
RFC: 791

INTERNET PROTOCOL

DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION

September 1981

prepared for

Defense Advanced Research Projects Agency

Information Processing Techniques Office
1400 Wilson Boulevard

Arlington, Virginia 22209

by

Information Sciences Institute

University of Southern California

4676 Admiralty Way

Marina del Rey, California 90291

Page 1 of 52 LG Electronics Exhibit 1018

Page 2 of 52

September 1981
Internet Protocol

TABLE OF CONTENTS

PREFACE .. iii

1. INTRODUCTION ... 1

1.1 Motivation .. l

1.2 Scope ... l
1.3 Interfaces .. l

1.4 Operation ... 2

2. OVERVIEW ... 5

2.1 Relation to Other Protocols 9

2.2 Model of Operation .. 5

2.3 Function Description .. 7

2.4 Gateways .. 9

3. SPECIFICATION ... 11

3.1 Internet Header Format 11

3.2 Discussion ... 23

3.3 Interfaces ... 31

APPENDIX A: Examples & Scenarios 34
APPENDIX B: Data Transmission Order 39

GLOSSARY .. 41

REFERENCES .. 45

[Page i]

Page 3 of 52

September 1981
Internet Protocol

[Page ii]

Page 4 of 52

September 1981
Internet Protocol

PREFACE

This document specifies the DoD Standard Internet Protocol. This
document is based on six earlier editions of the ARPA Internet Protocol

Specification, and the present text draws heavily from them. There have

been many contributors to this work both in terms of concepts and in

terms of text. This edition revises aspects of addressing, error

handling, option codes, and the security, precedence, compartments, and

handling restriction features of the internet protocol.

Jon Postel

Editor

[Page iii]

Page 5 of 52

Page 6 of 52

September 1981

RFC: T91

Replaces: RFC 760

IENs 128, 123, 111,

80, 54, 44, 41, 28, 26

INTERNET PROTOCOL

DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION

1. INTRODUCTION

1.1. Motivation

The Internet Protocol is designed for use in interconnected systems of

packet—switched computer communication networks. Such a system has

been called a I‘catenet" [l]. The internet protocol provides for

transmitting blocks of data called datagrams from sources to

destinations, where sources and destinations are hosts identified by

fixed length addresses. The internet protocol also provides for

fragmentation and reassembly of long datagrams, if necessary, for

transmission through I‘small packet" networks.

1.2. Scope

The internet protocol is specifically limited in scope to provide the

functions necessary to deliver a package of bits (an internet

datagram) from a source to a destination over an interconnected system

of networks. There are no mechanisms to augment end—to—end data

reliability, flow control, sequencing, or other services commonly

found in host—to—host protocols. The internet protocol can capitalize

on the services of its supporting networks to provide various types

and qualities of service.

1.3. Interfaces

This protocol is called on by host—to—host protocols in an internet

environment. This protocol calls on local network protocols to carry

the internet datagram to the next gateway or destination host.

For example, a TCP module would call on the internet module to take a

TCP segment {including the TCP header and user data) as the data

portion of an internet datagram. The TCP module would provide the

addresses and other parameters in the internet header to the internet

module as arguments of the call. The internet module would then

create an internet datagram and call on the local network interface to

transmit the internet datagram.

In the ARPANET case, for example, the internet module would call on a

[Page 1]

Page 7 of 52

September 1981
Internet Protocol

Introduction

local net module which would add the 1822 leader [2] to the internet

datagram creating an ARPANET message to transmit to the IMP. The

ARPANET address would be derived from the internet address by the
local network interface and would be the address of some host in the

ARPANET, that host might be a gateway to other networks.

1.4. Operation

The internet protocol implements two basic functions: addressing and

fragmentation.

The internet modules use the addresses carried in the internet header

to transmit internet datagrams toward their destinations. The

selection of a path for transmission is called routing.

The internet modules use fields in the internet header to fragment and

reassemble internet datagrams when necessary for transmission through

"small packet" networks.

The model of operation is that an internet module resides in each host

engaged in internet communication and in each gateway that
interconnects networks. These modules share common rules for

interpreting address fields and for fragmenting and assembling

internet datagrams. In addition, these modules (especially in

gateways) have procedures for making routing decisions and other
functions.

The internet protocol treats each internet datagram as an independent

entity unrelated to any other internet datagram. There are no

connections or logical circuits (virtual or otherwise).

The internet protocol uses four key mechanisms in providing its

service: Type of Service, Time to Live, Options, and Header Checksum.

The Type of Service is used to indicate the quality of the service

desired. The type of service is an abstract or generalized set of

parameters which characterize the service choices provided in the

networks that make up the internet. This type of service indication

is to be used by gateways to select the actual transmission parameters

for a particular network, the network to be used for the next hop, or

the next gateway when routing an internet datagram.

The Time to Live is an indication of an upper bound on the lifetime of

an internet datagram. It is set by the sender of the datagram and

reduced at the points along the route where it is processed. If the

time to live reaches zero before the internet datagram reaches its

destination, the internet datagram is destroyed. The time to live can

be thought of as a self destruct time limit.

[Page 2]

Page 8 of 52

September 1981
Internet Protocol

Introduction

The Options provide for control functions needed or useful in some

situations but unnecessary for the most common communications. The

options include provisions for timestamps, security, and special

routing.

The Header Checksum provides a verification that the information used

in processing internet datagram has been transmitted correctly. The

data may contain errors. If the header Checksum fails, the internet

datagram is discarded at once by the entity which detects the error.

The internet protocol does not provide a reliable communication

facility. There are no acknowledgments either end—to—end or

hop—by—hop. There is no error control for data, only a header
Checksum. There are no retransmissions. There is no flow control.

Errors detected may be reported.via the Internet Control Message

Protocol (ICMP) [3] which is implemented in the internet protocol
module.

[Page 3]

Page 9 of 52

September 1981
Internet Protocol

[Page 4]

Page 10 of 52

September 1981
Internet Protocol

2. OVERVIEW

2.1. Relation to Other Protocols

The following diagram illustrates the place of the internet protocol

in the protocol hierarchy:

+ + + + + + + —————+

ITelnetl | FTP | | TFTPI ... | ... |
+ + + + + + + —————+

| | | |
+ ————— + +————— + + —————+

ITCPI IUDPI | ...I
+ ————— + +————— + + —————+

| | |
+ + +

| Internet Protocol & ICMP |
+ + +

|
+ +

| Local Network Protocol |
+ +

Protocol Relationships

Figure 1.

Internet protocol interfaces on one side to the higher level

host—to—host protocols and on the other side to the local network

protocol. In this context a "local network" may be a small network in

a building or a large network such as the ARPANET.

2.2. Model of Operation

The model of operation for transmitting a datagram from one

application program to another is illustrated by the following
scenario:

We suppose that this transmission will involve one intermediate

gateway.

The sending application program prepares its data and calls on its

local internet module to send that data as a datagram and passes the

destination address and other parameters as arguments of the call.

The internet module prepares a datagram header and attaches the data
to it. The internet module determines a local network address for

this internet address, in this case it is the address of a gateway.

