```
UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE PATENT TRIAL AND APPEAL BOARD
- - - - - - - - - - - - - - - - - - - -x
SHARP CORPORATION, :
SHARP ELECTRONICS :
CORPORATION, and SHARP :
ELECTRONICS : CaseIPR2015-00913
MANUFACTURING COMPANY : Patent No. 7,420,550
OF AMERICA, INC.,
            Petitioners,
        v.
    SURPASS TECH
    INNOVATION LLC,
            Patent Owner.
    - - - - - - - - - - - - - - - - - - - -x
            Deposition of MICHAEL J. MARENTIC
                NEW YORK, NEW YORK
            WEDNESDAY, NOVEMBER 11, 2015
                10:30 A.M.
            Job No.: 96195
            Pages: 1 - 114
            Reported By: Nancy Mahoney, RPR/CCR/CLR
```

Deposition of Michael J. Marentic
Conducted on November 11, 2015

1

```
            Deposition of MICHAEL J. MARENTIC, held at the
    offices of:
                    AMSTER ROTHSTEIN & EBENSTEIN LLP
                    90 Park Avenue
                    New York, New York 10016
                    212.336.8000
```

 Pursuant to agreement, before Nancy Mahoney,
 CCR/RPR/CLR, Notary Public in and for the State of
New York.
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

1

```
A P P E A R A N C E S
ON BEHALF OF PETITIONERS SHARP CORPORATION:
    MARK BERKOWITZ, ESQUIRE
    JUNG S. HAHM, ESQUIRE
    AMSTER, ROTHSTEIN & EBENSTEIN LLP
    90 Park Avenue
    New York, New York
    212.336.8000
```

ON BEHALF OF PATENT OWNER SURPASS
TECH INNOVATION:
WAYNE HELGE, ESQUIRE
DAVIDSON BERQUIST JACKSON \& GOWDEY, LLP
8300 Greensboro Drive
McLean, VA 22102
571.765 .7700
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
            P R O C E E D I N G S
            MICHAEL J. MARENTIC,
    after having been first duly sworn or affirmed to
testify to the truth, was examined and
testified as follows:
    EXAMINATION BY COUNSEL FOR THE PATENT OWNER
WAYNE HELGE:
    Q Good morning, Mr. Marentic.
    A Good morning.
    Q Good to see you again.
            Are you familiar with U.S. Patent No.
7,420,550?
    A Yes.
    Q That's the patent at issue in Sharp v.
Surpass Tech Innovation, Case No. IPR2015-00913. Is
that right?
    A Yes, that is correct.
            Q And you provided a declaration with some
        opinions about that patent, correct?
            A Yes.
            Q We're here this morning to talk about those
opinions, correct?
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
A Yes.
Q That's the purpose of your deposition?
A Yes.
Q Mr. Marentic, can you give your full name, please, for the record.
A Michael James Marentic.
Q Mr. Marentic, we did this just about a month ago, last deposition. I just want to check. Is there any reason today that you would not be able to give true and accurate testimony in this deposition?
A No.
Q Mr. Marentic, I'm also going to read the same paragraph that I read for you last time into the record. We talked about this last time. I don't think there will be any confusion. But this comes from the Office Patent Trial Practice Guide. The paragraph reads, Once the cross-examination of a witness has commenced, and until cross-examination of the witness has concluded, counsel offering the witness on direct examination shall not: (a) consult or confer with the witness regarding the substance of
```

PLANET DEPOS 888.433.3767 I WWW.PLANETDEPOS.COM
the witness' testimony already given, or anticipated
to be given, except for the purposes of conferring
and whether to assert a privilege against testifying
or on how to comply with the Board order; or (b)
suggest to the witness the manner in which any
questions should be answered.
Do you recall that I had read that
paragraph for you before?
A I remember hearing a similar paragraph.
Q And you understand the prohibitions against
conferring with your counsel today until your entire
deposition is concluded, correct?
A I do.
Q Okay, thank you.
Mr. Marentic, has there been any change to
your CV since October, since early October?
A No.
Q Have you given any further depositions or
undertaken any further engagements since your last
deposition?
A No.
Q In preparing for this deposition, who did

```
you talk to?
```

 A I talked to attorneys at ARE.
 Q Anybody else?
 A No.
 Q And what documents did you review in
 preparation for this deposition?
A My declaration, the '550 patent, the Sharp
reference, and Kamizono.
Q Did you review the petition also?
A No.
Q When was the last time you reviewed the
petition in this case?
A A long time ago. I can't attach a date to
it.
Q Was it before it was filed or after it was
filed?
A It was after it was filed.
Q Did you prepare your declaration without
seeing the petition?
MR. BERKOWITZ: Objection to form.
A The declaration was prepared --
MR. BERKOWITZ: I'll just interrupt the
witness. To the extent that it involves any privileged communication not to reveal that. Again, if you can answer the question without revealing any privileged communication, please go ahead.

A I did not see the petition prior to the filing date of March 20 exactly.

Q How many days before March 20, 2015 did you see your petition -- excuse me. How many days before March 20, 2015 did you first see your declaration? relevance.

A I worked on my declaration most of the month of March.

Q In preparation for today's deposition, did you look at any documents from any of the other IPRs filed against Surpass?

MR. BERKOWITZ: Objection to form, outside the scope.

A No, not that I'm aware of.

Q Are you aware that there was a deposition earlier this month -- excuse me, it was actually late
filing date of March 20 exactly.

```
MR. BERKOWITZ: Objection to form,
                            MR. BERKOWITZ: Objection to form,
```

relevance.

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
    last month -- in a case also against the '550 patent?
```

 A I was not aware of that.
 Q So you didn't review a transcript of that
 deposition?
A \quad No.
Q Mr. Marentic, when did you last look at
your declaration?
A Last night.
Q Was that the first time you'd reviewed it
since it was filed?
A No.
Q You'd been reviewing it in preparation of
this deposition over a series of days then?
A Yes.
Q You reviewed your declaration against the
'843 patent in preparation for your October
deposition, correct?
A Yes.
Q And you reviewed your declaration against
the '550 patent in preparation for this deposition,
correct?
A Correct.

Deposition of Michael J. Marentic
Conducted on November 11, 2015

Q Having recently reviewed both of those
declarations, do you believe that your methodologies
were consistent in those two cases?
MR. BERKOWITZ: Objection to form.
A The last time I looked at the '843
declaration was the date of the deposition. I've not
looked at it since. Would you ask the question
again?
Q My question was whether you felt that your
methodologies in these two declarations were
consistent.
A Consistent with what, each other?
Q Yes.
A I believe so.
Q Did you spot any errors in the '550
declaration when you reviewed it in preparation for
this deposition?
A I didn't find any errors. There was a
point of clarification and that is about Claim 5 that
speaks to the integrated gate drivers. The claim
chart relies upon Kamizono, and in the text there was
a discussion of Sharp showing integrated gate drivers

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
as well as Kamizono showing integrated gate drivers. Both of those references show it. The claim chart seemed to have a stronger description, and I relied upon Kamizono claim chart, but both Kamizono and both Sharp show integrated gate driver technology as a way of implementing the drivers that drive the gates.

Q So, Mr. Marentic, how would you -- how would you have revised that declaration to capture this clarification that you want to make?

MR. BERKOWITZ: Objection to form.

A I may reorganize the material a little different in sequence and paragraphs, but both of them strongly show a path towards integrated gate drivers.

Q So are you saying you would have changed organization but not changed the content?

A Generally, yes.

Q Is there anything you want to add to what I just said?

A I don't believe so.

Q Are there any other changes to the declaration that you would have made based on your

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic

Conducted on November 11, 2015
recent review?

A Somewhere was a misspelling. Gate, I think was spelled g-a-t-d, obvious what it was, and I can't recall where it is.

Q Anything else you'd want to change?
A No.
Q So everything else is technically accurate and you stand by those words. Is that right?

A That is correct.

Q Mr. Marentic, we're going to talk a lot today I think about drivers, gate drivers, source drivers. Let's talk about source drivers first.

Generally speaking, in a LCD panel what is the purpose of a source driver?

A The purpose of the source driver is to provide an analog voltage on the source lines, source spots, that represents the video input signal.

Q Does the source driver have to drive an analog voltage?

MR. BERKOWITZ: Objection to form.

A For the larger content -- or larger
displays displaying video, they would be analog

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
voltage.
Q So it has to be analog voltage?
A There are certain applications where it wouldn't need to be. It could be an on/off, but then that display wouldn't be capable of displaying gray scale. It would be full on, full off. There aren't displays out there that require just that.

Q And an analog voltage has to be sufficient to do certain things in the pixel. Is that right?

MR. BERKOWITZ: Objection to form.
A The output range of an analog output needs to match the liquid crystal cell characteristics.

Q And what goes into those characteristics, what factors are there?

A Making sure that the cell can be driven to a full off state and a full on state. So, for instance, it wouldn't be biased in such a way that the cell is always on or the cell is always off.

Q Well, let me ask you this. Is it common for an LCD panel to include a storage capacitor?

MR. BERKOWITZ: Objection to form.
A There is a number of components that appear
as capacitors. Certainly the liquid crystal material
itself between the two electrodes appears as a
capacitor.

Q How would you describe that, that liquid crystal material acting as a capacitor?

MR. BERKOWITZ: Objection.
Q Is there a term that we can use to describe that?

MR. BERKOWITZ: Objection to form. Please let him finish the answer.

A There is a second capacitor in each pixel, a holding capacitor that is formed during the process of forming the TFTs. So there's two capacitors in parallel, and then there's an array of parasitic capacitances throughout the panel. The easiest to consider would be the crossover of a gate and a source bus at that intersection would be a parasitic capacitance.

Q Is there a term we use to describe -- or we can use to describe the capacitance resulting from the LC material?

A Clc.

```
Q And that would be a liquid crystal capacitance?
A Yes.
Q And then what about the hold capacitor?
MR. BERKOWITZ: Objection to form.
A That could be called -- I'd like to be consistent. Sometimes it's called S shunt. The '550 uses the Cs shunt.
Q Is that the same thing as a storage capacitor?
A Yes.
Q How is the storage capacitor charged within a frame?
A It's in parallel with the Clc.
Q How do you get a potential difference across that storage capacitor?
MR. BERKOWITZ: Objection to form, foundation.
A Through the drain of a TFT on that pixel.
Q And where does the drain get voltage to charge the storage capacitor?
MR. BERKOWITZ: Objection to form,
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
foundation.

A There is a voltage presented by a driver output to a source bus and a gate signal will turn on the TFT and allow charging of the parallel Clc and Cs capacitance.

Q You said just a moment ago a driver. Would that be a source driver?

MR. BERKOWITZ: Objection to form.

A The term source driver or data driver are equivalent for purposes of this patent. The driver output would generate the voltage that is present on the source bus and that output could be part of another device that's also called a driver and that driver would be a monolithic integrated circuit. So the term driver can refer to an integrated circuit or a driver can refer to a single output that is present within an integrated circuit or IC.

Q When you say output, you're talking about that analog voltage?

A A circuit that outputs the analog voltage that is presented to the TFT array.

Q And that is the analog voltage, correct, in
a video displaying LCD?
A In a display displaying video, that would be an analog voltage or stepped in increments of say 256 grade levels.

Q Did you say "or stepped in increments"?
A Yes.
Q What would be stepped in increments?
A The output voltage of a stage or a single output.

Q What is a stage?
A A driver output. There is a couple of ways of supplying the video. One would be an infinite number of combinations between two voltages. The other would be a set of commonly 256 gray levels between two voltages, but for purposes of the drivers that we're talking about, it's sort of -- driver meaning IC or driver meaning output stage, that's a level of detail that really isn't discussed in these patents.

Q You had me confused now because you've talked about a driver, a driver stage and a stage separately in all different ways. Can you clarify

PLANET DEPOS 888.433.3767 I WWW.PLANETDEPOS.COM
the meaning among those three things?
A Well, the '550 is a little confusing. It uses drivers to mean discrete integrated circuits, and it also uses the term driver to mean an output, an output stage of which there are multiple within an integrated circuit driver.

So, yes, it is confusing as a result of the language that was used in the '550 and also generally the terminology used among technologists and the context would be obvious whether it was the IC or a single output.

Q And so when you talk about a single output, are you talking about a single output from an IC driver?

A An output could mean that, yes.

Q How have you been using the term?

A I will usually -- in the declaration I was careful to call out monolithic or chip versus output or driver output. I believe I am consistent in doing that.

Q I want to understand how you've been using it already this morning. What are you referring to

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015
when you talk about an output?
MR. BERKOWITZ: Objection to form.
A An output is a port or a signal point that is present within an integrated circuit.

Q So there could be multiple outputs on one integrated circuit?

A There frequently are, yes.

Q And the distance between those outputs, is that measured in pitch?

MR. BERKOWITZ: Objection to form, foundation.

A The distance between them? I'd have to scratch my head. I'm not sure that's a relevant parameter for driver outputs.

There is a pitch but if I were to be buying drivers, I would look at a number of electrical characteristics and pitch would be low in consideration.

Q Do you know what pitch means in a driver context?

A \quad I do.

Q What does that mean?

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
A To me it means the distance between the center line of a output pad between adjacent driver stages or driver outputs.
Q In the 2004 time frame, are you aware of what the standard pitch was for driver ICs?
MR. BERKOWITZ: Objection to form, relevance, scope.
A I don't have that number on the top of my head.
Q Did you investigate that issue when you were preparing your declaration?
MR. BERKOWITZ: Objection to form.
MR. HELGE: What's wrong with the question?
MR. BERKOWITZ: He already said he's not familiar with it.
MR. HELGE: I'm asking if he investigated it in preparation for his deposition. I'd like you to answer it.
MR. BERKOWITZ: You asked him earlier before this deposition.
MR. HELGE: And I'm asking him in preparation for his declaration.
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
answer.
MR. HELGE: One person talking at a time,
please.
Q Mr. Marentic, can I get an answer to that
question, please?

A I did not concern myself with pitch during this declaration. The term pitch, although used in the art, is not in the claim language of the '550 patent, so I didn't concern myself with it.

Q We talked earlier about different terms for source driver, and I think you mentioned data driver and source driver. Is that right?

A Yes.
Q Are there other terms that we could use for that same concept, those are the most common terms? Are they ever called column drivers?

A Occasionally.
Q Is there any difference between a source driver, a data driver or a column driver, in your estimation?

MR. BERKOWITZ: Objection to form.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

A For a liquid crystal display, a large area
displaying video the term that I've always heard is
source or data driver. Column driver could be used.
It's frequently used in other display technologies
like plasma or polymer dispersed liquid crystal or in
film electroluminescence or super-twist nematic, STN
technology.
Q So in the context of LCD technology, do you
believe that a source driver and a data driver are
synonymous?
A Generally, yes.
Q Is there an instance where they wouldn't be
synonymous?
A If you have some test cases, I'd like to
look at them.
Q I just want to understand in your
experience.
A In terms of the '550 patent, the patent
calls out data drivers and then the claim calls out
source driver, and to me the source driver refers to
the data driver. Within this ball of confusion of is
it an integrated circuit or is it just a driver

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
output.

Q In your experience, is one of those terms better than the other, is source driver better than data driver or vice versa?

MR. BERKOWITZ: Objection to form.
A Different factories will tend to call -use one term or the other term. The IC manufacturers will use both terms, I believe, also. In the context of larger area display displaying video with a TFT active matrix array, the source and the data driver would be equivalent terms.

Q In LCD display, do the LC molecules emit light?

A No.
Q What do they do with respect to light?
A They interact with polarized light and modulate the amount of light that passes through a liquid crystal cell. The light is generated for these types of displays by backlight, and the liquid crystal pixel modulates the amount of light that reaches the viewer's eyes.

Q Is it accurate to say that liquid crystal

```
molecules act as a sort of shutter to allow light
passing through it?
            A A variable shutter.
            Q Have you heard of the term ramp retrace in
the context of LCD technology?
                    MR. BERKOWITZ: Objection, relevance,
scope.
    A Sitting here today, I can't recall that term.
Q It's not familiar to you?
A I can't recall it right now.
Q How about hold drive?
MR. BERKOWITZ: Objection to form, relevance and scope.
A Well, Sharp reference uses a sample and hold method.
Q What does that mean, sample and hold?
A A video signal is sampled at a specific point in time, and that sample is held on a storage capacitor.
Q What happens if you don't have a storage capacitor in a pixel, can it hold that signal in the
```

PLANET DEPOS 888.433.3767 I WWW.PLANETDEPOS.COM
pixel?
MR. BERKOWITZ: Objection to form.

A There is an additional capacitor outside the Clc and the Cs parallel combination. The sampling device will have an additional hold capacitor.

Q And so am I correct in saying that that's the third capacitor that we're talking about within a pixel region?

A It's the third discrete capacitor that we've been talking about. There's some scattered parasitics that are always present but it would be a third discrete capacitor.

Q Have you seen a hold capacitor modeled in any of the documents that you reviewed for this deposition?

MR. BERKOWITZ: Objection to the form.

A To me modeled means a spice simulation. And no, I've seen no SPICE simulation for this area of the ' 550 patent.

Q Have you seen any graphic representations of the hold capacitor in any of these documents that you reviewed for deposition?

PLANET DEPOS

888.433.3767 I WWW.PLANETDEPOS.COM

```
            MR. BERKOWITZ: I'm sorry, could you read
that back.
                    (Pending question read.)
            A The Sharp reference has some capacitors
that are shown. I refer to them in my report as part
of the sample hold circuit.
    Q We'll have to come back to that in a little
bit.
            Any others that you recall?
            A The Sharp reference has additional
embodiments where there's extra additional
capacitors.
    Q Is that it?
            A That's all I recall.
            Q So you've been talking about what you've
referred to as a sample and hold circuit. Is that
right?
A That's what the Sharp reference describes, a transistor and a capacitor.
Q Do you have any professional opinion as to whether sample and hold is the same thing as a hold drive?
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

MR. BERKOWITZ: Objection to form. I've not really heard the term hold drive. It doesn't ring a bell.

Q In your CV you talk about Alien Technology. Do you remember we talked about that last month?

A We did.

Q It says in your CV that you were involved with the design of custom drivers. Is that right?

A That's correct.

Q What kind of drivers were those, custom drivers?

A Those were drivers designed by engineers at Alien. They were for organic LED, they were for cholesteric liquid crystal and for polymer dispersed liquid crystal. They also had the additional requirement that they be roughly square or just slightly rectangular, and Alien Technology had a method of assembling silicon dye on to a substrate called fluidic self-assembly. The driver ICs, or chips, were made on a standard wafer run through standard wafer processing. They were etched and broken and the result was their shape looked like a
truncated pyramid with the circuitry transistors diffused in at the top of the truncated pyramid. The circuits were held in a fluid and passed over a substrate with the opposite shape of a pyramid, dimples, and the dye would reliably and quickly insert themselves upside down into the dimples, and we could do tremendous number of assemblies per minute. I don't remember the number, but million kind of number. And these displays were ultralow cost and they were flexible, typically for a credit card or additional security for a chipped credit card.

Q So Alien Technology produced these custom drivers for various types of displays. Were you producing and designing these drivers according to customer specifications?

A The customer was Alien. We -- as a company Alien had a customer base -- or a prospective customer base and they needed so many digits, such a size, such an optical characteristic and that would get transferred into a couple of different departments, one that was concerned with the display
material, another department with creating the dimple substrates and the department that I worked in was the IC design group and they would design the dye which would have multiple output stages.

Q Would I be wrong to characterize those custom drivers as a source driver, a gate driver, something like that?

A There was no TFT array, so the term source and gate doesn't have meaning in that context. Those would be called more segment or row drivers and digit or column drivers. I can't remember the term we used for them, but we were consistent.

Q Do you have design experience for drivers for active matrix LCD panels?

A I have experience with the custom drivers that were being in this case going to be used by Hitachi and were being designed in Silicon Valley, and I was the technical go-between between the factory engineers and Mobara, Japan, and the Silicon Valley.

Q So that's not an Alien Technology, right, that's at Hitachi?

A That is at Hitachi. There was also at Philips we were designing a couple of ICs. One was a very low cost timing controller for source and gate drivers. The other was a complex timing controller that had some enhancement, and there may have been some source drivers that were -- source driver ICs that were being developed for one of the Philips factories.

Q What do you mean --

A Excuse me. There was also -- I was the go-between for an investment in E Ink, the electrophoretic display and the design group in Philips Semiconductor out of Zurich, Switzerland.

Q When you mentioned Hitachi and Philips, you talked about a timing controller for drivers. What do you mean by timing controller?

A That would be a circuit that would talk to a graphics chip or a motherboard processor and would also communicate retimed information to the source ICs and the gate ICs.

Q So is it accurate to say that the timing controller is separate from the source IC or a gate

IC?
MR. BERKOWITZ: Objection to form.
A It is a separate integrated circuit, yes.
Q For your work at Hitachi and Philips you were involved in designing timing controllers for these drivers -- I'll ask this question again.

In your work at Hitachi and Philips, were you ever concerned with the type of signal coming into the driver for your design work?

MR. BERKOWITZ: Objection to form.
A Yes, always concerned with signal, timing, voltage levels, integrity, of course.

Q And so you'd be concerned -- when I talk about signal coming into the driver, are we talking about digital data at that point?

MR. BERKOWITZ: Objection to form.
A In the case of Hitachi it was digital data coming into the driver IC. Is there a section of the question I didn't answer? You've got a look on your face like you're expecting more from me and I'm expecting something from you.

Q Got it. I just wanted to make sure you

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
were done.

What about Philips, was it also digital data coming into the driver?

A It was a wide range of projects that we worked on. We pulled R\&D material from Philips research and moved it into Philips factories. It was a large amount of quick-turn projects.

My recollection is most of it was digital data going into the drivers. There may have been an analog project. There were 30 or 40 engineers that reported to me, some in the U.S., some not in the U.S. As I said, there was a lot of projects.

Q And for each project you'd need to know what type of data was coming into the driver to understand the design requirement, right?

A We would have a specification that ironed down everything that we could at the onset of the design so that when the design was complete and parts made, it could be tested against the design requirements and verified to meet them, typical engineering practice.

Q In the 2004 time frame do you know the

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
maximum number of signal lines that could be
connected to an IC driver action area?
MR. BERKOWITZ: Objection to form.
A It would depend on what the interconnect
technique was, whether it was tape automated bonding
or chip on glass or discrete package that was mounted
on a circuit card. Regardless of what the technology
is, I don't have that number at the tip of my tongue
sitting here today.
Q In your declaration you say that
large-sized LCD panels with pixel dimensions of 800
by 600 had multiple driver ICs.
Do you recall that testimony?
A Yes.
Q Why would you need multiple driver ICs for
that pixel dimension?

A That was a common display size around that period of time. It was a standard I believe called out initially by IBM. At the time there were management manufacturers that would make driver ICs, and these driver ICs would have some number of output stages. For instance, if a source driver IC had 200
outputs, then you would need four of them to drive 800 lines, and they would be placed along a horizontal edge.

Q In the 2004 time frame was it possible to manufacture a driver IC with 800 outputs?

A Certainly it was possible to manufacture it. The question would be was it economically viable, in which case people, factories, companies that made the ICs might not go to that large a number.

My experience is there would be a few hundred outputs at that time frame so you would need at least a couple of ICs. And usually these ICs had a very high aspect ratio. They were -- the outputs along one of the long edges and two of the shorter edges, maybe a little bit the opposing edge and then the power, the data, the clock, the service signals would come in to the middle of the side away from the panel. And if there were an 800 output IC, it would tend to have this very high aspect ratio and would tend to be fragile especially in a notebook application where there was a little bit of bending
of the lid transferring a little bit of bending to
the liquid crystal display, and if there was a long
slender IC mounted along the top driving all 800
outputs, it would be easy to crack. Also, in a
manufacturing environment it's not unusual for ICs to
be hooked up to a panel, that completed panel as it
would be sold to the customer turned on and burned in
at a higher temperature for a period of time and
failures would develop, and they'd have to be
repaired. It was easier to pull off smaller
individual ICs, not damage the underlying panel
structure and then reattach a smaller IC.
MR. BERKOWITZ: We have been going about an
hour. Is now a good time for a break?
Q Mr. Marentic, you want a break or do you
want to keep going?
A Break sounds good.
MR. HELGE: Off the record at 11:32.
(A recess was taken.)
MR. HELGE: Back on the record at 11:47.
BY MR. HELGE:
Q Mr. Marentic, earlier you were talking
about the types of connections and you used a few terms that I want to clarify. Chip on glass is COG, correct?

A It's abbreviated as COG. It's a monolithic silicon dye that's made with conventional IC fabrication technology and it's attached on the edge of the panel and the inputs and outputs bonded appropriately.

Q What are the types of bonding methods that you could use?

A You could use aluminum wedge bonding, gold ball bonding, and ACF, and anisotropic conductive film.

Q Are there different types of ACF methods?

A There's different manufacturers and they have different properties, but generically they're a thermoplastic with conductive spheres, and these spheres are at such a density so that when a bumped dye is pressed against the panel, there will be multiple spheres that are connecting the bump to the corresponding pad on the panel and yet the density of the conductive sphere is low enough that there won't

Deposition of Michael J. Marentic
Conducted on November 11, 2015
be lateral shorting.
Q Are there types of ACFs -- I'll take that away.

When you mentioned properties, different properties for different manufacturers of ACFs, is temperature one of those properties?

A The bonding temperature and pressure profile and the conductivity of the spheres.

Q And do any of those properties affect whether the IC could be removed and replaced for repair?

MR. BERKOWITZ: Objection to form, relevance.

A From a manufacturing point of view the ACFs I'm familiar with can be heated up and the silicon IC removed for repair. Should a fault or failure occur late in the process when all of the money has been invested and a single line is not functioning properly rather than throw that completed display away, it will be reworked.

Q Are there any ACFs that you're aware of where heat will actually increase the bond rather

Deposition of Michael J. Marentic
Conducted on November 11, 2015
than allowing the IC to be removed?
MR. BERKOWITZ: Read back the last
question.
(Pending question read.)
MR. BERKOWITZ: Objection to relevance and
scope.

A There are a number of companies making ACF and a number of applications. I don't know all of the properties of all of the ACFs, but there are clever material scientists that will put together materials for use in ACF that will suit a certain application.

Q So you're not specifically aware of the type of ACF that I was asking about?

A I wouldn't be surprised if there is any.
Q But you're not specifically aware of them?

A I can't name a manufacturer and a part number here today, no.

Q Is there any other type of bonding method that we haven't talked about for chip on glass technology?

A Those are the ones that I'm aware of that

Deposition of Michael J. Marentic
Conducted on November 11, 2015
were in volume manufacture in 2004 time frame.
Q What about wire bonding?
A I mentioned those too.
Q So the aluminum wedge and the gold ball,
are those types of wire bonding?
A Yes.
Q And does wire bonding allow the removal of
a damaged IC?
A Yes.
MR. BERKOWITZ: Objection to form,
relevance.
Q Are there properties of the wire bonding
technique that affect whether the IC could be removed
and replaced?
MR. BERKOWITZ: Objection, relevance,
scope.
A There's a material selection in all of
this, so if there is an IC put on to the edge of the
panel and wire bonded, the material set around that
process would certainly include materials with
properties that allow rework.
Q Is that because rework is important?

```
            MR. BERKOWITZ: Objection to form.
            A Rework is -- is important. In a
    theoretical point of view, in an ideal world, you
    don't need that. In the actual factory of making
    displays, as I mentioned earlier, one would not be
    thrown away because of a single errant line. The
    display assembly will be repaired, different
techniques, different factories, different
technologies, but there would be a method of
repairing a failed line in the very last stage.
    Q So the concern for a rework would have been
known by a person of ordinary skill in the art in
2004. Is that right?
                    MR. BERKOWITZ: Objection to form,
foundation.
A I believe under my definition of a person having ordinary skill in the art in 2004 , they would have known about rework issues.
Q Was rework -- was the concern for rework known in 2003?
MR. BERKOWITZ: Objection to form, foundation, relevance, scope.
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
A I first stumbled on to rework in the late '60s. It's a vulgarity of manufacturing. Everything doesn't come out identical and perfect.
Q So somebody coming up with a design in LCD
technology would have considered rework as part of
that design. Is that right?
    MR. BERKOWITZ: Objection to form,
relevance, outside of scope.
A The design of what?
Q LCD technology, LCD driver.
A An LCD driver IC?
Q Well, I think -- we're talking about rework, let me make sure \(I\) understand.
Rework is -- includes the need to be able to replace a damaged IC with a new IC once manufacturing is substantially complete. Is that right?
A That's correct.
Q And so that need to be able to replace a damaged IC is something that's known within LCD technology since the 1960s. Is that right?
A The need for rework at multiple levels,
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015
whether it's lines in the photolithographic process, whether it's failed backlight, a failed IC, there is an awareness that there is rework that is done. I believe your earlier question hinted at exclusively IC, and the IC designer is less concerned with the rework. They make an IC that meets certain electrical and physical specifications, and their concern is yield of that dye at electrical test.

Q And that's because if you're going to rework an IC, you're going to replace it in kind, correct?

MR. BERKOWITZ: Objection to form.
A Generally, yes.
Q And so people who are making determinations about bonding methods, they will also be concerned about rework, correct?

MR. BERKOWITZ: Objection to form, relevance, scope.

A The panel design is such that repair can be accomplished at a couple of high failure modes.

Q So the designers of that panel design will have rework in their mind. Is that right?

```
            MR. BERKOWITZ: Objection to form,
        relevance, scope.
            A The panel designers and manufacturers will
                have rework considered in the product flow and final
                costing.
            Q What about at the design stage, will they
have that in their mind at that time as well?
                    MR. BERKOWITZ: Objection to form.
            A They should.
            Q You mentioned another bonding method -- I
                think it's bonding -- no, actually it's not a bonding
                method. T-A-B, TAB, can you tell me what TAB stands
                for?
            A Tape automated bonding.
            Q So is it a bonding method?
            A It's a class of packaging where the silicon
dye is connected to a flexible substrate and that
flexible substrate is then attached to the panel edge
and the circuitry wrapped around to the opposite side
of the panel.
            Q And does tape automated bonding allow for
rework?
```

MR. BERKOWITZ: Objection to form, scope, relevance.

A The TAB is usually attached with ACF, so the same scenarios of loosening the ACF, heat, solvent, shock, something. The TAB method also requires rework for an economical product to be manufactured at a factory.

Q When you were talking earlier about a hypothetical 800 output driver IC, you talked about risk of damage. Where did you acquire that knowledge about risk of damage based on such a large IC?

A I might have broken some at SAIC when we were putting high performance backlights behind display LCD panels. I was certainly aware of it at Hitachi and at Philips also.

Q Do you agree that a driver IC -- well, generally speaking, do you agree that driver ICs have been improving over time?

MR. BERKOWITZ: Objection to form.

A Driver ICs have been evolving so that they meet the panel manufacturer's requirements which meet OEM requirements and can be marketed competitively
against other OEM products.
Q How have they been evolving?
A They would have used different processes, semiconductor fab processes --

MR. BERKOWITZ: Just for clarification. Why don't you just read the question back and start over.

Q The question was how have they been evolving. He said they have been evolving.

MR. BERKOWITZ: I just want to make sure she got it down correctly.
(Pending question read.)
A -- semiconductor fabrication processes, different handling methods, different data input structures.

Q So is that in order to perform more computations?

MR. BERKOWITZ: Objection to form.
A These ICs don't perform computations.
Q Have the number of output stages for one driver IC changed over time?

A Yes.
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
            Q How have they changed?
            A It generally increased.
            Q Today what's a common number of output
stages for a driver IC?
            A I actually don't know today.
            Q You knew 2004 though, right?
            A There were a few hundred.
            Q More than a dozen, right?
            A More than a dozen for the types of large
area video displays that we're talking about.
            Q How would you define large area video
display, just so we understand the context of what
we're discussing?
            A A video display would be at least the
standard definition, the one prevalent since World
War II. That was 525 lines by about 400, 480 lines,
so that was a standard definition. And in the early
days those were a few inch diagonal. Those were
unsuitable for family viewing in a living room, for
instance.
                    The need for a living room experience said
that the displays needed to be at least 16, 20, 24
A A video display would be at least the standard definition, the one prevalent since World War II. That was 525 lines by about 400,480 lines, so that was a standard definition. And in the early days those were a few inch diagonal. Those were unsuitable for family viewing in a living room, for instance.
The need for a living room experience said that the displays needed to be at least 16, 20, 24
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
inch diagonal, and the number of pixels was less
expensive product SKUs, the standard definition.
When the high definition standard came out, there
were still multiple addressabilities that were
allowed under the current TV standard, I think it's
ATSC, but in that time I believe the ATSC went live
2008, 2009, but in preparation TV manufacturers were
trying to get larger screens, both in physical size
and in pixel addressability.
So to me a large area would be at least a
thousand pixels left to right and the appropriate
ratio up and down to meet the 4 by 3 or the 16 by 9
aspect ratio, and at least some diagonal of 16, 20,
24 inches that would allow for almost multiple
viewers to watch it.
Q Two LCD panels of different sizes can still
have the same number of pixels, right?
A Yes.
Q So the number of pixels is not always
variable with the change in size, correct?
MR. BERKOWITZ: Objection to form.
A To some degree both are independent. It

```
relates to a particular factory's mother glass size,
and that's the starting glass that goes into the
factory. For a given factory they can fit so many
displays on the mother glass and have a less than
optimal number or size of substrate LCDs flowing
through the TFT fabrication process would cause a
price increase for that particular size. So each
factory has optimal sizes that they're able to run.
    Q And you mean optimal size based on the
physical dimension of the glass, right?
    A The physical dimension.
    Q Is it true that there is an electrical
circuit element that drives each gate line and source
line?
                    MR. BERKOWITZ: Objection to form.
    A I think I understand that. Would you
repeat it?
    Q Sure. Is it true that there is an
electrical circuit element that drives each gate line
or source line?
    A There is a cluster of electrical components
that drives each source line and gate line.
```

Q What is that cluster of components called?

MR. BERKOWITZ: Objection to form.

A That could be an output driver.

Q Is there any other term that's used for that.

A Well, we've talked about some of those earlier. Output stage, output of a driver IC.

Q What about a buffer?

A A buffer is a narrowed definition of a circuit. Typically the input equals the output. Occasionally it can be inverted, hence the term inverting buffer. Occasionally the output impedence is low, called a stiff buffer. Sometimes it just cleans up a signal and there's no particular need to have extra driving strength.

Q In a LCD panel is there a need for extra driving strength on a column line or gate line?

MR. BERKOWITZ: Objection to the form.

A The TFT array will have been modeled prior to fabrication with certain line capacitances and line resistances and target output specifications. Frequently the manufacturer of the whole LCD assembly
who designs the TFT array would have a range of suppliers that they buy from, and they would be able to give an early specification to the manufacturers to let them know what they were looking for in terms of drive characteristics. And reciprocal is also true, the manufacturers of the driver ICs would have preliminary specifications that they would send out to industry outlining the characteristics of their new driver IC. So that when it was time to deliver prototype displays to an OEM manufacturer, they would be able to have close to final display performance.

Q What would happen if you had an LCD panel that demanded a certain driving strength and a driver IC that could not provide the requisite driving strength?

MR. BERKOWITZ: Objection to form.

A The display manufacturer could search for other drivers. If the particular company had in-house capability, they could modify an existing design. And depending on what type of technology the LCD active matrix fab had available, they might be able to come up with a merged solution.

Q So you understand the hypothetical I'm presenting, right?

A I think you're arriving at -- you selected an IC, you've designed a panel, the two don't work together and you're proposing putting a buffer at each output to lower the output impedence as it appears reflected into the source lines. That's a pretty far hypothetical.

Q All right. I think you've gone a little bit further than I had intended. What I'm really thinking about is an LC panel that has a certain need for drive strength, right, you talked earlier about drive strength, and then a source driver has been provided that does not have the requisite drive strength.

Now, follow me with this hypothetical. These two components are assembled together and then tested. What would happen in the pixel region when an insufficient drive strength is provided from the driver IC, how would that affect the display?

MR. BERKOWITZ: Objection to form.

A Well, this is a hypothetical. I think I'd

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
want to think about that a little bit more. That's a
```

good question.

Q Is it possible that the necessary gray scale would not be achieved within a frame under that hypothetical?

MR. BERKOWITZ: Objection to form, relevance, scope.

A Another good question. I'd like to study that closer and have some discrete numbers, what driver and what's the active matrix, input characteristics, what's the timing, what's -- what's available. Part of it is the -- I'd like to look at it. Another good scenario. It's intriguing to me. I'd like to sit down and examine it.

Q So is it correct that these sorts of things don't happen in panel manufacturing; is that right?

MR. BERKOWITZ: Objection to form.
Q I'll ask the question again.
Is it correct that source drivers and panel displays are always compatible?

MR. BERKOWITZ: Objection to form.
A The first time they're hooked up, they may
not function properly. Sometimes some compensation can be made in other portions of the process. Sometimes -- there's a range of solutions available for the -- within the factory that builds the final LCD modules, the TFT array, driver chips, the backlight, and that gets sold to an OEM that would incorporate it in a monitor, television, notebook computer.

Q So you mentioned that the first time these components are connected together they may not function properly. Is it possible that the image may decay during the frame because voltage isn't maintained?

MR. BERKOWITZ: Objection to form.

A There is a whole array of visual artifacts in displays and they're called by fairly creative terms and they're certainly not uniform across the industry. In fact, I worked at one place where within the factory there were two buildings and both buildings called visual artifacts by different names. So your description of graying and decaying, I wouldn't even hazard a guess as to what

Deposition of Michael J. Marentic
Conducted on November 11, 2015
that would look like. The only way to look at visual artifacts is with a pair of eyeballs. Words never do it justice.

MR. BERKOWITZ: What time you think you're going to break for lunch?

MR. HELGE: That's what I was just wondering.

Q Mr. Marentic, do you want to take a break or do you want to go a little bit longer?

A Maybe another five, ten minutes.
(PREVIOUSLY MARKED Deposition Exhibit 1009 marked for identification and was attached to the transcript.)

Q Mr. Marentic, I'm going to hand to you what's already been marked as Sharp Exhibit 1009 in this case. Does this document look familiar to you?

A Yes.

Q And what is this document?

A This was Exhibit 9 in my declaration.

Q So you reviewed this document in preparation for your declaration. Is that right?

A For the declaration, yes.

PLANET DEPOS
888.433.3767 | WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
Q But you didn't review it again in
preparation for deposition, right?
A Correct.
Q Do you recall who found this reference when
you were preparing for your declaration?
    MR. BERKOWITZ: Objection to the form,
relevance.
    A This was provided to me by ARE.
    Q Do you see three inventors listed on the
cover page up near the top left?
    A Yes, I do.
            Q Do you know any of those inventors?
            MR. BERKOWITZ: Objection, relevance.
            A I don't recognize any of those three
individuals.
    Q Do you know Patrick Burns at Greer Burns &
Crain, Ltd.?
    A I don't believe I --
            MR. BERKOWITZ: Objection, relevance.
            Q I'm sorry, Mr. Marentic?
            A I don't believe so.
            Q Can you please turn to Page 10. The bottom
```

 PLANET DEPOS
 888.433.3767 I WWW.PLANETDEPOS.COM
 Deposition of Michael J. Marentic
Conducted on November 11, 2015
of Page 10, left-hand side we have Paragraph 8 which
then continues up to the top of the right-hand
column.
Do you see that?

A Yes.
Q If you are on the top of column 2, the right-hand side about five lines down, there's a sentence that begins with the word "especially."

Do you see that?

A Yes.
Q Do you see that that sentence -- I'm going to read a portion of this out loud: "Especially along the upsizing of the screen the number of the driver ICs will be increased."

Did I read that correctly?
A Yes.
Q Is that always the case?
MR. BERKOWITZ: Objection to form.
A We've talked earlier about increasing the screen size. This is another one of those imprecise terms. Screen size can relate to physical diagonal or the screen size can refer to the addressability,
the number of pixels by the number of pixels.
Q So, Mr. Marentic, is it true that changing the size of the screen does not necessarily require a change in the number of driver ICs?

MR. BERKOWITZ: Objection to form.
A Changing the screen physical size slightly would not require a change in the number of ICs. Changing the screen size considerably, doubling it, might require different ICs, and those different ICs may have a different number of outputs. So there would need to be a different number of driver ICs along the edge.

Q So your conclusion about the differing number of driver ICs along the edge is dependent upon the required number of outputs, right?

MR. BERKOWITZ: Objection to form.

A It's based on the matching of the output characteristics of a driver to a line -- source line of an LCD with a TFT array and, similarly, that would be the case for the gate side also.

So there's no -- my sense is you want a yes/no answer and there is no yes/no answer. These
are tradeoffs that are made based on requirements of what does the panel need, what can the IC drive.

If the -- if the panel were to grow left to right, it would be a case where extra ICs would be added and they would be the same as the ICs on the original section of the panel.

Q Why would you need those extra ICs if the number of scan line -- excuse me -- if the number of data lines has not changed?

A I assumed the number of data lines was changed so the format of the display was 800 lines left to right and that was increased to 1,024 kind of number. It would be normal to take the same IC that was driving the 800 and apply more of them so that you got to the 1024 number of driven lines, and that would be just using the same driver IC, driving the same source line, except there are additional source lines, and there would be no unexpected changes in the performance.

Q Sir, if you had two panels of different physical dimensions but both with 800 source lines, those two panels could have the same number of driver

ICs, correct?

MR. BERKOWITZ: Objection to form.

A In one case they could and in one case they might not.

Q Do you see Paragraph 6 on the left-hand side, last sentence? I'm going to read this allowed: "Therefore, in order to drive many gate bus lines and the source bus lines on the display circuit board, the plurality of the gate drivers and source drivers must be connected to the area around the liquid crystal display panel."

Do you see that?

A Yes.

Q Do you agree that if the number of source lines can be provided by one driver IC, then you wouldn't need a plurality of source drivers?

MR. BERKOWITZ: Objection to form.
A It depends what the electrical load of the TFT array is, both the source line and the gate line, and it would depend on what was available for source drivers and whether that source driver was suitable for driving each of those.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

MR. HELGE: Probably good time to break. Off the record at 12:41.
(A lunch recess was taken.)

MR. HELGE: We're back on the record 1:36. BY MR. HELGE:

Q Mr. Marentic, I'm going to hand you --
A Could I go back to the last couple of minutes prior to lunch?

Q Okay.

A We had talked about the Sekido and you read a single sentence outside of Paragraph 8, and generally this patent is for reduction in electromagnetic interference or EMI or they call it electromagnetic wave. And there is a description in Paragraph 8 that the higher resistance and capacitance and the lack of ground wiring means that when the service signals to the source drivers and gate drivers go at frequencies that are required, there's a lot of electromagnetic noise, and that's a concern with all flat panel displays. Liquid crystal displays are not unique, but the paragraph that you -- or the sentence you read, especially along the
upsizing of the screen, the number of driver ICs is increased and further the signal lines for propagation of the signal clock and control becomes longer so that power consumption in the electromagnetic wave is increased. So it generally as a display has a larger number of lines and if you define the number of lines as the display size, as more and more ICs are added, there will be more parasitic capacitance and resistance to deal with and more of the EMI.

So I think there was questions along the line of a screen and upsizing the screen, what does that mean. The upsizing the screen could be physical size or the addressable matrix size. If the one axis were to increase in size, then it would be normal to add extra driver ICs onto it and with that would come more electromagnetic interference.

There was also some discussion on the strength of the driver ICs and the requirements of the panel. There isn't a hard threshold where if you add another line suddenly the displayed performance deteriorates to unusable. It's a gradual change.

And there may be some applications where for a low cost product that might be acceptable.

So that's a long-winded explanation of -it's a complex trade space and there's many design options that are available. If a product is late for introduction, there could be some accommodations elsewhere in the liquid crystal gap, in the liquid crystal chemistry or with some other wiring changes in the timing controller to make it meet the end customer's requirements.

Q So matching a driver IC with a panel requires compatibility of many different factors, right?

A Many different factors. However, it is common if a factory has an existing supply chain of drivers coming in and a notebook manufacturer comes to them and says we would like to have this size panel, would you be able to do it, and they'll look at it and possibly use the same drivers even though it's larger. They would add more drivers.

Q If necessary, right?

A If necessary, yeah.

Q And they would look at more than just the panel size to determine if a driver was compatible with a panel array?

A The matrix size would be of paramount importance and then the load of each source line presented to the driver would need to be considered and then also the end customer's requirements. Some customers have LCD technologists on their staff and they have a series of tests that they look for artifacts. Other display -- other OEM manufacturers will just take a display at the lowest price they can get and put it out into the marketplace. So there's a range of what OEM users will accept.

Q Mr. Marentic, why don't we take a look at Exhibit 1007 here.
(PREVIOUSLY MARKED Deposition Exhibit 1007 marked for identification and was attached to the transcript.)

Q Mr. Marentic, does this document look familiar to you?

A This is my declaration from last March on the '550 patent.

Conducted on November 11, 2015

```
Q So if you turn to the last page of this document, that's your signature there?
A Yes, it is.
Q And you read this entire document before you signed it, right?
A Yes, I did.
Q And you read the entire document in preparation for this deposition, correct?
A I did. I concentrated principally on the arguments of obviousness of Sharp and Kamizono.
Q Why did you focus on that portion of the declaration?
A Because the Patent Trial and Review Board instituted the review based on those two prior arts.
Q You're free to reference this document if you'd like in answering the question, but what is it that's missing from Sharp that we then look to Kamizono to provide in this ground that's been instituted by the board?
MR. BERKOWITZ: Objection to form.
A I believe Sharp shows everything, also noteworthy it was ten years prior, but if an argument
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
is made that somehow Sharp doesn't adequately teach
multiple driver ICs, then Kamizono clearly shows
multiple driver ICs and describes how to mount and
rework those.
    Q So is it correct that we're only relying on
Kamizono to provide the plurality of driver ICs; is
that right?
                    MR. BERKOWITZ: Objection to form.
    A No, I believe Sharp shows everything, but
if an argument is made that it doesn't, then there's
no question that Kamizono does.
    Q You understand that the board did not
institute on the ground based solely on Sharp,
correct?
    MR. BERKOWITZ: Objection to form.
    A Would you ask that again, please.
    Q You understand -- I'll say it one step at a
time.
    You understand that there was a ground
presented against claims of the '550 patent based
solely on Sharp, correct?
    MR. BERKOWITZ: Objection to form.
```

 PLANET DEPOS
 888.433.3767 I WWW.PLANETDEPOS.COM

A There was -- again, I'm sorry. The question again?

Q Well, you're referring to Paragraph 5 of your declaration, correct?

A Yes.

Q And do you see Paragraph 5a where there is an anticipation argument based on what's called the Sharp reference or Exhibit 1002? Do you see that?

A I do, and I was questioning whether you were including anticipation as invalidation or obviousness, and my ear wasn't attuned to it.

Q Understood, understood. So you see Paragraph A is an anticipation argument based on the Sharp reference and Paragraph B is an obviousness-based argument in view of the Sharp reference, correct?

A I do.

Q You understand that the board did not institute on those two challenges, correct?

MR. BERKOWITZ: Objection to form.

A The board did not rule that those were not good arguments. They just chose to implement on

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Sharp and Kamizono. I don't see Claims 1 through 5 are invalid as obvious.

Q I'm sorry, can you explain your last sentence? You don't see that Claims 1 through 5 are obvious?

A The board ruled that this case should pursue Claims 1 through 5 invalidity as obvious in view of Sharp and Kamizono. The others, A, B and D, were just passed over.

Q Okay, that's fine.
So I want to come back to something you said earlier, which was, if an argument is made that Sharp doesn't disclose everything, then it's in Kamizono. What I want to understand is what you mean by argument.

A So, for instance, my Paragraph 130 shows that Sharp shows path to an integrated gate driver, as is required by the fifth claim, and Kamizono also shows and discusses an integrated gate driver. So both of those could be used for Claim 5.

Also, Paragraph 98, the Sharp reference anticipates Claims 1 through 3.

Q Mr. Marentic, you understand that ground has not been instituted by the board, correct?

A You're correct.
Q Can I ask you to turn to Paragraph 148 -actually 147 as well. Do you have those there?

A I do.
Q Why don't you read through 147 and 148 to yourself and let me know when you finished.

A Okay, I've read both of those.
Q So based on those paragraphs, or any other portion of your declaration, what modification are you proposing to the Sharp reference based on Kamizono?

A It's not a modification, rather -- or an argument made that somehow Sharp shows only one source driver, Kamizono extends that to show that were it not obvious, there is documented a method of Kamizono to extend that and use multiple driver ICs.

Q So you're not proposing a modification to the Sharp reference based on Kamizono. Is that right?

MR. BERKOWITZ: Objection to form.
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

A I'm not suggesting that Sharp reference needs to be modified. I believe the Sharp reference shows multiple drivers, which is what's required in Claim 1 and 2 of the '550. I believe the Sharp reference teaches multiple drivers, multiple gate drivers, multiple source drivers, and that somehow if an argument was made that Sharp only taught a single driver with multiple outputs, then Kamizono would teach that you could take multiple ICs each with multiple driver outputs and put them on the edge of a panel.

Q So are you relying on Kamizono solely for the number of driver ICs that are shown?

MR. BERKOWITZ: Objection to form.

A No. If -- I believe Sharp shows multiple drivers, as required in Claims 1 and 2 , but should driver be argued that is Sharp only shows one driver for some reason, I would disagree with that. Then Kamizono clearly shows that for an LCD you could have multiple drivers.

Q So are you using Kamizono solely for the definition of driver?

PLANET DEPOS 888.433.3767 I WWW.PLANETDEPOS.COM

```
MR. BERKOWITZ: Objection to form, foundation.
MR. HELGE: How is that a foundation objection?
MR. BERKOWITZ: It's not clear what claim you're talking about.
MR. HELGE: I'm talking about ground 3 based on Sharp and Kamizono, which applies to all Claims 1 through 5.
Q I want to understand, Mr. Marentic, exactly why you need Kamizono. As I understand your testimony now -- and we don't have to go through it again if it's the same testimony -- but as I understand it right now, the only reason you're looking to Kamizono is for the number of drivers shown in the reference.
Is that correct or not?
MR. BERKOWITZ: Objection to form.
A No.
Q What else are you looking for from Kamizono?
A I believe Sharp shows multiple drivers --
```

