Case 1:14-cv-00336-UNA Document 3 Filed 03/14/14 Page 1 of 1 PageID \#: 27
AO 120 (Rev. 08/10)

TO:	Mail Stop 8
	Director of the U.S. Patent and Trademark Office
P.O. Box 1450	REPORT ON THE
	Alexandria, VA $22313-1450$

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court for the District of Delaware on the following
\square Trademarks or \square Patents. (\square the patent action involves 35 U.S.C. § 292.):

DOCKET NO.	DATE FILED $3 / 14 / 2014$	U.S. DISTRICT COURT for the District of Delaware
PLAINTIFF SURPASS TECH INNOVATION LLC		DEFENDANT LG DISPLAY CO., LTD, et al.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
$17,202,843$	4/10/2007	SURPASS TECH INNOVATION LLC
2		
3		
4		
5		

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

DATE INCLUDED	INCLUDED BY PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
1			
2			
3			
4			
5			

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT		
CLERK	BY) DEPUTY CLERK	DATE

Copy 1—Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 1:14-cv-00337-UNA Document 3 Filed 03/14/14 Page 1 of 1 PageID \#: 5

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court for the District of Delaware on the following \square Trademarks or $\quad \Delta$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

DOCKET NO.	DATE FILED $3 / 14 / 2014$	U.S. DISTRICT COURT \quad for the District of Delaware
PLAINTIFF SURPASS TECH INNOVATION LLC		DEFENDANT SAMSUNG DISPLAY CO., LTD, et al.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 7,202,843	4/10/2007	SURPASS TECH INNOVATION LLC
2		
3		
4		
5		

In the above-entitled case, the following patent(s)/trademark(s) have been included:

DATE INCLUDED	INCLUDED BY	
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading
1		
2		
3		
4		
5		

In the above--entitled case, the following decision has been rendered or judgement issued:

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 1:14-cv-00338-UNA Document 3 Filed 03/14/14 Page 1 of 1 PageID \#: 70

AO $120($ Rev. 08/10 $)$	Mail Stop 8	REPORT ON THE
TO:	Director of the U.S. Patent and Trademark Office	FILING OR DETERMINATION OF AN
	P.O. Box 1450	ACTION REGARDING A PATENT OR
	Alexandria, VA 22313-1450	TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court for the District of Delaware on the following \square Trademarks or $\quad \boxtimes$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

DOCKET NO.	DATE FILED $3 / 14 / 2014$	U.S. DISTRICT COURT \quad for the District of Delaware
PLAINTIFF SURPASS TECH INNOVATION LLC		DEFENDANT SHARP CORPORATION, et al.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1 7,202,843	4/10/2007	SURPASS TECH INNOVATION LLC
$27,420,550$	9/2/2008	SURPASS TECH INNOVATION LLC
3		
4		
5		

| In the above-entitled case, the following patent(s)/trademark(s) have been included: | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DATE INCLUDED | INCLUDED BY | | |
| PATENT OR
 TRADEMARK NO. | DATE OF PATENT
 OR TRADEMARK | \square Amendment | \square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading |

In the above-entitled case, the following decision has been rendered or judgement issued:
DECISION/JUDGEMENT

CLERK	(BY) DEPUTY CLERK	DATE

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director
Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Electronic Version v1.1
Stylesheet Version v1.2
EPAS ID: PAT2735870

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT
CONVEYING PARTY DATA	
\begin{tabular}{\|l	
\hline	
\end{tabular}	Execution Date
VASTVIEW TECHNOLOGY INC.	Name

RECEIVING PARTY DATA

Name:	ADVANCED IP INNOVATIONS LIMITED
Street Address:	TMF CHAMBERS
Internal Address:	PO BOX 3296
City:	APIA
State/Country:	SAMOA

PROPERTY NUMBERS Total: 2

Property Type	Number
Patent Number:	7202843
Patent Number:	7420550

CORRESPONDENCE DATA
Fax Number:
Email: kjones@techknowledgelaw.com
Correspondence will be sent via US Mail when the email attempt is unsuccessful.
Correspondent Name: KEVIN JONES
Address Line 1: 1521 DIAMOND STREET
Address Line 4: SAN FRANCISCO, CALIFORNIA 94131

NAME OF SUBMITTER:	KEVIN JONES
Signature:	/Kevin Jones/
Date:	$02 / 21 / 2014$
	This document serves as an Oath/Declaration (37 CFR 1.63).

Total Attachments: 3
source=Assignment 1\#page1.tif source=Assignment 1\#page2.tif source=Assignment 1\#page3.tif

PATENT ASSIGNMENT

WHEREAS, VastView Technology Thc., a Tawan corporation, having its principal place of business at $6 \mathrm{~F} .-3$, No. 65 , Gaotie 7th Rd., Zhubci City, Hsinchu County 302, Tawan R.O.C (hereinafter "Assignor") is the sole and exclusive owner of the entire right, title and interest in and to certain United States patents identified in Schedule A attached hereto, and in and to the inventions disclosed therein; and

WHEREAS, Advanced IP Innovations Limited, a Somoa corporation, having its registered office at TMF Chambers, P.O. Box 3296 , Apia, Somoa (hereinafter "Assignee") is desirous of acquiring all right, tille and interest in and to said patents identified in Schedule A hereto, and to the inventions disclosed therein;

NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, be it known that Assignor has sold, conveyed, assigned and transferred, and does hereby sell, convey, assign, transfer and set over unto Assignee, the entire right, title and interest in and to: (i) the patents listed in Schedule A attached hereto and all the inventions claimed in such patents; (ii) any and all inventions and improvements that are disclosed in the patents listed in Schedule A, together with all pending applications and all provisional applications, divisional applications, continuation applications, contimed prosecution applications, continuation-in-part applications, substitute applications, renewal applications, reissue applications, reexaminations, extensions, and all other patent applications that have been or shall be filed in the United States and all foreign countries on any of said inventions or improvements, or claiming prionity to or relying on the disclosure of any of the patents listed in Schedule A; (iii) all original patents, reissued patents, reexamination certificates, and extensions, that have been or shall be issued in the United States and all foreign countries on said inventions, improvements and/or patent applications; and (iv) all rights of priority resulting from the filing of said patents and/or patent applications ((i) - (iv) collectively, the "Patents").

Said sale, conveyance, assignment and transfer includes, without limitation, all rights to enforce, assert and sue for past, present and future infringement of the Patents, and all rights to recover and collect for past, present and future damages related to the Patents.

Assignor hereby authorizes and requests the competent authorities to grant and to issue any and all such Patents in the United States and throughout the world to the Assignee and the entire right, title and interest therein, as fully and entirely as the same would have been held and enjoyed by Assignor had this assignment not been made.

Assignor agrees, at any time, upon the request of the Assignee, to execute and to deliver to the Assignee any additional applications for patents for said inventions and discoveries, or any part or parts thereof, and any applications for patents of confirmation, registration and importation based on any of the Patents issuing on said inventions, discoveries, or applications and divisions, contimations, renewals, revivals, reissues, reexaminations and extensions thereof.

Assignor further agrees at any time to cooperate with Assignee, and to execute and to deliver upon request of the Assignee such additional documents, if any, as are necessary or desirable, in
the prosecution of the Patents, and to secure patent protection on said inventions, discoveries and applications throughout all countries of the world, and otherwise to do such acts as are necessary to give full effect to and to perfect the rights of the Assignee under this Assignment, including the execution, delivery and procurement of any and all further documents evidencing this assignment, transfer and sale as may be necessary or desirable.

Assignor hereby covenants that at the time of execution of this assignment, it was the sole and exclusive owner of the entire right, title and interest in and to the Patents, and bat no assignment, sale, agreement or encumbrance has been or will be made or entered into which conflicts or would conflict with this assignment.

IN WITNESS WHEREOF, Assignor has caused this Patent Assignment to be signed on its behalf on this 244 day of
\qquad December , 2013.

(Print or type tite)

Schedule A
Patents

Patent vo.	\}	(ourir)
US7202843	DRIVING CIRCUT OF A LIQUID CRYSTAL display panel and related driving METHOD	US
TWI230291		TW
JP4199655		JP
CN100353409		CN
US7420550	Liquid crystal display driving device of matrix structure type and its driving method	US
TW267819		TW

Electronic Version v1.1
Stylesheet Version v1.2
EPAS ID: PAT2735872

SUBMISSION TYPE:	NEW ASSIGNMENT		
NATURE OF CONVEYANCE:	ASSIGNMENT		
CONVEYING PARTY DATA			
ADVANCED IP INNOVATIONS LIMITED	Name		

RECEIVING PARTY DATA

Name:	SURPASS TECH INNOVATION LLC
Street Address:	3422 OLD CAPITOL TRAIL, SUITE 700
City:	WILMINGTON
State/Country:	DELAWARE
Postal Code:	$19808-6192$

PROPERTY NUMBERS Total: 2

Property Type	
Patent Number:	7420550
Patent Number:	7202843

CORRESPONDENCE DATA

Fax Number:
Email: kjones@techknowledgelaw.com
Correspondence will be sent via US Mail when the email attempt is unsuccessful.
Correspondent Name: KEVIN JONES
Address Line 1: 1521 DIAMOND STREET
Address Line 4: SAN FRANCISCO, CALIFORNIA 94131

NAME OF SUBMITTER:	KEVIN JONES
Signature:	IKevin Jones/
Date:	$02 / 21 / 2014$
	This document serves as an Oath/Declaration (37 CFR 1.63).

Total Attachments: 4
source=assignment 2\#page1.tif
source=assignment 2\#page2.tif
source=assignment 2\#page3.tif
source=assignment 2\#page4.tif

PATENT ASSIGNMENT

WHEREAS, ADVANCED IP INNOVATIONS LIMITED, a Samoa corporation having its registered office at TMF Chambers, P.O. Box 3269, Apia, Samoa (hereinafter "Assignor") is the sole and exclusive owner of the entire right, title and interest in and to certain United States patents identified in Schedule A attached hereto, and in and to the inventions disclosed therein; and

WHEREAS, SURPASS TECH INNOVATION LLC, a Delaware limited liability company having its registered office at 3422 Old Capitol Trail, Suite 700, Wilmington, Delaware 19808-6192, U.S.A. (hereinafter "Assignee") is desirous of acquiring all right, title and interest in and to said patents identified in Schedule A hereto, and to the inventions disclosed therein;

NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, be it known that Assignor has sold, conveyed, assigned and transferred, and does hereby sell, convey, assign, transfer and set over unto Assignee, the entire right, title and interest in and to: (i) the patents listed in Schedule A attached hereto and all the inventions claimed in such patents; (ii) any and all inventions and improvements that are disclosed in the patents listed in Schedule A, together with all pending applications and all provisional applications, divisional applications, continuation applications, continued prosecution applications, continuation-in-part applications, substitute applications, renewal applications, reissue applications, reexaminations, extensions, and all other patent applications that have been or shall be filed in the United States and all foreign countries on any of said inventions or improvements, or claiming priority to or relying on the disclosure of any of the patents listed in Schedule A; (iii) all original patents, reissued patents, reexamination certificates, and extensions, that have been or shall be issued in the United States and all foreign countries on said inventions, improvements and/or patent applications; and (iv) all rights of priority resulting from the filing of said patents and/or patent applications ((i) - (iv) collectively, the "Patents").

Said sale, conveyance, assignment and transfer includes, without limitation, all rights to enforce, assert and sue for past, present and future infringement of the Patents, and all rights to recover and collect for past, present and future damages related to the Patents.

Assignor hereby authorizes and requests the competent authorities to grant and to issue any and all such Patents in the United States and throughout the world to the Assignee and the entire right, title and interest therein, as fully and entirely as the same would have been held and enjoyed by Assignor had this assignment not been made.

Assignor agrees, at any time, upon the request of the Assignee, to execute and to deliver to the Assignee any additional applications for patents for said inventions and discoveries, or any part or parts thereof, and any applications for patents of confirmation, registration and importation based on any of the Patents issuing on said inventions, discoveries, or applications and divisions, continuations, renewals, revivals, reissues, reexaminations and extensions thereof.

Assignor further agrees at any time to cooperate with Assignee，and to execute and to deliver upon request of the Assignee such additional documents，if any，as are necessary or desirable，in the prosecution of the Patents，and to secure patent protection on said inventions，discoveries and applications throughout all countries of the world，and otherwise to do such acts as are necessary to give full effect to and to perfect the rights of the Assignee under this Assignment，including the execution，delivery and procurement of any and all further documents evidencing this assignment，transfer and sale as may be necessary or desirable．

Assignor hereby covenants that at the time of execution of this assignment，it was the sole and exclusive owner of the entire right，title and interest in and to the Patents，and that no assignment， sale，agreement or encumbrance has been or will be made or entered into which conflicts or would conflict with this assignment．

IN WITNESS WHEREOF，Assignor has caused this Patent Assignment to be signed on its behalf on February 11， 2014.

ADVANCED IP INNOVATIONS LIMITED

（Signature）
Shen，Yehren 沈 交变 亿二
（Print or type name）
Director
（Print or type title）

Schedule A Patents

Patent No.	Patent Title	Country
U.S. Patent No. 7,420,550	Liquid Crystal Display Driving Device of Matrix Stucture Type and Its Driving Method	U.S.
TWI267819		TW
U.S. Patent No. 7,202,843	Driving Circuit of A Liquid Crystal Display Panel and Related Driving Method	U.S.
TW1230291		TW
JP4199655		JP
CN100353409		CN

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www.uspto.gov

APPLICATION NO.	ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.
$10 / 707,741$	$04 / 10 / 2007$	7202843	VASPOOOIUSA
27765	7590	$03 / 23 / 2007$	
NORTH AMERICA INTELLECTUAL PROPERTY CORPORATION NO.			
P.O. BOX 506			
MERRIFIELD,VA 22116			

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 602 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Yung-Hung Shen, Hsin-Chu City, TAIWAN;
Shih-Chung Wang, Kao-Hsiung City, TAIWAN;
Yuhren Shen, Tai-Nan City, TAIWAN;
Cheng-Jung Chen, Miao- Li Hsien, TAIWAN;
United States Patent and Trademark Officie
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450
Alexandria,
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450

APPLICATION NO.I CONTROL NO.	FILING DATE	FIRST NAMED INVENTOR I PATENT IN REEXAMINATION	ATTORNEY DOCKET NO.

EXAMINER

ART UNIT	PAPER
20061028	

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner for Patents
Examiner has initialed IDS (7/20/2004 and considered.

U.S. PATENT DOCUMENTS					
Examiner Initiats'	Cite No. ${ }^{1}$	Dociumani Number Number - Kind Code 2 (il known	Publication Date MM-DD.YYY	Name of Patentee or Appilicant of Cited Document	Pages, Columns. Lines. Where Relevant Passages or Relevant Figures Appear
Net	1	US-2002/0044115A1	04/18/2002	Jinda, Akihito, et al.	- -
dar	2	US 2003/0058264A1	03/27/2003	Takako, Adachi, et al.	-
		US-			
		US.			
		US-			
		US.			
		US-			
		US-			
		US.			
		US.			

FOREIGN PATENT DOCUMENTS						
\qquad	Cite No. ${ }^{1}$	Foreian Eatent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines. Where Relevant Passages or Retevent Figures Appear	T^{6}
NGO	1	EP-1122711A2A3	08/08/2001	Loo, Baek-Woon, et al.	-	$+$
\cdots	2	EP-0660297A2A3	06/28/1995	Sawayama, et al.	-	$+$
$N N^{\prime}$	3	EP-0539185A1	04/28/1993	Mizukata, el al.	-	$+$

Approved for use through 10/31/2002. OMB 0651-0031
Trademark Office: U.S. DEPARTMENT OF COMMERC U.S. Palanl and Trademark
control number

Examiner Signature	$\Delta d \sqrt{\text { Date }}$	$1-3-07$.

-EXAMINER: Initial il reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached.
Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer. U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADORESS. SEND TO: Assistant Commissioner for Patents.
Washington. DC 20231.

PARTB - FEE(S) TRANSMITTAL

idpany
 Commissioner for Patents
 1P. 0 , Box 1450
 Alexamdrla, Virginia 22313-1a50

or Eax (571)-273-2885

 naintoname fice nowifeationt

$027765 \quad 7590$ 10/31/2006
NORTH AMERICA INTELLECTUAL. PROPERTY CORPORATION
P.O.BOX 506

12/21/2006 AOSHAKN VA 0000000150310510707741
$\begin{array}{ll}01 \text { FC:2501 } & 700.00 \mathrm{DA} \\ 02 \text { FC:1504 } & 300.00 \mathrm{DA}\end{array}$

APPlicationno.	hling date
10707741	$01 / 08 / 2004$

101707741 FIKST NAMED INVIENTO

Cerifteme of Malling or Transentsulo
Thersly cerify that this Focis) Tmanminal is being depoxited with the United Stacs foxtal Service yith suthiciant poslage for inrst dizas matit in an envelope

Stephanio Lai	(axpuytura name)

Serpolaniocie (Sisnature)

TITLEORINVENTION: DRIVING CIRCUIT OF A LHUND CRYSTAL DISPLAY PANEL AND RELATED ORIVING METHOD

APHIN. TYPE	Smala Eintity	SSSUE FEES SMA	PUHLICATION PEE DUE	PRHV. PAID 15SUl: FEt:	WYTAL FEfE(S) DUE	Dathiout
nomprovisional	YES	\$700	\$300	\$0	\$1000	01/31/2007
Examinifit		ART UNTT	Clinss Subutass			
PATEL, NITIN		2629	345-087000			
1. Change of cotrenpondonce addregs ar indication of "Fiev Addrexs" (37 (FFR 1.563). (J Change of eorrompondence addresa for Clipnger of Cortospendence Addecss fumn PTOPSEiV2) mizached [] "Fec Aderess" indiethion (tor "Fee Adurses" Indication form Namber is requifed.			2. For prictiug on the p (1) tha nones of up in or agents (ik, allematiy (2) the namo of a singt regletered ainoncy ur a 2 royisicred patent alto listed, mos mame urill be	atent fron $p^{2} g g_{1}$ list 3 registured paten nttor cly. firm thaving as a memb 20ni) tand Ule nemes of macy or iguthis. If tho man printed.	1. \qquad Win 10 $i s$ 2 \qquad	Hsu

3. ASSIGNEE NAME AND RESIDENCEDATA TO BIF PRINTED ON TNE PATENT (print os ype

Vastview Technology Inc.
(4) RESIOENCE: (CITY wish STATE OR COUNTRY)
4F. No. 5. Technology Rd. Science-Based Industriat Park, Hsin-Chu. Taiwan. R.O.C.

 North America
 Intellectual Property corporation

P.O. BOX 506, Merrifield, VA 22116, U.S.A.

Voice Mail: 302-729-1562
FAX: 806-498-6673
e-mail:winstonhsu@naipocom

FAX TO: Mail Stop Issue Fee
Fax: (571) 273-2885

FROM: Winston Hsu, PATENT AGENT, REG. NO.: 41,526
SERIAL NO.: 10/707,741
ATTORNEY DOCKET NO.: VASP0001USA
SUBJECT: ISSUE FEE PAYMENT
TOTAL PAGES: 2 PAGES (INCLUDING COVER PAGE)

Winston Hsu 12/21/2006

NOTICE OF ALLOWANCE AND FEE(S) DUE

$027765 \quad$ 10/31/2006
NORTH AMERICA INTELLECTUAL PROPERTY CORPORATION
P.O. BOX 506
MERRIFIELD, VA 22116

EXAMNER	
PATEL, NITIN	
ART UNIT	PAPER NUMBER
2629	
DATE MAILED: $10 / 31 / 2006$	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$10 / 707,741$	$01 / 08 / 2004$	\cdot	Yung-Hung Shen	VASP0001USA

TITLE OF INVENTION: DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	YES	$\$ 700$	$\$ 300$	$\$ 0$	$\$ 1000$	$01 / 31 / 2007$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORX PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5 a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PTOL-85 (Rev. 07/06) Approved for use through 04/30/2007.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as
indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fec notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
$027765 \quad 7590 \quad$ 10/31/2006
ORTH AMERICA INTELLECTUAL PROPERTY COPPOR Crificate of Mailing or Transmission
NORTH AMERICA INTELLECTUAL PROPERTY CORPORATI@Abby cerrify that this Fec(s) Transmital is being deposited with the United P.O. BOX 506 States Postal Service with sufficient postage for first class mail in an envelop MERRIFIELD, VA $22116 \quad \begin{aligned} & \text { atadressed to } \\ & \text { transmitted to the USPTO (571) 273-2885, on the date indicated below. }\end{aligned}$

			(Depositor's name)	
				(Signature)
				(Date)
APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/707,741	01/08/2004	Yung-Hung Shen	VASP0001USA	1740

TITLE OF INVENTION: DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	YES	\$700	\$300	\$0	\$1000	01/31/2007
		ART UNIT	CLASS-SUBCLASS			
PAT	TIN	2629	345-087000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. "Fce Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively, (2) the name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attomeys or agents. If no name is listed, no name will be printed.			

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee catcgory or categories (will not be printed on the patent) :
Individual \square Corporation or other private group entityGovernment

4a. The following fee(s) are submitted:
\square Issue Fee
\square Publication Fee (No small entity discount permitted)Advance Order - \# of Copies \qquad
tatus indicated above)
Change in Entity Status (from satus indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. \square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27 (g)(2).
NOTE: The Issuc Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature \qquad Date
Registration No. \qquad
Typed or printed name \qquad
b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\square The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number ___ (enclose an extra copy of this form).
\square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2).

 ther pa

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450
Alexandria, Vir
www.uspto.gov

APPLICATION No.	Filing date	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/707,741 01/08/2004		Yung-Hung Shen	VASP0001USA	1740
0277657590 10/31/20	10/31/2006		EXAMINER	
NORTH AMERICA INTELLECTUAL PROPERTY CORPORATION P.O. BOX 506			PATEL, Nitin	
			ART UNIT	PAPER NUMBER
MERRIFIELD, VA 22116			2629	

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 602 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 602 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Notice of Allowability	Application No. $10 / 707,741$	Applicant(s) SHEN ET AL.	
	Examiner Nitin Patel	Art Unit 2629	
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308. 1. \boxtimes This communication is responsive to $1 / 8 / 2004$. 2. \triangle The allowed claim(s) is/are 1-9. 3. \boxtimes Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d) or (f). $\begin{array}{lll}\text { a) } \boxtimes \text { All } & \text { b) } \square \text { Some* } & \text { c) } \square \text { None of the: }\end{array}$ 1. \boxtimes Certified copies of the priority documents have been received. 2. \square Certified copies of the priority documents have been received in Application No. \qquad . 3. \square Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)). * Certified copies not received: \qquad Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.			
5. C (a) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \square hereto or 2) \square to Paper No./Mail Date \qquad (b) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).			
6. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.			
Attachment(s) 1. \boxtimes Notice of References Cited (PTO-892) 2. \square Notice of Draftperson's Patent Drawing Review (PTO-948) 3. \square Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 7/20/2004 4. Examiner's Comment Regarding Requirement for Deposit of Biological Material			
U.S. Patent and Trademark Office PTOL-37 (Rev. 08-06)	ce of Allowability		

REASON FOR ALLOWANCE

1. Claims 1-9 are allowed.
2. The following is an examiner's statement of reason for allowance:

Ham (US 20040196229) shows apply the normal data to the liquid crystal panel at the initial half period of the frame after supplying of the modulated data to the liquid crystal panel during the later half period of the frame, thus a desired brightness level is achieved within the initial period of the frame.

Lee (US 20010038372) shows a driving method for LCD having a data gray signal modifier for receiving gray signal from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals and an LCD panel having a plurality of gate lines for transmitting the scanning signals; a plurality of data lines being insulted from the gate lines and crossing them for transmitting the image signals and a plurality of pixels formed by an area surrounded by gate lines and data lines and arranged as a matrix pattern.

The prior art fails to teach or suggest a method for driving a liquid crystal display (LCD) panel, the LCD panel comprising: a plurality of scan lines; a plurality of data lines; and a plurality of pixels, each pixel being connected to a corresponding scan line and a corresponding data line, and each pixel comprising a liquid crystal device and a switching device connected to the corresponding scan line, the corresponding data line, and the liquid crystal device, and the method comprising: receiving continuously a

LGD_000138

plurality of frame data; generating a plurality of data impulses for each pixel within every frame period according to the frame data; and applying the data impulses to the liquid crystal device of one of the pixels within one frame period via the data line connected to the pixel in order to control a transmission rate of the liquid crystal device of the pixel as claimed in claim 1.

The prior art fails to teach or suggest a driving circuit for driving an LCD panel, the LCD panel comprising: a plurality of scan lines; a plurality of data lines; and a plurality of pixels, each pixel being connected to a corresponding scan line and a corresponding data line, and each pixel comprising a liquid crystal device and a switching device connected to the corresponding scan line, the corresponding data line, and the liquid crystal device, the driving circuit comprising: a blur clear converter for receiving frame data every frame period, each frame data comprising a plurality of pixel data and each pixel data corresponding to a pixel, the blur clear converter delaying current frame data to generate delayed frame data and generating a plurality of overdriven pixel data within every frame period for each pixel; a source driver for generating a plurality of data impulses to each pixel according to the plurality of overdriven pixel data generated by the blur clear converter and applying the data impulses to the liquid crystal device of the pixel via the scan line connected to the pixel within one frame period in order to control transmission rate of the liquid crystal device; and a gate driver for applying a scan line voltage to the switch device of the pixel so that the data impulses can be applied to the liquid crystal device of the pixel as claimed in claim 7.
3. Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Conclusion

4. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Nitin Patel whose telephone number is 571-272-7677. The examiner can normally be reached on 8:00-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Bipin H. Shalwala can be reached on 571-272-7681. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
 Art Unit 2629

Application/Control Number: 10/707,741
(
"EXAMINER: Initial if reference considered, whether or not citation is in contormance with MPEP 609. Draw line through citaton if not in conformance and not considered. Include copy of this form with next communicalion to applicent.
'Applicant's unlque citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Oocuments at wuw.uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-latter code (WIPO Standard ST.3). "For Japanese patent documents, the incicaion of the yeal of the reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the English language Translation is attache document uni WIPO Standard ST. 16 If possible. Applicant is to placo a check mark here Engilish language
Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Tme will vary depending upon the needs of the Individual case. - Trademark Office, Weshington. OC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assisiant Commissioner for Patents, Washington, DC 20231.

Notice of References Cited	Application/Control No. $10 / 707,741$	Applicant(s)/Patent Under Reexamination SHEN ET AL.	
	Examiner Nitin Patel	Art Unit 2629	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY		Name
$*$	A	US-2004/0119730	$06-2004$	Ham et al.	Classification
$*$	B	US-2004/0246224	$12-2004$	Tsai et al.	$345 / 692$
$*$	C	US-2004/0196229	$10-2004$	Ham, Yong Sung	$345 / 100$
$*$	D	US-2001/0038372	$11-2001$	Lee, Baek-Woon	$345 / 087$
$*$	E	US-2005/0073630	$04-2005$	Chen et al.	$345 / 89$
	F	US-			$349 / 087$
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	

SERIAL NUMBER $10 / 707,741$	FILING OR 371(c) DATE 01/08/2004 RULE	CLASS 3	GROUP ART UNIT 2629	ATTORNEY DOCKET NO. VASP0001USA
APPLICANTS				

APPLICANTS

Yung-Hung Shen, Hsin-Chu City, TAIWAN;
Shih-Chung Wang, Kao-Hsiung City, TAIWAN;
Yuhren Shen, Tai-Nan City, TAIWAN;
Cheng-Jung Chen, Miao- Li Hsien, TAIWAN;
** CONTINUING DATA \qquad
** FOREIGN APPLICATIONS
*Mnlsta**********
TAIWAN 092132122 11/17/2003
IF REQUIRED, FOREIGN FILING LICENSE GRANTED ** SMALL ENTITY **
** $03 / 11 / 2004$

	STATE OR COUNTRY TAIWAN	SHEETS DRAWING 10	$\begin{gathered} \text { TOTAL } \\ \text { CLAIMS } \\ 9 \end{gathered}$	INDEPENDENT CLAIMS 2

ADDRESS
 027765

TITLE
DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

FILING FEE RECEIVED 385	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	\square All Fees
		1.16 Fees (Filing)
		1.17 Fees (Processing Ext. of time)
		1.18 Fees (Issue)
		\square Other
		\square Credit

Issue Classification	Application/Control No. $10 / 707,741$	Applicant(s)/Patent under Reexamination SHEN ET AL.
	Examiner Nitin Patel	Art Unit 2629

U.S. Patent and Trademark Office

Search Notes				Application/Control No.	Applicant(s)/Patent under Reexamination SHEN ET AL.	
				10/707,741		
				Examiner Nitin Patel	Art Unit 2629	
SEARCHED				SEARCH NOTES (INCLUDING SEARCH STRATEGY)		
Class	Subclass	Date	Examiner		DATE	EXMR
345	87	10/28/2006	$N P$	EAST SEARCH	10/28/2006	NP
\rangle	88	入)			
	89	1				
	90					
	91)			
	93	7	1			
	98	T				
	99					
	100					
	204					
	589					
-	596					
		7	\square			
	RFEREN	SEARCH				
Class	Subclass	Date	Examiner			
Updated	above	10/28/2006	NP			
class	subclass	7)			
pgpub	database	(

EAST Search History

Ref \#	Hits	Search Query	DBS	Default Operator	Plurals	Time Stamp
L1	89	(plurality near2 data) near4 frame near2 (period or timing or interval or duration)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/28 10:55
S1	0	frame near period with data near impluse	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/28 10:54
S2	72449	frame near (period or tim\$5)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/18 12:35
S3	1694	S2 near3 (pixel or color or colour)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/18 12:36
S4	92	S3 same lad	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/18 12:36
S5	158	data near3 frame near3 (period or tim\$5) same lcd	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/18 13:20
S6	105811	data near3 frame	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/23 14:19
S7	6532	S6 near4 (period or timing or interval or duration)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/23 14:19
S8	109	S7 same Icd	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/23 14:19

EAST Search History

S9	15041	frame near3 data near4 (timing or time or duration or interval)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:15
S10	145	S9 same Icd	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:25
S11	4920	convert\$5 near4 (frame near3 data)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:25
S12	517	S11 with (time or interval or duration or timing)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:26
S13	21	S12 same Icd	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:27
S14	5	overdrive\$5 near pixel near data	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:28
S15	2474	converter same frame near data	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:29
S16	90	S15 same Icd	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/10/25 11:29

PALMINTRANET

Time: 12:38:42

Inventor Name Search Result

Your Search was:
Last Name $=$ SHEN
First Name $=$ YUNG-HUNG

| Application\# | Patent\# | Status | Date Filed | Title | Inventor Name |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| $\underline{10707741}$ | Not
 Issued | 30 | O1/08/2004 | DRIVING CIRCUIT OF A
 LIQUID CRYSTAL DISPLAY
 PANEL AND RELATED | SHEN, YUNG-HUNG |
| DRIVING METHOD | | | | | |

Inventor Search Completed: No Records to Display.