[Page 5]

Page 11 of 52

September 1981
Internet Protocol

Overview

It sends this datagram and the local network address to the local
network interface.

The local network interface creates a local network header, and

attaches the datagram to it, then sends the result Via the local
network.

The datagram arrives at a gateway host wrapped in the local network

header, the local network interface strips off this header, and

turns the datagram over to the internet module. The internet module

determines from the internet address that the datagram is to be
forwarded to another host in a second network. The internet module

determines a local net address for the destination host. It calls

on the local network interface for that network to send the

datagram.

This local network interface creates a local network header and

attaches the datagram sending the result to the destination host.

At this destination host the datagram is stripped of the local net

header by the local network interface and handed to the internet
module.

The internet module determines that the datagram is for an

application program in this host. It passes the data to the

application program in response to a system call, passing the source

address and other parameters as results of the call.

Application Application

Program Program
\ /

Internet Module Internet Module Internet Module

\ / \ /
LNI—l LNI—l LNI—2 LNI—Z

\ / \ /
Local Network 1 Local Network 2

Transmission Path

Figure 2

[Page 6]

Page 12 of 52

September 1981
Internet Protocol

Overview

2.3. Function Description

The function or purpose of Internet Protocol is to move datagrams

through an interconnected set of networks. This is done by passing

the datagrams from one internet module to another until the
destination is reached. The internet modules reside in hosts and

gateways in the internet system. The datagrams are routed from one

internet module to another through individual networks based on the

interpretation of an internet address. Thus, one important mechanism

of the internet protocol is the internet address.

In the routing of messages from one internet module to another,

datagrams may need to traverse a network whose maximum packet size is

smaller than the size of the datagram. To overcome this difficulty, a

fragmentation mechanism is provided in the internet protocol.

Addressing

A distinction is made between names, addresses, and routes [4]. A
name indicates what we seek. An address indicates where it is. A

route indicates how to get there. The internet protocol deals

primarily with addresses. It is the task of higher level (i.e.,

host—to—host or application) protocols to make the mapping from

names to addresses. The internet module maps internet addresses to

local net addresses. It is the task of lower level (i.e., local net

or gateways) procedures to make the mapping from local net addresses
to routes.

Addresses are fixed length of four octets (32 bits). An address

begins with a network number, followed by local address {called the

"rest" field). There are three formats or classes of internet

addresses: in class a, the high order bit is zero, the next 7 bits
are the network, and the last 24 bits are the local address; in

class b, the high order two bits are one—zero, the next 14 bits are

the network and the last 16 bits are the local address; in class c,

the high order three bits are one—one—zero, the next 21 bits are the
network and the last 8 bits are the local address.

Care must be taken in mapping internet addresses to local net

addresses; a single physical host must be able to act as if it were

several distinct hosts to the extent of using several distinct

internet addresses. Some hosts will also have several physical

interfaces {multi—homing).

That is, provision must be made for a host to have several physical

interfaces to the network with each having several logical internet
addresses.

[Page 7]

Page 13 of 52

September 1981
Internet Protocol

Overview

Examples of address mappings may be found in "Address Mappings" [5].

Fragmentation

Fragmentation of an internet datagram is necessary when it

originates in a local net that allows a large packet size and must

traverse a local net that limits packets to a smaller size to reach
its destination.

An internet datagram can be marked "don‘t fragment." Any internet

datagram so marked is not to be internet fragmented under any

circumstances. If internet datagram marked don‘t fragment cannot be

delivered to its destination without fragmenting it, it is to be
discarded instead.

Fragmentation, transmission and reassembly across a local network

which is invisible to the internet protocol module is called

intranet fragmentation and may be used [6].

The internet fragmentation and reassembly procedure needs to be able

to break a datagram into an almost arbitrary number of pieces that

can be later reassembled. The receiver of the fragments uses the

identification field to ensure that fragments of different datagrams

are not mixed. The fragment offset field tells the receiver the

position of a fragment in the original datagram. The fragment

offset and length determine the portion of the original datagram

covered by this fragment. The more—fragments flag indicates (by

being reset) the last fragment. These fields provide sufficient

information to reassemble datagrams.

The identification field is used to distinguish the fragments of one

datagram from those of another. The originating protocol module of

an internet datagram sets the identification field to a value that

must be unique for that source—destination pair and protocol for the

time the datagram will be active in the internet system. The

originating protocol module of a complete datagram sets the

more—fragments flag to zero and the fragment offset to zero.

To fragment a long internet datagram, an internet protocol module

(for example, in a gateway), creates two new internet datagrams and

copies the contents of the internet header fields from the long

datagram into both new internet headers. The data of the long

datagram is divided into two portions on a 8 octet (64 bit) boundary

(the second portion might not be an integral multiple of 8 octets,

but the first must be). Call the number of 8 octet blocks in the

first portion NFB {for Number of Fragment Blocks). The first

portion of the data is placed in the first new internet datagram,

and the total length field is set to the length of the first

[Page 8]

Page 14 of 52

September 1981
Internet Protocol

Overview

datagram. The more—fragments flag is set to one. The second

portion of the data is placed in the second new internet datagram,

and the total length field is set to the length of the second

datagram. The more—fragments flag carries the same value as the

long datagram. The fragment offset field of the second new internet

datagram is set to the value of that field in the long datagram plus
NFB.

This procedure can be generalized for an n—way split, rather than

the two—way split described.

To assemble the fragments of an internet datagram, an internet

protocol module (for example at a destination host) combines

internet datagrams that all have the same value for the four fields:

identification, source, destination, and protocol. The combination

is done by placing the data portion of each fragment in the relative

position indicated by the fragment offset in that fragment's

internet header. The first fragment will have the fragment offset

zero, and the last fragment will have the more—fragments flag reset
to zero.

2.4. Gateways

Gateways implement internet protocol to forward datagrams between

networks. Gateways also implement the Gateway to Gateway Protocol

(GGP) [7] to coordinate routing and other internet control
information.

In a gateway the higher level protocols need not be implemented and
the GGP functions are added to the IP module.

+ +

| Internet Protocol & ICMP & GGPI
+ +

| |
+ + + +

| Local Net | | Local Net |
+ + + +

Gateway Protocols

Figure 3.

[Page 9]

Page 15 of 52

September 1981
Internet Protocol

[Page 10]

Page 16 of 52

September 1981
Internet Protocol

3. SPECIFICATION

3.1. Internet Header Format

A summary of the contents of the internet header follows:

0 l 2 3

0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l
+++++++++++++++++++++++++++++++++

IVersionl IHL IType of Servicel Total Length |
+ +

| Identification IFlagsl Fragment Offset |
+ +

| Time to Live | Protocol | Header Checksum |
+ +

Source Address |
+ +

|
+

|
+

 |
+

| Destination Address
+ +

|
+

Options | Padding
+ +

Example Internet Datagram Header

Figure 4.

Note that each tick mark represents one bit position.

Version: 4 bits

The version field indicates the format of the internet header. This

document describes version 4.

IHL: 4 bits

Internet Header Length is the length of the internet header in 32

bit words, and thus points to the beginning of the data. Note that
the minimum.value for a correct header is 5.