```
Q You understand that the board did not institute on ground 1 based solely on Sharp, correct? MR. BERKOWITZ: Objection to form.
A I do.
Q So what else are you relying on Kamizono for?
A There is the plural/singular of what driver, drivers, plural, means and there's also ambiguity as to what a driver means. Is a driver an output or is a driver an IC or a collection of circuitry?
So if an argument is made that somehow Sharp only shows a driver, I disagree with that, but if an argument is made that Sharp only shows a driver, then Kamizono teaches that you can put multiple drivers on a panel edge were that not obvious to a person having ordinary skill in the art in 2004, and I believe that would have been self-evident. You have more lines, you need more circuitry to drive the lines, and you can use driver chips with more outputs, you can use more driver chips. It's a design tradeoff based on cost,
```

Deposition of Michael J. Marentic
Conducted on November 11, 2015
performance, time to market.
Q But you're not looking to modify Sharp with Kamizono at all. Is that right?

MR. BERKOWITZ: Objection to form.

A I believe Sharp teaches everything that's necessary to invalidate Claim 1 and 2 , but should an argument somehow be made that Sharp only shows a driver, then I rely upon Kamizono to demonstrate that you can have multiple drivers on a panel edge.

Q How would the Sharp reference implement multiple drivers in the panel edge?

MR. BERKOWITZ: Objection to form.

A I believe it already shows multiple drivers.

Q So it's your testimony that you don't need Kamizono to reach Claims 1 through 5?

MR. BERKOWITZ: Objection to form.

A It depends on the final resolution of what a driver is, and if a peculiar argument is made that somehow Sharp does not show multiple drivers, and I disagree with that, then I would use Sharp in combination with Kamizono to show that one having
ordinary skill in the art in 2004 would be able to
very easily understand you could put multiple drivers
on a glass edge and increase the addressability size
of an LCD active matrix display.

Q And to put multiple drivers on the driver edge, would that look like what's in Kamizono -- in Kamizono's figures?

MR. BERKOWITZ: Objection to form.

A It could, depends what the interconnect technology is. Or in the case of 4 and 5, what the gate structure looks like.

Q Mr. Marentic, you've said a number of times that if an argument is made, you would look to Kamizono to show that you can use multiple driver ICs. Did I understand that testimony correctly?

A Yes, I believe I've tried to be consistent and say the same thing multiple times.

Q It's almost like you had it memorized.

A I feel a little stressed and I feel the need to be very precise and I like my first answer, so I see no need to deviate from it.

Q So let me ask you this. If an argument is

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
not made about the number of drivers in Sharp
reference, is there any need to look to Kamizono?
MR. BERKOWITZ: Objection to form.
A It just adds for Claims 1, 2 and 3 an extra
layer of insurance, and then for Claims 4 and 5
Kamizono was relied upon for the integrated driver
and the chip on glass.
Q And the insurance that you're talking for
Claims 1, 2 and 3 relates to the number of drivers
only. Is that right?

A It relates to what a driver is, and there can be some future definition of what a driver is. And I believe no matter what definition, the '550 Claims 1, 2 and 3 are invalid as are 4 and 5.

Q So Mr. Marentic, I just want to make sure I understand what you're saying.

Kamizono is being used for insurance to show that multiple driver ICs could be used for Claims 1 through 3. And your testimony on that has been that if an argument is made about the number of drivers shown in Sharp. And so if no argument is made about the number of drivers in Sharp, do we need
to look to Kamizono at all -
MR. BERKOWITZ: Objection to form.
Q -- for Claims 1 through 3?
MR. HELGE: I understand that's
objectionable.
MR. BERKOWITZ: I have other grounds for it
but . . .
A If I refer to my claim chart at the top of
56, for instance, Claim 1 , the requirement is that M
groups of data lines connected to source drivers and
insulated with each other, and then they go through
and describe this even/odd combination. So the Sharp
reference discloses groups -- two groups of source
bus lines connected to source driver 71.
Then reading on, the groups of the data
lines are insulated with each other by being spaced
apart from and parallel to each other. The first and
the second source lines -- source bus lines 5 of the
first group of source bus lines are respectively
connected with the sources of all of the thin film
transistor 7 on the even and odd rows and similarly
the first and second bus lines 5 of the nth group are
respectively connected, and it goes on.
So I believe Sharp anticipates the structure that was described in the '550 patent by a long time, and then additionally Kamizono describes signal lines connected to multiple driving ICs.

So it's really the -- I'll leave it at that. Q So in this chart for Claim 1 you rely on Kamizono for multiple scan line driving ICs and multiple signal line driving ICs, and that's all I see. Are you relying on those for anything else -excuse me, are you relying on Kamizono for anything else?

A In Claim 1, later on the second page, yes, I'm relying on Kamizono as it's described in the claim chart to demonstrate that the '550 is anticipated by the Sharp in combination with Kamizono.

Q Is there anything that you've left out of this claim chart for your reliance on Kamizono?

MR. BERKOWITZ: Objection to form.

A I don't believe so. Both are -- actually

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
all three references are for larger video displaying LCDs and both the Sharp and the '550 patent relate to overcoming certain visual artifacts and both describe this even/odd gate combination, and Kamizono also describes how to apply multiple ICs in the case of the larger displays for video, television.

Q And you're not relying on Kamizono to modify Sharp reference at all. Is that right?

MR. BERKOWITZ: Objection.
A I'm relying on Kamizono to -- let's look at Kamizono, Figure 15 -- I could find it faster in Kamizono.

Kamizono shows multiple drivers should a driver be defined as an IC and each IC has multiple outputs.

Q And so are you proposing a modification to the Sharp reference based on that teaching?

MR. BERKOWITZ: Objection to form.
A I'm not suggesting that the Sharp reference be modified at all.

Q So are you relying on Kamizono to disclose what is meant by the term driver?

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

A No. I believe -- we discussed earlier the ambiguity not only in the '550 but in the industry of precisely what a driver means.

Q And you stand by that prior testimony, right?

A I do.

Q Can you turn to Paragraph 149 of your declaration, please. It's on Page 52. You see that paragraph there?

A Yes.

Q In the second sentence you state, "Moreover, for the reasons discussed above, there was a clear motivation to combine these references."

What did you mean by "clear motivation"?

A Both were directed to larger active matrix displays that were used for video images, television, DVD playback, suitable for family viewing. There was a need in the marketplace to increase the size in 2004. In 2004 plasma was able to easily achieve larger diagonal displays. Liquid crystal industry at that time was a little behind, and as they tried to
increase the size physically and addressability, there were difficulties that were encountered. And true to the liquid crystal industry, the engineers came up with a number of techniques to overcome these.

Sharp describes one of the techniques of hooking up the TFTs in alternating rows as one technique for an apparatus to get rid of -- or help eliminate visual artifacts.

There was a market need, there was competition by plasma, there were artifacts as you increase the size of the screen in both physical size and in addressability, and those needed to be solved.

As I say in the first sentence, Kamizono teaches the use of multiple source and gate drivers, as does the Sharp reference, and the Sharp reference discloses all the other limitations of Claims 1 through 3, as shown in the above claim charts.

So, thus, to the extent that the Patent Owner argues that the Sharp reference does not teach multiple gate and multiple source drivers, which is contrary to my opinion as we've discussed here quite
Sharp describes one of the techniqu
hooking up the TFTs in alternating rows as one
technique for an apparatus to get rid of -- or help
eliminate visual artifacts.
There was a market need, there was
competition by plasma, there were artifacts as you
increase the size of the screen in both physical size
and in addressability, and those needed to be solved.
As I say in the first sentence, Kamizono
teaches the use of multiple source and gate drivers,
as does the Sharp reference, and the Sharp reference
discloses all the other limitations of Claims 1
through 3, as shown in the above claim charts.
So, thus, to the extent that the Patent
Owner argues that the Sharp reference does not teach
multiple gate and multiple source drivers, which is
contrary to my opinion as we've discussed here quite
a few times, I believe that, as a minimum, Claims 1
through 3 of the '550 patent are obvious over Sharp
in view of Kamizono.
So there was a motivation to combine of
adding extra ICs for a larger addressable display
matrix size and it would have been well within a
person having ordinary skill in the art in 2004 to
add extra drivers, and were that not just obvious
from prior work, one could look to Kamizono.
I believe that, in my experience, if you
need extra lines driven, you get extra ICs. I came
across that in college in the sixties and, as an
example, if there was a quad NAND gate and you needed
a bus of eight bits, you would use two quad NAND
gates. It just was taught in school, it would have
been obvious. And if some kind of argument is made
that somehow Sharp does not teach multiple drivers,
that somehow they teach only one driver with multiple
outputs, then Kamizono, as a minimum, teaches the
commonsense that you would add more drivers to extend
that addressable matrix size.
Q Do you know the priority date for the Sharp
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
reference?
MR. BERKOWITZ: Objection to form.
A I could look through here and find it. I
know I wrote about it in the reference. My
recollection is it was about a decade earlier, but
let's find the precise date.
Q Do you want me to give you the reference?
You can just talk about Sharp if you'd like.
A Show me what paragraph --
Q Well, this is Exhibit 1002.
(PREVIOUSLY MARKED Deposition Exhibit 1002
marked for identification and was attached to the
transcript.)

A There's some legal items in terms of priority date that I'm not that familiar with. I'd like to find out what I wrote in the Sharp reference.

Q Well, Mr. Marentic, I'll withdraw that question about the priority date because I'm not concerned about the legal implication. If you look at Exhibit 1002 , second page, does this -- this looks like the Sharp reference to you, correct? Let's confirm that first.

PLANET DEPOS 888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
A Yes, this is the Sharp reference.
Q If you look at the middle of Page 2 on the left-hand side, do you see a filing date there?
A Yes.
Q What date is that?
A That date is May 10, 1995.
Q And in the 1995 time period what was the maximum size for an LCD panel?
MR. BERKOWITZ: Objection to form.
A In the '95 time frame LCDs with TFT arrays were principally used in notebooks, the largest market share was for notebooks. There was the start of some displays getting larger and used for monitors. They cost a premium over an old CRT, and there were some of the companies showing television at technical conferences.
So there's what was manufactured in volume, what was specialty manufactured that would be used as learning so that it could ramp up later into other product lines, and then there was what was cooking in the back lab in the R\&D group.
So your question of what's the largest is
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
kind of ill-defined.
Q Well, with those three categories that you just mentioned, basically a commercially available panel and then sort of -- I take that as being for notebook computers maybe 15 inches, do you think?

MR. BERKOWITZ: Objection to form.
A I don't recall precisely, but XGA was a very popular size.

Q And what is XGA?
A $\quad 1024$ by 768 .

Q That's a pixel dimension, right?
A That's an addressability dimension.
Q Would you call that a resolution?

A There were a couple of lawsuits over what's resolution with an LCD display. It is -- the best technical term is the addressability size.

Q Do you recall in the 2004 time frame how many lines were contained in your standard high definition LCD panel?

MR. BERKOWITZ: Objection to form, scope.
A I don't recall exactly but there would still be these same categories: What was sold to the

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
mass market still at a premium, what was sold to the enthusiasts where price is really not an object, and then what was available in the R\&D facility and shown in technical conferences, and I ...

Q In the 2004 time frame were there LCD panels being manufactured with addressability numbers of 1024 by 768?

A Yes.
Q And so that number means that in 1995 an XGA panel would have the same number of scan lines and signal lines as an LCD panel in 2004 having the same addressability, correct?

MR. BERKOWITZ: Objection to form.
A In 2004 at the time of the '550 patent, there was this even/odd configuration of rows. So that would require additional drivers on the source side to drive each and every row -- I'm sorry -additional source drivers to drive every other column or source line of the TFT array.

Q But isn't that what's shown in the Sharp reference too, even/odd --

A It is, the wiring of the pixels was the
same on the TFT array size.

Q So the number of signal lines in an XGA notebook monitor having a 1024 by 768 addressability value in 1995 would be the same as the number of signal lines in an LCD panel having 1024 by 768 addressability in 2004, correct?

MR. BERKOWITZ: Objection to the form.

A If that was for a notebook panel, yes. If it were for a video panel, it may have had additional drivers, as is disclosed in the Sharp and as the '550 wires, the TFTs.

Q How come a notebook panel is not a video panel, according to your words?

MR. BERKOWITZ: Objection to form.

A The notebook panel uses the majority of Windows or a Macintosh operating system and is for productivity enhancement, uses an office suite that includes a word processor, a presentation program, a spreadsheet, sometimes project management, and these are stationary images where the data is typed in or a window collapsed and expanded.

So there is no particular video requirement

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
it were for a video panel, it may have had additional
drivers, as is disclosed in the Sharp and as the '550
wires, the TFTs.
Ihe notebook panel uses the majority of
Windows or a Macintosh operating system and is for
productivity enhancement, uses an office suite that
includes a word processor, a presentation program, a
spreadsheet, sometimes project management, and these
are stationary images where the data is typed in or a
window collapsed and expanded.
So there is no particular video requirement
PLANET DEPOS
nor an expectation that video would look really good on LCDs and notebooks.

Additionally, notebooks had a little bit different color filter, a little bit different backlight so that the battery life was increased and, as such, the color gamut wasn't as good as state-of-the-art television monitors of today.

So the expectation of showing video on a notebook is not high.

Q But a notebook display is capable of displaying video, right?

A Depending on the program, the operating system, the performance of the rest of the components in the notebook, you can display video. It would be -- one could argue what's acceptable and what's not acceptable. It would be less technically perfect when compared to 2004 state-of-the-art television monitor.

Q So based on your claim chart that addresses the combination of Sharp and Kamizono, you're relying on Kamizono for the number of source drivers and gate drivers.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
        Is that right?
            MR. BERKOWITZ: Objection to form.
            A No.
            Q So you're not relying on Kamizono for the
        number of source drivers and gate drivers. Is that
right?
                            MR. BERKOWITZ: Objection to form. Wait,
hang on a second. You've asked this question a dozen
times today. If you want to keep asking it, you have
to call the board. This is a little bit out of
control.
            MR. HELGE: First of all, we know that
today is Veterans Day. I don't think the board is
open. So my question to you is: Are you going to
stop the deposition because I'm asking this question?
                            MR. BERKOWITZ: I'm not going to stop the
deposition, but this is completely inappropriate,
just for the record. You've asked him at least a
dozen times the same question. He's answered it.
I'm not sure what else you're looking for at this
point. At this point you are harassing the witness.
    MR. HELGE: I totally disagree because --
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

MR. BERKOWITZ: Go ahead.

MR. HELGE: -- I'm trying to get a clear answer. BY MR. HELGE:

Q You're either modifying Sharp with Kamizono or you're not?

MR. BERKOWITZ: Are you testifying?

MR. HELGE: I'm asking the question.

MR. BERKOWITZ: Again, if you want to continue this, we'll bring it up with the board later.

Q Mr. Marentic, if I ask that question again, do you have a different answer?

MR. BERKOWITZ: Let me finish. We will move to strike the rest of this. This is completely inappropriate. Go ahead.

A I believe Sharp in the paragraph we just went through that I was searching for earlier --

Q Are you referring to Paragraph 149 -Mr. Marentic, I'll withdraw the question.

Is there any change that you would like to make right now to your declaration in the ground that

Deposition of Michael J. Marentic
Conducted on November 11, 2015
you are presenting based on Sharp reference and Kamizono?

MR. BERKOWITZ: Objection to form.
A For Claims 1 through 3, no.
Q Let's take a look at Exhibit 1002, Page 18, this is the Sharp reference.

A $\quad 18$ of 40?
Q That's correct.
Do you see Figure 13 on that page?
A I see Figure 13.
Q Do you see reference numeral 120?
A I see 120.
Q Do you know what reference numeral 120 represents in the Sharp reference?

MR. BERKOWITZ: Objection, relevance, outside the scope.

A I'd search through the text and try and find 13 and around it should be ideally 120.

Q Take a look at Page 40, Paragraphs 17 and 18, which are on the top right-hand column.

A My 40 --
Q I'm sorry, Page 4 of 40 , top right,

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Paragraphs 17 and 18.
A Okay. Okay, I've read Paragraph 17 and 18. These refer to another embodiment that I didn't select. I believe there were eight embodiments, and the seventh embodiment was the one that was closest.

Q So you're not relying on Figure 13 for your challenge, correct?

A I don't think so.
Q So element 120, did you see what Sharp reference refers to element 120 as?

A A transfer circuit.
Q And do you see that element 120 includes a -- actually a number of triangles, one of which is referred to as element 118; you see that?

A Yes.
Q And do you know what Sharp reference uses to describe element 118, what terminology?

MR. BERKOWITZ: Objection, outside the scope, form.

A Sharp is fairly consistent in their numbering. I haven't looked at this in a while, but that 118 they call a buffer circuit, looks to be a
buffer, doesn't have a little circle on the output,
so I'd say it's a non-inverting buffer.
Q Do you see what Sharp refers to as element
105? It's right below 118 in the figure.
A In this figure they call 105 source bus
lines.
Q Do you understand those to be the source
lines that supply voltage to the TFT matrix?
MR. BERKOWITZ: Objection to form,
relevance, outside the scope.
A I'd like to read through and make sure that
that is the case. Sharp disclosed a number of
different ways of driving source lines in a TFT
array. Some were polyphase clocks, some were, as you
called out in 13, kind of a double sample hold. 9
shows another method where there's a buffer at each
pixel site. There's really a number of things that
they disclose.
In the case of the 105, I'd want to go
through and make sure everything is similar to item
5, which is what's used in Figure 10, which is what I
used in the analysis.

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
Q Would it make it easier if I asked you a question that dealt with item 5?
A Yes.
Q Let's take a look at Figures 8 and 9 on this same page. You just referred to Figure 9 specifically, which shows a buffer circuit 67 in the pixel region, correct?
MR. BERKOWITZ: Objection to form. Again, outside the scope.
A What I'm doing is going back and verifying that 67 is, in fact, a buffer.
Q Are you on Paragraph 124?
A No, I'm not there yet, but thank you for the help. Yes, 67 are called buffer circuits.
Q Why would there need to be a buffer circuit -- I don't want to ask that.
From your professional experience, why might there be a buffer circuit arranged in each pixel region?
MR. BERKOWITZ: Objection to form, outside the scope.
```

A I'll have to read through this a little bit
closer, but this looks like an embodiment for, again, a larger area display, higher pixel content, and as it increased in size there was some visual artifacts. This disclosure has eight different embodiments. The one we're looking at is embodiment 6, which is not the one that I chose for the analysis.

Q So your answer is, you don't know the answer unless you read through. Is that right?

A I'd like to read through and get comfortable, not speculate.

Q So if you answered now, it would be speculation about the purpose of a buffer circuit in each pixel region of Figure 9? MR. BERKOWITZ: Objection to form.

A Well, if we were sitting around coffee and just talking, I'd be fine speculating or using my opinion, but since we're in a formal deposition, I'd like to be really sure of my answers, so I'd rather not answer. It's also an item that I didn't use in the analysis of invalidity, and I haven't really looked at this section closely since March.

Q Let's take a look at Figure 10 on Page 19.

Just for the record you're looking at the annotation of Figure 10 in your declaration rather than Figure 10 in Exhibit 1002, correct?

A I am. It's on my report, Page 29. It's the same figure. It used the Japanese figure. It seems to be clearer and then expanded and then it was later annotated. So I can read the numbers, the small callouts a little bit better.

Q Do you speak Japanese?

A I do not.

Q Do you read Japanese?

A I do not.

Q So you're relying solely on the English
translation for the description of the Sharp
reference. Is that right?

A That is correct.

Q Take a look at Figure 10. Do you see elements 77, 78, 79 and 80?

A I do see those.

Q What are those?

A I believe those are buffers.

Q Why are those included in Figure 10, why

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
does Sharp include those?
MR. BERKOWITZ: Objection to form.

A For the design they had they thought there should be a buffer there.

Q What purpose would those buffers provide?
MR. BERKOWITZ: Objection to form.

A Those buffers would charge up the Clc and the Cs capacitances when each particular TFT is energized, and they would help reduce a voltage change as the video image changes. They would help ensure an accurate voltage as presented to the column lines -- I think those are 5.

Q At the top of Figure 10 there are three lines going into element 10: SP, CK and /CK, maybe inverse CK?

A Bar CK.

Q What do those three elements represent?

A The drive clock is clock and bar clock, the SP -- I believe they just call it out as a signal input to the shift register.

Q What do they refer to element 10 as?

A The shift register.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

1

```
Q Outputs from shift register go to element
72. Is that correct?
A \(\quad 72\) and 72A.
Q And what is 72?
A 72 is a AND buffer, and circuit.
Q What about 72A?
A \(\quad 72 \mathrm{~A}\) is an inverter.
Q And the output from 72 leads where?
A It leads to the two sampling transistors 19
and 20 in the case of driver 1, and AND gate 2 the
output leads to sampling transistors 21 and 22.
    Q Does it lead to the source of those
transistors?
            MR. BERKOWITZ: Objection to form.
            A The gate output for the AND output is
connected to the gates at those transistors.
    Q Do you see line 73?
            A Yes.
            Q What is that?
            A That's the data signals 73 and 74.
            Q So the analog voltages that are being
delivered to signal lines 5 are coming from where?
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
            MR. BERKOWITZ: Objection to form.
            A They're coming from the sample hold circuit
29, 24 combination, 25, 20 combination, 21 -- there's
another sampling capacitor there. It's not on this
figure.
    Q Let's focus just on the first column and
that way we don't have to worry about that second
column of capacitors.
                    Is that okay?
            A Okay.
            Q So the analog voltages to signal lines 5 in
the first column come from the sample and hold
circuits that you just identified, including a
combination of the TFT and the capacitor in each --
in each line.
                    Is that right?
                    MR. BERKOWITZ: Objection to form.
            A It comes from transistor 19 and capacitor
24, it's not clear that 19 is a TFT.
            Q Where does transistor 19 and capacitor 24
                receive the analog voltages that are then to be
applied to signal line 5?
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

MR. BERKOWITZ: Objection to form.

A The signal line 73 is sampled when AND gate 1 turns on, it charges capacitor 24 and then the AND output goes low, the sampling transistor turns off and the charge is held on capacitor 24.

Q Where does that charge in capacitor 24 come from during the sampling process?

A Comes from the signal input line -- or data signal line 73.

Q And what is element 75?

A 75 is -- I believe they call it again a buffer.

Q Why would there need be a buffer 75 on the signal line 73?

MR. BERKOWITZ: Objection to form.

A We don't know the output impedence that's driving the input of the buffer nor how far away that is. So it's not unusual to have a buffer circuit in that position.

Q So a designer might include a buffer circuit based on output impedence. Is that right?

MR. BERKOWITZ: Objection to form.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

A They would typically model what the source is in both frequency and impedence and voltage and then look at what the load is on the 73 and 74 line and make a determination as to whether to put that in or not.

Q And here they decided to include them on each line?

A They did.

Q Are source lines usually high impedence or low impedence?

MR. BERKOWITZ: Objection to form.

A It's all relative.

Q Relative to source line 5 -- let's talk
about the output of AND gate 72. Again, we'll look at just the first column here.

How would you compare the impedence of that output line running from AND gate to the gate of the transistor compared to source line 5?

MR. BERKOWITZ: Objection to form.

A The impedence of the output of AND 1 to a source line, was that your question?

Q No, to the gate of the transistor.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
A Depends on how big they sized the transistor which will have input capacitance and a number of parasitic capacitances. Difficult to say what that impedence looks like. It would need to be modeled with SPICE and have an accurate voltage versus capacitance of the gate terminal.
Q You agree that AND gate does not drive an analog voltage on signal line 5, correct?
MR. BERKOWITZ: Objection to form.
A The AND gate 72 causes the analog signal on line 73 to charge up capacitor 24 , and then the analog voltage is held on 24 as AND gate 1 goes low and turns off the transfer switch 19.
Q So when transistor 19 turns off, the analog voltage to be provided to source line 5 comes from capacitor 24.
Is that right?
MR. BERKOWITZ: Objection to form.
A That voltage is what will be used to -will be present on lines 5.
Q And that will be used to drive line 5?
A Yes.
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Q And the capacitor 25 will be used to drive line 5 of the second signal line in the first column. Is that right?

A That's correct.

MR. BERKOWITZ: We've been going more than an hour and a half, so is this a good time for a break?

MR. HELGE: Off the record at 3:10.
(A recess was taken.)

MR. HELGE: Back on the record at 3:25. BY MR. HELGE:

Q Mr. Marentic, I'm going to read a sentence to you. I'm just curious if you agree with this or not.
"The purpose of the data driver is to convert serial input into parallel output signals and provide the appropriate output signals or analog voltages on to the data lines."

Is that correct?

MR. BERKOWITZ: Objection to form, outside the scope.

A Could you point me to the reference or read
it again?

Q Sure. "The purpose of the data driver is to convert serial input into parallel output signals and provide the appropriate output signals or analog voltages on to the data lines."

MR. BERKOWITZ: Same objections.
A I think I understand that.
Q Do you agree with that sentence?
A I believe that's a sentence from the Sharp reference and without more context, I would say I believe that is the sample and hold technique that they disclose, but I'd like to look at it closer.

Do you have the reference and line number?
Q Well, I don't from the Sharp reference, but I'm trying to understand just generally if that is the purpose of a data driver.

So do you think the answer depends upon the context, whether that's accurate or not?

MR. BERKOWITZ: Objection to form.
A It could be true in certain cases, and there might be cases where it's not true.

Q Figure 10 of the Sharp reference does not
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
show any digital to analog converters. Is that correct?

MR. BERKOWITZ: Objection to form.
A Figure 10 of the Sharp reference does not have digital to analog converters.

Q And why is that?
MR. BERKOWITZ: Objection to form.
A Their driver circuit that they describe in a good amount of detail is a sample and hold driver scheme.

Q And that means it doesn't require a digital to analog converter?

MR. BERKOWITZ: Objection to the form.
A That may be on the left-hand side of the schematic.

Q So it's outside the picture?
A Outside of the picture. I don't know what method they used to drive signal buffers 76 , maybe 75 and 76. That's somewhere upstream, not relative to the '550 and the Sharp reference because it's really about wiring of TFTs to gate, to source drivers.

Q You would agree that the signals on lines
PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

73 and 74 are analog though, right?

MR. BERKOWITZ: Objection to form.

A The signals on 73 and 74 are described as video input.

Q Could they be digital signals?

MR. BERKOWITZ: Objection to form.
A They would not be digital signals for displaying moving TV imagery.

Q Could they be any sort of digital signals on lines 73 and 74?

MR. BERKOWITZ: Objection to form.
A They could be a stepped signal that goes in 256 steps between the voltage to ensure the LCD is off and the voltage to ensure the LCD is on, or they may be analog with an infinite number of intermediate values.

Q So the stepped signal you just described, is that an analog signal or a digital signal?

A I'd call it an analog signal with certain characteristics.

Q Looking at Figure 10, do you believe that there must be a digital to analog converter for each

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
    signal line 5?
```

 MR. BERKOWITZ: Objection to form, outside
 of scope.
 A I'm not sure what is to the left of Figure
 10. That's not described. In fact, I think the
Sharp reference even says not shown here.
Q And you aren't relying on anything that's
not described in Figure 10, are you?
MR. BERKOWITZ: Objection to form.
Q Let's turn this into a positive statement
instead of a negative statement.
You're only relying on what's actually
shown and described in this reference, correct?
MR. BERKOWITZ: Objection to form.
A That's correct.
Q And so --
A And described in the text, translated text
of the Sharp reference.
Q Understood, understood.
We talked last time you were here about the
theory of inherency and you're not relying on any
sort of theory of inherency based on the Sharp
reference, are you?
MR. BERKOWITZ: Objection to form.

A I don't believe so. The inherency is an anticipation situation and this is an obvious argument.

Q When you were providing your analysis in your declaration, did you consider the burden of proof in reaching any of your opinions?

MR. BERKOWITZ: Objection to form.
A I didn't have to.
Q Why is that?
A Because it was clear-cut. There was no need to have a imaginary scale and make sure that I had 51 percent on one side and 49 on the other. It was clear-cut, straightforward.

Q Can you turn to Paragraph 64 of your declaration. Do you see that paragraph, Mr. Marentic?
reference, are you?
MR. BERKOWITZ: Objection to form.

```
A 64 , yes.
Q Do you see that what you said here, "Most of the terms of Claims 1 to 5 of the 550 patent are clear to me except for the following terms"? Did I
    64, yes.
    Q Do you see that what you said here, "Most
of the terms of Claims 1 to 5 of the '550 patent are
clear to me except for the following terms"? Did I
```

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

```
read that correctly?
```

A Yes.

Q And after that you then provide some opinions on a couple of different terms, right?

A Yes.

Q Are you performing claim construction there?

MR. BERKOWITZ: Objection to form.

A I'm providing an opinion to clarify those terms.

Q And that opinion is what those terms mean to you. Is that right?

A Yes. And what they would mean to someone having an ordinary skill in the art in 2004 .

Q And the standard of a person having ordinary skill in the art in 2004 is described in your Paragraph 74, correct?

A Yes.

Q And in that first sentence of Paragraph 74 you talk about a person of ordinary skill in the art having an undergraduate degree in electrical engineering or equivalent work experience, correct?

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

A Correct.

Q So someone with a different degree may still have work experience that then satisfies the requirement of this standard, correct?

A That's correct, or it could be someone that was in the Navy and went through a series of Navy technical training schools that would have not a conferred bachelor degree but would have enough experience to be an electrical engineer.

Q Would that equivalent work experience need to cover all facets of electrical engineering training or could it be focused on LCD technology?

MR. BERKOWITZ: Objection to form.
A It's probably varied work experience, but some of it in gaining the equivalent of an electrical engineering degree would need to be in that field, in addition to later the experience of two to five years.

So, for instance, a person would need to be able to generate a schematic, plug in values, maybe with help have parasitic values and then run SPICE simulations.

Q That's an example of equivalent work experience?

A That would be some of the -- an example of the specialized training that perhaps is not peculiar to just LCD training but to general equivalent work experience.

Q Equivalent to electrical engineering?
A To an equivalent EE degree, yes.
Q If you look at Paragraph 79, top of Paragraph 79 -- I'm sorry, top of Page 28, do you see that?

A Yes.
Q You say, "As of the filing date of the '550 patent workers in the field of LCD devices were aware of several developments."

What do you mean by workers?
A Person having ordinary skill in the art at the time of 2004, not the people that mount driver chips to the edge of an LCD.

Q Could you please turn one more page -you're already there actually, Page 29. In this Figure 10 the drivers that you're identifying are

Deposition of Michael J. Marentic
Conducted on November 11, 2015
defined by dotted lines and shaded areas. Is that correct?

A Correct, my copy is black and white, but the original is colored, orange and purple, red and green.

Q And those are the boundaries of the drivers that you're identifying, correct?

A Correct.

MR. HELGE: No other questions.

MR. BERKOWITZ: So let's take five minutes and see if we have anything else.

MR. HELGE: So we'll be off record, 3:41. (A recess was taken.)

MR. HELGE: Go back on the record at 3:47. MR. BERKOWITZ: I have no questions for the witness.

COURT REPORTER: Do you want a copy of the transcript?

MR. BERKOWITZ: Yeah, there's no rush on it, no emergency at all.

MR. HELGE: Actually, there kind of is.
MR. BERKOWITZ: We might need it, though.

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
MR. HELGE: We'd like it by -- we'll take a
    final by Friday. Are you reserving the right to have
```

 Mr. Marentic review and sign?
 MR. BERKOWITZ: Yes, of course.
 MR. HELGE: We are off the record at 3:48.
 (Time noted: 3:48 p.m.)
 MICHAEL J. MARENTIC
 Subscribed and sworn to
 before me this
 \qquad day
of \qquad , 2015.
\qquad

Notary Public

Conducted on November 11, 2015

```
            CERTIFICATE OF SHORTHAND REPORTER - NOTARY PUBLIC
            I, Nancy Mahoney, Certified Court Reporter and
```

 Registered Professional Reporter and Notary Public
 within and for the State of New York do hereby
 certify:
 That Michael J. Marentic, the witness whose
 deposition is hereinbefore set forth, was duly sworn
 by me before the commencement of such deposition and
 that such deposition was taken before me and is a
 true record of the testimony given by such witness.
 I further certify that the adverse party,
 Sharp Corporation, was represented by counsel at the
 deposition.
 I further certify that the deposition of
 Michael J. Marentic, occurred at the offices of
 Amster Rothstein \& Ebenstein, on Wednesday, November
 11, 2015, commencing at 10:30 a.m. to 3:48 p.m.
 Deposition of Michael J. Marentic
Conducted on November 11, 2015