Search Another: Inventor | Last Name | First Name |
| :--- | :--- |
| | SHEN |
| SUNG-HUNG | |

To go back use Back button on your browser toolbar.
Back to PALM $\mid \underline{\text { ASSIGNMENT } \mid \text { OASIS | Home page }}$

Inventor Name Search Result

Your Search was:

```
Last Name = WANG
First Name = SHIH-CHUNG
```

Application\#	Patent\#	Status	Date Filed	Title	Inventor Name
10707741	Not Issued	30	01/08/2004	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD	WANG, SHIHCHUNG
$\underline{10904250}$	Not Issued	30	11/01/2004	METHOD FOR CONTROLLING OPEPRATIONS OF A LIQUID CRYSTAL DISPLAY TO AVOID FLICKERING FRAMES	WANG, SHIHCHUNG
$\underline{11456866}$	Not Issued	25	07/12/2006	APPARATUS AND METHOD FOR TEMPORAL NOISE REDUCTION AND MOTION ENHANCEMENT	WANG, SHIHCHUNG

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name	
	WANG	SHIH-CHUNG	Search

To go back use Back button on your browser toolbar.
Back to PALM| ASSIGNMENT|OASIS | Home page

PALM INTRANET

Inventor Name Search Result

Your Search was:
Last Name $=$ SHEN
First Name $=$ YUHREN

Application\#	Patent\#	Status	Date Filed	Title	Inventor Name
$\underline{09826097}$	6680755	150	04/05/2001	ADJUSTABLE BIASED GAMMA-CORRECTION CIRCUIT WITH CENTRALSYMMETRY VOLTAGE	SHEN, YUHREN
$\underline{09842817}$	6778161	150	04/27/2001	CENTRAL SYMMETRIC GAMMA VOLTAGE CORRECTION CIRCUIT	SHEN, YUHREN
$\underline{09940289}$	6750834	150	08/27/2001	MODIFICATION OF THE V-T CURVE OF AN LCD BY CHANGING THE WAVEFORM OF COMMON VOLTAGE	SHEN, YUHREN
$\underline{10707362}$	Not Issued	61	12/09/2003	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY AND DRIVING METHOD THEREOF	SHEN, YUHREN
$\underline{10707384}$	Not Issued	93	12/09/2003	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY AND RELATING DRIVING METHOD	SHEN, YUHREN
$\underline{10707741}$	Not Issued	30	01/08/2004	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD	SHEN, YUHREN
10799046	Not Issued	93	03/11/2004	METHOD FOR DRIVING LCD DEVICE	SHEN, YUHREN

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name	
	SHEN	YUHREN	Search

To go back use Back button on your browser toolbar.
Back to PALM ASSIGNMENT I OASIS \| Home page

Inventor Name Search Result

Your Search was:
Last Name = CHEN
First Name $=$ CHENG-JUNG

Application\#	Patent\#	Status	Date Filed	Title	Inventor Name
$\underline{09026439}$	5901587	250	02/19/1998	PADLOCK WITH SAFETY LOCKING MECHANISM	CHEN, CHENGJUNG
$\underline{10646844}$	Not Issued	83	08/25/2003	High-quality-image liquid crystal display device and the driving method thereof	CHEN, CHENGJUNG
10707362	Not Issued	61	12/09/2003	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY AND DRIVING METHOD THEREOF	CHEN, CHENGJUNG
10707384	Not Issued	93	12/09/2003	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY AND RELATING DRIVING METHOD	CHEN, CHENGJUNG
10707741	Not Issued	30	01/08/2004	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD	CHEN, CHENGJUNG
10709506	Not Issued	30	05/11/2004	DRIVING METHOD FOR A LIQUID CRYSTAL DISPLAY	CHEN, CHENG- JUNG
10772930	Not Issued	30	02/04/2004	Device and method of dynamic driving for liquid crystal display	CHEN, CHENGJUNG
10810621	Not Issued	30	03/29/2004	Method for luminance compensation of liquid crystal display and its device	CHEN, CHENGJUNG
10841033	Not Issued	25	08/30/2004	Method and device for driving liquid crystal display	CHEN, CHENG- JUNG
$\underline{10850172}$	Not Issued	30	05/19/2004	Method and device used for simulating CRT impulse type image display	CHEN, CHENGJUNG
10862516	Not Issued	30	06/05/2004	Method and device used for eliminating image overlap blurring phenomenon between frames in process of simulating	CHEN, CHENGJUNG

				CRT impulse type image display	
$\underline{10866026}$	Not Issued	30	06/14/2004	Method of fast gray-scale converting of LCD	CHEN, CHENGJNG
10866028	Not Issued	30	06/14/2004	Method of increasing image grayscale response speed	CHEN, CHENGJUNG
$\underline{10889265}$	Not Issued	30	07/10/2004	Driving method for LCD panel	CHEN, CHENGJUNG
10929473	Not Issued	30	08/31/2004	Liquid crystal display driving device of matrix structure type and its driving method	CHEN, CHENGJUNG
$\underline{10965808}$	Not Issued	30	10/18/2004	Color display system	CHEN, CHENGJUNG
$\underline{10965863}$	Not Issued	30	03/07/2005	Method of signal processing	CHEN, CHENGJUNG
10965946	Not Issued	30	10/14/2004	Liquid crystal screen display method	CHEN, CHENGJUNG
$\underline{10989264}$	Not Issued	30	11/17/2004	Driving system of a display panel	$\begin{aligned} & \text { CHEN, CHENG- } \\ & \text { JUNG } \end{aligned}$
29083561	D407294	150	02/13/1998	COMBINATION LOCK	CHEN, CHENGJUNG

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name	
	CHEN	CHENG-JUNG	Search

To go back use Back button on your browser toolbar.
Back to PALM ASSIGNMENT I OASIS Home page

TRANSMITTAL FORM (to be used for all correspondence after initial filing)		Application Nymber	10/707.741
		Filing Date	01/08/2004
		First Named Inventor	Yung-Hung Shen
		Art Unit	2673
		Examiner Name	
Total Number of Pages in This Submission	113	Attorney Docket Number	VASP0001USA

CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below.

Typed or printed name			
Signature		Date	

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to 12 minutes to complete, including process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to 12 minutes to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions tor reducing this burden, should be sent to the Chief information Officer. U.S. Patent and
Trademark Office. U.S. Department of Commerce. P.O. Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS Trademark Ofice. U.S. Department of Commerce. P.O. Box 1450. Alexandria, VA 22313-1450. DO NOT SEN
ADORESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
PTO/SB/17 (10-03)
Approved for use through 07/31/2006. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

METHOD OF PAYMENT (check all that apply)				
Check	Credit card	Money Order	Other	None
\checkmark Deposit Account:				
Deposit Account Number Deposit Account Name	50-3105			
	North America Intellectual Property Corp.			

The Director is authorized to: (check all that apply)
\checkmark Charge fee(s) indicated below \square Credit any overpayments \checkmark Charge any additional fee(s) or any underpayment of fee(s) Charge fee(s) indicated below, except for the filing fee to the above-identified deposit account.

FEE CALCULATION

1. BASIC FILING FEE			
Large Entity Fee Fee	Small Entity	Fee Description	Fee Paid
	Fee Fee		
Code (\$)	Code (\$)		
1001770	2001385	Utility filing fee	
1002340	2002170	Design filing fee	
1003530	2003265	Plant filing fee	
1004770	2004385	Reissue filing fee	
1005160	200580	Provisional filing fee	
		SUBTOTAL (1) (\$)	

FEE CALCULATION (continued)

3. ADDITIONAL FEES
 Large Entity Small Entity

SUBMITTED BY

Name (Print/ype)	Winston Hsu	Registration No. (Attomer/Agent) 41,526	Telephone	886289237358004
Signature	lucketur ther		Date	JUN i

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

U.S. PATENT DOCUMENTS					
Examiner Initials ${ }^{\circ}$	$\begin{aligned} & \text { Cite } \\ & \text { No. } 1 \end{aligned}$	Document Number Number-Kind Code ${ }^{2}$ (if known	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	1	us-2002/0044115A1	04/18/2002	Jinda, Akihito, et al.	
	2	us-2003/0058264A1	03/27/2003	Takako, Adachi, et al.	
		us-			

FOREIGN PATENT DOCUMENTS						
Examiner Initials	Cite No. ${ }^{1}$	Foreian Patent Document Country Code ${ }^{3}-\mathrm{Number}{ }^{4}-\mathrm{Kind}^{\text {Code }}{ }^{5}$ (H) known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T^{6}
	1	EP-1122711A2A3	08/08/2001	Lee, Baek-Woon, et al.		$+$
	2	EP-0660297A2A3	06/28/1995	Sawayama, et al.		$+$
	3	EP-0539185A1	04/28/1993	Mizukata, et al.		+

-EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP go1.04. approoniate symbols as indicted on the document under WIPO Standard ST. 16 if possibte. ${ }_{8}$ Apocument. place a check mark here English language Translation is attached
Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case Aurden hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depencing upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office. Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

- EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English language Translation is attached.
Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADORESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- black or very black and white dark photos
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt
European Patent Office
Office europeen des brevets

EUROPEAN PATENT APPLICATION

(43) Date of publication:
08.08.2001 Bulletin 2001/32
(21) Application number: 01102227.4
(22) Date of filing: 31.01.2001
(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: $\begin{aligned} & \mathbf{0 3 . 0 2 . 2 0 0 0} \text { KR } 2000005442 \\ & 27.07 .2000 \text { KR } 2000043509\end{aligned}$
06.12.2000 KR 2000073672
(71) Applicant: Samsung Electronics Co., Ltd. Suwon-city, Kyungki-do (KR)
(72) Inventor: Lee, Baek-Woon

Yongin-city, Kyungki-do (KR)
(74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano, Josif, Pisanty \& Staub,
Baaderstrasse 3 80469 München (DE)
(54) Liquid crystal display and driving method thereof
(57) Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals: a gate driver for sequentially supplying
scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.

Fig. 1

BNSDOCID: <EP _. .___1122711A2_1_>

Description

BACKGROUND OF THE INVENTION

(a) Field of the Invention

[0001] The present invention relates to a Liquid Crystal Display (LCD) and driving method thereof. More specifically, the present invention relates to an LCD and driving method for providing compensated data voltage in order to improve a response speed of the liquid crystal. bining the gray signals to be synchronized with the clock signal frequency with which the controller is synchronized, and outpulting the combined gray signats to the frame storage device and the data gray signal converter; and a divider for dividing the gray signals output by the data gray signal converter so as to be synchronized with the frequency with which the gray signals transmitted by the data gray signal source are synchronized.
[0010] In another aspect of the present invention, in an LCD driving method comprising a plurality of gate lines; a plurality of data lines being insulated from the gate lines and crossing them; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switehing elements connected to the gate lines and data lines, an LCD driving method comprises: (a) sequentially supplying scanning signals to the gate lines; (b) receiving image signals from a image signal source, and generating modification image signals by considering image signals of present and previous frames; and (c) supplying data voltages corresponding to the generated modification image signals to the data lines.
\qquad 1122711A2_1_>

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention:

FIG. 1 shows an equivalence circuit of an LCD pixel;
FIG. 2 shows data voltages and pixel voltages supplied by a prior driving method;
FIG 3 shows a iransmission of the LCD according to a prior driving method;
FIG 4 shows a modeled relation between the voltage and permittivity of the LCD;
FIG 5 shows a method for supplying the data voltage according to a first preferred embodiment of the present invenlion:
FIG 6 shows a permittivity of the LCD in case of supplying the data voltage according to the first preferred emrodment of the present invention;
FIG 7 shows a permittivity of the LCD in case of supplying the data voltage according to a second preferred emoodrment ol the present invention;
FIG 8 shows an LCD according to the preferred embodiment of the present invention;
FIG 9 shows a data gray signal modifier according to the preferred embodiment of the present invention;
FIG 10 shows a conversion table according to the first preferred embodiment of the present invention;
FIG 11 shows a ditid gray signal modifier according to a second embodiment of the present invention;
FIG 12 conceptually shows an operation of the data gray signal modifier according to the first preferred embodiment of the present invention shown in FIG. 11;
FIG 13 conceptually shows an operation of the data gray signal modifier according to the second preferred embodiment of the present invention shown in FIG. 11;
FIG 14 shows a data gray signal modifier according to a third embodiment of the present invention;
FIGs. 15(a) 10 15(c) show a conversion process of the modified gray data computed according to the third preferred embodiment of the present invention; and
FIG. 16 shows a waveform diagram for comparing the conventional voltage supply method with that according to the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] In the following detailed description, only the preferred embodiment of the invention has been shown and described, simply by way of illustration of the best mode contemplated by the inventor(s) of carrying out the invention. As will be realized, the invention is capable of modification in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.
[0013] The LCD comprises a plurality of gate lines which transmit scanning signals, a plurality of data lines which cross the gate lines and transmit image data, and a plurality of pixels which are formed by regions defined by the gate lines and data lines, and are interconnected through the gate lines, data lines, and switching elements.
[0014] Each pixel of the LCD can be modeled as a capacitor having the liquid crystal as a dielectric substance, that is, a liquid crystal capacitor, and FIG. 1 shows an equivalence circuit of the pixel of the LCD.
[0015] As shown, the LCD pixel comprises a TFT 10 having a source electrode connected to a data line D_{m} and a gate electrode connected to a gate line S_{n}, a liquid crystal capacitor C_{1} connected between a drain electrode of the TFT 10 and a common voltage $V_{\text {com }}$, and a storage capacitor $C_{s t}$ connected to the drain electrode of the TFT 10.
[0016] When a gate ON signal is supplied to the gate line $S n$ to turn on the TFT 10 , the data voltage V_{d} supplied to the data line is supplied to each pixel electrode (not illustrated) via the TFT 10. Then, an electric field corresponding to a difference between the pixel voltage Vp supplied to the pixel electrode and the common voltage $V_{c o m}$ is supplied to the liquid crystal (shown as the liquid crystal capacilor in FIG. 1) so that the light permeates the TFT with a transmission corresponding to a strength of the electric field. At this time, the pixel voltage V_{p} is maintained during one frame period. The storage capacitor $C_{s t}$ is used in an auxiliary manner so as to maintain the pixel voltage V_{p} supplied to the pixel electrode.
[0017] Since the liquid crystal has anisotropic permittivity, the permittivity depends on the directions of the liquid crystal. That is, when a direction of the liquid erystal is changed as the voltage is supplicd to the liquid crystal, the permittivity is also changed, and accordingly, the capacitance of the liquid crystal capacitor (which will be referred to as the liquid crystal capacitance) is also changed. After the liquid crystal capacitor is charged while the TFT is turned ON, the TFT is then turned OFF. If the liquid crystal capacitance is changed, the pixel voltage V_{p} at the liquid crystal is also changed, since $Q=C V$.
[0018] For an example of normally white mode twisted nematics (TN) LCD, when zero voltage is supplied to the pixel, the liquid crystal capacitance $C(O V)$ becomes $\varepsilon_{\perp} A / d$, where ε_{\perp} represents the permittivity when the liquid crystal
molecules are arranged in the direction parallel with the LCD substrate, that is, when the liquid crystal molecules are arranged in the direction perpendicular with that of the light, ' A ' represents the area of the LCD substrate, and ' d ' represents the distance between the substrates. If the voltage for implementing a full black is set to be 5 V , when the 5 V voltage is supplied to the liquid crystal, the liquid crystal is arranged in the direction perpendicular to the substrate, and therefore, the liquid crystal capacitance $C(5 \mathrm{~V})$ becomes $\varepsilon_{/ /} A / d$. Since $\varepsilon_{/ /}-\varepsilon_{\perp}>0$ in the case of the liquid crystal used in the TN mode, the more the pixel voltage supplied to the liquid crystal becomes greater, the more the liquid crystal capacitance becomes greater.
[0019] The amount the TFT must charge so as to make the n-th frame full black is $C(5 \mathrm{~V}) \times 5 \mathrm{~V}$. However, if it is assumed that the ($n-1$)th frame is full white $\left(V_{n-1}=0 \mathrm{~V}\right)$, the liquid crystal capacitance becomes $C(0 \mathrm{~V})$ since the liquid crystal has not yet responded during the TFT's tum ON period. Hence, even when the n-th frame supplies 5 V data voltage Vd to the pixel, the actual amount of the charge provided to the pixel becomes $\mathrm{C}(0 \mathrm{~V}) \times 5 \mathrm{~V}$, and since $\mathrm{C}(0 \mathrm{~V})<$ $C(5 \mathrm{~V})$, the pixel voltage below 5 V (e.g., 3.5 V) is actually supplied to the liquid crystal, and the full black is not implemented. Further, when the ($n+1$)th frame supplies 5 V data voltage V_{d} so as to implement the full black, the amount of the charge provided to the liquid crystal becomes $C(3.5 \mathrm{~V}) \times 5 \mathrm{~V}$, and accordingly, the voltage V_{p} supplied to the liquid crystal ranges between 3.5 V and 5 V . After repeating the above-noted process, the pixel voltage V_{p} reaches a desired voltage after a few frames.
[0020] The above-noted description will now be described with respect to gray levels. When a signal (a pixel voltage) supplied to a pixel is changed from a lower gray to a higher gray (or from a higher gray to a lower gray), the gray of the present frame reaches the desired gray after a lew frames since the gray of the present frame is affected by the gray of a previous frame. In a similar manner, the permittivity of the pixel of the present frame reaches a desired value after a few frames since the permittivity of the pixel of the present frame is affected by that of the pixels of the previous frame.
[0021] If the ($n-1$)th frame is full black, that is, the pixel voltage V_{p} is 5 V , and the n-th frame supplies 5 V data voltage so as to implement the full black, the amount of the charge corresponding to $\mathrm{C}(5 \mathrm{~V}) \times 5 \mathrm{~V}$ is charged to the pixel since the liquid crystal capacitance is $C(5 \mathrm{~V})$, and accordingly, the pixel voltage V_{p} of the liquid crystal becomes 5 V .
[0022] Therefore, the pixel voltage V_{p} actually supplied to the liquid crystal is determined by the data voltage supplied to the present frame as well as the pixel voltage V_{p} of the previous frame.
[0023] FIG. 2 shows the data voltages and pixel voltages supplied by a prior driving method.
[0024] As shown, the data voltage V_{d} corresponding to a target pixel voltage V_{w} is conventionally supplied for each frame without regarding the pixel voltage V_{p} of the previous frame. Hence, the actual pixel voltage V_{p} supplied to the liquid crystal becomes lower or higher than the target pixel voltage by the liquid crystal capacitance corresponding to the pixel voltage of the previous frame, as described above. Hence, the pixel voltage V_{p} reaches the target pixel voltage after a few frames.
[0025] FIG. 3 shows a transmission of the LCD according to a prior driving method.
[0026] As shown, since the actual pixel voltage becomes lower than the target pixel voltage, the permittivity reaches the target permittivity after a few frames even when the response time of the liquid crystal is within one frame.
[0027] In the preferred embodiment of the present invention, a picture signal S_{n} of the present frame is compared with a picture signal $S_{n_{-1}}$ of a previous frame so as to generate a modification signal $S_{n}{ }^{\prime}$ and the modified picture signal $S_{n}{ }^{\prime}$ is supplied to each pixel. Here, the picture signal S_{n} represents the data voltage in the case of analog driving methods. However, since binary gray codes are used to control the data voltage in digital driving methods, the actual modification of the voltage supplied to the pixel is performed by the modification of the gray signal.
[0028] First, if the picture signal (the gray signal or data voltage) of the present frame is identical with the picture signal of the previous frame, the modification is not performed.
[0029] Second, if the gray signal (or the data voltage) of the present frame is higher than that of the previous frame, a modified gray signal (data voltage) higher than the present gray signal (data voltage) is output, and if the gray signal (or the data voltage) of the present frame is lower than that of the previous frame, a modified gray signal (data voltage) lower than the present gray signal (data voltage) is output. At this time, the modification degree is proportional to the difference between the present gray signal (data voltage) and the gray signal (data voltage) of the previous frame.
[0030] A method for modifying the data voltage according to a preferred embodiment will now be described.
[0031] FIG. 4 shows a modeled relation between the voltage and permittivity of the LCD.
[0032] As shown, the horizontal axis represents the pixel voltage, and the perpendicular axis represents a ratio between the permittivity $\varepsilon(v)$ at a predetermined pixel voltage v and the permittivity ε_{\perp} at the time the liquid crystal is arranged parallel to the substrate, that is, when the liquid crystal is perpendicular to the permeating direction of the light.
[0033] The maximum value of $\varepsilon(V) / \varepsilon_{\perp}$, that is, $\varepsilon_{/ /} / \varepsilon_{, 1}$ is assumed to be $3, V_{t h}$ to be $1 V$, and $V_{\max }$ to be $4 V$. Here, the $V_{t h}$ and $V_{\text {max }}$ respectively represent the pixel voltages of the full white and full black (or vice versa).
[0034] When the capacitance of the storage capacitor (which will be referred to as the storage capacitance) is set to be identical with an average value $<\mathrm{C}_{s t}>$ of the liquid crystal capacitance, and the area of the LCD substrate and distance between the substrates are respectively set to be ' A ' and ' d ', the storage capacitance $C_{s t}$ can be expressed
as Equation 1.

$$
\text { Equation } 1 \quad C_{s f}=<C_{1}>=(1 / 3) \cdot\left(\varepsilon_{/ /}+2 \varepsilon_{\perp}\right) \cdot(A / d)=(5 / 3) \cdot\left(\varepsilon_{\perp} \cdot A / d\right)=(5 / 3) \cdot C 0
$$

where $C 0=\varepsilon_{1} \cdot A d$.
[0035] Referring to FIG. 4, $\varepsilon(v) / \varepsilon_{1}$ can be expressed as Equation 2.

$$
\text { Equation } 2 \quad \varepsilon(v) / \varepsilon_{\perp}=(1 / 3) \cdot(2 V+1)
$$

[0036] Since total capacitance $C(V)$ of the LCD is the sum of the liquid crystal and the storage capacitance, the capacitance $\mathrm{C}(\mathrm{V})$ can be expressed in Equation 3 from Equations 1 and 2.

Equation 3

$$
\begin{aligned}
C(V) & =C_{1}+C_{s i}=\varepsilon(v) \cdot(A / d)+(5 / 3) \cdot C 0=(1 / 3) \cdot(2 V+1) \cdot C 0+(5 / 3) \cdot C 0 \\
& =(2 / 3) \cdot(V+3) \cdot C 0
\end{aligned}
$$

[0037] Since the charge Q supplied to the pixel is preserved, the following Equation 4 is cstablished.

$$
\text { Equation } 4 \quad Q=C\left(V_{n-1}\right) \cdot V_{n}=C\left(V_{f}\right) \cdot V_{f}
$$

where V_{n} represents the data voltage (or, an absolute value of the data voltage of an inverting driving method) to be supplied to the present frame, $C\left(V_{n-1}\right)$ represents the capacitance corresponding to the pixel voltage of the previous frame (that is, $(n-1)$ th frame), and $C\left(V_{i}\right)$ represents the capacitance corresponding to the actual voltage V_{f} of the pixel of the present frame (that is, n-th frame).
[0038] Equation 5 can be derived from Equations 3 and 4.

Equation $5 \quad C\left(V_{n-1}\right) \cdot V_{n}=C\left(V_{f}\right) \cdot V_{f}=(2 / 3) \cdot\left(V_{n-1}+3\right) \cdot V_{n}=(2 / 3) \cdot\left(V_{f}+3\right) \cdot V_{f}$
[0039] Hence, the actual pixel voltage Vf can be expressed as Equation 6.

$$
\text { Equation } 6 \quad V_{t}=\left(-3+\sqrt{9+4 V_{n}\left(V_{n-1}+3\right)}\right) / 2
$$

[0040] As clearly expressed in Equation 6, the actual pixel voltage V_{i} is determined by the data voltage V_{n} supplied to the present frame and the pixel voltage V_{r-1} supplied to the previous frame.
[0041] If the data voltage supplied in order for the pixel voltage to reach the target voltage V_{n} at the n-th frame is set to be V_{n}, the data voltage V_{n} ' can be expressed as Equation 7 from Equation 5.

$$
\text { Equation } 7 \quad\left(V_{n-1}+3\right) \cdot V_{n}^{\prime}=\left(V_{n}+3\right) \cdot v_{n}
$$

[0042] Hence, the data voltage V_{n} ' can be expressed as Equation 8.

$$
\text { Equation } 8 \quad v_{n}^{\prime}=\frac{v_{n+3}}{V_{n-1}+3} \cdot v_{n}=v_{n}+\frac{v_{n}-v_{n-1}}{V_{n-1}+3} \cdot v_{n}
$$

[0043] As noted-above, when supplying the data voltage $V_{n}{ }^{\prime}$ obtained by the Equation 8 by the consideration of the target pixel voltage V_{n} of the present frame and the pixel voltage V_{n-1} of the previous frame, the pixel voltage can directly reach the target pixel voltage V_{n}
\qquad 1122711A2 I. $>$
[0044] Equation 8 is derived from FIG. 4 and a few assumptions, and the data voltage V_{n} applied to the general LCD can be expressed as Equation 9 . a gate electrode connected to the gate line to which the gate ON voltage is supplied.
[0057] The data gray signal modifier 400 receives n-bit data gray signals G_{n} from a data gray signal source (e.g., a graphic signal controller), and outputs the m-bit modified data gray signals G_{n}^{\prime} by consideration of the m-bit data gray signals of the present and previous frames. At this time, the data gray signal modifier 400 can be a stand-alone unit
where the function f is determined by the characteristics of the LCD. The function f has the following characteristics.
[0045] That is. $f=0$ when $\left|V_{n} f=\left|V_{n-1}\right|, f>0\right.$ when $| V_{n}\left|>\left|V_{n-1}\right|\right.$, and $f<0$ when $| V_{n}\left|<\left|V_{n-1}\right|\right.$.
[0046] A method for supplying the data voltage according to a first preferred embodiment of the present invention will now be described.
[0047] FIS 5 s nows the method for supplying the data voltage.
[0048] As shown in the first preferred embodiment, the data voltage V_{n}^{\prime} modified by consideration of the target pixel voltage of the present frame and the pixel voltage (data voltage) of the previous frame is supplied, and the pixel voltage $V p$ reacnes the target voltage. That is, in the case the target voltage of the present frame is different from the pixel voltage of inc orevious trame, the voltage higher (or lower) than the target voltage of the present frame is supplied as the modificy data voltage so as to reach the target voltage level at the first frame, and after this, the target voltage is supplica as the oata voltage at the following frames. Therefore, the response speed of the liquid crystal can be increased.
[0049] At this time. The modified data voltage (charges) is determined by consideration of the liquid crystal capacitance determined by the pixel voltage of the previous frame. That is, the charge Q is supplied by considering the pixel voltage level of the previous frame so as to directly reach the target voltage level at the first frame.
[0050] FIG 6 shows a permittivity of the LCD in the case of supplying the data voltage according to the first preferred cmbodiment of the present invention. As shown, since the modified data voltage is supplicd according to the first preferred embodiment. the permittivity directly reaches the target permittivity.
[0051] In a second preferred embodiment, a modified voltage V_{n} ' a little higher than the target voltage is supplied to the pixel voltage. As shown in FIG. 7, the permittivity becomes lower than the target permittivity before a half of the response time of the liquid crystal, but after this, the permittivity becomes overcompensated compared to the target value so that the average permittivity becomes equal to the target permittivity.
30 [0052] An LCD will now be described according to a preferred embodiment of the present invention.
[0053] FIG. 8 shows an LCD according to the preferred embodiment of the present invention. The LCD according to the preferred embodiment uses a digital driving method.
[0054] As shown, the LCD comprises an LCD panel 100, a gate driver 200, a data driver 300 and a data gray signal modifier 400

Aplurality of gate lines S1, S2, .., Sn for transmiting gate ON signas Dn for transmitting the modified data voltages are formed on the LCD panel 100. An area surrounded by the gate lines and data lines forms a pixel, and the pixel comprises TFTs 110 having a gate electrode connected to the gate line and having a source electrode connected to the data line, a pixel capacitor C1 connected to a drain electrode of the TFT 110 , and a storage capacitor $\mathrm{C}_{\text {st }}$. or can be integrated into a graphic card or an LCD module.
[0058] The data driver 300 converts the modified gray signals G_{n} ' received from the data gray signal modilier 400 into corresponding gray vollages (data voltages) so as to supply the same to the data lines.
[0059] FIG. 9 shows a detailed block diagram of the data gray signal modifier 400 of FIG. 8.
[0060] As shown, the data gray signal modifier 400 comprises a combiner 410, a frame memory 420 , a controller 430 , a data gray signal converter 440 and a divider 450 . The combiner 410 receives gray signals from the data gray signal source, and converts the frequency of the data stream into a speed that can be processed by the data gray signal modifier 400 . For example, if 24 -bit data synchronized with the 65 MHz frequency are transmitted from the data gray signal source and the processing speed of the components of the data gray signal modifier 400 is limited within 50 MHz , the combiner 410 combines the 24 -bit gray signals into 48 -bit gray signais G_{m} two by two and then transmits the same to the frame memory 420.

$$
\text { Equation } 9 \quad\left|V_{n}^{\prime}\right|=\left|V_{n}\right|+f\left(\left|V_{n}\right|-\left|V_{n-1}\right|\right)
$$

[0061] The combined gray signals G_{m} oulput the previous gray signals G_{m-1} stored in a predetermined address to the data gray signal converter 440 according to a control process by the controller 430 and concurrently stores the gray signals G_{m} transmitted by the combiner 410 in the above-noted address. The data gray signal converter 440
receives the present frame gray signals G_{m} output by the combiner and the previous frame gray signals G_{m-1} output by the frame memory 420 , and generates modified gray signals G_{m} ' by processing the gray signals of the present and previous frames.
[0062] The divider 450 divides 48 -bit modified data gray signals G_{m} ' output by the data gray signal converter 440 and outputs 24 -bit modified gray signals $G_{n}{ }^{\prime}$.
[0063] In the preferred embodiment of the present invention, since the clock frequency synchronized to the data gray signal is different from that for accessing the frame memory 420, the combiner 410 and the divider 450 are needed, but in the case the clock frequency synchronized to the data gray signal is identical with that for accessing the frame memory 420, the combiner 410 and the divider 450 are not needed.
[0064] Any digital circuits that satisty the above-defined equation 9 can be manufactured as the data gray signal converter 440.
[0065] Also, in the case a lookup table is made and stored in a read only memory (ROM), the gray signals can be modified by accessing the lookup table.
[0066] Since the modified gray voltage V_{n} ' is not only proportional to the difference between the data voltage V_{n-1} of the previous frame and the V_{n} of the previous frame but also depends on their respective absolute values, the configuration of the lookup table makes the circuit more easy compared to the computation process.
[0067] In order to modify the data voltage according to the preferred embodiment of the present invention, a dynamic range wider than the actually used gray scale range must be used. In the analog circuits, this problem can be solved using high voltage integrated circuits, but in the digital circuit, the number of the grays is restricled. For example, in the 6-bit gray case, a portion of the 64 gray levels has to be assigned not for the actual gray representation but for the modified voltage. That is, a portion of the gray level should be assigned for modification of the voltage, and hence the number of the grays to be represented is reduced.
[0068] In order to prevent the reduction of the number of the grays, a truncation concept can be introduced. For example, it is assumed that the voltage from 0 to 8 V is necessary when the liquid crystal is activated at voltage from 1 to 4 V and a modification voltage is considered. At this time, when dividing the voltage having the range from 0 to 8 V into 64 levels in order to perform a full modification, the number of the grays which can be actually represented becomes about 30 at most. Therefore, in the case the range of the voltage becomes 1 to 4 V and the modified voltage V_{n} ' becomes greater than 4 V , the number of the grays can be reduced if truncating all the modification voltages to 4 V .
[0069] FIG. 10 shows a configuration of the lookup table to which the concept of the truncation is introduced according to the preferred embodiment of the present invention.
[0070] . In the preferred embodiments of the present invention, the LCD driven by a digital method is described, and also the present invention can be applied to the LCD driven by an analog method.
[0071] In this case, a data gray signal modifier which functions corresponding to the data gray signal modifier as described in FIG. 8 is needed, and this data gray signal modifier can be implemented using an analog circuit that satisfies the equation 9.
[0072] As described above, the pixel voltage reaches the target voltage level as the data voltage is modified and the modified data voltage is provided to the pixels. Therefore, the configuration of the TFT LCD panel is not needed to be changed and the response speed of the liquid crystal can be improved.
[0073] FIG. 11 shows a detailed block diagram of the data gray signal modifier 400 according to a second preferred embodiment of the present invention.
[0074] As shown, the data gray signal modifier 400 comprises a frame memory 460: a controller 470 and a data gray signal converter 480, and receives n-bit gray signals of the respective red (R), green (G) and blue (B) from the data gray signal source. Therefore, the total number of bits of the gray signals transmitted to the data gray signal converter 480 becomes $(3 \times n)$ bits. Here, a skilled person can make either the ($3 \times n$)-bit gray signals be concurrently supplied to the data gray signal modifier 480 from the data gray signal source, or make the respective n-bit R, G and B gray signals be sequentially supplied to the same.
[0075] Relerring to FIG. 11, the frame memory 460 fixes the bil of the gray signal to be modified. The frame memory 460 receives m bits of the n-bit R, G and B gray signals from the data gray signal source, stores the same in predetermined addresses corresponding to the R, G and B, and outputs the same to the data gray signal converter 480 after a single frame delay. That is, the frame memory 460 receives the m-bit gray signals G_{n} of the present frame and outputs m-bit gray signals G_{n-1} of the previous frame.
[0076] The data gray signal converter 480 receives ($n-m$) bits of the present frame G_{n} which are passed through without modification, m bits of the present frame received for modification, and m bits of the previous frame G_{n-1} delayed by the frame memory 460 , and then generates the modified gray signals $G_{n}{ }^{\prime}$ by considering the m bits of the present and previous frames.
[0077] The above-noted description will now be further provided, with reference to FIG. 12.
[0078] FIG. 12 conceptually shows an operation of the data gray signal modifier according to the first preferred embodiment of the present invention. It is assumed that the R, G and B gray signals transmitted to the data gray signal
\qquad .1122711A2_1_