[Page 11]

Page 17 of 52

September 1981
Internet Protocol

Specification

Type of Service: 8 bits

The Type of Service provides an indication of the abstract

parameters of the quality of service desired. These parameters are

to be used to guide the selection of the actual service parameters

when transmitting a datagram through a particular network. Several

networks offer service precedence, which somehow treats high

precedence traffic as more important than other traffic {generally

by accepting only traffic above a certain precedence at time of high

load). The major choice is a three way tradeoff between low—delay,

high—reliability, and high—throughput.

Bits 0—2: Precedence.

Bit 3: 0 = Normal Delay, 1 = Low Delay.

Bits 4: 0 = Normal Throughput, 1 High Throughput.

Bits 5: 0 = Normal Relibility, l = High Relibility.
Bit 6—7: Reserved for Future Use.

0 1 2 3 4 5 6 7
+ + + + + + + + +

| | | | | | |

I PRECEDENCE I D I T I R I 0 I 0 I

| | | | | | |
+ + + + + + + + +

Precedence

111 — Network Control

110 — Internetwork Control

101 — CRITIC/ECP
100 — Flash Override

011 — Flash

010 — Immediate

001 — Priority
000 — Routine

The use of the Delay, Throughput, and Reliability indications may

increase the cost {in some sense} of the service. In many networks

better performance for one of these parameters is coupled with worse

performance on another. Except for very unusual cases at most two
of these three indications should be set.

The type of service is used to specify the treatment of the datagram

during its transmission through the internet system. Example

mappings of the internet type of service to the actual service

provided on networks such as AUTODIN II, ARPANET, SATNET, and PRNET

is given in "Service Mappings" [8].

[Page 12]

Page 18 of 52

September 1981
Internet Protocol

Specification

The Network Control precedence designation is intended to be used

within a network only. The actual use and control of that

designation is up to each network. The Internetwork Control

designation is intended for use by gateway control originators only.

If the actual use of these precedence designations is of concern to

a particular network, it is the responsibility of that network to

control the access to, and use of, those precedence designations.

Total Length: 16 bits

Total Length is the length of the datagram, measured in octets,

including internet header and data. This field allows the length of

a datagram to be up to 65,535 octets. Such long datagrams are

impractical for most hosts and networks. All hosts must be prepared

to accept datagrams of up to 576 octets {whether they arrive whole

or in fragments}. It is recommended that hosts only send datagrams

larger than 576 octets if they have assurance that the destination

is prepared to accept the larger datagrams.

The number 576 is selected to allow a reasonable sized data block to

be transmitted in addition to the required header information. For

example, this size allows a data block of 512 octets plus 64 header

octets to fit in a datagram. The maximal internet header is 60

octets, and a typical internet header is 20 octets, allowing a

margin for headers of higher level protocols.

Identification: 16 bits

An identifying value assigned by the sender to aid in assembling the

fragments of a datagram.

Flags: 3 bits

Various Control Flags.

Bit 0: reserved, must be zero

Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.

Bit 2: (NF) 0 Last Fragment, 1 = More Fragments.

Fragment Offset: 13 bits

This field indicates where in the datagram this fragment belongs.

[Page 13]

Page 19 of 52

September 1981
Internet Protocol

Specification

The fragment offset is measured in units of 8 octets (64 bits}. The

first fragment has offset zero.

Time to Live: 8 bits

This field indicates the maximum time the datagram is allowed to

remain in the internet system. If this field contains the value

zero, then the datagram must be destroyed. This field is modified

in internet header processing. The time is measured in units of

seconds, but since every module that processes a datagram must

decrease the TTL by at least one even if it process the datagram in

less than a second, the TTL must be thought of only as an upper

bound on the time a datagram may exist. The intention is to cause

undeliverable datagrams to be discarded, and to bound the maximum

datagram lifetime.

Protocol: 8 bits

This field indicates the next level protocol used in the data

portion of the internet datagram. The values for various protocols

are specified in "Assigned Numbers" [9].

Header Checksum: 16 bits

A checksum on the header only. Since some header fields change

(e.g., time to live), this is recomputed and verified at each point

that the internet header is processed.

The checksum algorithm is:

The checksum field is the 16 bit one‘s complement of the one‘s

complement sum of all 16 bit words in the header. For purposes of

computing the checksum, the value of the checksum field is zero.

This is a simple to compute checksum and experimental evidence

indicates it is adequate, but it is provisional and may be replaced

by a CRC procedure, depending on further experience.

Source Address: 32 bits

The source address. See section 3.2.

Destination Address: 32 bits

The destination address. See section 3.2.

[Page 14]

Page 20 of 52

September 1981
Internet Protocol

Specification

Options: variable

The options may appear or not in datagrams. They must be

implemented by all IP modules (host and gateways). What is optional

is their transmission in any particular datagram, not their

implementation.

In some environments the security option may be required in all

datagrams.

The option field is variable in length. There may be zero or more

options. There are two cases for the format of an option:

Case 1: A single octet of option—type.

Case 2: An option—type octet, an option—length octet, and the

actual option—data octets.

The option—length octet counts the option—type octet and the

option—length octet as well as the option—data octets.

The option—type octet is viewed as having 3 fields:

1 bit copied flag,

2 bits option class,

5 bits option number.

The copied flag indicates that this option is copied into all

fragments on fragmentation.

0 = not copied

1 = copied

The option classes are:

control

reserved for future use

debugging and measurement
= reserved for future useWNI—‘CJ ||

[Page 15]

Page 21 of 52

September 1981
Internet Protocol

Specification

The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

0 0 — End of Option list. This option occupies only

1 octet; it has no length octet.

0 l — No Operation. This option occupies only 1

octet; it has no length octet.

0 2 11 Security. Used to carry Security,

Compartmentation, User Group (TCC), and

Handling Restriction Codes compatible with DOD

requirements.

0 3 var. Loose Source Routing. Used to route the

internet datagram based on information

supplied by the source.

0 9 var. Strict Source Routing. Used to route the

internet datagram based on information

supplied by the source.
0 7 var. Record Route. Used to trace the route an

internet datagram takes.

0 8 4 Stream ID. Used to carry the stream
identifier.

2 4 var. Internet Timestamp.

Specific Option Definitions

End of Option List

+ ————————+

IOOOOOOOOI

This option indicates the end of the option list. This might

not coincide with the end of the internet header according to

the internet header length. This is used at the end of all

options, not the end of each option, and need only be used if

the end of the options would not otherwise coincide with the end
of the internet header.

May be copied, introduced, or deleted on fragmentation, or for

any other reason.

[Page 16]

Page 22 of 52

September 1981
Internet Protocol

Specification

No Operation

+ ————————+

I00000001|

This option may be used between options, for example, to align

the beginning of a subsequent option on a 32 bit boundary.

May be copied, introduced, or for

any other reason.

or deleted on fragmentation,

Security

This option provides a way for hosts to send security,

compartmentation, handling restrictions, and TCC (closed user

group} parameters. The format for this option is as follows:

+ + + H + // + // + // +

|10000010|00001011|SSS SSSICCC CCCIHHH HHHI TCC |

+ + + H + // + // + // +

Type=130 Length=ll

Security (S field): 16 bits

Specifies one of 16 levels of security (eight of which are

Page 23 of 52

reserved for future use).