```
                            I further certify that I am not related to any
    of the parties to this action by blood or marriage, I
    am not employed by or an attorney to any of the
parties to this action, and that I am in no way
interested, financially or otherwise, in the outcome
of this matter.
IN WITNESS WHEREOF, I have hereunto set my hand this 12th day of November 2015.
My commission expires:
June 10, 2018
GMcum Mluhorey 
NOTARY PUBLIC IN AND FOR THE
    STATE OF NEW YORK
```

A	53:4	adequately	39:1
abbreviated	acquire	66:1	almost
37:4	45:10	adjac	48:14 74:18
able	across	21:2	along
6:9 42:14,19 49:8 51:2	16:16 54:17 81:12	adverse	35:2,15 36:3 57:13
51:11,22 63:18 74:1	act	113:14	58:12,14 61:22 62:11
79:20 109:20	25:1	affect	already
about	acting	38:9 40:13 52:20	7:1 19:22 21:14 55:15
5:19,21 6:7,15 11:19	15:5	affirmed	73:13 110:21
13:11,12 16:4 17:18	action	5:3	also
18:16,21 19:12,13	34:2 114:2,4	after	6:13 8:9 10:1 17:13
20:1 22:11 25:12	active	5:3 8:15,17 108:3	19:4,8 24:8 28:15
26:7,10 27:15 28:4,5	24:10 30:14 51:21	again	31:1,10,19 33:2 36:4
$31: 15$ 32:14,15 33:2	53:10 74:4 79:16	5:10 9:3 11:8 32:6	43:15 45:5,15 51:5
36:13 37:1 39:14,20	actual	53:18 56:1 66:16	58:20 62:18 64:7
40:2 41:18 42:12	41:4	67:1,2 71:13 89:9,12	65:21 68:18,21 72:8
43:15,16 44:6 45:8,9	actually	93:8 94:1 99:11	78:4 94:19
45:11 47:10,16 50:6,8	9:22 38:22 44:11 47:5	100:14 103:1	alternating
52:11,12 53:1 57:7,19	69:5 77:22 91:13	against	80:7
58:13 61:10 71:6,7	106:12 110:21 111:21	7:3,10 9:17 10:1,15,19	although
75:1,20,22 82:4,5,8	add	33:19 37:19 46:1	22:8
82:18,19 94:12 97:6	12:18 62:16,21 63:20	66:20	aluminum
98:7 100:14 104:21	81:8,20	ago	37:11 40:4
106:20 108:20	added	6:8 8:13 17:6	always
above	59:5 62:	agree	14:18,18 23:2 26:11
79:13 80	adding	45:16,17 60:14 101:7	32:11 48:19 53:20
accept	81:5	102:13 103:8 104:22	57:17
64:13	addition	agreement	ambiguity
acceptable	109:17	2:13	72:9 79:3
63:2 87:15,1	additional	ahead	AMERICA
accommodations	26:3,5 27:10,11 28:15	9:5 89:1,16	1:9
63:6	29:11 59:17 85:16,18	Alien	among
accomplished	86:9	28:4,13,17 29:13,17,18	19:1,9
43:20	additionall	30:21	amount
according	77:4 87:3	all	24:17,20 33:7 104:9
29:15 86:13	addressabilities	18:22 27:14 36:3 38:17	Amster
accurate	48:4	39:8,9 40:17 52:9	2:5 3:5 113:20
6:10 13:7 24:22 31:21	addressability	61:20 71:8 73:3 76:1	analog
96:11 101:5 103:18	48:9 57:22 74:3 80:1	76:20 77:10 78:1,8,20	13:16,19,22 14:2,8,11
ACF	80:13 84:12,16 85:6	80:17 88:12 100:12	17:19,20,22 18:3
37:12,14 39:7,11,14	85:12 86:3,6	109:11 111:20	33:10 97:21 98:11,21
45:3,4	addressable	allow	101:8,10,12,14
ACFs	62:14 81:5,21	17:4 25:1 40:7,21	102:17 103:4 104:1,5
38:2,5,14,21 39:9	addresses	44:21 48:14	104:12 105:1,15,18
achieve	87:19	allowed	105:19,22
79:20	adds	48:5 60:6	analysis
achieved	75:4	allowing	92:22 94:6,20 107:6

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

84:3	92:4	105:13	buffer
battery	bending	biased	50:8,9,12,13 52:5
87:5	35:22 36:1	14:17	91:22 92:1,2,16 93:6
because	BERKOWITZ	big	93:11,14,15,18 94:12
18:20 40:22 41:6 43:9	3:3 8:20,22 9:11,18	101:1	96:4 97:5 99:12,13,17
54:12 65:13 82:18	11:4 12:10 13:20	bit	99:18,20
88:15,22 104:20	14:10,21 15:6,9 16:5	27:8 35:16,22 36:1	buffers
107:12	16:17,22 17:8 20:2,10	52:10 53:1 55:9 87:3	95:21 96:5,7 104:18
becomes	21:6,12,14,19 22:1,22	87:4 88:10 93:22	buildings
62:3	24:5 25:6,13 26:2,16	95:8	54:19,20
been	27:1 28:1 32:2,10,16	bits	builds
5:3 7:15 10:12 19:16	34:3 36:13 38:12	81:14	54:4
19:21 26:10 27:15	39:2,5 40:10,15 41:1	black	bump
31:5 33:9 36:13	41:14,21 42:7 43:12	111:3	37:20
38:17 41:11 45:18,20	43:17 44:1,8 45:1,19	blood	bumped
46:2,8,9 50:19 52:13	46:5,10,18 48:21	114:2	37:18
55:15 65:18 69:2	49:15 50:2,18 51:16	board	burden
72:18 75:20 81:6,16	52:21 53:6,17,21	1:2 7:4 60:8 65:13,19	107:7
102:5	54:14 55:4 56:6,13,19	66:12 67:18,21 68:6	burned
before	57:18 58:5,16 60:2,17	69:2 72:1 88:10,13	36:7
1:2 2:13 7:8 8:15 9:8,9	65:20 66:8,15,22	89:10	Burns
21:20 65:4 112:17	67:20 69:22 70:14	bond	56:16,16
113:10,11	71:1,5,18 72:3 73:4	38:22	bus
begins	73:12,17 74:8 75:3	bonded	15:17 17:3,12 60:7,8
57:8	76:2,6 77:21 78:9,18	37:7 40:19	76:14,18,19,22 81:14
BEHALF	79:1 82:2 83:9 84:6	bonding	92:5
3:2,10	84:20 85:13 86:7,14	34:5 37:9,11,12 38:7	buy
behind	88:2,7,16 89:1,7,9,14	39:19 40:2,5,7,12	51:2
45:13 79:22	90:3,15 91:18 92:9	43:15 44:10,11,11,14	buying
being	93:8,20 94:14 96:2,6	44:15,21	20:15
30:16,17 31:7 75:17	97:14 98:1,17 99:1,15	both	C
76:16 84:4 85:6	99:22 100:11,19	11:1 12:2,4,4,12 24:8	C
97:21	101:9,18 102:5,20	48:8,22 54:19 59:21	C
believe	103:6,19 104:3,7,13	60:19 68:20 69:9	3:14:15:1
11:2,14 12:20 19:19	105:2,6,11 106:2,9,14	77:22 78:2,3 79:16	call
23:9 24:8 34:18	107:2,9 108:8 109:13	80:12 100:2	19:18 24:6 61:13 84:13
41:16 43:4 48:6	111:10,15,19,22	bottom	88:10 91:22 92:5
56:18,21 65:21 66:9	112:4	56:22	96:19 99:11 105:19
70:2,4,15 71:22 72:18	BERQUIST	boundaries	called
73:5,13 74:16 75:13	3:13	111:6	16:6,7 17:13 22:17
77:2,22 79:2 81:1,10	best	break	28:19 30:10 34:18
89:17 91:4 95:21	84:15	36:14,15,17 55:5,8	50:1,13 54:16,20 67:7
96:19 99:11 103:9,11	better	61:1 102:7	92:15 93:14
105:21 107:3	24:3,3 95:8	bring	callouts
bell	between	89:10	95:8
28:3	15:2 18:13,15 20:8,12	broken	calls
below	21:1,2 22:19 30:18	28:22 45:12	$23: 19,19$ came

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

48:3 80:4 81:11	certain	chart	80:17 81:1 90:4
capability	14:3,9 39:11 43:6	11:21 12:2,4 76:877:8	107:21
51:19	50:20 51:13 52:11	77:16,20 87:19	clarification
capable	78:3 103:20 105:19	charts	11:19 12:9 46:5
14:5 87:10	certainly	80:18	clarify
capacitance	15:1 35:6 40:20 45:14	check	18:22 37:2 108:9
15:18,20 16:2 17:5	54:17	6:8	class
61:16 62:9 101:2,6	CERTIFICATE	chemistry	44:16
capacitances	113:1	63:8	Cle
15:15 50:20 96:8 101:3	Certification	chip	15:22 16:14 17:4 26:4
capacitor	4:18	19:18 31:18 34:6 37:2	96:7
14:20 15:3,5,11,12	Certified	39:20 75:7	cleans
16:4,10,12,16,21	113:3	chipped	50:14
25:20,22 26:3,5,7,9	certify	29:11	clear
26:12,13,21 27:19	113:6,14,18 114:1	chips	71:5 79:14,15 89:2
98:4,14,18,20 99:3,5	chain	28:20 54:5 72:21,22	98:19 107:22
99:6 101:11,16 102:1	63:15	110:19	clearer
capacitors	challenge	cholesteric	95:6
15:1,13 27:4,12 98:8	91:7	28:14	clearly
capture	challeng	chose	66:2 70:19
12:8	67:19	67:22 94:6	clear-cut
card	change	circle	107:12,15
29:11,12 34:7	7:15 13:5 48:20 58:4	92:1	clever
careful	62:22 89:21 96:10	circuit	39:10
19:18	changed	17:14,15,17,20 19:6	clock
case	12:15,16 46:21 47:1	20:4,6 23:22 27:6,16	35:17 62:3 96:18,18,18
5:15 8:12 10:1 30:16	59:9,11	31:17 32:3 34:7	clocks
32:17 35:8 55:16	changes	49:13,19 50:10 60:8	92:14
57:17 58:20 59:4	12:21 59:18 63:8 96:10	91:11,22 93:6,15,18	close
60:3,3 68:6 74:10	changing	94:12 97:5 98:2	51:11
78:5 92:12,19 97:10	58:2,6,8	99:18,21 104:8	closely
CaseIPR2015-00913	characteristic	circuitry	94:21
1:7	29:20	29:1 44:19 72:11,20	closer
cases	characteristics	circuits	53:9 94:1 103:12
11:3 23:14 103:20,21	14:12,13 20:17 51:5,8	19:3 29:3 93:14 98:13	closest
categories	53:11 58:18 105:20	CK	91:5
84:2,22	characterize	96:14,14,15,16	cluster
cause	30:5	claim	49:21 50:1
49:6	charge	11:19,20 12:2,4 22:9	coffee
causes	16:21 96:7 99:5,6	23:19 68:18,20 70:4	94:15
101:10	101:11	71:5 73:6 76:8,9 77:8	COG
CCR/RPR/CLR	charged	77:14,16,20 80:18	37:2,4
2:14	16:12	87:19 108:6	collapsed
cell	charges	claims	86:21
14:12,15,18,18 24:18	99:3.	66:20 68:1,4,7,22	collection
center	charging	70:16 71:9 73:16	72:10
21:2	17:4	75:4,5,9,14,19 76:3	college

PLANET DEPOS

81:12	communicate	61:20	11:3,11,12 16:7 19:19
color	31:19	concerned	30:12 74:16 91:20
87:4,6	communication	29:22 32:8,11,13 43:5	construction
colored	9:2,4	43:15 82:19	108:6
111:4	companies	concluded	consult
column	35:8 39:7 83:15	6:20 7:12	6:21
22:17,20 23:3 30:11	company	conclusion	consumption
50:17 57:3,6 85:18	1:8 29:17 51:18	58:13	62:4
90:20 96:11 98:6,8,12	compare	conductive	contained
100:15 102:2	100:16	37:12,17,22	84:18
combination	compared	conductivity	content
26:4 73:22 76:12 77:17	87:17 100:18	38:8	12:16 13:21 94:2
78:4 87:20 98:3,3,14	compatibility	confer	context
combinations	63:12	6:22	19:10 20:20 23:8 24:8
18:13	compatible	conferences	25:5 30:9 47:12
combine	53:20 64:2	83:16 85:4	103:10,18
79:14 81:4	compensation	conferred	continue
come	54:1	109:8	89:10
27:7 35:18 42:3 51:22	competition	conferring	continues
62:16 68:11 86:12	80:11	7:2,11	57:2
98:12 99:6	competitively	configuration	contrary
comes	45:22	85:15	80:22
6:16 63:16 98:18 99:8	complete	confirm	control
101:15	33:18 42:16	82:22	62:388:11
comfortable	completed	confused	controller
94:10	36:6 38:19	18:20	31:3,4,15,16,22 63:9
coming	completely	confusing	controllers
32:8,14,18 33:3,14	88:17 89:15	19:2,7	32:5
42:4 63:16 97:22	complex	confusion	conventional
98:2	31:4 63:4	6:16 23:21	37:5
commenced	compl	connected	convert
6:19	7:4	34:2 44:17 54:10 60:10	102:16 103:3
commencement	components	76:10,14,20 77:1,5	converter
113:10	14:22 49:21 50:1 52:17	97:16	104:12 105:22
commencing	54:10 87:13	connecting	converters
113:21	computations	37:20	104:1,5
commercially	46:17,19	connections	cooking
84:3	computer	37:1	83:20
commission	54:8	consider	copy
114:13	computer	15:16 107:7	111:3,17
common	84:5	considerably	Corporation
14:19 22:16 34:17 47:3	concentrated	58:8	1:4,6 3:2 113:15
63:15	65:9	consideration	correct
commonly	concept	20:18	5:17,19,22 7:12 10:17
18:14	22:16	considered	10:21,22 13:9 17:22
commonsense	concern	42:5 44:4 64:6	26:6 28:9 37:3 42:18
81:20	22:7,10 41:11,19 43:8	consistent	43:11,16 48:20 53:15

PLANET DEPOS

53:19 56:3 60:1 65:8	56:17	76:10,15 86:20 97:20	deliver
66:5,14,21 67:4,16,19	creating	99:8 102:15,18 103:2	51:9
69:2,3 71:17 72:2	30:1	103:5,16	delivered
82:21 85:12 86:6	creative	date	97:22
90:8 91:7 93:7 95:3	54:16	8:13 9:7 11:6 81:22	demanded
95:16 97:2 101:8	credit	82:6,15,18 83:3,5,6	51:13
102:4,19 104:2	29:10,11	110:13	demonstrate
106:13,15 108:17,22	crossover	DAVIDSON	73:8 77:16
109:1,4,5 111:2,3,7,8	15:16	3:13	density
correctly	cross-examination	day	37:18,21
46:11 57:15 74:15	6:18,19	88:13 112:17 114:9	department
108:1	CRT	days	30:1,2
corresponding	83:14	9:8,9 10:13 47:18	departments
37:21	crystal	deal	29:22
cost	14:12 15:1,5 16:1 23:1	62:9	depend
29:10 31:3 63:2 72:22	23:5 24:18,20,22	dealt	34:4 60:20
83:14	28:14,15 36:2 60:11	93:2	dependent
costing	61:20 63:7,8 79:21	decade	58:14
44:5	80:3	82:5	depending
could	Cs	decay	51:20 87:12
14:4 16:6 17:12 19:15	16:8 17:4 26:4 96:8	54:12	depends
20:5 22:15 23:3 27:1	curious	decaying	60:18 73:18 74:9 101:1
29:7 33:17,19 34:1	102:13	54:22	103:17
37:10,11 38:10 40:13	current	decided	deposition
50:3 51:14,17,19	48:5	100:6	1:16 2:1 6:2,8,11 7:12
59:22 60:3 61:7	custom	declaration	7:20,22 8:6 9:15,21
62:13 63:6 68:20	28:8,10 29:13 30:6,15	4:12 5:18 8:7,18,21	10:4,13,17,20 11:6,17
70:9,19 74:2,9 75:18	customer	9:10,13 10:7,15,19	21:17,20 26:15,22
78:11 81:9 82:3	29:16,17,18,19 36:7	11:6,16 12:8,22 19:17	55:11 56:2 64:16
83:19 87:15 102:22	customers	21:11,22 22:8 34:10	65:8 82:11 88:15,17
103:20 105:5,9,12	64:8	55:19,21,22 56:5	94:17 113:9,10,11,16
109:5,12 110:20	customer's	64:21 65:12 67:4	113:18
counsel	63:10 64:7	69:11 79:9 89:22	depositions
5:6 6:20 7:11 113:15	CV	95:2 107:7,17	7:18
couple	7:16 28:4,7	declarations	describe
18:11 29:21 31:2 35:13		11:2,10	15:4,7,19,20 76:12
43:20 61:7 84:14	D	define	78:3 91:17 104:8
108:4	D	47:11 62:7	described
course	5:1 68:8	defined	77:3,15 105:3,17 106:5
32:12 112:4	damage	78:14 111:1	106:8,13,17 108:16
Court	36:11 45:10,11	definition	describes
111:17 113:3	damaged	41:16 47:15,17 48:2,3	27:18 66:3 77:4 78:5
cover	40:8 42:15,20	50:9 70:22 75:12,13	80:6
56:10 109:11	data	84:19	description
crack	17:9 22:12,20 23:3,9	degree	12:3 54:21 61:14 95:14
36:4	23:19,21 24:4,10	48:22 108:21 109:2,8	design
Crain	$\begin{aligned} & 32: 15,1733: 3,9,14 \\ & 35: 1746: 1459: 9,10 \end{aligned}$	109:16 110:8	28:8 30:3,3,13 31:12

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

32:9 33:15,18,18,19	63:12,14 87:4,4 89:13	18:18 79:2,13 80:22	doubling
42:4,6,9 43:19,21	92:13 94:4 108:4	discusses	58:8
44:6 51:20 63:4	109:2	68:19	down
72:22 96:3	differing	discussing	29:6 33:17 46:11 48:12
designed	58:13	47:13	53:14 57:7
28:12 30:17 52:4	Difficult	discussion	dozen
designer	101:3	11:22 62:18	47:8,9 88:8,19
43:5 99:20	difficulties	dispersed	drain
designers	80:2	23:5 28:14	16:19,20
43:21 44:3	diffused	display	drive
designing	29:2	14:5 18:2 23:1,4 24:9	3:14 12:6 13:18 25:12
29:15 31:2 32:5	digit	24:12 29:22 31:12	27:22 28:2 35:1 51:5
designs	30:10	34:17 36:2 38:19	52:12,13,14,19 59:2
51:1	digital	41:7 45:14 47:12,14	60:7 72:20 85:17,18
detail	32:15,17 33:2,8 104:1	51:11,17 52:20 59:11	96:18 101:7,21 102:1
18:18 104:9	104:5,11 105:5,7,9,18	60:8,11 62:6,7 64:10	104:18
deteriorates	105:22	64:11 74:4 81:5	driven
62:22	digits	84:15 87:10,14 94:2	14:15 59:15 81:11
determination	29:19	displayed	driver
100:4	dimension	62:21	12:5 13:14,15,18 17:2
determinations	34:16 49:10,11 84:11	displaying	17:6,7,9,9,10,13,14
43:14	84:12	13:22 14:5 18:1,2 23:2	17:15,16 18:11,16,17
determine	dimensions	24:9 78:1 87:11	18:21,21 19:4,6,14,19
64:2	34:11 59:21	105:8	20:14,19 21:2,3,5
develop	dimple	displays	22:12,12,13,20,20,20
36:9	30:1	13:22 14:7 24:19 29:9	23:3,3,9,9,20,20,21
developed	dimples	29:14 41:5 47:10,22	23:22 24:3,4,10 28:19
31:7	29:5,6	49:4 51:10 53:20	30:6,6 31:6 32:9,14
developments	direct	54:16 61:20,21 78:6	32:18 33:3,14 34:2,12
110:15	6:21	79:17,21 83:13	34:15,20,21,22 35:5
deviate	directed	distance	42:10,11 45:9,16,17
74:21	79:16	20:8,12 21:1	45:20 46:21 47:4
device	disagree	document	50:3,7 51:6,9,13
17:13 26:5	70:18 72:13 73:21	55:16,18,20 64:19 65:2	52:13,20 53:10 54:5
devices	88:22	65:4,7,15	57:14 58:4,11,14,18
110:14	disclose	documented	59:16,22 60:15,21
diagonal	68:13 78:21 92:18	69:17	62:1,16,19 63:11 64:2
47:18 48:1,13 57:21	103:12	documents	64:6 66:2,3,6 68:17
79:21	disclosed	8:5 9:16 26:14,21	68:19 69:16,18 70:8
difference	86:10 92:12	doing	70:10,13,17,17,22
16:15 22:19	discloses	19:19 93:10	72:8,9,9,10,13,15,20
different	76:13 80:17	done	72:21 73:8,19 74:5,14
12:12 18:22 22:11 24:6	disclosure	33:1 43:3	75:6,11,12,18 76:14
29:21 37:14,15,16	94:4	dotted	78:14,22 79:4 81:18
38:4,5 41:7,8,8 46:3	discrete	111:1	97:10 102:15 103:2
46:14,14 48:16 54:20	19:3 26:9, $1234: 653: 9$	double	103:16 104:8,9
58:9,9,10,11 59:20	discussed	92:15	110:18

PLANET DEPOS

drivers	easiest	else	equivalent
11:20,22 12:1,6,14	15:15	8:3 13:5,7 71:20 72:5	17:10 24:11 108:22
13:11,11,12,12 18:15	easily	77:11,13 88:20	109:10,15 110:1,5,7,8
19:3 20:16 22:17	74:2 79:20	111:11	errant
23:19 28:8,10,11,12	easy	elsewhere	41:6
29:14,15 30:6,10,11	36:4	63:7	errors
30:13,15 31:4,6,15	Ebenstein	embodiment	11:15,18
32:6 33:9 51:18	2:5 3:5 113:20	91:3,5 94:1,5	especially
53:19 60:9,9,16,21	economical	embodiments	35:21 57:8,12 61:22
61:17,18 63:16,19,20	45:6	27:11 91:4 94:4	ESQUIRE
70:3,5,6,6,16,20	economically	emergency	3:3,4,12
71:15,22 72:8,16 73:9	35:7	111:20	estimation
73:11,14,20 74:2,5	edge	EMI	22:21
75:1,9,21,22 76:10	35:3,16 37:6 40:18	61:13 62:10	etched
78:13 80:15,21 81:8	44:18 58:12,14 70:10	emit	28:21
81:17,20 85:16,18	72:16 73:9,11 74:3,6	24:12	even
86:10 87:21,22 88:5,5	110:19	employed	54:22 63:19 76:21
104:21 110:22 111:6	edges	114:3	106:6
drives	35:15,16	encountered	even/odd
49:13,19,22	EE	80:2	76:12 78:4 85:15,21
driving	110:8	energized	ever
36:3 50:15,17 51:13,14	eight	96:9	22:17 32:8
59:14,16 60:22 77:5,9	81:14 91:4 94:4	engagements	every
77:10 92:13 99:17	either	7:19	85:17,18
duly	89:5	engineer	everything
5:3 113:9	electrical	109:9	13:7 33:17 42:2 65:21
during	20:16 43:7,8 49:12,19	engineering	66:9 68:13 73:5
15:12 22:7 54:12 99:7	49:21 60:18 108:21	33:21 108:22 109:11	92:20
DVD	109:9,11,15 110:7	109:16 110:7	evolving
79:18	electrodes	engineers	45:20 46:2,9,9
dye	15:2	28:12 30:19 33:10 80:3	exactly
28:18 29:5 30:3 37:5	electroluminescence	English	9:7 71:10 84:21
37:19 43:8 44:17	23:6	95:13	examination
E	electrom	enhancement	4:2 5:6 6:21
E	ELECTRONICS	enoug	examin
3:1,1 4:1,5 5:1,1 31:11	1:5,7	37:22 109:8	examined
ear	electrophoretic	ensure	5:4
67:11	31:12	96:11 105:13,14	example
earlier	element	enthusiasts	81:13 110:1,3
9:22 21:19 22:11 36:22	49:13,19 91:9,10,12,14	85:2	except
41:5 43:4 45:8 50:7	91:17 92:3 96:14,21	entire	7:2 59:17 107:22
52:12 57:19 68:12	97:1 99:10	7:11 65:4,7	exclusively
79:2 82:5 89:18	elements	environment	43:4
early	95:18 96:17	36:5	excuse
7:16 47:17 51:3	eliminate	equals	9:9,22 31:10 59:8
easier $36 \cdot 1093 \cdot 1$	80:9	50:10	77:12

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

Exhibit	109:11	92:4,5,21 93:5 94:13	flowing
4:8,11,17 55:11,15,19	facility	94:22 95:2,2,5,5,17	49:5
64:15,16 67:8 82:10	85:3	95:22 96:13 98:5	fluid
82:11,20 90:5 95:3	fact	103:22 104:4 105:21	29:3
existing	54:18 93:11 106:5	106:4,8 110:22	fluidic
51:19 63:15	factories	figures	28:19
expanded	24:6 31:8 33:6 35:8	74:7 93:4	focus
86:21 95:6	41:8	filed	65:11 98:6
expectation	factors	8:15,16,17 9:17 10:10	focused
87:1,8	14:14 63:12,14	filing	109:12
expecting	factory	9:7 83:3 110:13	follow
32:20,21	30:19 41:4 45:7 49:3,3	film	52:16
expensive	49:8 54:4,19 63:15	23:6 37:13 76:20	following
48:2	factory's	filter	107:22
experience	49:1	87:4	follows
23:17 24:2 30:13,15	failed	final	5:5
35:11 47:21 81:10	41:10 43:2,2	44:4 51:11 54:4 73:18	form
93:17 108:22 109:3,9	failure	112:2	8:20 9:11,18 11:4
109:10,14,17 110:2,6	38:16 43:20	financially	12:10 13:20 14:10,21
expires	failures	114:5	15:9 16:5,17,22 17:8
114:13	36:9	find	20:2,10 21:6,12 22:22
explain	fairly	11:18 78:11 82:3,6,16	24:5 25:13 26:2,16
68:3	54:16 91:20	90:18	28:1 32:2,10,16 34:3
explanation	familiar	fine	38:12 40:10 41:1,14
63:3	5:11 21:15 25:10 38:15	68:10 94:16	41:21 42:7 43:12,17
extend	55:16 64:20 82:15	finish	44:1,8 45:1,19 46:18
69:18 81:20	family	15:10 89:14	48:21 49:15 50:2,18
extends	47:19 79:18	finished	51:16 52:21 53:6,17
69:16	far	69:8	53:21 54:14 56:6
extent	52:8 99:17	first	57:18 58:5,16 60:2,17
9:1 80:19	faster	5:3 9:10 10:9 13:12	65:20 66:8,15,22
extra	78:11	42:1 53:22 54:9	67:20 69:22 70:14
27:11 50:15,16 59:4,7	fault	74:20 76:17,19,22	71:1,18 72:3 73:4,12
62:16 75:4 81:5,8,11	38:16	80:14 82:22 88:12	73:17 74:8 75:3 76:2
81:11	feel	98:6,12 100:15 102:2	77:21 78:18 79:1
eyeballs	74:19,19	108:19	82:2 83:9 84:6,20
55:2	felt	fit	85:13 86:7,14 88:2,7
eyes	11:9	49:3	90:3 91:19 92:9 93:8
24:21	few	five	93:20 94:14 96:2,6
F	$35: 1137: 147: 7,18$ 81:1	55:10 57:7 109:17 111:10	$\begin{aligned} & \text { 97:14 98:1,17 99:1,15 } \\ & 99: 22 ~ 100: 11,19 \end{aligned}$
fab	field	flat	101:9,18 102:20
46:4 51:21	109:16 110:14	61:20	103:19 104:3,7,13
fabrication	fifth	flexible	105:2,6,11 106:2,9,14
37:6 46:13 49:6 50:20	68:18	29:10 44:17,18	107:2,9 108:8 109:13
face	figure	flow	formal
$32: 20$ facets	78:11 90:9,10 91:6	44:4	94:17

PLANET DEPOS

format	109:15	6:13 13:10 30:16 33:9	guess
59:11	gamut	36:13,16 43:9,10 55:5	54:22
formed	87:6	55:14 57:11 60:6	Guide
15:12	gap	61:6 88:14,16 93:10	6:17
forming	63:7	96:14 102:5,12	g-a-t-d
15:13	gate	gold	13:3
forth	11:20,22 12:1,5,13	37:11 40:4	
113:9	13:2,11 15:16 17:3	gone	H
found	30:6,9 31:3,20,22	52:9	H
56:4	49:13,19,22 50:17	good	4:5
foundation	58:20 60:7,9,19 61:18	5:8,9,10 36:14,17 53:2	HAHM
16:18 17:1 20:11 41:15	68:17,19 70:5 74:11	53:8,13 61:1 67:22	3:4
41:22 71:2,3	78:4 80:15,21 81:13	87:1,6 102:6 104:9	half
four	87:21 88:5 97:10,15	GOWDEY	102:6
35:1	99:2 100:14,17,17,22	3:13	hand
fragile	101:6,7,10,12 104:21	go-between	55:14 61:6 114:8
35:21	gates	30:18 31:11	handling
frame	12:6 81:15 97:16	grade	46:14
16:13 21:4 33:22 35:4	general	18:4	hang
35:12 40:1 53:4	110:5	gradual	88:8
54:12 83:10 84:17	generally	62:22	happen
85:5	12:17 13:13 19:8 23:11	graphic	51:12 52:18 53:16
free	43:13 45:17 47:2	26:20	happens
65:15	61:12 62:5 103:15	graphics	25:21
frequencies	generate	31:18	harassing
61:18	17:11 109:20	gray	88:21
frequency	generated	14:5 18:14 53:3	hard
100:2	24:18	graying	62:20
frequently	generically	54:21	hazard
20:7 23:4 50:22	37:16	green	54:22
Friday	getting	111:5	head
112:2	83:13	Greensboro	20:13 21:9
full	give	3:14	heard
6:4 14:6,6,16,16	6:4,10 51:3 82:7	Greer	23:2 25:4 28:2
function	given	56:16	hearing
54:1,11	7:1,2,18 49:3 113:12	ground	7:9
functioning	glass	61:16 65:18 66:13,19	heat
38:18	34:6 37:2 39:20 49:1,2	69:1 71:7 72:2 89:22	38:22 45:4
further	49:4,10 74:3 75:7	grounds	heated
7:18,19 52:10 62:2	go	76:6	38:15
113:14,18 114:1	9:5 35:9 55:9 61:7,18	group	held
future	71:12 76:11 89:1,16	30:3 31:12 76:19,22	2:1 25:19 29:3 99:5
75:12	92:19 97:1 111:14	83:21	101:12
	goes	groups	Helge
G	14:13 49:2 77:1 99:4	76:10,13,13,15	3:12 4:3 5:7 21:13,16
G	101:12 105:12	grow	21:21 22:3 36:18,20
5:1	going	59:3	36:21 55:6 61:1,4,5
gaining			71:3,7 76:4 88:12,22

PLANET DEPOS

89:2,4,8 102:8,10,11	hypothetical	105:8	62:5 87:5 94:3
111:9,12,14,21 112:1	45:9 52:1,8,16,22 53:5	images	increasing
112:5		79:17 86:20	57:19
help	\mathbf{I}	imaginary	increments
80:8 93:14 96:9,10	IBM	107:13	18:3,5,7
109:21	34:19	impedence	independent
hence	IC	50:12 52:6 99:16,21	48:22
50:11	17:17 18:17 19:10,13	100:2,9,10,16,20	individual
here	24:7 30:3 31:22 32:1	101:4	36:11
5:21 25:8 34:9 39:18	32:18 34:2,22 35:5,19	implement	individuals
64:15 80:22 82:3	36:3,12 37:5 38:10,15	67:22 73:10	56:15
100:6,15 106:6,20	$39: 140: 8,13,1842: 11$	implementing	industry
107:20	42:15,15,20 43:2,5,5	12:6	51:8 54:18 79:3,21
hereby	43:6,10 45:9,11,16	implication	80:3
113:5	46:21 47:4 50:7 51:9	82:19	infinite
hereinbefore	51:14 52:4,20 59:2,13	importance	18:12 105:15
113:9	59:16 60:15 63:11	64:5	information
hereunto	72:10 78:14,14	important	31:19
114:8	ICs	40:22 41:2	inherency
high	21:5 28:19 31:2,6,20	imprecise	106:21,22 107:3
35:14,20 43:20 45:13	31:20 34:12,15,20,21	57:20	initially
48:3 84:18 87:9	35:9,13,13 36:5,11	improving	34:19
100:9	45:17,20 46:19 51:6	45:18	Ink
higher	57:14 58:4,7,9,9,11	inappropriate	31:11
36:8 61:15 94:2	58:14 59:4,5,7 60:1	88:17 89:16	Innovation
hinted	62:1,8,16,19 66:2,3,6	INC	1:13 3:11 5:15
43:4	69:18 70:9,13 74:15	1:9	input
Hitachi	75:18 77:5,9,10 78:5	inch	13:17 46:14 50:10
30:17,22 31:1,14 32:4	81:5,11	47:18 48:1	53:10 96:20 99:8,17
32:7,17 45:15	ideal	inches	101:2 102:16 103:3
hold	41:3	48:14 84:5	105:4
16:4 25:12,16,17,22	ideally	include	inputs
26:5,13,21 27:6,16,21	90:18	14:20 40:20 96:1 99:20	37:7
27:21 28:2 92:15	identical	100:6	insert
98:2,12 103:11 104:9	42:3	included	29:6
holding	identification	95:22	instance
15:12	55:12 64:17 82:12	includes	14:17 23:12 34:22
hooked	identified	42:14 86:18 91:12	47:20 68:16 76:9
36:6 53:22	98:13	including	109:19
hooking	identifying	67:10 98:13	instead
80:7	110:22 111:7	incorporate	106:11
horizontal	II	54:7	institute
35:3	47:16	increase	66:13 67:19 72:2
hour	ill-defined	38:22 49:7 62:15 74:3	instituted
36:14 102:6	84:1	79:19 80:1,12	65:14,19 69:2
hundred	image	increased	instruct
35:12 47:7	$\begin{aligned} & \text { 54:11 96:10 } \\ & \text { imagery } \end{aligned}$	47:2 57:14 59:12 62:2	22:1

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

insufficient	inverted	95:5,9,11	lack
52:19	50:11	Job	61:16
insulated	inverter	1:20	language
76:11,16	97:7	June	19:8 22:9
insurance	inverting	114:14	large
75:5,8,17	50:12	JUNG	23:1 33:7 35:9 45:11
integrated	invested	3:4	47:9,11 48:10
11:20,22 12:1,5,13	38:18	justice	larger
17:14,15,17 19:3,6	investigate	55:3	13:21,21 24:9 48:8
20:4,6 23:22 32:3	21:10	K	62:6 63:20 78:1,6
68:17,19 75:6	investigated	K	79:16,21 81:5 83:13
integrity	21:16	Kamizono	94:2
32:12	investment	8:8 11:21 12:1,4,4	largest
intended	31:11	65:10,18 66:2,6,11	83:11,22
52:10	involved	68:1,8,14,18 69:13,16	large-sized
Inter	28:7 32:5	69:18,20 70:8,12,19	34:11
4:15	involves	70:21 71:8,11,15,21	last
interact	9:1	72:5,15 73:3,8,16,22	6:8,14,15 7:19 8:11
24:16	in-house	74:6,14 75:2,6,17	10:1,6,8 11:5 28:5
interconnect	51:19	76:1 77:4,9,12,15,18	39:2 41:10 60:6 61:7
34:4 74:9	IPRs	77:20 78:4,7,10,11,12	64:21 65:1 68:3
interested	9:16	78:13,21 80:14 81:3,9	106:20
114:5	IPR2015-00913	81:19 87:20,21 88:4	late
interference	5:15	89:5 90:2	9:22 38:17 42:1 63:5
61:13 62:17	ironed	Kamizono's	later
intermediate	33:16	74:7	77:14 83:19 89:11 95:7
105:15	issue	keep	109:17
interrupt	5:14 21:10	36:16 88:9	lateral
8:22	issues	kind	38:1
intersection	41:18	28:10 29:9 43:10 59:12	lawsuits
15:17	item	81:16 84:1 92:15	84:14
intriguing	92:20 93:2 94:19	111:21	layer
53:13	items	knew	75:5
introduction	82:14	47:6	LC
63:6	itself	know	15:21 24:12 52:11
invalid	15:2	20:19 33:13,22 39:8	LCD
68:2 75:14		47:5 51:4 56:12,16	13:13 14:20 18:1 23:8
invalidate	J	69:8 81:22 82:4	24:12 25:5 30:14
73:6	J	88:12 90:13 91:16	34:11 42:4,10,10,11
invalidation	1:16 2:1 4:2,13 5:2	94:7 99:16 104:17	42:20 45:14 48:16
67:10	112:14 113:8,19	knowledge	50:16,22 51:12,21
invalidity	JACKSON	45:10	54:5 58:19 64:8
68:7 94:20	3:13	known	70:19 74:4 83:8
inventors	James	41:12,18,20 42:20	84:15,19 85:5,11 86:5
56:9,12	6:6	L	105:13,14 109:12
inverse	Japan	lab L	110:5,14,19
96:15	30:19 Japanese	83:21	LCDs

PLANET DEPOS

49:5 78:2 83:10 87:2	98:15,22 99:2,8,9,14	look	making
lead	100:3,7,13,17,18,21	9:16 10:6 20:16 23:15	14:15 39:7 41:4 43:14
97:12	101:8,11,15,21 102:2	32:19 53:12 55:1,1,16	management
leads	102:2 103:13 106:1	63:18 64:1,9,14,19	34:20 86:19
97:8,9,11	lines	65:17 74:6,13 75:2	manner
learning	13:16 34:1 35:2 43:1	76:1 78:10 81:9 82:3	7:5
83:19	47:16,16 52:7 57:7	82:19 83:2 87:1 90:5	manufacture
least	59:9,10,11,15,18,21	90:19 93:4 94:22	35:5,6 40:1
35:13 47:14,22 48:10	60:7,8,15 62:2,6,7	95:17 100:3,14	manufactured
48:13 88:18	72:19,20 76:10,14,16	103:12 110:9	45:7 83:17,18 85:6
leave	76:18,18,19,22 77:5	looked	manufacturer
77:6	81:11 83:20 84:18	11:5,7 28:22 91:21	39:17 50:22 51:10,17
LED	85:10,11 86:2,5 92:6	94:21	63:16
28:13	92:8,13 96:12,14	looking	manufacturers
left	97:22 98:11 100:9	51:4 71:15,20 73:2	24:7 34:20 37:15 38:5
48:11 56:10 59:3,12	101:20 102:18 103:5	88:20 94:5 95:1	44:3 48:7 51:3,6
77:19 106:4	104:22 105:10 111:1	105:21	64:10
left-hand	liquid	looks	manufacturer's
57:1 60:5 83:3 104:14	14:12 15:1,4 16:1 23:1	74:11 82:20 91:22 94:1	45:21
legal	23:5 24:18,19,22	101:4	manufacturing
82:14,19	28:14,15 36:2 60:10	loosening	1:8 36:5 38:14 42:2,16
less	61:20 63:7,7 79:21	45:4	53:16
43:5 48:1 49:4 87:16	80:3	lot	March
let's	listed	13:10 33:12 61:19	9:7,8,10,14 64:21
13:12 78:10 82:6,21	56:9	loud	94:21
90:5 93:4 94:22 98:6	little	57:12	Marentic
100:13 106:10 111:10	12:11 19:2 27:7 35:16	low	1:16 2:1 4:2,7,13 5:2,8
level	35:22 36:1 52:9 53:1	20:17 31:3 37:22 50:13	6:4,6,7,13 7:15 10:6
18:18	55:9 74:19 79:22	63:1 99:4 100:10	12:7 13:10 22:5
levels	87:3,4 88:10 92:1	101:12	36:15,22 55:8,14
18:4,14 32:12 42:22	93:22 95:8	lower	56:20 58:2 61:6
lid	live	52:6	64:14,19 69:1 71:10
36:1	48:6	lowest	74:12 75:15 82:17
life	living	64:11	89:12,20 102:12
87:5	47:19,21	lunch	107:18 112:3,14
light	LLC	55:5 61:3,8	113:8,19
24:13,15,16,17,18,20	1:13		MARK
25:1	LLP	M	3:3
limitations	2:5 3:5,13	M	marked
80:17	load	76:9	4:8,11,17 55:11,12,15
line	60:18 64:5 100:3	Macintosh	64:16,17 82:11,12
21:2 38:18 41:6,10	long	86:16	market
49:13,14,19,20,22,22	8:13 35:15 36:2 77:4	Mahoney	73:1 80:10 83:12 85:1
50:17,17,20,21 58:18	longer	1:22 2:13 113:3	marketed
58:18 59:8,17 60:19	55:9 62:4	maintained	45:22
60:19 62:12,21 64:5	long-winded	54:13	marketplace
77:9,10 85:19 97:17	63:3	majority $86 \cdot 15$	64:12 79:19

PLANET DEPOS

marriage	22:12 31:14 38:4 40:3	modify	48:4,14 66:2,3 69:18
114:2	41:5 44:10 54:9 84:3	51:19 73:2 78:8	70:3,5,5,6,8,9,10,15
mass	merged	modifying	70:20 71:22 72:16
85:1	51:22	89:5	73:9,11,13,20 74:2,5
match	method	modulate	74:14,17 75:18 77:5,9
14:12	25:16 28:18 39:19 41:9	24:17	77:10 78:5,13,14
matching	44:10,12,15 45:5	modulates	80:15,21,21 81:17,18
58:17 63:11	69:17 92:16 104:18	24:20	N
material	methodologies	modules	
12:11 15:1,5,21 30:1	11:2,10	54:5	N
33:5 39:10 40:17,19	methods	molecules	3:14:1,1 5:1
materials	37:9,14 43:15 46:14	24:12 25:1	name
39:11 40:20	Michael	moment	6:4 39:17
matrix	1:16 2:1 4:2,13 5:2 6:6	17:6	names
24:10 30:14 51:21	112:14 113:8,19	money	54:20
53:10 62:14 64:4	middle	38:17	Nancy
74:4 79:16 81:6,21	35:18 83:2	monitor	1:22 2:13 113:3
92:8	might	54:7 86:3 87:18	NAND
matter	35:9 45:12 51:21 58:9	monitors	81:13,14
75:13 114:6	60:4 63:2 93:18	83:14 87:7	narrowed
maximum	99:20 103:21 111:22	monolithic	50:9
34:1 83:8	million	17:14 19:18 37:4	Navy
McLean	29:8	month	109:6,6
3:15	mind	6:8 9:14,22 10:1 28:5	near
mean	43:22 44:7	Moreover	56:10
19:3,4,15 20:22 25:17	minimum	79:13	necessarily
31:9,16 49:9 62:13	81:1,19	morning	58:3
68:14 79:15 108:11	minute	5:8,9,21 19:22	necessary
108:13 110:16	29:8	mother	53:3 63:21,22 73:6
meaning	minutes	49:1,4	need
18:17,17 19:1 30:9	55:10 61:8 111:10	motherboard	14:4 33:13 34:15 35:1
means	missing	31:18	35:12 41:4 42:14,19
20:19 21:1 26:17 61:16	65:17	motivation	42:22 47:21 50:14,16
72:8,9 79:4 85:9	misspelling	79:14,15 81:4	52:11 58:11 59:2,7
104:11	13:2	mount	60:16 64:6 71:11
meant	Mobara	66:3 110:18	72:19 73:15 74:20,21
78:22	30:19	mounted	75:2,22 79:19 80:10
measured	model	34:6 36:3	81:11 93:15 99:13
20:9	100:1	move	101:4 107:13 109:10
meet	modeled	89:15	109:16,19 111:22
33:20 45:21,21 48:12	26:13,17 50:19 101:5	moved	needed
63:9	modes	33:6	29:19 47:22 80:13
meets	43:20	moving	81:13
43:6	modification	105:8	needs
memorized	69:11,14,19 78:16	multiple	14:11 70:2
74:18	modified	19:5 20:5 30:4 34:12	negative
mentioned	70:2 78:20	34:15 37:20 42:22	$106: 11$ nematic

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

23:6	91:21	107:4	open
never	numbers	obviousness	88:14
55:2	53:9 85:6 95:7	65:10 67:11	operating
new	numeral	obviousness-based	86:16 87:12
1:17,17 2:7,7,15 3:7,7	90:11,13	67:15	opinion
42:15 51:9 113:5		Occasionally	27:20 80:22 94:17
114:18	0	22:18 50:11,12	108:9,11
night	O	occur	opinions
10:8	4:15:1	38:16	5:19,22 107:8 108:4
noise	object	occurred	opposing
61:19	85:2	113:19	35:16
non-inverting	objection	October	opposite
92:2	8:20 9:11,18 11:4	7:16,16 10:16	29:4 44:19
normal	12:10 13:20 14:10,21	odd	optical
59:13 62:15	15:6,9 16:5,17,22	76:21	29:20
Notary	17:8 20:2,10 21:6,12	OEM	optimal
2:14 112:20 113:1,4	22:22 24:5 25:6,13	45:22 46:1 51:10 54:6	49:5,8,9
114:17	26:2,16 28:1 32:2,10	64:10,13	options
notebook	32:16 34:3 38:12	offering	63:5
35:21 54:7 63:16 84:5	39:5 40:10,15 41:1,14	6:20	orange
86:3,8,12,15 87:9,10	41:21 42:7 43:12,17	office	111:4
87:14	44:1,8 45:1,19 46:18	1:1 6:17 86:17	order
notebooks	48:21 49:15 50:2,18	offices	7:4 46:16 60:7
83:11,12 87:2,3	51:16 52:21 53:6,17	2:2 113:19	ordinary
noted	53:21 54:14 56:6,13	okay	41:12,17 72:17 74:1
112:7	56:19 57:18 58:5,16	7:14 61:9 68:10 69:9	81:7 108:14,16,20
noteworthy	60:2,17 65:20 66:8,15	91:2,2 98:9,10	110:17
65:22	66:22 67:20 69:22	old	organic
November	70:14 71:1,4,18 72:3	83:14	28:13
1:18 113:20 114:9	73:4,12,17 74:8 75:3	once	organization
nth	76:2 77:21 78:9,18	6:18 42:15	12:16
76:22	79:1 82:2 83:9 84:6	one	original
number	84:20 85:13 86:7,14	18:12 20:5 22:3 24:2,7	59:6 111:4
14:22 18:13 20:16 21:8	88:2,7 90:3,15 91:18	29:22 31:2,7 35:15	other
29:7,8,9 34:1,8,21	92:9 93:8,20 94:14	38:6 41:5 46:20	9:16 11:12 12:21 18:14
35:10 39:7,8,18 46:20	96:2,6 97:14 98:1,17	47:15 54:18 57:20	22:15 23:4 24:3,7
47:3 48:1,17,19 49:5	99:1,15,22 100:11,19	60:3,3,15 62:14 66:17	31:4 39:19 46:1 50:4
57:13 58:1,1,4,7,10	101:9,18 102:20	69:15 70:17 73:22	51:18 54:2 63:8
58:11,14,15 59:8,8,10	103:19 104:3,7,13	80:6,7 81:9,18 87:15	64:10,10 69:10 76:6
59:13,15,22 60:14	105:2,6,11 106:2,9,14	91:5,13 94:5,6 107:14	76:11,16,17 80:17
62:1,6,7 70:13 71:15	107:2,9 108:8 109:13	110:20	83:19 85:18 107:14
74:12 75:1,9,20,22	objectionable	ones	111:9
80:4 85:9,10 86:2,4	76:5	39:22	others
87:21 88:5 91:13	objections	onset	27:9 68:8
92:12,17 101:3	103:6	33:17	otherwise
103:13 105:15	obvious	on/off	114:5
numbering	$\begin{aligned} & \text { 13:3 19:10 68:2,5,7 } \\ & \text { 69:17 72:17 81:2,8,16 } \end{aligned}$	14:4	outcome

PLANET DEPOS

114:5 outlining	95:4 110:10,20,21 Pages	$4: 15$ particular	108:6 period
51:8	1:21 4:19	49:1,7 50:14 51:18	34:18 36:8 83:7
output	pair	86:22 96:8	person
14:11,11 17:3,11,12,16	55:2	parties	22:3 41:12,16 72:17
17:18 18:8,9,11,17	panel	114:2,4	81:7 108:15,20
19:4,5,11,12,13,15,18	13:13 14:20 15:15	parts	109:19 110:17
19:19 20:1,3 21:2	35:19 36:6,6,11 37:7	33:18	petition
24:1 30:4 34:21	37:19,21 40:19 43:19	party	4:14 8:9,12,19 9:6,9
35:19 45:9 46:20	43:21 44:3,18,20	113:14	Petitioners
47:3 50:3,7,7,10,12	45:21 50:16 51:12	passed	1:10 3:2
50:21 52:6,6 58:17	52:4,11 53:16,19 59:2	29:3 68:9	Philips
72:10 92:1 97:8,11,15	59:3,6 60:11 61:20	passes	31:2,7,13,14 32:4,7
97:15 99:4,16,21	62:20 63:11,18 64:2,3	24:17	33:2,5,6 45:15
100:14,17,20 102:16	70:11 72:16 73:9,11	passing	photolithographic
102:17 103:3,4	83:8 84:4,19 85:10,11	25:2	43:1
outputs	86:5,8,9,12,13,15	patent	physical
17:20 20:5,8,14 21:3	panels	1:1,2,8,14 3:10 4:9,16	43:7 48:8 49:10,11
35:1,5,12,14 36:4	30:14 34:11 45:14	5:6,11,14,19 6:17 8:7	57:21 58:6 59:21
37:7 58:10,15 70:8,10	48:16 59:20,22 85:6	10:1,16,20 17:10	62:13 80:12
72:21 78:15 81:19	paragraph	22:10 23:18,18 26:19	physically
97:1	6:14,18 7:8,9 57:1 60:5	61:12 64:22 65:13	80:1
outside	61:11,15,21 67:3,6,13	66:20 77:3 78:2	picture
9:18 26:3 42:8 61:11	67:14 68:16,21 69:4	80:19 81:2 85:14	104:16,17
90:16 91:18 92:10	79:8,10 82:9 89:17,19	107:21 110:14	pitch
93:9,20 102:20	91:2 93:12 107:16,17	patents	20:9,15,17,19 21:5
104:16,17 106:2	108:17,19 110:9,10	18:19	22:7,8
overcome	paragraphs	path	pixel
80:4	12:12 69:10 90:19 91:1	12:13 68:17	14:9 15:11 16:19 24:20
overcoming	parallel	Patrick	25:22 26:1,8 34:11,16
78:3	15:14 16:14 17:4 26:4	56:16	48:9 52:18 84:11
Owner	76:17 102:16 103:3	peculiar	92:17 93:7,19 94:2,13
1:14 3:10 5:6 80:20	parameter	73:19 110:	pixels
P	20:14	Pending 27:3 39:4 46:12	$\begin{aligned} & \text { 48:1,11,17,19 58:1,1 } \\ & 85: 22 \end{aligned}$
P	64:4	peop	place
3:1,1 5:1	paras	35:8 43:14 110:18	54:18
package	15:14,17 62:9 101:3	percent	placed
34:6	109:21	107:14	35:2
packaging	parasitics	perfect	plasma
44:16	26:11	42:3 87:1	23:5 79:20 80:11
pad	Park	perform	playback
21:2 37:21	2:63	46:16,19	79:18
page	part	performance	please
4:2,7 56:10,22 57:1	17:12 27:5 39:17 42:5	$45: 1351: 1159: 19$	6:5 9:5 15:9 22:4,6
65:1 77:14 79:9	53:12	$62: 21 \quad 73: 187: 13$	56:22 66:16 79:9
$\begin{aligned} & \text { 82:20 83:2 90:5,9,19 } \\ & 90: 2293: 594: 22 \end{aligned}$	Partes	performing	110:20

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

plug	83:14 85:1	process	provide
109:20	preparation	15:12 38:17 40:20 43:1	13:16 51:14 65:18 66:6
plural	8:6 9:15 10:12,16,20	49:6 54:2 99:7	96:5 102:17 103:4
72:8	11:16 21:17,22 48:7	processes	108:3
plurality	55:21 56:2 65:8	46:3,4,13	provided
60:9,16 66:6	prepare	processing	5:18 52:14,19 56:8
plural/singular	8:18	28:21	60:15 101:15
72:7	prepared	processor	providing
point	8:21	31:18 86:18	107:6 108:9
11:19 20:3 25:19 32:15	preparing	produced	Public
38:14 41:3 88:21,21	7:22 21:11 56:5	29:13	2:14 112:20 113:1,4
102:22	present	producing	114:17
polarized	17:11,16 20:4 26:11	29:15	Publication
24:16	101:20	product	4:10
polymer	presentation	44:4 45:6 48:2 63:2,5	pull
23:5 28:14	86:18	83:20	36:10
polyphase	presented	productivity	pulled
92:14	17:2,21 64:6 66:20	86:17	33:5
popular	96:11	products	purple
84:8	presenting	46:1	111:4
port	52:2 90:1	professional	purpose
20:3	pressed	27:20 93:17 113:4	6:2 13:14,15 94:12
portion	37:19	profile	96:5 102:15 103:2,16
57:12 65:11 69:11	pressure	38:8	purposes
portions	38:7	program	7:2 17:10 18:15
54:2	pretty	86:18 87:12	Pursuant
position	52:8	prohibitions	2:13
99:19	prevalent	7:10	pursue
positive	47:15	project	68:7
106:10	Previously	33:10,13 86:19	put
possible	4:8,11,17 55:11 64:16	projects	39:10 40:18 64:12
35:4,6 53:3 54:11	82:11	33:4,7,12	70:10 72:15 74:2,5
possibly	price	proof	100:4
63:19	49:7 64:11 85:2	107:8	putting
potential	principally	propagation	45:13 52:5
16:15	65:9 83:11	62:3	pyramid
power	prior	properly	29:1,2,4
35:17 62:4	9:6 50:19 61:8 65:14	38:19 54:1,11	
practice	65:22 79:5 81:9	properties	113:21
$6: 1733: 21$	priority 81:22 82:15,18	$\begin{aligned} & \text { 37:16 38:4,5,6,9 } 39: 9 \\ & 40: 12,21 \end{aligned}$	Q
74:20 82:6	privilege	proposing	quad
precisely	7:3	52:5 69:12,19 78:16	81:13,14
79:4 84:7	privileged	prospective	question
preliminary	9:2,4	29:18	9:3 11:7,9 21:13 22:6
51:7	probably	prototype	27:3 32:6,19 35:7
premium	61:1 109:14	51:10	39:3,4 43:4 46:6,8,12
			53:2,8,18 65:16 66:11

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

67:2 82:18 83:22	reason	80:16,16,20 82:1,4,7	77:20
88:8,14,15,19 89:8,12	6:970:18 71:14	82:16,21 83:1 85:21	relied
89:20 93:2 100:21	reasons	90:1,6,11,13,14 91:10	12:3 75:6
questioning	79:13	91:16 95:15 102:22	relies
67:9	reattach	103:10,13,14,22	11:21
questions	36:12	104:4,20 106:6,13,18	rely
7:6 62:11 111:9,15	recall	107:1	73:8 77:8
quickly	7:7 13:4 25:8,11 27:9	references	relying
29:5	27:14 34:13 56:4	12:2 78:1 79:14	66:5 70:12 72:5 77:11
quick-turn	84:7,17,21	referred	77:12,15 78:7,10,21
33:7	receive	27:16 91:14 93:5	87:20 88:4 91:6
quite	98:21	referring	95:13 106:7,12,21
80:22	recent	19:22 67:3 89:19	remember
	13:1	refers	7:9 28:5 29:8 30:11
R	recently	23:20 91:10 92:3	removal
R	11:1	reflected	40:7
3:15:1	recess	52:7	removed
ramp	36:19 61:3 102:9	regarding	38:10,16 39:1 40:13
25:4 83:19	111:13	6:22	reorganize
range	reciprocal	Regardless	12:11
14:11 33:4 51:1 54:3	51:5	34:7	repair
64:13	recognize	region	38:11,16 43:19
rather	56:14	26:8 52:18 93:7,19	repaired
38:19,22 69:14 94:18	recollection	94:13	36:10 41:7
95:2	33:8 82:5	register	repairing
ratio	record	96:20,22 97:1	41:10
35:14,20 48:12,13	6:5,15 36:18,20 61:2,4	Registered	repeat
reach	88:18 95:1 102:8,10	113:4	49:17
73:16	111:12,14 112:5	relate	replace
reaches	113:12	57:21 78:2	42:15,19 43:10
24:21	rectangular	related	replaced
reaching	28:17	114:1	38:10 40:14
107:8	red	relates	report
read	111:4	49:1 75:9,11	27:5 95:4
6:13,14 7:7 27:1,3 39:2	reduce	relative	reported
39:4 46:6,12 57:12,15	96:9	100:12,13 104:19	1:22 33:11
60:6 61:10,22 65:4,7	reduction	relevance	Reporter
69:7,9 91:2 92:11	61:12	9:12 21:7 25:6,14	111:17 113:1,3,4
93:22 94:8,9 95:7,11	refer	38:13 39:5 40:11,15	represent
102:12,22 108:1	17:15,16 27:5 57:22	41:22 42:8 43:18	96:17
reading	76:8 91:3 96:21	44:2 45:2 53:7 56:7	representations
76:15	reference	56:13,19 90:15 92:10	26:20
reads	8:8 25:15 27:4,10,18	relevant	represented
6:18	56:4 65:15 67:8,14,16	20:13	113:15
really	68:21 69:12,20 70:1,2	reliably	represents
18:18 28:2 52:10 77:6	$70: 571: 1673: 10$		13:17 90:14
$\begin{aligned} & 85: 287: 192: 17 \\ & 94: 18,20 \quad 104: 20 \end{aligned}$	75:2 76:13 78:8,17,19	reliance	require

$\begin{aligned} & 14: 758: 3,7,985: 16 \\ & 104: 11 \\ & \text { required } \end{aligned}$	```8:11 10:9,15,19 11:1 11:16 26:14,22 55:20 reviewing```	$\begin{aligned} & \text { RPR/CCR/CLR } \\ & 1: 22 \\ & \text { rule } \end{aligned}$	$\begin{aligned} & \text { 14:6 53:4 107:13 } \\ & \text { scan } \\ & 59: 877: 985: 10 \end{aligned}$
58:15 61:18 68:18 70:3	10:12	67:21	scattered
70:16	revised	ruled	26:10
requirement	12:8	68:6	scenario
28:16 33:15 76:9 86:22	rework	run	53:13
109:4	40:21,22 41:2,11,18,19	28:20 49:8 109:21	scenarios
requirements	41:19 42:1,5,13,14,22	running	45:4
33:20 45:21,22 59:1	43:3,6,10,16,22 44:4	100:17	schematic
62:19 63:10 64:7	44:22 45:6 66:4	rush	104:15 109:20
requires	reworked	111:19	scheme
45:6 63:12	38:20	R\&D	104:10
requisite	rid	33:5 83:21 85:3	school
51:14 52:14	80:8	S	$81: 15$
research	right	S	schools
33:6	5:16 13:8 14:9 22:13	S	109:7
reserving	25:11 27:17 28:8	3:1,4 4:1,5 5:1 16:7	scientists
112:2	30:21 33:15 41:13	SAIC	39:10
resistance	42:6,17,21 43:22 47:6	45:12	scope
61:15 62:9	47:8 48:11,17 49:10	same	9:19 21:7 25:7,14 39:6
resistances	52:2,9,12 53:16 55:21	6:14 16:9 22:16 27:21	40:16 41:22 42:8
50:21	56:2 58:15 59:4,12	45:4 48:17 59:5,13,16	43:18 44:2 45:1 53:7
resolution	63:13,21 65:5 66:7	59:17,22 63:19 71:13	84:20 90:16 91:19
73:18 84:13,15	69:21 71:14 73:3	74:17 84:22 85:10,12	92:10 93:9,21 102:21
respect	75:10 78:8 79:6	86:1,4 88:19 93:5	106:3
24:15	84:11 87:11 88:1,6	95:5 103:6	scratch
respectively	89:22 90:22 92:4	sample	20:13
76:19 77:1	94:8 95:15 98:16	25:15,17,19 27:6,16,21	screen
rest	99:21 101:17 102:3	92:15 98:2,12 103:11	57:13,20,21,22 58:3,6
87:13 89:15	105:1 108:4,12 112:2	104:9	58:8 62:1,12,12,13
result	right-hand	sampled	80:12
19:7 28:22	57:2,7 90:20	25:18 99:2	screens
resulting	ring	sampling	48:8
15:20	28:3	26:4 97:9,11 98:4 99:4	search
retimed	risk	99:7	51:17 90:17
31:19	45:10,11	satisfies	searching
retrace	room	109:3	89:18
25:4	47:19,21	say	second
reveal	Rothstein	17:18 18:3,5 24:22	15:11 76:18,22 77:14
9:2	2:5 3:5 113:20	31:21 34:10 66:17	79:12 82:20 88:8
revealing	roughly	74:17 80:14 92:2	98:7 102:2
9:4	28:16	101:3 103:10 110:13	section
review	row	saying	32:18 59:6 94:21
$4: 158: 5,910: 313: 1$	30:10 85:17	12:15 26:6 75:16	security
$56: 165: 13,14112: 3$	rows	says $28: 7 \text { 63:17 106:6 }$	$29: 11$
reviewed	76:21 80:7 85:15	$\begin{aligned} & \text { 28:7 63:17 106:6 } \\ & \text { scale } \end{aligned}$	see

PLANET DEPOS

5:10 9:6,9,10 56:9	serial	SHORTHAND	104:22 105:3,5,7,9
57:4,9,11 60:5,12	102:16 103:3	113:1	signature
67:6,8,12 68:1,4	series	shorting	65:2
74:21 77:11 79:9	10:13 64:9 109:6	38:1	signed
83:3 90:9,10,11,12	service	should	65:5
91:9,12,14 92:3 95:17	35:17 61:17	7:6 38:16 44:9 68:6	silicon
95:19 97:17 107:17	set	70:16 73:6 78:13	28:18 30:17,19 37:5
107:20 110:10 111:11	18:14 40:19 113:9	90:18 96:4	38:15 44:16
seeing	114:8	show	similar
8:19	seventh	12:2,5,13 69:16 73:20	7:9 92:20
seemed	91:5	73:22 74:14 75:18	similarly
12:3	several	82:9 104:1	58:19 76:21
seems	110:15	showing	simulation
95:6	shaded	11:22 12:1 83:15 87:8	26:17,18
seen	111:1	shown	simulations
26:13,18,20	shall	27:5 70:13 71:16 75:21	109:22
segment	6:21	80:18 85:3,20 106:6	since
30:10	shape	106:13	7:16,16,19 10:10 11:7
Sekido	28:22 29:4	shows	42:21 47:15 94:17,21
61:10	share	65:21 66:2,9 68:16,17	single
select	83:12	68:19 69:15 70:3,15	17:16 18:8 19:11,12,13
91:4	Sharp	70:17,19 71:22 72:13	38:18 41:6 61:11
selected	1:4,5,6 3:2 5:14 8:7	72:14 73:7,13 78:13	70:7
52:3	11:22 12:5 25:15	92:16 93:6	Sir
selection	27:4,10,18 55:15	shunt	59:20
40:17	65:10,17,21 66:1,9,13	16:7,8	sit
self-assembly	66:21 67:8,14,15 68:1	shutter	53:14
28:19	68:8,13,17,21 69:12	25:1,3	site
self-evident	69:15,20 70:1,2,4,7	side	92:17
72:19	70:15,17 71:8,22 72:2	35:18 44:19 57:1,7	sitting
semiconductor	72:13,14 73:2,5,7,10	58:20 60:6 83:3	25:8 34:9 94:15
31:13 46:4,13	73:20,21 75:1,21,22	85:17 104:14 107:14	situation
send	76:12 77:2,17 78:2,8	sign	107:4
51:7	78:17,19 80:6,16,16	112:3	sixties
sense	80:20 81:2,17,22 82:8	signal	81:12
58:21	82:16,21 83:1 85:20	13:17 17:3 20:3 25:18	size
sentence	86:10 87:20 89:5,17	25:22 32:8,11,14 34:1	29:20 34:17 48:8,20
57:8,11 60:6 61:11,22	90:1,6,14 91:9,16,20	50:14 62:2,3 77:5,10	49:1,5,7,9 57:20,21
68:4 79:12 80:14	92:3,12 95:14 96:1	85:11 86:2,5 96:19	57:22 58:3,6,8 62:7
102:12 103:8,9	103:9,14,22 104:4,20	97:22 98:11,22 99:2,8	62:14,14,15 63:17
108:19	106:6,18,22 113:15	99:9,14 101:8,10	64:2,4 74:3 79:19
separate	shift	102:2 104:18 105:12	80:1,12,12 81:6,21
31:22 32:3	96:20,22 97:1	105:17,18,18,19	83:8 84:8,16 86:1
separately	shock	106:1	94:3
18:22	45:5	signals	sized
sequence	shorter	35:17 61:17 97:20	101:1
12:12	35:15	102:16,17 103:3,4	sizes

PLANET DEPOS

$\begin{aligned} & \text { 48:16 49:8 } \\ & \text { skill } \end{aligned}$	68:11 sometimes	$110: 4$ specialty	stands $44: 12$
41:12,17 72:17 74:1	16:7 50:13 54:1,3	83:18	start
81:7 108:14,16,20	86:19	specific	46:6 83:12
110:17	somewhere	25:18	starting
SKUs	13:2 104:19	specifically	49:2
48:2	sorry	39:13,16 93:6	state
slender	27:1 56:20 67:1 68:3	specification	2:14 14:16,16 79:12
36:3	85:17 90:22 110:10	33:16 51:3	113:5 114:18
slightly	sort	specifications	statement
28:17 58:6	18:16 25:1 84:4 105:9	29:16 43:7 50:21 51:7	106:10,11
small	106:22	speculate	STATES
95:8	sorts	94:10	1:1
smaller	53:15	speculating	state-of-the-art
36:10,12	sounds	94:16	87:7,17
sold	36:17	speculation	stationary
36:7 54:6 84:22 85:1	source	94:12	86:20
solely	13:11,12,14,15,16,16	spelled	step
66:13,21 70:12,21 72:2	13:18 15:17 17:3,7,9	13:3	66:17
95:13	17:12 22:12,13,19	sphere	stepped
solution	23:3,9,20,20 24:3,10	37:22	18:3,5,7 105:12,17
51:22	30:6,8 31:3,6,6,19,22	spheres	steps
solutions	34:22 49:13,20,22	37:17,18,20 38:8	105:13
54:3	52:7,13 53:19 58:18	spice	stiff
solved	59:17,17,21 60:8,9,14	26:17,18 101:5 109:21	50:13
80:13	60:16,19,20,21 61:17	spot	still
solvent	64:5 69:16 70:6	11:15	48:4,16 84:22 85:1
45:5	76:10,13,14,18,18,19	spots	109:3
some	80:15,21 85:16,18,19	13:17	STN
5:18 23:14 26:10 27:4	87:21 88:5 92:5,7,13	spreadsheet	23:6
31:5,6 33:11,11 34:21	97:12 100:1,9,13,18	86:19	stop
45:12 48:13,22 50:6	100:21 101:15 104:21	square	88:15,16
53:9 54:1 62:18 63:1	sources	28:16	storage
63:6,8 64:7 70:18	76:20	staff	14:20 16:9,12,16,21
75:12 81:16 82:14	SP	64:8	25:19,21
83:13,15 92:14,14	96:14,19	stage	straightforward
94:3 108:3 109:15	space	18:8,10,17,21,21 19:5	107:15
110:3	63:4	41:10 44:6 50:7	strength
somebody	spaced	stages	50:15,17 51:13,15
42:4	76:16	21:3 30:4 34:22 46:20	52:12,13,15,19 62:19
somehow	speak	47:4	stressed
66:1 69:15 70:6 72:12	95:9	stand	74:19
73:7,20 81:17,18	speaking	13:879:5	strike
someone	13:13 45:17	standard	89:15
108:13 109:2,5	speaks	21:5 28:20,21 34:18	stronger
something	11:20	47:15,17 48:2,3,5	12:3
30:7 32:21 42:20 45:5	specialized	84:18 108:15 109:4	strongly

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

$12: 13$ structure	75:15 88:20 92:11,20 94:18 103:2 106:4	$\begin{aligned} & 34: 544: 14,21 \\ & \text { target } \end{aligned}$	$\begin{aligned} & 19: 16 \text { 22:8 23:2 } 24: 7 \\ & 24: 7 \text { 25:4,9 28:2 } 30: 8 \end{aligned}$
36:12 74:11 77:3	107:13	50:21	30:11 50:4,11 78:22
structures	Surpass	taught	84:16
46:15	1:12 3:10 5:15 9:17	70:7 81:15	terminal
study	surprised	teach	101:6
53:8	39:15	66:1 70:9 80:20 81:17	terminology
stumbled	switch	81:18	19:9 91:17
42:1	101:13	teaches	terms
Subscribed	Switzerland	70:5 72:15 73:5 80:15	22:11,15,16 23:18 24:2
112:16	31:13	81:19	24:8,11 37:2 51:4
substance	sworn	teaching	54:17 57:21 82:14
6:22	5:3 112:16 113:9	78:17	107:21,22 108:4,10
substantially	synonymous	Tech	108:11
42:16	23:10,13	1:12 3:11 5:15	test
substrate	system	technical	23:14 43:8
28:18 29:4 44:17,18	86:16 87:13	30:18 83:16 84:16 85:4	tested
$49: 5$	\mathbf{T}	109:7	33:19 52:18
substrates	T	technically	testified
30:2	T	13:7 87:16	5:5
suddenly	4:1,1,5	technique	testify
62:21	TAB	34:5 40:13 80:8 103:11	5:4
sufficient	44:12,12 45:3,5	techniques	testifying
14:8	take	41:8 80:4,6	7:3 89:7
suggest	38:2 55:8 59:13 64:11	technologies	testimony
7:5	64:14 70:9 84:4 90:5	23:4 41:9	6:10 7:1 34:13 71:12
suggesting	90:19 93:4 94:22	technologists	71:13 73:15 74:15
70:178:19	95:17 111:10 112:1	19:9 64:8	75:19 79:5 113:12
suit	taken	technology	tests
39:11	36:19 61:3 102:9	12:5 23:7,8 25:5 28:4	64:9
suitable	111:13 113:11	28:17 29:13 30:21	text
60:21 79:18	talk	34:7 37:6 39:21 42:5	11:21 90:17 106:17,17
suite	5:21 8:1 13:10,12	42:10,21 51:20 74:10	TFT
86:17	19:12 20:1 28:4	109:12	16:19 17:4,21 24:9
super-twist	31:17 32:13 82:8	television	30:8 49:6 50:19 51:1
23:6	100:13 108:20	54:7 78:6 79:17 83:15	54:5 58:19 60:19
suppliers	talked	87:7,17	83:10 85:19 86:1
51:2	6:15 8:2 18:21 22:11	tell	92:8,13 96:8 98:14,19
supply	28:5 31:15 39:20	44:12	TFTs
63:15 92:8	45:9 50:6 52:12	temperature	15:13 80:7 86:11
supplying	57:19 61:10 106:20	36:8 38:6,7	104:21
18:12	talking	ten	thank
Support	17:18 18:16 19:13 22:3	55:10 65:22	7:14 93:13
4:14	26:7,10 27:15 32:14	tend	theoretical
sure	36:22 42:12 45:8	24:6 35:20,21	41:3
14:15 20:13 32:22	47:10 71:6,7 75:8	term	theory
42:13 46:10 49:18	$\begin{aligned} & 94: 16 \\ & \text { tape } \end{aligned}$	15:7,19 17:9,15 19:4	106:21,22

thermoplastic	times	101:14	typed
37:17	74:12,17 81:1 88:9,19	transistors	86:20
they'd	timing	29:1 97:9,11,13,16	types
36:9	31:3,4,15,16,21 32:5	translated	24:19 29:14 37:1,9,14
thin	32:11 53:11 63:9	106:17	38:2 40:5 47:9
76:20	tip	translation	typical
thing	34:8	4:18 95:14	33:20
16:9 27:21 74:17	today	tremendous	typically
things	6:9 7:11 13:11 25:8	29:7	29:10 50:10 100:1
14:9 19:1 53:15 92:17	34:9 39:18 47:3,5	Trial	T-A-B
think	87:7 88:9,13	1:2 6:17 65:13	44:12
6:16 13:2,11 22:12	today's	triangles	
42:12 44:11 48:5	9:15	91:13	U
49:16 52:3,9,22 53:1	together	tried	ultralow
55:4 62:11 84:5	39:10 52:5,17 54:10	74:16 79:22	29:9
88:13 91:8 96:12	tongue	true	under
103:7,17 106:5	34:8	6:10 49:12,18 51:6	41:16 48:5 53:4
thinking	top	58:2 80:3 103:20,21	undergraduate
52:11	21:8 29:2 36:3 56:10	113:12	108:21
third	57:2,6 76:8 90:20,22	truncated	underlying
26:7,9,12	96:13 110:9,10	29:1,2	36:11
thought	totally	truth	understand
96:3	88:22	5:4	7:10 19:21 23:16 33:15
thousand	towards	try	42:13 47:12 49:16
48:11	12:13	90:1	52:1 66:12,17,19
three	trade	trying	67:18 68:14 69:1
19:1 56:9,14 78:1 84:2	63:4	48:8 89:2 103:15	71:10,11,14 72:1 74:2
96:13,17	TRADEMARK	turn	74:15 75:16 76:4
threshold	1:1	17:3 56:22 65:1 69:4	92:7 103:7,15
62:20	tradeoff	79:8 106:10 107:16	understood
throughout	72:22	110:20	67:12,12 106:19,19
15:15	tradeoffs	turned	undertaken
throw	59:1	36:7	7:19
38:19	training	turns	unexpected
thrown	109:7,12 110:4,5	99:3,4 101:13,14	59:18
41:6	transcript	TV	uniform
time	4:6 10:3 55:13 64:18	48:5,7 105:8	54:17
6:14,15 8:11,13 10:9	82:13 111:18	two	unique
11:5 21:4 22:3 25:19	transfer	11:3,10 15:2,13 18:13	61:21
33:22 34:18,19 35:4	91:11 101:13	18:15 35:15 48:16	UNITED
35:12 36:8,14 40:1	transferred	52:4,17 54:19 59:20	1:1
44:7 45:18 46:21	29:21	59:22 65:14 67:19	unsuitable
48:6 51:9 53:22 54:9	transferring	76:13 81:14 97:9	47:19
55:4 61:1 66:18 73:1	36:1	109:17	unusable
77:4 79:22 83:7,10	transistor	type	62:22
84:17 85:5,14 102:6	27:19 76:21 98:18,20	32:8 33:14 39:14,19	unusual
106:20 110:18 112:7	99:4 100:18,22 101:2	51:20	$\begin{array}{\|l} \text { 36:5 99:18 } \\ \text { upside } \end{array}$

PLANET DEPOS

29:6	19:18 101:6	23:16 36:15,16 37:2	86:21
upsizing	Veterans	46:10 53:1 55:8,9	Windows
57:13 62:1,12,13	88:13	58:21 68:11,14 71:10	86:16
upstream	viable	75:15 82:7 88:9 89:9	wire
104:19	35:8	92:19 93:16 111:17	40:2,5,7,12,19
use	vice	wanted	wires
15:7,19,20 22:15 24:7	24:4	32:22	86:11
24:8 37:10,11 39:11	video	War	wiring
63:19 69:18 72:20,21	13:17,22 18:1,2,12	47:16	61:16 63:8 85:22
73:21 74:14 80:15	23:2 24:9 25:18	wasn't	104:21
81:14 94:19	47:10,11,14 78:1,6	67:11 87:6	withdraw
users	79:17 86:9,12,22 87:1	watch	82:17 89:20
64:13	87:8,11,14 96:10	48:15	witness
uses	105:4	wave	6:19,20,21,22 7:1,5 9:1
16:8 19:3,4 25:15	view	61:14 62:5	88:21 111:16 113:8
86:15,17 91:16	38:14 41:3 67:15 68:8	way	113:12 114:8
using	81:3	12:5 14:17 55:1 98:7	wondering
19:16,21 59:16 70:21	viewers	114:4	55:7
94:16	48:15	WAYNE	word
usually	viewer's	3:12 5:7	57:8 86:18
19:17 35:13 45:3 100:9	24:21	ways	words
U.S	viewing	18:11,22 92:13	13:8 55:2 86:13
4:9,16 5:11 33:11,12	47:19 79:18	wedge	work
V	visual	37:11 40:4	32:4,7,9 52:4 81:9
V	54:15,20 55:1 78:3	Wednesday	108:22 109:3,10,14
v	80:9 94:3	1:18 113:20	110:1,5
1:11 5:14	voltage	went	worked
VA	13:16,19 14:1,2,8	48:6 89:18 109:6	9:13 30:2 33:5 54:18
3:15	16:20 17:2,11,19,20	we'll	workers
Valley	17:22 18:3,8 32:12	27:7 89:10 100:14	110:14,16
30:17,20	54:12 92:8 96:9,11	111:12 112:1	world
value	100:2 101:5,8,12,15	we're	41:3 47:15
86:4	101:19 105:13,14	5:21 13:10 18:16 26:7	worry
values	voltages	42:12 47:10,13 61:4	98:7
105:16 109:20,21	18:13,15 97:21 98:11	66:5 94:5,17	wouldn't
variable	98:21 102:18 103:5	we've	14:4,5,17 23:12 39:15
25:3 48:20	volume	26:10 50:6 57:19 80:22	54:22 60:16
varied	40:1 83:17	102:5	wrapped
109:14	vulgarity	WHEREOF	44:19
various	42:2	114:8	wrong
$29: 14$ verified	W	white	21:13 30:5
33:20	wafer	whole	wrote 82:4,16
verifying	28:20,21	50:22 54:15	
93:10	Wait	wide	X
versa	88:7	33:4	\mathbf{x}
24:4	want	window	1:3,15 4:5
versus	6:8 12:9,18 13:5 19:21		XGA

PLANET DEPOS

84:7,9 85:10 86:2	1009	94:22 97:9 98:18,19,20	98:3 102:1
	4:8 55:11,15	101:13,14	256
Y	102	1960s	18:4,14 105:13
yeah	4:17	42:21	28
63:22 111:19	1024	1995	110:10
years	59:15 84:10 85:7 86:3	83:6,7 85:9 86:4	29
65:22 109:18	86:5		95:4 98:3 110:21
yes/no	105	2	
58:22,22	92:4,5,19	2	3
yield	11	57:6 70:4,16 73:6 75:4	3
43:8	1:18 113:21	75:9,14 83:2 97:10	48:12 68:22 71:7 75:4
York	11:32	20	75:9,14,19 76:3 80:18
1:17,17 2:7,7,15 3:7,7	36:18	9:7,8,10 47:22 48:13	81:2 90:4
113:5 114:18	11:47	97:10 98:3	3:10
yourself	36:20	200	102:8
69:8	114	34:22	3:25
Z	1:21	2003	102:10
Z	118	41:20	3:41
Zurich	91:14,17,22 92:4	2003/0048249	111:12
31:13	12th	4:10	3:47
1	114:9	2004	111:14
1	12:41	21:4 33:22 35:4 40:1	3:48
1.21 68:1,4,7,22 70.4	61:2	41:13,17 47:6 72:18	112:5 113:21
$1: 2168: 1,4,7,2270: 4$ $70 \cdot 1671 \cdot 972 \cdot 273 \cdot 6$	120	74:1 79:20,20 81:7	3:48 p.m
$\begin{aligned} & 70: 1671: 972: 273: 6 \\ & 73: 1675: 4,9,14,19 \end{aligned}$	90:11,12,13,18 91:9,10	84:17 85:5,11,14 86:6	112:7
	91:12	87:17 108:14,16	30
$76: 3,977: 8,1480: 17$ $81 \cdot 190 \cdot 497 \cdot 1099 \cdot 3$	124	110:18	33:10
81:1 90:4 97:10 99:3 100:20 101:12 107:21	93:12	2008	
1,024	13	48:7	
1,024 59:12	90:9,10,18 91:6 92:15	2009	
1:36	130	48:7	48:1
61:4	68:16	2015	90:
10	147	1:18 9:8,10 112:18	40
56:22 57:1 83:6 92:21	69:5,7	113:21 114:9	4:19 33:10 90:7,19,21
94:22 95:2,3,17,22	148	2018	90:
96:13,14,21 103:22	69:4,7	114:14	1
	149	21	47:16
110:22 114:14	79:8 89:19	97:11 98:3	480
10:30	15	212.336.8000	47:16
1:19 113:21	78:11 84:5	2:8 3:8	
10016	16	22	107:14
2:7	47:22 48:12,13	97:11	5
1002	17	22102	5
4:17 67:8 82:10,11,20	90:19 91:1,2	3:15 $\mathbf{2 4}$	4:3 11:19 67:3 68:1,4,7
90:5 95:3		47:22 48:14 98:3,19,20	68:20 71:9 73:16
1007	90:5,7,20 91:1,2 19	$99: 3,5,6101: 11,12,16$	74:10 75:5,14 76:18
4:11 64:15,16	19	25	76:22 92:21 93:2

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM

96:12 97:22 98:11,22	72	98	
100:13,18 101:8,15	97:2,3,4,5,8 100:14	68:21	
101:20,21 102:2	101:10		
106:1 107:21	72A		
5a	97:3,6,7		
67:6	73		
51	97:17,20 99:2,9,14		
107:14	100:3 101:11 105:1,3		
52	105:10		
79:9	74		
525	97:20 100:3 105:1,3,10		
47:16	108:17,19		
55	75		
4:8	99:10,11,13 104:18		
550	76		
8:7 10:1,20 11:15 16:7	104:18,19		
19:2,8 22:9 23:18	768		
26:19 64:22 66:20	84:10 85:7 86:3,5		
70:4 75:13 77:3,16	77		
78:2 79:3 81:2 85:14	95:18		
86:10 104:20 107:21	78		
110:13	95:18		
56	79		
76:9	95:18 110:9,10		
571.765.7700			
3:16	8		
6	57:1 61:11,15 93:4		
6	80		
60:5 94:5	95:18		
60s	800		
42:2	34:11 35:2,5,19 36:3		
600	45:9 59:11,14,21		
34:12	8300		
64	3:14		
4:12 107:16,19	843		
67	10:16 11:5		
93:6,11,14	9		
7	$\overline{9}$		
7	48:12 55:19 92:15 93:4		
76:21	93:5 94:13		
7,240,550	90		
4:16	2:6 3:6		
7,420,550	95		
1:8 5:12	83:10		
71	96195		
76:14	1:20		

PLANET DEPOS
888.433.3767 I WWW.PLANETDEPOS.COM
$\left.\begin{array}{ll}\text { STATE OF NEW YORK } \\ \text { COUNTY OF NEW YORK }\end{array}\right\}$

CERTIFICATION

This is to certify that the attached translation is, to the best of my knowledge and belief, a true and accurate translation from Japanese into English of the attached Unexamined Patent

Application No. H08-305322.

Mirna Turina, Project Manager
Geotext Translations, Inc.

LYNDA GREEN
NOTARY PUBLIC-STATE OF NEW YORIS
No. 01GR6205401
Quallitied in New York Count
My Commission Explres May 11, 2017

SHARP EXHIBIT 1002