EP 1122711 A2

modifier 400 from the data gray signal source are respectively 8 -bit signals.
[0079] Two bits (bits of the present frame) starting from the LSB among 8-bit gray signals transmitted to the data gray signal modifier 400 are not modified, and they are input to the data gray signal converter 480 . The remaining 6 bits of the present frame are input to the data gray signal converter 480 for modification and concurrently stored in predetermined addresses of the frame memory 460.
[0080] Here: since the frame memory 460 stores the bit of the present frame during a single frame period and then outputs the same, 6-bit gray signals of the previous frame are output to the data gray signal converter 480.
[0081] The data gray signal converter 480 receives 6 -bit gray signals of the present frame and 6-bit R gray signals of the previous frame, generates modified gray signals considering the 6-bit R gray signals of the previous and present frames, adds the generated 6-bit gray signals and the 2-bit LSB gray signals of the present frame, and outputs finally modified 8 -bit gray signals G_{n} '.
[0082] In the same manner as with the R gray signals, the data gray signal converter 480 outputs modified 8 -bit G and B gray signals considering the 6 -bit gray signals of the present and previous frames. The 8 -bit modified gray signals are converted into corresponding voltages by a data driver and supplied to the data lines.
[0083] Here: the 6-bit R, G and B gray signals are stored in the established addresses of the frame memory 460. A skilled person can use a single frame memory 460 to assign the addresses for covering the R, G and B, or use three frame memories for the respective R, G and B to function as a single frame.
[0084] Through the description referred to in FIG. 12, when 8-bit gray signats are input from the data gray signal source, the prior frame memory stores 8 -bit R, G and B gray signals in the case of $S \times G A(1,280 \times 1,024)$, and therelore at least 30 Mb memories are necessary, but the frame memory 460 according to the preferred embodiment of the present invention only stores 6-bit gray signals, thereby reducing memory capacity needed.
[0085] Here, the more the number of the bits of the gray signals stored in the frame memory 460 becomes lower, the more the capacity needs of the frame memory 460 become lower, compared to the prior art.
[0086] An operation of the data gray signal modifier according to the second preferred embodiment will now be described.
[0087] FIG. 13 conceptually shows an operation of the data gray signal modifier according to the second preferred embodiment of the present invention. For easy understanding, the data gray signal modifier is designed using one frame memory and one data gray signal converter. However, the number of the frame memories and the data gray signal converters can be changed according to grades of the LCD panels, the bit number of the gray signals, and designer's intention. For example, three memories for configuring the frame memory and the data gray signal converter can be used to process R, G and B.
[0088] A skilled person can configure the frame memory by using first and second memories for processing reading and writing processes corresponding to the respective R, G and B gray signals so as to enhance data processing speed.
[0089] That is, when the gray signals are sequentially input to the frame memory, odd-numbered gray signals are stored in the first memory, and even-numbered gray signals are stored in the second memory, and when the oddnumbered gray signals are stored in the first memory, the second memory reads the first memory, and when the evennumbered gray signals are stored in the second memory, the first memory reads the second memory so that the data can be written/read to from the frame memory within a shorter time.
[0090] Referring to FIG. 13, the configuration of the data gray signal modifier 400 is identical with that of the first preferred embodiment. However, the data gray signal modifier 400 according to the second preferred embodiment is different from that of the first preferred embodiment in that the data gray signal modifier 400 according to the second preferred embodiment reduces the bit number of the output gray signals compared to the bit number of the input gray signals. An operation of the data gray signal modifier 400 will now be described.
[0091] When the 8-bit R, G and B gray signals are provided by the data gray signal source, the lower 3 bits of the 8 -bit R gray signals are not modified and are passed though the dotted line in the figure, and the remaining 5 bits of the present frame are input to the data gray signal converter 480 and the frame memory 460.
[0092] The 5-bit R gray signals of the present frame inpul to the frame memory 460 are stored in predetermined addresses and then output at the next frame, and 5 -bit R gray signals of the previous frame are output to the data gray signal converter 480 . The data gray signal converter 480 then receives the 5 -bit R gray signals of the present and previous frames G_{n} and G_{n-1}, generates the modified gray signals G_{n} ' proportional to the differences between the gray signals of the present and previous frames, and outputs the same. At this time, the modified R gray signals G_{n} ' are 8 -bit signals obtained by an addition of the modified 5 bits and the unmodified 3 bits.
[0093] Two bits of the 8 -bit G gray signals are passed via the dotted line, and remaining 6-bit gray signals G_{n} are input to the data gray signal converter 480 and the frame memory 460 . Here, the frame memory 460 stores the 6 -bit G gray signals of the present frame in a predetermined address, and outputs the 6-bit G gray signals of the previous frame G_{n-1}. Therefore, the data gray signal converter 480 outputs the modified gray signals $G_{n} \cdot$ using the 6 -bit G gray signals of the present and previous frames. At this time, the modified G gray signals $G_{n}{ }^{\prime}$ are obtained by an addition of the modified 6 bits and unmodified 2 bits.
[0094] Finally, 3 bits of the 8 -bit B gray signats are passed via the dotted line, and remaining 5-bit gray signals G_{n} are input to the data gray signal converter 480 and the frame memory 460 . Here, the frame memory 460 stores the 5 -bit G gray signals of the present frame in a predetermined address and outputs the 5-bit G gray signals of the previous frame G_{n-1}. Hence. the data gray signal converter 480 outputs modified gray signals $G_{n}{ }^{\prime}$ by using the 5 -bit G gray signals of the present and previous frames. At this time, the modified G gray signals $G_{n}{ }^{\prime}$ are 8 bits obtained by an addition of the modified 5 bits and unmodified 3 bits.
[0095] As described above, it is preferable that the passed bits among the 8 -bit R, G and B gray signals start from the LSB, and a skilled person can change the number of the passed bits. Hence; the skilled person can change the capacity and number of the frame memories and modify the date gray signal converter. A digital circuit that satisfies Equation 9 can be manufactured as the data gray signal converter 480 according to the preferred embodiment, or a look-up table is made and then stored into a read only memory (ROM), and accessed to modify the gray signals. Since the modified data voltage V_{n} ' is not only proportional to the difference between the data voltage V_{n-1} of the previous frame and that of the present frame, but is also dependent on absolute values of the data voltages, the look-up table makes the configuration of the circuit simpler than computation.
[0096] Referring to FIGs. 12 and 13, an example of a case in which an LCD panel is the SXGA $(1,280 \times 1,024)$ type and 8 -bit gray signals are supplied will now be described.
[0097] Conventionally, in this case, the frame memory requires at least 30 Mb , and the data gray signal converter requires $512 \mathrm{~Kb} \times 6$ when processing two R, G and B pixels per clock signal of the control signals output by the controller 470 , and it requires $512 \mathrm{~Kb} \times 3$ when processing one R, G and B pixel per clock signal.
[0098] In detail, in the case of processing two pixels per clock signal, the data gray signal modifier 400 receives 48 -bit signals. Since the bus size of the memory is configured as $\times 4, \times 8, \times 16$ and $\times 32$, the 48 -bit bus is configured using three 16 -bit wide memories.
[0099] However, since the bits from the LSB to the $i(i=1,2, \ldots, n-1)$ among the n bits are modified and the remaining parts are not modified in the preferred embodiment of the present invention, the capacity of the frame memory and the data gray signal converter can be reduced. For example, when $n=8$ and $i=2$, since six MSBs are needed to be modified and the remaining two bits are not needed to be modified, the frame memory only needs the capacity of $1,280 \times 1,024$ $\times 6$ bits $=22.5 \mathrm{Mb}$, and since the data gray signal converter can use six bits instead of an 8-bit gray table memory (512 Kb), the size is greatly reduced to 24 Kb in the case of one pixel per clock signal, and reduced to $6 \times 24 \mathrm{~Kb}$ in the case of two pixels per clock signal.
[0100] In the preferred embodiment, a number of modification bits are omitted in the modification of the gray signals since human eyes are not as sensitive to moving pictures as to still pictures, and therefore it is desirable to omit a number of modification bits within ranges wherein the human eyes cannot discem the variation of the gray signals of the moving pictures.
[0101] Since peoples' eyes have different sensitivity with respect to R, G and B, it is desirable to differently omit the number of modification bits with respect to the gray signals of the corresponding color. That is, since human eyes are most sensitive to green and least sensitive to blue, it is desirable that the number of modification bits ' i ' be in the order of $G \leq R \leq B$.
[0102] According to the present invention, the data voltage is modified and the modified data voltage is supplied to the pixels so that the pixel voltage reaches the target voltage level. Hence, the response speed of the liquid crystal can be improved without changing the configuration of the TFT-LCD panel.
[0103] Further, since only ' m ' bits among n-bit gray signals are used, the number and capacity of the memory needed for modification of the data voltage can be reduced, thereby increasing yield of the panels and reducing the cost.
[0104] As described above, an image signal modification circuit for improving the response speed of the liquid crystal is shown in FIGs. 9 and 11.
[0105] Particularly, in order to reduce the cost of the image signal modification circuit, the gray signals except a portion of the LSB are modified, and this algorithm is simple and easy to apply.
[0106] However, in the case of modifying four bils of the 8 -bil gray, two problems caused by quanlization can be generated as follows.
[0107] It is assumed that the response speed becomes maximized when 168 (10101000) gray level ($G_{n}{ }^{\prime}$) is defined as the DCC modification value in the case $208(11010000)$ gray level $\left(G_{n-1}\right)$ is switched to 192 (11000000) gray level $\left(G_{n}\right)$. A modification of the full 8 bits generates no problem, but a modification of MSB 4 bits so as to reduce the cost, the value 168 can not be provided to the gray lookup table. Therefore, the value of 176 (10110000) or 160 (10100000) is input to the lookup table instead. That is, modification errors are generated as much as the omitted LSB bits. This can generate a greater problem in the following interval.

55
[0108] In this interval, the modification is gradually performed. In the case of configuring this interval using only 4 bits, it becomes as follows.

5

55

BNSDOCID: $<E P$ ___ $1122711421 .>$
LGD_000170

EP 1122711 A2

[0109] The second problem is as follows. In the like manner of the previous example, it it is assumed that 1176 gray level is provided as a modification value when the 208 gray level is switched to the 192 gray level, the 176 or 175 gray level must be provided to obtain a maximum liquid crystal response speed when the 207 gray level is switched to the 192 gray level.
0110) However, in the case of modifying only 4 bits: since the MSB 4 bits of 207 (11001111) is identical with that of 192 (11000000), the modification is not performed and the 192 is output.
[0111] Particularly, in the case of moving pictures, the grays of 209 and 207 gray levels are distributed on a uniform screen of about 208 gray level, and although the difference between the 208 and 207 gray levels is 1, degrees of compensation become greater, and accordingly, some displayed stains may look exaggerated.
[0112] The above-noted two problems are referred to as the quantization errors, and when the number of the LSBs which are not modified but omitted is increased, the quantization errors become severe.
[0113] An LCD for reducing the quantization errors will now be described.
[0114] FIG. 14 shows a data gray signal modifier according to a third embodiment of the present invention. Repeated portions compared to FIG. 9 will be assigned with identical reference numerals and no further description will be provided.
[0115] Referring to FIG. 14, the data gray signal converter 460 of the data gray signal modifier comprises a lookup table 462 and a calculator 464.
[0116] As MSB 4-bit gray data $G_{m}[0: 3]$ of the present frame and MSB 4-bit gray data $G_{m-1}[0: 3]$ of the previous frame are provided by the combiner 410 , the values i , a and b stored in the lookup table are extracled and provided to the calculator 464.
[0117] The calculator 464 receives the LSB 4-bit gray data $G_{m}[4: 7]$ of the present frame from the combiner 410, the LSB 4-bit gray data G_{m-1} [4:7] of the previous frame from the frame memory 420, the variables f, a and b for modification of the moving pictures from the lookup table, and performs a predetermined computation and outputs first modified gray data $G_{m}{ }^{\prime}[0: 7]$ to the divider 450.
[0118] The first modified 36-bit gray data provided to the divider 450 are divided, and the modified 24-bit gray data $G_{n}{ }^{\prime}$ are output to the data driver 300.
[0119] In the preferred embodiments of the present invention as shown in FIG. 8, the LCD driven by a digital method is described, and also the present invention can be applied to the L.CD driven by an analog method.
[0120] According to a second preferred embodiment of the present invention, effects of reduction of the quantization errors will now be described in detail.
[0121] First, if the total gray levels are set to be x bits, the MSB y bits of the x bits are modified using the gray lookup table and the remaining z bits, that is $(x-y)$ bits are modified by computation.
[0122] An example will now be described when $x=8$ and $y=4$.
[0123] For ease of explanation, the following will be defined. [A]n is a multiple of the maximum 2^{n} not greater than A. For example, $[207]_{4}=[206]_{4}=[205] 4=\ldots=[193]_{4}=[192]_{4}=192$.
[0124] That is, $[A]_{n}$ is a value representing that zeros are provided to all the LSB n bits of $A, m[A]$ is a value representing that zeros are provided to all the MSB m bits of A, and $m[A]_{n}$ is a value representing that zeros are provided to all the LSB n bits and MSB m bits of A. When a mapping according to the gray lookup table for modification is set to be $f\left(G_{n}\right.$, $\left.G_{n-1}\right)$, the modification of the present invention is as follows.

Equation 10

$$
\dot{G_{n}}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)+a\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{{ }_{4}\left[G_{n}\right]}{16}-b\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{{ }_{4}\left[G_{n}\right]}{16}
$$

where $\left[G_{n}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of $G n,\left[G_{n-1}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of $G_{n-1}, 4\left[G_{n}\right]$ represents that zeros are provided to all the MSB 4 bits of G_{n}, and a and b are posilive inlegers.
[0125] According to the equation 10, the quantization errors can be reduced by using the gray lookup table.
[0126] The f, a and b are given as follows.
\qquad . $112271142_{1} 1$ _

EP 1122711 A2

[0127] It is assumed that a gray lookup table for modification is obtained as shown in FIG. 3.
Table 3

Gn^{\prime}		$\mathrm{Gn}-1$	
		64	80
Gn	128	140	136
	144	160	158

[0128] For example it it sel that $\left[G_{n}\right]_{4}=128$ and $\left[G_{n-1}\right] 4=64$, then it becomes that $f\left([G n] 4,\left[G_{n-1}\right]_{4}\right)=140, a([G n] 4$, $\left.\left[G_{n-1}\right]_{4}\right)=160-140=20$ and $U\left(\left|G_{n}\right| 4,\left[G_{n-1}\right] 4\right)=140-136=4$. However, these values are nol absolute and the values are determined so that the values in the 16×16 interval may be approximated with minimized errors.
[0129] For example when approximating the case of $G_{n}=144$ and $G_{n-1}=80$ by using the equation 10, since $G^{\prime}=140+20 \times 16 / 16.4 \times 16 / 16 \quad 156$. the value is different from the actually measured value 158 . This error can be ignored, but if the error becomes greater. the crror of the values in the 16×16 interval can be minimized by precisely adjusting the values of f : a and b
[0130] An exceptional casc is a block of $\left[G_{n}\right]_{4}=\left[G_{n-1}\right]_{4}$. In this case, since a state that $G_{n}{ }^{\prime}=G_{n}$ must be maintained, a state that $f=\left[G_{n}\right]_{4}$ is fixed and the values of a and b are adjusted according to the state. If $G_{n}=G_{n-1}$ in the equation 10 , when it becomes that $a-b=16$ then the state that $G_{n}^{\prime}=G_{n}$ is satisfied.
[0131] An example will be described in order to describe the modified gray data computed using the equation 10.
[0132] For example, when a previous gray data $G_{n \cdot 1}$ is a 72 gray level and a present gray data G_{n} is a 136 gray level, since the gray lookup table of the table 3 does not have the above-noted gray data, these values must be obtained by a predetermined computation as shown in FIG. 15(a).
[0133] That is, since $f\left(\left[G n|4.| G_{n-1} l_{4}\right)=f\left(\left[\left.136\right|_{4},\left[\left.72\right|_{4}\right)\right.\right.\right.$, it is satisfied that $f(128,64)=140, a\left([G n]_{4},\left[G_{n-1} l_{4}\right)=160-140=20\right.$ and $b\left([G n]_{4},\left[G_{n-1} l_{4}\right)=140-136=4\right.$.
[0134] Hence, when substituting the values for the equation 10 , it becomes that $G_{n}{ }^{\prime}=140+20 \times(136-128) / 16-4 \times(72-64)$

/16=148.

[0135] Also, in order to reduce the number of the bits stored in the lookup table, subsequent equation 11 can be used.

Equation 11

$$
G_{n}^{\prime}=f^{\prime}+\left[G_{n}\right]_{4}+a \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{4\left[G_{n}\right]}{16}-b \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{4\left[G_{n}\right]}{16}
$$

where it is defined that $f^{\prime}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)-\left[G_{n}\right]_{4}$, and $\left[G_{n}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n}, and $\left[G_{n-1}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n-1}, and ${ }_{4}\left[G_{n}\right]$ represents that zeros are provided to all the MSB 4 bits of G_{n}. and the values a and b are positive integers.
[0136] An example will be described in order to describe the modified gray data computed using the equation 11.
[0137] For example, when a previous gray data G_{n-1} is a 72 gray level and a present gray data G_{n} is a 136 gray level, since the gray lookup table of the lable 3 does not have the above-noted gray data, these values must be obtained by a predetermined computation as shown in FIG. 15(c).
[0138] That is, $f^{\prime}=f\left([G n] 4,\left[G_{n-1}\right]_{4}\right)-\left[G_{n}\right]_{4}=f\left([136]_{4},[72]_{4}\right)-128=f(128,64)-128=140-128=12, a^{\prime \prime}\left(\left[G_{n}\right]_{4},\left[G_{n-1} l_{4}\right)=a^{\prime}\left(G_{n}\right)_{4}\right.$, $\left.\left[G_{n-1}\right]_{4}\right)+2^{4}=4+16=20$ and $b\left(\left[G_{n}\right]_{4},\left[G_{n-1} l_{4}\right)=4\right.$.
[0139] Hence, when substituting the values for the equation 11, it becomes that $G_{n}{ }^{\prime}=128+12+20 \times(136-128) / 16-4 x$ (72-64)/16=148.
[0140] Also, in order to reduce the number of the bits stored in the lookup table, subsequent equation 12 can be used.

Equation 12

$$
G_{n}^{\prime}=f^{\prime}\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{z}\right)+G_{n}+a^{\prime} \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{4^{\left[G_{n}\right]}}{16}-b \cdot\left(\left[G_{n}\right]_{4}\left[G_{n-1}\right]_{4}\right) \cdot \frac{4^{[}\left[G_{n}\right]}{16}
$$

where it is defined that $f^{\prime}=f-G_{n}$, and $\left[G_{n}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n}, and $\left[G_{n-1} l_{4}\right.$ represents that zeros are provided to all the LSB 4 bits of G_{n-1}, and ${ }_{4}\left[G_{n}\right]$ represents that zeros are provided to all the MSB 4 bits of G_{n}, and the value a^{\prime} is an integer, and the value b is a positive integer.
[0141] That is, it becomes that $a^{\prime}\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)=a\left(\left[G_{n}\right]_{4},\left[G_{n-1} l_{4}\right)-2^{4}\right.$.
[0142] An example will be described in order to describe the modified gray data computed using the equation 12.
[0143] For example, when a previous gray data G_{n-1} is a 72 gray level and a present gray data G_{n} is a 136 gray level, since the gray lookup table of the table 3 does not have the above-noted gray data, these values must be obtained
by a predetermined computation as shown in FIG. 15(b).
[0144] That is, since $f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)=f\left([136] 4,[72]_{4}\right)=f(128,64)=140$, it is satisfied that $f^{\prime}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1} l_{4}\right)-\right.$ $G_{n}=140-128=12, G_{n}=136, a^{\prime}\left([G n]_{4},\left[G_{n-1}\right]_{4}\right)=a^{\prime}-16=4$ and $b\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)=4$.
[0145] Hence. when substituting the values for the equation 12 , it becomes that $G_{n}{ }^{\prime}=132+12+4 \times(136-128) / 16-4 x$
[0146] In this case. since the value of a' becomes smaller, the number of the bits assigned to (-16) a' can be reduced, but a' can be negative number in some intervals, and accordingly, an additional sign bit must be assigned.
[0147] As described above, the size of the lookup table for the modified gray data becomes smaller in order of equations 10.11 and 12, and the logic complication increases on the contrary.
[0148] In the above. modification of 8 bits is described.
[0149] However. all the 8-bit data may not be stored when the capacity of the frame memory or the number of input/ olitpul pins should be reduced.
[0150] For exmmple. since dimensions of a DRAM include $x 4, \times 8, x 16$ and $x 32$, the dimension of $x 32$ should be used so as to stcre 24 bit color information of the respective R, G and B, but it costs a lot. Instead of the dimension of $\times 32$, a dimension $0^{\circ} \times 16$ can be used, and 5 -bit R, 6 -bit G and 5 -bit G can only be stored. The modification in this case is exccuted as lollows
[0151] That is :n the case of 6 bits, the modification gray values are output as follows.

$$
\text { Equation } \left.13 \quad G_{n}^{\prime}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)+a \cdot\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{4\left[G_{n}\right]}{16}-b \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{\left.\left.4^{[}\left[G_{n}\right]\right\rangle\right) 2}{4}
$$

where it is delined that $\left[G_{n}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n} and $\left[G_{n-1}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n-1}, and ${ }_{4}\left[G_{n}\right]$ represents that zeros are provided to all the MSB 4 bits of G_{n}. and the values a and b are positive integers, and ${ }_{4}\left[G_{n}\right] \gg 2$ functions such that binary data of the computed 4 $\left[G_{n}\right]_{2}$ are shifted in the right direction by 2 bits, and as a result, it functions as division by 22.
[0152] Also. in the case of 5 bits, the modification gray values are output as follows.

Equation $14 \quad G_{n}^{\cdot}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)+a \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{4\left[G_{n}\right]}{16}-b \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{\left.\left.4\left[G_{n}\right]\right)\right\rangle 3}{2}$
where it is delined that $\left[G_{n}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n} and $\left[G_{n-1}\right]_{4}$ represents that zeros are provided to all the LSB 4 bits of G_{n-1}, and ${ }_{4}\left[G_{n}\right]$ represents that zeros are provided to all the MSB 4 bits of G_{n}, and the values a and b are positive integers, and ${ }_{4}\left[G_{n}\right] \gg 3$ functions such that binary data of the computed ${ }_{4}$ $\left[G_{n}\right]_{2}$ are shifted in the right direction by 3 bits, and as a result, it functions as division by 2^{3}.
[0153] Also in the case a high speed computation is difficult as the pixel frequency becomes higher according to the resolution, even the gray data G_{n} of the present frame can be modified omitting some LSBs. In the case of modifying respective 6 bits of G_{n} and G_{r-1}, the conversion is as follows.

Equation 15

$$
G_{n}^{\prime}=f\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right)+a \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{\left.\left.{ }_{4}\left[G_{n}\right]\right)\right\rangle 2}{4}-b \cdot\left(\left[G_{n}\right]_{4},\left[G_{n-1}\right]_{4}\right) \cdot \frac{\left.\left.{ }_{4}\left[G_{n}\right]\right)\right\rangle 2}{4}
$$

[0154] As described above, a gray lookup table of p bits is used, and in the case of modifying only q-bit Gn and r bil $G n-1$, it is as follows ($q, r>p$.)

Equation 16

$$
\begin{aligned}
G_{n}^{\prime}= & f\left(\left[G_{n}\right]_{8-\rho},\left[G_{n-1}\right]_{8-p}\right)+a \cdot\left(\left[G_{n}\right]_{8-p:}\left[G_{n-1}\right]_{8-p}\right) \cdot \frac{\left.\left.. \cdot\left[G_{n}\right]_{8-q}\right\rangle\right)(8-q)}{2^{(a-p)}} \\
& -b \cdot\left(\left[G_{n}\right]_{8-p},\left[G_{n-1}\right]_{8-p}\right) \cdot \frac{\left.\rho\left[\left.G_{n}\right|_{8-\rho}\right)\right\rangle(8-r)}{2^{(r-p)}}
\end{aligned}
$$

[0155] An operation of an LCD having a function of a moving picture modification will now be described.
[0156] As described above, in order to remove a lagging effect of moving pictures, image signals G_{n} of a frame are modified compared to the image signals G_{n-1} of a previous frame and using the equations 17 to 20.

$$
\begin{array}{ll}
\text { Equation } 17 & G_{n}^{\prime}=G_{n}, \text { if } G_{n}=G_{n-1} \\
\text { Equation 18 } & G_{n}^{\prime}>G_{n}, \text { if } G_{n}>G_{n-1} \\
\text { Equation 19 } & G_{n}^{\prime}<G_{n}, \text { if } G_{n}<G_{n-1} \\
\text { Equation } 20 & G_{n}^{\prime}-G_{n} \propto G_{n}-G_{n-1}
\end{array}
$$

[0157] That is, when the image signals provided by the present frame are identical with that of the previous frame, no modification is executed as shown in Equation 17, and when the present gray signal (or gray voltage) becomes higher than the previous one, the modification circuit raises the present gray (or gray voltage) and outputs the same as shown in FIG. 18, and when the present gray signal (or gray voltage) becomes lower than the previous one, the modification circuit lowers the present gray (or gray voltage) and outputs the same as shown in FIG. 19. At this time, states of the modification are proportional to the difference belween the present gray (or gray voltage) and the previous one as shown in the equation 20.
[0158] Via the above-described modification process, the response speed of the LCD panel becomes faster based on the following reasons.
[0159] First, desired voltage is supplied. That is, if a person wishes to supply 5 V to liquid crystal cells, the actual 5 V is supplied to the cclls. When the liquid erystal reacts to the electric field and the direction of the director of the liquid crystal is changed, the capacitance is also changed, and accordingly, the voltage different from the previous one is supplied to the liquid crystal.
[0160] That is, even when the response speed of the liquid crystal is within one frame ($16.7 \mathrm{~ms}, 060 \mathrm{~Hz}$), the conventional AMLCD driving method does not provide accurate voltages according to the above-noted mechanism and but the voltage between the previous and present voltages, and accordingly, the actual response speed of the LCD panel is delayed more than the one frame.
[0161] The desired voltage is generated according to the signal modification and therefore correct response is performed. At this time, transmission errors during the response time of the liquid crystal can be compensated by performing an overcompensation.
[0162] Second, the response speed of the liquid crystal material generally becomes faster as the voltage is greatly varied. For example, in the case of rising, the response speed is faster when the voltage is switched-from 1 V to 3 V than when the voltage is switched from 1 V to 2 V , and in the case of falling, the response speed is faster when the voltage is switched from 3 V to 1 V than when the voltage is switched from 3 V to 2 V . This tendency is preserved in most cases even though there are some differences depending on the liquid crystal or the driving modes of the LCD. For example, in the case of the twisted nematic mode, the response speed of the rising becomes 15 times faster and that of the falling becomes 1.5 times faster as the voltage difference becomes greater.
one frame (16.7 ms), the response time can be lowered to one frame by using a forced traction method. It is assumed that there is a liquid crystal that has a response time of 30 ms when the voltage is changed from 1 V to 2 V . In other words, in order to obtain the transmission corresponding to $2 \mathrm{~V}: 30 \mathrm{~ms}$ of time is needed when 2 V voltage is supplied.
[0164] When it is assumed that a time for the identical liquid crystal to reach 3 V from 1 V is also 30 ms (in most cases, the time is shorter than this case), the transmission reaches its target transmission corresponding to 2 V before 30 ms . That is, when supplying 3 V in order to obtain desired transmission corresponding to 2 V , the transmission reaches its target transmission corresponding to 2 V in a time shorter than 30 ms .
[0165] When continuously supplying 3 V , the liquid crystal reaches 3 V , and accordingly, the access voltage is cut off when the voltage reaches 2 V , and when 2 V is supplied, the liquid crystal reaches 2 V in a time shorter than 30 ms . A time to cut off the voltage, that is, to switch the voltage is when the frame is switched. Therefore, if the voltage of the liquid crystal reaches 2 V after a single frame (16.7 ms), for example, 3 V voltage is supplied and it becomes to 2 V at a subsequent frame, the response time becomes 16.7 ms . In this case, the transmission errors during the response time (e.g., 16.7 ms) of the liquid crystal can be set off using the compensation method.
[0166] According to the above-noted embodiment of the present invention, as described above, the pixel voltage can reach the target voltage level by modifying the data voltage and supplying the modified data voltage to the pixels. Hence, the response speed of the liquid crystal can be improved without modification of the configuration of the TFT LCD panel.
[0167] Also, in the case of driving the LCD and particularly in the case of implementation of the moving pictures, the

EP 1122711 A2

size of the gray lookup table of the image signal modification circuit for enhancing the response speed of the liquid crystal can be reduced and the quantization errors can be removed.
[0168] Whie this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
[0169] Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, such reference signs do not have any limiting effect on the scope of each element identified by way of example by such reference signs.