00000000 00000000 Unclassified

11110001 00110101 Confidential

01111000 10011010 EFTO

10111100 01001101 MMMM

01011110 00100110 PROG

10101111 00010011 Restricted

11010111 10001000 Secret

01101011 11000101 Top Secret

00110101 11100010 (Reserved for future use}

10011010 11110001 (Reserved for future use}

01001101 01111000 (Reserved for future use}

00100100 10111101 (Reserved for future use}

00010011 01011110 (Reserved for future use}

10001001 10101111 (Reserved for future use}

11000100 11010110 (Reserved for future use}

11100010 01101011 (Reserved for future use}

[Page 17]

September 1981
Internet Protocol

Specification

Compartments {C field): 16 bits

An all zero value is used when the information transmitted is

not compartmented. Other values for the compartments field

may be obtained from the Defense Intelligence Agency.

Handling Restrictions {H field): 16 bits

The values for the control and release markings are

alphanumeric digraphs and are defined in the Defense

Intelligence Agency Manual DIAM 65—19, "Standard Security

Markings".

Transmission Control Code (TCC field): 24 bits

Provides a means to segregate traffic and define controlled

communities of interest among subscribers. The TCC values are

trigraphs, and are available from HQ DCA Code 530.

Must be copied on fragmentation. This option appears at most

once in a datagram.

Loose Source and Record Route

+ + + + // +

|10000011| length I pointerl route data |
+ + + + // +

Type=13l

The loose source and record route (LSRR) option provides a means

for the source of an internet datagram to supply routing

information to be used by the gateways in forwarding the

datagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet

is the option length which includes the option type code and the

length octet, the pointer octet, and length—3 octets of route

data. The third octet is the pointer into the route data

indicating the octet which begins the next source address to be

processed. The pointer is relative to this option, and the

smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.

Each internet address is 32 bits or 4 octets. If the pointer is

greater than the length, the source route is empty {and the

recorded route full) and the routing is to be based on the
destination address field.

[Page 18]

Page 24 of 52

September 1981
Internet Protocol

Specification

If the address in destination address field has been reached and

the pointer is not greater than the length, the next address in

the source route replaces the address in the destination address

field, and the recorded route address replaces the source

address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet

address as known in the environment into which this datagram is

being forwarded.

This procedure of replacing the source route with the recorded

route {though it is in the reverse of the order it must be in to

be used as a source route) means the option {and the IP header

as a whole) remains a constant length as the datagram progresses

through the internet.

This option is a loose source route because the gateway or host

IP is allowed to use any route of any number of other

intermediate gateways to reach the next address in the route.

Must be copied on fragmentation. Appears at most once in a

datagram.

Strict Source and Record Route

+ + + + // +

|10001001| length I pointerl route data |
+ + + + // +

Type=137

The strict source and record route (SSRR) option provides a

means for the source of an internet datagram to supply routing

information to be used by the gateways in forwarding the

datagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet

is the option length which includes the option type code and the

length octet, the pointer octet, and length—3 octets of route

data. The third octet is the pointer into the route data

indicating the octet which begins the next source address to be

processed. The pointer is relative to this option, and the

smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.

Each internet address is 32 bits or 4 octets. If the pointer is

greater than the length, the source route is empty {and the

[Page 19]

Page 25 of 52

September 1981
Internet Protocol

Specification

recorded route full} and the routing is to be based on the
destination address field.

If the address in destination address field has been reached and

the pointer is not greater than the length, the next address in

the source route replaces the address in the destination address

field, and the recorded route address replaces the source

address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet

address as known in the environment into which this datagram is

being forwarded.

This procedure of replacing the source route with the recorded

route {though it is in the reverse of the order it must be in to

be used as a source route) means the option {and the IP header

as a whole) remains a constant length as the datagram.progresses

through the internet.

This option is a strict source route because the gateway or host

IP must send the datagram directly to the next address in the

source route through only the directly connected network

indicated in the next address to reach the next gateway or host

specified in the route.

Must be copied on fragmentation. Appears at most once in a

datagram.

Record Route

+ + + + // +

IOOOOOlllI length I pointerl route data |
+ + + + // +

Type=7

The record route option provides a means to record the route of

an internet datagram.

The option begins with the option type code. The second octet

is the option length which includes the option type code and the

length octet, the pointer octet, and length—3 octets of route

data. The third octet is the pointer into the route data

indicating the octet which begins the next area to store a route

address. The pointer is relative to this option, and the

smallest legal value for the pointer is 4.

A recorded route is composed of a series of internet addresses.

Each internet address is 32 bits or 4 octets. If the pointer is

[Page 20]

Page 26 of 52

September 1981
Internet Protocol

Specification

greater than the length, the recorded route data area is full.

The originating host must compose this option with a large

enough route data area to hold all the address expected. The

size of the option does not change due to adding addresses. The
intitial contents of the route data area must be zero.

When an internet module routes a datagram it checks to see if

the record route option is present. If it is, it inserts its
own internet address as known in the environment into which this

datagram is being forwarded into the recorded route begining at

the octet indicated by the pointer, and increments the pointer

by four.

If the route data area is already full (the pointer exceeds the

length) the datagram is forwarded without inserting the address

into the recorded route. If there is some room but not enough

room for a full address to be inserted, the original datagram is
considered to be in error and is discarded. In either case an

ICMP parameter problem.message may be sent to the source

host [3].

Not copied on fragmentation, goes in first fragment only.

Appears at most once in a datagram.

Stream Identifier

+ + + + +

I10001000I00000010I Stream ID I
+ + + + +

Type=l36 Length=4

This option provides a way for the 16—bit SATNET stream

identifier to be carried through networks that do not support

the stream concept.

Must be copied on fragmentation. Appears at most once in a

datagram.

[Page 21]

Page 27 of 52

September 1981
Internet Protocol

Specification

Internet Timestamp

+ + + + +

IOlOOOlOOI length I pointerloflwlflgl
+ + + + +

| internet address |
+ + + + +

| timestamp |
+ + + + +

| . |

Type = 68

The Option Length is the number of octets in the option counting

the type, length, pointer, and overflow/flag octets {maximum

length 40).

The Pointer is the number of octets from the beginning of this

option to the end of timestamps plus one (i.e., it points to the

octet beginning the space for next timestamp). The smallest

legal value is 5. The timestamp area is full when the pointer

is greater than the length.

The Overflow {oflw} [4 bits] is the number of IP modules that

cannot register timestamps due to lack of space.

The Flag (flg) [4 bits] values are

0 —— time stamps only, stored in consecutive 32—bit words,

1 —— each timestamp is preceded with internet address of the

registering entity,

3 —— the internet address fields are prespecified. An IP

module only registers its timestamp if it matches its own

address with the next specified internet address.

The Timestamp is a right—justified, 32—bit timestamp in

milliseconds since midnight UT. If the time is not available in

milliseconds or cannot be provided with respect to midnight UT

then any time may be inserted as a timestamp provided the high

order bit of the timestamp field is set to one to indicate the
use of a non—standard value.