```
Now Yows
t:+1.212.631.7432
Lonctan
T:+44.20.7553.4100
```


т: +1.202.828.1267
Fatis
$\mathrm{t}:+33.142 .68 .51 .47$

```
Chraga 
Stockholmy
t.+46.8.483.11.87
```

ต1"ston
t: +1.713 .353 .3909
Frank turt
t: 449.69 .7593 .8434
$+1.415 .576 .9500$
tomg Kong
t: +852.2759 .9143

Claims]
[Claim 1] A display device provided with a plurahity of data signal lines by which data signals are respectively supplied,
a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled,
a plurality of data bus lines respectively connected to the plurality of sampling circuits,
a plurality of pixet units that are both connected to the plurality of data bus lines and arranged in matrix form, and
a drive circuit including the sampling circuits and that drives the data bus lines, wherein
at least two of the plurality of data signal lines have the same data signals supplied and are comected to different sampling circuits via respectively different buffer circuits.
[Claim 2] The display device according to claim 1, wherein of the plurality of sampling circuits, the sampling circuits for which the timing of the sampling is synchronized are both connected to respectively different data signal lines and have no time overlap of the ON time of the respective sampling circuits.
[Claim 3] The display device according to claim 1 or 2 , wherein the buffer circuits are formed on the same substrate as the sampling circuits.
[Claim 4] A display device provided with a plurality of data signal lines by which data signals are respectively supplied,
a plurality of sampling circuits by which the data signals supplied from the plurality of data signal limes are respectively sampled,
a plurality of data bus lines respectively connected to the pluxality of sampling circuits,
a plurality of pixel units that are both connected to the plurality of data bus lines and amranged in matrix form, and
a drive circuit that includes the sampling circuits and that drives the data bus lines, wherein
the data signal line is divided into a plurality in the horizontal direction of the display, and each divided signal line is comnected to sampling circuits via respectively different buffer circuits.
[Chaim 5] A display device provided with a plurality of data signal lines by which data signals are respectively supplied,
a phurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled,
a plurality of data bus lines respectively connected to the phurality of sampling circuits,
a plurality of pixel units that are both connected to the plurality of data bus lines and arranged in matrix form, and
a drive circuit that includes the sampling circuits and that drives the data bus lines, wherein
of the plurality of pixel units, respectively different data bus lines are connected to the plurality of pixel units adjacent in the column direction, and the same sampling circuits are connected via the buffer circuits to these data bus lines.
[Claim 6] The display device according to claim 1, 2, 3, 4 or 5 , wherein the drive eircuit and the image display unit comprising the plurality of pixel units are formed monolithically on the same substrate.
[Detailed Description of the Invention]
[0001] [Field of Industrial Use] The present invention relates to a display device such as a liquid crystal display device or the like.
[0002] [Prior Art] Conventionally, display devices, for example, as shown in FIG. 12, liquid crystal display devices (hereafter called LCD) have been constituted by a display unit 101 having a plurality of pixel units $104 \ldots$, and a source driver 102 and a gate driver 103 as a drive circuit for driving each pixel unit 104.
[0003] Each of the pixel units $104 \ldots$ is respectively arranged at a place at which a plurality of source bus lines $105 \ldots$ connected to the source driver 102 and a plurality of gate bus lines $106 \ldots$ connected to the gate driver 103 intersect arthogonally. Thus, the arrangenent of the pixel units $104 \ldots$ is in a matrix form in the display unit 101 .
$[0004]$ Also, a pixel unit 104 is constituted by a pixel transistor 107 formed from Trl (thin film transistors), pixel capacity 108 and additional capacity 109 ; the gate terminals of pixel transistor 107 are connected to gate bus line 106, source terminals are connected to source bus line 105, and drain terminals are connected to pixel capacity 108 and additional capacity 109.
[0005] Source driver 102 is constituted by shift register 110, and sampling switches 111 fomed from transistors, sampling capacitors. 112 , data signal lines 113 and the like; sampling hold circuit 114 is formed from the above sampling switches 111 , sampling capacitors 112 , data signal lines 113, and source bus lines 105 .
[0006] Start pulses (SP) and drive clocks (CK, /CK) input to the shif register 110 , and the input SP are sequentially shifted according to the CK and $/ \mathrm{CK}$ and output to sampling hold circuit 114,
[0007] Gate driver 103 has a shift register 115 and sequentially outputs scan signals to each gate bus lines 106....
[0008] Furthermore, when the above display unit 101, source driver 102, and gate driver 103 are formed monolithically on the same substrate, there are cases when only display unit 101 is formed on the insulated substrate. [0009] Here we will describe the operation of the displace device with the constitution noted above. First, the SP input to the shift register 110 of the source driver 102
is sequentially shifted by $C K$ and /CK and output to sampling hold circuit 114, and become the sampling pulses for sampling hold circuit 114. Then, sampling switch 111 goes to an ON state by means of the input sampling pulse, and the data signal of data signal tine 113 at the point in time that this sampling pulse is input is sampled.
[0010] Then, the data signal sampled by the sampling pulse is held in sampling capacitor 112 and output to source bus line 105 as a source bus line signal.
[0011] Meanwhile, the output of each digit of shift register 115 of gate driver 103 is output as scan signals (gate bus line signals) sequentially to gate bus lines 106...; pixel transistors 107 connected to selected gate bus lines 106 turn ON , and the source bus line signals at that point in time are sequentially written as image data to pixel capacity 108 and additional capacity 109.
[0012] Then, by driving the liquid crystal corresponding to each pixel unit 104, the desired display is achieved.
[0013] Therefore, with the LCD of the constitution moted above, as described above, source driver 102 uses the panel sample hold method by which image data is held on the display unit 101 side, With an LCD having this kind of source driver 102, wher the number of pixel units 104 in the horizontal scan direction becomes high, the image data write time is different for pixel unit 104 comected to the least significant digit of the shift register 110 and the pixel unit 104 connected to the most significant digit. Because of this, it is possible to make the mage data write time longer with the pixel units 104 connected to the upper digits of the shift register 110, but there is the problem that it is not possible to bave sufficient image data write time with the pixel units 104 comnected to the lower digits.
[0014] In light of that, to solve the problems noted above, we propose an LCD that uses a driver sample hold method source driver by which image data is held on the source driver side.
[0015] In the following, we will describe an LCD that ases the source driver of the driver sample hold method noted above. Furthermore, this LCD, with the exception of the source driver, has the same display unit 101 and gate driver 103 as that of the JCD shown in FIG. 12; therefore, in this description, we will describe only the source driver of the driver sample hold method.
[0016] The source driver of the driver sample hold method noted above has a constitution in which the output side of sampling hold circuit 114 of source driver 102 shown in FIG. 12 is connected to a transfer circuit 120 formed from transfer switch 116 , hold capacitor 117 , bufter circuit 118 , and transfer signal line 119.
[0017] In other words, at the cime point that data of one scan line has been sampled by sampling hold circuit 114 . a transfer signal is output from transfer signal line 119 by transfer circuit 120 , transfer switch 116 goes to an ON state, and after the data held in sampling capactor 112 of sampling hold circuit 114 has been simutaneously rransferred to hold capacitor 117 , sampling of the next scan period is performed.
[0018] In other words, during the period that data of the next one scan line is being sampled, the sampling data of the previous scan line held in hold capacitor 117 is continuously applied as source bus line signals to source bus lines 105 (FIG. 12) yia the buffer circuit 118.
[0019] In this way, by using the source driver of the driver sample hold method, even when there is a large number of pixel units 104 in the horizontal scan direction, it is possible to obtain sufficient write time for the image data to the respective pixel units $104 \ldots$. By doing this, it is possible to make the image data write time almost the same for the pixel unit 104 connected to the least significant digit of the shift register 110 and the pixel unit 104 connected to the most significant digit.
[0020] Furthemore, when the LCD is formed monolithically by a driver on the insulated substrate, the speed at which the shift register formed using p-SíTFT operates stably is about several MHz , and with the shift register inside the source driver of the LCD with a large number of pixels in the horizontal direction which requires high speed operation, a problem occurs of having the shift register operating speed be insufficient. [0021] In light of that, to reduce the operating speed of the shift register, for example, as shown in FIG. 14, we propose a source driver for which a plurality of systems, in this case four systems of shift registers 131 to 134, are provided, and by having the respective shift registers 131 to 134 operate at CK 1 to CK4, /CK 1 to /CK 4 of different phases, each level of shift register 131 to 134 is operated at low speed with the overall shift speed remaining as is. [0022] With the source driver having the four systems of shift registers 131 to 134 noted above, as shown in FiG. 15 , the start pulses SP^{2} are sequentially shifted by CK 1 to CK4 and /CK] to /CK4 and sampling pulses SMPI to SMP8 are output. Furtbermore, the width of SMPI to SMP8, which are the output of the four systems of shift registers 131 to 134, is four tixes that of when the shift register has one system, but the phase skew of SMP1 to SMP8 is the same as when the shift register has one system.
[0023]
[Problems the Invention Attempts to Solve] However, with the source driver having the four systens of shift registers 131 to 134 noted above, as shown in FIG. 15, each sampling pulse

SMP1 to SMP8 is in a mutually overlapping form. Because of this, when seen al a given moment, there are always eight sampling transistors $111 \ldots$ ON. In other words, the capacitance of eight sampling capacitors 112 .., has become the load via sampling transistors 111 for data signal line 113 or for the data signal output circuit Furthermore, there is wiring resistance on data signal lines 113 and ON resistance on sampling transistors 111 , and therefore the response of the data signals with each sampling capacitor 112 deteriorates with operation of a time constant of the RC integrating: circuit, and the waveform becomes corrupted compared with the original data signal.
[0024] With sampling of data signals done based on this kind of corrupted waveform, the band information that the data signal originally had is lost, so the display has low horizontal resolution, Furthemore, for the scan signals as well (not illustrated), depending on the constitution, two adjacent outputs of the gate shift register are overlapping, and for the pixel part as well, the same kind of problemt occurs as with the sampling unit of the source driver noted above,
[0025] To prevent this kind of problem, we propose a display device for which a video signal line is arranged for each shift register 131 to 134. In this case, for example, the Nth (SMP1) fall of the sampling pulse shown in FIG. 15 and the $\mathrm{N}+8^{\text {th }}$ (SMP9) rise have the same timing, but in actuality, due to signal waveform comption or delay, a phenomenon occurs of the $\mathrm{N}+8^{\text {th }}$ sampling transistor simultaneously turning ON before the Nth sampling transistor 111 goes completely OFF.
[0026] When this kind of phenomenon occurs, as described above, even if the video signal line is divided into a plurality of parts, the sampling data of the Nth sampling hold circuit 114 of the source driver is affected not only by the $\mathrm{N}+4$ sampling signal, but also by the $\mathrm{N}+8^{\text {th }}$ sampling data, and an adverse effect is given to the display as a ghost phenomenon or noise.
[0027] Furthermore, the phenomenon described above can also occur in the same manner with the display unit. Because of this, for example, the present applicant, in Patent Application No. H05-300537, proposed a display device for which the same video signal line is branched into a plurality of parts external to the drive circuit. In this way, by branching the same video signal inne into a plurality of parts external to the drive circuit, having a plurality of samping circuits comnected to one video signal line turning on simultaneously is eliminated, and as a result, comption of the signal in each video signal line is reduced, and the resolution of the display device is improved.
[0028] However, even when the same video signal line is simply divided into a plurality of parts, when divided into a plurality of parts on the same substrate as the panel, by means of contact resistance with a flexible substrate or the like, wiring resistance, and also output impedance of the
video sional supply source, it is possible to increase the time constaml, but it is not possible to totally inhibit the occurrence of ghosts. Also, even when the same video signal line is simply divided into a plarality outside the panel, by means of the aforementioned contact resistance with a flexible substrate or the like, wiring resistance, and also output impedance of the video signal supply source, it is possible to increase the time constant, but it is not possible to totally inhibit the occurrence of ghosts.
[0029] Also, when we look at sampling circuits connected to the same data signal lines constituting the source driver, there is OFF resistance in the sampling transistor; however, when it is not possible to make the OFF resistance of the sampling transistor sufficiently large, the problem occurs of the sampling data writen to the sampling capacitor going through the OFF resistance of the transistors and the data signal lines and having crosstalk with each other.
[0030] The present invention was created in light of the problem points noted above, and its objective is to provide a display device that reduces data signal corraption or data signal noise due to adjacent transistors being ON simultaneously and that reduces crosstalk due to insufficient or decreased transistor OFF characteristics, thus preventing a ghost phenomenon and also being able to realize high resolution display for which a decrease in horizontal resolution and a decrease in display quality due to crosstalk are inhibited.
[0031]
[Means for Solving the Problems] The display device of claim 1 is equipped with a plurality of data signal lines by which data signals are respectively supplied, a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled, a plurality of data bus lines respectively connected to the plurality of sampling circuits, a plurality of pixel units connected to the plurality of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein at least two of the plurality of data signal limes have the same data signals supplied, and are connected to different sampling circuits via respectively different buffer circuits.
[0032] The display device of clam 2 is the display device according to claim 1 , whercin of the plurality of sampling circuits, the sampling circuits for which the timing of the sampling is synchronized are connected to respectively different data signal lines, and there is no time overlap of the $O N$ time of the respective sampling circuits.
[0033] The display device of cham 3 is the display device according to claim 1 of 2 , wherein the buffer circuits are formed on the same substrate as the sampling circuits.
[0034] The display device of claim 4 is equipped with a pluratity of data signal tines by which data signals are respectively supplied, a plurality of sanipling circuits by which the data signals supplied from the plurality of data
signal lines are respectively sampled, a plurality of data bus lines respectively connected to the plurality of samping circuits, a plurality of pixel units connected to the plurality of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein the data signal line is divided into a plurality in the horizontal direction of the display, and each divided signal line is connected to sampling circuits via respectively different buffer circuits.
[0035] The display device of claim 5 is equipped with a plurality of data signal lines by which data signals are respectively supplied, a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled, a plurality of data bus lines respectively connected to the plurality of sampling circuits, a plurality of pixel units connected to the plurality of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein of the plurality of pixel units, respectively different data bus lines are connected to the plurality of pixel units adjacent in the column direction, and the same sampling circuits are connected via the buffer circuits to these data bus lines.
[0036] The display device of claim 6 is the display device according to claim $1,2,3,4$ or 5 , wherein the drive circuit and the image display unit consisting of a plurality of pixel units are formed monolithically on the same substrate.
[0037]
[Operation] With the constitution of claim 1 , by means of at least two of the plurality of data signal lines having the same data signals supplied, and being connected to different sampling circuits via respectively different buffer circuits, it is possible to have sparse electrical comections of adjacent sampling circuits by which the same data signals are supplied.
[0038] By doing this, even when adjacent sanming circuits for which the same data signals are supplied are in an ON state simultaneously, the other adjacent sampling circuits to which the same data signals are supplied are not affected by noise that occurs at this time. In other words, incorrect data signals due to the noise noted above are not sampled.
[0039] Also, since adjacent sampling circuits are not connected to the same data signal line, it is possible to reduce the load of one data signal line, so it is possible to reduce data signal corruption.
[0040] Therefore, with adjacent sampling circuits, there is no erroneous sampling due to data signal corruption, and there is no effect when mutually turning ON and OFF, so correct data signals are always sampled. Because it is possible to supply the sampled data signals to the data bus line. it is possible to reduce the crosstalk due to ON and OFF characteristic defects of sampling signals with the pixel units. Thus, it is possible to have a high-resolution display in which a decrease in display guality due to crosstalk is inhibited.
[0041] With the constitution of claim 2, sampling circuits for which the sampling timing is symehronized are connected to respectively different data signal lines, and by means of the ON period of the respective sampling circuits not overlapping, it is possible to reduce the noise due to other adjacent sampling circuits going to an ON state at the moment that another single sampling circuit goes to an OFF state.
[0042] With the constitution of claim 3, by means of the buffer circuits connected to the sampling circuits being formed on the same substrate as the sampling circuits, it is possible to suppress degradation of data signals caused by such things as wiring resistance and contact resistance of the flexible substrate or the like that comects the buffer circuits and the sampling circuits. It is also possible to suppress an increase in connection terminals for connecting the buffer circuits and the sampling circuits and possible to improve reliability with mounting.
[0043] With the constitution of claim 4, the data signal lines are divided into a plurality in the display horizontal direction and each divided signal line is connected to sampling cireuits via respectively different buffering circuits, so it is possible to reduce the load on the data signal line. By doing this, it is possible to reduce the resistance and capacitance of the data signal lines, so degradation of the data signals on the data signal line is further reduced, and it is possible to reduce noise during sampling.
$[0044]$ With the constitution of claim 5 , of the plurality of pixel units, respectively different data bus lines are connected to the plurality of pixel units adjacent in the column direction, and by the same sampling circuits being connected via the buffer circuits to these data bus lines, it is possible to inhibit interference of pixel units adjacent in the column direction. By doing this, it is possible to reduce crosstalk between pixel units with each other, and possible to improve display quality.
[0045] With the constitution of claim 6, by means of an inage display unit constituted from a plurality of pixel units being formed monolithically on the same substrate as the image display unit, it is possible to increase the pixel transistor drive force accompanying an increase in screen size, to reduce mounting costs of the drive IC, and the like.

[0046]

[Embodiments]
[Embodiment 1] Following is a description of an embodiment of the presert invention based on FIG. I through FIG. 3. In this embodiment, we will describe a liquid crystal display device (hereafter called LCD) as the display device, and the same is also true for the other embodiments described later.
[0047] As shown in FIG. 2, the LCD of this embodiment is constituted from a display urit 1 having a pluratity of pixel units 4 arranged in a matrix form, and a source driver 2 and a gate driver 3 as the drive circuit for driving each pixel unit 4. [0048] On display unit 1 , the following are arranged: a
plurality of source lines $5 .$. connected to the source driver 2 , and a plurality of gate bus lines $6 .$. comected to the gate driver 3, arranged so as to intersect orthogonally, and pixel units 4 arranged at the intersecting parts of the source bus lines 5 and the gate bus lines 6 . In other words, display unit 1 drives pixel units 4 by data signals such as video signals or the like from source driver 2 and scan signals from gate driver 3 , and the desired image is displayed by changing the liquid crystal orientation state of a hiquid crystal layer (not illustrated).
[0049] The aforementioned pixel units 4 are constituted by a pixel transistor 7 consisting of a TFT (Thin film transistor), a pixel capacity 8 , and an additional capacity 9 ; the gate terminals of the pixel transistors 7 are connected to gate bus lines 6 , the source terminals to source bus lines 5 , and the drain terminals to pixel capacity 8 and additional capacity 9. In other words, when pixel transistors 7 are tumed ON by the scan signal, the source bus line signals (video signals) from source bus line 5 are written to pixel capacity 8 and additional capacity 9.
[0050] The following are provided on source driver 2: a source shift register 10 , and a sampling hold circuit 11 for sampling data signals from a data signal line 12 by sampling pulses from source shift register 10 . The aforementioned data signal line 12 is branched into three within source dtiver 2 and connects to three data signal lines 16 to 18 via buffer circtits 13 to 15 . Furthernore, in this embodiment, the aforementioned buffer circuits 13 to 15 are provided inside source driver 2, but the invention is not limited to this, and these can also be provided externally. In other words, instead of being branched on the inside of source driver 2 , data signal line 12 can also be branched outside source driver 2.
[0051] Start pulses (SP) and drive clocks (CK, /CK) are input to the aforementioned source shift register 10 , and the input $S P$ are sequentially shifted according to the CK and /CK and output as sampling pulses to sampling bold circuit 11.
[0052] As shown in FlG. 1, data signals from data signal line 12 are supplied to sampling hold circuit 11 from three data signal lines 16 to 18 connected via buffer circuits 13 to 15 , and the aforementioned data signals are sampled according to sampling pulses from the aforementioned source shift register 10 . In other words, the same data signal is branched into three, and the respective signals are sampled individually.
[0053] The aforementioned sampling hold circuit 11 has sampling switches 19 to 23 formed from TFT for sequentially sampling data signals according to sampling pulses of source shift register 10, and hold capacitors 24 to 28 for holding the sampled data. One sampling circuit is constiluted from one sampling switch and one sampling capacitor connected to that.
[0054] Output lines 10a... from the aforementioned source shift register 10 are respectively connected to the gate terminals of the aforementioned sampling switches 19 to 23 , and data signal lines 16 to 18 branched from one data signal line 12 are respectively connected to the source temminal. In other words, data signal line 16 is connected to the source terminal of sampling switch 19 , data signal line 17 is connected to the source terminal of sampling switch 20 , data signal line 18 is comected to the source terminal of sampling switch 21 , and data signal line 16 is again connected to the source terminal of sampling switch 19 , and following, data signal lines 16 to 18 are repeatedly connected in sequence.
[0055] As described above, sampling switches 19 to 23 are connected so that sampling switches cornected to the same data signal line, for example the sampling switch 19 and the sampling switch 22 connected to the data signal line 16 , do not go to an ON state simultaneously. In other words, there are sparse mutual electrical connections of sampling switches 19 to 23.
[0056] Here, we will explain the operation of the LCD of the constitution noted above while referring to the operation timing chart of FIG. 3.
[0057] First, for one scan period, the SP input to source shift register 10 of source driver 2 are sequentially shifted by CK, /CK and output to sampling hold circuit 11 , and these become the sampling pulses of sampling hold circuit 11. Then, each sampling switch 19 to 23 is set to an ON state by the input sampling pusses, and the data signals of data signal lines 16 to 18 are sampled at the point in time that these sampling pulses are input.
[0058] Then, each data signal sampled by the sampling pulses is output to the source bus tines 5 as the source bus line signals held by the hold capacitors 24 to 28 .
[0059] Meanwhile, the output of each row in gate driver 3 is output sequentially to gate bus lines 6 as scan signals (gate bus line signals), pixel transistor 7 connected to selected gate bus lines $6 \ldots$ is turned on, and at that point in time, the source bus line signals from the aforementioned source bus line 5 of one scan period are sequentially written as image data to pixel capacity 8 and additional capacity 9.
[0060] Then, the desired display is created by driving liquid crystal corresponding to each pixel unit 4.
[0061] In the next scan period, source bus line signals for which the voltage polarity is inverted are written as image data to pixel capacity 8 and additional capacity 9 . In this way, each time the scan period switches, the voltage polarity of the source bus line signal is reversed and this is written as image data to pixel capacity 8 and additional capacity 9 , and each time, the desired display is created by drjving the liquid crystal corresponding to each pixel unit 4.

Page 7 of 40
[0062] Therefore, as shown in FlG. 3, with the aforementioned source driver 2, when the SP are input, the phase is skewed by $1 / 2$ only by the input timing of CK and /CK, and sampling pulses SMPI to SMP5 are output. By doing this, each sampling pulse SMP1 to SMP5 has a time overlap, so two adjacent sampling switches are always in an ON state.
[0063] However, in this embodiment, the aforementioned sampling switches 19 to 23 have sparse mutual electric connections. In other words, two adjacent sampling switches are not connected to the same data signal line, so the load of one data signal line can be reduced from two sampling capacitors to one. As a result, it is possible to reduce data signal corruption caused by data signal line load.
[0064] Furthermore, each sampling pulse is skewed by a half phase each, so, as shown in FIG. 3, the sampling pulse SMP1 fall and the sampling pulse SMP3 rise have a time overlap. In actuality, there is an occurrence of time for which the sampling transistor 18 and the sampling transistor 21 are in an ON state simultaneously due to sampling pulse corruption or delay.
[0065] In such a case, if sampling transistor 19 and sampling transistor 21 are connected to the same data signal line, when the sampling transistor 19 goes OFF, there are cases when there is an effect of noise that occurs when sampling transistor 21 turns ON , so incorrect data signals are sampled.
[0066] However, with this embodiment, as shown in FIG. 1, sampling transistor 19 and sampling transistor 21 are connected to respectively different data signal lines, so it is possible to sample correct data signals without having an effect of noise due to the aforementioned kind of sampling pulse corruption or delay.
[0067] in this way, without being affected by mutual ON and OFF times between adjacent sampling transistors, it is possible to always supply correct data signals as source bus line signals to source bus line 5 , so it is possible to reduce the ghost phenomenon.
[0068] Thus, the LCD of this embodiment is capable of doing high-resolution display for which a decrease in display quality due to the ghost phenomenon caused by data signal corruption or noise is inhibited.
[0069] With this embodiment, so as to have the electrical connections be as sparse as possible for sampling switches 19 to 23 , after data signal line 12 is branched into three, data signals are supplied to sampling switches 19 to 23 from data signal lines 16 to 18 via buffer circuits 13 to 15 . [0070] However, the invention is not limited to the aforementioned going via buffer circuits 13 to 15 , and it is also possible, for example, to not provide buffer circuits

13 to 15 , and after branching the data sigual line 12 into three, to supply data signals directly to sampling switches 19 to 23 . In this case, compared to when going via buffer circuits 13 to 15 , it is more difficult to have electrical sparseness for sampling switches 19 to 23, so the cffect is reduced by half.
[0071] Also, with this embodiment, the sampling method in source driver 2 is the panel sample hold method by which image data as data signals are held on the display unit 1 side, but this can be similarly applied also with a source driver of the driver sample hold method by which image data is held on the source driver side, and the same effect can be obtained. In this case, by using the source driver of the driver sample hold method, it is possible to have sufficient image data write time with pixel units comnected to the source driver.
[0072] [Embodiment 2] Following is an explanation of another embodiment of the present invention based on FIG. 4. For convenience of the explanation, the same code numbers are given to members having the same function as those of embodiment 1 , and their description will be omitted. The same is true for each embodiment hereinafter. Also, with this embodiment, we will describe a case of applying the constitution applied to source driver 2 of embodiment 1 to display unit 1 of the LCD.
[0073] With the LCD of this embodiment, as shown in FIG. 4, source bus lines 5 connected to source driver 2 of embodiment 1 are branched into three in front of display unit 1 , and these are connected respectively to source bus lines 34 to 36 via three buffer circuits 31 to 33. \ln FIG. 4, the lateral direction is the row direction, and the vertical direction is the column direction.
[0074] The source terminals of pixe] transistors 7 arranged in the columin difection are connected to the aforementioned source bus lines 34 to 36 such that pixel transistors 7 adjacent in the column direction are not connected to the same source bus line.
[0075] The operation of the LCD of this embodiment is the same as that of the LCD of embodiment 1 other than that the source bus line signals supplied to the display unit 1 are supplied branched into three.
[0076] In the constitution noted above, pixel transistors 7 adjacent in the column divection are connected to mutually independent source bus lines, so there is no mutual effect even when pixel transistors 7 are turned ON and OFF. Because of this, adjacent pixel units 4... are not affected by noise that occurs when mutually adjacent pixel transistors 7 are turned ON and OFF, so it is possible to obtain a high-resolution image without the ghost phenomenon.
[0077] It is also possible to constitute the aforementioned source driver 2 as shown in FIG. I of embodiment 1. In this case, it is possible to supply data signals without corruption or delay to display unit 1 , and in fact in display unit 1 , data signals are written without corruption or delay, so it is possible to provide an LCD with further improved display quality.
[0078] [Embodiment 3] Following is an explanation of yet another embodiment of the present invention based on FIG. 5 and FIG. 6.
[0079] The display device of this embodiment is equipped with a source driver 41 as shown in FIG. 5 , instead of the source driver 2 shown in FIG. 1 of embodiment 1
[0080] As shown in FIG. 5, source driver 41 is constituted from four systems of shift registers 42 to 45 , AND circuits 46 to 50 for obtaining an AND operation based on the output from these shift registers 42 to 45 , and sampling hold circuit 11 for which sampling pulses are supplied from AND circuits 46 to 50 .
[0081] The aforementioned AND circuits 46 to 50 are connected to inverters 46 a to 50 a that respectively invert the output from the shift register of one digit later, and a logical product of the output of shift registers 42 to 45 and the inverted signals of the output of one digit later is obtained; the logical product obtained is supplied as the sampling pulse to sampling hold circuit 11.
[0082] In addition to sampling pulses, data signals such as video signals and the like from data signal lime 51 are supplied to sampling hold circuit 11.
[0083] The aforementioned data signal line 51, after being branched into two either inside the display unit 1 or outside source driver 41, is comnected to data signal lines 54 and 55 via the buffer circuits 52 and 53. Data signal line 54 is connected to each source teminal of sampling switches 19 , 21 , and 23 , and data signal line 54 is connected to each source terminal of sampling switches 20 and 22. By doing this, sampling switches 19 to 23 are comnected alternately to data signal lines 54 and 55 , and there are sparse mutual electrical connections.
[0084] Here, we will describe the operation of source driver 41 with the constitution noted above. As shown in FIG. 6, the aforementioned four systems of shift registers 42 to 45 have $S P$ input by CK and /CK of respectively different phases. At this time, the output signals SR1 to SR9 of each shift register 42 to 45 are pulses made to have the phase shifted by $1 / 8$ each.
[0085] The aformentioned shift register outpul SRi and inversion signal of the shift register output SRj+1 one digit later are input to AND circuits 46 to 50 . Then, the logical products obtained with AND circuits 46 to 50 are input as sampling pulses SMP1 to 3 to sampling switches 19 to 23 of sampling hold circute 11 .
[0086] Meanwhile, the data signals supplied from data signal lime 51 are respectively input via alternately conncoted data signal lines 54 and 55 to sampling swithes 19 to 23.
[0087] Also, the data signals sampled by sampling pulses SMP : to SMP3 are output to source bus lines $5 \ldots$ as source bus line signals held by the hold capacitors 24 to 28.
[0088] With the constitution noted above, as shown in FIG. 6, sampling pulses SMP1 to 3 are short pulses for which there is no mutual time overlap with AND circuits 46 to 50 for the output SRi of the shift registers 42 and 43 . By doing this, two or more sampling pulses do not go in an ON s.tate simultancously.
[0089] In that way, of sampling switches 19 to 23 , only one is always in an ON state, so the load seen from data signal lines 54 and 55 is that of one sampling capacitor. Therefore, compared to the source driver constituted by four systems of shift registers not using an AND circuit, for example the source driver shown in the prior art, it is possible to reduce the load of the data signal line to $1 / 8$, so it is possible to reduce data signal corruption. Also, the since it is possible to reduce the load of the data signal line to $1 / 8$, it is possible to also reduce the time constant of the output CR from the shift register to $1 / 8$, so it is possible to make the data signal corruption smaller than conventionally.
[0090] However, for sampling pulses SMP1 to 3, in actuality, due to delay, comption or the like of the data signal, the SMPi ($i=$ an integer) fall and the SMPi +1 rise are not simultaneous, and a period occurs when there is a slight overlap, However, with this embodiment, adjacent sampling switches are connected to different data signal lines 54 and 55, so it is possible to not be alfected by noise of the data signal lines 54 and 55 that occurs from adjacent sampling switches being in an ON state simultaneously.
[0091] Therefore, with the LCD of this embodiment, it is possible to reduce data signal corruption due to the data signal line load, and also possible to reduce the ghost phenomenon due to data signal noise due to adjacent transistors being in an ON state simultaneously.
[0092] Thus, it is possible to have high-resolution display for which the decrease in display quality due to the ghost phenomenon that occurs caused by data signal cormuption and data signal noise is inhibited.
[0093] Futhermore, in this embodiment, we explained a case with four systems for the shiff registers, but the invention is not limited to this, and it is sufficient to have at least two systems.
[0094] Also, with this embodiment, AND circuits were used to obtain logical products from the shift register output, but the invention is not limited th this, and for example, it is also possible to use a NOR circuit or the like, and furthennore, when using an AND of SRi and SRi + 7. it is not particularly necessary to have an inverter connected at the input level of the AND circuit.
[0095] Furthermore, with this embodiment, so as to be as electrically sparsc as possible for sampling switches 19 to 23 in source driver 4], after data signal line 51 is branched into two, data signals are supplied to sampling switches 19 to 23 from data signal lines 54 and 55 via buffer circuits 52 and 53 .
[0096] However, this is not limited to the aforementioned going via the buffer circuits 52 and 53 , and for example, it is also possible to supply data signals directly to sampling switches 19 to 23 after branching data signal line 5] into two without providing buffer circuits 52 and 53 . In such a case, it is more difficult to be elecirically sparse for sampling switches 19 to 23 than in the case of going via buffer circuits 52 and 53 , and therefore the effect is reduced by half.
[0097] Also, with this embodiment, the sampling method in source driver 41 is the panel sample bold method by which image data is held as data signals on the display unit 1 side; however, it is possible to similarly apply this to the source driver of the driver sample hold method by which image data is held on the source driver side, and it is possible to obtain the same effects. In such a case, by using the source driver of the driver sample hold method, it is possible to have sufficient write time for image data with the pixel units comnected to the source driver.
[0098] [Embodiment 4] In the following, we will explain yet another embodiment of the present invention based on FIG. 7. In this embodment, we will explain a case of applying the constitution applied to the source driver 41 of embodiment 3 to the signal input with display unit 1 of the LCD.
[0099] In the LCD of this embodiment, as shown in FIG. 7 , source bus lines $5 \ldots$ connected to source driver 41 of embodiment 3 are divided into two in fiont of display unit 1 , and the constitution is such that connection is done to the respective source bus lines 58 and 59 via two buffer circuits 56 and 57. In FIG. 7, the lateral direction is the row direction and the vertical direction is the column direction.
[0100] The source terminals of pixel transistors 7 arranged in the column direction are connected to source bus lines 58 and 59 such that pixel transistors 7 adjacent to each other in the column direction are not comected to the same source bus line,
[0101] Also, gate bus lines 6... are connected via AND circuits $60 \ldots$ to gate driver 3 , and inverters 60 a... that invert the signal output to AND circuit 60 of the respective one row later are connected to those AND circuits $60 \ldots$ By means of the above-mentioned AND circuit 60 , the AND operation of the output of gate driver 3 and the inverted signal of the output from gate driver 3
to AND circuit 60 of one row later is obtained, and the obtained logical product is output to gate bus lines 6 as gate signals.
[0102] The operation of the LCD in this embodiment is the same as the operation of source driver 41 of embodiment 3 except that the source bus line signal supplied to display unit 1 is branched into two, and furthermore, the gate signals supplied from gate driver 3 are outpur via the AND circuit.
[0103] In the constitution noted above, the gate signals that control whether the pixel transistors 7 are ON or OFF are output to gate bus line 6 via AND circuit 60 , so the gate signals do not have time overlap. By doing this, the adjacent pixel units $4 \ldots$ are not affected by noise due to mutually adjacent pixel transistors 7 being ON or OFF, and it is possible to obtain a high-resolution image with no ghost phenomenon.
[0104] Source driver 51 can also be constituted as shown in F1G. 1 of embodiment 1. In such a case, it is possible to supply data signals with no corruption or delay to display unit 1 , and with the display unit 1 , because data signals are written with no corruption or delay, it is possible to provide an LCD with even better display quality.
[0105] [Embodiment 5] Following is an explanation of yet another embodiment of the present invention based on

FIG. 8.

[0106] The LCD of this embodiment is equipped with a source driver 61 as shown in FIG. 8, instead of the source driver 2 shown in FIG. 1 of embodiment 1.
[0107] As shown in FIG. 8, source driver 61 is constituted equipped with source shift register 10 , sampling hold circuit 11, and data signal line 12 .
[0108] Buffer circuits. 62 to 66 are connected to data signal line 12, and the output side of these buffer circuits 62 to 66 are connected to the respective source teminals of sampling switches 19 to 23 of sampling hold circuit 11. In other words, the data signals output from data signal line 12 are supplied to sampling switches 19 to 23 via buffer circuits 62 to 66 , and are respectively held in sampling capacitors 24 to 27.
[0109] By doing this, because sampling switches 19 to 23 are connected yia data signal line 12 and buffer circuits 62 to 66 , here are sparse electrical connections by means of these buffer circuits 62 to 66.
[0110] Here we will explain the operation of source driver 61 with the constitution noted above. The $\mathbb{S P}$ input to the aforementioned source shift register 10 is sequentially shifted according to the CK and /CK input to the source shift register 10 and output. Then, the output pulses of each digit are sequentially input as sampling pulses to the gate terminals of the respective sampling switches 19 to 23 in sampling hold circuit 11.
[0111] Meanwhile, data signals from data signal line 12 are input to the source terminals of sampling switches 19 to 23 via buffer circuits 62 to 66 .
[0112] Therefore, sampling switches 19 to 23 are made to go to an ON state by the sampling pulses supplied from the aforementioned source shift register 10 , and the data signals output from data signal line 12 are held in the sampling capacitors 24 to 27.
[0113] However, by means of buffer circuits 13 to 15 and buffer circuits 52 and 53 arranged in source driver 2 and source driver 41 described in embodiments 1 and 3 , the load is matched with the data signal line wiring load and the sampling capacitor load, so it is necessary to have the buffer circuit be a circuit of a size that can handle the aforementioned load.
[0114] However, buffer circuits 62 to 66 of this embodiment are respectively connected to one each of sampling capacitors 24 to 27 is, so the load for one of buffer circuits 62 to 66 is only one sampling capacitor. Because of that, it is possible to make the circuil smaller than for buffer circuits 13 to 15 and buffer circuits 52 and 53 described in embodiments 1 and 3.
[0115] Also, in embodiments 1 and 3 , when failure occurs with one buffer circuit, data signals are not supplied for each one of three or one per two source bus lines. Because of this, the problem occurs of having a display defect for $1 / 3$ or $1 / 2$ of the overall display in display unit 1 .
[0116] However, with this embodiment, when failure occurs with buffer circuits 62 to 66 , data signals stop being supplied only to the source bus lines connected to the buffer circuit where failure has occurred; therefore, it is also possible to suppress display defects to be only for source bus lines connected to buffer circuits for which failure has occurred.
[0117] Furthermore, for adjacent sampling switches 19 to 23, there is sparse electrical connection by buffer circuits 62 to 66 , so for example, even when the OFF resistance of sampling transistors 19 to 23 is decreased by irradiation of light from outside, it is possible to prevent crosstalk of data signals held in sampling transistors 24 to 27 via the OFF resistance of the mutually adjacent sampling switches 19 to 23 connected to the same data signal line 12 .
[0118] Typically, inside the source driver, a plurality of signal wires are aranged in addition to the clata signal lines, so there is a decrease in the precision of the sampling data due to noise riding via the wiring capacitance of each signal wiring, or via the capacitance of the intersecting part of wires that intersect, or other parasitic capacitance.
[0119] However, with source driver 61 of this embodiment, there is only onte data signal line 12 , so if is possible to reduce the effect of noise riding on data signal line 12 .
[0120] In this way, with mutually adjacent sampling transistors, there is no effect when mutual turning ON and Off, and it is possibble to always supply accurate data signals to source bus lines 5 as source bus line signals.
[0121] Therefore, with the LCD of this embodiment, it is possible to have a high-resolution display for which there is a reduction in the ghost phenomenon due to corruption of the data signal waveform caused by the load on data signal line 12 or to data signal noise caused by adjacent transistors being in an ON state simultaneously, and to suppress a decrease in display quality due to crosstalk that occurs due to the occurrence of insufficiency or a decrease in the OFF characteristics of the sampling transistors.
[0122] Furthermore, with this embodiment, the sampling method in source driver 61 was the panel sample hold method for which image data is held as data signals on the display unit I side; however, it is also possible to similarly apply this with the source driver of the driver sample hold method for which image data is held on the source driver side, and possible to obtain the same effects. In such a case, by using the source driver of the driver sample hold method, it is possible to obtain sufficient write time for the image data with the pixel units connected to the source driver.
[0123] [Embodiment 6] In the following we will explain yet another embodiment of the present invention based on FIG. 9. In this embodiment, we will explain a case in which the constitution used for source driver 61 of embodinent 5 is applied to the signal input with display unit 1 of the LCD. [0124] As shown in FIG. 9, the LCD of this embodiment has buffer circuits $67 \ldots$ connected to source bus lines $5 \ldots$ that are connected to source driver 61 ; the source terminals of the pixel transistors 7 are connected to the output side of these buffer circuits 67.... In FIG. 9, the lateral direction is the row direction and the vertical direction is the colomn direction.
[0125] In other words, a plarality of pixel transistors 7 are connected in the column direction to the same source bus line 5 , but the respective pixel transistors 7 are connected to the source bus line 5 so as to be mutually electrically sparse by means of buffer circuil 67 .