Claims

1. , A liquid crystal display (LCD) comprising:
a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames;
a data driver for changing the modification gray signals into corresponding data voltages and outputting image signats;
a gate driver for sequentially supplying scanning signals; and
an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connceted to the gate lines and data lines.
2. The LCD of claim 1 , wherein the data gray signal modifier comprises:
a frame storage device for receiving the gray signals from the data gray signal source, storing the gray signals during a single frame, and outputting the same;
a controller for controlling writing and reading the gray signals of the frame storage device; and
a data gray signal converter for considering the gray signals of a present frame transmitted by the data gray signal source and the gray signals of a previous frame transmitted by the frame storage device, and outputting the modification gray signals.
3. The LCD of claim 2 , wherein a clock signal frequency synchronized with the gray signal provided by the data gray signal source is identical with that synchronized with the controller.
4. The LCD of claim 2 , wherein a clock signal frequency synchronized with the gray signal provided by the data gray signal source is different from that synchronized with the controller.
5. The LCD of claim 4, wherein the LCD further comprises:
a combiner for receiving the gray signals from the data gray signal source, combining the gray signals to be synchronized with the clock signal frequency with which the controller is synchronized, and outputting the combined gray signals to the frame storage device and the data gray signal converter; and a divider for dividing the gray signals output by the data gray signal converter so as to be synchronized with the frequency with which the gray signals transmilled by the data gray signal source are synchronized.
6. The LCD of claim 2, wherein the data gray signal modifier modifies the gray signals so as to output a modification data voltage $\mathbf{V}_{\mathbf{n}}$ ' that satisfies the following equation

$$
\left|V_{n}^{\prime}\right|=\left|V_{n}\right|+f\left(\left|V_{n}\right| \cdot\left|V_{n-1}\right|\right)
$$

where the data voltage of the present frame is set to be V_{n} and that of the previous frame to be V_{n-1}.
7. The LCD of claim 6, wherein the data gray signal converter uses a digital circuit to output modified gray signals that satisfy the above-noted equation.
\qquad .1122711 A2_1_>
8. The LCD of claim 2 , wherein the data gray signal converter comprises a storage device for storing a lookup table for writing modification gray signals corresponding to the gray signals of the present and previous frames.
9. The LCD of claim 8. wherein when the modification gray signal is greater than a first voltage, the lookup table sets the modification gray signal as the first voltage, and when the modification gray signal is less than a second voltage, the lookup table sets the same as the second voltage.
10. The LCD of claim 1 , wherein the data gray signal modifier receives n-bit gray signals with respect to red R, green G and blue B signals from the data gray signal source, and outputs modification gray signals by considering the m-bil gray signals of the present and previous frames among n-bit gray signals.
11. The LCD of claim 10, wherein the data gray signal modifier comprises:
it lrame storage device for receiving the m-bit gray signals from the data gray signal source, storing the gray signats during a single frame, and outputting the same;
a con:rolicr tor controlling writing and reading the gray signals of the frame storage device; and
a cata gray signal converter for considering the m-bit gray signals of a present frame transmitted by the data gray signal source and the gray signals of a previous frame transmitted by the frame storage device, and generaling and outpulling the modification gray signals.
12. The LCD of claim 11 . wherein the number ' m ' represents remaining bits obtained by a subtraction of bits from the least signilicant bit (LSB) to ' 1 ' ($i-0,1, \ldots, n-1$) among the ' n ' bits of the gray signals.
13. The LCD of claim 11. wherein the number ' m ' is varied according to R, G and B.
14. The LCD of claim 13. wherein the number ' m ' is the biggest with respect to B.
15. The LCD of claim 13 , wherein the number ' m ' is the smallest with respect to G.
16. The LCD of claim 11, wherein the data gray signal converter receives unmodified (n - m) bits among the n-bit gray signals received from the data gray signal source, adds the received ($n-m$) bits to the gray signals generated by considering the gray signals of the present and previous frames, and generates n-bit modification gray signals.
17. The LCD of claim 11, wherein the frame storage device comprises:
a first frame storage device that writes outputs of the m-bit odd-numbered gray signals of the data gray signal source and reads outputs of the m-bit even-numbered gray signals; and a second frame storage device that reads the outputs of the m-bit odd-numbered gray signals of the data gray signal source and writes the outputs of the m-bit even-numbered gray signals.
18. The LCD of claim 11, wherein the data gray signal converter modifies the gray signals so as to output a modification data voltage V_{n} ' that satisfies the following equation

$$
\left|v_{n}\right|=\left|v_{n}\right|+f\left(\left|v_{n}\right| \cdot\left|v_{n-1}\right|\right)
$$

where the data voltage of the present Irame is set to be V_{n} and that of the previous frame to be V_{n-1}.
19. The LCD of claim 18 , wherein the data gray signal converter uses a digital circuit to output modified gray signals that salisfy the above-noted equation.
20. The LCD of claim 11, wherein the data gray signal converter comprises a storage device for storing a lookup table for writing modification gray signals corresponding to the gray signals of the present and previous frames.
21. The LCD of claim 20, wherein when the modification gray signal is greater than a first voltage, the lookup table sets the modification gray signal as the first voltage, and when the modification gray signal is less than a second voltage, the lookup table sets the same as the second voltage.

EP 1122711 A2

22. The LCD of claim 1 , wherein the data gray signal modifier receives x-bit gray data with respect to R, G and B from the data gray signal source and performs a first modification on a predetermined MSB bits of the respective x-bit gray data of the present and previous frames by using the lookup table, performs a second modification on respective remaining bits of the gray data of the present and previous frames via a predetermined computation. and outputs modification gray data via the first and second modifications.
23. The LCD of claim 22, wherein the data gray signal modifier comprises:
a frame storage device for receiving the x-bit gray data from the data gray signal source, storing the gray data during a single frame, and outputting the same; a controller for controlling writing and reading the gray data of the frame storage device; and a data gray signal converter for considering the x-bit gray data of a present frame transmitted by the data gray signal source and the gray data of a previous frame transmitted by the frame storage device, generating modification gray data and outpulting the same to the data driver.
24. , The LCD of claim 23, wherein the data gray signal converter comprises:
a lookup table for respectively receiving MSB y-bit data of the x-bit data of the previous and present image dala, and oulpulting variables (f, a, b) for a modification of moving pictures; and a calculator for respectively receiving LSB z-bit data of the x-bit data of the previous and present image data, receiving the variables (f, a, b) and outputting the modified gray data.
25. The LCD of claim 24 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}-f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)+a\left(\left[G_{n}\right]_{2},\left[G_{n-1}\right]_{z}\right) \cdot \frac{y\left[G_{n}\right]}{2^{z}}-b\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\cdot y\left[G_{n}\right]}{2^{z}}
$$

where $7=x-y,\left[G_{n}\right]_{z}$ represents that zeros are provided to all the $L S B 7$ bits of $G_{n},\left[G_{n-1}\right]_{z}$ represents that zeros are provided to all the LSB z bits of $G_{n-1}, y\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and a and b are positive integers.
26. The LCD of claim 24 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f+\left[G_{n}\right]_{2}+a \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\cdot\left[G_{n}\right]}{2^{2}}-b \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1} 1_{z}\right) \cdot \frac{\cdot\left[G_{n}\right]}{2^{2}}\right.
$$

where it is defined that $z=x-y, f^{\prime}=f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)-\left[G_{n}\right]_{z}$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n}, and $\left[G_{n-1}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n-1}, and $y\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and the values a and b are positive integers.
27. The LCD of claim 24 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
\left.G_{n}^{\prime}=r^{\prime} \cdot\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)+G_{n}+\cdot a^{\prime} \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\cdot\left(G_{n}\right]}{2^{z}} \cdot b \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1} l_{z}\right) \cdot \frac{\left[\left(G_{n}\right]\right.}{2^{2}}\right.
$$

where it is defined that $z=x-y, f^{\prime}=f-G_{n}$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n} and $\left[G_{n-1}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n-1}, and ${ }_{y}\left[G_{n}\right]$ represents thet zeros are provided to all the MSB y bits of G_{n}, and the value a is an integer, and the value b is a positive integer.
28. The LCD of claim 25 , wherein if $a-b=16$ in the case $\left[G_{n}\right]_{z}=\left[G_{n-1}\right]_{z}$, the condition that $G_{n}-G_{n-1}$ is satisfied.
29. The LCD of claim 27 , wherein if $a-b=0$ in the case $\left[G_{n}\right]_{L}=\left[G_{n-1}\right]_{L}$, the condition that $G_{n}=G_{n-1}$ is satisfied.
30. In a liquid crystal display (LCD) driving method comprising a plurality of gate lines; a plurality of data lines being insulated from the gate lines and crossing them; and a plurality of pixels, formed by an area surrounded by the
gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines, an LCD driving method comprising:
(a) sequentially supplying scanning signals to the gate lines;
(b) receiving image signals from a image signal source, and generating modification image signals by considering image signals of present and previous frames; and
(c) supplying data voltages corresponding to the generated modification image signals to the data lines
31. The LCD driving method of claim 30 , wherein the image signals are identified as analog voltages.
32. The LCD driving method of claim 30 , wherein the image signals are identified as digital gray signals.
33. The LCD driving method of claim 32, wherein the (b) comprises:
delaying the image signals transmitted from the image signal source by as much as a single frame; generating modification image signals by considering the image signals of the present frame received from the image signal source and the delayed image signals of the previous frame.
34. The LCD driving method of claim 30, wherein the modification image signals satisly the following equation

$$
\left|V_{n}\right|=\left|V_{n}\right|+f\left(\left|V_{n}\right|-\left|V_{n-1}\right|\right)
$$

where the data voltage of the present frame is set to be V_{n} and that of the previous frame to be V_{n-1}.
35. The LCD driving method of claim 33, wherein in the (b), a lookup table for writing modification image signals corresponding to the image signals of the previous and present frames is searched and the modification image signats are generated.
36. The LCD driving method of claim 35 , wherein when the modification image signals are greater than a first voltage, the lookup table sets the modification image signals as the first voltage, and when the modification image signals are less than a second voltage, the lookup table sets the modification image signals as the second voltage.
37. In a liquid crystal display (LCD) driving method comprising a plurality of gate lines; a plurality of data lines being insulated from the gate lines and crossing them; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines, an LCD driving method comprising:
(a) sequentially supplying scanning signals to the gate lines;
(b) receiving n-bit gray signals from a data gray signal source, and generating modification gray signals by considering respective m-bit gray signals of present and previous frames among the n-bit gray signals; and (c) supplying data voltages corresponding to the generated modification gray signals to the data tines.
38. The LCD driving method of claim 37 , wherein the (b) comprises:
(b-1) delaying the m-bit gray signals among the n-bit gray signals transmitted from the data gray signal source by as much as a single frame;
(b-2) generating first m-bit modification gray signals by considering the m-bit gray signals of the present frame received from the data gray signal source and the m-bit delayed gray signals of the previous frame; and (b-3) adding the unmodified and passed ($n-m$) bits to the first m-bit modification gray signals, and generating second n-bit modification gray signals.
39. The LCD driving method of claim 38, wherein the number ' m ' represents remaining bits obtained by a subtraction of bits from the least significant bit (LSB) to ' i ' ($i-0,1, \ldots, n-1$) among the n-bit gray signals.
40. The method of claim 39. wherein the number ' m ' is varied according to red (R), green (G) and blue (B).
41. The method of claim 40 , wherein the number ' m ' is the biggest with respect to the B.
42. The method of claim 40 , wherein the number ' m ' is the smallest with respect to the G.
43. The method of claim 37, wherein the modification gray signal satisfies the following equation

$$
\left|v_{n}\right|=\left|v_{n}\right|+f\left(\left|v_{n}\right| \cdot\left|v_{n-1}\right|\right)
$$

where the data voltage of the present frame is set to be V_{n} and that of the previous frame to be V_{n-1}.
44. The method of claim 38 , wherein in the ($b-2$), a look-up table that writes modification gray signals corresponding to the respective m-bit gray signals of previous and present frames is searched and first modification gray signals are then generated.
45. The method of claim 44, wherein when the modification gray voltage is greater than a first voltage, the lookup table sets the modification data voltage as the first voltage, and when the modification data voltage is lesser than the second voltage, the lookup table sets the modification data voltage as the second voltage.
46. In a liquid crystal display (LCD) driving method comprising a plurality of gate lines; a plurality of data lines being insulated from the gate lines and crossing them; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines, an LCD driving method comprising:
(a) sequentially supplying scanning signals to the gate lines;
(b) receiving x-bit image gray data from an outer image signal source;
(c) delaying the image gray data by a single frame;
(d) extracting variables for a modification of the moving pictures from the lookup table by using MSB y bits of a single-frame delayed digital gray.data and MSB y bits of the digital gray data received at the present frame; (e) computing LSB $(x-y)$ bits of the single-frame delayed digital gray data, LSB $(x-y)$ bits of the digital gray data received at the present frame, and the variables extracted from the (d); and
(f) supplying the data voltage corresponding to the modified gray data to the data line.
47. The LCD driving method of claim 46 , wherein the modified gray data G_{n} is obtained according to the subsequent equation:

$$
G_{n}^{\prime}=f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)+a\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\left[G_{n}\right]}{2^{z}} \cdot b\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\cdot\left[G_{n}\right]}{2^{z}}
$$

where $z=x-y,\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of $G n,\left[G_{n-1}\right]_{z}$ represents that zeros are provided to all the LSB z bits of $G_{n-1}, y\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and a and b are positive integers.
48. The LCD driving method of claim 46, wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f^{\prime}+\left[G_{n}\right]_{z}+a \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z} \cdot \frac{j^{\left[G_{n}\right]}}{2^{z}}-b \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{y\left[G_{n}\right]}{2^{z}}\right.
$$

where it is defined that $z=x-y, f \cdots f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)-\left[G_{n}\right]_{z}$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n}, and $\left[G_{n-1}\right]_{z}$ represents that zcros are provided to all the LSB z bits of G_{n-1}, and ${ }_{y}\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and the values a and b are positive integers.
49. The LCD driving method of claim 46 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f^{\prime}\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z^{2}}+G_{n}+a^{\prime} \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\mu\left[G_{n}\right]}{2^{z}} \cdot b \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\left[G_{n}\right]}{2^{z}}\right.
$$

where it is defined that $z=x-y, f^{\prime}=f-G_{n}$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of
 provided to all the MSB y bits of G_{n}, and the value a is an integer, and the value b is a positive integer.
50. The LCD driving method of claim 47, wherein if $a-b=16$ in the case $\left[G_{n}\right]_{z}=\left[G_{n-1}\right]_{z}$, the condition that $G_{n}=G_{n-1}$ is satisfied.
51. The LCD driving method of claim 49, wherein if $a-b=0$ in the case $\left[G_{n}\right]_{z}=\left[G_{n-1}\right]_{z}$, the condition that $G_{n}=G_{n-1}$ is satisfied.
52. In a liquid crystal display (LCD) driving apparatus comprising a plurality of gate lines; a plurality of data lines being insulated from the gate lines and crossing them; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines, an LCD driving apparatus comprising:
a data gray signal modifier for receiving x-bit gray signals from a data gray signal source, performing a first modification on predetermined MSBs of respective x-bit gray data of the present and previous frames by using a lookup table, performing a second modification on respective remaining bits of gray data of the present and previous frames via a predetermined computation, and outputting modification gray signals via the first and second modifications;
a data driver for changing the modification gray signals output from the data gray signal modifier into data voltages corresponding to the modification gray data and outputting image signals to the data lines; and a gate driver for sequentially supplying scanning signals to the gate lines.
53. The LCD driving apparatus of claim 52 , wherein the data gray signal modifier comprises:
a frame storage device for receiving the x -bit gray data from the data gray signal source, storing the gray data during a single frame, and outputting the same;
a controller for controlling writing and reading the gray data of the frame storage device; and
a data gray signal converter for considering the x-bit gray data of a present frame transmitted by the data gray signal source and the x-bit gray data of a previous frame transmitted by the frame storage device, generating the modification gray data and outputting the same to the data driver,
54. The LCD driving apparatus of claim 53 , wherein the data gray signal converter comprises:
a lookup table for respectively receiving MSB y-bit data of the x-bit image data of the previous and present frames, and outputting variables (f, a, b) for a modification of moving pictures; and a calculator for respectively receiving LSB z-bit data of the x-bit data of the previous and present image data, receiving the variables (f, a, b) and outputting the modified gray data.
55. The LCD driving apparatus of claim 54 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)+a\left(\left[G_{n}\right]_{z} \cdot\left[G_{n-1}\right]_{z}\right) \cdot \frac{\mu\left[G_{n}\right]}{2^{z}}-b\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\mu\left[G_{n}\right]}{2^{z}}
$$

where $z=x-y,\left[G_{n}\right]_{z}$ represents that zeros are provided to all the $L S B z$ bits of $G n,\left[G_{r-1}\right]_{z}$ represents that zeros are provided to all the LSB z bits of $G_{n-1} y\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and a and b are positive integers.
56. The LCD driving apparatus of claim 54, wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f^{\prime}+\left[G_{n}\right]_{z}+a \cdot\left(\left[G_{n}\right]_{z} \cdot\left[G_{n-1} 1_{z}\right) \cdot \frac{y\left[G_{n}\right]}{2^{z}}-b \cdot\left(\left[G_{n}\right]_{z} \cdot\left[G_{n-1}\right]_{z}\right) \cdot \frac{y\left[G_{n}\right]}{2^{z}}\right.
$$

where it is defined that $z=x-y, f^{\prime}=f\left(\left[G_{n} l_{z},\left[G_{n-1}\right]_{z}\right)-\left[G_{n} l_{z}\right.\right.$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n}, and $\left[G_{r-1}\right]_{7}$ represents that zeros are provided to all the LSB z bits of G_{n-1}, and $y_{y}\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and the values a and b are positive integers.
57. The LCD driving apparatus of claim 54 , wherein the modified gray data G_{n} are obtained using the subsequent equation:

$$
G_{n}^{\prime}=f\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right)+G_{n}+a^{\prime} \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\cdot\left[G_{n}\right]}{2^{z}} \cdot b \cdot\left(\left[G_{n}\right]_{z},\left[G_{n-1}\right]_{z}\right) \cdot \frac{\mathfrak{r}\left[G_{n}\right]}{2^{z}}
$$

where it is defined that $z=x-y, f^{\prime}=f-G_{n}$, and $\left[G_{n}\right]_{z}$ represents that zeros are provided to all the LSB z bits of G_{n}, and $\left[G_{n-1}\right\}$, represents that zeros are provided to all the LSB z bits of G_{n-1}, and $\left[G_{n}\right]$ represents that zeros are provided to all the MSB y bits of G_{n}, and the value a is an integer, and the value b is a positive integer.
58. The LCD of clairn 55 , wherein if $a-b=16$ in the case $\left[G_{n}\right]_{2}=\left[G_{n-1}\right]_{2}$, the condition that $G_{n}=G_{n-1}$ is satisfied.
59. The LCD of claim 57, wherein if $a-b=0$ in the case $\left[G_{n}\right]_{z}=\left[G_{n-1}\right]_{z}$, the condition that $G_{n}=G_{n-1}$ is satisfied.

Fig. 1

BNSDOCID: <EP___-_1122711A2_>
LGD_000182

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

\qquad 1122711A2_1_>

LGD_000188

Fig. 8

\qquad 112271 1A2.1...>

Fig. 9

Fig. 10

Gn'		Gn							
		0	1	2	2	\cdots	253	254	255
G_{n-1}	0	0	i	3	5	...	255	255	255
	1	0	1	3	4	\cdots	255	255	255
	2	0	1	2	3	...	255	255	255
	3	0	0	2	3	...	255	255	255
	:	:	:	:	:	:	:	:	:
	253	0	0	0	0	...	253	254	255
	254	0	0	0	0	...	253	254	255
	255	0	0	0	0		252	253	255

Fig. 11

Fig. 12
 _1122711A2_1-7

Fig. 13

EP 1122711 A2

Fig. $15 a$

Fig. 156

$\mathrm{G}^{\text {a }}$		$\mathrm{G}_{\mathrm{n}-1}$	
		64	80
Gn	128	\int_{12}^{140}	$\begin{aligned} & 136 \\ & \xrightarrow{136} 8 \end{aligned}$
	144	$\begin{gathered} 160 \\ a \neq \\ 32 \end{gathered}$	158 30

Fig. $15 c$

G_{n}.		$\mathrm{G}_{\mathrm{n}-1}$	
		64	80
Gn		140	1136
	128	12	$\stackrel{\stackrel{y}{c}=4}{\longrightarrow} 8$
	144	$\begin{gathered} 160 \\ a \neq 4 \\ 16 \end{gathered}$	14

Fig. 16

\qquad 1122711 A2_1 >

Europäisches Patentamt
European Patent Office
Office européen des brevets
(11)

EP1122711 A3
(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
12.09.2001 Bulletin 2001/37
(43) Date of publication A2
08.08.2001 Bulletin 2001/32
(21) Applicition number: 01102227.4
(22) Diatc ol filing 31.01.2001
(84) Desiçnated Contracting States: AT BE CH CY DE DK ES FI FR GB GRIE IT LI LU MC NL PT SE TR
Desig̣nated Extension States:
AL LT LV MK RO SI
(30) Priority: 03.02.2000 KR 2000005442
27.07.2000 KR 2000043509
06.12.2000 KR 2000073672
(71) Applicant: Samsung Electronics Co., Ltd. Suwon-city, Kyungki-do (KR)
(72) Inventor: Lee, Baek-Woon

Yongin-city, Kyungki-do (KR)
(74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano, Josif, Pisanty \& Staub,
Baaderstrasse 3
80469 München (DE)
(54) Liquid crystal display and driving method thereof
(57) Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals: a gate driver for sequentially supplying
scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.

Fig. 1

\qquad [122711A3_1_>

ANNEX TO THE EUROPEAN SEARCH REPORT

 ON EUROPEAN PATENT APPLICATION NO.EP 01102227

This annex ilsts the patent family members relating to the patent documents cited in the above-mentioned European search report.
This members are as contained in the European Patent Ottice EDP file on
The European Patent Office is in no way tiable for these particulars which are merely given for the purpose of intormation 28-06-2001

Patent document cited in search report		$\begin{aligned} & \text { Putlication } \\ & \text { datio } \end{aligned}$	Patent lamily member(s)		$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
EP 0487137	A	27-05-1992	NL	9002516 A	16-06-1992
			DE	69127172 D	11-09-1997
			DE	69127172 T	12-02-1998
			EP	0768637 A	16-04-1997
			JP	4268599 A	24-09-1992
			KR	230513 B	15-11-1999
			US	5495265 A	27-02-1996
EP 0750288	A	27-12-1996	JP	9005789 A	10-01-1997
			KR	201429 B	15-06-1999
			US	5844535 A	01-12-1998
W0 9616393	A	30-05-1996	EP	0741898 A	13-11-1996
			JP	9508222 T	19-08-1997
			US	5798740 A	25-08-1998

coran mase:
${ }_{\text {8. }}^{\text {8. }}$ For more detaids about this annex : see Official Journal of the European Patent Office, No. 12/82

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- illegible text
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- black or very black and white dark photos
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: 0660297 A2
(21) Application number: 94309496.1
(51) Int. $\mathrm{CI} .^{\mathbf{6}}$: G09G 3/36Date of filing : 19.12.94
(30) Priority : 20.12.93 JP 320335/93
(43) Date of publication of application: 28.06.95 Bulletin 95/26
(84) Designated Contracting States: GB NL
(71) Applicant : SHARP KABUSHIKI KAISHA 22-22 Nagaike-cho
Abeno-ku
Osaka 545 (JP)
(72) Inventor: Sawayama, Yutaka

Akebono-ryo 954, 2613-1, tchinomoto-cho
Tenri-shi, Nara-ken (JP)
Inventor: Kimura, Naofumi
2-125, Yurigaoka-higashi
Nabari-shi, Mie-ken (JP)
Inventor: Yamamoto, Yoshitaka
17-7, Izuhara-cho
Yamatokoriyama-shi, Nara-ken (JP)
Inventor: Ishii, Yutaka
1-5-5-905, Omiya-cho
Nara-shi, Nara-ken (JP)
(74) Representative : White, Martin David

MARKS \& CLERK,
57/60 Lincoln's Inn Fields
London WC2A 3LS (GB)
(54) A liquid crystal device and a method for driving the same.
(57) A liquid crystal device includes: a pair of substrates; a liquid crystal layer interposed between the pair of substrates; at least one polarizing element; a plurality of pixels; a retardation ($d \times \Delta n$) of the liquid crystal layer satisfying one of a relation:
$d x \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal layer once, and a relation :

$$
2 \mathrm{~d} \times \Delta n>\lambda / 2
$$

in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and driving voltage supplying means for applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.

[^0]
BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to a liquid crystal device and a method for driving the same, more particularly to a liquid crystal device having a high response speed and a method for driving the same.

2. Description of the Related Art

A conventional projection-type liquid crystal display device using a liquid crystal device is capable of obtaining a picture of a large size with relative ease by irradiating light onto a liquid crystal display so as to project the light onto a screen. There are two methods for obtaining a color display: a method in which a projected light beam is split into red, green and blue light beams, and a liquid crystal display device is used for each of the colors (simultaneous additive color mixing); and a method in which red, green and blue pixels are provided in a liquid crystal display device as in a direct-view type (juxtapositonal additive color mixing). However, both methods have problems. With the former method, while high resolution can be obtained with ease, it is expensive to realize such a liquid crystal display device. As shown in Figure 29, light beams radiated from a lamp 1 as a light source propagate through three optical paths, that is, a dichroic mirror for a red light beam 2, a dichroic mirror for a green light beam 3, and a dichroic mirror for a blue light beam 4. The light beams pass through liquid crystal panels 5, 6 and 7, respectively, and are output from a lens 8 . As described above, since the three liquid crystal display panels 5, 6 and 7 are used, the optical system for projection becomes complex and large in size as a whole system. Moveover, If a defective pixel exists even in one liquid crystal display panel among the three, a bright spot with a single color or a mixed color occurs in the projected image at a portion corresponding to the defective pixel. On the other hand, while the latter method is inexpensive, it has a problem in that the quality of displayed image is deteriorated unless the size of red, green and blue pixels in a projected image is smaller than the spatial resolution of human eyes. As one of the methods for solving the above problem, a field sequential color mixing method, a color mixing method by using a field sepuential addressing method, is known which can display red, green and blue with one pixel. The characteristics of high precision and high brightness of the field sequential color mixing method have the following features.
(1) The principle of displaying color images by the field sequential color mixing method is the same as that by the simultaneous additive color mixing method. Therefore, the field sequential color mixing method provides high precision images.
(2) In the case where the liquid crystal panel has a defective pixel, the defective pixel is displayed as a white or black point. The white or black point is less conspicuous than the colored bright point. Accordingly, even if the defective pixel exists in the liquid crystal panel, the quality of the displayed image is not deteriorated.
(3) Full-color display or multi-color display can be realized with a single liquid crystal panel, and therefore the optical system can be miniaturized and lightened. Since it is not necessary to use a plurality of light shutters as in the simultaneous additive color mixing method, it is possible to miniaturize the system and lower the fabrication cost.
As described above, a compact and light color liquid crystal display device with high brightness and high precision, which is excellent in display quality, can be obtained with the use of the field sequential addressing method.

In the case of the field sequential addressing method, however, the time allowed for displaying images corresponding to each of Red, Green and Blue in one field is in the range of 5 to 6 msec . At the present time, the response time of Twisted Nematic (TN) mode used in an active matrix liquid crystal display device is approximately several tens msec. In the case of Figure 30, the response times for rise and decay are 39.1 msec and 35.1 msec , respectively. Considering that the response time in a liquid crystal display mode, which utilizes optical switching between on/off states in the vicinity of a threshold voltage, is the same as or longer than that for the TN mode, it is practically impossible to realize the color liquid crystal display device of the field sequential addressing method.

As a conventional liquid crystal display mode having high-speed response, Surface Stabilized Ferroelectric Liquid Crystal (SSF-LC) mode is well-known (N.A.Clark and S.T.Lagerwall; Appl. Phys. Lett., 36,899: 1980). The feat ure of SSF-LC mode is as follows: the ferroelectric liquid crystal molecules have spontaneous polarization, and the display is performed by utilizing the property of the liquid crystal molecules which change their orientations so that the polarity of the spontaneous polarization and the polarity of an applied electric field are parallel with each other.

Regarding a liquid crystal display method with high-speed response other than the ferroelectric liquid crys-
tal mode, Japanese Laid-Open Patent Publication No. 56-51352 describes that the response speed is increased by applying a voltage close to the threshold value and a voltage close to the saturation voltage at which an optical characteristic of the liquid crystal is saturated.

Another high-speed response display mode using nematic liquid crystal is described in a publication (Ne- matic liquid crystal modulator with response time less than 100μ s at room temperature: Shin-Tson Wu; Appl. Phys. Lett. 57(10), 3 1990). The method for driving the liquid crystal display described in the publication is shown in Figure 31. A voltage ($V_{\text {off }}$) is continuously applied to the liquid crystal molecules such that the orientational deformation of the liquid crystal molecules from the initial orientation state becomes the largest. In this state, the transmittance of the liquid crystal display is zero. Then, zero voltage $\left(V_{0}\right)$ is applied to the liquid crystal molecules such that the orientational deformation of the liquid crystal molecules is relaxed. The transmittance is changed by varying a time period for applying zero voltage, thereby obtaining a gray-scale display. The relaxation process of the liquid crystal molecules which are orientationally deformed is of ten compared to the movement of a spring. The potential energy due to the interaction of the liquid crystal molecules becomes higher as the degree of the orientational deformation of the liquid crystal molecules becomes larger. As a result, the liquid crystal molecules in the highly deformed orientation state relax with extremely high speed.

However, the conventional liquid crystal display mode using the ferroelectric liquid crystals (FLC mode), such as SSF-LC mode, suffers from the following problems. In addition to the difficulty in controlling the orientation of the ferroelectric liquid crystal molecules, the orientation of the molecules is easily destroyed by a mechanical shock. Moreover, since the orientation of the ferroelectric liquid crystals is in a bistable state, it is difficult to obtain the gray-scale display.

As for the driving method described in Japanese Laid-Open Patent Publication No. 56-51352, it is not capable of displaying gray-scale. Moreover, since the degree of the change in the orientation state of the liquid crystal molecules is large, it is difficult to increase the response speed higher than that for the TN mode.

The method in which the relaxation of the orientational deformation of liquid crystal molecules is adjusted by varying the voltage unapplied period in order to obtain the gray-scale display, such as the above-mentioned high-speed response display mode using the nematic liquid crystal, cannot be adopted to matrix driving used for commercial liquid crystal display devices and the like.

SUMMARY OF THE INVENTION

The liquid crystal device of this invention, includes:
a pair of substrates;
a liquid crystal layer interposed between the pair of substrates;
at least one polarizing element;
a plurality of pixels;
a retardation ($d x \Delta n$) of the liquid crystal layer satisfying one of a relation:
$d \times \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal layer once, and a relation: $2 d x \Delta n>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and
driving voltage applying means for applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.

In one embodiment of the present invention, the driving voltage applying means applies the driving voltage to the pixels by a field sequential addressing method.

In one embodiment of the present invention, the liquid crystal device includes retardation compensation means between the liquid crystal layer and the polarizing element.

In another embodiment of the present invention, the driving voltage applying means applies a voltage higher than the maximum voltage providing the extremum of the output light intensity in the voltage-output light intensity characteristic and a voltage between the voltage higher than the maximum voltage and the maximum voltage, thereby controlling the output light intensity of the pixels.

In still another embodiment of the present invention, the driving voltage applying means reverses a polarity of the driving voltage in each frame.

In still another embodiment of the present invention, the driving voltage applying means applies a first preliminary voltage having an absolute value larger than that of a signal voltage corresponding to a predetermined output light intensity before applying the signal voltage to the pixels.

EP 0660297 A2

In still another embodiment of the present invention, the driving voltage applying means further applies a second preliminary voltage having an absolute value smaller than that of the signal voltage before applying the signal voltage corresponding to the predetermined output light intensity and after applying the first preliminary voltage.

In still another embodiment of the present invention, the absolute value of the first preliminary valtage is larger than that of the maximum voltage providing an extremum in the voltage-output light intensity characteristic of the pixels.

In still another embodiment of the present invention, the output light intensity at a maximum value of the signal voltage is equal to or less than 10% of a maximum in the voltage-output light intensity characteristic of the pixels.

In still another embodiment of the present invention, the absolute value of the second preliminary voltage is smaller than that of the maximum voltage providing the extremum in the voltage-output light intensity characteristic of the pixels.

In still another embodiment of the present invention, a time period for applying the first preliminary voltage is one-fifth or less than that for applying the signal voltage.

In still another embodiment of the present invention, a sum of the time period for applying the first preliminary voltage and the time period for applying the second preliminary voltage is one-fifth or less than a time period for applying the signal voltage.

In still another embodiment of the present invention, the driving voltage applying means applies the first preliminary voltage to the pixels connected to each scanning line at the same time.

In still another embodiment of the present invention, the driving voltage applying means applies the first preliminary voltage to the pixels connected to at least one scanning line.

In still another embodiment of the present invention, the driving voltage applying means applies the first preliminary voltage and the second preliminary voltage to the pixels connected to at least one scanning line for display.

In still another embodiment of the present invention, a value of the first preliminary voltage is identical to all the pixels.

In still another embodiment of the present invention, at least one of the first preliminary voltage and the second preliminary voltage has an identical value for all the pixels.

In still another embodiment of the present invention, the retardation compensation means has at least a pair of substrates and a second liquid crystal layer interposed therebetween, and an electro-optical characteristic of the second liquid crystal layer is substantially identical with that of the liquid crystal layer.

In still another embodiment of the present invention, the retardation compensation means is selected from a phase plate and a phase film.