The originating host must compose this option with a large

enough timestamp data area to hold all the timestamp information

expected. The size of the option does not change due to adding

[Page 22]

Page 28 of 52

September 1981
Internet Protocol

Specification

timestamps. The intitial contents of the timestamp data area

must be zero or internet address/zero pairs.

If the timestamp data area is already full (the pointer exceeds

the length) the datagram is forwarded without inserting the

timestamp, but the overflow count is incremented by one.

If there is some room but not enough room for a full timestamp

to be inserted, or the overflow count itself overflows, the

original datagram is considered to be in error and is discarded.

In either case an ICMP parameter problem message may be sent to

the source host [3].

The timestamp option is not copied upon fragmentation. It is

carried in the first fragment. Appears at most once in a

datagram.

Padding: variable

The internet header padding is used to ensure that the internet

header ends on a 32 bit boundary. The padding is zero.

3.2. Discussion

The implementation of a protocol must be robust. Each implementation

must expect to interoperate with others created by different

individuals. While the goal of this specification is to be explicit

about the protocol there is the possibility of differing

interpretations. In general, an implementation must be conservative

in its sending behavior, and liberal in its receiving behavior. That

is, it must be careful to send well—formed datagrams, but must accept

any datagram that it can interpret {e.g., not object to technical

errors where the meaning is still clear).

The basic internet service is datagram oriented and provides for the

fragmentation of datagrams at gateways, with reassembly taking place

at the destination internet protocol module in the destination host.

Of course, fragmentation and reassembly of datagrams within a network

or by private agreement between the gateways of a network is also

allowed since this is transparent to the internet protocols and the

higher—level protocols. This transparent type of fragmentation and

reassembly is termed "network—dependent" {or intranet) fragmentation
and is not discussed further here.

Internet addresses distinguish sources and destinations to the host

level and provide a protocol field as well. It is assumed that each

protocol will provide for whatever multiplexing is necessary within a
host.

[Page 23]

Page 29 of 52

September 1981
Internet Protocol

Specification

Addressing

To provide for flexibility in assigning address to networks and

allow for the large number of small to intermediate sized networks

the interpretation of the address field is coded to specify a small

number of networks with a large number of host, a moderate number of

networks with a moderate number of hosts, and a large number of
networks with a small number of hosts. In addition there is an

escape code for extended addressing mode.

Address Formats:

High Order Bits Format Class

0 7 bits of net, 24 bits of host a

10 14 bits of net, 16 bits of host b

110 21 bits of net, 8 bits of host c

111 escape to extended addressing mode

A value of zero in the network field means this network. This is

only used in certain ICMP messages. The extended addressing mode
is undefined. Both of these features are reserved for future use.

The actual values assigned for network addresses is given in

"Assigned Numbers" [9].

The local address, assigned by the local network, must allow for a

single physical host to act as several distinct internet hosts.

That is, there must be a mapping between internet host addresses and
network/host interfaces that allows several internet addresses to

correspond to one interface. It must also be allowed for a host to

have several physical interfaces and to treat the datagrams from

several of them as if they were all addressed to a single host.

Address mappings between internet addresses and addresses for

ARPANET, SATNET, PRNET, and other networks are described in "Address

Mappings" [5].

Fragmentation and Reassembly.

The internet identification field (ID) is used together with the

source and destination address, and the protocol fields, to identify

datagram fragments for reassembly.

The More Fragments flag bit (HF) is set if the datagram is not the

last fragment. The Fragment Offset field identifies the fragment

location, relative to the beginning of the original unfragmented

datagram. Fragments are counted in units of 8 octets. The

[Page 24]

Page 30 of 52

September 1981
Internet Protocol

Specification

fragmentation strategy is designed so than an unfragmented datagram

has all zero fragmentation information (ME = 0, fragment offset =

0}. If an internet datagram is fragmented, its data portion must be
broken on 8 octet boundaries.

This format allows 2**l3 = 8192 fragments of 8 octets each for a

total of 65,536 octets. Note that this is consistent with the the

datagram total length field (of course, the header is counted in the

total length and not in the fragments).

When fragmentation occurs, some options are copied, but others

remain with the first fragment only.

Every internet module must be able to forward a datagram of 68

octets without further fragmentation. This is because an internet

header may be up to 60 octets, and the minimum fragment is 8 octets.

Every internet destination must be able to receive a datagram of 576

octets either in one piece or in fragments to be reassembled.

The fields which may be affected by fragmentation include:

{1) options field

{2) more fragments flag

{3) fragment offset

{4) internet header length field

{5) total length field
{6) header checksum

If the Don't Fragment flag (DF) bit is set, then internet

fragmentation of this datagram is NOT permitted, although it may be

discarded. This can be used to prohibit fragmentation in cases

where the receiving host does not have sufficient resources to

reassemble internet fragments.

One example of use of the Don't Fragment feature is to down line

load a small host. A small host could have a boot strap program

that accepts a datagram stores it in memory and then executes it.

The fragmentation and reassembly procedures are most easily

described by examples. The following procedures are example

implementations.

General notation in the following pseudo programs: "=<" means "less

than or equal", "#" means "not equal", "=" means "equal", "<—" means

"is set to". Also, "x to y" includes x and excludes y; for example,

"4 to 7" would include 4, 5, and 6 (but not 7).

[Page 25]

Page 31 of 52

September 1981
Internet Protocol

Specification

An Example Fragmentation Procedure

The maximum sized datagram that can be transmitted through the

next network is called the maximum transmission unit {MTU).

If the total length is less than or equal the maximum transmission

unit then submit this datagram to the next step in datagram

processing; otherwise cut the datagram into two fragments, the

first fragment being the maximum size, and the second fragment

being the rest of the datagram. The first fragment is submitted

to the next step in datagram processing, while the second fragment

is submitted to this procedure in case it is still too large.

Notation:

FO — Fragment Offset

IHL — Internet Header Length

DF — Don‘t Fragment flag

MF — More Fragments flag

TL — Total Length

OFO — Old Fragment Offset

OIHL — Old Internet Header Length

OMF — Old More Fragments flag

OTL — Old Total Length

NFB — Number of Fragment Blocks
MTU — Maximum Transmission Unit

Procedure:

IF TL =< MTU THEN Submit this datagram to the next step

in datagram processing ELSE IF DF = 1 THEN discard the

datagram ELSE

To produce the first fragment:

(1} Copy the original internet header;

(2} OIHL <— IHL; OTL <— TL; OFO <— F0; OMF <— MF;

(3} NFB <— {MTU—IHL*4)/8;

(4} Attach the first NFB*8 data octets;

(5} Correct the header:

MF <— 1; TL <— {IHL*4}+{NFB*8};

Recompute Checksum;

(6} Submit this fragment to the next step in

datagram processing;

To produce the second fragment:

(7} Selectively copy the internet header (some options

are not copied, see option definitions};

(8} Append the remaining data;

(9) Correct the header:

IHL <— {{{OIHL*4)—(length of options not copied))+3}/4;

[Page 26]

Page 32 of 52

September 1981
Internet Protocol

Specification

TL é— OTL — NFB*8 — (OIHL—IHL)*4);

F0 <— OFO + NFB; MF <— OMF; Recompute Checksum;

(10} Submit this fragment to the fragmentation test; DONE.

