi X/Open CAB Speci ficaljon (1%

Page 351 of 535