In still another embodiment of the present invention, the retardation compensation means is selected from a uniaxially oriented polymer film and a biaxially oriented film.

In still another embodiment of the present invention, one of the pair of substrates is a silicon single crystalline substrate, and the silicon single crystalline substrate has a transistor switching a voltage applied from the driving voltage applying means to each of the plurality of pixels.

According to another aspect of the present invention, a projection-type liquid crystal display device including a liquid crystal element, wherein the liquid crystal element includes:
a pair of substrates;
a liquid crystal layer interposed between the pair of substrates;
at least one polarizing element:
a plurality of pixels;
a retardation ($d x \Delta n$) of the liquid crystal layer satisfying one of a relation:
$d \times \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal layer once, and a relation:
$2 d \times \Delta n>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and
driving voltage applying means for applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels, is provided.

According to another aspect of the present invention, a method for driving a liquid crystal device including: a pair of substrates; a liquid crystal layer interposed between the pair of substrates; at least one polarizing element, a plurality of pixels; and a retardation ($d \times \Delta n$) of the liquid crystal layer satisfying one of a relation:

EP 0660297 A2

$d x \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal layer once, and a relation: $2 d \times \Delta n>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thick- ness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ, is provided. The method includes a step of applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.

In one embodiment of the present invention, the driving voltage applying step includes applying the driving voltage to the pixels by a field sequential addressing method.

In another embodiment of the present invention, the driving voltage applying step includes applying a voltage higher than the maximum voltage providing the extremum of the output light intensity in the voltage-output light intensity characteristic and a voltage between the voltage higher than the maximum voltage and the maximum voltage, thereby controlling the output light intensity of the pixels.

In still another embodiment of the present invention, a polarity of the driving voltage is reversed in each frame.

In still another embodiment of the present invention, the driving voltage applying step includes applying a first preliminary voltage having an absolute value larger than that of a signal voltage corresponding to a predetermined output light intensity before applying the signal voltage to the pixels.

In still another embodiment of the present invention, the driving voltage applying step further includes applying a second preliminary voltage having an absolute value smaller than that of the signal voltage before applying the signal voltage corresponding to the predetermined output light intensity and after applying the first preliminary voltage.

In still another embodiment of the present invention, the absolute value of the first preliminary voltage is larger than that of the maximum voltage providing an extremum in the voltage-output light intensity characteristic of the pixels.

In still another embodiment of the present invention, the absolute value of the second preliminary voltage is smaller than that of the maximum voltage providing the extremum in the voltage-output light intensity characteristic of the pixels.

In still another embodiment of the present invention, a time period for applying the first preliminary voltage is one-fifth or less than that for applying the signal voltage.

In still another embodiment of the present invention, a sum of the time period for applying the first preliminary voltage and the time period for applying the second preliminary voltage is one-fifth or less than a time period for applying the signal voltage.

In still another embodiment of the present invention, the driving voltage applying step includes applying the first preliminary voltage to the pixels connected to each scanning line at the same time.

In still another embodiment of the present invention, the driving voltage applying step includes applying the first preliminary voltage to the pixels connected to at least one scanning line.

In still another embodiment of the present invention, the driving voltage applying step includes applying the first preliminary voltage and the second preliminary voltage to the pixels connected to at least one scanning line for display.

In still another embodiment of the present invention, a value of the first preliminary voltage is identical to all the pixels.

In still another embodiment of the present invention, at least one of the first preliminary voltage and the second preliminary voltage has an identical value for all the pixels.

Thus, the invention described herein makes possible the advantages of (1) providing a liquid crystal device having sufficient high-speed response, and (2) providing a method for driving the same.

These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram showing a configuration of a liquid crystal device according to a first example of the present invention.

Figure $\mathbf{2}$ is a graph showing a voltage-transmittance characteristic of homogeneous ECB mode in the case where $d \times \Delta n>2 / 2$, in the liquid crystal device of Figure 1.

Figures 3A to 3C are diagrams showing behaviors of liquid crystal molecules of homogeneous ECB mode due to an applied voltage.

Figures 4A to 4C are diagrams illustrating an apparent birefringence Δn when a liquid crystal molecule is inclined with respect to an incident light beam.

Figure 5 is a diagram showing a configuration of a liquid crystal cell of homogenous ECB mode in the liquid crystal device of Figure 1.

Figure 6 is a graph showing the relation between an output light intensity I_{0} and the retardation ($d \times \Delta n$).
Figure 7 is a graph showing voltage-transmittance characteristics of liquid crystal cells having for various retardations ($d \times \Delta n$).

Figure 8 is a diagram showing a configuration of a liquid crystal cell of homogenous ECB mode in the liquid crystal device of Figure 1.

Figure 9 is a diagram showing a liquid crystal display device according to a second example of the present invention.

Figures 10A and 10B are graphs showing driving voltage waveforms and optical response waveforms in the case where a signal voltage $V_{\text {on }}$ alone is applied to a liquid crystal cell and in the case where a driving voltage waveform according to the second example is applied to the liquid crystal cell, respectively.

Figures 11A and 11B are graphs showing driving voltage waveforms and optical response waveforms in the case where a second preliminary voltage V_{L} according to a third example is not present between a first preliminary voltage V_{H} and the signal voltage $V_{o n}$ of the second example and in the case where the second preliminary voltage V_{L} is present between the first preliminary voltage V_{H} and the signal voltage $V_{o n}$ of the second example, respectively.

Figure 12 is a diagram showing another driving voltage waveform according to a third example of the present invention.

Figure 13 is a diagram showing a configuration of a liquid crystal cell of a liquid crystal display device according to a fourth example of the present invention.

Figure 14 is a cross-sectional view showing a configuration of a liquid crystal cell of a liquid crystal display device according to a fourth example of the present invention.

Figure 15 is a graph showing a voltage-transmittance characteristic of the liquid crystal cell shown in Figure 14 in the case where a compensating liquid crystal cell is used.

Figures $\mathbf{1 6}^{\mathbf{1} 6 A}$ and 16B are graphs showing optical response characteristics and driving voltage waveforms in the case where a compensating liquid crystal cell of the third example is not used, and in the case where a compensating liquid crystal cell of the fourth example according to the present invention is used, respectively.

Figure 17 is a flow chart showing a process for fabricating TFTs of a liquid crystal display device according to a fifth example of the present invention.

Figure 18 is a cross-sectional view of a liquid crystal display device according to a fifth example of the present invention.

Figure 19 is a plane view of a liquid crystal display device using a TFT substrate according to the fifth example of the present invention.

Figure $\mathbf{2 0}$ is a schematic diagram showing a configuration of AM-LCD using TFTs according to the fifth example of the present invention.

Figures 21A to 21C are time charts of a driving voltage waveform used for the AM-LCD of Figure 20.
Figures 22A and 22B are diagrams showing a driving waveform and an optical response waveform, respectively, in the case where a liquid crystal cell fabricated according to the fabrication process of TFTs shown in Figure 17 is driven by using a driving method of the present invention.

Figure 23 is a diagram showing a driving waveform in the case where polarities of the first preliminary voltage V_{H} and the signal voltage $V_{o n}$ of Figure 22A are reversed.

Figures 24A and 24B are a plane view and a cross-sectional view taken along line W-W' of Figure 24A. respectively, in a unit pixel region of a single crystalline silicon substrate of a color liquid crystal display device according to a sixth example of the present invention.

Figure 25 is an equivalent circuit diagram showing a configuration of a circuit in the unit pixel region of Figure 24.

Figure 26A is a diagram showing a configuration of a projection-type liquid crystal display device including a liquid crystal element using the single crystalline silicon substrate having the circuit configuration of Figures 24A and 24B and Figure 26B is a diagram showing an example of a light selecting element used for the pro-jection-type liquid crystal display device of Figure 26A.

Figures 27(a) to 27(e) are timing charts for driving the liquid crystal display device.
Figure 28 is an equivalent circuit diagram showing an example of a structure of a circuit in the unit pixel region in the sixth example of the present invention.

Figure 29 is a diagram showing a configuration of an optical system of a conventional three-plate projec-tion-type liquid crystal display device.

Figure 30 is a diagram showing a light transmittance response characteristic of TN mode in a conventional liquid crystal display device.

Figure 31 is a graph showing the relation between a driving applied voltage and a light transmittance in a conventional liquid crystal display device.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, the present invention will be described by way of examples with reference to the accompanying drawings.

Example 1

Figure 1 shows a configuration of a transmissive liquid crystal device according to a first example of the present invention. In Figure 1, a liquid crystal device 21 includes a pair of substrates 22 and 23, a liquid crystal layer 24 interposed between the pair of substrates 22 and 23, a polarizer 25, an analyzer 26, and a driving voltage supplying portion $\mathbf{2 7}$ for supplying a driving voltage to electrodes (not shown) formed on the pair of substrates 22 and 23 . A liquid crystal cell 28 is constituted by the pair of substrates 22 and 23 and the liquid crystal layer 24 . The liquid crystal cell 28 has a plurality of pixels (not shown). The pixel is the smallest portion of the liquid crystal cell 28 which can control the transmittance of light independently. The driving voltage supplying portion $\mathbf{2 7}$ drives the liquid crystal cell $\mathbf{2 8}$ by supplying voltages to the pixels in accordance with the field sequential addressing method.

Each of the pixels of the liquid crystal cell 28 exhibits the voltage-transmittance ($\mathrm{N}-\mathrm{T}$) characteristic shown in Figure 2. The driving voltage supplying portion 27 supplies the voltages having values corresponding to point A from point \mathbf{B} in Figure 2, so that optical on/off switching is obtained between the maximum value (B) and the minimum value (A) of the transmittance in the V -T characteristic of Figure 2.

The V-T characteristic shown in Figure 2 is obtained when the retardation ($d x \Delta n$), which is an optical path difference between an ordinary ray and an extraordinary ray for the liquid crystal layer 24, satisfies the relation:

$$
d \times \Delta n>\lambda / 2
$$

where the thickness of the liquid crystal layer 24 is d, a difference between the refractive indices of the ordinary ray and the extraordinary ray (birefringence) is Δn, and a wavelength of the incident light for display is λ. More specifically, the V-T characteristic in Figure 2 is obtained in the case of $d x \Delta n>3 \lambda / 2$.

In the present specification, the point A on the uppermost voltage V_{1} in Figure $\mathbf{2}$ is referred to as a mode 0 , at which the transmittance has the lowesi value in the V - T characteristic. At the mode 0 in the $\mathrm{V}-\mathrm{T}$ characteristic, the transmittance of the liquid crystal cell 28 is substantially saturated. The voltage V_{1} at which the transmittance of the liquid crystal cell is saturated will be referred to as a saturation voltage. The point \mathbf{B} in the V-T characteristic is referred to as a first extremum, which is in a brightest state (a maximum point) obtained for the first time when the voltage is gradually lowered from the sat uration voltage V_{1} at which the optical characteristic becomes mode 0 . The transmittance gradually decreases from the point B as the applied voltage increases. Therefore, the point A is determined by the value of the saturation voltage V_{1}. Practically, the value of the saturation voltage V_{1} may be selected from a voltage higher than a maximum voltage providing an extremum of the transmittance of the liquid crystal cell taking a contrast ratio and a response speed into consideration. For example, in order to obtain a contrast ratio equal to or more than 10 for a display device having the V -T characteristic shown in Figure 2, a signal voltage for display having a maximum voltage providing the output light intensity equal to or less than 10% of the maximum (p oint B) in the $V-T$ characteristic is applied. In this case, the value of the saturation voltage V_{1} is set higher than the maximum voltage of the signal voltage.

In this example, as will be described later, the polarizer and the analyzer are set in a crossed Nicol state, therefore the transmittance (point A) at the saturation voltage V_{1} has the lowest value. On the other hand, in the case where the polarizer and the analyzer are set in a parallel Nicol state, the transmittance at the saturated voltage will have the highest value. In both cases, the transmittance of the liquid crystal cell is saturated near the saturation voltage. As for the point \mathbf{B}, it has a maximum transmittance in the crossed Nicol state, as shown in Figure 2. On the other hand, the point B has a minimum transmittance in a parallel Nicol state. In the present specification, the extremum is used to refer to a maximum or a minimum value. An extremum obtained at the maximum voltage is referred as to a first extremum and an extremum obtained at the second highest voltage is referred as to a second extremum, and so on.

The V-T characteristic shown in Figure 2 is obtained from an interference phenomenon between the ordinary ray and the extraordinary ray. As a typical display mode utilizing the interference between the ordinary ray and the extraordinary ray of incident light, Electrically Controlled Birefringence (hereinafter, referred to as ECB) mode is known. The operational principle of homogenous ECB mode is as follows. Alight beam incident
on the liquid crystal cell 28 through the polarizer $\mathbf{2 5}$ has a specific polarization direction. When the polarized light beam passes through the liquid crystal cell 28, the retardation $(d x \Delta n)$ is generated between the ordinary ray and the extraordinary ray of the polarized light beam. Therefore, the polarization direction of the polarized light beam is changed by passing through the liquid crystal cell 28 . The analyzer 26 allows a light beam having a specific polarization direction to pass through.

Accordingly, the transmittance of the incident light beam depends on the retardation for the liquid crystal layer 24 and the arrangement of the polarizer 25 and the analyzer 26 . Assuming that the thickness of the liquid crystal layer 24 is d, and the difference between the ordinary refractive index (n_{0}) and the extraordinary refractive index (n_{e}), which is generated by the refractive index anisotropy of the liquid crystal layer 24 , is Δn, the retardation for the liquid crystal layer 24 is give by the product ($\mathrm{d} \times \Delta \mathrm{n}$). An optical response is obtained by electronically changing the retardation (the optical path difference) for the liquid crystal layer 24. The liquid crystal molecules 29 interposed between the pair of substrates 22 and 23, which are in a homogeneous orientation state, rise by applying a voltage E to the liquid crystal cell 28, as shown in Figures 3A to 3C. Since an apparent birefringence Δn of the liquid crystal layer $\mathbf{2 4}$ changes when the liquid crystal molecules 29 are inclined at an angle, the retardation ($d \times \Delta n$) changes with it.

Figures 3A, 3B and 3C are schematic diagrams showing orientation states of the liquid crystal molecules 29 and energies of orientational deformation of liquid crystal molecules 29 in the respective orientation states as the extension of a spring in the cases where: a voltage less than a threshold voltage is applied; an intermediate voltage is applied; and a voltage close to a saturated voltage is applied, respectively. Since the liquid crystal molecules 29 having a positive dielectric anisotropy have the property to align parallel to the direction of the applied voltage, the orientation direction of the liquid crystal molecules 29 changes in accordance with the strength of the voltage applied to the liquid crystal cell 28 as shown in Figures 3A to 3C. The apparent birefringence of the liquid crystal layer 24 changes with the change in the orientation direction of the liquid crystal molecules 29 with respect to the incident light. This phenomenon is described with reference to Figures 4A to 4C.

In Figures 4A to 4C, an ellipsoid represents a refractive index ellipsoid of a liquid crystal molecule, and an M axis represents a molecular major axis of the liquid crystal molecule. The refractive index for the light having an electric field oscillating in the molecular major axis direction of the liquid crystal molecules is represented by n_{i}, and the refractive index for the light having an electric field oscillating in the direction perpendicular to the molecular major axis of the liquid crystal molecules is represented by n_{1}. In Figure 4B, the z-axis represents a propagation direction of the incident light, and the x-axis and the y-axis represent directions in which the electric fields of the incident light oscillate. As shown in Figure 4B, in the case where the propagation direction of the incident light is not parallel to the molecular major axis M of the liquid crystal molecule, the refractive index $n_{e}(\theta)$ for the extraordinary ray having the electric field oscillating in the direction slant from the M axis by θ (in the x-axis direction in Figure 4B) in the plane induding the M axis and the x-axis is given by Formula (1), depending on θ. Figure 4C shows the relation between $n_{e}(\theta), n_{\perp}$ and n_{1} in the $x-z$ plane of Figure 4B. On the other hand, the refractive index $n_{0}(\theta)$ of the ordinary ray having the electric field oscillating in the y-axis direction does not depend on θ and is equal to n_{1}, as represented by Formula (2). Therefore, the apparent birefringence $\Delta n(\theta)$ depends on θ, as represented by Formula (3). Thus, the birefringence of the liquid crystal layer varies, depending on the relation between the incident light and the orientation direction of the liquid crystal molecules.

$$
\begin{array}{r}
n_{e}(\theta)=n^{\prime} e=\frac{n_{\perp}}{\sqrt{1-\left\{1-\left(\frac{n_{1}}{n_{f}}\right)^{2}\right\} \cos ^{2} \theta}} \tag{1}\\
n_{0}(\theta)=n_{0}=n_{1}
\end{array}
$$

$$
\begin{equation*}
\Delta n(\theta)=n_{a}^{\prime}-n_{0}=\left\{\frac{1}{\sqrt{1-\left\{1-\left(\frac{n_{1}}{n_{a}}\right)^{2}\right\} \cos ^{2} \theta}}-1\right\} n_{\perp} \tag{3}
\end{equation*}
$$

$n \|$;refractive index in a molecular major axis direction
n_{\perp};refractive index in a molecular minor axis direction

EP 0660297 A2

n_{e};extraordinary refractive index

n_{0};ordinary refractive index

In Figure 5, light propagates in the z-axis direction and passes through the polarizer 25, the liquid crystal layer 24 and the analyzer 26 in this order. The light t_{i}, which passes through the polarizer 25 and is incident on the liquid crystal layer 24, has only an electric field E_{1} oscillating in the direction parallel to a polarization axis 30 of the polarizer 25 . The direction of the director of the liquid crystal molecules in the liquid crystal layer 24 is oriented to the x-axis direction of Figure 5. The refractive index of the liquid crystal layer 24 with respect to the light having the electric field parallel to the x-axis is represented by n_{e} and the refractive index of the liquid crystal layer 24 with respect to the light having the electric field parallel to the y-axis is represented by n_{0}. The phase difference of $\Delta n \cdot d$ occurs between components L_{e} and L_{0} having the electric fields parallel to the x-axis and the y-axis of the incident light i_{1} transmitting through the liquid crystal layer 24 having a thickness of d and the birefringence: $\Delta n=n_{e}-n_{0}$. In other words, the polarization direction of the light changes. The components of the light, which have the electric field E_{0} parallel to the polarization axis of the analyzer 26, pass through the analyzer 26.

Furthermore, if the case where the polarization axis 30 of the polarizer 25 is placed at 45° with respect to a director direction of the liquid crystal molecules 29 and an analyzing axis 31 of the analyzer 26 is placed so as to be perpendicular to the polarization axis 30 of the polarizer 25 (crossed Nicol state) is considered, the following expression holds between the retardation $(d \times \Delta n)$ and the output light intensity I_{0}.

$$
\begin{equation*}
\mathrm{I}_{0}=\mathrm{I}_{\mathrm{i}} \cdot \sin ^{2}(\Delta n \cdot d \pi / \lambda) \tag{4}
\end{equation*}
$$

I_{0} : output light intensity
$\mathbf{l}_{\mathbf{j}}$: incident light intensity
Δn-d: retardation
λ : wavelength of incident light
Figure 6 shows a characteristic curve obtained by the above expression. It is understood from Figure 6 that at least a retardation $(d x \Delta n)$ of $\lambda / 2$ or more is required with respect to the wavelength λ of the incident light in order to obtain the maximum on/off ratio for the output light intensity $\mathbf{I}_{\mathbf{0}}$.

In Figure 7, three types of $V-T$ characteristic are shown. That is, case 1: $d \times \Delta n<\lambda / 2$; case 2: $d \times \Delta n=\lambda / 2$; and case 3: $d \times \Delta n>\lambda / 2$. As shown in Figure 7, a sufficient on/off ratio cannot be obtained for the case 1. As for the case 2, only the same V-T characteristic as that of the display mode which utilizes a voltage close to a threshold value, such as a conventional TN-type liquid crystal device, is obtained. Therefore, it is most suitable to use the case 3. It is understood that even a small change in the applied voltage can greatly change the transmitted light intensity.

As described above, the V-T characteristic of ECB mode liquid crystal display 21 having a suitable retardation ($d \times \Delta n$) is as is shown in Figure 2. In this case, as shown in Figure 8, the polarization axis 30 of the polarizer 25 is set at 45° with respect to the director direction 32 of the liquid crystal molecules in the liquid crystal layer 24, and the analyzing direction 31 of the analyzer 26 is arranged set to be perpendicular to the polarization axis 30 of the polarizer 25 (crossed Nicol state). In the case where the polarization axis 30 is arranged parallel to the analyzing axis 31 (parallel Nicol state), the change in transmittance of the characteristic of Figure 2 is reversed.

The method for increasing the response speed of a liquid crystal display will be described below. As shown in Figure 3, the rise of the liquid crystal molecules 29 corresponds to the stretch of a spring. Normally, when the spring is stretched, the speed of the stretch depends on the force to pull the spring. The force for the spring corresponds to the electric field for the liquid crystal molecules 29. Therefore, the response speed for rising the liquid crystal molecules 29 (the rise speed) can be increased by increasing the applied voltage E. However, it is difficult to increase the response speed for relaxing the liquid crystal molecules 29 (the decay speed). The relaxation time of the orientationally deformed liquid crystal molecules 29 corresponds to the time required for restoring the stretched spring. Since the initial speed for restoring the spring depends on the potential energy of the stretched spring, the highest speed is obtained for the fully stretched spring, which has the maximum potential energy. The fully stretched spring, however, has the longest distance to be in its initial state. Therefore, the fully stretched spring does not lead to the highest response speed in the case of decay. Provided the same analogy for the orientationally deformed liquid crystal molecules, the following phenomenon is understood. When the applied voltage is turned off, the highest response speed can be obtained in the case of abovementioned mode 0 in the V-T characteristic. However, the mode 0 has the largest degree of deformation in the orientation of the liquid crystal molecules from the initial orientation state. As a result, although the display mode using a voltage close to the threshold value, such as the TN-type LCD, can provide the highest initial decay speed, the overall response speed is slow in the case of decay.

On the other hand, in order to optically switch the on/off states of a liquid crystal device utilizing the birefringence of liquid crystal molecules such as an ECB mode device, the change in the retardation ($\Delta \mathrm{n} \cdot \mathrm{d}: \Delta \mathrm{n}=$
refractive index anisotropy of liquid crystal, $d=$ cell gap) in accordance with the orientational deformation of liquid crystal molecules for at least a half wavelength is sufficient. Therefore, if $\Delta n \cdot d / \lambda>1 / 2$ is satisfied, the relaxation from the mode O to the initial state is not necessary. That is, the orientational deformation is not required to relax to the initial orientation state. In particular, if Δn of the liquid crystal layer is large and $\Delta \mathrm{n} \cdot \mathrm{d}>$ $3 \lambda / 2$ is satisfied, as is shown by the curve representing case 3 in Figure 7 , optically sufficient contrast can be obtained even if the orientational deformation of the liquid crystal molecules is minute. This result in the highest response speed.

As mentioned above, for the transmissive liquid crystal device, by setting the retardation ($d \times \Delta n$) for the liquid crystal layer to satisfy the relation:
$d \times \Delta n>\lambda / 2$,
a high contrast ratio and a high response speed can be obtained. As for a reflective liquid crystal device where the incident light passes through the liquid crystal layer twice continuously without passing through the polarizing element, the relation to obtain a high contrast ratio and a high response speed is expressed as

$$
2 \mathrm{~d} \times \Delta \mathrm{n}>\lambda / 2 .
$$

If the present example is adapted to the reflective liquid crystal display device where the incident light is outputted from the analyzing element after passing through the liquid crystal layer twice, the retardation caused by the optical path is equivalent to that for a transmissive liquid crystal device where the thickness of the liquid crystal cell is doubled. Therefore, the following relation holds between the retardation ($d x \Delta n$) and the output light intensity I_{o}.

$$
I_{0}=I_{1} \cdot \sin ^{2}(\Delta n \cdot 2 d \pi / \lambda)
$$

In the present specification, the output light intensity refers to the transmitted light intensity for the transmissive device and the reflected light intensity for the reflective device. The voltage-transmittance characteristics as shown in Figures 2 and 7 may be referred to as the voltage-output light intensity characteristics so as to include the optically equivalent voltage-reflectance characteristics.

For the reflective liquid crystal device, the case corresponding to those of Figure 7 are: case $1: d x \Delta n<$ $\lambda / 4$; case $2: d \times \Delta n=\lambda / 4$; and case $3: d \times \Delta n>\lambda / 4$, respectively.

As described above, the liquid crystal device having an adequate retardation can be driven by applying the voltage to the pixels in the field sequential addressing method so that optical on/off states are switched by applying a maximum voltage corresponding to the extremum value (maximum value or minimum value) of the light transmittance in the V - T characteristic and the saturation voltage higher than the maximum voltage. In the case where $\Delta n \cdot d>\lambda$, preferably $\Delta n \cdot d>3 \lambda / 2$, is satisfied and a plurality of extrema are obtained in the V-T characteristic, the on/off switching may be performed between the first extremum and the second extremum, as long as sufficient response speed is obtained.

By utilizing the highly deformed orientation state (mode 0), the liquid crystal device according to this example can provide a high response speed as well as a high contrast ratio. It is preferable that each of a rise time and a decay time of the optical response is one-fifth or less than a display period.

Example 2

Figure 9 is a cross-sectional view showing a configuration of a liquid crystal display device $\mathbf{4 0}$ according to a second example of the present invention. The liquid crystal display device 40 includes a liquid crystal cell 45 having a pair of substrates 45 a and 45 b , a liquid crystal layer 44 interposed between the pair of substrates 45 a and 45 b . On the sides of the liquid crystal cell 45 , a polarizer 47 and an analyzer 48 are provided. A driving voltage supplying portion 46 supplies a driving voltage to the liquid crystal cell 45 .

In this example, the driving voltage supplying portion 46 supplies a driving voltage waveform which applies a first preliminary voltage having an absolute value larger than a signal voltage before applying a signal voltage for obtaining a predetermined output light intensity (transmittance or reflectance) to the liquid crystal cell 45.

A fabrication method of the liquid crystal cell 45 will be described. An ITO film 42 a having a thickness in the range of 0.1 to $1.1 \mu \mathrm{~m}$ is formed by using a sputtering method on a glass substrate (trade name: 7059, manufactured by Corning Inc.) 41 a having a thickness of 1.1 mm . The ITO film 42 a on the substrate 41 a is etched into an electrode with a desired shape (character, figure, matrix or the like) by using a photolithography process. Another ITO film $42 b$ is formed on the entire surface of another glass substrate $\mathbf{4 1 b}$ in the same manner so as to form a counter electrode. Alignment films (trade name: Optomer AL4552, manufactured by Japan Synthetic Rubber Ltd.) 43a and 43b are formed over the surfaces of the substrates 45a and 45b. After being cured at $230^{\circ} \mathrm{C}$, the alignment films $\mathbf{4 3 a}$ and $\mathbf{4 3 b}$ are subject to the rubbing treatment so that the rubbing directions become antiparallel when the pair of substrates 41 a and 41 b are attached to each other to form the liquid crystal cell 45.

After the alignment treatment, a liquid crystal sealing layer (not shown) is formed by a screen printing meth-
od using an adhesive sealing material, in which glass fiber having a diameter of $4.5 \mu \mathrm{~m}$ is mixed. Then, the pair of the substrates $\mathbf{4 5 a}$ and $\mathbf{4 5 b}$ are attached to each other by the liquid crystal sealing layer interposing a glass beads spacer (not shown) having a diameter of $4 \mu \mathrm{~m}$ between them. A liquid crystal material is injected to a gap between the pair of substrates $\mathbf{4 5 a}$ and $\mathbf{4 5 b}$ by a vacuum injection method so as to obtain the liquid crystal layer 44. The reference numeral 49 denotes a director direction of the liquid crystal molecules in the liquid crystal layer 44. The liquid crystal material used in this example is BLO35 (manufactured by Merck \& Co., Inc.: $\Delta n=0.267$). Other liquid crystal materials may be used.

The optical response characteristics in the cases where a signal voltage $V_{\text {on }}$ alone is applied and where the driving voltage waveform is applied are shown in Figures 10 A and 10B, respectively. Figure 10A shows the case where the signal voltage: $V_{o n}=3 \mathrm{~V}$, which is a step voltage, is applied, and Figure 10 B shows the case where the first preliminary voltage V_{H} and the signal voltage $V_{o n}$ are applied in this order. In this experiment, the measurement of the optical characteristics is carried out under the following conditions: the first preliminary voltage $V_{H}=20 \mathrm{~V}$; time period T_{H} for applying the first preliminary voltage $V_{H}=0.25 \mathrm{msec}$; and time period $T_{\text {on }}$ for applying the signal voltage $V_{\text {on }}=4.75 \mathrm{msec}$. As a result, as shown in Figure 10 A , the liquid crystal display device does not have an optically sufficient response in the case where the signal voltage $V_{\text {on }}$ alone is applied. That is, the response speed is not sufficiently fast, resulting in that the transmittance does not reach the desired value (35%). However, in the case where the first preliminary voltage V_{H} and the signal voltage $V_{\text {on }}$ are used, as in Figure 10B, the optically sufficiently high response speed is obtained.

In this case, the time period T_{H} for applying the first preliminary voltage V_{H} is required to be shorter than the time period $T_{\text {on }}$ for applying the signal voltage $V_{o n}$ which is a display signal. Preferably, it is desirable that the time period T_{H} for applying the first preliminary voltage V_{H} is one-fifth or less than the time period $T_{o n}$ for applying the signal voltage $V_{o n}$.

Although the display mode of the liquid crystal used in this example is homogeneous EBC mode, the display mode utilizing the birefringence such as Super-Twisted Nematic (STN) may be used. An oblique vapor deposition method may be used as well as the rubbing method as an alignment controlling method. In this example, although both of the substrates are glass substrates, one of them may be an opaque substrate such as a semiconductor substrate for a reflective device.

Example 3

In this example, a second preliminary voltage V_{L} having an absolute value smaller than that of a signal voltage $V_{o n}$ is applied between the application of the signal voltage $V_{o n}$ and a first preliminary voltage V_{H} having an absolute value larger than the signal voltage $V_{o n}$.

The comparison between the optical response characteristics of the cases where a second preliminary voltage V_{L} is present and is not present between the first preliminary voltage V_{H} and signal voltage $V_{o n}$ are shown in Figures 11A and 11B, respectively, using the liquid crystal cell similar to the liquid crystal cells 45 which are formed according to the second example. Figure 11A shows the case where the second preliminary voltage V_{L} is not present, and Figure 11B shows the case where the second preliminary voltage V_{L} is present. In this experiment, the measurement of the optical characteristics is carried out under the following conditions: the first preliminary voltage $V_{H}=20 \mathrm{~V}$; the second preliminary voltage $V_{L}=0 \mathrm{~V}$; a signal voltage $V_{o n}=3 \mathrm{~V}$; time period T_{H} for applying the first preliminary voltage $V_{H}=0.25 \mathrm{msec}$; time period T_{L} for applying the second preliminary voltage $V_{L}=0.25 \mathrm{msec}$; and time period $T_{o n}$ for applying the signal voltage $V_{o n}=4.5 \mathrm{msec}$. As a result, as shown in Figures 11A and 11B, the distortion present in the waveform of the optical response characteristic can be eliminated by providing the time period for applying the second preliminary voltage V_{L} between the time period for applying the first preliminary voltage V_{H} and the signal voltage $V_{o n}$.

As described above, the optical response speed becomes higher by applying the first preliminary voltage V_{H} having an absolute value larger than at least that of the signal voltage $V_{\text {on }}$ and further applying the second preliminary voltage V_{L} having an absolute value smaller than at least that of the signal voltage $V_{\text {on }}$ before applying the signal voltage $V_{o n}$ for obtaining the predetermined transmittance and reflectance to the respective pixels constituting the liquid crystal display.