In the above procedure each fragment (except the last) was made

the maximum allowable size. An alternative might produce less

than the maximum size datagrams. For example, one could implement

a fragmentation procedure that repeatly divided large datagrams in

half until the resulting fragments were less than the maximum
transmission unit size.

An Example Reassembly Procedure

For each datagram the buffer identifier is computed as the

concatenation of the source, destination, protocol, and

identification fields. If this is a whole datagram (that is both

the fragment offset and the more fragments fields are zero}, then

any reassembly resources associated with this buffer identifier

are released and the datagram is forwarded to the next step in

datagram processing.

If no other fragment with this buffer identifier is on hand then

reassembly resources are allocated. The reassembly resources

consist of a data buffer, a header buffer, a fragment block bit

table, a total data length field, and a timer. The data from the

fragment is placed in the data buffer according to its fragment

offset and length, and bits are set in the fragment block bit

table corresponding to the fragment blocks received.

If this is the first fragment (that is the fragment offset is

zero} this header is placed in the header buffer. If this is the

last fragment (that is the more fragments field is zero) the

total data length is computed. If this fragment completes the

datagram (tested by checking the bits set in the fragment block

table}, then the datagram is sent to the next step in datagram

processing; otherwise the timer is set to the maximum of the
current timer value and the value of the time to live field from

this fragment; and the reassembly routine gives up control.

If the timer runs out, the all reassembly resources for this

buffer identifier are released. The initial setting of the timer

is a lower bound on the reassembly waiting time. This is because

the waiting time will be increased if the Time to Live in the

arriving fragment is greater than the current timer value but will
not be decreased if it is less. The maximum this timer value

could reach is the maximum time to live (approximately 4.25

minutes}. The current recommendation for the initial timer

setting is 15 seconds. This may be changed as experience with

[Page 27]

Page 33 of 52

September 1981
Internet Protocol

Specification

this protocol accumulates. Note that the choice of this parameter

value is related to the buffer capacity available and the data

rate of the transmission medium; that is, data rate times timer

value equals buffer size (e.g., lOKb/s X 155 = 150Kb}.

Notation:

FO — Fragment Offset

IHL — Internet Header Length

MF — More Fragments flag
TTL — Time To Live

NFB — Number of Fragment Blocks

TL — Total Length

TDL — Total Data Length
BUFID — Buffer Identifier

RCVBT — Fragment Received Bit Table
TLB — Timer Lower Bound

Procedure:

(1} BUFID <— sourceIdestinationlprotocolIidentification;

(2} IF F0 = 0 AND MF = 0

(3} THEN IF buffer with BUFID is allocated

(4} THEN flush all reassembly for this BUFID;

(5} Submit datagram to next step; DONE.

(6} ELSE IF no buffer with BUFID is allocated

(7) THEN allocate reassembly resources
with BUFID;

TIMER <— TLB; TDL <— 0;

(8} put data from fragment into data buffer with
BUFID from octet FO*8 to

octet (TL—{IHL*4})+FO*8;

(9} set RCVBT bits from F0

to FO+((TL—{IHL*4}+7)/8};

(10} IF MF = 0 THEN TDL <— TL—(IHL*4)+(FO*8)

(11} IF FO = 0 THEN put header in header buffer
(12} IF TDL # 0

(13} AND all RCVBT bits from 0

to (TDL+7)/8 are set

(14} THEN TL <— TDL+(IHL*4)

(15} Submit datagram to next step;

(16} free all reassembly resources
for this BUFID; DONE.

(17} TIMER <— MAX(TIMER,TTL);

(18} give up until next fragment or timer expires;

(19} timer expires: flush all reassembly with this BUFID; DONE.

In the case that two or more fragments contain the same data

[Page 28]

Page 34 of 52

September 1981
Internet Protocol

Specification

either identically or through a partial overlap, this procedure

will use the more recently arrived copy in the data buffer and

datagram delivered.

Identification

The choice of the Identifier for a datagram is based on the need to

provide a way to uniquely identify the fragments of a particular

datagram. The protocol module assembling fragments judges fragments

to belong to the same datagram if they have the same source,

destination, protocol, and Identifier. Thus, the sender must choose

the Identifier to be unique for this source, destination pair and

protocol for the time the datagram (or any fragment of it) could be
alive in the internet.

It seems then that a sending protocol module needs to keep a table

of Identifiers, one entry for each destination it has communicated

with in the last maximum packet lifetime for the internet.

However, since the Identifier field allows 65,536 different values,

some host may be able to simply use unique identifiers independent
of destination.

It is appropriate for some higher level protocols to choose the

identifier. For example, TCP protocol modules may retransmit an

identical TCP segment, and the probability for correct reception
would be enhanced if the retransmission carried the same identifier

as the original transmission since fragments of either datagram

could be used to construct a correct TCP segment.

Type of Service

The type of service (TOS) is for internet service quality selection.

The type of service is specified along the abstract parameters

precedence, delay, throughput, and reliability. These abstract

parameters are to be mapped into the actual service parameters of

the particular networks the datagram traverses.

Precedence. An independent measure of the importance of this

datagram.

Delay. Prompt delivery is important for datagrams with this
indication.

Throughput. High data rate is important for datagrams with this
indication.

[Page 29]

Page 35 of 52

September 1981
Internet Protocol

Specification

Reliability. A higher level of effort to ensure delivery is

important for datagrams with this indication.

For example, the ARPANET has a priority bit, and a choice between

"standard" messages (type 0) and "uncontrolled" messages {type 3),

(the choice between single packet and multipacket messages can also

be considered a service parameter). The uncontrolled messages tend

to be less reliably delivered and suffer less delay. Suppose an

internet datagram is to be sent through the ARPANET. Let the

internet type of service be given as:

Precedence:

Delay:

Throughput:

Reliability:
I—‘I—‘DU‘I

In this example, the mapping of these parameters to those available

for the ARPANET would be to set the ARPANET priority bit on since

the Internet precedence is in the upper half of its range, to select

standard messages since the throughput and reliability requirements

are indicated and delay is not. More details are given on service

mappings in "Service Mappings" [8].

Time to Live

The time to live is set by the sender to the maximum time the

datagram is allowed to be in the internet system. If the datagram

is in the internet system longer than the time to live, then the

datagram must be destroyed.

This field must be decreased at each point that the internet header

is processed to reflect the time spent processing the datagram.

Even if no local information is available on the time actually

spent, the field must be decremented by l. The time is measured in

units of seconds {i.e. the value 1 means one second). Thus, the

maximum time to live is 255 seconds or 4.25 minutes. Since every

module that processes a datagram must decrease the TTL by at least

one even if it process the datagram in less than a second, the TTL

must be thought of only as an upper bound on the time a datagram_may

exist. The intention is to cause undeliverable datagrams to be

discarded, and to bound the maximum datagram lifetime.

Some higher level reliable connection protocols are based on

assumptions that old duplicate datagrams will not arrive after a

certain time elapses. The TTL is a way for such protocols to have

an assurance that their assumption is met.