[0126] Furthermore, the operation of the LCD of this embodiment is the same as the operation of source driver 41 of embodiment 5 except that the source bus line signals are supplied to pixel transistors 7 of the display unit I via the buffer circuits $67 \ldots$...
[0127] In the constitution noted aboves, the source bus line signals from the source bus lines 5 are respectively supplied via the buffer circuits $67 \ldots$ to the plurality of pixel transistors $7 .$. connected on the same source bus line 5 , so the source bus line signals
do not interfere with each other. Therefore, the adjacent pixel units 4 are not affected by noise that occurs when pixel transistors 7 are mutually in an ON state, and in fact it is possible to obtain a high-resolution image for which crosstalk due to the OFF resistance of the pixel transistors is inluibited.
[0128] It is also possible to constitute the aforementioned source driver 61 as shown in $\mathrm{FJG}_{1} 1$ of embodiment 1. In this case, it is possible to supply data signals without corruption or delay to display unit 1 , and in display unit 1 as well, data signals are written without cortuption or delay, so it is possible to provide an LCD with even better display quality.
[0129] [Embodiment 7] In the following we explain yet anotleer embodiment of the present invention based on FIG. 10. For convenience of the explanation, elements having the same function as each of the previously noted embodiments are given the same code numbers, and their description is omitted.
[0130] As shown in FIG. 10, the LCD of this embodiment is constituted by a display unit 1 having a plurality of pixel units $4 \ldots$, and a source driver 71 and the gate driver 3 that act as the drive circuit that drives the pixel unit 4. In FIG. 10, the lateral direction is the row direction, and the vertical direction is the column direction.
[0131] The above-mentioned source driver 71 is constituted by source shif register 10, AND circuits 72 and 72 for obtaining the logical product of the output from this source skift register 10, data signal lines 73 and 74 for supplying data signals of different polarities (video signals), and sampling hold circuit 11 for sampling data signals according to the output from source shift register 10 .
[0132] Inverters 72 a and 72 a are connected to the abovementioned AND circuits 72 and 72 so that the output of the next digit of the source shift register 10 is inverted and input. In other words, AND circuits 72 obtain the logical product of the output of source shift register 10 and the inverted signal of the output input to AND circuit 72 of the next digit inverted by inverter 72a, and this logical product is output to sampling bold circuit 11 as sampling pulses.
[0133] Also, data signals 73 and 74 have mutually different polarities and data signals for which the polarity has been inverted for each field are supplied via buffer circuits 75 and 76 from a data signal generaing circut (not illustrated).
[0134] The above-mentioned data signal line 73 is connected to the source terminals of sampling switches 19 and 21 of the sampling hold circuit 11, and data signal line 74 is connected to the source terminals of the sampling switches 20 and 22 of sampling hold circuit 11 . [0135] 'Theretore, sampling puises from the same AND circuit 72 are supplicd to the source terminals of the above-mentioned sampling switches 19 and 20 , and samplitg pulses from the same AND circuit 72 are supplied to the source terminals of sampling switches 21 and 22. Furthermore, AND circuits 72 supply output.
from source shift register 10 to sampling hold circuit 11 using a pulse width so as to have no time overlap.
[0136] in the following we will explain the operation of source driver 71 of the constitution noted above. The SP input to the source shif register 10 noted above is sequentially shifted according to the drive clocks CK and /CK input to the source shift register 10 and output. Then, the output pulse of each digit is input to AND circuit 72. Subsequently, the logical product of the output of source shift register 10 and the inverted signal of the next digit output Sri +1 is obtained in AND circuit 72, and the value of this logical operation is output as sarnpling pulses to sampling hold circuit it.
[0137] The output from the above-mentioned AND circuit 72 is sequentally input as sampling pulses to the respective gate teminals of sampling switches 19 to 23 in sampling hold circuit 11 .
[0138] Meanwhite, the data sigmals from data signal line 12 are input to the source terminals of sampling switches 19 to 23 via buffer circuits 62 to 66 .
[0139] Therefore, when the sampling pulse output from the above-mentioned source shift register 10 is input to the gate terminals of sampling switches 19 to 23, the data signal output from the data signal line 12 is held in sampling capacitors 24 to 27 .
[0140] The held data signals are input to the alternately connected pixel transistors $7 .$. for every other gate bus line $6 \ldots$ via the buffer circuit 77 from source bus lines 5 arranged at the teft and right sides of pixel units $4 \ldots$
[0141] With source driver 61 of the constitution noted above, becalse the output from source shift register 10 is input to the sampling hold circuit 11 via AND circuits $72 \ldots$, there is a relalionship between the sampling pulse width being small and there not being any mutual time overlap. Because of this, the load sent from data signal lines 73 and 74 is smaller than in the prior art, so it is possible to make the data signal corruption smaller than in the prion art.
[0142] Also, gate driver 3 is constituted by a gate shif register $3 a$, AND circuits $81 \ldots$ for obtaining the logical product from the output of this gate shift register 3a.
[0143] In the above-mentioned $A N D$ circuits $81 \ldots$, inverters $81 \mathrm{a} \ldots$ are comected so that the output of the next row of the gate shift register 3 a is inverted and input. In other words, an AND circuit 81 obtains the logical product of the output of gate shift register 3a and the inversion signals oblained by inverting at inverter 81a the output input to AND circuit 81 of the next row, and supplies this logical product as a gate signal (scan signal) to the gate bus lines 6.... The AND circuit 81 makes the output from the gate shift register 3 a have a pulse width so as not to have time overlap, and supplies this to the pixel transistors 7....
[0144] Therefore, because the gate signals input to pixel transistors $7 .$. of display unit 1 from the gate driver 3 are the logical products obtained from the output of the gate shift register 3a, there is a relationship of the gate signals not having mutual time overlap. Because of this, it is possible to prevent the effect of noise due to pixel transistors $7 .$. . adjacent in the column direction being ON simultaneously.
[0145] Also, by means of pixel transistors 7... adjacent in the column direction being connected to different source bus lines $5 \ldots$, even if there is a period for which the gate bus line signal Gi and the gate bus line signal $\mathrm{Gi}+1$ of the next row are in an ON state simultaneously due to signal delay or comuption, a decrease in the precision of the source bus line signals sampled at pixel capacity $8 \ldots$ and additional capacity $9 .$. caused noise that occurs when pixel transistors $7 . .$. adjacent in the column direction are ON simultaneously is prevented.
[0146] Typically, the signals applied to source bus line 5 have the polarity of the applied voltage inverted for every scan period to prevent a decrease in reliability due to $D C$ voltage being applied to the liquid crystal. In such a case, if there is a period when pixel transistors $7 .$. adjacent in the column direction are in an $O N$ state simultaneously, a problem accurs of the decrease in the precision of the source bus line data sampled at the pixel capacity 8 ... becoming even greater.
[0147] However, with this embodiment, the pixel transistors $7 \ldots$ adjacent in the column direction have the source bus line signals supplied via different source bus lines $5 \ldots$ provided at both sides of the respective pixel units $4 \ldots$... so it is possible to eliminate a period when pixel transistors 7... adjacent in the column direction are in an $O N$ state simultaneously, and as a result, it is possible to prevent a decrease in the precision of the source bus line data sampled at the pixel capacity $8 . .$.
[0148] Also, typically, when the polarity of the voltage applied to source bus lines 5 is inverted every scan period, a source bus line 5 charged during a certain scan period has to be charged to the reverse polarity at the next scan period, and so a large drive force is required to drive the source bus lines $5 \ldots$ As a result, the problem occurs of an increase in the overall power consumption of the source diviver due to the power required to drive the source bus lines $5 \ldots$.
[0149] However, with thes embodiment, data signals with different polarity set in advance are alternately supplied to source bus lines $5, \ldots$ so it is sufficient to supply data signals with the same polarity to source bus lines $5 \ldots$ arranged at both sides of pixel units 4, so that it is not necessary to supply signals of reverse polarity to the polariry supplied to the source bus line $5 \ldots$ every scan period. By doing this, it is possible to reduce the power required for driving the source bus lines $5 \ldots$, so it is possible to reduce the overall power consumption of the source driver 61 .
[0150] With this embodiment, two source bus lines $5 \ldots$ are arranged at both sides of the pixel units 4..., but the invention is not limited to this, and for example, it is also possible to have two source bus lines 5 and 5 arranged at one side of the pixel units 4 . However, in such a case, the form will be such that the source bus lines 5 and the pixel transistors 7 are connected with the source bus lines 5 intersecting every other gate bus line $6 \ldots$, resulting in an effect of noise from the parasitic capacitance of the intersecting part and the like, and the effect of this is to be unable to exbibit the same level of effect as when the source bus lines 5 and 5 are arranged at both sides of the pixel units 4.
[0151] [Embodiment 8] In the following we will explain yet another embodiment of the present invention based on FlG. 11. The LCD of this embodinent has the same constitution for the display unit and the gate driver as for the other embodiments, so we will describe the source driver.
[0152] As shown in FIG. 11 , in the source driver of the LCD of this embodiment, there are data signal lines $82 \ldots$ for supplying data signals of a plurality of video signals or the like, and source terminals of sampling switches $86 \ldots$ consisting of transistors such as TFT of the like of sampling hold circuit 85 that are connected to those data signal lines 82....
[01537 A sampling timing control circuit 84 for controlling the sampling timing of the data signals is connected to the gate terminals of the sampling switches 86 .
[0154] Data signal lines 82 are connected to the data signal generating circuit (not illustrated) via the buffer circuit 83. These data signal lines 82 are connected one each to sampling switch 86 . By doing this, because the load on data signal lines $82 \ldots$ is only one sampling switch 86 , it is possible to lower the impedance of the data signal line before dividing even more than when a plurality of sampling switches $86 \ldots$ are connected to one data signal line 82.
[0155] In other words, by dividing data signals output from the above-mentioned data signal generating circuit into a plurality in the display horizontal direction, it is possible to lower the impedance of the data signal line before dividing particularly the capacitance component, to about $1 / \mathrm{N}$ (N: number of divisions). By doing this, it is possible to significantly improve the time constant of the data signal line, so it is possible to suppress the occurrence of crosstalk. [0156] Furthernore, because it is possible to input to display unit I the input of the data signals to the display unit 1 from the vicinity of the sampling hold circuit 85, it is possible to significantly improve the time constant by doing this as well. [0157] This embodiment can be applied to each of the embodiments noted above, and by doing this, it is possible to have a display with even less occurrence of crosstalk and higher resolution.
[0158] Above, by means of embodiments 1 through 8 , the respective basic configurations were shown; it is also possible to change the circuit configuration, for example, to change when constituting in a so-called decader type circuit without using the shift register described previously for the sampling pulse generating circuit.
[0159] Also, for example, when the capacity of the sampling capacitor connected to the sampling transistor is small, it is possible to supply the same data signals via the buffer circuit to each shift register system.
[0160] Furthermore, with embodiments 1 to 8 noted above, it is also possible to monolithically form on the same substrate the source driver and the gate driver as the drive circuit including the sampling circuits, and the display unit consisting of pixel units or the like as the image display unit. In such a case, it is possible to improve the drive force of the pixel transistor that accompanies larger screen size, and to reduce the drive [C mounting costs and the like.
[0161]
[Effect of the Invention] The display device of the invention of claim 1, as described above, has a constitution equipped with a plurality of data signal lines by which data signals are respectively supplied, a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled, a plurality of
data bus lines respectively connected to the plurality of sampling circuits, a plurality of pixel units connected to the plurality of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein at least two of the plurality of data signal lines have the same data signals supplied, and are comected to different sampling circuits via respectively different buffer circuits.
[0162] By doing this, by means of adjacent sampling circuits, there is no effect during mutual tuming ON and OFF, and it is possible to reduce the ghost phenomenon by always sampling correct data signals. It is also possible to reduce crosstalk due to the OFF resistance of the transistors of the pixel unit and the sampling circuit unit.
[0163] Therefore, an effeck is exhibited of it being possible to have a high-resolution display for which a decrease in display quality due to ghosts and crosstalk is inhibited.
[0164] The display device of the invention of claim 2, as described above, is the display device according to chaim 1, wherein of the plurality of sampling circuits, the sampling circuits for which the timing of the sampling is synchronized are connected to respectively different data signal lines, and there is no time overlap of the ON time of the respective sampling circuits.
[0165] By doing this, in addition to the effects of claim I, the effect is exhibited of it being possible to reduce the noise that occurs due to another sampling circuit being in an ON state at the moment that the sampling circuit goes to the OFF siate. [0166] The display device of the invention of claim 3, as described above, is the display device according to claim 1 or 2, wherein the buffer circuits are formed on the same substrate as the sampling circuits.

10167 By doing this, it is possible to suppress the degradation of data signals related to contact resistance due to the fiexible substrate or the like that connects the buffer circuits and the sampling circuits. it is also possible to suppress an increase in the commection terminals for connecting the buffer circuits and the sampling circuits, exhibiting an effect of being abie to improve reliability with mounting.
[0168] The display device of the invention of claim 4, as described above, is equipped with a plurality of data signal lines by which data signals are respectively supplied, a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled, a plurality of data bus lines respectively connected to the plurality of sampling circuits, a plurality of pixel units connected to the pluralify of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein the data signal line is divided into a plurality in the horizontal direction of the display, and each divided signal line is connected to sampling eircuits via respectively different buffer circuits.
[0169] By doing this, it is possible to reduce data signal line resistance and capacitance, tbus making it possible to further reduce degradation of the data signals with the data signal line and to reduce noise during sampling.
[0170] The display device of the invention of claim 5, as described above, is equipped with a plurality of data signal lines by which data signals are respectively supplied, a plurality of sampling circuits by which the data signals supplied from the plurality of data signal lines are respectively sampled, a plurality of data bus lines respectively connected to the plurality of sampling circuits, a plurality of pixel units connected to the plusality of data bus lines and arranged in matrix form, and a drive circuit including the sampling circuits for driving the data bus lines, wherein of the plurality of pixel units, respectively different data bus lines are connected to the plurality of pixel units adjacent in the column direction, and the same sampling circuits are connected via the buffer circuits to these data bus lines.
[0171] By doing this, it is possible to inhibit interference of pixel units adjacent in the column direction, so it is possible to reduce crosstakk between pixel units, and as a result, an effect is exhibited of being able to improve the display quality.
[0172] The display device of the invention of claim 6, as described above, is the display device according to claim 1 , 2,3 . 4 or 5 , wherein a drive circuit and an image display unit consisting of the plurality of pixel units are formed monolithically on the same substrate.
[0]73] By doing this, an effect is exhibited of being able to improve the drive force of the pixel transistors accompanying larger screen size, and to peduce the drive 16 mounting cost and the like.
[Brief Description of the Drawings]
[FIG.]] is a schematic constitution block diagram of the source driver of the LCD of an embodiment of the present invention.
[FIG. 2] is a schematic constitution block diagram of an
LCD equipped with the source driver shown in FIG. 1.
[FIG. 3] is an operation timing chart of the source driver shown in FIG. 1.
[FIG. 4] is a schematic constitution block diagram of an LCD of another embodiment of the present invention.
[FIG. 5] is a schematic constitution block diagram of the source driver of an LCD of yer another embodiment of the present invention.
$[F J G, 6]$ is an operation timing chart of the source driver shown in FIG. S.
[FIG. 7] is a schematic constitution block diagram of an LCD of yet another embodiment of the present invention. [FIG. 8] is a schematic constitution block diagram of the source driver of an LCD of yet another embodiment of the present invention.
[FIG. 9] is a schematic constitution block diagram of LCD of yet another embodiment of the present invention.
[FIG. 10] is a schematic constitution block diagram of an LCD of yet another embodiment of the present invention. [FIG. 11] is a schematic constitution block diagram of the source driver of an LCD of yet another embodiment of the present invention.
[FIG. 12] is a schematic constitution block diagram of a prior art LCD.
[FIG. 13] is a schematic constitution block diagram of a source driver equipped with the LCD shown in FIG. 12. [FIG. 14] is a schematic constitution block diagram of amother prior art source driver.
[FIG. 15] is an operation timing chart of the source driver shown in FIG. 14.

[Explanation of Codes]	
1	Display unit (image dispiay unit)
2	Source driver (driver circuit)
3	Gate driver (driver circuit)
4	Pixel unit
5	Source bus line (drive circuit)
6	Gate bus line (drive circuit)
10	Source shif register
11	Sampling hold circuit
12	Data signal line
13 to 15	Buffer circuit
16 to 18	Data signal line
19 to 23	Sampling switch (sampling circuit)
24 to 28	Sampling capacitor (sampling circuit)
41	Source driver (drive circuit)
51	Data signal line
52,53	Buffer circuit
54,55	Data signal line
61	Source driver (drive circuit)
62 to 66	Buffer circuit
54,55	Data signal line
73,74	Data signal line
75 to 80	Buffer circuit

 Display unit (image display unit)
 Source driver (driver circuit)
 Gate driver (diver circuit)
 Pixel unit
 Source bus line (drive circuit)
 Gate bus line (drive eircuit)
 Source shift register
 Sampling hold circuit
 Data signal line
 Buffer circuit
 Data signal tine
 Sampling switch (sampling circuit)
 Sampling capacitor (sampling circuit)
 Source driver (drive circuit)
 Data signal line
 Buffer circuit
 Data signal line
 Source driver (drive circuit)
 Buffer circuit
 Data signal line
 Data signal line
 Buffer circuit
 FIG. 11

FIG. 1

FIG. 3

FIG. 2

FIG. 4

(16) Unexamined Patent Publication H08-305322

FIG. 5

FIG. 6

FIG. 7

(17) Unexamined Patent Publication H08-305322

FIG. 8

FIG. 13

FIG. 9

FIG. 14

FIG. 10

FIG. 12

(19) Unexamined Patent Publication H08-305322

FIG. 15

Page 20 of 40

Page 21 of 40

IPR2015-00887
Exhibit 2006

（54）【発明の名稀］表示装㦠
（57）【典線1
【構成】データ信号線12からの同ーのデータ信号 が，バッフッ回路13～15を介しで3体のデータ浐皆線16～18に供給された後，サンプルホールド回路1 1のサンプリングスイッチ19～23に供給される。サ ングルホールトルド回路 1 1 k 将ンプリングされたデータ信号洔，ソースバスライン $5 \cdots$ に供給を桃る。
【効果】なまりやノすズの少宗いデータ信号を正嘧に サンプリングすることができるので，水平解像度の低下
 なる。

Page 22 of 40

【特許誚求の航国】

一夕信号線と，
上記稪数のデータータ信号線から供粭されるデータタ名信号をそ れぞれサングリングする複数のサングリング回路と，上記複数のサングリング回路にをれそれ接続される複数 のデータバスラインと，
上記䋛数のデータバスラインに接続されると欺に，マト リクス状に涫されたた複数の絵素部と，
上記サンプリング回路を合み，上記データバスラインを駆動する験㗨回路とを備え，
上記複数のデータ多信号線の少なくとも2本は，同一デー夕信号が䌙されると共に，それでれが異なるバッファ回路を介して異なるサンプリング回路に接統されている ことを特徽とする表示装置。
【棓求項2】上記複数のザンプリング回路のらち，サン グリングのタタミングが同期するサンプリング回路は， それぞれ異なるデータ信号線に接続されると共に，それ ぞれのサンプリング回路のON期間が時間的に重なりを

【請求項3】上記バッファ回路は，上記サングリング回路と同一の基板上に形咸されていること家特徴とする請求項1または2記載の表示装置。
【請求項4】データ多信号がそれでれ供給される複数のデ一夕信号線と，
 れぞれサンプリングする複数のサンプリング回路と，上記複数のサンプリング回路にそれぞれ接続される複数 のデータバスラインと，
上記緮数のデータバスラインに接緑されると共に，マト リクス状に配された複数の桧蕠部と，上記けングリング回路を合み，上記データバスラインを騕動する罻動回路とを備え，
上記データ信号線は，表示のつ水平方向で複数に分断され ると共に，分断をれた各々の信号線は，それでれ異なる バッファ回路初介してサンプリング回路に接続されてい ることを特徴とする表示装㯰。
一夕信号線と，
上記複数のデータ信号線から供給されるデータ信号をそ れでれサングリングする複数のサンプリング回路と，上記複数めサングリング回路にそれぞれ接続される袮数 のデータバスラインと，
上詑複数のデータバスラャンに接続されると共に，マト リクズ状に配されだ複数の絵菨部と，
上記サンプリング回路を含み，上記データバスラインを龭䣦する䣖動回路とを僙え，
部には，それぞれ暴なるデータバスラインが接続される と共に，これらデータバスラインには，バッファ回路を

介して同一のサンプリング回路が接続されていることを特徴とする哀示装置。
 る酮像表示部とが司一基板上汇モノリシックに形成され でいること孝特徴とする請求嗄 1，2，3，4 また榺5記械の表示装置。
【発明の詳細な說明】
〔0001】
【苼業上か利用分野】本発明は，液晶表示装摱等の表示装㟟に関字るものである。
【0002】
【従来の技術】従来より，表示装堆として，侧えば液唱表示装惪（以下，LCDと称する）虫，図12に示すよ うに，椱数の絵索部 104 •䒚有する表示部 101 と，各総素部 104 を験動する駆動回路としてのソースドラ イバ102数よびゲートドライバ103とで構成されて いる。
〔0003］上記各殓素部 1 0 4 …は，ソースドライバ 102に接続された褑数のソースバスライン105…と ダートドライバ103に接繶された皧数のゲートバスラ イン106…との直交する部分にそれそれ配䚑されてね
上でマトリクス状となる。
【0004］また，桧索部104は，TFT Thin 「ilin trans1stor）からなる絵素トランジスタ107と，絵㗬容量108と，付加容量109とで樽成され，総素トラ ンジスタ1070グ゙ート端子はゲートバスライン106 に，ソース端子はソースバスライン105k，ドレイン
 ている。
【0005】ソースドライバ102は，シフトレジスタ 110と，トランジスタからなるサングリングスイッチ 111，サンプリングコンデンサ112，データ信咢線 113 等で構成され，上記サンブリンダスイッチ11 1，サンク゚リングコンデンサ112，データ信导線11 3棹よびソースバスライン105からサンプルホールド回路」14を形成している。
〔0006］上䞏シフトレジスタ110に洔，スタート パルス（SP），駆䡃タロック（CK，／CK）が入力 され，入力されたSP法，CK，／CKに応じて塬次シ フトしてサングルホールド回路114に出力される。〔0007〕グートドライバ103は，シフトレジスタ 1．15教有し，各ゲートバスライン106…に走査信昜 を順次出力するようになっている。
【0008】䊾，上記表示部101，ソースドライバ1 02 放よびグートドライバ103は，同一基板上にモノ リシックに杉成されている場合と，表示部101のみが絶䋓䁷板上に形成されている場合とがある。
「0009】ここで，上記搆成の表示裝置の動作につい て以ドに說明する。まず，ソースドラチバ102のシフ

トレジスタ1 1 0 K入力されたS Pは，CK，CKK よりり順次シフトしてサンブルボールド可路114k出力 され，サンク゚ルホールド回路114でロサンプリングパ ルスとなる。そして，入力さ札たサンプリングパルスに よってサンプリングスイッチ111がロN状態となり，
このサングリングパルスが入力されたた時点でのデータ信荡線113のデータ信号がサンプリングされる。
【0010】そして，サングリングバルスによりサンザ リングされたデータ信号絀，サンブリングツンデンサ 1 12 にホールドされソースバスライン信号としてソース バスライン105に出力される。
［0011］一方，ゲートドライバ1030シフトレジ スタ115になける备桁の出力は，走榅信号（ゲートバ スライン信号）として順次ゲートバスライン106…に击力され，選択されたゲートバスライン106に等がる絵素トランジスタ107をONL，そか時点で0ツース バスライン信号を画像データとして絵索溶量 108 蛒よ び付加溶量 109 に順次書き込んでいく。
100121 そして，各絵素部104纪対応した液昆を政動させることにより所望する表示を行うようになって いる。
「0013】し施がって，上記横成のLCDでは，上速 したように，ソースドライバ102は，表示部101側 で酓像データを保持するパネルサンプルホールド方式と なっている。このようなりースドライバ102虑有する
 なるとシフトレジスタ110の最下位柎に墅がる絵䒺部 104 と最上位桁とに繋がる絵素部 104 とでは，画像 データの喜込時間が異なる。このため，シフトレジスタ 1100 上位梅《繋がる緰尞部 104 では画像データツ書込時間を長くすることができるが，下位绗に㢣がる絵
 なるという問題が生じる。
〔0014】そごで，上記の問題を解決するため゙る，ソ ースドライバ則で面像データを保持するドライバサンプ ルホールド方式のソースドライン゙を唖脚したLCDが提案せれている。
［0015］以下に，上記ドシイバサンブルホールド方式のソースドライバを使用したLCDについて部明す る。尚，このLCDでは，ソースドライバ以外恃図12 に示すL，CDと同様の表示部 1 0 1 お高でずートドライ バ1。3尝有するものとし，ことでの訜明は，ドライバ サンプルホールド方式のソースドライバについてのみ行 う。
【0016】上記ドライバサンブルホールド方式のソー スドライバは，図12に示すソースドライバ102のサ ンブルホールド回路1140出力側に，图13に示すよ らに，トランスファースイッチ116，ボールドコンデ ンサ117，バッファ回路118，トランスファー信号線119からなるトランスファー回路120が按続され

た耩成となっている。
起孪線分のデータがサングリングされた時点で，トラン スファー固路120にてトランスファー信呂線110か らトランスファー信辰が出力され，トランスフッースイ ッチ116がON状態となり，サンプルホールド回路1 140サンプリングコンデンサ112に保持されたデー タが一斎にホールドコンデンサ117に転送された後，次の走査期間のサンプリングが行われる。
［0018］つまり，次の1走査線分のデータたサンプ リングしている期間，本ールドコンデンサ117に保持 された前回の1走査線分のサンブリンダデータがソース バスライン信号として，バッファ回路118を介してン ースバスライン105（図12）に日加され続ける。
【o 019】このように，ドライバサンプルホールド方式のソースドライバを使炜することで，水平走查方向の䋡素部104の数が多くなりても，それぞれの殓菜部1 $04 \cdots へ$ の面像データの書込洔間か十分にとれる。これ によって，シフトレジスタ110の最下值桁に縏がる絵素部104と最上位标に繁がる絵蒵部104との間にお。 いて，匪像データの書达時間をほぼほしだなすることがで きる。
〔0020］さらに，上記LCDが縕緑基板上にドライ バモノリシックで形成されている場合，p－S 1 T FT存用いて捱成されるシフトレジスタを安定して動作をせ友速度詩数 MHz 程度であり，高速動作が要求される水平方間の絵素数が多いLCDのソースドライバ内かシン トレジスタでは，シフトレジスタの動作速度が不足する といった不县合が生じる。
［0021］そこで，シフトレジスタの動作速度芭低減 するために，例えば睍14に示すように，複数䂆統，こ の場合4系統のシフトレジスタ131～134を設け て，それぞれoシフトレレ゙スタ131～134には，位相の異なるCK1～CK4，／CK1～ノCK4で動体 させることにより，全体のシフト速度はそのむまで，各段のシクトレジスタ131～134を低速で動作させる ソースドライバが提案されている。
〔0022〕上記4系統のシフトレジスタ131～13 4を有するソースドラクバで娃，図15に京すように， スタートパルスSPをCK1～CK4，CK $1 \sim$ C K 4 によって買次シフトし，サンプリングパルスSMP I～SMP8を出力するようになっている。尚，4 乿統 のシフトレジスタ131～1340拈力をあるSMP1 ～SMP8の幅は，シフトレジスタが1采統の時の4倍 となっているが，各SMP1～SMP8の位相のずれは シワトレジスタが1䒺䋨の時と同じである。【0023】
【発明が解決しようとする課題】ところが，上記4采統 のシフトレジスタ131～134を有するソースドラト バでは，图15に示すように，各サンプリングパルスS

MP1～SMP8が互いにオーバーラップする形とな
 リングトランジスタ111…がONとなりている。つ⿱世木安 り，データ隹号線113，或いはデータ信号出力回路に
 8個のサンプリングコンデンサ112…の容䘄がその負
 が，また，サンブリンダトランジスタ111にはON抵抗が存在ずるため，各サンプリングコンデンサ112で のデーータ信号はRC積分回路の時定数の作用で応答が悪化し，厌のデータ信号と比べて波形のななったちのとな第。
【0024】このようになまった波形をもとになされる データ信号のサンプリングでは，元々データ信号が有す る常域请報が失われているので，水平解像度の低い表前 となる。せらん，走査信号においても（図示しない），
權娍によってはゲートシントレジスタの膦接する2つの出力がオーバーラッブして柯り絵素部分についても上記 したソースドライバのサンプリング部と同様の不具合を生じる。
【0 0 2 5 】 O ような不具合を防ぐために，各シフト レジスタ131～134毎に，映像信㕺線家㥢設した表示装㧽が提案されている。已の場合，侧え紱，図15に示すサンブリングパルスのN蕃目（SMP1）o直ち下 がりと，N＋8番目（SMP9）の立ち上がりとが同一 のタイミングとなっているが，㘹際には信号波形のなま りや選延により，N番目のサングリングトランジスタ1 11 が完全にOFFとなる前にN＋8番目のサンブリン グトランジスタ111 が同㭙にONする現象が生じる。【0026】このよううな現象が生じると，上述のよう に，映像信号線を複数に分けたとしても，ソースドライ バのN采目のサンプルホールド回路114のサンプリン ダデータはN＋4のサングリング信営のみならず，N＋ 8蹎目のサンプリングデータによっても影響を受けるこ とになり，ゴースト現象或いはノイズとして表示に悪影蕞を与天ることになる。
【0027】をらに，上述の現象は，表示部でも同様に起こり得る。このため，例えば，本体䖦䝄人は，特願平 5－300537号において，同一の抰像信号線を駆䵯回路の外部で複数に分妓した表示装置を提案している。 このように，同一の映像信号線を酗動回路の外部で複数 に分岐することを，一本の映像裏写線に接続されたサン プリング回路が局時に被数固ONとなるこどがなく，こ れによって，各映像信号線中の信受のなまりな小さく

40028】ところで，同一の映像信号線学単に複数記分割しても，パネルと同一基板上で複数に分割している場合には，フレキシブル基板符との接触抵抗，配線抵抗，更には誎像信枵供跲源の出力インピーダンスによ り，時定数を大きくはできるが，ゴーストの発生を完全

に拁えることばるきない。客た，パネル外部で間一の晎
 ル基板等との接触抵抗，配線抵抗，更には映像偣号供給源の出力インビーダンスにより，時定数を大きくはでき るが，ゴーストの発生を゙完全に推えることばできない。「0029）また，ソースドライバ完樽成する同一のデ一タ信号線に䌘が名サンプリング回路についてみて教る と，サンプリングトランジスタにはOFF抵抗が存在す るが，サンブリングトランジスタのOFE抵抗が十分に大きくないと，サンプリングコンデンサに骕き込まれて いるザンプリングデータがトランジスタのOFF抵抗， データ信号線を通してお互いにクロストークするという不具合が生じる。
【0030】本発明呩，上記の各問題虞に鑑みなされた ものであって，そし自的统，䋃接するトランジスタが間時にONするこをれよる，データ信号のなまりや，デー タ信号のノイズを低㨔させると些に，トシンジスタの○
 L，ゴースト現象を防过すると共に，水平解像度の低下
 の素示を業現し得る敖示装算を提供することにある。【0031】
 データ信号がそれぞれて供給される複数のデーダータ信号線 と，占記複数のデータ信号線から供給されるデータ信号 をそれぞれサングリングする袘数め将ンプリング回路 と，上記複数めサンプリング回路にをれぞれ接続される緮数のデータバスラインと，も記複数のデータバスライ
絵甞部と，上記サンプリング国路を含み，上㳙データバ
夕信号線の少なくとも2本は，同一データ信号が供紿さ れると共に，それぞすが異なるバッファ回路な介して異 なるサンプリング回路に接続されていることを特徽とし ている。
示装算にあるて，複数のサンプリング回路のうち，サン プリングの多イミングが同期するサングリング国路は， それぞれ暴なるデータ缞号線に按続さ机ると共に，それ ぞれのサンプリング回路の 0 N 期閏が時間的に電なりを挂たないこと⿱⿱⿱卄一八巳土灬特徴としている。

 グ回路と同一の基板上に形成ざれていること突特微とし ている。
【0034】請求垍4の表示装㯰は，データ僖号がそれ ぞれ供給される複数のデータ詹号線と，上記複数のデー名信号線から供給されでるデーーが信号をそれでれサンプリ ングする複数のサンク゚リング围路と，上記複数のサンク゚ リング回路にそれぞれ续続をれる複数のデータバスライ

ンと，上記䙉数のデータバスラインに按続きれると共
 プリング回路を点み，上記データバスラインを䅇動する駇毁回路とを備え，上記データ信号線は，表示の水平方向で緮数に分断されると共に，分断された各々の敛呂線 ほ，それぞれ䁲なるバッファ回路を介してシンプリング回路に接続されていることを特徴としている。
【0035】請求項5の表示裚斀は，データ信呂が礼 ぞれ供給される褯数のデータ信费線と，上記複数のデー夕信号線から供給されるデ…夕信号をそれしそれサンブリ ングする複数のサンブリング回路と，上幅愎数の将ンプ リング回路にそれぞれ接続される緮数のデータバスラキ こと，上記笪数のデータバスラインに接紶されると共 に，マトリクス状に配された複数の絵萣部と，上記サン ブリング回路を含み，上記データバスラインを駆動する
䧛接すふ複数0絵素部には，それぞれ異なるデータバス ラインが接続されると共た，これらデータバスラインに は，バッファ回路を杹して同一かサンプリング回路が接続をれていることを特徵ししている。
 3，4 \＆たは5記戴の表示溒置に扎いて，駆動回路と，複数の緰素部からなる画像䓯荷部とが同——基板ににモノ リシックに形成されていることを特徴ししている。【0037】
【作用】諱求項1の栱成代よれば，複数かデータ信号線 の少なくとをと本は，同一データ信号が㤨給されてと共 に，それぞれが異なるバッファ回路を介して異なるサン ワ゚リング回路に接続されていることで，同ー－データ信号 が供給される隣接するサンプリング回路の電気的度繋が りを䠅にすることができる。
【0038】これにより，同一データ信号が供給される隣接するサンプリング回路が同胿にON状態となって も，このときに発生するノなズによって，同一データ信空が倛緰される䛧の隣接するサングリング回路に影響を与无ないようになる。䀠古，上記ノイズをよって講った データ信号がサンプリングされないようになる。
【0039】耍た，膦接するサンプリング回路が同一デ
信号線の角䰜を低減することができるので，データ信号 のなまりを低诫することがどきる。
10040）したがって，隣接ずるサングリング回路で は，データ信咢のなまりによる誤サンク゚リングが興く，目つ鳥いにON•OFF時の影䋩を受ず，常に正㗲なデ一タ信陆をサンプリンダし，サンプリングしたデーダタ狺呂を゙だータバスラインに装給することができるので，絵菜部でのサンプリング回路のON•OFF特性の不良に よるクロストークを低滅をぜることができる。よって，
義示を可能としている。

〔0041】㨬求項2 の構成によれれば，サンブリングの タイ゙ミングが网期首备サンプリング回路が，それぞれ買 なるデータ㷌号線に接続されると共に，それでれのサン ゲリング国鉻のON期間が東ならないこどで，－－ ンブリング回路がOFF類熊となる弾間に他のサンプリ ング四路がON状態となることにより生じ舞ノプズゆ低減を関ることができる。
路《接続されたバッファ回路が，サンンブリング回路と同一の基㬵上に形成されていることで，バッファ回路とサ ンブリング回路とを摘続まるつレキジフル基板等の接䑲抵抗，配線抵抗等によるデータ信号の岁化な抽制するこ とができる。末た，バッフア回路とサンプリング回路と を接続するための接続端子の增加を脚制でき，実装に伴 ら篗賴性を向上させることが「こるる。

は，㝨示の承平方間で複数に分斷されると共に，分断さ れた各々の信罗線は，それぞれ異なるバックア回路を介 してサンブリング回路に接続されていることで，データ僕号線に対する負荷を低減ずることができる。これによ り，データ信号線の括执および容量を低滅することがで
字低滅させ，サンプリング時のノイズの低淢を図ること ができる。
【0044】靖求項5の構成によれで，複数の絵素部の
 なるデータバスライン思敨読をれると共に，これらデー タバスラインには，バッファ回路を介して同一のサンブ リング回路が接続されていることで，列方向は隣犃する殓素部の干渉を抑沉ることができる。これにより，絵萝部同士のクロストーク家低滅することができるので，表示品位を聞上させることができる。
数の絵菜部からなる兆像表示部とが同一基衵上汇そノリ シックに形成をれていることで，大面面化に訛う面素ト シンジスタの駆䡃句向上や，駆動 ICの妻装コストの低減等を図ることができる。
【0046］
［実施列］
〔実施例1」本発明の一実施例について図1ないし図3 に䑁づいて說时すれば，以下の通りである。尚，本実施
秝ずる）について説明し，後述する他の寒施例に拘いて も同様どする。
【0047】本実施例炸係るLCDは，図2に示すよう に，マトリクス状に配された複数の絵蒵部 $4 \cdots$ 灰有する
 ソースドライバ2およびゲートドライバ3とから構成を れている。
【0048】表示部1には，ソースドライバ2に接続を

Page 26 of 40

れた複数のソースバスライン5…と，ゲートドライバ3 に接続された複数のゲートバスライン6…とが目交す等

古，表示部 1 は，ソースドライバ2からの胦像信号等の データ僕号とゲートドライバ3からの走杰信帯とにより

 いる。
【0049】上記絵妻部 4 \＆，TFT（Thin film trans istor）からなる絵素トランジスタ7と，絵素签量 8 を，付加容量9とで構成され，桧素トランジスタ7のゲート端子はゲートバスライン6に，ソース端子はソースバス
 9に接続されている。即ち，絵素トランジスタ7は，走査信层によってONされると，絵素容量8扔よひ付加容蝹 9 Kソースバスシイン 5 からのソースバスライン信誓 （映像信号）が喜き込むれるようになっている。
【0050】ソースドライバ2に姑，ソースシフトレジ スタ10と，ソースジクトレジスタ10からのサン゙ザリ ングパルスによってデータ信号線 1.2 からのデータ熔号 をサンプリングするサンプルホールド回路11とが設昉 られている。商，上記ごータ名房号線 12 は，ソースドラ イバ2内肉3つに分岐され，バッファ回路13～15を介して3つのデータ信楽線 16－18に接続されてい る。岁，本実施例では，上記バッファ回路13～15を ソースドライバ2肉に設けたが，これに限定される光の でなく，外部に設けても良い。即ち，データ信号線12 をソースドライバ2内を分侾するのではなく，ソースド ライバ20外部で分岐しても度い。
〔0051］上記ソースシフトレジスタ10には，スタ ートパルス（SP），駆動クロック（CK，／CK）が入力をれ，入力をれたSPは，CK，／CKに応じて䫆次シフトし，サンブリングパルスとしてサンプルホール ド回路11に出力ざれて。
［0052］サンプルホールド回路11には，図1に示 すように，データ信号線12からのデータ言号がバッフ つ回路13～15を介して接続された3つかデータ嶉号線16～18から供給され，上記ソースシフトレジスタ 10 からのサンプリンダパルスに応じて上記データ信号 をサンプリングするようになのている。即ち，同一デー
 プリングされる。
〔0053】上記サンプルホールド回路11紋，ソース シフトレジスタ10めサンプリングパルスを応じてデー タ信号を順次サンブリングするTFTからなるサンブリ ングスイッチ19～23と，サンブリングしたデータ学保持ずるホールドコンデン妆24～28とを有してい
る。尚，一つ0サングリングスイッチと，それに接続さ れた一つのサンプリングコンデンサとで一つのサンブリ

ング国路を橉成している。
100541上記サンプリングスイッチ 19～230タグ一ト端子には，上記ソースシフトレジスタ10からか法力綄10a…かそれぞれ接続され，ソース端子には，一本のデータ信号繶 12 から分歧されたデー文信号線 16 ～18がをれでれ接続されている。つまり，サンプリン グスヘッチ19のソース端子には，データ信号䋏16が接続され，サンプリングスイッチ200リソース端子に は，データ信号線17が接続され，サンプリングスイッ
 れ，再びサンブリングスイッチ19のソース端子には，
線16～18が絽り返して接続される。
〔00551以上のように，よ記サンプリングスイッチ 19～23は，同一のデータ信呂線に繋がるサンプリン
 ングスイッヂ 19とサンプリングスイッチ22とが同時 にON状態とならないように接続されている。つまり，条サンプリングスイッチ19～23は，䭼いに電気的な䘽がりが疎になっている。
【0056】ここで，上記構成のLCDの動作につね て，図3の犕作タイミングチャートを愛照しながら以下 と説明する。
【0057】まず，1走省期間について，ソースドライ バ2のソースシフトレジスタ10に入力されたSPは， CK，／CKKより頑次シフトしてサンプルホールド回路11に出力され，サンプルホールド回路11でのサン プリングパルスとなる。そして，入力されたサンプリン グパルスによって各サンプリングスタッチ19～23が ON状態となり，このサンプリングバルスが大力された時虎でのデータ信号線 $16 \sim 180$ データ偏号がサング リングされる。
【0058】そして，サンプリングパルスによりサング リングされた各データ唐言は，各本ールドコンデンサ2 4～28で保持されンースバスライン信のとしてソース バスライン5…纪出力される。
［0059］一方，ゲートドライバ3に話ける各行の出力は，走譱信号（ゲートバスライン信呂）として制次グ ートバスライン6…に眚力をれ，選択ざれだ゙ートバス ライン6に繋がる絵素トランジスタ7たONL，その時占で，1䞨查罟間の上記ソースバスライン5からのソー スバスライン信镸を画絽データとして絵素容量8および付加容量9に順次棿き込んでいく。
 させなことにより所望する表示を符う。
 ソースバスライン扁号を面像データとして絵素容畳8お よび拊加容量9に菑き込む。このようにして，走查期間 が切り替わる等に，ソースバスライン信乓の電任極性を反転させて画像データとして絵索容量8㕲よび付加容量

Page 27 of 40

【0062】したがって，上記ソースドライバ2は，図 3に示すように，SPが入力されると，CK，ノCKの入力タイミングによって，1／2だけ位相がずれるよう にしてサングリングパルスSMP1～SMP5を出力す而ようになっている。これにより，各サンク゚リングパル スSMP1～SMP5は，維間的な重なり有するの
で，隣接する2つのサングリングスイッヂが㗬にON状態となっている。
【0063】ところが，本実施例では，上記サンプリン
 なっている，即ち㴹接する2つのサングリングスイッチ が間一データ信覧線に接続されていないので，一本のデ一夕信号線の負倚を，サンブリングコンデンサ2つ分か ら1つ分に低減することができる。この結果，データ信号總の負荷によるデーク信号のなまりを低娍することが できる。
【0064】さらた，各サンプリングパルスは1／2ず つ位相がずれているので，図3に示守ように，サンプリ ングパルスSMP10宣ち下がりと，サンプリングパル スSMP30立ち上がりと㮐時間的仙重なりがないよう になっている。実祭には，サンブリングパルスのなまり や選延によって，サンプリングトランジスタ19とサン プリングトランジスタ21とが同時にON状態となる時間が生じている。
【0065】この場合，サンプリングトランジスタ19 とサンプリングトランジスタ21とが同一のデータ信号線に接続されていれば，サンプリンダトランジスダタ19 がOFFとなる時に，サンク゚リングトランジスタ21が ONとなる時に生じるノイズの影響を受けて詋ったデー夕信号がサンプリングされるととになる。
〔0066］しかしなから，本実施峢では，図1に示す ように，サンプリングトランジスタ19とサンプリング トランジスタ21とが，それでれ睪なるデータ信号線に接続をれているので，上記したようなザンク゚リングパル スのなぁりや㟟延により坐じるノイズの影響を受けず に，正旄なデータ信号をサンプリングすることが可能と なる。
〔0067】このように，謪接するサンプリングトラン
 ず，常に正確なデータ晋号をソースバスライン信号とし てソースバスライン5に倛給することができるので，ゴ ースト現象を低減できる。
〔0068］よって，本実施例のLCDる，データ信罢 のなまりやノイズが原团のゴースト現象による表示品位 の低下を㧕えた高触像度の表示を可能としている。
〔0069］傥，本実施例では，ソースドライバ2Kお はる各サンプリンダスイッチ19～23がぎきだけ䉓気的な䡠かりが㻋になるように，データ信号綵12を3

つに分被した後，バッファ回路13～15を介してデー多信号線16～18から，データ信号学各サンソ゚リング スイッチ19～23に供給している。
100701しかしながら，上記したバッファ回路13 ～15を分することに险定されず，眀えばバッファ回路 13～15を敬けないでデータ信号線12を3つに分岐 した後，データ信号を值接各サンプリングスイッチ19 ～23に供給しても夏い。この場合，バッファ回路13 $~ 15$ を介した場合より屯，各サンプリングスイッチ1 9－23は䨖気的に柾になり難いので，その効果怙半滅 する。
【0071】ませ，本実施栵では，ソースドライバ2に扔㚈希サンプリング方式は，表示部1側でデータ信号と しての画像データを保持するパネルササンブルホールド方式となっているがリースドライバ側で国像データを保持 するドライバサンプルホールド方式のソースドラやバに おいても同緑に適用で突，同粎の効果を得ることができ る。この場合，ドライバサングルホールド方式のソース ドライバを使用することで，ソースドライバに繋がる緰素部では画像データの書込時間を十分にとることができ る。
〔00721（実施列2〕本発明の他の実施例について図4に基づいて說明すれば，以下の通りである。尚，説明の便官上，前記実施例1と同一の機能を有する部材に ふ，同一の符号を付記し，その競明を省略する。以下の各実湤例についても同様とする。また，本実施列では，上記実施例1 0 ソースドライバ2に適用した構成をLC Dの表示部1に適用した場合について說明する。
〔0073】本実施例に係百LCDは，上記実施列1の ソースドライバ2に接続されたソースバスライン $5 \cdots$
が，図4に示すように，表示部1の手前で，3つに分岐 し，3つのバッファ回路31～33を介してそれぞれり
 いて，庄右方間を行方向，上下方向を列方问とする。〔0074］上記ソースバスライン34～36にな，列方问に哯㯰された絵素トランジスタ7のソース端子が，列方向に隣接する絵素トランジスタ7同士が同一のソー スバスラインに輅がらなように按続されている。
〔0075】尚，本実施例におもう LCDO示部1に倛緰されるソースゴスシイン信号が3つに分岐 されて供給される他は，上記実施到 1 OLCDと同様で ある。
蓀トランジスタ7同土は，互い紹のソースバスライン
 FFLても，互いに影響を及胝し合わない。これによっ て，隣接する険素部 $4 \cdots$ 时，互いに隣接する絵素トラン ジスタフがON•OFFするときに生じるノイズの影䔔
得ることができる。

〔0077】また，上語ソースドライバ2を，上記寒施
來りや遅延の無いデータ信学を表示部さに供給でき，し か悉，表示呫1にあいて，データ信号をなありや運延な く兟を込妇るので，さらK表示品位の向上したLCDを提供することができる。
【0078】〔尖施例3〕本発明のさらに咃の点旅例に ついて図5 おおよび図6に基づいて說明すすれば，以下の通 りである。
【0079】本害施例の表示斌㯰は，倠記害施例1の図 1に前すソースドライバ2に代えて，図5に禾すよう に，ソースドライバ41を備えている。
【0080】ソースドライバ41 は，図5を示すよう
に，4係統のシフトレジスタ42～45と，このシフト レジスタム2～45からの出力に基づいて諭理積を得る ためのAND圆路46～50と，AND回路46～50 からのサンプリングパルスが供給されるサングルホール ド回路11とから構成されている。
〔0081】上記AND回路46～50ほ，それぞれー つ後の桁めシフトレジスタからの出力を反転するインバ一夕46a～50aが接続されですり，各シフトレジス夕 4 2～45の出力と，一つ後の析の出力の反㣏信号と の諎理㑴を得て，得られた論理積をサンプリングパルス としてサンプルホールド回路 1 1 に供給するようになっ ている
【0082】サングルホールド国路11にな，サンプリ ングパルスめ他衣，デー多信罧線51からの映像信号等 のデータ僕重が供給されるようになっている。
 るいはソースドライバ 4 1 外部にて 2 つに分岐された後，バックア回路52•53を介してデータ信穹線54 －55に接続むれてている。デー父信呂線 54 は，サンプ リングスイッチ19•21•23の各ソース端まに接続 され，また，データ信号線54娃，サンブリングスイッ ヂ20•22の各ソース端子に摘絩されている。これに より，サングリングスイッチ19～23話，交互にデー夕信号線54－55に接続され，馬いに電気的な輜がり が嶨になっている。
【0084】ここで，上記檌成のソースドライバ生10動作について以下に說明する。上設の4䒺統のシフトレ ジス父 42～45kは，図6に示すように，SP，それ ぞれ位相の㕌なるCK，ノCKが入力される。このを き，各シフトレジスタ42～45の出力信号SR1～S R の结，位相が1／8ずつずれてシフトするようなパル スとなっている。
〔0085］上記ジフトレジスタ出力SRIと，そのむ とつ後の桁のシフトレジスタ嵒力SR1＋1の反転信号 とは，AND回路46～50に入力される。そして，A ND回路46～50にて得られた㻅理積をサンプリング パルスSMP1～3としてサンプルホールド回路110

各サンプリングスイッチ19～23に入力される。
［0086］一方，上記サンプリングスイッヂ19～2

 ぞれ入力される。
【0087】そして，サンプリングパルスSMP1～S MP3によ゙りサンプリングされた各データ信号は，各本一ルドコンデン州24～28で保持されソースバスティ ン信塄としてソースバスライン5…に出力をれる。
【0088】上記の構或において，上記サンプリングパ ルスSMP1～3标，図6に示すようそ，シフトレジス タ42～430お力SR1をAND回路 $46 \sim 50$ にて互いに時間的に重なりのない短いパルスとなっている。 これにより，同時にるつ以上のサンプリングパルスがO N状態とならない。
［0089】このように，常にサンプリングスイッチ1 －ー 2 3 のらち，一つつみがON状態となってい考の で，データ信呂線54－55からみた貝荷は，サンプリ ンゲコンデンサーつ分である。したがって，AND回路 を用いずに 4 䒺統のシフトレジスタ構成したソースドラ イバ，例えば従来の技術に示したソースドランバに比べ て，データ信号線の責荷を1／8汇俟滅できるので，デ一タ㒏号のなまりを低滅することができる。また，デー夕信号線の負苟を1／8に低滅できることから，シフト レジスタからの出力CRの時定数も $1 / 8$ にすることが できふかで，データ摘号のなまりを諩来よりも小さくて をる。
［00901ところで，各サンブリンダパルスSMPI ～3は，实際にはデータ信号の逯延やなきり等により， SMPi（i＝整数）の近ち下がりとSMPi＋1の立 ち上がりとが同時ではなく，若干オーバーラツブする期
 サンプリングスイッチが異なるデーダ娮累線54•55 に接続をれているので，膦合うサンプリングスイッチが䂈時にON状態となることから生じるデージタ信号線の5 4．5 5 リノイズの影響を受けなくすることができる。【0091】したがつて，本実施例のLCDは，データ信呂線の刍荷によるデータ信号のなまりを低蔵すること ができると共に，偝接するトランジスタが同時にON状態と庶ることによるデータ信号のノイズによるごースト現象の低淢ができる。
（00921よって，データ信号のなまり，データ信号 のノイズが原医で起こるゴースト現象による表示品住の低下教揤えた高解像度の表示を可能としている。
「0093］尚，本実旅例では，シフロレジスタが4系統である場合について說明したが，これに限定されるも のではなく，少宗くとも2弯統以上であれば良い。
（0094）また，本実施例では，シフトレジスタの出力から論理漬を德るために，AND回路を開いたが，こ れに限定されるものではなく，例えに゙NOR回路等を用

いても良く，さらに，SRiをSRi＋7のANDをと る埸合，AND回路の天功段罟続をれたインバータ类特に必要としない。
【0095】さらに，本実旅例では，ソースドライバ4 1比扫ける各サンブリングスイッチ19～23ができ名
 に分岥した後，バッファ回路52•53を介してデータ
 イッチ19～23に供給している。
【0096】しかしながら，上記したバッファ回路52 －53 介介することに限定されず，例えばバッファ回路 52•53を設けないでデータ信号線 51 を2 つに分岐 した後，データ信号䎛直接各サンプリングスイッチ19 ～23に供給しても良い。この場合，バッファ回路52 － 53 を介した場合よりも，咯サンプリングスイッヂ1 9～23は霓気䧁に疎になり難いので，その効果は半減 する。
【0097】また，本穼施列では，ソースドライバ41 におねるサンプリング方式は，表示部1側でデータ信号 としての画像データを保持ずるバホルサンプルホールド方式となっているがソースドライバ叞で画像データを保持宫をドライバサンプルホールド方式のソースドライバ によいても同様に適用でき，同様の唂果を得ることがで きる。この場合，ドライバサンプルホールドずラ式のソー スドライバを使用することで，ソースドライバ灶冓がる絵素部で純画像データの書込時間を十分にとることがで きる。
〔0098）（実施例4〕本発明のさられ迷の実施例に ついて図7に基づいて説明すれば，以下の通りである。尚，本実施例では，上記捧施例3のソースドライバ41 に適用した構成をLCDの表示部1での信号入力に適用 した場合について說明する。
 に，上記実雃例3のソースドライバ41に接続されたソ ースバスシイン5…が，表示部1の手前で，2つに分皮 し，2つひバッファ回路56•57を介してそれだれり一スバスライン58•59に接続をれた構成となってい る。畄7にないて，左者方囱学行方向，上下方向を列方角とする。
〔0100〕上記ソースバスライン58•59に枯，列方向に配置された絵素トランジスタフのソース端ぎが，
 スバスラインに緊がらなように接続されている。
【0101】また，グートドライバ3には，AND回路 60…灰介しでゲートハバーライン6…に続きれ，これ 5AND回路60…だは，それでれ一つ後の行のAND回路60に出力をれる信号を反転するインバーダ 60a …が接続されている。上記AND回路60では，ゲート ドライバ3の出力と，－いつ後の行のAND回路60への ゲートドライバ3からの出力の区転信号をの論理镜を得

て，得られた諭理積をゲート信長としてゲートバスラー こ6に出力方るようになっている。
【O102】尚，本央施例におけるLCDの動作は，表示勯 1 に供給されるソースバスライン信号が2つに分岐 されて供給され，さらに，ゲートドラれがろから供給さ れるゲート信篹がAND回路を介して出力ざれる他估，
 る。
 のON•OFFを制御するゲート信号がAND回路60 を介してゲートバスライン6に出力をれるので，各ゲー ト信号な時間的な重なりを持たないようになる。これに より，隣接する絵素部 4 …蛣，互いに隣接する絵素トラ ンジスタ7がON•OFFすることんなるノイズの影響 を受けないので，ゴースト現像の興い高晖像度の画像を得参ことができる。
〔0104］出た，上記ソースドライ゙バ 41を，上記実施例10）図1に示すように構成しても忽い。この場合， なまりや邀延の無いデータ信号を表示部 1 に供給でき，
 なく書き込めるので，さらに表示楽位の同上したLCD を提供することができる。
【O105】【案施峢5〕本発明のさらに他の察施例に
〔0106】本実施峢䘜倸るLCDは，前記実施例10図1に示すソ…スドライバ2に代まて，図8に示すよう に，ソースドラ゙チバ61を健えている。
〔0107］ソースドラウバ61 は，图8に示すよう に，ソースシフトレジスタ10と，サンブルホールド回路11と，データ㬐罗線12とを嚾えた樓成となってい る。
〔0108】データ傏号線12には，バッファ回路62 ～66が按続されで抬り，これら各バッファ回路62～ 660 出力捫侍，それぞれサンブルホールド回路 1 1 0 サンプリングスイッチ19～230各ソース端子に攋続 されている。即ち，データ信塄線12から出力ざ秃るデ
 ングスイッチ19～23に供給され，サンプリングコン テンザサ4～27にそれぞれボールドきれるようになの ている。
〔0109］これにより，サンプリングスイッチ」9～ 23は，データ信号線12とバッファ回潞62～66を介して接祮されているので，このバッフア回路62～6 6kよりてて電気的な繋がりが蹯になっている。
【0110】ここで，上記構成かソースドライバ610動作について以下に談明する。上記のソースシフトレジ スタ10に夫力をれたSPは，ソースシフトレジスタ1 Oに入力されるCK，／CKに応じて責次シントして出力ざれていく。学して，出力をれた各桁のパルスは，情 ンプルホールド回路 1 1 kおがるそれでれはサンプリン

グスベッチ19～23のゲート端子にサンプリングパル スとして順次入力されそ。
【0111】一方，デー多信号線12からのデーが多信号虫，バッフッ囲路62～66を介してサンプリングスイ ッチ19～23のソース端きに入力される。
【0112】したがぁて，上記ソースシフトレジスタ1 のから顀給され名サンプリングパルスによってサンプリ
線 12 から出力されたデータ信與を各サンプリングコン デンサ24～27に保持するようになっている。
〔0113】ところで，䳝記楽施例1㭁よび3に記載の ソースドライバ2 およびソースドライバ 11 に配された バッファ回路13～15，バッファ回路52•53で
 コンデンサ゚負街とが合わさったものであるので，バッ ファ區路を上記負何に詨応し得る大きさの回路にする必要が落る。
［01114］しかしながら，本実施例のバッフゲ回路6 2～66では，字れぞれたサンプリングコンデンサ2 4 －2 7 が一つずい接続きれているので，バックァ回路6 2～66－つに対する畀何は一つのサンブリングコンデ ンサのみで罟る。このため，前舐実施例1如よびろに記荿のバッファ回路13～15，バッファ回路52．53 よりむ小さな回路にすることができる。
〔0115〕また，前記尧施例1吉よび3では，一つの バッファ回路に不良が生じると，ソースバステインの3本に1本，或い恃2本を1本等にデータ信号が供給され ないよらになる。このため，表示部いにおける全表示の
〔0116］しかしながら，本笑施例では，バツファ回路62～66に不良が生じた場合，不良発生のバッファ゙回路收菨続されたりースバスラアンのおましだータ信号が供給をれなくなるだけであるので，表示知短も不是発生 したバッファ回路に接続されたソースバスラインにのみ に拥元ることができる。
〔01177］ざらに，隣接する各サンプリングスイッチ 19～23は，バッフア回路62～66によって電気的 な繋がりが轓になっているので，例えば外部からの光す照射によってサンブリングトランジスタ19～2300 FF抵抗が低下する場合にすかいても，同一データ信号線 12昛酳がる相互に隣接したサンク゚リングスイッチ19 ～2300FF抵搪をかして，名将ンプリングトランジ スタ24～27に保持したデータ㒀劳がクロストークす るのを防止することができる。
〔0118〕一般に，ソースドライバ内妃娃，ジータ信号榬以外にも信甼配線が複数本配㯰されているため，各
差部分の容量やその倠の寄生容䂈を介して，ノイズが乘 ることによりサンプリングデータの精度が低下すること になる。

〔0119】ところが，本実旅例のソースドラスが61 では，データ㒀号線12—本のみでありので，データ信塄線12に乗るノイズの影愎を低滅守ることができる。【0120】このように，隣接するサンプリングトラン ジス外司尘にあいて，E゙い以ON•OFF時O影響を受
 してソースバスライン 5 に供給することができる。
【0121】したがって，本実施例のLCD何，データ信号線 12 に対する負荷によなデータ信興波形の落む り，或い性隣按するトランジスタが同時該ON状態とな ることによるデー夕信号かノイズが原因のゴースト現象 か低滅，及び，サンプリングトランジスタロOFF特性 の不足詔よび低下によって生じるクロストークによる袁示品位の低下を抑えた高解像度の裏示を可能としてい る。
【0122】淌，本憲施例で話，ソースドライバ61に
 しての画像データを保特するパネルサンク゚ルホールド方式となっているがソースドライバ側で比像データを保持 するドライバサンプルホールド方式のソースドライバに おいても同機に適朋でき，同様の効楽を得ることができ る。この場合，ドライバサングルホールド方式のソース ドシイバを使用することで，ソースドライバに繋がる絵素部では掏像データの書込時間を゙分にとることができ る。
 ついて図 9 に基づいて談明すれば，以下の通りである。尚，本実施例で恃，上豇実旅例50ソースドライバゥ1 に適用した構成を 1．CDの表示部1 での信号入力に適間 した䀛合について說明する。
 に，ソースドライバ6 1 に接觥されたソースバスライン 5…にバッファ国路67…が接続され，このバックア回路67…O迪力僛に，絵素トランジスタ70ンース端子
上下方向を列方向とずる。
〔0125〕つまり，同一のソースバスラインらに列方向に緮数の絵素トランジスタ7が接続をれているが，バ ッブッ回路67によっをそれぞれの絵素トランジスタ7 は互いに電気的に䠭となるようにソースバスライン5に繋がっている
〔0126】尚，本察施例に持けるLCDの動作础，ソ一スバスライン浐号がバッファ回路67…客介して表示部1 の緰䒺トランジスタ7に供緰される健は，上姯実施例5のソースドライバ41の動作と同様である。
【0127］上記の構成において，ソースバスライン5 からのソースバスライン信号が，同一ソースバスライン 5上に接続をれた複数の絵菜トランジスタフ…にそれぞ れノ゙ッファ回路67…を价して供給されるのて，各ソー

って，隣接する絵素缡 $4 \cdots$ •娃，亙いに絵素トランジスタ
当，しかも絵㗬トランジスタのOFF抵洓によるクロス トークを抑えた高解像遮の画像を得ることができる。
旅例1 の図1た示すように構显しても良い。この場合， なまりや澱延の重いデータ信桪を表示部1K供緰でき，
延なく書き洽めるので，さらに表示品位の自上したLC D甞提供することができる。
〔01291（実旅例7）本発明のさらに拋の矨施例に ついて㽧 1 0 に萻づいて說明すれぼ，以下の通りであ る。尚，説明の便宣上，㓷記の各実施例と同一㙨能を有守る部材に桂，同一番号な付記し，その說明を省略す呂。

部 4 を騕動する駆動回路としてのソースドライバ71 \ddagger よぐゲートドライバ3とで構成さえている。図10に捡 いて，左古方南堂行方間，上下方向老列方南とする。
〔01311上諨ソースドライバ71は，ソースシフト レジスタ10と，このソースシフトレジスタ10からの出力の論理摜を得るた䣦のAND回路72•72 さ，異 なる極性のデータ信咢（映像信号）な供跲するためのデ一夕㑦号線73•71と，ソースシフトレジスタ10か らの出力に応しでずータ显号屋サンク゚リングするサンブ ルルールド回路11とで構成されている。
［0132］上記AND回路72•72以は，ソースシ フトレジスタ10の次の称め出力が反転して入力をれる ようにインバータ72a•T2aが援続されている。別 ち，AND回路 7 2 は，ソースシフトレジスタ100出力と次の桁のAND回路72に入力される出力をインバ ータ72aにて受軨された汉輨信号との諭理積を得て， この諭理䅜をサングリングバルスとしてサンプルホール

 いた樗性が臖萦り，フィールド毎に極性の反転するデー多信長が，図示しないデータ信号生成国路からバッファ国路75•76を介して供給をれている。
【0134】上記データ信号線73は，サンプルホール ド国路110フサンブリングスイッチ19，210ソンス端子に接続され，データ信塄線74は，サンブルホール ド国路11のサングリングスイッチ20．220ソース端子に接続ざれている。
10135】したがって，上記サンプリングスイッチ1 9•200ンース端子には，同一すAND回路72から サンプリングパルスが做給され，虫た，上記サンプリン グスアッヂ21•22のソース緛子には，同一OAND回路72からサンプリングパルスが供給をれるようにな つている。尚，AND區路72は，ソースシフトレジス

夕 10 からの出力意侍間的に霍ならないようなパルス幅 にしてサンプルホールド回路11 K供給守るようになつ ている。
［0136］ここで，上記構成Oソースドライバ710動作について以下に説明する。上記のソースシフトレジ スタ10に入力ざれたSP娡，ソースシフトレジスタ1 Oに入打される黗動クロックCK，／CKに応じて順次 シフトして出力されていく。そして，出力された各権の パルスは，AND回路72に人力される。次いで，AN D回路72kて，ソースシフトレジスタ100出力SR
 められ，この論理䅡の値たサンク゚リングバルスとしてサ ンプルホールド回路11汇出力される。
〔0137）上記AND回路72からゆ出力柮，タング ルホールド回路 1 1 におねるそれぞれのサンブリングス イッチさ9～23のゲート端子にサンプリングパルスと して覑次え力される。
〔0138】一方，データ倍号線12 からのデータ信参侍，バッフア固路62～66を介してサンプリングスイ ッチ19～23のソース端子に入力される。
［0139］したがって，上記ソースシフトレジスタ1 ○から出力をれたサンク゚リンダパルスがサンプリングス イッヂ 1 9～230ダート端子に入力されると，「゙ータ信号線12から出力されたデータ信号が各サンプリング コンデンサ2 1～27に保持される。
石両梪に誽したソースバスライン5からバッファ回路7 7 を介してゲートバスライン6…の1本抲きに，交互に接続されている緰㢣トランジスタ7…た入力される。
【0141】上記構成のソースドライバ61 Kよれば， ソースシフトレジスタ10からの出力詩，AND回路7 2…を付してサンプルホールド回路11に人けされるよ うになるので，サンプリングパルスの幅が小さくなり，互いに眭間的な重なりな持たない間保となっている。こ のため，各デー方信号緮 73 •74からみた負荷林，従来に比べて小ざくなっているので，データ多信号のな宗り を従来よりを小さくすることができる。
〔0142】また，ゲートドライバ3は，ゲートシント レジスタ3aと，このゲートシフトレジスタ3aの出力 から諭理磧を得るためのAND回路8 1 •－とで構成きれ てい业。
【0143】記AND回路8」…恃，ゲートシントV ジスタ3aの次の行の出力が反軞して入力されるように インバータ81a‥が接続されている。即ち，AND回路81は，ゲートシフトレジスタ3aの出力と次の行の AND回路8！に入力をする出力をインバータ81aに を反䎐して得られる反転信号との論理榬を得て，この論
 6…に倠給するようになっている。尚，AND回路81 は，ゲートシフトレジスタ3aからの蚛力を時問的に重
供給するようになっている。
「0144】したがって，ゲートドライバ3から表示部 1の名絵素トランジスタ7…に力力をれるゲート倀号 は，ゲートシフトレジスタ3aの出力から得な論理積を あるので，各ゲート信言ばな豆いに時間的な重なりを持 たない関係となる。このため，列方向に隣接する絵素ト ランジスタ7…が間時にON状態となることによるノイ ズの影響を防止できる。
【O145】また，列方向応隣接する緰素トランジスタ $7 \cdots$ ．．．は異なるソースバスライン5…に按続されている ことで，ゲートバスライン信品G1と次の行のゲートバ スライン信宁Gi＋1 とが信易の逪延やなまりによって成時にON状態となる期問があったとしても，列方向に瞵接する絵素トランジスタ7…が同時にON状態となる ことで生じるノイズにより絵素容量8…和よび付加容量
 が低下゙するのを防止している。
［0146］一般に，ソースバスライン5に卵加される
 の低下を防止するため，卵加する電圧極珄を 1 走査期問毎に反乾させている。この場合，列方向に隣接する絵素 トランバスタ47…が同蛙にON状態となる期間が存在す れば，総素容量8…にサンプリングされるソースバスラ インデータの精度の低下をさらに大きくするという不呈合が生じることになる。
接する絵素トランジスタ $7 \cdots$ 恃，それぞれ絵素部 $4 \cdots 0$両側に复けられた是なるソースバスラインら…な介し て，ソースバスライン信号が侁絵されるようになってい而ので，列方向に隣接する絵素トランバスタ7…が同封 にON状態となる期間を無くすことができ，この結果，絵素容緷8…そサンク゚リングされるソースバスラインデ ータの精燰の低下を防上できる。
【0148】宣応，…般k，1走查期間毎にソースバス ラインらに印抑する獘圧の極性を反転する場合，ある走査期間に充電したソースバスライン5を，次の走榅期間 には迹の緛性に充霍しなくてはならないたあ，ソースバ スラヘン5…を馭䡃するためそ大きなな駆動力が必要とな芯。この結果，ソースバスライン5…駆動に必要とさ れる電力によって，ソースドライバ全体の消藖電力が墇大ずるという問題が坐じている。
〔0149】ところが，本実施例では，予め極惺の異营 るデータ信呂が，ソースバスライン5…に対して交互に供給されているので，同一褿性のデータ信号が，絵索部 40 雨惻に配されたソースバスライン5…に供給まれば よいので，1走直期間每にソースバスラインらに供給し た極性と朔極性の信号を供給亚る必要がなくなる。これ によって，ソースバスライン5…の罱動に必要とされる電力を低蔵することができるので，ソースドライバ61

 2本のソースバスラーイン5…を配しているが，これれに限定を礼るものではなく，例えば絵素部40片側れて本の ソースバスライン5•5を配しても点い。しかし萿が 5，との場合，ゲートバスライン6…か1果托ぎきソー スバスライン5を交差してソースバスライン5と絵素ト ランジスタ7とが接続される形となり，交差部分の峙生容量等からのノイズの影響を受け芯ととになり，その効果は，ソースバスラインン5•5を絵索部 4 の両側妃配し た場合ほどの効果を恵することがでをない。
【0151】【実施例8〕本発明のさらに他の実施例に ついて図11に基づねて説明すれば，以下の適りであ る。尚，本实施例のLCDは，前記の名霟施例と表示部，ゲートドライバを同一の構成とし，ソースドライバ について說明する。
〔0152］本実施列に係る $\mathrm{L} C$ CDOソースドジイバ は，図11に示すように，複数の映像信号等のデータ信号を供給するためのデータ信号線82…と，それでれの データ謇号線82…にはサンプルホールド回路85のT FT等のトランジスタからなるサンプリングスイッチ8 $6 \cdots$ ••・ソー端等が接続されている。
【0153】上記サンプリングスイ少チ86…かゲールト蝡子には，上記データ侯呂のサンク゚リングのタタミンクグ を制御ずるサンプリングタイミング制雉回路84が接䖻 されている。
【0154】データ信号線 82 は，バッフア回路 83 を令して図示しないデータ信号生成固路に接綾されてい
る。このデー多停号線82は，1本ずつサンク゚リングス イッチ86に接続をれていえようになっている。こすに より，データ信号線 82 …妃布ける負荷は，一つのサン プリングストッチ゚86のみとなるので，一本のデーダ信号線 82 に緮数のサンク゚リングスイッヂ $86 \cdots$ •接続を れる場合よりも分断される前のデータ信等線のインピー ダンスを下げることができる。
〔0155】つまり，上記データ信学生成国路から出力 をれるデー多信号を表分の水平方向で襀数想分断するこ とで，分断される前のデータ信号線のインピーダンス，特に容量成分荧 $1 / \mathrm{N}$（N：分断数）程度化下げること ができる。これにより，データ信号線の時定数を大幅に
 することができる。
〔0156】尚，表示部1へのデータ侵号の入力をサン ブルホールド国路85近㖟より，表示部1ほ入加するこ とができるので，これんよっても，時定数を大幅に改善 することができる。
【0157】枟寈施例は，前記し危各実施例に抬いて古過用することができ，それによって，さらにタロストー クの発生の少ない解像度の高い表示装敕にすることがで きる。

【0158】以上，上記した電施例1～8では，それで
 サンプリングパルス生成回路が前適のシフトレジスタに よらず，所㬜デコーダ方式の回路で構成をれた場合に変萧しても宸い。
〔01．59］むた，例え或，サンプりングトランジスタ に繋がるサンプリングコンデンサの容量が小さい場合に れ，同一のデータ信動をバッフッ回路を介してシフトレ ジスタの系列框に供給字ることも可能である。
【0160】さらに，上記した実施例 $1 \sim 8$ において， サンプリング回路を含む駆動回路としてのソースドライ バおよびゲートドライバと，画像表示部としての絵素部等からなる表示部とを闰一基板上にモノリシックに形成 しても良い。この場合，大罍面化に伴う画薬トランジス タの駁動力向上や，驅動ICの実装コストの低減等を図百ことができる。
【0161】
【発明の効果】諎求項10発明の表示装監は，以上のよ らに，データ信号がそれでれ倛給され名複数のデータ信号線と，上記複慗のデータ信号線から供給されるデータ信号をそれぞれサンプリングする複数のサンブリング回路と，上記複数のサンブリング回路にそれぞれ変続され る緮数のデータバスラインと，上晋被数のデータバスラ インに接続されると共に，マトリクス状証配をれた複数 の絵素部と，上記サングリング回路を含み，上記データ バスラインを䮎動する柾動回路とを備え，上記椱数のデ一夕信号線の少なくとも2本は，㸚一データ信号が供給 されると扶に，それぞれが異なるバッファ回路を介して買なるサンプリング回路に变統をれている構成である。
 は，互いにON•OFF時の影響を受けず，党に正権な データ信買をサンプリングす商ことでゴースト現象を低溨できる。また，緰索部㭁よびサンク゚リング回路部ロト ランジスタのOFF抵抗によるクロストークを低減させ ることができる。
【0163）したがって，ゴースト及びクロストークに よる表示品位0低下を排えた高解像度の表示を可能とす そことができこという効果を奏する。

 ング回路のら古，サンブリングのダイミングが間期ずる サンブリング回路は，をれぞれ異なるデータ信号線に接続されると共に，学れぞれのサンプリング回路のON期関が時間的に重なりを持たない楧成である。
 ンブリング回路が○FF 状態となる僢間は他のサンプリ ング回路がON状態とな恚ことにより生じ可ノイズの低滅を図ることができるという効果を素する。
〔0166］腤疌項30発明の表示装㯰は，以上のよう

ア゙団路は，サンブリング回路と同一の基板上に形城され ている構成である。
〔0167〕これにより，バッファ回路とサンブリング
 かかするデータ信临の竟化を揇制することができる。ま た，バッファ国路とサンプリング回路とを拔続するため
 させるごとがでぎるという効楽を架す多。
以，データ僱号がてれでれ供給される複数のデータ娮号線と，上記複数のデータ信弮線から供給されるデータ信号をそれぞれサンプリングする複数のサンブリング回路 を，上記複数のサンプリング回路にそれぞれ接続される複数のデータバスラインと，上記複数のデータバスライ ンに接祮されると共に，マトリクス状に配された複数の絵素部と，上記サンプリング回路を含馬，上記データバ
線は，表示の水平方向で複数に分断されると共に，分断 された各々の信号線話，それぞれ暴なるバッファ回路を介してサンプリング回路に接続されている構俥である。
〔O169〕これにより，データ信号線の㨡抗なよず容量を低減することがてききので，よりデータ信号線に扣 けるデータ信号の劣化家候滅させるこ上ができると共 に，サンプリング時のノイズの低減を図ることができ萢 という効果を素する。
 に，データ㢂号がそれぞれて供給される複数のデータ㒀呂線と，上記複数のデータ信号線から供給されるデータ信号をそれぞれサンンプリングする複数のサンプリング回路 と，上記複数のサンプリング回鉻にそれそれ接続される複数のデータバスラインと，上記複数のデータバスライ ンに接続され旬と共に，マトリクス状に配された複数の絵絜部と，上記サンプリング回路学含み，上記デー多バ スラインを淢動する駆動回路とを犕え，上記複数の絵葉部のうち，列方问に堜接する複数の絵亚部には，それぞ れ買な当データバスラインが接続されると共に，これら データバスラインには，バッファ回路を介して同一のサ ンプリング回路が接続されている橉成である。
〔0171］これたより，列分向に隣接する緰弯部の年渉を抑えることができるので，絵素部問上のクロストー クを低濡す至ととができ，この結果，表示品位を向上さ せること刺できるという数果を奏する。
【0172】請求項6の発明の表示装罪は，以上のよう に，諲求項1，2，3，4宗た汒5記䕙の表示㮦置に䄧 いて，駆陲回路と，複数の絵美部から营る西画像表示部と が同一基板上にとそノコンックに形成されている䨀成であ る。

【0173】これにより，大面面化に伴う面亚トランジ スタの㸚動力向上や，駆動1Cの突装コストの低蔵等を図ることができるという効果を秦する。

Page 34 of 40

【図面の籣少な說明】
【図 1】本発明の一実施例のLCDのソースドライバの概撂構硪ブロック図である。
【図2】図1に示すソースドライバを躙えたLCDの概蛒構成ブロック図である。
【図3】図1に示すソースドライバの䡃作タイミングチ ャートである。
【図4］本発明の他の実施例のLCDの榿略構成ブロッ夕図である。
【図5】本発明のさらに他の实施刿のLCDのソースド シイバの程略櫵咸ブロック図である。
【図6】図5に示すソースドライバの動作タイミングチ ャート図である。
【図7】本発明のさらん佨の实施例のLCDの概格構成 ブロック図である。
【図8】本発明のさらに他の实施例のLCDのソースド ライバの概略梪成ブロック図である。
【図9】本発明のさらに代他の実施例のLCDO概格櫣成 ブロック図である。
成ブロック図である。
［図11］本発明のさらに虺の実施矨のLCDのソース ドライバの概略構成ブロック図である。
〔図13】図12に示すLCDに備えられたソースドラ イバの概略構成ブロック図である。【図14】従来の他のソースドライブの概略構成フロッ ク図である。

【図15】図14に示すソースドライバの動作タイミン	
［符号め説明】	
1	表示部（画像表示部）
2	ソースドライバ（駆醖回路）
3	ダートドラヤバ（駁眎回路）
4	絵素缡
5	ソースバスライン（駆梙回路）
6	ゾートバスライン（駆䣦回路）
10	ソースシフトレジスタ
11	サンプル示ールド回路
12	データ信钫線
$13 \sim 15$	バッファ回路
16－18	デー夕俗号線
19～23	サンプリングスイッチ（サンプリング回
路）	
24～28	サンブリングコンデンサ（サンブリング
可路）	
41	ソースドライ゙バ（駩動回路）
51	データ信号線
$52 \cdot 53$	バッフワ回路
$54 \cdot 55$	データ信号線
61	ソースドライバ（駇洏回路）
$62 \sim 66$	バッフア回路
54．55	テータ信号線
$73 \cdot 74$	データ信号蝺
$75 \sim 80$	バッフアア回路

グチャートである。
【符号め説明】
1 表示部 (画像表示部)
ソースドライバ (駆動回路)
絵素缡
ソースバスライン (駆動回路)
゙ートバスライン (駆㻔回路)
スタ
13~15 バックア回路
16~18 データ信号線
19~23 サンブリングスイッチ (サンプリング回
路)
回路)
41 ソースドラオ゙バ (駩動回路)
51 データ信号線
52•53 バックワフ回路
$54 \cdot 55$ デー夕信男線
61 ソースドライバ (駩䣦回路)
$62 ~ 66$ バッファ回路
54.55 データ信号線
$73 \cdot 74$ データ椖号線

図11】

【図1】

図3】

［図2】

【図4】

Page 36 of 40

【図5〕

［图7】

Page 37 of 40
［图8］

【図13】

【図9】

［図14］

Page 38 of 40

Page 39 of 40

【図15】

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SHARP CORPORATION, SHARP ELECTRONICS CORPORATION, and SHARP ELECTRONICS MANUFACTURING COMPANY OF AMERICA, INC., Petitioners
v.

SURPASS TECH INNOVATION LLC, Patent Owner
\qquad
Case IPR2015-
Patent No. 7,420,550
\qquad

DECLARATION OF MICHAEL J. MARENTIC IN SUPPORT OF PETITION FOR INTER PARTES REVIEW OF U.S. PATENT NO. 7,420,550

1. I, Michael J. Marentic, make this declaration in connection with the Petition for Inter Partes Review submitted by Sharp Corporation, Sharp Electronics Corporation, and Sharp Electronics Manufacturing Company of America, Inc. (collectively "Petitioners" or "Sharp") for review of Claims 1 through 5 of U.S. Patent No. 7,420,550 to Yuh-Ren et al. ("the "550 Patent"), which is assigned to Surpass Tech Innovation LLC ("Patent Owner" or "Surpass").