In this case, it is necessary that the time period T_{H} for applying the first preliminary voltage V_{H} and the time period T_{L} for applying the second preliminary voltage V_{L} are shorter than the time period $T_{\text {on }}$ for applying the signal voltage $V_{\text {on }}$ which is a display signal, respectively. Preferably, it is desirable that the total of the time periods for applying the first preliminary voltage V_{H} and the second preliminary voltage V_{L}, i.e., $T_{H}+T_{L}$, is onefifth or less than the time period $T_{\text {on }}$ for applying the signal voltage.

In the third example described above, the display is performed in the following manner. The first preliminary voltage V_{H} for changing the molecular orientation to the mode ϕ is constantly applied immediately before performing the display, as shown in Figure 12, utilizing the liquid crystal having Δn satisfying the above-
mentioned condition: $d \times \Delta n>\lambda / 2$ or $2 d \times \Delta n>\lambda / 2$. Then, the liquid crystal molecules are relaxed by the second preliminary voltage V_{L} which is lower than the voltage corresponding to the first peak in the V - T characteristic after applying the first preliminary voltage V_{H}. Thereafter, the display is performed by the applied signal voltage $V_{\text {on }}$. At this moment, since the first preliminary voltage V_{H} is required to make the orientational state of the liquid crystal molecules be in mode ϕ as an optical response, the voltage V is preferably higher than the voltage V_{1}, which is a saturation voltage in the V-T characteristic. Considering that the speed in the orientational change of the liquid crystal molecules increases with the increase of the applied voltage, as described before, the liquid crystal molecule orientation is transitioned to mode ϕ with a higher speed in the case where the first preliminary voltage $V_{H} \cong V_{1}$. The speed of relaxation is increased as the second preliminary voltage V_{L} becomes closer to 0 V since the difference in the potentials of the liquid crystal molecules becomes wider. Since the first and second preliminary voltages V_{H} and V_{L} are not used for displaying an image, the quality of the display image is deteriorated if $T_{H}+T_{\text {. }}$ which is the time period for applying the preliminary voltages, is unnecessarily long. However, the inventors confirmed the following fact by experiment. In view of the response characteristic and display quality of the liquid crystal display device itself, if the maximum value of time period $T_{H}+T_{L}$ for applying the voltages is one-fifth or less than the time period $T_{\text {on }}$ for applying the display signal in one field, the conspicuous deterioration is not observed. Regarding the minimum value, since it is desirable to apply the first and second preliminary voltages for the time period in which the orientational change in the liquid crystal molecules can transition as described above, it is preferable to optimize each physical constant, such as viscosity and elasticity of the liquid crystal materials.

Although the display mode of the liquid crystal used in this example is homogeneous EBC mode, the display mode utilizing the birefringence such as STN may also be used. An oblique vapor deposition method can also be used as well as the rubbing method as an orientation controlling method. In this example, although both of the substrates are glass substrates, one of them may be an opaque substrate such as a semiconductor substrate for a refleclive device.

Example 4

A liquid crystal cell capable of being driven with a lower voltage is shown as a fourth example. In the graph of Figure 2, since the transmittance of the mode 0 is not completely saturated and therefore the transmittance does not reach the minimum value, a sufficiently high contrast ratio may not be obtained. Since the liquid crystal molecules at a surface of a substrate are under a strong influence of an anchoring, as compared with the bulk liquid crystal molecules in the middle of a liquid crystal layer in the thickness direction, the orientational change of the liquid crystal molecules at the surface does not occur unless an extremely high voltage is applied. Thus, as shown in Figure 3C, although the bulk liquid crystal molecules rise, the liquid crystal molecules at the surface of the substrates remain in the initial orientation state. In such a state, since the retardation of the liquid crystal molecules at the surface remain, the leakage of light occurs. In order to obtain the transmittance of around 0% at mode 0 , an extremely high voltage (several tens V or more) is necessary. A display method using such a high voltage is not preferable because the voltage ratio for on/off switching is increased for the driving voltage.

A configuration of a liquid crystal device as an example of solutions of the above problem is shown in Figure 13. A method for soiving the problem is as follows. A liquid crystal cell 51 on the driving side used for displaying image and an equivalent liquid crystal cell 52 on the compensation side are overlapped with each other so that the rubbing directions (the direction of directors of the liquid crystal molecules) 53a and 53b are perpendicular to each other in Figure 13. The retardation of the liquid crystal cell 51 on the driving side is compensated by the retardation of the liquid crystal cell 52 on the compensation side. In this example, the reference numerals 54 and 56 denote a polarization axis of the polarizer 55 and an analyzing axis of the analyzer 57, respectively.

The fourth example in accordance with the compensation method will be described with reference to Figure 14. The liquid crystal cell 51 on the driving side is obtained in the following manner. A substrate 51 a is obtained by forming an ITO film 62a by using a sputtering method having a thickness in the range of 0.1 to $1.1 \mu \mathrm{~m}$ on a glass substrate (trade name: 7059, manufactured by Corning Inc.) 61 a having a thickness of 1.1 mm . The ITO film 62a on the glass substrate 61 a is etched to form a strip electrode by using a photolithography process. Liquid crystal alignment films (trade name: Optomer AL4552, manufactured by Japan Synthetic Rubber Ltd.) 63a and 63 b are applied to the thus formed substrate 51 a and another substrate 51 b having a strip electrode formed of ITO film $\mathbf{6 2 b}$ on a glass substrate $\mathbf{6 1 b}$ in the same manner. After being cured at $230^{\circ} \mathrm{C}$, the pair of substrates 51 a and 51 b are subject to the rubbing treatment so that the rubbing directions become antiparallel when the pair of substrates 51 a and 51 b are attached to each other.

After the alignment treatment, a liquid crystal sealing layer (not shown) is formed by a screen printing method using an adhesive sealing material, in which glass fiber having a diameter of $4.5 \mu \mathrm{~m}$ is mixed. Then, the
pair of the substrates 51 a and 51 b are attached to each other by the liquid crystal sealing layer interposing a glass beads spacer (not shown) having a diameter of $4 \mu \mathrm{~m}$ between them. The pair of substrates 51a and 51b are attached to each other so that the strip electrodes are perpendicular to each other and the rubbing directions are antiparallel to each other. Portions of the liquid crystal cell 51 where the strip electrodes overlap func-
tion as pixels. A liquid crystal material is injected to a gap between the pair of substrates 51a and 51b by a vacuum injection method so as to obtain the liquid crystal layer 64. The liquid crystal material used in this example is BL035 (manufactured by Merck \& Co., Inc.: $\Delta n=0.267$).

The liquid crystal cell 52 is fabricated in the same manner as the liquid crystal cell 51 . However, ITO films $162 a$ and 162b formed on glass substrate $161 a$ and 161 b are not etched to form the strip electrodes. The surface of substrates 52a and 52b are covered by alignment films $163 a$ and 163 b , respectively. A liquid crystal layer 164 sandwiched between the pair of substrates 52 a and 52 b are aligned so that the director 165 is perpendicular to the director 65 of the liquid crystal layer 64.

The liquid crystal cell 51 including the ITO films $\mathbf{6 2 a}$ and $\mathbf{6 2 b}$ having electrodes with a certain shape is calted the driving liquid crystal cell 51, and the other is called the compensating liquid crystal cell 52. The pair of liquid crystal cells 51 and 52 are overlapped with each other so that the directors 65 and 165 of the liquid crystal molecules are perpendicular to each other. Then, the pair of liquid crystal cells 51 and 52 are attached to each other by using an adhesive resin 66 having the same refractive index and spectral characteristic as those of the insulating substrates 161b and 161a. A polarizer 67 and an analyzer 68 are provided on the sides of the combined liquid crystal cells.

The voltage-light transmittance characteristic of the liquid crystal device $\mathbf{6 0}$ is shown in Figure 15. The voltage applied to the compensating liquid crystal cell 52 is a voltage $V_{1 c}$ (hereinafter, the point C is referred to as a pseud mode 0) at which the transmittance becomes minimum in the V - T characteristic of the liquid crystal device 60 having the driving liquid crystal cell 51 and the compensating liquid crystal cell 52. The pseud mode 0 corresponds to the mode 0 , which moves to the low voltage side due to the compensating liquid crystal cell 52. A point D represents the first peak value having the maximum transmittance.

The driving voltage waveforms and the optical response characteristics of the cases where the compensating liquid crystal cell 52 is used and is not used are shown in Figures 16A and 16B, respectively. In this experiment, the measurement of the transmittance in Figure 16 A is conducted under the following conditions: the first preliminary voltage $V_{H}=20 \mathrm{~V}$; the second preliminary voltage $V_{L}=0 \mathrm{~V}$; and the signal voltage $V_{o n}=$ 3 V . The measurement in Figure 16B is conducted under the following conditions: the first preliminary voltage $V_{H}=6 \mathrm{~V}$; the second preliminary voltage $\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$; and the signal voltage $\mathrm{V}_{\mathrm{on}}=2.4 \mathrm{~V}$. Furthermore, both measurements are conducted under the following conditions: time period T_{H} for applying the first preliminary voltage $V_{H}=0.25 \mathrm{msec}$; time period T_{L} for applying the second preliminary voltage $V_{L}=0.25 \mathrm{msec}$; and time period $T_{\text {on }}$ for applying the signal voltage $V_{\text {on }}=4.5 \mathrm{msec}$.

As a result, the same optical response can be obtained with a lower driving voltage as shown in Figures $16 A$ and $16 B$ by providing the compensating liquid crystal cell 52 as a retardation compensation means for compensating the retardation for the liquid crystal cell 51.

In this example, although the glass substrates $61 a$ and 61b are used for both substrates of the driving liquid crystal cell 51, the glass substrate 61a may be an opaque substrate such as a silicon substrate for a reflective device. Although the display mode of the liquid crystal display device $\mathbf{6 0}$ of this example is a homogeneous EBC mode, the display mode utilizing the birefringence, such as STN mode, may also be used. An oblique vapor deposition method may be used as well as the rubbing method as an alignment controlling method. Furthermore, although the compensation liquid crystal cell 52 fabricated under the same conditions of the liquid crystal cell 51 is used in this example, a uniaxial or biaxial orientation film as a phase plate may also be used. The retardation of the phase plate is preferably equal to that of the driving liquid crystal cell at mode C.

Example 5

A specific driving method with a driving voltage waveform of the present invention in the case of the homogeneous EBC mode using the active matrix method will be described as a fifth example, with reference to Figures 17, 18 and 19.

Figure 17 shows the fabrication process of TFTs which are active elements in the fifth example, Figure 18 is a cross-sectional view of a liquid crystal display cell 180 in the fifth example, and Figure 19 is a plane view of an active matrix substrate 180a of the liquid crystal display cell 180 in the fifth example. As shown in Figures 17 to 19, at step S1, a Ta metal layer having a thickness of 300 nm is formed on an insulating substrate 71 made of glass by a sputtering method. Then, the patterning of the metal layer is performed by using a photolithography process and an etching process, thereby forming a gate bus wiring 72 and a gate electrode 73. Next, at step S2, a gate insulating fitm 74 made of SiNx having a thickness of 400 nm is formed by a plasma

Chemica: 'Japor Deposition method. At step S3, an a-Si layer having a thickness of 100 nm to be a semiconductor t:formed iri this order by the plasma CVD method. Then, the patterning of the n^{+}-type a-Si layer and the a-Si layer is performed, thereby forming the contact layer 76 and the semiconductor layer 75. At step S4, a Mo metal layer having a thickness of 200 nm is formed by a sputtering method. Then, the patterning of the Mo metal layer is performed, thereby forming a source electrode 77 , a drain electrode 78 and a source bus line 79. The drain electrode 78 are connected to a pixel electrode 88. The source bus line 79 , which functions as a signal line, is connected to the source electrode 77 which functions as an input terminal of the TFT 80 . With the above process, the active matrix substrate 180 a having the TFT 80 is obtained.

A method for producing the liquid crystal display cell 180 using the active matrix substrate 180 a will be described. A counter substrate 180 b is obtained by forming an ITO film 82 with a thickness in the range of 0.1 to $1 \mu \mathrm{~m}$ on a glass substrate 81 (trade name: 7059, manufactured by Corning Inc.) having a thickness of 1.1 mm by using a sputtering method. The ITO film 82 is patterned to form a plurality of counter electrodes in strips. After liquid crystal alignment films (trade name: Optomer AL4552, manufactured by Japan Synthetic Rubber Ltd.) 83 are applied to cover the substrates 180 a and 180 b . Then the substrates 180a and 180b are cured at $230^{\circ} \mathrm{C}$. The pair of substrates 180 a and 180 b are subject to the rubbing treatment so that the rubbing directions become antiparallel to each other when the pair of substrates $\mathbf{1 8 0 a}$ and $\mathbf{1 8 0 b}$ are attached to each other. An adhesive sealing material having a thickness of $4.5 \mu \mathrm{~m}$, in which glass fiber is mixed, is used to form a liquid crystal sealing layer (not shown) by the screen printing method. The pair of the substrates 180a and 180b are attached to each other by the liquid crystal sealing layer, interposing a glass beads spacer (not shown) having a thickness of $4 \mu \mathrm{~m}$ therebetween. The substrates 180 a and 180 b are attached to each other so that the strip electrodes are parallel to the gate bus line 72 and overlaps with the pixel electrode 88. Then, a liquid crystal material is injected between the pair of the substrates $180 a$ and $180 b$ to form a liquid crystal layer 84 by vacuum injection method. The liquid crystal used in this example is BL035 (manufactured by Merck \& Co., Inc.: $\Delta n=$ 0.267).

A polarizer 85 is formed on the light entering side of the thus fabricated liquid crystal display cell 180. A phase plate 86 and an analyzer 87 are provided in this order on the light outputting side of the liquid crystal display cell 180.

A driving method for driving an active matrix liquid crystal display device 190 (hereinafter, referred to as AM-LCD) with the driving voltage waveform according to the present invention will be described. Figure 20 shows an entire structure of the AM-LCD 190 according to the fifth example. As shown in Figure 20, the AMLCD 190 includes the active matrix liquid crystal cell 180, a gate driving circuit 91, source driving circuit 92 and a counter electrode driving circuit 93 . The active matrix liquid crystal cell 180 is driven by the gate driving circuit 91 and the source driving circuit 92 using a line sequential addressing method. The counter substrate 180b of the active matrix liquid crystal cell 180 has a plurality of strip counter electrodes 94 arranged to be parallel to the gate bus line 72. Therefore, it is possible to apply a counter voltage to the counter electrodes line by line synchronizing with a timing of the application of the gate voltage to the corresponding gate bus line 72. The counter voltage is supplied by the counter electrode driving circuit 93.

Figures 21A through 21C are time-charts of the driving voltage waveform of the present invention. Figure 21A, 21B and 21C show a gate voltage 191, a counter voltage 193 and a source voltage 192, respectively. A source voltage 192 shown in Figure 21C is applied through the source electrode to the pixel electrode while the gate of the TFT is opened by a gate voltage 191 shown in Figure 21A. The source voltage 192 corresponds to the signal voltage $V_{\text {on }}$. A counter voltage 193 shown in Figure 21B, which is a pulse voltage applied to the counter electrodes before the application of the source voltage 192 through the source electrode, is applied while the gates of TFTs are open. The counter voltage 193 corresponds to the first preliminary voltage V_{H}. A voltage unapplied time period, which occurs between the application of the first preliminary voltage V_{H} (193 in Figure 21B) and the application of the signal voltage $V_{o n}(192$ in Figure 21C), corresponds to a period for the second preliminary voltage V_{L}.

Figures $22 A$ and $22 B$ shows the case where the active matrix liquid crystal cells, which are obtained according to the fabrication process of TFTs shown in Figure 17, are driven by using the driving method of the present invention. Figure 22A shows a driving waveform. The driving voltage is a voltage applied to a pixel, which is a voltage difference between a source voltage (a signal voltage) and a counter voltage. Figure 22B shows an optical response characteristic. In Figure 22A, the signal voltage $V_{o n}$ is changed to $6 \mathrm{~V}, 5 \mathrm{~V}, 4 \mathrm{~V}, 3$ $\mathrm{V}, 2.4 \mathrm{~V}$, under the conditions: the first preliminary voltage $V_{H}=10 \mathrm{~V}$; and the second preliminary voltage V_{L} $=0 \mathrm{~V}$. The polarity of the applied voltage is reversed in each frame in order to prevent the deterioration of the liquid crystal material. As described above, the liquid crystal display device, which is capable of responding with high speed and displaying half tone, is obtained by using the driving method of the present invention.

Although the display characteristic using the frame inversion driving method is shown in Figures 22A and

22B, the driving method is not limited to the frame inversion driving method as long as the voltage applied to the liquid crystal material does not include a direct current component as the whole driving voltage. Although the polarity of the first preliminary voltage V_{H} is identical with that of the signal voltage $V_{o n}$ in one field, the polarity of the first preliminary voltage V_{H} may be inversed. That is, the polarity of the first preliminary voltage V_{H} may be identical with that of a signal voltage applied in the preceding field, as is shown in Figure 23.

In this example, although the TFT is used as a switching element, a Metal-Insulator-Metal (MIM) element may be used. As for the substrate on which the TFTs are formed, instead of the insulating subst rate, an opaque substrate such as a silicon substrate may also be used for a reflective device. Although the display mode of the liquid crystal display device used in this example is homogeneous EBC mode, the display mode utilizing the birefringence, such as STN mode, may be used. An oblique vapor deposition method may be used as well as the rubbing method as an alignment controlling method. Furthermore, although the liquid crystal cell similar to the liquid crystal cell for driving is used as a birefringent material for compensating the retardation of the driving liquid crystal cell, a film having a phase difference or a material having the same effect may also be used.

Example 6

As a sixth example, the case where a silicon single crystalline substrate is used for a back face substrate of a liquid crystal display device is described. In this example, a switching transistor for driving a pixel electrode is formed in the single crystalline silicon. Since the single crystalline silicon has high mobility (about $1500 \mathrm{~cm}^{2} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~s}^{-1}$), TFTs far excellent than amorphous silicon thin film TFTs and polysilicon TFTs can be obtained. The performance of each transistor is shown in Table 1.
[Table 1]

		Single-crystalline Si	Poly-crystalline Si	Amorphous Si
$\left(\begin{array}{c} \text { Mobility } \\ \left(\mathrm{cm}^{2} \cdot v^{-1} \cdot \mathrm{~s}^{-1}\right) \end{array}\right.$	Electron	1500	100	$0.1 \sim 0.5$
	Hole	600	50	-
Ion/I off		$>10^{9}$	10^{7}	10^{5}
Operation frequency (CMOS shift register)		Several GHz	20 MHz	5 MHz
		(1 $\mu \mathrm{m}$ rule)	$\binom{L=10 \mu \mathrm{~m}}{W=30 \mu \mathrm{~m}}$	$\binom{\mathrm{L}=10 \mu \mathrm{~m}}{\mathrm{~W}=30 \mu \mathrm{~m}}$

It is understood from Table 1 that the switching element having a high current driving ability and a large on/off ratio of a current can be obtained if transistors are formed in the single crystalline silicon.

As described above, the switching element with high operation speed can be obtained by forming switching transistors in a single crystalline silicon layer. Therefore, by combining the nematic liquid crystal driving method according to the present invention, which can provide a high response speed and is capable of displaying grayscale, with the TFTs formed in the single crystalline silicon, a color display driven by the field sequential color mixing method can be realized easily.

Hereinafter, a solution for a problem in stability of the holding of signal voltages in the active matrix liquid crystal display device will be described.

In Figures 24A and 24B, a configuration of a circuit of a unit pixel region of a color liquid crystal display device is shown. Figure 24A is a plane view, and Figure 24B is a cross-sectional view taken along a line \mathbf{W} W in Figure 24A. As shown in Figures 24A and 24B, a switching circuit of NMOS is formed on a base substrate 101 which is made of P-type single crystalline silicon. In this device, two transistors, that is, a first transistor Q1 and a second transistor Q2, are formed in a unit pixel region. Sources Q1s and Q2s and drains Q1d and

Q2d of the respective transistors Q1 and Q2 are formed as an N-type diffusion layer 102 in the P-type single crystalline silicon. Gate electrodes Q1g and Q2g of the respective transistors $\mathbf{Q 1}$ and $\mathbf{Q 2}$ are completely covered with a gate insulating layer 103. In this example, polysilicon is used for the gate electrodes Q1g and Q2g. and a silicon oxide film is used for the gate insulating film 103. The transistors Q1 and Q2 are separated from each other by a field silicon oxide film 104 and an aluminum electrode 105 on the base substrate 101. Astorage capacitor $\mathbf{C s}$ is also provided in the unit pixel region. The storage capacitor $\mathbf{C s}$ is constituted by the aluminum electrode 115 formed in the field silicon oxide film 104 adjacent to the second transistor $\mathbf{Q 2}$, the N -type diffusion layer 102 formed in the silicon layer corresponding to the position of the aluminum electrode 115, and the field silicon oxide film 104 interposed therebetween.

A protection layer 106 is formed over the surface of the base substrate 101 so as to cover the gate oxide film (including the gate electrode) 103, the field silicon oxide film 104, the aluminum electrode 105 and an alumınum wiring. The protection layer 106 is provided for protecting the NMOS circuit formed on the base substrate 101.

A through hole 110 is formed through the protection layer 106 at the position where the aluminum electrode 105 between the transistor Q2 and the field silicon oxide film 104 formed adjacent thereto is formed on the field silicon oxide film 104.

A pixel electrode 111 is formed in each unit pixel electrode region so as to cover the predetermined region on the protection film 106. The pixel electrode 111 is connected to the aluminum electrode 105 of the lower layer through the through hole 110 and is electronically connected to the drain electrode Q2d of the transistor Q2 through the aluminum electrode 105.

The gate electrode Q1g of the first transistor Q1 is connected to a scanning line 112, and the source electrode Q1s of the first transistor Q1 is connected to a signal line 113 crossing the scanning line 112. The drain electrode Q1d of the first transistor Q1, the second gate electrode Q2g of the second transistor Q2, and the aluminum electrode 115 of the storage capacitor $\mathbf{C s}$ are connected to the common aluminum electrode formed on the field silicon oxide film 104.

A transparent counter electrode 108 is formed on the entire counter side face of a glass substrate 107 which is placed so as to be opposed to the base substrate 101. An alignment film (not shown) is formed so as to cover the counter electrode 108.

The glass substrate 107 and the base substrate 101 are placed so as to be opposed to each other, and a liquid crystal layer 109 is sealed therebetween. The glass substrate 107 is used as a side on which light is incident. In this example, the liquid crystal BL035 (manufactured by Merck \& Co., Inc.: $\Delta \mathrm{n}=0.267$) is injected between the two substrates 101 and 107 to form the liquid crystal layer 109 by a vacuum injection method. Although not shown in Figures 24A and 24B, rubbing treatment is performed on the liquid crystal alignment films so that the liquid crystal molecules are homogeneously oriented. The phase plate and the polarizer, which are optimized by the retardation of the liquid crystal layer, are placed in this order.

Although the display mode of the liquid crystal used in this example is homogeneous EBC mode, the display mode utilizing the biref ringence such as STN may also be used. An oblique vapor deposition method may be used as well as the rubbing method as an alignment controlling method. Furthermore, although the liquid crystal cell similar to the driving liquid crystal cell is used as a birefringent material for compensating the retardation of the driving liquid crystal cell, a film having a phase difference or a material having the same effect may also be used.

Next, a driving circuit of the liquid crystal display device according to the sixth example and a method for driving the same will be described.

In Figure 25, an equivalent circuit of the switching circuit for driving the liquid crystal cell shown in Figures 24A and 24B according to the sixth example is shown. Figure 25 shows a configuration of the circuit of the unit pixel region. As shown in Figure 25, the first transistor $\mathbf{Q 1}$ is connected to the scanning line 112 and the signal line 113, respectively, in the vicinity of the intersecting point of the scanning line 112 and the signal line 113. An end of the storage capacitor $\mathbf{C s}$ and the gate $\mathbf{Q 2 g}$ of the second transistor $\mathbf{Q 2}$ are connected to the drain Q1d of the first transistor Q1. On the other hand, the source Q2s of the second transistor Q2 is connected to the source, and the drain Q2d of the second transistor Q2 is connected to the pixel electrode 111. The second transistor $\mathbf{Q 2}$ has such performance that the electric potentials of the gate $\mathbf{Q 2 g}$ and the drain Q2d show a substantially linear relation. Since the first transistor $\mathbf{Q 1}$ supplies the data signal to the second transistor $\mathbf{Q 2}$, it is desirable that the amount of leak current during an off state is small. The storage capacitance Cs functions so as to hold the data signal of the first transistor Q1. The second transistor Q2 is for applying a voltage to the liquid crystal layer 109. Since the voltage is directly applied to the liquid crystal layer 109 through the second transistor Q2, the second transistor Q2 has a withstand voltage higher than a voltage required for switching the liquid crystal layer 109.

With the above configuration, when the data signal is first input to the signal line $\mathbf{1 1 3}$ and the first transistor

Q1 in the pixel electrode region on the scanning line 112 is switched on by applying the scanning signal to the first scanning line 112, the data signal is successively applied to each transistor Q1 connected to the first scanning line 112. At the same time, the data signal is held in the corresponding storage capacitor Cs. Since the second transistor Q2 has a characteristic capable of controlling a source voltage in a linear relation with respect to a scanning signal voltage, a voltage proportional to the data signal voltage applied to $\mathbf{Q 2 g}$, which corresponds to a scanning signal voltage to $\mathbf{Q 2 g}$, is applied to the liquid crystal layer 109. The voltage applied to the liquid crystal layer 109 is controlled by the voltage held in the storage capacitor Cs. Since the voltage held in the storage capacitor Cs is maintained to the next field, a constant voltage is continuously applied to the liquid crystal layer 109 during one field. Even when the first transistor $\mathbf{Q 1}$ is switched off, the on state of the second transistor $\mathbf{Q 2}$ is maintained until the first transistor $\mathbf{Q 1}$ is switched on a next time. The second transistor $\mathbf{Q 2}$ continuously applies a voltage proportional to the data signal voltage from the storage capacitor Cs to the liquid crystal layer 109.

According to this example, it is possible to rapidly scan all of the first transistors $\mathbf{Q 1}$ connected to a plurality of scanning lines so as to form an entire display image. Therefore, it is possible to rewrite the entire display image at substantially the same time.

As described above, the liquid crystal display device capable of being driven by the field sequential addressing method is obtained by employing the liquid crystal display device using the silicon substrate as the back face substrate according to this example. Since the incident light passes through the liquid crystal layer twice before being outputted through the polarizing element, the liquid crystal layer is required to adjust the liquid crystal cell gap (d) and the refractive index anisotropy (Δn) so as to satisfy the condition: $\Delta n \cdot d>\lambda / 4$ (preferably, $\Delta n \cdot d>3 \lambda / 4$, which is the condition for a high-response speed).

It is possible to constitute a projection-type liquid crystal display device capable of being driven by the field sequential addressing method by using the liquid crystal device described above in the optical system shown in Figures 26A and 26B. Hereinafter, a display method of the projection-type liquid crystal display device will be described.

As shown in Figures 26A and 26B, a beam splitter prism 121, which is formed by combining the slant faces of a pair of prisms 122 and 123, splits unpolarized light beam into an S-polarized light beam 120a and a P polarized light beam 120b at a counter slant face 124. The S-polarized light beam 120a and the P-polarized light beam 120b are output to a reflection-type liquid crystal display element 125 and a reflection-type liquid crystal display element 126, respectively. Furthermore, the beam splitter prism 121 transmits the polarized light beam 120a reflected by the reflection-type liquid crystal display element 125 and reflects the polarized light beam 120b reflected by the reflection-type liquid crystal display element 126. Accordingly, the polarized light beams $120 a$ and 120 b are combined to output a light beam 120c. The output light beam 120c is projected onto a display screen 128 through a projection lens 127.

In the optical system of Figure 26A, a light selecting element 129, a UV-cut filter 131 and a rotor 132 equipped with red, green and blue color filters are placed in front of a light source 130 of Figure 26B. The reference numeral 133 denotes a lens.

Figures 27(a) and 27(b) shows the timings for writing data in two liquid crystal elements LC1 and LC2 (corresponding to the liquid crystal elements 125 and 126 of Figure 26A), respectively. Red, Green and Blue of the figures represent the time periods in which the data signals corresponding to the respective colors are written, and each of the time periods corresponds to one field period. Three field periods correspond to one frame period. Each of the data signals is alternately written in LC1 and LC2. The ray output from the two liquid crystal elements LC1 and LC2 is selected with the timing shown in Figure 27(c). The output light intensity of the liquid crystal elements LC1 and LC2 changes in terms of time as schematically shown in Figure 27(d). Therefore, the output light intensities corresponding to R, G and B, respectively, reach the saturation intensity during the time period of W2 and then keep the saturation intensity during the time periods of DR, DG and DB. respectively. Thus, the intensity of an output light 120c in Figure 26A changes as shown in Figure 27(e). The color of the output light is obtained by adjusting the timing of rotation of the color filter of the rotor 132 so as to correspond to the data signal written in either LC1 or LC2 in the previous field period. In such a manner, it is possible to drive the projection-type liquid crystal display device shown in Figure 26(a) by the field sequential addressing method.

An optical element for beam-splitting is not limited to the beam splitter prism 121. It is also possible to use the combination of a plurality of dichroic mirrors, which is capable of splitting an unpolarized light beam into an S-polarized light and a P-polarized light beam and outputting the reflected polarized light beams including the image information, which are reflected by the two reflective liquid crystal display elements 125 and 126, while being aligned. As a light source, it is possible to prepare a plurality of monochromatic light sources for a red beam, a green beam and a blue beam and select the light sources so as to be synchronized with the driving timings of the liquid crystal display device.

Example 7

As a seventh example, another example of an equivalent circuit having the configuration in the unit pixel region in the sixth example is shown in Figure 28. As shown in Figure 28, the data signal is supplied to either a first holding capacitor $\mathbf{C}_{\mathrm{H} 11}$ or a first holding capacitor $\mathbf{C}_{\mathrm{H} 12}$ through transistors Tr1 and Tr2. One electrode of the first holding capacitor $\mathrm{C}_{\mathrm{H} 11}$ and one electrode of the first holding capacitor $\mathrm{C}_{\mathrm{H} 12}$ are connected to one electrode of a second holding capacitor $\mathbf{C}_{\text {H2 }}$, which is common to the both first capacitors, through a transistor Tr3 and a transistor Tr4, respectively. In this manner, when the first holding capacitor $\mathrm{C}_{\text {H11 }}$ and the first holding capacitor $\mathbf{C}_{\mathrm{H} 12}$ are directly connected to the second holding capacitor $\mathbf{C}_{\mathrm{H} 2}$ through the transistor Tr3 or Tr4 alone, the charge of the first holding capacitor $\mathrm{C}_{\mathrm{H} 11}$ and the first holding capacitor $\mathrm{C}_{\mathrm{H} 12}$ are distributed to the second holding capacitor $\mathbf{C}_{\mathrm{H} 2}$. Therefore, in order to avoid the effect due to reduction of the voltage, it is necessary to adjust the timing so that the transistors Tr1 to Tr4 are not switched on at the same time as well as keep the capacitance of the second holding capacitor $\mathbf{C}_{\boldsymbol{k} 2}$ at a sufficiently small value as compared with those of the first holding capacitor $\mathbf{C}_{\mathrm{H} 11}$ and the first holding capacitor $\mathbf{C}_{\mathrm{H}_{12}}$.

One electrode of the second holding capacitor $\mathrm{C}_{\mathrm{H} 2}$ and one electrode of a pixel capacitor C_{p} are connected to a ground line 141 through transistors Tr6 and Tr7, respectively. In the configuration of the circuit shown in Figure 28, the other electrodes of the first holding capacitor $\mathrm{C}_{\mathrm{H11}}$, the first holding capacitor $\mathrm{C}_{\mathrm{H} 12}$ and the second holding capacitor $\mathrm{C}_{\mathrm{H12}}$ are connected to the ground line 141, thereby keeping their reference voltages at GND level.