[Page 30]

Page 36 of 52

September 1981
Internet Protocol

Specification

Options

The options are optional in each datagram, but required in

implementations. That is, the presence or absence of an option is
the choice of the sender, but each internet module must be able to

parse every option. There can be several options present in the

option field.

The options might not end on a 32—bit boundary. The internet header
must be filled out with octets of zeros. The first of these would

be interpreted as the end—of—options option, and the remainder as

internet header padding.

Every internet module must be able to act on every option. The

Security Option is required if classified, restricted, or

compartmented traffic is to be passed.

Checksum

The internet header Checksum is recomputed if the internet header is

changed. For example, a reduction of the time to live, additions or

changes to internet options, or due to fragmentation. This Checksum

at the internet level is intended to protect the internet header
fields from transmission errors.

There are some applications where a few data bit errors are

acceptable while retransmission delays are not. If the internet

protocol enforced data correctness such applications could not be

supported.

Errors

Internet protocol errors may be reported via the ICMP messages [3].

3.3. Interfaces

The functional description of user interfaces to the IP is, at best,

fictional, since every operating system will have different

facilities. Consequently, we must warn readers that different IP

implementations may have different user interfaces. However, all IPs

must provide a certain minimum set of services to guarantee that all

IP implementations can support the same protocol hierarchy. This

section specifies the functional interfaces required of all IP

implementations.

Internet protocol interfaces on one side to the local network and on

the other side to either a higher level protocol or an application

program. In the following, the higher level protocol or application

[Page 31]

Page 37 of 52

September 1981
Internet Protocol

Specification

program (or even a gateway program} will be called the "user" since it

is using the internet module. Since internet protocol is a datagram

protocol, there is minimal memory or state maintained between datagram

transmissions, and each call on the internet protocol module by the

user supplies all information necessary for the IP to perform the

service requested.

An Example Upper Level Interface

The following two example calls satisfy the requirements for the user

to internet protocol module communication {"=>" means returns):

SEND (src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result)

where:

src = source address

dst = destination address

prot = protocol

TOS = type of service
TTL = time to live

BufPTR = buffer pointer

len = length of buffer
Id Identifier

DF = Don't Fragment

opt = option data

result = response

OK = datagram sent ok

Error = error in arguments or local network error

Note that the precedence is included in the TOS and the

security/compartment is passed as an option.

RECV (BufPTR, prot, =} result, src, dst, TOS, len, opt)

where:

BufPTR = buffer pointer

prot = protocol

result = response

OK = datagram received 0k

Error = error in arguments

len = length of buffer
src = source address

dst = destination address

TOS = type of service

opt = option data

[Page 32]

Page 38 of 52

September 1981
Internet Protocol

Specification

When the user sends a datagram, it executes the SEND call supplying

all the arguments. The internet protocol module, on receiving this

call, checks the arguments and prepares and sends the message. If the

arguments are good and the datagram is accepted by the local network,

the call returns successfully. If either the arguments are bad, or

the datagram is not accepted by the local network, the call returns

unsuccessfully. On unsuccessful returns, a reasonable report must be

made as to the cause of the problem, but the details of such reports

are up to individual implementations.

When a datagram arrives at the internet protocol module from the local

network, either there is a pending RECV call from the user addressed

or there is not. In the first case, the pending call is satisfied by

passing the information from the datagram to the user. In the second

case, the user addressed is notified of a pending datagram. If the

user addressed does not exist, an ICMP error message is returned to

the sender, and the data is discarded.

The notification of a user may be via a pseudo interrupt or similar

mechanism, as appropriate in the particular operating system

environment of the implementation.

A user's RECV call may then either be immediately satisfied by a

pending datagram, or the call may be pending until a datagram arrives.

The source address is included in the send call in case the sending

host has several addresses {multiple physical connections or logical
addresses}. The internet module must check to see that the source

address is one of the legal address for this host.

An implementation may also allow or require a call to the internet
module to indicate interest in or reserve exclusive use of a class of

datagrams (e.g., all those with a certain value in the protocol

field).

This section functionally characterizes a USER/IP interface. The

notation used is similar to most procedure of function calls in high

level languages, but this usage is not meant to rule out trap type

service calls (e.g., SVCs, UUOs, EMTs), or any other form of

interprocess communication.

[Page 33]

Page 39 of 52

September 1981
Internet Protocol

APPENDIX A: Examples & Scenarios

Example 1:

This is an example of the minimal data carrying internet datagram:

0 l 2 3

0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l
+++++++++++++++++++++++++++++++++

|Ver= 4 |IHL= 5 IType of Servicel Total Length = 21
+ +

| Identification = 111 |Flg=0| Fragment Offset = 0
+ +

Time = 123 | Protocol = 1 | header checksum
+++++++++++++++++++++++++++++

|
+

| source address
+ +

|
+

|

+ +

destination address
+ +

data |
+—+—+—+—+—+—+—+—+

|
+

|
+

|
+

|
+

|
+

Example Internet Datagram

Figure 5.

Note that each tick mark represents one bit position.

This is a internet datagram in version 4 of internet protocol; the

internet header consists of five 32 bit words, and the total length of

the datagram is 21 octets. This datagram is a complete datagram {not

a fragment}.

[Page 34]

Page 40 of 52

September 1981
Internet Protocol

Example 2:

In this example, we show first a moderate size internet datagram {452

data octets}, then two internet fragments that might result from the

fragmentation of this datagram if the maximum sized transmission
allowed were 280 octets.

0 l 2 3

0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 8 9 0 l
+ +

|Ver= 4 |IHL= 5 IType of Servicel Total Length = 472
+ +

| Identification = 111 |Flg=0| Fragment Offset
+ +

Time = 123 | Protocol = 6 | header checksum
+ +

source address
+ +

destination address
+ +

data
+ +

data

+

H
D

+—//—+—+—+—+—+—+—+

+ +

data
+ +

data |
+ + + + + + + + + + + + + + + +

+—+—//—+—+—+—+—
Example Internet Datagram

Figure 6.

[Page 35]

Page 41 of 52

September 1981
Internet Protocol

Now the first fragment that results from splitting the datagram after
256 data octets.

0 1 2 3

0 1 2 3 4 5 6 I 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ +

|Ver= 4 |IHL= 5 IType of Servicel Total Length = 276
+ +

| Identification = 111 |Flg=1| Fragment Offset
+ +

Time = 119 | Protocol = 6 | Header Checksum
+ +

source address
+ +

destination address
+ +

data
+ +

data

+

H
D

+—+—//—+—+—+—+—+—+—+

+ +

data
+ +

data
+ +

+—+—//—+—+—+—+—
Example Internet Fragment

Figure 7.

[Page 36]

Page 42 of 52

September 1981
Internet Protocol

And the second fragment.

0 1 2 3

0 l 2 3 4 5 6 ? 8 9 0 l 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 l
++++++++++++++++++++++++++++++++

|Ver= 4 |IHL= 5 IType of Servicel Total Length = 216
+ +

Identification = 111 |Flg=0| Fragment Offset = 32
+ +

Time = 119 | Protocol = 6 | Header Checksum
+ +

source address
+ +

destination address
+ +

data
+ +

data

data
+ +

data |
+ + + + + + + + + + + + + + + +

+—//—+—+—+—+—+—+—+

+—+—//—+—+—+—+—+— +

Example Internet Fragment

Figure 8.