2. Throughout this declaration, I refer to exhibit numbers that correspond to the exhibits to the Petition for Inter Partes Review for which I provide this declaration.

Scope of My Assignment

3. I have been requested by counsel for Sharp to study the '550 Patent, including its claims and prosecution history, as well as the references specifically referred to in this declaration. I have also been requested by counsel for Sharp to provide my expert opinion regarding the invalidity of Claims $1-5$ of the ' 550 Patent. I further expect to offer an additional declaration in response to any declaration submitted by any expert for the Patent Owner.

Summary of My Opinions

4. It is my opinion that Claims $1-3$ of the ' 550 Patent are invalid as anticipated under 35 U.S.C.§ 102(b) and Claims $4-5$ are obvious to a person of ordinary skill in the art under 35 U.S.C. §103(a). Moreover, it is my opinion that in addition to being anticipated, Claims 1-3 are also rendered obvious over prior art.
5. Specifically, I believe that the following are grounds to find Claims $1-5$ of the '550 Patent invalid:
a. Claims 1-3 are invalid under 35 U.S.C. § 102(b) as anticipated by Japanese Patent Application Publication No. H08-305322 (Ex. 1002, "the Sharp Reference").
b. Claims 1-3 and 5 are also invalid under 35 U.S.C. § 103(a) as obvious over the Sharp Reference.
c. Claims $1-5$ are also invalid under 35 U.S.C. § 103(a) as obvious over the Sharp Reference in view of U.S. Patent No. 6,407,795 to Kamizono, et al. (Ex. 1004, "Kamizono").
d. Claims $1-5$ are also invalid under 35 U.S.C. § 103(a) as obvious over U.S. Patent No. 6,081,250 to Shimada et al. (Ex. 1003, "Shimada") in view of Kamizono.

Summary of My Professional Background and Qualifications

6. Exhibit 1008 is my curriculum vitae which sets forth my professional background and qualifications. A list of publications that I have authored or co-authored is included.
7. I have many years of experience in the flat panel display industry. I first became involved in the flat panel display industry in 1973, when I began working at the University of Illinois Coordinated Science Laboratories where the AC Plasma Display Panel
("PDP") was invented. During my studies at the University, I was employed as an intern working in the area of plasma display construction and gas discharge physics characterization. I received a B.S. degree in Engineering Physics from the University of Illinois.
8. Upon entering graduate school, I continued my work on the characterization of the gas discharge in the pixels. I received an M.S. degree in Electrical Engineering from the University of Illinois, and wrote my master's thesis on measuring the electron density in an AC PDP.
9. One of my engineering positions was with Interstate Electronics Corporation (IEC) as a design electrical engineer. IEC designed drive electronics, mechanically packaged the display modules, and incorporated them into terminals for harsh, military environments. I designed several distinct versions of drive electronics for PDPs, including one using packaged silicon integrated circuits on flexible circuits, or "chip-on-flex." During this time, I was awarded several patents relating to PDP technologies. I also investigated LCDs and thin film electroluminescent displays for incorporation into military applications.
10. I later formed Plasma Displays, Inc., a single proprietorship consulting corporation. I worked for several clients, one being Bell Laboratories and AT\&T at their joint Reading, Pennsylvania facility. This facility was where the original picture phone was developed, the first commercial light emitting diodes ("LEDs") were manufactured, and

AT\&T's PDPs were developed and manufactured. I worked on PDP drive electronic design, driver-to-panel interconnect reliability, driver circuit characterization, and yield improvement.
11. I was a founder and Vice President of Plasmaco, a company that acquired IBM's PDP production line in New York. Plasmaco manufactured several types of PDPs, including VGA panels with 640×480 pixels for early notebook computers. Such a panel had 5 driver ICs with 32 outputs per driver for 640 data lines. I also developed larger sized VGA panels with 1280×1024 pixels. Because of the increase in size, we used the same type of driver IC chips but doubled the number of driver ICs (i.e., using 10 driver ICs) in the display. When changing the panel design to increase the size of the panel and/or the number of pixels, it was a common practice to keep the same type of driver IC as the smaller panel, but it was necessary to increase the number of driver ICs to accommodate the added pixels in the larger display.
12. While at Plasmaco, I also developed and manufactured driver chip-on-glass ("COG") technology that passed extreme militarized environmental testing specifications. COG technology put electrode driver integrated circuits onto the glass edges of the PDP. The benefits of using COG technology were that it reduced the physical size and weight of a notebook computer display and increased the operational reliability of the display.
13. At Science Applications International Corporation, I worked on efficient backlights for LCDs, some for direct viewing in sunlight. Commercially available LCDs were
disassembled and repackaged with these backlights. The finished displays were used in cockpit avionics, medical, banking, and FAA towers.
14. At Hitachi, from 1995 to 1999, I managed a technology center that developed technologies relating to the interface between the motherboard and the LCD driver chips for flat panel monitors and notebook displays. I reported directly to the LCD design and manufacturing center in Japan. I had access to future LCD technical details and specifications, and facilitated technology transfer between Silicon Valley firms and Japan management. The Video Electronics Standards Association ("VESA") writes and publishes video standards for the electrical interfacing for displays. I was the chairman of the VESA flat panel display committee, a member of the board of directors, and later the president of the board of directors.
15. While at Philips, from 1999 to 2001, I managed a group of engineers that designed electronics for flat panel displays. My group designed interface timing ICs and video processing circuit boards for monitors and televisions utilizing LCDs. My group also worked with an IC design firm to develop the design of source and gate driver ICs for enhanced performance LCDs having various sizes. The enhanced performance LCDs were developed to provide high brightness and used multiple driver ICs, as well as the COG technology.
16. Philips invested in a tiled LCD display company, and I participated in the technology development using Philips panels. My group designed circuits and assisted with their incorporation into commercial products within Philips' worldwide subsidiaries.
17. Philips purchased the LCD factory of the Korean company LG, and later formed a joint venture called LG-Philips LCD. I was a member of the group of technical advisors that performed the due diligence for Philips for the purchase.
18. At Alien Technology, I was a member of the integrated design team that produced custom drivers made for cholesteric LCD displays, organic LEDs, and polymer dispersed LCDs. My responsibilities were IC product definition for the drivers and system architecture. Driver ICs were fabricated at silicon foundries and formed into small die for mass assembly utilizing Alien's fluidic assembly onto flexible, very low cost displays. Since Alien's products were very small sized, low cost LCDs, they typically involved only a single source driver and a single gate driver, whereas the larger sized LCD panels that I worked on while at Hitachi and Philips had multiple source and gate drivers.
19. I am the named inventor or co-inventor on three U.S. patents in the PDP field.

Materials Considered

20. In forming my opinions, I reviewed the following documents referenced by their exhibit number in the Petition for Inter Partes Review of the '550 Patent:

EXHIBIT NO.	DESCRIPTION
1001	U.S. Patent No. $7,420,550$ to Shen et al. ("'550 Patent")
1002	Japanese Patent Application Publication No. H08-305322 and Certified English Translation Thereof ("Sharp Reference")
1003	U.S. Patent No. 6,081,250 to Shimada et al. ("Shimada")
1004	U.S. Patent No. 6,407,795 to Kamizono et al. ("Kamizono")
1005	Prosecution History of U.S. Appl. No. 10/929,473
1006	U.S. Patent No. 5,805,128 to Kim et al. ("Kim")
1009	U.S. Patent Application Publication No. US 2003/0048249 A1 to Sekido et al. ("Sekido")

21. I also base this declaration on my knowledge from my 30 years of experience working on liquid crystal display (LCD) and related technologies.
22. I reserve the right to amend or supplement this declaration based upon any reports by any expert(s) for the Patent Owner, or any new documents and/or other information that becomes available.

Compensation

23. I am being compensated at my consulting rate of $\$ 250$ per hour for my time spent in connection with this case. I am being separately reimbursed for any out-of-pocket 8
expenses. No part of my compensation is dependent upon the outcome of this proceeding or the nature of the opinions that I express.

Legal Standards

24. To render my invalidity analysis, I have been informed about the legal standards for patent invalidity in inter partes review proceedings before the Patent Trial and Appeal Board.
25. Specifically, I understand that the petitioner must prove patent invalidity by a "preponderance of the evidence," that there is no "presumption of validity" in inter partes review proceedings, and that claims are to be given their "broadest reasonable" construction in light of the specification as would be read by a person of ordinary skill in the art.
26. I also understand that a patent claim may be invalidated as anticipated if a single prior art reference discloses, either expressly or inherently, each and every element of the patent claim.
27. I also understand that a patent claim may be invalidated by one or more references, either alone or in combination, as being "obvious" to a person of ordinary skill in the art at the time the invention was made.
28. I understand that one way of demonstrating obviousness in the situation where a prior art reference discloses a single element but the claim requires multiple elements is to demonstrate that there are no new and unexpected results from increasing the number of such elements.
29. I further understand that an additional way of demonstrating obviousness is to demonstrate that one or more items of prior art either alone or in combination, contain all of the elements of a claim.
30. It is my understanding that in considering the issue of obviousness, I should consider what a person of ordinary skill in the pertinent art would have known at the time of the invention, as well as what such a person would have reasonably expected to have been able to do in view of that knowledge.
31. I understand that in analyzing the issue of obviousness, I should consider and determine: (1) the scope and content of the prior art; (2) the differences between the prior art and the claims at issue; and (3) the level of ordinary skill in the pertinent art.
32. I further understand that any of the following may provide a "reason" for combining elements known in the prior art: (a) a need or problem known in the field at the time of invention and addressed by the patent; (b) an obvious use of familiar elements beyond their primary purposes; (c) a design need or market pressure to solve a problem; (d) a simple substitution of one known element for another that would provide predictable results; (e) the use of known techniques to improve similar methods or products in the same way; or (f) some teaching, suggestion, or motivation in the prior art that would have led one of ordinary skill to modify the prior art reference or to combine prior art reference teachings to arrive at the claimed invention.
33. I also understand that claims may be invalid if they are directed to obvious design choices. Specifically, I understand that a patent claim that simply arranges old elements with each performing the same function it had been known to perform is not patentable. The combination of familiar elements according to known methods is likely to be obvious when it does no more than yield predictable results.
34. I also understand that certain "secondary considerations" of non-obviousness may be considered, to the extent that they exist. It is my understanding that such secondary considerations include, among others: (a) commercial success; (b) long felt but unsolved needs; and (c) the failure of others. I understand that there must be some connection to the secondary considerations and the claimed invention. I reserve my right to address any evidence or opinions the patent owner may submit on this issue.

THE '550 PATENT

35. I understand that the application leading to the '550 Patent was U.S. Patent Application No. 10/929,473, which was filed on August 31, 2004. For the purposes of my analysis, I assume that the time of the purported invention was August 31, 2004.
36. The ' 550 Patent relates to an active matrix liquid crystal display (LCD) device and driving circuit for the LCD device. In particular, the ' 550 Patent describes a specific way of connecting the gate and data lines to the thin film transistors (TFTs) driving pixels in an LCD panel.

LCD Panels and Driving Devices Were Known in the Prior Art

37. As acknowledged in the ' 550 Patent, active matrix LCD panels and the use of data and gate lines, or source and gate drivers for TFTs in LCD panels were all known in prior art. (Ex. 1001, '550 Patent, Col. 1:23-61, Figs. 1A-1B).
38. As shown below by multiple shaded blocks in annotated Figure 1 A of the ' 550 Patent, the "Prior Art" driving circuit for LCD panels included multiple source drivers 11 and multiple gate drivers 12. (ld. at Fig. 1A). The source drivers 11 (purple boxes) provide image signals (i.e., video signals) to an LCD panel 10 through a plurality of data lines 111 (purple lines), while the gate drivers 12 (orange boxes) provide scanning signals (i.e., control signals) to the LCD panel 10 through a plurality of gate lines 121 (orange lines).

Fig. 1A (Prior Art)

Fig. 1B (Prior Art)
39. As shown above in Figure 1A, prior art LCD panels included data lines 111 and gate lines 121 arranged in a matrix array.
40. According to the ' 550 Patent, the data lines 111 and gate lines 121 in the "Prior Art" shown in Figures 1A and 1B are "insulated with each other." (Ex. 1001, '550 Patent, Col. 1:45-47).
41. As shown above in Figure 1B, a pixel 13 in this prior art LCD panel is formed within each area enclosed by intersecting data lines (e.g., purple line D_{1}) and gate lines (e.g., orange line G_{1}).
42. As the " 550 Patent acknowledges, each pixel 13 in prior art LCD panel included a thin film transistor Q_{1} (TFT, highlighted in yellow), which is switched on and off by a control signal from the gate driver 12 through a gate line G_{1}.
43. The source of the TFT Q_{1} receives the image signal sent from the source driver 11 through the data line D_{1}. An output voltage from the TFT Q_{1} drives liquid crystal molecules corresponding to the pixel 13 to form an image. (Id. at Col. 1:45-57, Fig. 1B).
44. The time that an LCD needs to react to the driving voltage output by each TFT is called "response time," and the video quality of an LCD panel is dependent on this response time. In this regard, the video quality may be poor if the LCD response time is too long. (ld. at Cols. 1:62-2:41).

The Alleged Invention of the ' 550 Patent

45. According to the " 550 Patent, its "chief object" is to provide an LCD driving circuit having a matrix structure in which the gate and data lines are connected to the TFTs in a specific way that allegedly increases "the response speed" of the LCD. (Id. at Col.
$3: 18-20,35-40$). This configuration is shown in, for example, Figure 4B, which is reproduced below.
'550 Patent Fig. 4B

46. As shown above in annotated Figure 4B, the driving device includes a matrix array formed from rows (R1-R3) and columns (C1-C3) of TFTs (Q). Each TFT in the matrix is associated with a pixel (represented by the dashed rectangles). The driving device further includes a certain number ("N") of gate lines $\mathrm{G}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots \mathrm{~N})$, and a certain number ("M") of groups (e.g., pairs) of data lines D_{j} and $D_{j}\left(j, j^{\prime}=\left(1,1^{\prime}\right),\left(2,2^{\prime \prime}\right), \ldots\left(M, M^{\prime}\right)\right)$. For
example, as shown in Figure $4 B$ above, the driving device has three gate lines, G_{1}, G_{2}, and G_{3}, and two groups of data lines $\left(\left(\mathrm{D}_{1}, \mathrm{D}_{1}\right)\right.$ and $\left.\left(\mathrm{D}_{2}, \mathrm{D}_{2}\right)\right)$.
47. As shown in Figures 4A, 5A, and 6A, the '550 Patent describes a source driver with a limit of 60 Hz but provides no further explanation or specification. Absent in the ' 550 Patent is the number of drive channels or outputs per source driver and matrix size. One would calculate the number of required driver ICs by dividing the horizontal pixel count by the number of drive channels per data driver. The driving device shown in Figure 4A uses 60 Hz source drivers; it doubles the normal calculated number of source drivers and mounts them on a single glass panel edge. The driving device shown in Figure 5A also uses 60 Hz source drivers; it again doubles the normal calculated number of data drivers, but mounts them on both the top and bottom edges of the panel with an interdigitated column connection. The driving device shown in Figure 6 A uses 120 Hz or faster source drivers, mounted on one panel edge, and then adds dual switches to each output channel for driving the paired data electrodes.
48. The ' 550 Patent does not discuss the benefits or reasons for including a single source driver and a single gate driver on the one hand, and having a set of multiple source and gate drivers on the other hand.
49. Multiple source and gate drivers were commonly used in the prior art, particularly LCD panels as they increased in screen size. In fact, when I was in the LCD industry before the filing date of the ' 550 Patent, it was a common practice to change the
panel design to increase the size of the panel and/or the number of pixels by simply adding more driver ICs. For example, while the small, low cost LCD panel (which had an equivalent pixel dimension of 7×4) that I worked on at Alien Technology had only a single source driver and a single gate driver, all the large sized LCD panels (which had pixel dimension of at least 800×600) that I worked on at Philips had multiple driver ICs.
50. Consistent with my experience, U.S. Patent Application Publication No. US 2003/0048249 A1 to Sekido et al. (Ex. 1009, "Sekido"), which was published on March 13, 2003, states that "in order to drive many gate bus lines and the source bus lines on the display circuit board, a plurality of the gate drivers and source drivers must be connected to the area around the liquid crystal display panel." (Par. [0006]) (emphasis added). Sekido further teaches that increasing the size of the LCD screen will increase the number of driver ICs in the panel. (Par. [0008]). Other prior art references discussed below also teach the use of multiple source and gate drivers for a large sized or high resolution LCD panel.
51. As shown above in Figure $4 B$, the gate line $G_{i}\left(\right.$ e.., ., G_{1}, G_{2}, and G_{3}) in each row is connected to the gates of each TFT in that row. However, for each column, the first and second data lines D_{j} and D_{j} that form a group of data lines are not connected to all TFTs in that column. Instead, the first data line D_{j} in each column is connected only to the sources of the TFTs in the odd rows (see the red boxes in R1, R3, etc.) of that column,
while the second data line D_{j} in the same column is connected only to the sources of the TFTs in the even rows (see the green box in R2) that column. (/d. at Col. 8:10-31).
52. For example, referring to the first group of data lines D_{1} and D_{1} (see the red and green lines) in first column (C1) of Figure 4B above, the first data line D_{1} (see the red line) is connected to the sources (red dots) of the TFTs in the first and third rows (red boxes in R1 and R3 of the first column C1), while the second data line D_{1} (green line) is connected to the source (green dot) of the TFT in the second row (green box in R2 of the first column C1). Similarly, for the second pair of data lines (i.e., D_{2} and D_{2}) in the second column, the first data line (i.e., D_{2}) is connected to the sources of the TFTs in the first and third rows (i.e., $R 1$ and $R 3$ of the second column $C 2$), while the second data line D_{2} is connected to the source of the TFT in the second row (i.e., R2 of the second column C2).
53. According to the " 550 Patent, this alternating connection with the Odd Row/Even Row ("Odd Row/Even Row" configuration) reduces the response time of the LCD panel. (Id. at Col. 3:35-40). However, the ' 550 Patent does not explain how this reduction occurs.
54. The gate lines are connected to the gate driver are "insulated with each other;" and the data lines are connected to the source driver and are "insulated with each other." (Ex. 1001, '550 Patent, Col. 8:20-22, Col. 8:29-31). The '550 Patent goes on to explain that a space is provided between the neighboring data lines (e.g., D_{1}, and D_{2}) to prevent them from short circuiting. (Ex. 1001, '550 Patent, Col. 8:31-36, Fig. 4C).
55. As shown below in annotated Figure 6 A , the first and second data lines D_{i} and $D_{j}\left(e . g\right.$., red and green lines $D 1$ and $D 1^{1}$) in each group (i.e., pair) of data lines are connected to the same source driver (purple box), and data is transferred to these data lines by an electronic switch S (highlighted in yellow). (Id. at Col. 5:4-8, Col. 8:50-52).

'550 Patent Fig. 6A

56. In addition, all of the source drivers are installed on the same side (e.g., upper side) of the LCD panel. (See also id. at Fig. 4A, Col. 8:37-38). The '550 Patent acknowledges that these components were arranged in the exact same way in the "Prior Art" in Figure 1A. (ld. at Col. 1:36-45, Fig. 1A).
57. The ' 550 Patent also states that the gate driver can be "a chip on glass or an integrated gate driver circuit on glass." (ld. at Col. 8:53-54). However, the " 550 Patent does not define either of these terms, nor does it explain the difference between "a chip on glass" and "an integrated gate driver circuit on glass."

PROSECUTION HISTORY OF THE '550 PATENT

58. I understand that as originally filed, the application for the ' 550 Patent included claims directed to six different embodiments described in the '550 Patent. I also understand that, in response to a "Restriction Requirement" (Ex. 1005, p. 122), only the claims directed to the "First Embodiment" (i.e., "Species I; Figures 4A-4C") (Id. at p. 127) were elected and the claims directed to the other embodiments were canceled.
59. I understand that during prosecution, the application claim corresponding to Claim 1 of the '550 Patent was rejected as anticipated by U.S. Patent No. 5,805,128 to Kim et al. (Ex. 1006, "Kim"). (See Ex. 1005, p. 141). This application claim was identical to Claim 1, except that it did not include the last element of Claim 1, namely "the first data lines and the second data lines of each group of data lines are connected with the same source driver." (See id, at pp. 31, 152).
60. As shown below, annotated Figure 5 of Kim shows an LCD driving device of matrix structure type including the Odd Row/Even Row configuration, gate lines 3 connected to a gate driver 16, first data lines 10 connected to a data driver 8 on the bottom, and second data lines 14 connected to a data driver 12 on the top. (Ex. 1006, Kim, Col.

3:26-37, Col. 4:28-51, FIG. 5). I note that Figure 5 of Kim shows the Odd Row/Even Row configuration that is virtually identical to the one shown in Figures 5A and 5B of the '550 Patent.

Kim Fig. 5

61. In the prosecution history, I did not find any argument by the applicants disputing the Examiner's position that Kim disclosed all elements of the rejected claim, including the Odd Row/Even Row configuration and gate drivers. Rather, the applicants distinguished the rejected claim over Kim by including an additional claim limitation, namely that "the first data lines and the second data lines of each group of data lines are connected with the same source driver." (Ex. 1005, pp. 152, 156). The claim was subsequently allowed by the Examiner.
62. Even though Figure 5 of Kim does not disclose "the same source driver" limitation, the technique of connecting first and second data lines of each group of data lines with the same source driver in an LCD device was well known in the prior art, including the Sharp Reference and Shimada as discussed below. I understand that none of the Sharp Reference, Shimada, and Kamizono referred to in this declaration was considered by the Examiner during prosecution of the ' 550 Patent.

CLAIM CONSTRUCTION

63. I understand that in inter partes review proceedings, patent claims are to be given their "broadest reasonable" construction in light of the specification as would be read by a person of ordinary skill in the art.
64. Most of the terms of Claims 1-5 of the ' 550 Patent are clear to me, except for the following terms.

"The first and the second date lines of the first group of date lines"

65. Independent Claims 1 and 2 each recite that "the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column" (Ex. 1001, '550 Patent, Col. 19:52-56, Col. 20:13-17) (emphasis added). Nowhere else in the '550 Patent is there any mention or discussion of "date lines." I believe that the term "date lines" in this claim recitation is meant to be "data lines."
"Gate lines . . . insulated with each other" and "data lines . . . insulated with each other"
66. Independent Claims 1 and 2 each recite "a group of N gate lines... insulated with each other" and " M groups of data lines . . insulated with each other." (Ex. 1001, '550 Patent, Col. 19:44-45, 51-52, Col. 20:5-6, 12-13) (emphasis added). The '550 Patent does not explain what "insulated with each other" means. Rather, the specification uses the same phrase "insulated with each other" when describing the data lines 111 and gate lines 121 shown in the "Prior Art" in Figures 1A and 1 B of the " 550 Patent (id. at Col. 1:45-47), as well as the data lines ($\mathrm{D}_{1}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{2}$) and the gate lines $\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}\right)$ shown in Figures 4A-4C of the First Embodiment. (ld. at Col. 8:20-22, 29-31).
67. I believe that "insulated with each other" means "spaced apart from and parallel to each other." This is consistent with Figures 1A-1B of the "Prior Art" in the "550 Patent, which show that the data lines 111 are spaced apart from and parallel to each other (thereby "insulated with each other") and the gate lines 121 are likewise spaced apart from and parallel to each other (thereby "insulated with each other"). This is also consistent with all of the figures that describe the First Embodiment of the '550 Patent (e.g., Figs 4A-4C, $5 A-5 B, 6 A-6 B$), which also show that the data lines (e.g., $D_{1}, D_{1}, D_{2}, D_{2}$) are spaced apart from and parallel to each other (thereby "insulated with each other"), and the gate lines (e.g., $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$) are spaced apart from and parallel to each other (thereby "insulated with each other").

"the gate drivers" and the "source drivers"

68. Independent Claims 1 and 2 refer to "gate lines connected to the gate drivers" and "data lines connected to the source drivers." However, the term "source driver" is not mentioned in the specification of the ' 550 Patent. Rather, the specification refers to "data drivers."
69. Using the broadest reasonable construction, I believe that a person of ordinary skill in the art would construe these terms as written in the plural form, that is, "the gate drivers" refer to more than one gate driver and "the source drivers" refer to more than one source driver.
70. However, the specification, drawings, and prosecution history of the '550 Patent use the terms "source drivers" and "gate drivers" to cover a variety of driving circuits and configurations known at the time of the invention. These are discussed below:

1. "Gate Drivers" and "Source Drivers" May Refer to Multiple Driving Circuits

71. In the certain figures in the " 550 Patent, the "gate drivers" and "source drivers" are used to refer to multiple driving circuits, as shown in the "Prior Art" (e.g., Fig. 1A of the '550 Patent). As shown in Figure 1A, the "gate driver" and "source driver" each comprise multiple driver circuits (e.g., integrate circuit (IC) chips in the purple and orange boxes).

Fig. 1A (Prior Art)
72. At the time that the ' 550 Patent was filed, it was widely known that such drivers could be implemented using multiple IC chips. Specifically, as LCD displays increase in size with the increased number of pixels, the number of gate lines and data lines likewise increases. However, it becomes difficult, from a packaging and cost perspective, to fabricate a single chip capable of driving hundreds or even thousands of data and source lines. Therefore, a person of ordinary skill in the art would use multiple driver IC chips in larger sized LCD panels to keep costs, time and labor down and to simplify packaging.

2. "Gate Drivers" and "Source Drivers" May Refer to A Single Circuit With Multiple Outputs

73. In addition, a person of ordinary skill in the art would understand that "gate drivers" and "source drivers" includes a single circuit (whether an IC or made up of discrete components) having multiple outputs. In that case, a person of ordinary skill in the art would understand that each data or gate line is connected to a separate "driver." This is because
each output provides a unique signal to a data or gate line. This is illustrated, for example, in the Kim reference (Ex. 1006), cited during the prosecution of the "550 Patent (discussed above). As shown below in Figure 5, the gate driver 16 of Kim is depicted as a single circuit block having multiple output lines. The Examiner found that Kim discloses the claimed "gate drivers." (Ex. 1005, p. 141). The applicants did not dispute this. The Examiner and applicants' understanding is consistent with that of a person of ordinary skill in the art at the time of the invention.

Kim Fig. 5

LEVEL OF SKILL IN THE ART

74. A person of ordinary skill in the art would have had an undergraduate degree in electrical engineering, or equivalent work experience. That person would also have had 2
to 5 years of experience designing flat panel display drive electronics, designing active matrices for LCDs, or designing IC drivers.

STATE OF THE ART

75. By the filing date of the '550 Patent in 2004, the LCD display industry had numerous multi-national companies manufacturing LCD displays in volume for various consumer applications like notebook computers, desktop monitors, televisions, pocket entertainment devices, and mobile phones. Competition for market share was fierce, and older LCD issues like limited viewing angle, display brightness, and motion blur were incrementally improved with each product introduction. As the LCD industry grew, so did the support infrastructure for liquid crystal material, substrate glass, polarizer material, backlight modules, light control films, chemicals for color filters, and silicon drive ICs. The LCD manufacturer had multiple supply sources for each of these components.
76. The LCD driver ICs for source and gate drivers were designed by companies in close communication with the panel manufacturers. These ICs use conventional single crystal silicon processing and are manufactured in multiple foundries. The time from driver specification to volume manufacture was on the order of one year. Therefore, panel manufacturers used the ICs that were available at the time of their product introductions.
77. The LCD driver ICs had increasing number of output channels, faster clocking speeds, different logic interfaces, and more features for the display manufacturers. The ICs were sold for COG assembly or Tape Automated Bonding (TAB). The COG method uses an

Anisotropic Conductive Film (ACF) for interconnection between the driver pads and the panel electrodes. The TAB method, along with numerous variations, attaches the driver die to a flexible film with copper traces. The driver outputs are connected to the panel electrodes with ACF, and the logic inputs and power to the driver are connected with ACF or conventional connectors. The display module assembly used COG and TAB extensively since the 1990's. It was also well-known at the time of the filing date of the ' 550 Patent that an LCD panel must include a glass substrate or other substantially transparent substrate to transmit the light from the backlight to the LCD viewer's eyes. LCD panels modulate the light generated by the backlight assembly and passed through the glass substrate (or other transparent substrate) according to the TFT drive signals. The light exits the LCD surface nearest the viewer and allows the viewer to see the visual image generated based on the electrical input signal.
78. The number and location of source and gate drivers depends on the LCD panel size, pixel size, and other market driven factors. The available drivers could be mounted on a single panel edge or both panel edges. This is true for both the gate axis and the data or source axis. This design change was made as early as the 1970s. When the drivers are attached on opposite panel edges, the interconnection density of connections per linear distance is halved, the driver's power dissipation is spread out, the data clocking rate is halved, peak currents to drivers are distributed more evenly, and the image is more uniform if electrode resistance is an issue across the panel.
79. As of the filing date of the ' 550 patent, workers in the field of LCD devices were aware of several developments, including:
a. active matrix LCD panels;
b. the Odd Row/Even Row configuration;
c. the use of single or multiple gate drivers and single or multiple source drivers, with the decision to use multiple drivers driven, at least in part, by the size of the LCD panel;
d. the use of chip on glass technology; and
e. the use of integrated driver circuit on glass

SHARP REFERENCE

80. The Sharp Reference discloses an LCD device comprising a matrix array of thin film transistors (TFTs) 7 , which drive the corresponding array of pixel units 4, as shown below in annotated Figure 10. (Ex. 1002, Sharp Reference, Pars. [0049], [0130], [0140][0145], FIG. 10).
81. The Sharp Reference states that its object is to improve image quality by reducing data signal noise and crosstalk (e.g., image blurring) and preventing a "ghost phenomenon" arising from the slow response time. (Id., Par. [0030]).
82. The Sharp Reference also teaches that source driver circuits can be implemented in a certain way (using "driver sample hold method") to solve the problem of
insufficient image data write time arising from increasing the number of pixels in the horizontal scan direction in an LCD panel. (Id., Pars. [0013]-[0019]).

Sharp Reference Fig. 10

83. As shown above in annotated Figure 10, each gate bus line 6 is connected to a gate driver 3. Specifically, each gate bus line 6 is associated with a unique AND circuit 81 (e.g., shaded in orange and labeled as " 1 "), and gate shiff register 3a. In this way, each 29
gate bus line 6 is individually driven by the output of the unique AND circuit 81. (ld., Pars. [0142]-[0145], FIG. 10).
84. I believe that under the broadest reasonable construction discussed above, a person of ordinary skill in the art would have understood that Figure 10 of the Sharp Reference explicitly shows multiple gate drivers. Specifically, I believe that each gate driver includes gate shift register 3 a and an AND circuit 81 connected to an individual gate line 6 because they operate together to generate a non-overlapping gate pulse for each gate line 6. The first gate driver is the AND circuit " 1 " in communication with shift register 3a; the second gate driver is the AND circuit "2" in communication with shift register 3a; and the third gate driver is the AND circuit " 3 " in communication with shift register 3a. (ld.).
85. Annotated Figure 10 also shows groups of source bus lines 5 connected to the source drivers 71 .
86. I believe that under the broadest reasonable construction discussed above, a person of ordinary skill in the art would have understood that Figure 10 of the Sharp Reference explicitly shows multiple source drivers. Specifically, I believe that each source driver includes source shift register 10, AND circuit 72, data signal lines 73,74 , sampling switches 19,20 (or 21, 22), and sampling capacitors 24,25 (or 26,27). The first source driver includes AND circuit 72 (labeled " 1 ") in communication with shift register 10, data signal lines 73,74 , sampling switches 19,20 , and sampling capacitors 24,25 . The second source driver includes AND circuit 72 (labelled " 2 ") in communication with shift register 10 ,
sampling switches 21 and 22, and sampling capacitors (not numbered). (Ex. 1002, Sharp Reference, Pars. [0131]-[0140], [0145], FIG. 10).
87. As shown above in annotated Figure 10, each set of first source bus line 5 (red) and second source bus line 5 (green) in each column (e.g., C1, C2) is associated with a unique AND circuit 72 (e.g., shaded in purple and labeled as "1" and " 2 "). This unique AND circuit 72 operates with the associated circuit elements, i.e., source shift register 10 , and a unique set of sampling switches (e.g., 19, 20) and sampling capacitors (e.g., 24, 25) to drive the first and second source bus lines (red and green lines) in each group of source bus lines 5. (Ex. 1002, Sharp Reference, Pars. [0131]-[0140], [0145], FIG. 10).
88. For example, for the first source driver in the first column C1, the AND circuit 72 obtains the output of the source shift register 10 and inputs its logical product to the gate terminals of the sampling switches 19 and 20. Meanwhile, data signals from the data signal lines 73 and 74 are respectively input to the source terminals of the sampling switches 19 and 20 , and their outputs are respectively held in the sampling capacitors 24 and 25 . These held output signals are then input to the first and second source bus lines 5 on both sides of pixel units 4 in the first column C 1 . For the second source driver in the second column C 2 , the AND circuit 72 obtains the output of the source shift register 10 and inputs its logical product to the gate terminals of the sampling switches 21 and 22 . Meanwhile, data signals from the data signal lines 73 and 74 are respectively input to the source terminals of the sampling switches 21 and 22, and their outputs are respectively held in the sampling
capacitors (not numbered). These held output signals are then input to the first and second source bus lines 5 on both sides of pixel units 4 in the second column C2. (Ex. 1002, Sharp Reference, Pars. [0131]-[0140], [0145], FIG. 10). In this way, each set of first and second source bus lines 5 associated with each column of pixel units 4 are individually driven by a separate source driver. Accordingly, I believe that the Sharp Reference explicitly teaches multiple source drivers.
89. The Sharp Reference also teaches that the gate bus lines 6 are spaced apart from and parallel to each other (i.e., insulated with each other), and that the source bus lines 5 are likewise spaced apart from and parallel to each other (i.e., insulated with each other). (Id., FIG. 10).
90. As shown above in annotated Figure 10, each gate bus line 6 is connected with the gates of all of the TFTs 7 in the row associated with that gate bus line. For example, the first gate line 6 is connected with the gates of all of the TFTs 7 of the first row (R1), the second gate line 6 is connected with the gates of all of the TFTs 7 of the second row (R2), etc. (Id., Par. [0143], FIG. 10).
91. Annotated Figure 10 above also shows the claimed Odd Row/Even Row configuration. In this regard, the first source bus line 5 (red line) and the second source bus line 5 (green line) in each group of data bus lines are respectively connected with the sources of all of the TFTs 7 of the odd rows (red boxes in R1 and R3) and even rows
(green boxes in R2) of the column (C1, C2) associated with that group of source bus lines, as required by all Claims of the ' 550 Patent.
92. For example, the first source bus line 5 (red line) of the first group is connected with the sources (red dots) of the TFTs 7 of the first row and third row (see the red boxes in R 1 and R 3) in the first column C 1, while the second source bus line 5 (green line) of the first group is connected with the sources (green dot) of the TFT 7 of the second row (green box in R2) in the first column C1. (Id., Pars. [0131]-[0140], [0145], FIG. 10). The same Odd Row/Even Row configuration is provided in each column (e.g., C2).
93. The benefits of the Odd Row/Even Row configuration were already well known in the prior art, including the Sharp Reference. The Sharp Reference teaches that the Odd Row/Even Row configuration in an LCD Panel prevents adjacent pixel TFTs 7 in the column direction from being turned on simultaneously. This reduces the effect of data signal noise and therefore improves the video quality of the LCD panel. (Id., Pars. [0144][0145], [0030]).
94. In this regard, I believe that the benefits of using the Odd Row/Even Row configuration became particularly significant as the size of the LCD panel and/or the number of pixels increased. When LCD screens became large enough to compete against the conventional cathode ray tube (CRT) screens, there was market and design need to improve the video quality of LCD panels. But this required increased number of pixels in an LCD panel and at the same time, a faster way to drive these pixels accurately. The Odd

Row/Even Row configuration was one of the various techniques developed in the prior art to meet this need.
95. As shown in Figure 10, the source drivers 71 for all source bus lines 5 are installed on the same side (e.g., upper side) of the display panel.
96. Figure 10 also shows that the first and the second source bus lines 5 (the red and green lines) in each group of source bus lines are connected with the same source driver. (Id., Pars. [0131]-[0140], FIG. 10).
97. The transfer of data signals from the data signal lines 73,74 to the first and the second source bus lines 5 (the red and green lines) is switched by sampling switches 19, 20 (or 21, 22) (highlighted in yellow). (ld., Pars. [0134]-[0135], [0137]-[0139], FIG. 10).

THE SHARP REFERENCE ANTICIPATES CLAIMS 1-3

98. As discussed below, I believe that the Sharp Reference explicitly discloses each and every element of Claims $1-3$ of the ' 550 Patent.
99. As shown below in annotated Figure 10, the Sharp Reference teaches an LCD device comprising a matrix array of thin film transistors (TFTs) 7, which drive the corresponding array of pixel units 4. (Id., Pars. [0049], [0130], [0140]-[0145], FIG. 10).

THE SHARP REFERENCE DISCLOSES MULTIPLE GATE DRIVERS

100. As explained above in paragraph 84 , I believe that Figure 10 of the Sharp Reference explicitly discloses multiple gate drivers.
101. As shown in Figure 10, gate lines 6 are connected to the corresponding gate drivers 3 , as required by Claims 1 and 2 .
102. Each gate driver comprises gate shift register 3a, and AND circuit 81. (/d., Pars. [0142]-[0145], FIG. 10).

THE SHARP REFERENCE DISCLOSES MULTIPLE SOURCE DRIVERS

103. As explained above in paragraphs 86 - 88 , Figure 10 also explicitly discloses multiple source drivers.
104. As shown in Figure 10, groups of data lines 5 are connected to the corresponding source drivers 71 .
105. Each source driver comprises source shift register 10, AND circuit 72, data signal lines 73,74 , sampling switches 19,20 (or 21, 22), and sampling capacitors 24,25 (or 26, 27). (Ex. 1002, Sharp Reference, Pars. [0131]-[0139], FIG. 10).

THE SHARP REFERENCE DISCLOSES THAT FIRST AND SECOND DATA LINES IN EACH GROUP OF DATA LINES ARE CONNECTED WITH THE SAME SOURCE DRIVER

106. As required by Claims 1-2, annotated Figure 10 of the Sharp Reference shows that the first and second data lines (e.g., red and green lines 5) in each group of data lines are connected with the same source driver (e.g., source driver in purple comprising source shift register 10, AND circuit 72, data signal lines 73, 74, sampling switches 19,20 (or 21, 22), and sampling capacitors 24,25 (or 26, 27)). (ld., Pars. [0131]-[0140], FIG. 10). As discussed above, during prosecution, Claim 1 of the ' 550 Patent was allowed over Kim based on this feature.

THE SHARP REFERENCE DISCLOSES THAT DATA LINES/GATE LINES ARE INSULATED WITH EACH OTHER

107. As explained above, Figure 10 of the Sharp Reference also shows that the gate lines 6 are "insulated with each other" under the broadest reasonable construction of this term since they are spaced apart from and parallel to each other; and the data lines 5 are likewise insulated with each other as they are spaced apart and parallel to each other. (Ex. 1002, Sharp Reference, FIG. 10). Indeed, the spacing (insulation) between the data and gate lines in the Sharp Reference and the '550 Patent is virtually identical, as shown below in the side-by-side comparison of Figure 4B of the '550 Patent and Figure 10 of the Sharp Reference.

Sharp Reference Fig. 10

36

THE SHARP REFERENCE TEACHES THE ODD ROWIEVEN ROW CONFIGURATION

108. The claimed Odd Row/Even Row configuration of the ' 550 Patent (shown on the left) is present in the LCD device of the Sharp Reference (shown on the right). (Id., Pars. [0144]-[0145], FIG. 10). Specifically, the first data line 5 (see the red line) is connected to the sources (red dots) of the TFTs (red boxes) in the odd rows (R1 and R3). The second data line 5 (green line) is connected to the sources (green dot) of the TFTs (green boxes) in the even rows (R2). Figure 4B of the later ' 550 Patent (shown on the left) has the exact same Odd Row/Even Row configuration.

THE SHARP REFERENCE DISCLOSES THAT EACH SOURCE DRIVER IS INSTALLED ON THE SAME SIDE OF THE DISPLAY PANEL

109. Figure 10 of the Sharp Reference also shows that each source driver (e.g., source drivers in purple) is installed on the same side (e.g., upper side) of the display panel (Ex. 1002, Sharp Reference, Pars. [0130]-[0140], FIG. 10), as required by Claim 2.

THE SHARP REFERENCE DISCLOSES SWITCHES FOR DATA TRANSFER

110. Figure 10 of the Sharp Reference shows that data transfer is switched by each sampling switch 19, 20, 21, 22 (id., Pars. [0134]-[0135], [0137]-[0139], FIG. 10), as required by Claim 2.

THE SHARP REFERENCE DISCLOSES A SPACE BETWEEN NEIGHBORING DATA LINES TO PREVENT SHORT CIRCUITING

111. Claim 3 , which depends from Claim 2, recites that "there is a space [i.e., a gap] between the neighboring data lines to prevent them from short circuit." Figure 10 of
the Sharp Reference clearly shows a space between the neighboring data lines 5 that prevents short circuiting.
112. Just like in Figure 4 B of the ' 550 Patent, Figure 10 shows that the first data line 5 (red) is on the left side of the pixel TFTs in the first column (C1), and the second data line 5 (green) is on the right side of the pixel TFTs in the first column (C1). This space prevents short circuiting between the first and second data lines.
113. When two neighboring data lines are shown to be spaced apart from each other in the schematic circuit diagrams for an LCD driving device, such as Figure 10 of the Sharp Reference or Figure 4B of the '550 Patent, I expect that there is a sufficient space between these data lines to prevent short circuiting. Otherwise, the LCD driving device would not be operating as described in the reference.

SHARP REFERENCE DISCLOSES EACH AND EVERY ELEMENT OF CLAIMS 1-3

114. The following claim charts summarize where I believe each element of Claims
$1-3$ is taught by the Sharp Reference:

The Claims Of The '550 Patent	Sharp Reference
1. A liquid crystal display driving device of matrix structure type including:	Sharp Reference discloses a liquid crystal display driving device of matrix structure type (Ex. 1002, Sharp Reference, Pars. [0001]- [0003], [0130], FIG. 10).
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that $N \times M$ of pixels	Sharp Reference discloses a group of thin film transistors 7 with matrix array consisting of n (e.g., 3) rows and m (e.g., 2) columns of thin filmansistors 7, wherein each thin film transistor can drive one pixel unit 4 so that n $\times m$

The Claims Of The '550 Patent	Sharp Reference
can be driven;	(e.g., 3×2) of pixel units can be driven (Ex. 1002, Sharp Reference, Pars. [0049], [0130], [0140]- [0145], FIG. 10).
a group of N gate lines connected to the gate drivers and insulated with each other, wherein the first gate line is connected with the gates of all the thin film transistors of the first row, the second gate line is connected with the gates of all the thin film transistors of the second row . . . and the $\mathrm{N}^{\text {ih }}$ gate line is connected with the gates of all the thin film transistors of the $\mathrm{N}^{\text {ih }}$ row; and	Sharp Reference discloses a group of n (e.g., 3) gate bus lines 6 connected to the gate drivers 3 . The first gate driver is the AND circuit " "1" in communication with shift register 3a; the second gate driver is the AND circuit "2" in communication with shift register 3a; and the third gate driver is the AND circuit " 3 " in communication with shift register 3 a. The gate lines are insulated with each other by being spaced apart from and parailel to each other. The first gate bus line 6 is connected with the gates of all the thin film transistors 7 of the first row. The second gate bus line 6 is connected with the gates of all the thin film transistors 7 of the second row ... and the $\mathrm{n}^{\text {th }}$ (e.g., $3^{\text {ro }}$) gate bus line 6 is connected with the gates of all the thin film transistors 7 of the $n^{\text {th }}$ (e.g., 3 rd) row (Ex. 1002, Sharp Reference, Pars. [0142][0145], FIG. 10).