One electrode of the second holding capacitor $\mathrm{C}_{\mathrm{H}_{2}}$ is connected to a gate terminal of the transistor Tr5, and a source terminal of the transistor Tr5 is connected to one electrode of the pixel capacitor $\mathbf{C p}$. A drain terminal of the transistor Tr5 is connected to a high-voltage line 142 and the other common electrode of the pixel capacitor $C p$ is connected to a common line 143, thereby constituting a buffer amplifier circuit with a voltage follower circuit.

With the above configuration, regarding the pixel, when a first negative scanning signal al becomes active, the transistor $T r 1$ is switched on and the data signal is supplied to the first holding capacitor $\mathbf{C}_{\mathrm{H} 11}$. Next, a second negative scanning signal a2 becomes active, the transistor Tr3 is switched on and the charge is distributed to the second holding capacitor $\mathbf{C}_{\mathrm{H}_{2}}$. When a first positive scanning signal b1 becomes active, the transistor Tr2 is switched on and the data signal is supplied to the first holding capacitor $\mathrm{C}_{\mathrm{H12}}$. Next, when a second positive scanning signal b2 becomes active, the transistor Tr4 is turned on and the charge is distributed to the second holding capacitor $\mathrm{C}_{\mathrm{H} 2}$. Before the second positive scanning signal b2 becomes active, a refresh signal c1 becomes active so as to switch the transistors Tr6 and Tr7 on and discharge the second holding capacitor $\mathbf{C}_{\mathbf{H 2}}$ and the pixel capacitor $\mathbf{C p}_{\mathbf{p}}$. Then, the transistor Tr5 supplies the current to the pixel capacitor C_{p} from the high voltage line $\mathbf{1 4 2}$ to charge the pixel capacitor C_{p} in accordance with the voltage of the second holding capacitor $\mathrm{C}_{\mathrm{H} 2}$, to which the charge is distributed. The pixel capacitor $\mathbf{C p}$ is charged until the voltage of the pixel capacitor Cp_{p} becomes lower than that of the second holding capacitor $\mathrm{C}_{\mathrm{H} 2}$ by the threshold voltage of the transistor Tr5. Thereafter, it is possible to maintain the voltage of the pixel capacitor C_{p} by compensating the charge due to the leak current. In the configuration of the circuit, when the transistors Tr3 and Tr4 are activated, the charge in the first capacitors for holding is discharged to the second holding capacitor. At the same time, the voltage is applied to the transistor Tr5 in accordance with the signal (charge), thereby supplying the voltage to the liquid crystal layer. The field sequential colormixing method can be more easily realized by using the silicon substrate as a back face substrate of the light crystal display element of the projection-type liquid crystal display device shown in the sixth example.

The liquid crystal display driving waveform described in the second and the third examples are applied to the liquid crystal after the application of the refresh signal c1. At this moment, it is desirable to apply the first preliminary voltage V_{H} and the second preliminary voltage V_{L} to all the pixel capacitors constituting the entire image at the same time. It is desirable that the time period from the application of the second preliminary voltage V_{L} to the application of the signal voltage V_{on} of the display signal is short. In this example, it is possible to make the time period approximately zero, and therefore to eliminate the unevenness of the display image.

Although the configuration of the circuit as shown in Figure $\mathbf{2 8}$ is used in this example, the configuration is not limited as long as the similar effect can be obtained.

As described above, according to the present invention, the liquid crystal display device is driven by applying the voltage to the pixels in the field sequential addressing method so that optical on/off is carried out between the voltages corresponding to the maximum light transmittance and the minimum light transmittance in the V-T characteristic in the case: $d x \Delta n>\lambda / 2$, where the thickness of the liquid crystal layer is d, the birefringence for the liquid crystal layer is Δn, and the wavelength of light for display is λ. As a result, although the orientational deformation of the liquid crystal molecules is small, the liquid crystal display having a sufficient response speed and a sufficient contrast ratio can be obtained.

If the driving voltage waveform applying the first preliminary voltage having an absolute value larger than at least that of the signal voltage before applying the signal voltage for obtaining the predetermined transmittance or reflectance to the pixels, the sufficient optical response of the liquid crystal display is obtained. If the time period for applying the second preliminary voltage is provided between the time periods for applying the first preliminary voltage and the signal voltage, the deformation in the waveform of the optical response characteristic is eliminated, thereby increasing the optical response speed.

If a retardation compensation means for compensating the retardation which is the optical path difference in both substrates and the liquid crystal layer between the ordinary components and the extraordinary components is provided, the same optical response characteristic is obtained even with a lower driving voltage.

Furthermore, if the silicon single crystalline substrate is used for a substrate of the liquid crystal device and the transistor for driving pixels are formed in the single crystalline silicon, far excellent TFTs, as compared with amorphous silicon thin film TFTs or polysilicon TFTs can be obtained since the single crystalline silicon has a large mobility.

The light modulating elements which respond with high speed and the spatial light modulating elements such as projection-type liquid crystal display device and arithmetic device capable of being driven by the field sequential addressing method can be obtained by driving the liquid crystal device in accordance with the above procedure. If, for example, a CCD and the high-speed light modulating element are combined, a compact CCD element with high precision can be obtained since signals of red, green and blue can be detected by one pixel of the CCD.

As described above, since the liquid crystal display mode having high-speed response and capable of display half tone is realized, the liquid crystal devices such as a color liquid crystal display device capable of being driven by the field sequential addressing method can be obtained. In addition, the liquid crystal device according to the invention is suitable for an image input device using the liquid crystal device as a spatial light modulation element, which is used for an optical computing system.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.

Claims

1. A liquid crystal device comprising:
a pair of substrates;
a liquid crystal layer interposed between the pair of substrates; at least one polarizing element;
a plurality of pixels;
a retardation ($d \times \Delta n$) of the liquid crystal layer satisfying one of a relation:
$d \times \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal fayer once, and a relation: $2 \mathrm{~d} \times \Delta \mathrm{n}>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and
driving voltage applying means for applying a driving voltage induding a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.
2. A liquid crystal device according to claim 1, wherein the driving voltage applying means applies the driving voltage to the pixels by a field sequential addressing method.
3. A liquid crystal device according to claim 2 , includes retardation compensation means between the liquid crystal layer and the polarizing element.
4. A liquid crystal device according to claim 1, wherein the driving voltage applying means applies a voltage higher than the maximum voltage providing the extremum of the output light intensity in the voltage-output light intensity characteristic and a voltage between the voltage higher than the maximum voltage and the maximum voltage, thereby controlling the output light intensity of the pixels.
5. A liquid crystal device according to claim 1, where in the driving voltage applying means reverses a polarity of the driving voltage in each frame.
6. A liquid crystal device according to claim 1, wherein the driving voltage applying means applies a first preliminary voltage having an absolute value larger than that of a signal voltage
determined output light intensity before applying the signal voltage to the pixels.
7. A liquid crystal device according to daim 6 , wherein the driving voltage applying means further applies a second preliminary voltage having an absolute value smaller than that of the signal voltage before applying the signal voltage corresponding to the predetermined output light intensity and after applying the first preliminary voltage.
8. A liquid crystal device according to claim 6 , wherein the absolute value of the first preliminary voltage is larger than that of the maximum voltage providing an extremum in the voltage-output light intensity characteristic of the pixels.
9. A liquid crystal device according to claim 6 , wherein the output light intensity at a maximum value of the signal voltage is equal to or less than 10% of a maximum in the voltage-output light intensity characteristic of the pixels.
10. A liquid crystal device according to claim 7 , wherein the absolute value of the second preliminary voltage is smaller than that of the maximum voltage providing the extremum in the voltage-output light intensity characteristic of the pixels.
11. Aliquid crystal device according to claim 6 , wherein a time period for applying the first preliminary voltage is one-fifth or less than that for applying the signal voltage.
12. A liquid crystal device according to claim 7 , wherein a sum of the time period for applying the first preliminary voltage and the time period for applying the second preliminary voltage is one-fifth or less than a time period for applying the signal voltage.
13. A liquid crystal device according to claim 6 , wherein the driving voltage applying means applies the first preliminary voltage to the pixels connected to each scanning line at the same time.
14. A liquid crystal device according to claim 6 , wherein the driving voltage applying means applies the first preliminary voltage to the pixels connected to at least one scanning line.
15. A liquid crystal device according to claim 7 , wherein the driving voltage applying means applies the first preliminary voltage and the second preliminary voltage to the pixels connected to at least one scanning line for display.
16. A liquid crystal device according to claim 6 , wherein a value of the first preliminary voltage is identical to all the pixels.
17. A liquid crystal device according to claim 7 , wherein at least one of the first preliminary voltage and the second preliminary voltage has an identical value for all the pixels.
18. A liquid crystal device according to claim 3, wherein the retardation compensation means has at least a pair of substrates and a second liquid crystal layer interposed therebetween, and an electro-optical characteristic of the second liquid crystal layer is substantially identical with that of the liquid crystal layer.
19. A liquid crystal device according to claim 3, wherein the retardation compensation means is selected from a phase plate and a phase film.
20. A liquid crystal device according to claim 19, wherein the retardation compensation means is selected from a uniaxially oriented polymer film and a biaxially oriented film.
21. A liquid crystal device according to claim 1, wherein one of the pair of substrates is a silicon single crystalline substrate, and the silicon single crystalline substrate has a transistor switching a voltage applied from the driving voltage applying means to each of the plurality of pixels.
22. A projection-type liquid crystal display device including a liquid crystal element, wherein the liquid crystal element comprising: a pair of substrates; a liquid crystal layer interposed between the pair of substrates; at least one polarizing element; a plurality of pixels; a retardation ($\mathrm{d} x \Delta \mathrm{n}$) of the liquid crystal layer satisfying one of a relation: $d \times \Delta n>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystallayer once, and a relation:
$2 d \times \Delta n>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and
driving voltage applying means for applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.
23. A method for driving a liquid crystal device including: a pair of substrates; a liquid crystal layer interposed between the pair of substrates; at least one polarizing element; a plurality of pixels; and a retardation (d $x \Delta n$) of the liquid crystal layer satisfying one of a relation:

$$
d x \Delta n>\lambda / 2
$$

in a case where an incident light is output after passing through the liquid crystal layer once, and a relation:

$2 d \times \Delta n>\lambda / 2$

in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ,
wherein the method comprises a step of applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.
24. A method according to claim 23, wherein the driving voltage applying step includes applying the driving voltage to the pixels by a field sequential addressing method.
25. A method according to claim 23 , wherein the driving voltage applying step includes applying a voltage higher than the maximum voltage providing the extremum of the output light intensity in the voltage-output light intensity characteristic and a voltage between the voltage higher than the maximum voltage and the maximum voltage, thereby controlling the output light intensity of the pixels.
26. A method according to claim 23 , wherein a polarity of the driving voltage is reversed in each frame.
27. A method according to claim 23 , wherein the driving voltage applying step includes applying a first preliminary voltage having an absolute value larger than that of a signal voltage corresponding to a predetermined output light intensity before applying the signal voltage to the pixels.
28. A method according to claim 27 , wherein the driving voltage applying step further includes applying a second preliminary voltage having an absolute value smaller than that of the signal voltage before applying the signal voltage corresponding to the predetermined output light intensity and after applying the first preliminary voltage.
29. A method according to claim 27, wherein the absolute value of the first preliminary voltage is larger than that of the maximum voltage providing an extremum in the voltage-output light intensity characteristic of the pixels.
30. A method according to claim 28 , wherein the absolute value of the second preliminary voltage is smaller than that of the maximum voltage providing the extremum in the voltage-output light intensity characteristic of the pixels.
31. A method according to claim 27, wherein a time period for applying the first preliminary voltage is onefifth or less than that for applying the signal voltage.
32. A method according to claim 28 , wherein a sum of the time period for applying the first preliminary voltage and the time period for applying the second preliminary voltage is one-fifth or less than a time period for applying the signal voltage.

33. A method according to claim 27, wherein the driving voltage applying step includes applying the first preliminary voltage to the pixels connected to each scanning line at the same time.
34. A method according to claim 27, wherein the driving voltage applying step includes applying the first preliminary voltage to the pixels connected to at least one scanning line.
35. A method according to claim 28 , wherein the driving voltage applying step includes applying the first preliminary voltage and the second preliminary voltage to the pixels connected to at least one scanning line for display.
36. A method according to claim 27 , wherein a value of the first preliminary voltage is identical to all the pixels.
37. A method according to claim 28 , wherein at least one of the first preliminary voltage and the second preliminary voltage has an identical value for all the pixels.

FIG. 1

EP 0660297 A2

FIG. 7

BNSDOCID: <EP____O660287AZ_I_>
1)

LGD_000229

BNSOOCID: <EP_

LGD_000231

FIG. 12

\qquad

EP 0660297 A2

FIG. 14

BNSDCCID: <EP \qquad

EP 0660297 A2

FIG.16B

BNSDOCID: <EP____0660297A2_I._>

EP 0660297 A2

FIG. 17

BNSDOCID: <EP. \qquad

FIG. 19

LGD_000238

BNSDCCID: $\angle E P$ 0660297A2_1_>

EP 0660297 A2

FIG. 23

EP 0660297 A2

EP 0660297 A2

ENSDOCID: <EP_ \qquad
LGD_000245

EP 0660297 A2

FIG. 27

EP 0660297 A2

FIG. 28

FIG. 31

Europäisches Patentamt
European Patent Office
Office européen des brevets

(21) Application number : 94309496.1
(51) Int. CI. ${ }^{6}$: G09G 3/36
(22) Date of filing : 19.12.94
(30) Priority : 20.12.93 JP 320335/93
(43) Date of publication of application :
28.06.95 Bulletin 95/26
(84) Designated Contracting States:

GB NL
(88) Date of deferred publication of search report : 11.10.95 Bulletin 95/41
(71) Applicant : SHARP KABUSHIKI KAISHA

22-22 Nagaike-cho
Abeno-ku
Osaka 545 (JP)
(54) A liquid crystal device and a method for driving the same.
(57) A liquid crystal device includes: a pair of substrates; a liquid crystal layer interposed between the pair of substrates; at least one polarizing element; a plurality of pixels; a retardation ($d \times \Delta n$) of the liquid crystal layer satisfying one of a relation:
$d x$ in $>\lambda / 2$
in a case where an incident light is output after passing through the liquid crystal layer once, and a relation :
$2 d \times \Delta n>\lambda / 2$
in a case where the incident light is outputted after passing through the liquid crystal layer twice, where a thickness of the liquid crystal layer is d, a birefringence is Δn and a wavelength of the light incident on the liquid crystal layer is λ; and driving voltage supplying means for applying a driving voltage including a voltage higher than a maximum voltage providing an extremum of the output light intensity in a voltage-output light intensity characteristic of the pixels to the plurality of pixels.

\section*{European Patent
 Onle
 EUROPEAN SEARCH REPORT
 EP | Applation Number |
| :---: |
| 94 |}

\qquad 0650297A3 I >

European Patent
EUROPEAN SEARCH REPORT
Application Number Onfice

EP 94309496

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12)

Europäisches Patentamt
European Patent Office
Office européen does brevets

EUROPEAN PATENT APPLICATION
(21) Application number : 92309629.1
(51) Int. CI^{5} : G09G 3/36Date of filing : 21.10.92
(30) Priority: 22.10.91 JP 274331/91

Date of publication of application : 28.04.93 Bulletin 93/17

Designated Contracting States: DE FR GB NL
(71) Applicant : SHARP KABUSHIKI KAISHA 22-22 Nagaike-cho Abeno-ku Osaka 545 (JP)
(72) Inventor: Mizukata, Katsuya

1-1-1-102, Aoyama
Nara-shi, Naraken (JP)
Inventor: Kawaguchi, Takafumi
6-1-631, Saiwai-cho
Yamatotakada-shi, Nara-ken (JP)
Inventor: Takeda, Shiro
2613-1, Ichinomoto-cho
Tenri-shi, Nara-ken (JP)
Inventor: Takeda, Makoto
2-3-4-904, Omiya-cho
Nara-shi, Nara-ken (JP)
(74) Representative : White, Martin David et al MARKS \& CLERK $57 / 60$ Lincoln's Inn Fields London WC2A 3LS (GB)

Driving apparatus and method for an active matrix type liquid crystal display apparatus.
(57) A driving method is suitable for an active matrix type liquid -crystal display apparatus having row and column electrodes. The driving method includes the steps of applying a gate-on pulse for writing data for one line to the column electrodes to each of the row electrodes. The gate-on pulse has a pulse waveform which :cludes at least one concave portion denim: horizontal period.

BEST AVAILABLE COPY

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to a driving apparatus and method for an active matrix type liquid crystal display (LCD) apparatus having row and column electrodes in a lattice arrangement, picture element electrodes for display located in regions defined by the row and column electrodes in a matrix arrangement, and switching transistors connected to the picture element electrodes and the row and column electrodes.

2. Description of the Prior Art:

Figure 3 shows an exemplary active matrix type LCD apparatus of 4×4 matrix. Row electrodes (gate electrode wirings) 1-4 and column electrodes (source electrode wirings) 5 are arranged in a lattice in the row and column directions. In regions defined by the row and column electrodes, picture element electrodes 20 are arranged in a matrix. At each of the crossings of the row and column electrodes, a switching transistor 10 is provided. For the switching transistor 10, for example, a thin film transistor (TFT) is used. Gate terminals 11 of the switching transistors 10 are respectively connected to the row electrodes 1-4. Source terminals 12 of the switching transistors 10 are connected to the column electrodes 5 , and drain terminals 13 thereof are.connected to the corresponding picture element electrodes 20.

The column electrodes 5 are connected to a column electrode driving circuit 40 . The column electrode driving circuit 40 periodically and sequentially applies data for one line to the column electrodes 5. When the switching transistors 10 are turned ON by a pulse applied from a row electrode driving circuit 30 to the row electrodes 1-4, a signal VS appiied to each of the column electrodes 5 is applied to each of the picture element electrodes 20. By sequentia!! . \because : monning a pulse applied from the row electrort: :......;: $:$: cuit 30 to the row electrodes i-4, and by varying column electrode data in synchronous with the timing, an image is displayed on the active matrix type LCD apparatus.

Figure 4 schematically shows a configuration of the row electrode driving circuit 30 . The row electrode driving circuit 30 includes a shift register 31, and four AND gates 32 respectively connected to output terminals Q1, Q2. Q3, and Q4 of the shift register 31. The shift register 31 inputs data SP at a data terminal (a terminal D) and a clock pulse CL at a clock terminal (a terminal CK), and shifts the data SP in accordance with the clock pulse CL. As a result, the shift register 31 outputs the shifted data SP to the AND gates 32 at the respective output terminals Q1, Q2, Q3, and Q4. The clock pulse CL and a LOW signal are also input into the AND gates 32. The AND gates 32 AND
these input signals, and output gate-on pulses VG1VG4 onto the row electrodes 1-4, respectively.

Figure 5 shows waveforms of signals. Hereinafter, a waveform indicated by (N) in a figure is refer- red to as an Nth waveform. For example, in Figure 5, the first to fourth waveforms shows those of the gateon pulses VG1-VG4, the fifth waveform shows that of the clock pulse CL, the sixth waveform shows that of the data SP, and the seventh waveform shows that of the LOW signal.

Conventionally, each of the gate-on pulses VG1VG4 applied to the row electrodes 1-4 is a one-shot pulse, as shown by the first to fourth waveforms in Figure 5 . The gate-on pulses have a waveform including an HI (high level) period and a LOW (low level) period. During the HI period, the corresponding switching transistor 10 is in an ON state, and during the LOW period, the corresponding switching transistor 10 is in an OFF state. As a result, only during the HI period of each of the gate-on pulses VG1-VG4, the signal VS shown by the eighth waveform in Figure 5 is applied to the picture element electrodes 20 connected to the respective row electrodes 1-4 through the corresponding switching transistors 10. Accordingly, electrical charges are charged in a liquid crystal layer as a display medium of picture elements. The electrical charges are held in the liquid crystal layer during the LOW period of the gate-on pulses VG1VG4, and each of the picture elements exhibits a transmissivity depending on the voitage applied to the picture element.

According to the conventional driving method shown in Figure 5, in order to prevent the liquid crys- . tals to deteriorate due to a DC voltage applied to an LCD apparatus, the polarity of the applied voltage is inverted for every line (for each of the row electrodes 1-4). In other words, a 1 H inversion (the polarity is inverted every one horizontal period) system is adopted. The 1 H period (one horizontal period) coincides with a period of a National Television System Committee (NTSC) television sighal ($124=63.5 \mu \mathrm{~s}$).

When the gate-on pulse VG1 of the first waveform in Figurs 5 is applied to the row electrode 1 in Figure 3, and the sigii $\because \prime \mathrm{V}$, of the eighth waveform in Figure 5 is applied to the cultma electrode 5 in Figure 3 , according to the driving mellios namitioned above, the potential of a picture element elechode 20 at the crossing of the row and column electrodes 1 and 5 varies. If the gate-on period is sufficienlly long, the liquid crystal layer is sufficiently charged. The potential variation VLC of the picture element 20 at the crossing is saturated, as shown by the ninth waveform in Figure 5.

In order to increase the scanning speed for improving the functionality of the LCD apparatus, it is necessary to shorten the gate-on period. On the contrary, if the gate-on period is shortened, the liquid crystal layer is insufficiently charged. This results in
an insufficient voltage application to the liquid crystal layer, and causes problems in displaying an image as follows.

For example, we consider the case of a transmission type LCD apparatus of a normally white system (during no voltage application: white (light is transmitted), during voltage application : black (light is shielded)). As the scanning speed is increased, the gate-on time period is not sufficient. This causes a shortage of charge phenomenon in which sufficient voltage is not applied to the liquid crystal layer. As a result, there arises problems in that the resulting display is whitish and a sufficient display contrast cannot be obtained, as compared with the case where the charge is sufficiently performed by applying a voltage of the same level to a column electrode.

The above-mentioned problems are specifically shown by a ninth waveform in Figure 6. Figure 6 shows signal waveforms in a driving method which improves the scanning speed. In this driving method, one horizontal scanning period is set to be one-half of the period of the NTSC television signal. The gate-on pulses VG1-VG4 respectively shown by first to fourth waveforms in Figure 6 are applied to the row electrodes 1-4. The gate-on pulses VG1-VG4 are produced by inputting a clock pulse CL of a fifth waveform, data SP of a sixth waveform, and a LOW signal of a seventh waveform in Figure 6 into the respective input terminals of the row electrode driving circuit 30. The signal VS shown by an eighth waveform in Figure 6 indicates a signal to be applied to the column electrodes 5 shown in Figure 3.

A ninth waveform VLC in Figure 6 represents the variation in potential applied to a picture element electrode 20 at the crossing of the row electrode 1 and the column electrode 5, when the signal VS shown by the eighth waveform in Figure 6 is applied to the column electrode 5. Since the gate-on period of the gate-on pulse of the first waveform is shorter than that of the first waveform shown in Figure 5, the charge to the liquid crystal layer is not sufficient. As a result, the potential of VLC cannot reach a sufficient level. The potential of VLC should reach the level indicated by a broken line of the ninth waveform in Figure 6. However, in actuality the potential of VLC only reaches the level indicated by the solid line thereof.

For the reasons mentioned above, there arises a problem that a display contrast sufficient for the display quality of the LCD apparatus cannot be obtained according to the driving method shown in Figure 6.

SUMMARY OF THE INVENTION

The driving apparatus and method of this invention for an active matrix type liquid crystal display apparatus having row and column electrodes includes the step of applying a gate-on pulse for writing data for one line to the column electrodes to each of the
row electrodes. The gate-on pulse has a pulse waveform which includes at least one concave portion during a horizontal period.

Alternatively, the driving apparatus and method of this invention for an active matrix type liquid crystal display apparatus having row and column electrodes includes the step of applying a gate-on pulse for writing data for one line to the column electrodes to each of the row electrodes. The gate-on pulse varies between a first level and a second level at least two times during a horizontal period.

In a preferred embodiment, the horizontal period may include three periods, a first period, a second period and a third period in this order. The gate-on pulse is at the first level during the first period, at the second level during the second period and at the first level during the third period.

According to the above-mentioned driving apparatus and method of the invention, the charging efficiency to the liquid crystal layer per unit time period is improved accorded to the invention. Accordingly, the driving apparatus and method of the invention is suitable for an LCD apparatus in which the gate-on period is shortened and the scanning ability would be improved, because the liquid crystal layer is always sufficiently charged, and the display contrast can be improved.

Thus, the invention described herein makes possible the advantage of providing a driving apparatus method for an active matrix type LCD apparatus in which the charging efficiency to a liquid crystal layer per unit period time is improved, and hence the scanning ability and the display quality can be improved.

These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows signal waveforms illustrating a driving method for an active matrix type LCD apparatus of the invention;
Figure 2 is a graph comparatively showing a transmissivity curve of a liquid crystal panel in the method of the invention and a transmissivity curve in a prior art method;
Figure 3 shows a schematic configuration of the active matrix type LCD apparatus;
Figure 4 shows a schematic configuration of a row electrode driving circuit;
Figure 5 shows signal waveforms showing the prior art driving method;
Figure 6 shows signal waveforms showing a prior art driving method in which a gate-on period is shortened.

DESCRIPTION OF THE PREFERRED

 EMBODIMENTSFigure 1 shows a driving method for an active matrix type LCD apparatus of the invention. The configuration of the active matrix type LCD apparatus to which the method of the invention is applied is the same as that of the active matrix type LCD apparatus shown in Figure 3. A row electrode driving circuit has the same configuration as that of the row electrode driving circuit shown in Figure 4. The detailed description of the configuration is omitted and like components have like reference numerals.

In Figure 1. first to fourth waveforms represent gate-on pulses VG1-VG4 respectively output from the row electrode driving circuit 30 onto the row electrodes 1-4. In these gate-on puises VG1-VG4, one horizontal scanning period (1H) coincides with onehalf of the period of the NTSC television signal ($1 \mathrm{H}=$ about $31.8 \mu \mathrm{~s}$). That is, the length of one horizontal scanning period is the same as that used in the prior art method of Figure 6.

These gate-on pulses VG1-VG4 are produced by inputting a clock pulse CL of a fifth waveform, data SP of a sixth waveform, and a LOW signal of a seventh waveform into the respective input terminals of the row electrode driving circuit 30 , as in the prior art method. The gate-on period of each of the gate-on pulses VG1-VG4 is $24 \mu s$ which is the same as in the prior art method. However, each of the gate-on pulses VG1-VG4 has a pulse waveform including a concave portion during the gate-on period. Specifically, each of the pulses are set to be a LOW level during one-third of the gate-on period (i.e., the intermediate $8 \mu \mathrm{~s}$ period), as shown in Figure 1. Accordingly, each of the gate-on pulses VG1-VG4 has a pulse waveform including two HI periods and one LOW period (8 $\mu s)$ therebetween. Thie length of one of the HI periods is obtained by subtracting the intermediate period from the gate-on period, and by dividing the subtracted result into two equal periods, i.e., (24-8)/2=8 $\mu \mathrm{s}$.

The gate-on pulses VG1-VG4 having such pulse waveforms may be produced by superimposing the LOW signal of the seventh waveform on the gate-on pulses VG1-VG4 produced by the use of the prior art method. As shown by the seventh waveform, the polarity of the LOW signal is inverted in the intermediate period of the gate-on period.

As shown by an eighth waveform in Figure 1, the waveform of a signal VS to be applied to each of the column electrodes 5 shown in Figure 3 is the same as that of the prior art method shown in Figure 6.

When the signal VS of the same level is applied to the same column electrode 5 both in the method of the invention and in the prior art method of Figure 6, the charging efficiency to a liquid crystal layer in the method of the invention can be improved as com-
pared with the prior art method for the following reasons with reference to the graph shown in Figure 2. In Figure 2, the vertical axis represents a transmissivity of a liquid crystal panel (\%) and the horizontal axis represents an amplitude V of the signal VS applied to a column electrode (arbitrary unit). In Figure 2, a transmissivity in the method of the invention is shown by a curve (1), and a transmissivity in the prior art method is also shown by a curve (2) for comparison. The transmissivity is measured by using a transmission type LCD apparatus of a normally white system.

Since the transmissivity is measured by using an LCD apparatus of a normally white system as described above, it is decreased as the level of the signal VS is increased. As seen from the curves (1) and (2) at the point indicated by A in Figure 2, the transmissivity in the method of the invention is lower than that in the prior art method.

In the case of the LCD of a normally white system, the lower transmissivity at the same level of the voltage applied to a column electrode means that the level of a voltage applied to the liquid crystal layer is increased. That is, the charging efficiency to the liquid crystal layer is superior. More specifically, as seen from Figure 2, the charging efficiency to the liquid crystal layer can be improved in the method of the invention, as compared with the prior art method. Accordingly, it is clear by comparing the ninth waveform in Figure 1 with the ninth waveform in Figure 6 that insufficient charge does not occur when the invention is applied to an LCD apparatus in which the scanning is performed with a shortened gate-on period.

In the above embodiment, the gate-on pulse has a pulse waveform including a concave portion in a horizontal period. Alternatively, the gate-on pulse may have a pulse waveform which is divided into a plurality of portions and includes at least one concave portion during a horizontal period.

As described above, according to the driving method for an active matrix type LCD apparatus of the invention, the charging efficiency to a liquid crystal layer per unit time period can be improved as compared with the prior art method. Accordingly, the driving method of the invention is suitable for an LCD apparatus in which the gate-on period is shortened and the scanning ability is attempted to be improved, because the liquid crystal layer is always sufficiently charged and hence the display contrast can be improved.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.

1. A driving method for an active matrix type liquid crystal display apparatus having row and column electrodes, said driving method comprising the step of.
applying a gate-on pulse for writing data for one line to said column electrodes to each of said row electrodes, said gate-on pulse having a pulse wavefor m which includes at least one concave portion during a horizontal period.
2. A driving method for an active matrix type liquid crystal display apparatus having row and column electrodes, said driving method comprising the step of:
applying a gate-on pulse for writing data for one line to said column electrodes to each of said row electrodes, said gate-on pulse varying between a first level and a second level at least two times during a horizontal period.
3. The method according to claim 2. wherein said horizontal period includes three periods, a first period, a second period and a third period in this order, said gate-on pulse being at said first level during said first period, at said second level during said second period and at said first level during said third period.
4. Adriving apparatus for an active matrix type liquid crystal display having row and column electrodes, said driving apparatus comprising:
means for applying a gate-on-pulse for writing data for one line to said column electrodes to each of said row electrodes, said gate-on pulse having a pulse waveform which includes at least one concave portion during a horizontal period.
5. A driving apparatus for an active matrix type liquid crystal display having row and column electrodes, said driving apparatus comprising:
means for applying a gate-on-pulse for writing data for one line to said column electrodes to each of said row electrodes, said gate-on putise varying between a first level and a second level at least two times during a horizontal period.
6. The apparatus according to claim 5, wherein said horizontal period includes three periods, a first period, a second period and a third period in this order, said gate-on pulse being at said first level during said first period, at said second level during said second period and at said first level during said third period.