[Page 37]

Page 43 of 52

September 1981
Internet Protocol

Example 3:

Here, we show an example of a datagram containing options:

0 l 2 3

0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 I 8 9 0 l 2 3 4 5 6 7 8 9 0 l
+ +

|Ver= 4 |IHL= 8 IType of Servicel Total Length = 576 |
+ +

| Identification = 111 |Flg=0| Fragment Offset = 0 |
+ +

| Time = 123 | Protocol = 6 | Header Checksum |
+ +

| source address |
+ +

| destination address |
+ +

| Opt. Code = x | Opt. Len.= 3 | option value I Opt. Code = x |
+ +

| Opt. Len. = 4 | option value I Opt. Code = l |
+ +

| Opt. Code = y | Opt. Len. = 3 | option value I Opt. Code = 0 |
+ +

| data |

\ \

\ \

| data |
+ +

| data |
+ +

Example Internet Datagram

Figure 9.

[Page 38]

Page 44 of 52

September 1981
Internet Protocol

APPENDIX B: Data Transmission Order

The order of transmission of the header and data described in this

document is resolved to the octet level. Whenever a diagram shows a

group of octets, the order of transmission of those octets is the normal

order in which they are read in English. For example, in the following

diagram the octets are transmitted in the order they are numbered.

0 l 2 3

0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 T 8 9 0 l 2 3 4 5 6 7 8 9 0 l

+ +

| 1 | 2 | 3 | 4 |
+ +

| 5 | 6 | 7 | 8 I
+ +

I 9 I 10 I 11 I 12 I
+ +

Transmission Order of Bytes

Figure 10.

Whenever an octet represents a numeric quantity the left most bit in the

diagram is the high order or most significant bit. That is, the bit

labeled 0 is the most significant bit. For example, the following

diagram represents the value 170 (decimal).

0 l 2 3 4 5 6 7
+—+—+—+—+—+—+—+—+

I1 0 l 0 l 0 1 0|
+—+—+—+—+—+—+—+—+

Significance of Bits

Figure 11.

Similarly, whenever a multi—octet field represents a numeric quantity

the left most bit of the whole field is the most significant bit. When

a multi—octet quantity is transmitted the most significant octet is
transmitted first.

[Page 39]

Page 45 of 52

September 1981
Internet Protocol

[Page 40]

Page 46 of 52

September 1981
Internet Protocol

GLOSSARY

1822

BBN Report 1822, "The Specification of the Interconnection of

a Host and an IMP". The specification of interface between a
host and the ARPANET.

ARPANET leader

The control information on an ARPANET message at the host—IMP
interface.

ARPANET message
The unit of transmission between a host and an IMP in the

ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet

A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets {1008 bits).

Destination

The destination address, an internet header field.

DF

The Don't Fragment bit carried in the flags field.

Flags

An internet header field carrying various control flags.

Fragment Offset
This internet header field indicates where in the internet

datagram a fragment belongs.

GGP

Gateway to Gateway Protocol, the protocol used primarily

between gateways to control routing and other gateway
functions.

header

Control information at the beginning of a message, segment,

datagram, packet or block of data.

ICMP

Internet Control Message Protocol, implemented in the internet

module, the ICMP is used from gateways to hosts and between

hosts to report errors and make routing suggestions.

[Page 41]

Page 47 of 52

September 1981
Internet Protocol

Glossary

Identification

An internet header field carrying the identifying value

assigned by the sender to aid in assembling the fragments of a

datagram.

IHL

The internet header field Internet Header Length is the length
of the internet header measured in 32 bit words.

IMP

The Interface Message Processor, the packet switch of the
ARPANET.

Internet Address

A four octet (32 bit) source or destination address consisting
of a Network field and a Local Address field.

internet datagram

The unit of data exchanged between a pair of internet modules

(includes the internet header).

internet fragment

A portion of the data of an internet datagram.with an internet
header.

Local Address

The address of a host within a network. The actual mapping of
an internet local address on to the host addresses in a

network is quite general, allowing for many to one mappings.

ME

The More—Fragments Flag carried in the internet header flags
field.

module

An implementation, usually in software, of a protocol or other

procedure.

more—fragments flag

A flag indicating whether or not this internet datagram

contains the end of an internet datagram, carried in the

internet header Flags field.

NFB

The Number of Fragment Blocks in a the data portion of an

internet fragment. That is, the length of a portion of data
measured in 8 octet units.

[Page 42]

Page 48 of 52

September 1981
Internet Protocol

Glossary

octet

An eight bit byte.

Options

The internet header Options field may contain several options,

and each option may be several octets in length.

Padding

The internet header Padding field is used to ensure that the

data begins on 32 bit word boundary. The padding is zero.

Protocol

In this document, the next higher level protocol identifier,
an internet header field.

Best

The local address portion of an Internet Address.

Source

The source address, an internet header field.

TCP

Transmission Control Protocol: A host—to—host protocol for
reliable communication in internet environments.

TCP Segment

The unit of data exchanged between TCP modules (including the
TCP header}.

TFTP

Trivial File Transfer Protocol: A simple file transfer

protocol built on UDP.

Time to Live

An internet header field which indicates the upper bound on

how long this internet datagram may exist.

TOS

Type of Service

Total Length

The internet header field Total Length is the length of the

datagram in octets including internet header and data.

TTL

Time to Live

[Page 43]

Page 49 of 52

September 1981
Internet Protocol

Glossary

Type of Service

An internet header field which indicates the type {or quality)

of service for this internet datagram.

UDP

User Datagram Protocol: A user level protocol for transaction

oriented applications.

User

The user of the internet protocol. This may be a higher level

protocol module, an application program, or a gateway program.

version

The version field indicates the format of the internet header.

[Page 44]

Page 50 of 52

September 1981
Internet Protocol

REFERENCES

[1] Cerf, V., "The Catenet Model for Internetworking," Information

Processing Techniques Office, Defense Advanced Research Projects

Agency, IEN 48, July 1978.

[2] Bolt Beranek and Newman, "Specification for the Interconnection of

a Host and an IMP," BBN Technical Report 1822, Revised May 1978.

[3] Postel, J., "Internet Control Message Protocol — DARPA Internet

Program Protocol Specification," RFC 792, USC/Information Sciences

Institute, September 1981.

[4] Shoch, J., "Inter—Network Naming, Addressing, and Routing,"

COMPCON, IEEE Computer Society, Fall 1978.

[5] Postel, J., "Address Mappings," RFC 796, USC/Information Sciences

Institute, September 1981.

[6] Shoch, J., "Packet Fragmentation in Inter—Network Protocols,"

Computer Networks, V. 3, n. 1, February 1979.

[7] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek and

Newman, August 1979.

[8] Postel, J., "Service Mappings," RFC 795, USC/Information Sciences

Institute, September 1981.

[9] Postel, J., "Assigned Numbers," RFC 790, USC/Information Sciences

Institute, September 1981.

[Page 45]

Page 51 of 52

Page 52 of 52