M groups of data lines connected to the source drivers and insulated with each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column... and the first and the second data lines of the $\mathrm{M}^{\text {th }}$ group of data lines	Sharp Reference discloses m (e.g., 2) groups of source bus lines 5 connected to the source drivers 71. The first source driver includes AND circuit 72 (labeled "1") in communication with shift register 10, data signal lines 73,74 , sampling switches 19,20 , and sampling capacitors 24,25 . The second source driver includes AND circuit 72 (labelled "2") in communication with shift register 10, sampling switches 21 and 22, and sampling capacitors (not numbered). The groups of data lines are insulated with each other by being spaced apart from and parallel to each other. The first and the second source bus lines 5 of the first group of source bus lines are respectively connected

The Claims Of The '550 Patent	Sharp Reference
are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the M^{Th} column, and	with the sources of all the thin film transistors 7 of the odd and the even rows of the first column. . . The first and the second source bus lines 5 of the $m^{\text {th }}\left(\mathrm{e} . \mathrm{g}^{\prime} 2^{\text {nd }}\right)$ group of source bus lines are respectively connected with the sources of the all the thin film transistors 7 of the odd and the even rows of the $\mathrm{m}^{\text {in }}$ (e.g., $2^{\text {nd }}$) column (Ex. 1002, Sharp Reference, Pars. [0131]-[0140], [0145], FIG. 10).
the first data lines and the second data lines of each group of data lines are connected with the same source driver.	Sharp Reference discloses that the first source bus lines 5 and the second source bus lines 5 of each group of source bus lines are connected with the same source driver $10,72,73,74,19$, 20, 24, 25 (or 10, 72, 73, 74, 21, 22, 26, 27) (Ex. 1002, Sharp Reference, Pars. [0131][0140], FIG. 10).
2. The liquid crystal display device of matrix structure type including:	See Claim 1 above.
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that $\mathrm{N} \times \mathrm{M}$ of pixels can be driven;	See Claim 1 above.
a group of N gate lines connected to the gate drivers and insulated with each other, wherein the first gate line is connected with the gates of all the thin film transistors of the first row, the second gate line is connected with the gates of all the thin film transistors of the second row . . . and the $N^{\text {th }}$ gate line is connected with the gates of all the thin film transistors of the $\mathrm{N}^{\text {th }}$ row; and	See Claim 1 above.
M groups of data lines connected to the source drivers and insulated with	See Claim 1 above.

The Claims Of The ' 550 Patent	Sharp Reference
each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column . . and the first and the second data lines of the $\mathrm{M}^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the M^{Hh} column,	
wherein the first data lines and the second data lines of each group of data lines are connected with the same source driver,	See Claim 1 above.
each source driver is installed on the same side of the display panel and	Sharp Reference discloses that the first source driver(AND circuit 72 (labeled " 1 ") in communication with shift register 10, data signal lines 73,74 , sampling switches 19,20 , and sampling capacitors 24,25) and the second source driver (AND circuit 72 (labelled " 2 ") in communication with shift register 10 , sampling switches 21 and 22 , and sampling capacitors (not numbered)) are installed on the same side (e.g., upper side) of the display unit 1 (Ex. 1002, Sharp Reference, Pars. [0130]-[0140], FIG. 10).
the data transfer is switched by an electronic switch.	Sharp Reference discloses that the data transfer is switched by each sampling switch 19 , 20, 21, 22 (Ex.1002, Sharp Reference, Pars. [0134]-[0135], [0137]-[0139], FIG. 10).
3. The liquid crystal display driving	Sharp Reference discloses that there is a space
	41

The Claims Of The '550 Patent	Sharp Reference
device of matrix structure type as claimed in claim 2, wherein there is a space between the neighboring data lines to prevent them from short circuit.	between the neighboring data lines 5. These spaces prevent the data lines from short circuiting. (Ex. 1002, Sharp Reference, FIG. 10).

115. Accordingly, it is my opinion that Claims $1-3$ of the ' 550 Patent are anticipated by the Sharp Reference.

THE SHARP REFERENCE RENDERS CLAIMS 1-3 AND 5 OBVIOUS TO A PERSON OF ORIDNARY SKILL IN THE ART

116. As discussed above, it is my opinion that the Sharp Reference explicitly discloses each and every element of Claims $1-3$ of the ' 550 Patent, including the claimed source and gate drivers, and thus anticipates Claims 1-3.
117. I believe that no reasonable person of ordinary skill in the art would have interpreted the Sharp Reference as disclosing only a single source driver and a single gate driver in Figure 10.
118. Even under such a tenuous and narrow interpretation of the Sharp Reference, I believe that Claims 1-3 would be obvious to a person of ordinary skill in the art.

THERE IS NO UNEXPECTED RESULT FROM USING MULTIPLE SOURCE AND GATE DRIVERS IN AN LCD PANEL INSTEAD OF A SINGLE SOURCE DRIVER AND A SINGLE GATE DRIVER

119. I understand that one way of demonstrating obviousness in the situation where a prior art reference discloses a single element but the claim requires multiple
elements is to demonstrate that there are no new and unexpected results from increasing the number of such elements.
120. The duplication of the source and gate drivers shown in Figure 10 of the Sharp Reference simply allows more pixels to be added when increasing the size of the LCD panel. The addition of source and gate drivers would not change the way the LCD Panel of the Sharp Reference operates in the Odd Row/Even Row configuration. Accordingly, no unexpected results would be produced from duplicating the source and gate driver circuits (i.e., adding more drivers) shown in Figure 10 of the Sharp Reference.
121. The prior art was abundant with examples of larger sized LCD panels using multiple source and gate drivers. In fact, when I was working in the LCD industry prior to the filing date of the '550 Patent, it was a routine industry practice to change the panel design to increase the size of the panel and/or the number of pixels by simply adding more driver ICs. For example, while the small, low cost LCD panel (which had an equivalent pixel dimension of 7×4) that I worked on at Alien Technology had only a single source driver and a single gate driver, the large sized LCD panels (which had pixel dimension of at least 800×600) that I worked on at Philips used multiple driver ICs. Using additional source and gate drivers in connection with increasing the size of the panel or the number of pixels in an LCD panel was a well-known and readily available design option.
122. Consistent with my experience and as discussed above, the prior art reference (Ex. 1009) states that "in order to drive many gate bus lines and the source bus
lines on the display circuit board, a plurality of the gate drivers and source drivers must be connected to the area around the liquid crystal display panel." (Id., Par. [0006]) (emphasis added). Sekido further teaches that increasing the size of the LCD screen will increase the number of the driver ICs. (ld., Par. [0008]).
123. As explained in the Sharp Reference, its use of the Odd Row/Even Row configuration improves the image quality of an LCD panel with the increased number of pixels by reducing the effect of data signal noise. (Ex. 1002, Sharp Reference, Pars. [0144]-[0145], [0030]).
124. Hence, I believe that duplication of source and gate drivers for a larger sized LCD device would have involved only routine skill in the art and does not produce any unexpected result.
125. The ' 550 Patent fails to demonstrate or even suggest any new and unexpected results stemming from having more than one source driver circuit and more than one gate driver circuit in the claimed LCD driving device. The '550 Patent includes no explanation of the difference between having a single source driver and a single gate driver and having multiple source and gate drivers in the LCD device.
126. In fact, the '550 Patent interchangeably uses the singular ("source driver" $/$ "gate driver") and plural ("source drivers""gate drivers") to describe these components. (See Ex. 1001, '550 Patent, Col. 8:21 ("T] here are N gate lines connected to
gate driver" (emphasis added)); see also id., Figure 1A and Col. 1:36-45 (using the singular terms "data driver 11 " and "gate driver 12 ")).
127. In addition, during prosecution of the ' 550 Patent, the applicants did not dispute the Examiner's finding that Figure 5 of Kim (Ex. 1006), which shows a single block for gate driver 16, meets the gate drivers limitation of Claims 1 and 2. (Ex. 1005, p. 156).
128. Even if, contrary to my opinion, Patent Owner contends that the Sharp Reference does not disclose the claimed "source drivers" and "gate driver," I believe that it would nevertheless have been obvious to a person of ordinary skill in the art to modify the LCD driving device of the Sharp Reference to include additional source and gate driver circuits in addition to what are shown in Figure 10.
129. It is my opinion that at a minimum, Claims $1-3$ of the ' 550 Patent are obvious over the Sharp Reference.

THE SHARP REFERENCE DISCLOSES INTEGRATED GATE DRIVER CIRCUIT

130. Claim 5 requires that the "gate driver is an integrated gate driver circuit installed on glass." However, this would have also been obvious in view of the Sharp Reference.
131. The Sharp Reference teaches that the gate driver, the source driver, and the display unit consisting of a plurality of pixel units in an LCD device can be formed monolithically on the same substrate in an LCD panel to "to improve the drive force of the pixel transistor that accompanies larger screen size, and to reduce the drive IC mounting
costs and the like." (Ex. 1002, Sharp Reference, Claim 6, Pars. [0160], [0172]-[0173], [0008], [0020], [0036], [0045]). Since the gate drivers are formed monolithically on the same substrate as the pixel TFTs, the result is an integrated gate driver circuit installed on the same substrate as the pixel TFTs.
132. Moreover, It was well-known at the time of the filing date of the " 550 Patent that an LCD panel must include a glass substrate or other substantially transparent substrate to transmit the light from the backlight to the LCD viewer's eyes. LCD panels modulate the light generated by the backlight assembly and passed through the glass substrate (or other transparent substrate) according to the TFT drive signals. The light exits the LCD surface nearest the viewer and allows the viewer to see the visual image generated based on the electrical input signal.
133. The use of a glass substrate was the preferred choice, especially in an LCD panel having a large number of pixels. Compared to other transparent materials, glass is cheaper, provides a smoother surface, and is also more resistant to a high temperature required for processing TFTs in an LCD panel. In addition, a glass substrate protects liquid crystal materials and TFTs in the LCD panel from moisture. In my experience, LCD panels with a large number of pixels using TFTs all included glass substrates.
134. Thus, I believe that it would have been obvious to a person of ordinary skill in the art that the integrated gate driver circuit taught by the Sharp Reference is installed on a glass substrate in an LCD panel since the use of glass substrate is one of small number of
widely known design options for an LCD panel having the light transmitted from the backlight. Since this technology was widely understood and available at the time the ' 550 Patent was filed, I believe that a person of ordinary skill in the art would have been successful in forming an integrated gate driver circuit on a glass substrate.
135. Accordingly, it is my opinion that Claim 5 of the ' 550 Patent is also obvious over the Sharp Reference.

KAMIZONO

136. Kamizono describes an active matrix LCD for a video monitor such as a television receiver or a computer display, and teaches fabricating circuits that are suitable for a large sized LCD panel. (Ex. 1004, Kamizono, Abstract, Col. 1:5-7, Col. 3:1-36).
137. As shown below in annotated Figure 15, Kamizono teaches an LCD panel 1 having data lines ("signal lines 3 ") connected to multiple source driver ICs ("signal line driving LSIs 5") and gate lines ("scanning lines 4") connected to multiple gate driver ICs ("scanning line driving LSIs 6"). A pixel is located at the intersection 2 between a data line 3 and a gate line 4. The pixels are arranged in the image display region of the LCD panel, while the driving LSIs are arranged in the non-image display region of the panel. (Id., Col. 2:5-13, Cols. 5:51-6:20, FIG. 15). The source driver ICs 5 send data signals to operate TFTs and pixels via data lines 3 , while the gate driver ICs 6 send voltage pulse to the gates of TFTs via gate lines 4.

Kamizono Fig. 15

Scanning Line Drivin

138. Kamizono further teaches that while a "small sized" LCD panel has "a few (2 or 3) of the [driving] LSIs," a "large-screen" LCD panel uses more driving LSIs, such as 4 or 5 scanning line driving LSIs and 10 or more signal line driving LSIs. (Id., Col. 9:19-20, Col. 11:53-64, FIGS. 5, 9, and 15).
139. Kamizono also teaches that for an LCD device having an "increased screen size," these multiple source or gate drivers ("liquid crystal driving LSIs") are commonly mounted as a semiconductor chip by a chip-on-glass (COG) method or a tape automated bonding (TAB) method. According to Kamizono, the COG method is preferred over the TAB
method because of the operational reliability and reduction of the overall product size provided by the COG method, which is consistent with my experience. (ld., Col. 1:12-58).
140. I understand chip-on-glass (COG) to be a method of attaching single-crystal silicon die or Large Scale Integrated (LSI) circuits directly on the glass substrate of the LCD panel. The benefits of using COG are increased reliability, smaller LCD module size, and less weight. The silicon die are designed and fabricated by conventional silicon wafer processes. The die are electrically connected to the panel either through wire bonding or using Anisotropic Conductive Film (ACF). ACF is a type of plastic that contains metalized spheres. The density of the spheres in the film prevents adjacent sphere to sphere connection but connects the die output pads to the panel electrode pads through the thin plastic film.
141. Kamizono further teaches that an LCD panel 1 can be a poly-Silicon TFT panel and the source and gate drivers can be mounted on the panel in the non-image display area of the panel ("a spare area other than a display area of the liquid crystal panel $1^{\text {I }}$). (Id., Col. 13:50-55). Since the gate drivers are formed on the same substrate as the pixel TFTs, the result is integrated gate driver circuit installed on the same substrate as the pixel TFTs.

CLAIMS 1-5 ARE OBVIOUS OVER THE SHARP REFERENCE IN VIEW OF KAMIZONO

142. I reiterate my opinion discussed above that the Sharp Reference expressly discloses each and every element of Claims $1-3$, including the claimed source and gate drivers, and thus anticipates Claims 1-3.
143. Again, to the extent that the Patent Owner argues that the Sharp Reference discloses only a single source driver and a single gate driver in Figure 10, no reasonable person of ordinary skill in the art would agree.

MODIFICATION OF THE LCD DRIVING DEVICE OF THE SHARP REFERENCE TO INCLUDE MULTIPLE SOURCE AND GATE DRIVERS OF KAMIZONO WOULD HAVE BEEN WITHIN THE SKILL OF A PERSON OF ORDINARY SKILL IN THE ART AND WOULD HAVE PRODUCED NO UNEXPECTED RESULT

144. Kamizono teaches the use of multiple source driver ICs 5 and multiple gate driver ICs 6 to send signals through data lines and gate lines in an LCD device. Indeed, Figure 15 of Kamizono is virtually identical to Figure 4A of the '550 Patent.
145. For the reasons discussed below, it is my opinion that even under such a misreading of the Sharp Reference, it would still have been obvious to a person of ordinary skill in the art to combine the teachings of the Sharp Reference and Kamizono to arrive at the LCD driving device of Claims $1-5$ of the ' 550 Patent.
146. The Sharp Reference and Kamizono are in the same field of LCD display technology. They both disclose active matrix LCD devices and are both directed to improving the performance of a large sized LCD panel. The Sharp Reference teaches that source drivers can be implemented in a certain way (e.g., using "driver sample hold
method") to solve the problem of insufficient image data write time arising from increasing the number of pixels in in an LCD panel. (Ex. 1002, Sharp Reference, Pars. [0013]-[0019]). Kamizono teaches that a "large-screen" LCD panel uses more source and gate driver LSIs than a "small sized" LCD panels would use. (Ex. 1004, Kamizono, Col. 9:19-20, Col. 11:5364, FIGS. 5 and 9). Because both references addressed the same design needs for larger sized LCD panels, I believe that a person of ordinary skill in the art making the source and gate driving circuit for a large-screen LCD panel would have been motivated to combine the teachings of the Sharp Reference and Kamizono.
147. The technique of using multiple gate and source drivers has been used to improve Kamizono's larger sized LCD panels. The source drivers and the Odd Row/Even Row configuration taught in the Sharp Reference also improve the larger sized LCD panels. Hence, a person of ordinary skill in the art would recognize that Kamizono's technique would improve similar devices, such as larger sized LCD panels of the Sharp reference, in the same way. In my opinion, using multiple source and gate driver ICs as taught in Kamizono in the LCD panel of the Sharp Reference is well within the level of ordinary skill in the art, particularly since Figure 10 of the Sharp Reference is configured to have separate circuitry drive data through each gate line and each pair of data lines and Kamizono likewise shows separate circuit (i.e., source drivers 5 and data drivers 6).
148. Based on my experience and knowledge, I believe that modifying the $L C D$ driving device of the Sharp Reference to include the multiple source and gate driver ICs of

Kamizono would not produce unexpected result, but would merely lead to a predictable result, since such a modification simply allows more pixels to be added to increase the size of the LCD panel without changing the way LCD Panel operates.
149. Kamizono teaches the use of multiple source and gate drivers (as does the Sharp Reference), and the Sharp Reference discloses all of the other limitations of Claims $1-3$, as shown in the claim charts provided above. Moreover, for the reasons discussed above, there was a clear motivation to combine these references. Thus, to the extent that the Patent Owner argues that the Sharp Reference does not teach multiple source and gate drivers, which is contrary to my opinion discussed above, I believe that, at a minimum, Claims $1-3$ of the " 550 Patent would be obvious over the Sharp Reference in view of Kamizono.

KAMIZONO DISCLOSES A CHIP ON GLASS

150. Dependent Claim 4 requires that the gate driver is a chip installed on glass.
151. Kamizono teaches that the use of a chip-on-glass is the preferred way of implementing the gate drivers for a large sized LCD panel. (Ex. 1004, Kamizono, Col. 1:1258).
152. Based on my experience and knowledge, I believe that using the chip on glass of Kamizono for the gate driver in the LCD device of the Sharp Reference would not produce any unexpected result and would not affect, for example, the Odd Row/Even Row configuration in the LCD device of the Sharp Reference.
153. Based on my experience and knowledge, I believe that a person of ordinary skill in the art would recognize that Kamizono's technique of using a chip on glass for the gate driver to improve a large screen LCD panel (e.g., increasing the operational reliability and reducing the overall product size--see Ex. 1004, Kamizono, Col. 1:12-58) can be also used to improve the large screen LCD panel of the Sharp Reference in the same way.
154. A person of ordinary skill in the art making a large-screen LCD panel would have been motivated to combine the teachings of the Sharp Reference and Kamizono to arrive at Claim 4.

THE SHARP REFERENCE DISCLOSES INTEGRATED GATE DRIVER CIRCUIT

155. Claim 5 requires that the gate driver is an integrated gate driver circuit installed on glass. As discussed above, this would have been obvious in view of the Sharp Reference.
156. The Sharp Reference teaches that the gate driver, the source driver, and the display unit consisting of a plurality of pixel units in an LCD device can be formed monolithically on the same substrate in an LCD panel to "to improve the drive force of the pixel transistor that accompanies larger screen size, and to reduce the drive IC mounting costs and the like." (Ex. 1002, Sharp Reference, Claim 6, Pars. [0160], [0172]-[0173], [0008], [0020], [0036], [0045]). Since the gate drivers are formed monolithically on the same substrate as the pixel TFTs, the result is integrated gate driver circuit installed on the same substrate as the pixel TFTs,
157. Moreover, as discussed above, it was well-known at the time of the filing date of the ' 550 Patent that an LCD panel must include a glass substrate or other substantially transparent substrate to transmit the light from the backlight to the LCD viewer's eyes. LCD panels modulate the light generated by the backlight assembly that passes through the glass substrate (or other transparent substrate) according to the TFT drive signals. The light exits the LCD surface nearest the viewer and allows the viewer to see the visual image generated based on the electrical input signal.
158. Again, the use of a glass substrate was the preferred choice, especially in an LCD panel having a large number of pixels. Compared to other transparent materials, glass is cheaper, provides a smoother surface, and is also more resistant to a high temperature required for processing TFTs in an LCD panel. In addition, a glass substrate protects liquid crystal materials and TFTs in the LCD panel from moisture. In my experience, LCD panels with a large number of pixels using TFTs all included glass substrates.
159. Thus, I believe that it would have been obvious to a person of ordinary skill in the art that the integrated gate driver circuit taught by the Sharp Reference is installed on a glass substrate in an LCD panel since the use of glass substrate is one of small number of widely known design options to make an LCD panel and to have the light transmitted from the backlight.

THE COMBINATION OF THE SHARP REFERENCE AND KAMIZONO TEACHES ALL ELEMENTS OF CLAIMS 1-5
160. The following claim charts summarize where I believe each element of Claims
$1-5$ is taught by the combination of the Sharp Reference and Kamizono:

The Claims Of The '550 Patent	Sharp Reference in View of Kamizono
1. A liquid crystal display driving device of matrix structure type including:	Sharp Reference discloses a liquid crystal display driving device of matrix structure type (Ex. 1002, Sharp Reference, Pars. [0001]- [0003], [0130], FIG. 10).
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that N×M of pixels can be driven;	Sharp Reference discloses a group of thin film transistors 7 with matrix array consisting of n (e.g., 3) rows and m (e.g., 2) columns of thin film transistors 7, wherein each thin film transistor can drive one pixel unit 4 so that nxm
(e.g., 3×2) of pixel units can be driven (Ex.	
1002, Sharp Reference, Pars. [0049], [0130],	
[0140]- [0145], FIG. 10).	

The Claims Of The ' 550 Patent	Sharp Reference in View of Kamizono
M groups of data lines connected to the source drivers and insulated with each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column... and the first and the second data lines of the $\mathrm{M}^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the $\mathrm{M}^{\text {h }}$ column, and	Sharp Reference discloses m (e.g., 2) groups of source bus lines 5 connected to the source drivers 71. The groups of data lines are insulated with each other by being spaced apart from and parallel to each other. The first and the second source bus lines 5 of the first group of source bus lines are respectively connected with the sources of all the thin film transistors 7 of the odd and the even rows of the first column. . . The first and the second source bus lines 5 of the $m^{\text {th }}$ (e.g., $\left.2^{\text {nd }}\right)$ group of source bus lines are respectively connected with the sources of the all the thin film transistors 7 of the odd and the even rows of the $\mathrm{m}^{\text {th }}\left(\right.$ e. $\left.\mathrm{g} ., 2^{\text {nd }}\right)$ column (Ex. 1002, Sharp Reference, Pars. [0131]-[0140], [0145], FIG. 10). Kamizono discloses signal lines 3 connected to multiple signal line driving LSIs 5 in an LCD panel (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).
the first data lines and the second data lines of each group of data lines are connected with the same source driver.	Sharp Reference discloses that the first source bus lines 5 and the second source bus lines 5 of each group of source bus lines are connected with the same source driver $10,72,73,74,19$, $20,24,25$ (or $10,72,73,74,21,22,26,27$) (Ex. 1002, Sharp Reference, Pars. [0131][0140], FIG. 10).
2. The liquid crystal display device of matrix structure type including:	See Claim 1 above
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that $\mathrm{N} \times \mathrm{M}$ of pixels can be driven;	See Claim 1 above
a group of N gate lines connected to	See Claim 1 above

The Claims Of The ' 550 Patent	Sharp Reference in View of Kamizono
the gate drivers and insulated with each other, wherein the first gate line is connected with the gates of all the thin film transistors of the first row, the second gate line is connected with the gates of all the thin film transistors of the second row . . . and the $N^{\text {th }}$ gate line is connected with the gates of all the thin film transistors of the $\mathrm{N}^{\text {th }}$ row; and	
M groups of data lines connected to the source drivers and insulated with each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column ... and the first and the second data lines of the $\mathrm{M}^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the $\mathrm{M}^{\text {th }}$ column,	See Claim 1 above.
wherein the first data lines and the second data lines of each group of data lines are connected with the same source driver,	See Claim 1 above
each source driver is installed on the same side of the display panel and	Sharp Reference discloses that the first source driver(AND circuit 72 (labeled " 1 ") in communication with shift register 10, data signal lines 73,74 , sampling switches 19,20 , and sampling capacitors 24,25) and the second

The Claims Of The "550 Patent	Sharp Reference in View of Kamizono
	source driver (AND circuit 72 (labelled "2") in communication with shift register 10, sampling switches 21 and 22, and sampling capacitors (not numbered)) are installed on the same side (e.g., upper side) of the display unit 1 (Ex. 1002, Sharp Reference, Pars. [0130]-[0140], FIG. 10).
the data transfer is switched by an electronic switch.	Sharp Reference discloses that the data transfer is switched by each sampling switch 19, 20, 21, 22 (Ex.1002, Sharp Reference, Pars. [0134]-[0135], [0137]-[0139], FIG. 10).
3. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein there is a space between the neighboring data lines to prevent them from short circuit.	Sharp Reference discloses that there is a space between the neighboring data lines 5. These spaces prevent the data lines from short circuiting. (Ex. 1002, Sharp Reference, FIG. 10).
4. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein the gate driver is a chip installed on glass.	Kamizono discloses that a liquid crystal driving LSI is commonly mounted as a semiconductor chip by a chip-on-glass (COG) method. (Ex. 1004, Kamizono, Col. 1:12-58).
5. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein the gate driver is an integrated gate driver circuit installed on glass.	Kamizono discloses LCD driving circuits that form an integrated structure with a poly-Silicon TFT panel. (Ex. 1004, Kamizono, Col. 13:50- 55).

161. Accordingly, it is my opinion that Claims $4-5$ of the ' 550 Patent are also obvious over the Sharp Reference in view of Kamizono.

CLAIMS 1-5 ARE OBVIOUS OVER SHIMADA IN VIEW OF KAMIZONO

162. As explained below, it is my opinion that Claims $1-5$ of the ' 550 Patent are also obvious over Shimada in view of Kamizono.

SHIMADA

163. As shown below in annotated Figure 4, Shimada teaches an LCD device comprising a matrix array of thin film transistors (TFTs) 103, which drive the corresponding array of pixels 106. (Ex. 1003, Shimada, Col. 4:31-63, Fig. 4).
164. Like the Sharp Reference and Kamizono, Shimada addresses the technical problems arising from increasing the size of the LCD panel and the number of pixels, such as line delay. (ld. at Cols. 2:35-3:63). Shimada states that its object is to "reduce the effect of signal delay on display quality" of the LCD device, thereby improving image quality. (Id. at Col. 2:66-67).

Shimada Fig. 4

165. As shown in Figure 4, a group of gate bus lines $101\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ is connected to the gate driving circuit 109, and each gate bus line is connected with the gates of all of the TFTs 103 in the row associated with that gate bus line. For example, the first gate line X_{1} is connected with the gates of all of the TFTs 103 of the first row (R1), the
second gate line X_{2} is connected with the gates of all of the TFTs 103 of the second row (R2), etc. (Id. at Col. 4:31-40, Fig. 4).
166. Shimada also teaches that the gate bus lines $101\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ are spaced apart from and parallel to each other (i.e., insulated with each other). (ld., Fig. 4).
167. Figure 4 also shows groups of data bus lines 102a, 102b (the red and green lines) connected to the same source driving circuit 108. I understand that this was the basis for allowance of Claim 1 by the Patent Office. Figure 4 also shows that the data bus lines (e.g., 102a, 102b) are spaced apart from and parallel to each other (i.e., insulated with each other). (Id., Col. 4:31-40, Fig. 4).
168. As shown above in Figure 4 of Shimada, the first data bus line 102a (red line) and the second data bus line 102b (green line) in each group of data bus lines are respectively connected with the sources of all of the TFTs 103 of the odd rows (red boxes in R1 and R3) and even rows (green boxes in R2) of the column (C1, C2, C3) associated with that group of data bus lines, as required Claims $1-5$ of the ' 550 Patent.
169. For example, the first data bus line 102a (red line) of the first group is connected with the sources (red dots) of the TFTs 103 of the first row and third row (see the red boxes in R1 and R3) in the first column (C1), while the second data bus line 102b (green line) of the first group is connected with the sources (green dot) of the TFT 103 of the second row (green box in R2) in the first column (C1). (Id. at Col. 4:41-63, Fig. 4). The same Odd Row/Even Row configuration is provided in each column (e.g., C2 and C3).
170. Shimada teaches that this Odd RowIEven Row configuration reduces the effect of signal delay caused by the increased number of pixels, thereby improving the video quality of the display of a larger-sized LCD panel. (Id. at Cols. 2:34-3:2, Col. 5:49-66).
171. As shown in Figure 4, the source driving circuit 108 for all data bus lines is installed on the same side (e.g., upper side) of the display panel.
172. Figure 4 also shows that the transfer of video signals from the video signal line 112 to the first and the second data bus lines 102a, 102b is switched by the switches 110a, 110b. (Id. at Col. 4:41-51, Fig. 4).

IT WOULD HAVE BEEN OBVIOUS TO COMBINE SHIMADA'S LCD DEVICE WITH KAMIZONO'S TEACHING OF MULTIPLE SOURCE AND GATE DRIVERS

173. The LCD device of Shimada discloses all of the key elements of Claims 1-3 of the ' 550 Patent, including the Odd Row/Even Row configuration.
174. Kamizono discloses source drivers 5 and gate drivers 6. (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).
175. As discussed below, I believe that it would have been obvious to a person of ordinary skill in the art at the time the " 550 Patent was filed to combine the teachings of Shimada and Kamizono to arrive at the LCD driving device of Claims 1-3.
176. Shimada and Kamizono are in the same field of LCD display technology. They both disclose active matrix LCD devices and are both directed to improving the performance of a large screen LCD panel. Shimada states that increasing the number of pixels causes undesirable line delay and teaches the Odd Row/Even Row configuration in a 62
larger sized LCD device to reduce the effect of signal delay on display quality of the LCD device. (Ex. 1003, Shimada, Cols. 2:35-3:63). Kamizono teaches that a "large-screen" LCD panel uses more source and gate driver LSIs than a "small sized" LCD panels would use. (Ex. 1004, Kamizono, Col. 9:19-20, Col. 11:53-64, FIGS. 5 and 9). Because both references addressed the same design need for larger sized LCD panels, I believe that a person of ordinary skill in the art making the source and gate driving circuit for a largescreen LCD panel would have been motivated to combine the teachings of Shimada and Kamizono to arrive at Claims 1-3.
177. Based on my experience and knowledge, I believe that modifying the LCD driving device of Shimada to include the multiple source and gate driver ICs of Kamizono would not produce unexpected results, since such a modification simply allows more pixels to be added to increase the size of the LCD panel. This modification would not change the way Shimada's LCD panel operates in the Odd Row/Even Row configuration.
178. In addition, I believe that a person of ordinary skill in the art would recognize that Kamizono's technique of including multiple source and gate drivers to improve a large screen LCD panel can also be used to improve the large screen LCD panel of Shimada in the same way. This would be well within the level of ordinary skill in the art.
179. Indeed, the prior art was replete with examples of larger sized LCD panels using multiple source and gate drivers. In fact, when I was working in the LCD industry prior to the filing date of the ' 550 Patent, it was a routine industry practice to change the panel
design to increase the size of the panel and/or the number of pixels by simply adding more driver ICs. For example, while the small, low cost LCD panel (which had an equivalent pixel dimension of 7×4) that I worked on at Alien Technology had only a single source driver and a single gate driver, the large sized LCD panels (which had pixel dimension of at least 800×600) that I worked on at Philips used multiple driver ICs. Using additional source and gate drivers in connection with increasing the size of the panel or the number of pixels in an LCD panel was a well-known and readily available design option.
180. Consistent with my experience, the prior Sekido reference (Ex. 1009) states that "in order to drive many gate bus lines and the source bus lines on the display circuit board, a plurality of the gate drivers and source drivers must be connected to the area around the liquid crystal display panel." (Ex. 1009, Sekido, Par. [0006]) (emphasis added). This prior art further teaches that increasing the size of the LCD screen will increase the number of the driver ICs. (Id., Par. [0008]).
181. Accordingly, I believe that it would have been obvious to a person of ordinary skill in the art to modify the LCD driving device of Shimada to include the multiple source and gate drivers shown in Kamizono and connect them to the data lines (e.g., 102a, 102b) and the gate lines $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ of Shimada, respectively.
182. Moreover, as discussed below, Shimada teaches all of the other limitations of Claims 1 and 2 of the ' 550 Patent.

Shimada Fig. 4

SHIMADA DISCLOSES THE ODD ROWIEVEN ROW CONFIGURATION

183. As shown above in annotated Figure 4, Shimada discloses the claimed Odd Row/Even Row configuration of the '550 Patent (shown on the left). (Ex. 1003, Shimada, Col. 4:41-63, Fig. 4).
184. Specifically, the first data line 102a (see the red line) is connected to the sources (red dots) of the TFTs (red boxes) in the odd rows (R1 and R3). The second data line 102 b (green line) is connected to the sources (green dot) of the TFTs (green boxes) in the even rows (R2). Figure 4B of the later " 550 Patent has the same Odd Row/Even Row configuration.
185. Like the ' 550 Patent, Shimada teaches that this Odd Row/Even Row configuration reduces the effect of signal delay on the quality of the display, thereby improving image quality. (Id. at Cols. 2:66-3:2).

SHIMADA DISCLOSES THAT FIRST AND SECOND DATA LINES IN EACH GROUP OF DATA LINES ARE CONNECTED WITH THE SAME SOURCE DRIVER

186. As shown above in Figure 4 of Shimada, the first and second data lines (e.g., 102 a (red line) and 102 b (green line)) in each group of data lines in are connected with the same source driver 108 (Id. at Col. 4:41-51, Fig. 4), as required by Claims 1 and 2.1 understand that this was the basis for allowance of Claim 1 during prosecution.

SHIMADA DISCLOSES THAT EACH SOURCE DRIVER IS INSTALLED ON THE SAME SIDE OF THE DISPLAY PANEL

187. As shown above in Figure 4 of Shimada, each source driver 108 is installed on the same side of the display panel (id. at Col. 4:41-46, Fig. 4), as required by independent Claim 2.

SHIMADA DISCLOSES AN ELECTRONIC SWITCH FOR DATA TRANSFER

188. As shown above in Figure 4 of Shimada, data transfer is switched by an electronic switch 110a, 110b (id.), as required by independent Claim 2.

SHIMADA DISCLOSES THAT GATE LINES/DATA LINES ARE INSULATED WITH EACH

 OTHER189. In addition, Shimada teaches that the gate lines $101\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ are "insulated with each other" under the broadest reasonable construction since they are shown to be spaced apart from and parallel to each other. Likewise, Shimada teaches that 66
the data bus lines (e.g., 102a, 102b) are insulated with each other as they are spaced apart from and parallel to each other. (Id. at FIG. 4).
190. Because Shimada and Kamizono combine to disclose all of the elements of Claims 1 and 2, and further because there was a clear motivation for a person of ordinary skill in the art to combine these references, I believe that Claims 1 and 2 are obvious over Shimada in view of Kamizono.

SHIMADA DISCLOSES A SPACE BETWEEN THE NEIGHBORING DATA LINE TO

 PREVENT SHORT CIRCUITING191. Claim 3, which depends from Claim 2 , recites that "there is a space [i.e., a gap] between the neighboring data lines to prevent them from short circuit." Figure 4 of Shimada clearly shows that there is a space between the neighboring data lines (e.g., between 102a and 102b) that prevents short circuiting.
192. When two neighboring data lines are shown to be spaced apart from each other in the schematic circuit diagram for an LCD driving device, such as Figure 4 of Shimada, I expect that there is a sufficient space between these data lines to prevent short circuiting. Otherwise, the LCD driving device would not be operating as described in the reference.

KAMIZONO DISCLOSES A CHIP ON GLASS

193. Dependent Claim 4 requires that the gate driver is a chip installed on glass.
194. Kamizono teaches that the use of a chip-on-glass is the preferred way of implementing the gate drivers for a large sized LCD panel., (Ex. 1004, Kamizono, Col. 1:1258).
195. Shimada and Kamizono are in the same field of LCD display technology. They both disclose active matrix LCD devices and are both directed to improving the performance of a large screen LCD panel. Shimada states that increasing the number of pixels causes undesirable line delay and teaches the Odd Row/Even Row configuration in a larger sized LCD device to reduce the effect of signal delay on display quality of the LCD device. (Ex. 1003, Shimada, Cols. 2:35-3:63). Kamizono teaches that a "large-screen" LCD panel uses more source and gate driver LSIs than a "small sized" LCD panels would use. (Ex. 1004, Kamizono, Col. 9:19-20, Col. 11:53-64, FIGS. 5 and 9). Because both references addressed the same design need for larger sized LCD panels, I believe that a person of ordinary skill in the art making the gate drivers for a large-screen LCD panel would have been motivated to combine the teachings of Shimada and Kamizono to arrive at Claim 4.
196. Based on my experience and knowledge, I believe that using the chip on glass of Kamizono for the gate driver in the LCD device of Shimada would not produce any unexpected result and would not affect, for example, the Odd Row/Even Row configuration in Shimada's LCD device.
197. Based on my experience and knowledge, I believe that a person of ordinary skill in the art would recognize that Kamizono's technique of using a chip on glass for the gate driver to improve a large screen LCD panel (e.g., increasing the operational reliability and reducing the overall product size) can be also used to improve the large screen LCD panel of Shimada in the same way.
198. Accordingly, a person of ordinary skill in the art making a large-screen LCD panel would have been motivated to combine the teachings of Shimada and Kamizono to arrive at Claim 4.
199. Accordingly, it is my opinion that Claim 4 is also obvious over Shimada in view of Kamizono.

KAMIZONO DISCLOSES INTEGRATED GATE DRIVER CIRCUIT

200. Claim 5 requires that the gate driver is an integrated gate driver circuit installed on glass.
201. Kaminozo teaches that an LCD panel can be a poly-Silicon TFT panel and the source and gate drivers can be mounted on the panel in a spare area other than the display area of the panel (i.e., forming an integrated structure with the LCD panel). (Ex. 1004, Kamizono, Col. 13:50-55). Since the gate drivers are formed on the same substrate as the pixel TFTs, the result is integrated gate driver circuit installed on the same substrate as the pixel TFTs.
202. Moreover, as discussed above, it was well-known at the time of the filing date of the '550 Patent that an LCD panel must include a glass substrate or other substantially transparent substrate to transmit the light from the backlight to the LCD viewer's eyes. LCD panels modulate the light generated by the backlight assembly and passed through the glass substrate (or other transparent substrate) according to the TFT drive signals. The light exits the LCD surface nearest the viewer and allows the viewer to see the visual image generated based on the electrical input signal.
203. The use of a glass substrate was the preferred choice, especially in an LCD panel having a large number of pixels. Compared to other transparent materials, glass is cheaper, provides a smoother surface, and is also more resistant to a high temperature required for processing TFTs in an LCD panel. In addition, a glass substrate protects liquid crystal materials and TFTs in the LCD panel from moisture. In my experience, LCD panels with a large number of pixels using TFTs all included glass substrates.
204. Thus, I believe that it would have been obvious to a person of ordinary skill in the art that the integrated gate driver circuit taught by Kamizono is installed on a glass substrate in an LCD panel since the use of glass substrate is one of small number of widely known design options to make an LCD panel and to have the light transmitted from the backlight.
205. As discussed above, because Shimada and Kamizono addressed the same design need for larger sized LCD panels, I believe that a person of ordinary skill in the art
making the gate drivers for a large-screen LCD panel would have been motivated to combine the teachings of Shimada and Kamizono to arrive at Claim 5.
206. Based on my experience and knowledge, I believe that using the integrated gate driver circuit on glass of Kamizono for the gate driver in the LCD device of Shimada would not produce any unexpected result and would not affect, for example, the Odd Row/Even Row configuration in Shimada's LCD device.
207. Accordingly, it is my opinion that Claim 5 of the ' 550 Patent is also obvious over Shimada in view of Kamizono.

THE COMBINATION OF SHIMADA AND KAMIZONO TEACHES ALL ELEMENTS OF

 CLAIMS 1-5208. The following claim charts summarize where I believe each element of Claims
$1-5$ is taught by the combination of Shimada and Kamizono:

The Claims Of The ' 550 Patent	Shimada in View of Kamizono
1. A liquid crystal display driving device of matrix structure type including:	Shimada discloses a liquid crystal display driving device of matrix structure type (Ex. 1003, Shimada, Col. 1:8-10, Col. 4:31-67, Figs. 4, 7).
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that $\mathrm{N} \times \mathrm{M}$ of pixels can be driven;	Shimada discloses a group of thin film transistors 103 with matrix array consisting of N (e.g., 3) rows and M (e.g., 3) columns of thin film transistors 103, wherein each thin film transistor can drive one pixel 106 so that $\mathrm{N} \times \mathrm{M}$ of pixels can be driven (Ex. 1003, Shimada, Col. 4:31-63, Fig. 4).
a group of N gate lines connected to the gate drivers and insulated with each other, wherein the first gate line is connected with the gates of all the	Shimada discloses a group of N gate lines 101 (e.g., $X_{1}, X_{2}, X_{3}, \ldots$) connected to the gate driver (e.g., gate driving circuit 109) and insulated with each other by being spaced apart

The Claims Of The ' 550 Patent	Shimada in View of Kamizono
thin film transistors of the first row, the second gate line is connected with the gates of all the thin film transistors of the second row . . . and the $N^{\text {ih }}$ gate line is connected with the gates of all the thin film transistors of the $\mathrm{N}^{\text {in }}$ row; and	from and parallel to each other. The first gate line X_{1} is connected with the gates of all the thin film transistors 103 of the first row. The second gate line X_{2} is connected with the gates of all the thin film transistors 103 of the second row ... and the $\mathrm{N}^{\text {th }}$ gate line X_{N} is connected with the gates of all the thin film transistors 103 of the Nth row. (Ex. 1003, Shimada, Col. 4:3140, Figs. 4, 7). Kamizono discloses scanning lines 4 connected to multiple scanning line driving LSIs 6 in an LCD panel (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).
M groups of data lines connected to the source drivers and insulated with each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column... and the first and the second data lines of the $\mathrm{M}^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the $\mathrm{M}^{\text {h }}$ column, and	Shimada discloses M (e.g., 3) groups of data lines 102a, 102b connected to the source driver (e.g., the source driving circuit 108) and insulated with each other by being spaced apart from and parallel to each other. The first and the second data lines 102a, 102b of the first group of data lines are respectively connected with the sources of all the thin film transistors 103 of the odd and the even rows of the first column. The first and the second data lines 102a, 102b of the second group of data lines are respectively connected with the sources of all the thin film transistors 103 of the odd and the even rows of the second column . . . and the first and the second data lines 102a, 102b of the $\mathrm{M}^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors 103 of the odd and the even rows of the $\mathrm{M}^{\text {th }}$ column (Ex. 1003, Shimada, Col. 4:41-63, Fig. 4). Kamizono discloses signal lines 3 connected to multiple signal line driving LSIs 5 in an LCD panel (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).

The Claims Of The '550 Patent	Shimada in View of Kamizono
the first data lines and the second data lines of each group of data lines are connected with the same source driver.	Shimada discloses that the first data lines 102 a and the second data lines 102 b of each group of data lines are connected with the same source driver 108 (Ex. 1003, Shimada, Col. 4:41-63, Fig. 4; compare with Ex. 1001, '550 Patent, Fig. 6A).
2. The liquid crystal display device of matrix structure type including:	Shimada discloses a liquid crystal display driving device of matrix structure type (Ex. 1003, Shimada, Col. 1:8-10, Cols. 4:31-5:15, Figs. 4, 7).
a group of thin film transistors with matrix array consisting of N rows and M columns of thin film transistors, wherein each thin film transistor can drive one pixel so that $N \times M$ of pixels can be driven;	Shimada discloses a group of thin film transistors 103 with matrix array consisting of N (e.g., 3) rows and $M(e . g ., 3)$ columns of thin film transistors 103, wherein each thin film transistor can drive one pixel 106 so that $\mathrm{N} \times \mathrm{M}$ of pixels can be driven (Ex. 1003, Shimada, Col. 4:31-63, Fig. 4).
a group of N gate lines connected to the gate drivers and insulated with each other, wherein the first gate line is connected with the gates of all the thin film transistors of the first row, the second gate line is connected with the gates of all the thin film transistors of the second row . . . and the $\mathrm{N}^{\text {th }}$ gate line is connected with the gates of all the thin film transistors of the $\mathrm{N}^{\text {th }}$ row; and	Shimada discloses a group of N gate lines 101 (e.g., $X_{1}, X_{2}, X_{3}, \ldots$) connected to the gate driver (e.g., gate driving circuit 109) and insulated with each other by being spaced apart from and parallel to each other. The first gate line X_{1} is connected with the gates of all the thin film transistors 103 of the first row. The second gate line X_{2} is connected with the gates of all the thin film transistors 103 of the second row... and the $\mathrm{N}^{\text {th }}$ gate line X_{N} is connected with the gates of all the thin film transistors 103 of the N^{h} row (Ex. 1003, Shimada, Col. 4:31-40, Figs. 4, 7). Kamizono discloses scanning lines 4 connected to multiple scanning line driving LSIs 6 in an LCD panel (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).
M groups of data lines connected to the source drivers and insulated with	Shimada discloses M (e.g., 3) groups of data lines 102a, 102b connected to the source driver

The Claims Of The '550 Patent	Shimada in View of Kamizono
each other, wherein the first and the second date lines of the first group of date lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the first column, the first and the second data lines of the second group of data lines are respectively connected with the sources of all the thin film transistors of the odd and the even rows of the second column... and the first and the second data lines of the $M^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors of the odd and the even rows of the $M^{\text {nh }}$ column.	(e.g., the source driving circuit 108) and insulated with each other by being spaced apart from and parallel to each other. The first and the second data lines 102a, 102b of the first group of data lines are respectively connected with the sources of all the thin film transistors 103 of the odd and the even rows of the first column. The first and the second data lines 102a, 102b of the second group of data lines are respectively connected with the sources of all the thin film transistors 103 of the odd and the even rows of the second column . . . and the first and the second data lines 102a, 102b of the $M^{\text {th }}$ group of data lines are respectively connected with the sources of the all thin film transistors 103 of the odd and the even rows of the $M^{\text {th }}$ column (Ex. 1003, Shimada, Col. 4:4163, Fig. 4). Kamizono discloses signal lines 3 connected to multiple signal line driving LSIs 5 in an LCD panel (Ex. 1004, Kamizono, Col. 2:5-13, Cols. 5:51-6:20, FIG. 15).
Wherein the first data lines and the second data lines of each group of data lines are connected with the same source driver,	Shimada discloses that the first data lines 102a and the second data lines 102 b of each group of data lines are connected with the same source driver 108 (Ex. 1003, Shimada, Col. 4:41-63, Fig. 4; compare with Ex. 1001, '550 Patent, Fig. 6A).
each source driver is installed on the same side of the display panel and	Shimada discloses that each source driver 108 is installed on the same side (e.g., upper side) of the display panel (Ex. 1003, Shimada, Col. 4:41-46, Fig. 4).
The data transfer is switched by an electronic switch.	Shimada discloses that the data transfer is switched by an electronic switch 110a, 110b (Ex. 1003, Shimada, Col. 4:41-46, Fig. 4).

The Claims Of The '550 Patent	Shimada in View of Kamizono
3. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein there is a space between the neighboring data lines to prevent them from short circuit.	Shimada discloses that there is a space between the neighboring data lines 102a, 102b (Ex. 1003, Shimada, Figs. 4, 7).
4. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein the gate driver is a chip installed on glass.	Kamizono discloses that a liquid crystal driving LSI is commonly mounted as a semiconductor chip by a chip-on-glass (COG) method. (Ex. 1004, Kamizono, Col. 1:12-58).
5. The liquid crystal display driving device of matrix structure type as claimed in claim 2, wherein the gate driver is an integrated gate driver circuit installed on glass.	Kamizono discloses LCD driving circuits that form an integrated structure with a poly-Silicon TFT panel. (Ex. 1004, Kamizono, Col. 13:50- 55).

209. Accordingly, it is my opinion that Claims $1-5$ of the ' 550 Patent are also obvious over Shimada in view of Kamizono.
210. At this time I am not aware of any arguments and evidence of "secondary considerations" that would render the claims of the " 550 Patent non-obvious with respect to my opinions set forth herein on the issue of obviousness. Should Patent Owner present such evidence, I reserve the right to respond to such evidence and arguments.

I hereby declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true. I further declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of the Title 18 of the United States Code.

Dated: March 20, 2015

Michael J. Marentic
${ }_{(19)}$ United States
(12) Patent Application Publication
(10) Pub. No.: US 2003/0048249 A1

Sekido et al.
(43) Pub. Date:

Mar. 13, 2003
(54) DRIVE CIRCUTT DEVICE FOR DISPLAY DEVICE, AND DISPI AY DEVICE USING THE SAME

Inventors: Satoshi Sekido, Kawasaki (JP); Yasutake Furukoshi, Kawasaki (JP); Syouichi Fukutoku, Kawasaki (JP)

Correspondence Address

Patrick G. Burns, Esq.
GREER, BURNS \& CRAIN, LTD.
Suite 2500
300 South Wacker Dr.
Chicago, IL gindo (US)
(73)

Assignee: FUJITSU LIMITED
(21) Appl. No.: 10/102,264
(22)

Filed:
Mar. 20, 2002
(30) Foreign Appllcation Priority Data

Sep. 12, 2001 (IP
(IP) .. \qquad 2001-276090

Publication Chassification
(51) Int, Cl^{7} \qquad G09G 3/36
(52) U.S. CI. ...
(57)

ABSTRACT

A drive circuit device for a display device which drives a plurality of source bus lines provided on a display panel, the drive circuit device comprises: a driver init(20) that receives a clock signal, a data signal and a control signal, and sequentially fetches the data signal, and generates drive signals for the source bus lines in accordance to the fetched data signal; and a gate unit(22) that, after elapse of specified time from the reception of the driver unit, and at a timing when a rear-stage drive circuit device starts receiving, starts outputing of a propagation signal including at least one of the clock signal, data signal and control signal to the rear-stage drive circuit device. Consequently, the power consumption required for supplying these signals and the generated amount of electromagnefic waves resulting from the signal supply can be suppressed.

Patent Application Publication Mar. 13, 2003 Sheet 1 of 8 US 2003/0048249 A1
FIG. 1

FIG. 2

Page 2 of 16

FIG. 4

Page 5 of 16
FIG. 5
A, 7A
2B,7B

Patent Application Publication Mar. 13, 2003 Sheet 4 of 8 US 2003/0048249 A1

FIG. 6

FIG. 7

FIG. 8

FIG. 9

Page 9 of 16

DRIVE CIRCUIT DEVICE FOR DISPLAY DEVICE, AND DISPI AY DEVICE USING THE SAME

BACKGROUND OF THLE INVENTION

[0001] 1. Field of the Invention
[0002] The present invention relates generally to a drive circuit device for a display device such as a liquid crystal display device, and more particularly, to a drive circuil device that can reduce power consumption and suppress occurrence of electromagnetic waves.
[0003] 2. Description of the Related Art
[0004] The liquid crystal display device is now widely being used for the monitor screen of a computer, etc., because of its space-saving feature. In recent years, a larger type is further being called for, and development of structure to meet the requirement is increasingly heing made.
[0005] Of the liquid crystal display devices, a liguid crystal display device of an active-matrix type bas pixels in a matrix arrangement, usiog active elements, like TFIs (tin film transistors). This liquid crystal display device has pixel clectrodes and a common electrode on a liquid crystal display pancl or substrate, and a liquid crystal layer between them. Further, the liquid crystal display panel has source bus lines and gate bus lines, which cross each other, and TFIs provided at the crossing positions. And, by driving the gate bus lines to cause the TFTs of the pixels located in the row direction to a conductive state, and applying voltage corresponding to the half tone of the pixel to each source bus line, the voltage corresponding to the balf tone of the pixel is applied between the pixel electrode and the common electrode. As the result of the application of voltage, the liquid crystal layer between the pixel electrode and the common electrode has a transmission factor corresponding to the applied voltage, theretzy allowing a reproduction of an expected half tone to be possible.
[0006] In order to perform such display operations, a gate driver which sequentially drives the gate bus lines, and a source driver whict drives the source bus lines simultaneously with the voltage corresponding to the displayed data, are connected to the liquid crystal display panel. The gate driver and the source driver will be embodied by an integrated circuit device, and each of the drivers drives a plurality of gate bus tines or a plurality of source bus lines, respectively. Therefore, in order to drive many gate bus lines and the source bus lines on the display cireuit board, a plarality of the gate drivers and sonrec savers must be comaected to the area around the liquid erystal display panel.
[0007] With the requirement for space saving, the downsizing of the liquid erystal display device secms to be the current trend, but, on the other hand, to meet the request for larger size of the monitor sercen, a space for packing the gate driver and the source driver is becoming limited. With this limitation, signal lines for the data signal, clock signal or control signal to be supplied to the plurality of the source drivers and the gate drivers are formed on an LCD panel, on which TFT source bus lines and gate bus lines for the liquid crystal display panel are installed.
[0008] Unlike a printed circuit board, the signal lines to be formed on the liquid crystal display pancl has selatively higher resistance and capacitance compared with a printed
ciecuit board, and cannot be covered with a ground wiring layer. For this reason, when pulse signal with high trequency is applied to these signal lines, a lot of power is consumed to drive these signal lines, and a strong electromagnetic wave will be sent out along with the driving. Especially, along the upsizing of the screen, the number of the driver les will be increased, and further, the signal lines for propagating the data signal, clock signal, or control signal becomes longer, so that the power consumption and occurrence of electromagnetic wave is considerably increased.

SUMMARY OF THE INVENTION

[0009] It is therefore the object of the present invention to provide a drive circuit device for a display device that can suppress power consumption and occurrence of electromagnetic waves, and a display device using the same.
[0010] In order to attain the above objects, an aspect of the present invention provides a drive circuit device for a display device which drives a phuralily of source bus lines provided on a display panel, the drive circuit device comprising: a driver unit that receives a clock signal, a data signal and a control signal, and sequentially fetches the data signal, and generates drive signals for the source bus lines in accordance to the fetched data signal; and a gate unit that, atier elapse of specified time from the reception of the driver unit, and al a timing when a rear-stage drive circuit device starts receiving, starts oufputting of a propagation signal including at least one of the clock signal, clata signal and control signal to the rear-stage drive circut device
[0011] In order to achieve the above objects, another aspect of the present invention provides a drive circul device for a display device which sequentially drives a plurality of gate bus lines provided on a display panel, the drive circuil device comprising: a driver unit that receives a clock signal and a control signal, and sequentially generates a drive signal for the gate bus lines, in synchronism with the clock signal; and a gate unit that, after elapse of specified time from the reception of the driver unit, and at a timoing when a rear-stage drive circuit device starts receiving, stars outputing of a propagation signal including at least one of the clock signal and control signal to the rear-stage drive circuit device.
[0012] According to the present invention, a drive circuit device on a front stage receives the clock signal, data signa) and control signal for generating the drive signal, and outpu at least one signal of these signals at a timing when a drive circuit device on a rear stage starts receiving these signals. Therefore, when a plurality of drive circuit devices are provided in serial on a display panel, and a clock signal, data signal, control signal, elc. are to be sequentially received by the plurality of the drive circuit devices, these signals will not be supplied to any drive circuit device on a rear stage of the drive circuit device which is currently receiving signals. Consequently, the power consumption required for supplying these signals and the generated amount of electromag. netic waves resulting from the signal supply can be suppressed, compared with the case of supplying these signals to all drive circuit devices.
[0013] In a more preferred embodiment, in the display device, a plarality of the drive circuit devices are connected in serial, and the drive circuit devices are connected to a display panel. Even if the display panel becomes larger, and
the number of drive circuit deviees increases, the power consumption and generated anount of electromagnetic waves can be suppressed, because propagating signals, like a clock signal, will only be supplied to the drive circuit devicos, from the initial stage through the neccssary stage according to the drive circuit devices as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 shows a eonfiguration of a liguid crystal display device in the embodiment of the present invention

0015] H1G. 2 shows an enlarged view of the joint section between a drive circuit device circuit board 2 and a display panel 1;
[0016] HGG, 3 shows a configtration of a drive circuit device and a display panel in the embodiment of the present invention;
[0017] FIG, 4 is an operation-timing chart of the drive circuit device shown in FIG. 3;
[018] PG: 5 shows a configuration of a source side drive circuit device;
[019] FIG. 6 shows a conifguration of a data register in the source side dirive circuit device;
[0020] FIG. 7 is an operation-timing chart of the source side drive circuil device;
[0021] FIG. 8 shows a configuration of a gate side drive circuit device; and
[0022] [EIG, 9 is an operation flowchart of the gate side drive circuil device.

DESCRIPTION OF THE PREFERRED EMBODIMENIS

[0023] Lmbodiments of the present invention will now be described with reference to the drawings. It is however to be understood that the protective scope of the present invention is not limited to the embodiments shown below, but that it covers up to the invention defned by claims and its equivalunts.
[0024] F[G, 1 shows a conflguration of a liquid crystal display device in the embodiment. A display panel 1 has a TF' substrate forming TFls, a common electrode substrate forming a common clectrode, and a liguid erystal layer to be provided between them. Out of these components, a confuguration of the TFT substrate is shown in FlG. 1. That is to say, on the display panel 1, pixel elvetrodes 3 are arranged in a matrix pattern, and corresponding to this matrix arrangement, a plurality of gate bus lines 5 and a plurality of source bus lines 6 , crossing the gate bus lines, are provided, and further, TF'ls 4 are provided at the intersections respectively And, when the gate bus line 5 is driven, the TFT4 connected to the gate bus line and located in the row direction will be brought into conduction, and the voltage applied to each of the source bus lines 6 will be supplied to the pixel electrode 3. As the resul! of this operation, the voltage corresponding to the display data will be applied to the liquid crystal layer between the common electrode, though not noted in the drawing, and the respective pixel electrodes 3 , and the liguid erystal layer can demonstrate an expected transmission factor.
[0025] To the peripheral area of the display panel 1, circuit boards 2 A and 2 B, mounting a drive circuit device 7A or 713, respectively, to drive the source bus lines 6 , are connected. Moreover, a printed circuit board 8 mounting an input signal supply circuit to supply a clock signal, data signal, control signal or other signals to the drive circuit devices 7A and 78 is connected to the peripheral area of the display panel 1. And, the clock signal, data signal, control signal or other signals outputted from the printed circuit board 8 are suppled to the drive circuit device circuit board 2A on the initad stage, through an input wiring 9 on the display pane 1 , and further are supplied to a drive circuit device 7A on the initial stage, through wiring of the drive circuit device circuit board 2 A.
[0026] Moreover, the drive circuit device 7A on the initial stage supplics the clock signal, data signal and control signal to the drive circuit device circuit board 2 B on the next stage, through a connection wiring 10 on the display panel 1 , and a drive circuit device 7 B on the circuit board 2 B receives these signals. And, the second drive circuit device 7B supplies the clock signal, data signal and control signal to drive circuit devices on the following stages, though not shown in the drawing
[0027] As described above, the propagation signals, like the clock signal, data signal, control signal, or other signals outputted from the printed circuit board 8 of the inpul signal supply crrcuit are supplied to the plurahity of the drive circuit devices 7 A and 7 B connected in tandem, through the connection wining 10 on the display panel 1 .
[0028] Each of the drive circuit devices 7A and 7B generates drive signals for the source bus lines, corresponding to the data signal and control signal inputted synchronizing with the clock signal. And, in the timing after all the drive circuit devices 7 A and 7 B sequentially input the corresponding data signal, the drive circuit devices 7 A and $7 B$ drive the corresponding source bus lines 6 simultaneously. Synchronizing with this drive, a drive circuit device on the gate side, which is not shown in the drawing, drives one of the gate bus lines 5 , and the voltage applied to the respective source bus lines 6 is applied to the pixel electrodes 3 through the TFT 4.
[0029] FIG. 2 shows an enlarged view of the joint section between the drive circuat device circuit board 2 and the display panet substrate 1. On the surface of the display panel 1 , a connection wiring 10 A is provided, and wirings 11 on the circuit board 2 mounting a drive circuit $I C 7$ and the comnection wiring 10A are connected at the joint section shown in the diagonally shaded area. The connethon wirjugs 10A are formed so that the wiring width becomes wider and wider toward the outer side, so that delay of the signal transmiltal of each wining can be equal.
[0030] On the other hand, twe plurality of gate bus lines 5 are sequentially driven by a cerive circuit device on the gate side, which is not shown in the drawing, synchronizing with the timing of a borizontal synchronization signal. The drive circuit device on the gate side is also motnted on a circuit board same as shown in FIGS. 1 and 2, and the circuit board is connected to the peripheral area around the display pancl 1. Moreover, a gate clock signal and control signal that should be supplied ta the drive circuit device on the gate side are propagated and supplied to a plarality of gate side drive circuit device circuit boards, through connection wirings provided on the display panel 1 .
[0131] FIC. 3 shows a configuration of a drive circuit device and a display panel in an embodinent of the present invenion. The configuration shown in FlG. 3 can be applied 10 both of a source side drive circuil device and a gate side drive circuit devico. As described above, to a display pancl 1, like a liquid crystal panel, a drive circuit device circuit board 2 mounting a drive circuit device 7 is connected. In FIG. 3, the drive circuit device 7 and the circuit board 2 mounting the same are shown without distinguishing between them. And, three drive circuit devices $7 \mathrm{~A}, 7 \mathrm{~B}$ and 7C are connected through the connection witing 10 on the display panel 1.
[0032] In HIG. 3, a clock signal, data signal and control signal to be supplied to the individual drive circuit device 7 are shown all logether as a propagalion signal Sa. This propagation signal Sa is a signal that changes during the same horizontal symchronization period (or vertical synchronization period), and is sequentially inpuitted to a drive circuit device 7A on an initial stage, a drive circuit device 7B on a next stage, and a drive circuit device 7 C on a third stage. Also, a timing signal Sb is supplied to the plurality of the drive circuit devices 7 in parallel, and controls the specified operation timing for the plurality of the drive circuit devices 7. The timing signal Sb controls not only the operation timing, but also may control the operation ilself. Further, a cascade signal CCD is a signal to control the timing when the individual drive circuit devices 7A, 7B and 7C star inputting of the propagation signal Sa, and the drive circuit device on the front stage supplies the cascade signal CCD to the drive circuit device on the rear stage to control the timing for the drive circuit device on the rear stage to start inputing
[0033] The propagation signal Sa is inputted by the drive circuit device 7A on the initial stage, and then, inpusted by the drive circuit device 73 on the next stage, and further inputted by the drive cincuit deviee 7C on the third stage. The input start timing of the propagation signal Sa at the respective drive circuit devices $7 \mathrm{~A}, 7 \mathrm{~B}$ and 7 C is controlled by the cascade signal CCD. Therefore, the propagation signal Sa is not required to be supplied to the drive circuit devices 73 and 7 C on the following stages, while the drive circuit device 7 A on the initial stage is inputting the signal Sa. Moreover, it is not necessary to supply the propagation signal Sa to the drive circuit devices 7 C on the thid stage and the following stages, while the drive circuit device 7B on the second stage is inputting the signal Sa.
[0034] Aceordingly, the individual arive cireuit deviecs $7 \mathrm{~A}, 7 \mathrm{~B}$ and 7 C have driver circuits $20 \mathrm{~A}, 20 \mathrm{~B}$ and 20 C to input the propagation sigttal \$a and drive the source bus lines or the gate bus lines, and gate circuits 22A, $22 B$ and 22 (to control the propagation of the propagation signal Sa to the rear stage. And, the gate circuits begin the propagation of the propagation signal Sa to the circuit on the rear stage, responding to gate control signals GCON 1,2 and 3. And, the gate control signals have almost the same timing as the timing of the cascade signals CCD 2,3 and 4 to be supplied to the drive circuit devices on the next stage, respectively, or slighty earlicr liming than that. Therefore, the cascade signals CCD 2, 3 nod 4 can be used intitead of the gate control signals GCON 1, 2 and 3 . In other words, the propagation start of the gate circuits 22A, 2213 and 22 C can be controlled by the cascade signals CCD 2,3 and 4 .
[0035] Therefore, to the drive circuit device 7A on the initial stage, a propagation signal Sal is supplied and
inputted, however, the propagation of the propagation signal Sal to the rear stage is initially stopped by the gate circuit 22A. And at the timing when the drive circuit device 7B on the next stage starts inputting of the propagation signal, the gatc circuit 22 A is opcacd, and a propagation signal $\mathrm{Sa}_{2} 2$ is propagated to the drive circuit device 7 B on the next stage. A propagation signal Sa 3 to the drive circuit device 7 C on the third stage is the same as the propagation signal Sa2.
[0036] FIC. 4 shows an operation-timing chart of the drive circuit device shown in FIG. 3. In FIG. 4, the propagation signal $S a$, the cascade signal $C C D$, the gate control signal $G C O N$, and the timing signal $S b$ ane shown. The propagation signal Sa is sequentially inputted to the plurality of the drive circuit deviees 7 , during horizontal synchronization period (or vertical synchronization period), to be used for generating a drive signal. As an example of the propagation signal Sa, FIG. 4 shows that the data signals DO through $D n, D n+1$ through $D 2 n$, and $D 2 n+1$ through $D 3 n$ are indivitually inpulled to the drive circuit devices $7 \mathrm{~A}, 7 \mathrm{~B}$ and 7C. The data signal can be a clock signal or a specified control signal.
[0037] A propagation signal Sal outputted from an input signal supply circuit, which is not shown in the drawing, is fetched into the driver circuit 20 A , responding to a first cascade signal CCD1 to be supplied to the drive circeil device 7A on the initial stage. The propagation signal Sal means, as described later, a dot clock signal, data signal and its control signal, in the case of the source side drive circuit device, or a gate clock signa and its control signal in the case of the gate side drive circuit device.
[0038] While the drive circuil device 7A on the initial stage is inputting this propagation signal Sa1, the gate circuit 22 A remains in the closed state, so, propagation to the drive circuit devices 7B and 7C on the rear stages will not be performed. Therefore, the propagation signal Sal which sequentially changes will only be propagated up to the drive circuit device 7A on the mitial slage, so, the input signal supply circuit 8 will not frive the connection wining 10 to the drive circuit devices on the rear stages.
[0039] Next, when the input of the propagation signal Sal by the drive ex ruit device 7A on the initial stage finistes, the supply of propagation signal Sa2 to the drive circuit device 7 B on the next stage starts. That is to say, the gate circuit 22 A opens, responding to the gate control sigual GCON1 generated by the driver circuit 20A on the initial stage, and the propagation of the propagation signal Sa2 to the nex stage starts. Further, responding to the caseade signal CCD2 generated by the driver circuit 20A on the initial stage, a driver circuit $20 B$ in the drive cirenit deviee $7 B$ on the aex stage starts inputting of the propagation signal Saz. Therefore, the gate control signal GCON1 controls the starl-up of the propagation of the propagation signal Sa to the rear stage, and the cascade signal CCD1 controls the start-up of the inpul of the propagation signal by the drive circuit device on the rear stage. Therefore, the gate control signal GCONL has almost the same timing as the timing of the cascade signal CCD1, so, the gate control signal can be replaced with the cascade signal.
[0040] In FIG. 4, a timing signal Sb occurs once during the horizontal synchronization period for vertical synchronization period), and controls the predetermined operation timuing of the diver circuit.
[0041] HG. 5 shows a contiguration of a source side drive circuil device. Further, FIG. 6 shows a configuration of a data register in the source side drive circuit device. And, FIG. 7 shows an operation-timing chart of the source side drive circuit device.
[0042] In FIG. 5, a drive circuit device circuit beard 2A and a drive circuit device 7 A on the initital stage, and a drive circuil device cireuil board 2B and a drive circuil device 7B on the next stage dre shown. Like FIG. 3, the drive circuit device and its mounting circuit board are shown without distingushing between them. And, these drive circuit board circuit boards 2 A and 2 B are connected to a liquid crystal display panel 1 .
[0043] In the case of the source side drive circuit device, as a propagation signal Sa that changes during a horizontal syuchrouization peried, and to be inputted sequentially by individual drive circuit devices, there are a clock signal 1CLK, display data signaIs RD , $\mathrm{GD}, \mathrm{BD}_{3}$, and their invert control signal DINV. Also, as a signal Sb to be inputted simultaneously to all drive circuit devices, there are a latch pulse LP, a phase control signal PC to control a drive polarity, and a standard voltage VR. And, to the source side drive circuit device, a cascade signal CCD to control the inpul start of a clata signal is inputted.
[0044] The drive circuit device 7A on the initial stage has a shift register 30A, which starls inpiitting of a clock ICLK1 responding to a cascade signal CCDI, and shifts output signals 530 synchronizing with the clock JCLKK1; a data register 32A, which inputs and holds display data signals RD $, G D, B D$ and a data invert control signal DINV, responding to the output signal $\mathbf{S 3 0}$ of the shift register 30A; and a latch circuit 34A, which responding to a latch pulse L.P, latches the data signals that are inverted or are not inverted from the display data signals RD, GD and BD inpulted and held by the data register 32 A , corresponding to the data invert control signal DINY.
[0045] Moreover, a drive control circuit device 7A has a level shill circuil 36A, that reverses the phases of the data signal latched by the latch circuit 34A for even numbered source bus lines and add numbered source bus lines, corresponding to the phase control signal PC , and a D / A converter and output circuit 38A, that converts digital outputs of the level shifi circuit 36A into analog ouputs, and outpuls the analog drive signals to the source bus lines SB.
[0046] Also, the drive control circuit device 7A has a first gate circuit G1 to propagate the elock sisnal ICLK1, that is the propagation signal Sal, to the following stage, and a second gate circuit G 2 to propagate the display data RD. GD, BD, and the data invert signal DINV to the following stage. A gate control signal GCON1 to control the gate circuits is generated by a gate control circuit 40A. The gate control circuit 40A mpuls and shifts the clock ICLK1, responding to the cascade signal CCD1, and generates the gate control signal GCON1, in the timing when a drive circuil device on the next stage starts inputing the propam gation signal Saz. The first and the second gate circuits G1 and $\mathcal{G} 2$ open, responding to the gate control signal GCON1, and start propagating of the propagation signal Sa2 and the clock ICLK2 to the drive circuit device on the next slage.
[0047] Like the drive circuit device 7A, a drive circuit device 7 B on the next stage has a stift register 3013, a data
register 32 B , a lateh circuit 34 B , a level circuit 36 B , a D / A converter/output circuit 38B, a gate conatrol circuil 40B, and further a tirss and a second gate circuits Gl and G2. And, the drive circuit device 7A on the initial stage and the drive circuit device 713 on the next stage are connceted through connection wirings 10 on a display panel 1 .
[0048] As shown in F1G. 6, the data register 32 has first flip-flops 42 to sequentially latch display data signals $\mathrm{RD}_{\text {, }}$ GD and BD, synchronizing with shift outputs S30 to be sequentially outputed from the shift register 30, synchronizing with the clock ICLK, second flip-flops 44 to sequentially laich a data invert control signal DINV, and EOR gates 46 to output an XOR (an exclusive OR) of the data invert control signal and the display data. Each of the display data signals RD, $G D$ and $B D$ is a digital signal of 8 bits; therefore, the first flip-flops 42 lateh digital signals of 24 bits. Also, the data invert control signal DINV is a control signal of 1 bit to be supplied, corresponding to the 24 bits display data signals.
[0049] With the display data signals RD, GD and BD being digital signals of 24 bits, 24 signal lines must be driven to H. L levels, synchronizing with the clock ICL.K. So, information on whether the supplied display data signals RD, GD and BD of 24 bits should be inverted or not, comparing the display data signal of the previous pixel and the display data signal of the next pixel, will be generated as the data invert control signal DINV. By ite utilization of the data invert control signal DINV, the number of bits of the display data signals which change from H level to L level, or from L level to H level can be redued to less than a half of 24 bits.
[0050] For instance, in case of clisplaying data in white for the previgus pixel, corresponding to the highest tone level, the display data signal of 24 bits is all H level, and if the pixel next to that is for display in black, corresponding to the lowest tone level, the display data signat of 24 bits is all \mathbf{I} level. Consequently, the display data signals of 24 bits must change from the H level to the L level simulaneously. Therefore, by driving only the data invert control signal DINV to the H level to show inversion of display data signals, leaving all the display data signal on H level wihout changing, the power to drive the display data signal lines can be suppressed.
[0051] By the EOR gate 46, the latched display data signals ate inverted by the data invert control signal DINV of H level that indicates invert, and the latched display data signals are not inverted by the data invert control signal DINV of L. level that indicates non-invert.
[0052] Then, the following shows description of operation of the source side drive circuit device, with reference to the operation-timing chart shown in FIG. 7. The drive circuit device 7A on the initial stage inputs the clock ICI.K1, responding to the cascade sigual CCD1, and the shilt register 30A sequentially generates the data latch signals S30, synchronizing with the clock. Further, the cisplay data signals RD, GD and BD, and their iuvert cootrol sigaal DINV (the propagation signal Sal as noted in HIG. 7) change, synchronizing with the clock ICLK1, and the data register 32A inpuls and holds these display data signals and the invert control signal, responding to the data latch signals $\$ 30$.
[0053] During that processing, the gate control circuit 40A counts the clock ICLK responding to the cascade signal

CCD1, and generates a gate control signal GCON1, aligning with the timing when the drive circuit device $7 B$ on the next stage starts inputting the display enata signals and their invert control signal.
[0054] Responding to this gate control signal GCON1, the first aud the second gate circuits G1 and G2 start sequential transferring of the clock signal ICLK2, the display data signals $\mathrm{RD}, \mathrm{GD}, \mathrm{BD}$, and the data invert control signal DINV to the rear stage. The gate eircuits G1 and G2, which comprise, for instance, a non-invert buffer circuit, a transfer circuit, etc., start propagating of signals to the rear stage, responding to the gate control signal OCON1. Therefore, as shown in FIG. 7, a second propagation signal Sa2 starts changing, responding to the gate control signal GCON1. Further, a sceond clock signal ICLK2 also starts changing, responding to the gate control signal GCON1.
[0055] Responding to a cascade signal CCD2 outputted from a shift register 30A on the initial stage, a shift register 302 in a drive circuit device 713 on a second stage starts inpulting of the clock ICI.K2, and sequentially outputs data latch sigmals S30, synchronizing with the clock. Responding to the output, a datn register 32B inputs and holds the display data signals $R D, G D, B D$, and the data invert control signal DINV, that are the second propagation signal Saz.
[0056] When the drive circuit device 7 B on the second stage almost finishes the ioput of the display dafa signals and the data invert control signaf, a gate control circuit 40B outputs a semnd gate control signal GCON2, aligning with the timing when a drive circuit device on the third stage, which is not shown in the drawing, starts input. With this output, transfer of a clock signal IC'I K3, display data signals $\mathrm{RD}, \mathrm{GD}, \mathrm{BD}$, and the data invert control signal DINV to a drive circlit device on the third stage stans.
[0057] When the input of the display data signals and the data invert control signal finished at all drive circuit devices, a latch pulse signal LP is gencrated, and lateh circuits 34 in all drive circuit devices lateh display data D0 through Dma held in the data registers 32 . Simultaneously with the latch, the display data Do throngh Dm held by the lateh circuits 34 are transferred to level shitt circuils 36.

0058 The level shilt circuit 36 changes the polarity of the display data to the odd side source bus lines into negative or positive, and the polarity of the display data to the even side source bus lines into negative or positive, corresponding to a phase control signal PC , and otiputs to a digitalanalog convert circtit and outpat circuit 38. Then, the souree bus lines SBO through SBm will be driven simultancously.
[0059] As described above, while a source drive circuit device on the initial stage is inputting the display data signal, data invert signal and the clock signal, transfer of these signals to a source drive device on the next stage is stopped, for the purpose of suppressing power consumption and occurrence of electromagnetic wave caused by changes in these signals. And, in the timing when a source drive circuit device on the second stage starts inpulting of the display data signal, dafa invert signal and the elock signal, the gate circuit opens, so that propagation of these propagation signals to source drive circuit devices on the second can the started. However, at this time, propazation of these propagation signals to source drive circuit devices on the third stages or following stages is left in the stopped state.
[0060] As described above, the propagation signals are propagated only to the least possible rumber of drive circuit deviees, and the propagation of the propagation signals to drive circuit devices on the following stages is slopped, so that power consumption and occurcence of clectromagnctic wave can be suppressed.
[0061] FIG. 8 shows a configuration of a gate side drive circuit device. And FIG. 9 shows its operation flowchart. The gate side dive circuit devices 67 A and 6713 are individually mounted on drive circuit device circuit boards 62A and 62 B , and connected to a liquid crystal display panel 1 . A so_{3} the devices 67 A and 67 B , and the circuit boands 62 A and 62 B are shown in FIG. 8 , without distinguishing each other. And, the gate side drive circuit device 67A on the initial stage and the gate side drive circuit device 67 B on the nexi stage are connected through connection wirings 60 on the display circuit panel 1.
[0062] The gate side drive circuit devices 67A and 67B sequentially drive gate bus lines GLO tbrough Glin and Glontl through GI 2 N provided on the display pauel 1 , synchronizing with a gate clock GCL.K. For this purpose, the gate side drive circuit device has shift registers 72 A and 7213 to input a gate clock GCLK, and sequentially generate a drive timing signal S72 synchronizing with the input; and gate drive pulse generator circuits 74 A and 743 to sequentially generate gate drive pulse signals, synchronizing with the drive timing signal S72. Oufput enable signads OE1 and 0E2 10 be supplied to 青e gate drive pulse generator circuits 74 A and 74 B are signals to control the drive pulse liming for the purpose of preventing the gate bus lines from becoming the double selection state caused by the overlapping drive pulses to the adjacent gate bus lines.
[0063] Moreover, the gate drive circuit devices 67A and 6713 have gate circuits G1 and 02 to control the propagation of the gate clock GCI.K and the output enable signal OE to the rear stage, Shift counters 70A and 70B generate the gate control signals GCON1 and 2 aligning with the timing when a drive circuit device on the rear slage starts input, and these gate circuits G1 and G2 start the transfer of the gate clock and output enable signal to the rear stage, responding to the gate control signals. The operations of the gate circtul and the shift counter (gate control circuit) are the same as those on the source side drive circuit device.
[0064] Next, the following describes operations witty reference to FIG.9. From an input circuit device, which is not shown in FIG. 8, 青rough input wirings 59 on the display panel 1, the gate clock signal GCLKL, the output enable signal OE1, and the cascade signal CCD1 are supplied to the drive circuit device 67A on the initial stage. The shift register 72A starls the input of the gate elock CCLKL, responding to the cascade signal $\mathrm{CCD1}$, and sequentially generates gate drive timing signals $\$ 72$, and further, the gate drive pulse generator circuit 74A sequentially generates gate drive pulses GLD and so ma. The gate drive pulses Glo. and so on generated by the gate drive pulse generator circuit 74 A rise in the timing of the drive timing signal 572 , and fall in the timing of the output enable signal OEd.
[0065] When the gate side drive circuil device 67A on the intial stage finishes driving of the corresponding gate bus lines, the gate control signal GCONL is generated in the timing when the gate side drive circuit device 67 B on the next stage starts inputing of the gate clock signal GCLK2
and the output enable signal OE2, w 1 hat the gate cireuits G1 and 62 stari the transfer of the gate clock signal and the outpul enable signal to the rear stage. Therefore, responding to the gate control signal GCONL, the propagation of a second gate ctock signal GCLK2 and a second output enable signal OL2 sarks.
[0066] The gate side drive circuit device 67B on the next stage starts inptitting of the second gate clock signal GCLK2 and the second output enable signal OE2, and sequentially drives the corresponding gate bus lines GL. And, the gate side drive circuat device 673 on the next stage also opens the gate circuits G1 and G2, aligning with the timing when the gate side drive circuit device on the rear stage (not noted in the drawing) starts inputting of the gate clock signal and the output enable signal, and stasts the propagation of a third gate clock signal GCIKK3 and a third output enable signal OE3.
[0067] Therefore, the propagation signals, like the gate clock signal GCLK and the output enable signal OE are only propagated up to the drive circuit device that inputs these signals and drives the gate bus lines, and the propagation to drive circuit devices on the following stages will not be performed. Therefore, power consumption associated with driving these signals and oceurrence of electromagnetic wave can be suppresset.
[0068] As described above, in the embodiments of the present invention, the supply of the clock signal, data signals, control signals, ete, to a plurality of drive circuit devices is limited only to the stage that inputs these signals and performs the predefermined operation, and the supply of these signak is stopped to drive circuit devices on the following stages. Therefore, even it drive load becomes larger, caused by the signal wining to supply these signals becoming longer, or the signal wining formed on the display panel increases the resistance or capacitance, the signal wining to be driven can be stippressed, so that power consumption and oceumence of electromagnetic wave can be suppressed.
[0069] In the embodiment as described above, in the source side drive circhit device, the timing of starting the propagation of all of the clock signal, data signals and data invert signal to the rear stage has been controlled by the gate circuit, but the timing of starting the propasation of at leasi one of the clock signal, data signals and data invert signal to the rear slage may be controlled. Also, in the gate side drive circuit device, the timing of starting the propagation of at least one of the gate clock signal had output enable signal to the rear stage may be controlled.
[0070] As set forth hereimabove, according to the present invention, by means of allowing the propagation signals propagating to a plurality of drive circuit devices, not to be propagated to drive circuit deviess in the rear stages following the drive circuit device that inputs the propagation signal, power consumption accompanied with driving of the propagation signal and occurrence of efectromagnetic wave can be suppressed. Therefore, the drive circuit device of the present invention is useful as a drive circuil device for the display device such as the liquid erystal display device.

What is clamed is:

1. A drive circuit device for a display device which drives a plurality of bus lines disposed on a display panel, the drive circulit device comprising:
a driver unit that receives a propagation signal including at least one of a clock signal and a control signal, and generates a drive signal for the bus lines; and
a gate unit that, at the timing when a rear-stage drive circuil device starts receiving the propagation signal, after elapse of predetermined time from the reception of the driver unit, starts outputting of the propagation signal to the rear-stage drive circuit device.
2. A drive circuit device for a display device which drives a plurality of source bus lines disposed on a display panel, the drive circuit device comprising:
a driver unit that receives a clock signal, a data signal and a control signal, and sequentially fetches the data signal to generale a drive signal for the source bus lines in accordance to the fetched data signal; and
a gate unit that, at the liming when a rearstage drive circuit device starts receiving a propagation signal including at least one of the clock signal, data signal and control signas, after elapse of predetermined lime from the reception of the driver unit, starts outputting of the propagation signal to the rear-stage drive circuit device.
3. The drive circmit device according to dam 2 , wherein
the control signal includes an invert control signal indica* tive of "invert", or "non-invert" of the data signal.
4. The drive circuit device according to cham 2 , wherein
the driver device receives an input cascade signal to control the start of fetch of the data signal, and outputs an output cascade signal to control the fetch of the data signal at the rear stage, a lier the completion of letetring of the data signal.
5. The drive circuit device according to claim 4, further comprising:
a gate control circuit that imputs the input cascade signal and clock signal, and generates a gate control signal to conirol the gate unit lo start outputting of the propagation signal.
6. 'lhe drive circuit device according to claim 4, wherein
the gate unit starts outputting of the propagation signal, in response to the output cascade signal.
7. The drive circuit device according to clam 4, further comprising:
a data register to fetch and hold the data signal at the timing of the clock signal, in response to the input cascade signal.
8. A drive circuit device for a display device which sequentially drives a plurality of gate bus limes disposed on a display panel, the drive circuit device comprising:
a driver unit that receives a clock signal and a control signal, and sequentially generates drive signals for the gate bus lines, in synchronism with the clock signal; and
a gate unit that, at the timing when a rear-stage drive circuit device starts receiving a propagation signal including at least one of the clock signal and control
signal, after the elapse of predetermined lime from the reception of the driver unit, starts outputing of the propagation signal to the rear-stage drive circuin devies.
9. The drive circuit device according to claim 8 , wherein
the control signal includes an output enable signal to control the outputing period of the drive signal gen" erated by the driver unit.
10. The drive circait device according to claim 8 , wherein
fhe drive circuit device receives an input cascade signal to control the stant of fetching of the ciock signal, and outputs an output cascade signal to control the fetching of the clock signal at the rear stage, after the completion of generation of the drive signals for the gate bus lines. 11. The drive circuit device according to claim 10, further comprising:
a gate control circuit which inputs the input cascade signal and the clock signal, and generates a gate control signal to control the gate unit to start outputing of the propagation signal.
11. The drive circuit device according to claim 10 , wherein
the gate unit starts outputting of the propagation signal, in response to the output cascade signal.
12. The drive circuit device according to claim 10, further comprising:
a gate drive signal generator circuit to generate the drive signals at the timing of the clock signal, in response to the input cascade signal.
13. A display device having a plarality of drive circuil devices according to any one of claims 1,2 , or 8 that are connected in tandem, ihe display device comprising:
a display panel to which the plurality of drive circuit devices are connected, the display panel being provided with a plurality of source bus fines and a plurality of gate bus lines that intersect the source bus lines.

Page 16 of 16