ENSDCCID: <EP. - .__0538185A1_1 >
LGD_000260

EP 0539185 A1

7

FIG. 3

9

FIG. 6

European Patent
Office

EUROPEAN SEARCH REPORT

\qquad

CERTIFICATE OF TRANSMISSION/MAILING
I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below.

| Typed or printed name | | | |
| :--- | :--- | :--- | :--- | :--- |
| Signature | | Date | |

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to 12 minutes to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the rademark Office U S ADDRESS. SEND TO: Comtnissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Complete if Known	
Application Number	$10 / 707,741$
Filing Date	$01 / 08 / 2004$
First Named Inventor	Yung-Hung Shen
Examiner Name	
Art Unit	
Attorney Docket No.	VASP0001USA

SUBMITTED BY					(Complete (if applicable))	
Name (Print/ype)	Winston Hsu		Registration No. (Attorney/Agent)	41,526	Telep	886289237350
Signature		1/2ntr2n lata			Date	$3 / 12 /$

WARNING: Information on this form may become public. Credit card information should not
be included on this form. Provide credit card information and authorization on PTO-2038.
This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
\because

DECLARATION -- Supplemental Priority Data Sheet

Additional foreign applications:

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

申請日期：			IPC 分類			
申請案號：						
（以上各欄由本局填註） 發明專利說明書						
發明名稱	中 文	用來驅動一液晶顯示面板之驅動電路及其驅動方法				
	英 文	DRIVING CIRCUIT AND DRIVING METHOD THEREOF FOR A LIQUID CRYSTALDISPLAY				
發明人 （共4人）	$\begin{aligned} & \hline \text { 姓 名 } \\ & \text { (中文) } \end{aligned}$	1．申雲洪 2．王世忠				
	$\begin{aligned} & \text { 姓 名 } \\ & \text { (英文) } \end{aligned}$	1．SHEN，YUNG－HUNG2．WANG，SHIH－CHUNG				
	$\begin{array}{\|c\|} \hline \text { 國籍 } \\ \text { 中英文) } \end{array}$	1．中華民國 TW 2．中華民國 TW				
	（隹居所	1．新竹市大學路八十八號十四樓之三 2．高雄市旗津區中洲二路二四六號之一				
	$\left(\begin{array}{c} \text { 住居所 } \\ \left(\begin{array}{l} \text { 英 } \end{array}\right. \\ \text { 文 } \end{array}\right)$	1．14F－3，No．88，Da－Syue Rd．，Hsin－Chu City，Taiwan，R．O．C．2．No． $246-1$, Jhong－Jhou 2nd Rd．，Chi－Jin District，Kao－Hsiung City， Taiwan，R．0．C．				
三 申請人 （共1人）	$\begin{aligned} & \text { 名稱或 } \\ & \text { 姓 } \\ & \text { (中文) } \end{aligned}$	1．鈺瀚科技股份有限公司				
	名稱或姓 名 （英文）	1．VASTVIEW TECHNOLOGY INC．				
	$\begin{aligned} & \text { 國 籍 } \\ & \text { 中虫央文) } \\ & \hline \end{aligned}$	1．中華民國 TW				
		1．新竹科學工業園區新安路八號三樓（本地址與前向貴局申請者相同）				
		1．3F，No．8，Hsin－Ann Rd．，Science－Based Industrial Park，Hsinchu 300，Taiwan，R．0．C．				
	$\begin{aligned} & \text { 代表人 } \\ & \text { (中文) } \end{aligned}$	1．梁育正				
	代表人 （英文）	1．LIANG，YU－CHENG				

申請日期：	IPC 分類
申請案號：	

申請日期：	IPC分類
申請案號：	

四，中文發明摘要（發明名稱：用來驅動一液晶顯示面板之驅動電路及其駩動方法）

本發明係揭露—種驅動—液晶顯示面板的電路及其方法，該液晶顯示面板包含有：複數條掃瞄線，複數條資料線以及複數個像素。每—像素連接於—對應的掃瞄線以及一對應的資料線，且每—像素包含有一開關元件及一液晶元件，該開關元件連接於該對應的掃瞄線，該對應的資料線以及該液晶元件。該方法包含：連續地接收複數筆圖框資料；每間隔—圖框週期（frame period），依 據 該 等 圖 框 資 料，針 對 每 —像素產生複數個資料電壓脈波；以及於一個圖框週期内，將所產生的該等資料電壓脈波藉由該像素所連接之該資料線施加于該像素之液晶元件，以控制該液晶元件之光線穿透率的變化。

五，英文發明摘要（發明名稱：DRIVING CIRCUIT AND DRIVING METHOD THEREOF FOR A LIQUID CRYSTAL DISPLAY）

The present invention discloses an apparatus and method thereof for driving a liquid crystal display（LCD）panel．The LCD panel has a plurality of scan lines，a plurality of data lines，and a plurality of pixels．Each of the pixels is connected to a corresponding scan line and a corresponding data line．Each of the pixels has a liquid crystal element and a switch element

四，中文發明摘要（發明名稱：用來驅動一液晶顯示面板之驅動電路及其驅動方法）

五，英文發明摘要（發明名稱：DRIVING CIRCUIT AND DRIVING METHOD THEREOF FOR A LIQUID CRYSTAL DISPLAY）
connected to the corresponding scan line，the corresponding data line，and the liquid crystal element．The method has：sequentially receiving a plurality of pieces of frame data；generating a plurality data impulses for each pixel every frame period according to the pieces of the frame data；and applying the data impulses to the data line connected to the liquid crystal element of

四，中文發明摘要（發明名稱：用來驅動一液晶顯示面板之驅動電路及其驅動方法）

五，英文發明摘要（發明名稱：DRIVING CIRCUIT AND DRIVING METHOD THEREOF FOR A LIQUID CRYSTAL DISPLAY）
the pixel within one frame period so as to control a transmission rate of liquid crystal element．

第 6 頁

```
六, 指定代表圖
(一)
(二), 本案代表圖之元件代表符號簡單說明:
GN~GN+3(2) 像 素 資 料
```

二，\square 主張專利法第二十五條之一第一項優先權：
申請案號：
日期：
三，主張本案係符合專利法第二十條第一項 \square 第一款但書或 \square 第二款但書規定之期間
日期：
四，\square 有關微生物已寄存於國外：
奇存國家：
寄存機構：
無
奇存日期：
寄存號碼：
\square 有關微生物已寄存於國内（本局所指定之寄存機構）：
寄存機構：
奇存日期：
無
奇存號碼：
\square 熟習該項技術者易於獲得，不須寄存。

五，發明說明（1）
【技術領域】

本 發 明 係 有 關 於一種 液 晶 顯 示 器之驅動電路及其驅動方法，尤指一種於一圖框週期施加兩個以上之資料電壓脈波於像素電極之驅動電路及其驅動方法。

【先前技術】

一般而言，液晶顯示器具有重量輕，功率消耗少以及低輻射等等的優點，因此，液晶顯示器已廣泛地應用於市面上多種可攜式資訊產品，例如筆記型電腦
（ notebook）以及個人數位助理（personal digital
assistant，PDA）等商品。此外，液晶螢幕以及液晶電視 亦 已逐漸普及，取代傳統使用的陰極射線管（cathode ray tube，CRT）顯示器和電視。但是液晶顯示器亦有其缺點 。因為液晶分子特性的限制，在影像資料切换的時候，必須扭轉液晶分子改變其排列方向，所以會出現畫面 延 遲 的 情 形 。 為了 因 應 多 媒 體影像的快速切换，提昇液晶反應速度的要求也愈䖯重要。

一 般 來 講，當 驅 動 電 路 驅 動 驅 動 液 晶 顯 示 器 時，驅動 電路 會 連 續 地 接 收 複 數 筆 圖 框（frame）資 料，之後再依據該 等 圖 框 資 料 來 產 生 相 關 的 資 料 電 壓 脈 波，，掃 瞄 線 電壓，時序信號等，以控制液晶顯示器之像素的操作。其

第 9 頁

五，發明說明（2）
中上述的每一個圖框資料係包含液晶顯示器於—圖框週期（frame period）內，用來重整（refresh）其所有像素時的 資 料，因 此 每—圖框資料即可視為包含有複數筆像素資 料，而 每—像素資料即是用來定義某—個像素於—個圖 框 週 期 内 所 須 達 到 的 灰 階 狀 態 ，而 以目前一般所採用電 腦 之液 晶 顯 示 器 標 準 來 說，每—像素可於256（等於 2^{8} ）種灰階狀態間切换，因此每一像素資料的資料長度等於 8 位元。

請参考圖一，圖一為習知液晶顯示器中像素資料值對應於圖框之時序圖。當驅動—像素時，驅動電路會依序地接 收 用 來 驅 動 該 像 素 的 複 數 筆 像 素 資 料，如圖—所示， GN，GN＋1，GN＋2即表示了驅動電路於各圖框週期 N ，$N+$ 1，N＋2内所接收到的像素資料，而驅動電路會依據像素資 料 GN，GN＋1，GN＋2所記錄的像素資料值來驅動某—像素 分 別 於 圖 框 週 期 N ，$N+1$ ，$N+2$ 的灰階狀態 。一般來講，像 素 資 料 所 記 錄 的 值 越 大 ，則 代 表 經 驅 動 電 路 驅 動 後 的像素其灰階值越大，而驅動電路會依據像素資料GN，GN＋ 1，GN＋2，於相對應的圖框週期内產生一資料電壓脈波，並 將 所 產 生 的 資 料 電 壓 脈 波 施 加 於 該 對 應 像 素 的 像 素 電極（pixel electrode），以使所驅動的像素於各圖框週期內處於對應的灰階狀態下。

請 參 考 圖 二，圖二為習知像素之穿透率對應於圖框之時

五，發明說明（3）
序圖。圖二中，標示了兩條曲線C1及C2，而兩曲線C1及 C2皆是在驅動電路欲將某—像素於圖框週期 N之期間，將其 光 線 穿 透率由穿透率 T1驅换成穿透率 T2時所量測而得，其中曲線 C1表示未經過激（over drive）驅動時所量測得的像素於各圖框週期 內的光線穿透率，而曲線C2則表 示 經 習 知 的 過 激 驅 動 方 式 驅 動 時 所 量 測 得 的 像 素 於 各圖框週期內的光線穿透率。關於習知的過激驅動方法，可 参 考 美 國 早 期 公 開 專 利 申 請 案 US 2002／0050965等文獻資 料，在此即簡單地說明如下。因為像素的液晶分子的特性，在其充電時會有一個延遲時間，使得其液晶分子無 法 在 — 個 圖 框 週 期 內偏 轉 到 達 預 定 的 角 度 以達到預定的 光 線 穿 透 率 。如曲線 C1所示，在未經過激的情況下，光 線 穿 透 率 無 法 在 圖 框 N 的 圖 框 週 期 中 到 達 預 定 的 穿 透率 ，而 必 須 等 到 圖 框 $\mathrm{N}+2$ 的 圖 框 週 期 才 會 到 達 預 定 的 穿 透率，然 而 這 樣 的 延 遅 卻 會 使 液 晶 顯 示 器 出 現 殘 影 的 現象。為了改善此一現象，一些習知的液晶顯示器即採用過 激 驅 動 方 法，其 係 將 比 原 先 更 高 或 更 低 的 資 料 電 壓 脈波 施 加 於 像 素 的 像 素 電 極，以 加 快 其 液 晶 分子的反 應速度 ，進而使得像素可在預定的圖框週期 内 達 到 預 定 的 灰階狀態。如曲線C2所示，在經過激的情況下，液晶分子的反應速度雖然較未經過激驅動時的快，其光線穿透率在 圖 框 週 期 $\mathrm{N}+1$ 内即達到預定的穿透率 T 2 ，但仍比預定穿透率須在圖框週期 N即須達到預定的穿透率 T2的理想狀態慢了許多。

第 11 頁

五，發明說明（4）

【内容】

因 此 本 發 明 之主 要 目 的 在 於 提 供一種液晶顯示器之驅動電路及其驅動方法，以解決上述習知的問題。

根 據 本 發 明 之申 請 專 利 範 圍 ，係 揭 露—種液晶顯示器之驅動電路及其驅動方法。該液晶顯示面板包含有複數條掃瞄線，複數條資料線，以及複數個像素。其中每一像素連接於—對應的掃瞄線以及一對應的資料線，且每—像素包含有一開關元件以及一液晶元件。該開關元件連接於該對應的掃瞄線，該對應的資料線以及該液晶元
件。該方法包含：連續地接收複數筆圖框資料；每間隔 —圖框週期（frame period），依據該等圖框資料，針對每一像素產生複數個電壓脈波；以及於一個圖框週期內，將所產生的該等電壓脈波藉由該像素所連接之該資料線施加于該像素之液晶元件，以控制該液晶元件之光線 穿 透 率 的 變 化 。

此 外，本 發 明 之驅 動 電 路 包 含 有—殘影消除器，—源極驅動器，以及一閘極驅動器。該殘影消除器用來每間隔一圖框週期接收—圖框資料，而每—圖框資料包含有複數筆像素資料，每—筆像素資料皆對應於一像素。該殘影消除器會延遲—當時圖框資料，以產生一延遲圖框資

五，發明說明（5）
料，並依據該當時圖框資料以及該延遲圖框資料，於每一圖框週期内為每—像素產生複數筆過激像素資料。該源極驅動器用來於每—圖框資料内根據該殘影消除器對每—像素所產生複數筆過激像素資料，對每—像素產生複數個電壓脈波，並將該等電壓脈波藉由該像素所連接之該資料線施加于該像素之液晶元件，以控制該液晶元件之光線穿透率的變化。該閘極驅動器則是用來施加一掃瞄線電壓于該等像素之開關元件，以使該等電壓脈波可被施于該像素之液晶元件。

【實施方法】

請参考圖三，圖三為本發明驅動電路10與—液晶面板 30之功能方塊圖。驅動電路 10 係用來驅動液晶面板 30 ，其包含有一訊號控制器12，一残影消除器14，—時序控制器 16 ，一源極驅動器18以及一閘極驅動器20。訊號控制器 12 係用來接收一複合式影像訊號 Sc ，此複合式影像訊號 Sc包含有用來驅動液晶面板 30 時所需的各圖框資料以及時序資料等，而訊號控制器 12 會處理所接收到的複合式影像訊號 Sc，以將複合式影像訊號Sc區分為一圖框訊號 G以及一控制訊號 C。之後，残影消除器 14 會持續地接收 圖 框 訊 號 G所 包 含 複 數 筆 圖 框 資 料 以及 控 制 訊 號 C，並依 據 圖 框 訊 號 G所包含複數筆圖框資料來產生一處理後的

五，發明說明（6）
圖 框 訊 號 G^{\prime} ，而 其 中 圖 框 訊 號 G^{\prime} 包 含 有 複 數 筆 過 激 像 素資 料 ，其 更 詳 細 的 作 用 後 面 的 說 明 中將 會 提 及。時序控制器 16 會依據所接收到的圖框訊號 G^{\prime} 以及控制訊號 C來 控制 源 極 驅 動 器 18 與 閘 極 驅 動 器 20 的 操 作 ，以使 源 極 驅 動器 18 與 閘 極 驅 動 器 20 依 據 圖 框 訊 號 G＇所 包 含 的 複 數 筆 過激像素資料來產生對應的資料線電壓與掃瞄線電壓，以驅動液晶面板 30 產生對應於複合式影像訊號 Sc之影像。

請参考圖四，圖四為圖三中液晶面板 30 之電路圖 。液晶面板 31 包含有複數條掃瞄線 32 ，複數條資料線 34 以及複數個像素 36 。每—像素 36 連接於—對應的掃瞄線 32 以及
一對應的資料線 34 ，且每—像素 36 包含有一開關元件 38
以及一液晶元件 39 ，而一般液晶元件 39 會被稱作一像素
電極（pixel electrode）。另外，開關元件38連接於該對
應的掃瞄線 32 及該對應的資料線 34 ，源極驅動器 18 與 開極 驅 動 器 20 會藉由掃瞄線 32 及資料線 34 來控制每一像素 36 的 操 作 。 一般驅動液晶顯示器 30 的方法係施加一掃描電 壓 於 該 掃 描 線 32 以 開 啟 開 關 元 件 38 ，然後再藉由該資料 線 34 將一資料電壓脈波經由開關元件 38 寫 入 像 素 電 極 39 。因此，當掃描電壓被施加於掃描線 32 上而使開關元件 38 開啟時，資料線 34 上的資料電壓脈波會經由開關元件 38 對像素電極 39 進行充電，而使其液晶分子偏轉；而當 掃 描 線 上的 掃 描 電 壓 被 移 除 而 使 得 開 關 元 件 38 關 閉時，資料線 34 與 畫 素 36 的電連結會被切斷，像素電極 39

五，發明說明（7）
則 保 持 其 被 充 電 的 狀 態 。掃描線 32 會 控 制 開 關 元 件 38 重複地開關，使得像素電極 39 可重複地被資料線 34 充 電 。掃 描 線 32 上不 同 的 資 料 線 電 壓 會 使 畫 素 36 的 液 晶 分 子產生 不 同 角 度 的 偏 轉，而 使 畫 素 36 呈 現 出 不 同 的 透 光 率，而 如 此一來，液晶顯示器 30 即可呈現出不同的顯示畫面。

請参考圖五，圖五為依據本發明方法所產生的像素資料其 值 對 應 於 圖 框之時序圖。依據本發明之方法，當驅動液晶面板 30 的任一像素 36 時，驅動電路 10 會依序地產生用 來 驅 動 該 像 素 的 複 數 筆 像 素 資 料，如 圖—所示，GN， GN（2），GN＋1，GN＋1（2），GN＋2，GN＋2（2），GN＋3，GN＋3 （2）即表示了驅動電路於各圖框週期 $\mathrm{N}, ~ \mathrm{~N}+1$ ， $\mathrm{N}+2$ ， $\mathrm{N}+3$ 内所 產 生 的 像 素 資 料，且驅動電路 10 於每—圖框週期内對每一像素 36 皆會產生兩筆像素資料，而此特徵即是本發明與習知技術之間最大的不同點 。驅動電路 10 會依據像素 資 料 $\mathrm{GN} \sim \mathrm{GN}+2$（2）所記錄的像素資料值來驅動某—像素分 別 於 圖 框 週 期 N，N＋1，N＋2的灰階狀態。舉例來說，當像 素 資 料 GN，GN（2）產生後，驅動電路 10 的源極驅動器 18即 會 將 像 素 資 料 GN，GN（2）轉換 成 對 應 的 兩 資 料 電 壓 脈波，再將所產生的兩資料電壓脈波於圖框週期 N内，藉由資料線 32 施加到像素 36 的液晶元件 39 ，已控制液晶元件 $39 之$ 光線穿透率。同理，相對應於像素資料 GN＋1～GN＋3 （2）的資料電壓脈波，會每間隔半個圖框週期，分別被施

第 15 頁

五，發明說明（8）
加 在 對 應 的 像 素 電 極 39 上。同樣的，在本實施例中，像素 資 料 所 記 錄 的 值 越 大 ，則 其 對 應 的 資 料 電 壓 脈 波 的 電壓 值 會 越 高，且 代 表 經 驅 動 電 路 10 驅動後的像素 36 其 灰階值越大。

請參考圖六，圖六為採用本發明之方法後其像素 36 之穿透率對應於圖框之時序圖。如前所述，驅動電路 10 會於每一圖框週期内產生兩筆像素資料，之後源極驅動器18會 依 據 此 兩 筆 像 素 資 料 產 生 兩 相 對 應 的 資 料 電 壓 脈 波，並於一個圖框週期 内將所產生的兩資料電壓脈波施加於對 應 的 像 素 36 之像＂素電極 39 ，以控制該像素電極 39 之光線 穿 透 率及其灰階狀態。如圖六所示，驅動電路 10 在圖框 週 期 $N+1$ 期 間 將 某 — 像 素 36 之像素電極 39 的光線穿透率由 T1驅换到 T2時，該像素電極 39 會於圖框週期 $\mathrm{N}+1$ 的期間，被施予兩相對應於像素資料 $G N+1, ~ G N+1$（2）的 資 料 電壓脈波，其 中 兩 資 料 電 壓 脈 波 所 施 加 的 時 間 點 間 隔半個圖 框 週 期 。如圖六所示，雖然在圖框週期 $N+1$ 的前半個週期 $\mathrm{n}+2$ 内，像素電極 39 的光線穿透率無法達到預期的 T 2 ，但 因 為 在 圖 框 週 期 $\mathrm{N}+1$ 的後半個週期 $\mathrm{n}+3$ 内，像素電極 39還會被再施予另一資料電壓脈波，故其光線穿透率可如預期般地，在一個圖框週期 $\mathrm{N}+1$ 内成功地由 T1切換到 T 2 。因 此，利用本發明之方法所驅動的液晶面板，並不會產生殘影的現象。

第 16 頁

五，發明說明（9）
本 實 施 例 中，在 每 — 圖 框 週 期 的 期 間内，為每—像素產生 兩 筆 像 素 資 料 的工作係由残影消除器 14 來負責完成。請參考圖七，圖七為圖三残影消除器 14 之功能方塊圖。残影消除器14包含有一倍頻器 40 ，一處理電路 42 ，一第 —影像記憶體 44 ，—第二影像記憶體 46 ，—第—記憶體控 制 器 48 ，以及一第二記憶體控制器 50 。其中，倍頻器 40用來將控制訊號C之頻率倍頻，以產生—倍頻訊號C2。第一影像記憶體 44 會 受 到 第—記憶體控制器 48 之控制，而 依 據 控 制 訊 號 C來 延 遲—當時的像素資料 Gm—圖框週期，以產生—延遲的像素資料 Gm－1。處理電路 42會依據當 時 的 像 素 資 料 Gm以 及第一影像記憶體 44 所 延 遅 的 像 素資 料 Gm－1，來 產 生 複 數 筆 過 激 驅 動 像 素 資 料 GN。第二影像記憶體 46 會 儲 存 過 激 驅 動 像 素 資 料 GN，而 第二記憶體控 制 器 50 會 依 據 倍 頻 訊 號 C2來 控 制 第二影像記憶體 46 於每—圖框週期內，對任—像素 36 輸出兩筆過激驅動像素資 料 GN，GN（2），以使源極驅動器 18 根據第二影像記憶體 46 所輸出的兩筆過激像素資料GN，GN（2），於每一圖框週期 內 對—特定的像素 36 施加兩資料電壓脈波。

請参考圖八，圖八為本發明第二實施例中一殘影消除器 60 之 功 能 方 塊 圖 。 殘 影 消 除 器 60 的 功 能 與 殘 影 消 除 器 14的作用相同，皆用來於每—圖框週期内，為每—像素36產 生 兩 筆 像 素 資 料 。 殘 影 消 除 器 60 包 含 有一倍頻器 62 ，
一第一影像記憶體 66，—第二影像記憶體68，—第三影

五，發明說明（10）
像記憶體 70 ，一記憶體控制器64，—處理電路74，以及一比較電路72。其中倍頻器62用來將—控制訊號C之頻率倍頻，以產生—倍頻訊號 C2，而第一影像記憶體 66 用 來接收以及暫存複數筆像素資料 G 。第二影像記憶體 68 會將第一影像記憶體 66 所輸出的像素資料 G延遲—圖框週期後輸 出 為 像 素 資 料 Gm－1，而 第三影像記憶體 70 會將第二影像記憶體 68 所輸出的像素資料 Gm －1延遲—圖框週期後輸出 為 像 素 資 料 $\mathrm{Gm}-2$ ，所 以像素資料 $\mathrm{Gm}-2$ 在 時 脈 上落後像素 資 料 Gm－1—個圖框週期，而像素資料 Gm－1在時脈上也落後像素資料 Gm—個圖框週期 。記憶體控制器 64 會 依 據倍頻訊號C2，來控制第二影像記憶體 68 以及第三影像記憶體 70 的操作，以使第二影像記憶體 68 與第三影像記憶體 70 於每—圖框週期内分別輸出兩筆像素資料。處理電路 74 則 用 來 依 據 經 第二影像記憶體 68 以及第三影像記憶體 70 延遲後所輸出的像素資料 Gm－1，Gm－2，於每—圖框週期内，為每一像素 36 產生兩筆過激驅動像素資料 GN－ 1，GN－1（2）。此外，比較電路 72 則是用來比較第二影像記憶體 68 所輸出的像素資料 Gm－1以及第三影像記憶體 70所 輸 出 的 等 像 素 資 料 Gm－2，以決定處理電路74所產生的過 激 驅 動 像 素 資 料 GN－1，GN－1（2）之資料值，而 關於過激驅 動 像 素 資 料 GN－1，GN－1（2）之資料值的決定方式，將於下面說明。

請参考圖九及圖十，圖九為圖八残影消除器 60 所接收到

五，發明說明（11）
的 原 始 像 素 資 料 對 應 於 圖 框 之時 序 圖 ，圖 十為圖 八殘影消除器 60 所輸出的過激像素資料對應於圖框之時序圖。如圖 九所示，残影消除器 60 於圖框週期 N 與 $N+1$ 内所接收到的原始像素資料分別為 $G m$ 以 及 $G m+1$ ，其 中 兩 原 始 像 素資 料 Gm與 Gm＋1之間的差異值為Diff。 殘 影 消 除 器 60 會 依據 兩 原 始 像 素 資 料 Gm與 Gm＋1來 產 生 對 應 於 圖 框 週 期 $N+1$ 的兩 筆 過 激 像 素 資 料 GN＋1以及 $G N+1$（2），而 其 中 兩 筆 過 激 像素 資 料 GN＋1以及 $G N+1$（2）之間的差異值為 $\triangle G$ ，且須特別說 明 的 是 差 異 值 \triangle G係由圖 八中的比較電路 7 2所決定，以使 驅 動 電 路 10 得 以 因 應 不 同 的 狀 況 來 對 各 像 素 36 ，做出適當的驅動。當比較電路 72 決定差異值 $\triangle G$ 時，其會依據前後兩原始像素資料 Gm與 Gm＋1之間的差異值Diff來決定。舉例來說，當差異值Diff小於某—數值時，比較電路 72 會 讓 差 異 值 $\triangle G$ 等 於 零 ，也就是讓過激像素資料 $\mathrm{GN}+1$等於過激像素資料 GN＋1（2）；或者是當差異值 Diff大於某一數值時，比較電路 72 會依據差異值 Diff來調整差異值 \triangle G的大小，以使液晶面板 30 得到適合的驅動。

相 較 於 習 知 的 液 晶 面 板 的 驅 動 方 法 ，本 發 明 係 揭 露 一種新 的 驅 動 電 路 以及其驅動方法，而於每—圖框週期內，為 液 晶 面 板上的每一像素產生兩筆像素資料，之後並依據 所 產 生 的 兩 筆 像 素 資 料，來 產 生 兩 資 料 電 壓 脈 波，且於一個圖框週期内對每—像素施加上述所產生的兩資料電 壓 脈 波，以改變其像素電極的光線透光率。因此，依

> 五, 發明說明 (12)

據 本 發 明 據 以實 施之液晶顯示器，因一圖框週期内被施予 複 數 個 資 料 電 壓 脈 波，而 可 促 進 其 液 晶 分子的扭轉，故 其 在 — 個 圖 框 週 期 内即可完成灰階的轉换 ，且不會有產 生 殘 影 的 情 況 發 生

以上所述僅為本發明之較佳實施例，凡依本發明申請專利 範 圍 所 做之均 等 變 化 與 修 飾，皆應屬本發明專利之涵蓋 範 圍 。

圖式簡單說明

圖 式 之簡單說明

圖一為習知液晶顯示器中像素資料值對應於圖框之時序圖 。
圖 二為習知像素之穿透率對應於圖框之時序圖。
圖三為本發明驅動電路與—液晶面板之功能方塊圖。
圖四為圖三中液晶面板之電路圖。
圖 五 為 依 據 本 發 明 方 法 所 產 生 的 像 素 資 料 其 值 對 應 於 圖框之時序圖。
圖 六 為 採 用 本 發 明 之方 法 後 其 像 素之穿透率對應於圖框之時序圖。
圖七為圖三殘影消除器之功能方塊圖。
圖 八為本發明第二實施例中—残影消除器之功能方塊
圖 。
圖 九為圖 八殘影消除器所接收到的原始像素資料對應於圖框之時序圖。
圖 十為 圖 八 殘影消除器所輸出的過激像素資料對應於圖框之時序圖。

圖 式 之 符 號 說 明

10	驅 動 電 路	12	訊號控制器
14	殘影 消 除 器	16	時序控制器
18	源極驅動器	20	閘 極 驅 動 器

第 21 頁

六，申請專利範畋
1．一種用來驅動一液晶顯示面板之方法，該液晶顯示面板 包 含 有：
複 數 條 掃 瞄 線；
複 數 條 資 料 線；以及
複數個像素，每—像素連接於—對應的掃瞄線以及一對應的資料線，且每一像素包含有一開關元件以及一液晶元 件 ，該開關元件連接於該對應的掃瞄線，該對應的資料線以及該液晶元件；
該方法包含：
連續地接收複數筆圖框資料；
每 間 隔—圖框週期（frame period），依據該等圖框資料，針對每—像素產生複數個資料電壓脈波；以及於一個圖框週期內，將所産生的該等資料電壓脈波藉由該像素所連接之該資料線施加于該像素之液晶元件，以控制該液晶元件之光線穿透率的變化。

2．如申請專利範圍第 1 項之方法，其另包含：
延 遅 該 等 圖 框 資 料 ，以產生複數個相對應的延遲圖框資料；以及
當 產 生 該 等 資 料 電 壓 脈 波 時 ，藉由比對—當時的圖框資料 與—對應的延遲圖框資料，來決定該等資料電壓脈波之電壓值。

3．如 申 請 專 利 範 圍 第 2項之方 法，其 中 該 等 資 料 電 壓 脈 波

六，申請專利範圍
分 別 為—第一資料電壓脈波以及—第二資料電壓脈波，而 該 等 第—資料電壓脈波 以及該等第二資料電壓脈波會於一圖框週期内先後地被施加于該等像素之液晶元件。

4．如 申 請 專 利 範 圍 第 3 項 之方 法，其 另 包 含：
依 據 該 當 時 的 圖 框 資 料 與 該 對 應 的 延 遲 圖 框 資 料，來 決定該第一資料電壓脈波與該第二資料電壓脈波之間的差異 值 。

5．如 申 請 專 利 範 圍 第 1 項 之方 法，其 中 每 — 圖 框 資 料 包 含有 複 數 筆 像 素 資 料，而每—筆像素資料皆對應於—像素。

6．如 申 請 專 利 範 圍 第 1 項 之方 法，其 另 包 含：
藉 由 該 像 素 所 連 接 之掃瞄線施加—掃瞄線電壓于該像素之開關元件，以使該等資料電壓脈波可被施于該像素之液晶元件。

7．一種用來驅動一液晶顯示面板之驅動電路，該液晶顯示面板包含有：
複 數 條 掃 瞄 線；
複 數 條 資 料 線；以及
複 數 個 像 素，每—像素連接於—對應的掃瞄線以及一對應的資料線，且每一像素包含有一開關元件以及一液晶

六，申請專利範图
元 件 ，該開關元件連接於該對應的掃瞄線，該對應的資料線以及該液晶元件；
該驅動電路包含有：
—残影消除器，用來每間隔—圖框週期接收—圖框資料，而每—圖框資料包含有複數筆像素資料，每—筆像素 資 料 皆 對 應 於—像素，該殘影消除器會延遲—當時圖框資料，以產生一延遲圖框資料，並依據該當時圖框資料以及該延遲圖框資料，於每一圖框週期内為每一像素產 生 複 數 筆 過 激 像 素 資 料；
—源極驅動器，用來於每—圖框資料内根據該殘影消除器 對 每 — 像 素 所 產 生 複 數 筆 過 激 像 素 資 料，對 每—像素產 生 複 數 個 資 料 電 壓 脈 波，並將該等資料電壓脈波藉由該像素所連接之該資料線施加于該像素之液晶元件，以控制該液晶元件之光線穿透率的變化；以及
一 閘極驅動器，用來施加一掃瞄線電壓于該等像素之開關元件，以使該等資料電壓脈波可被施于該像素之液晶元 件 。

8．如 申 請 專 利 範 圍 第 7項 之驅動 電 路 ，其 中 該殘影 消 除 器包 含 有：
一倍頻器，用來將一控制訊號之頻率倍頻，以產生—倍頻 訊 號；
—第一影像記憶體，用來依據該控制訊號來延遲該等像素資料—圖框週期；

六，申請専利管園
一處理電路，用來依據該等像素資料以及該第一影像記憶體所延遅的該等像素資料，産生複數筆過激驅動像素資 料 ；
一第二影像記憶體，用來儲存該等過激驅動像素資料；以及
一記憶䯠控制器，用來依據該倍頻訊號，來控制該第二影像記憶體於每一圖框週期内，對任一像素輸出複數筆該等過激驅動像素資料，以使該源極驅動器根據該第二影像記憶體所輸出的該等過激像素資料，於每一圖框週期內對每一像素産生該等資料電壓脈波。

9．如申請專利範图第 7項 之驅動電路，其中該殘影消除器包含有：
一倍頻器，用來將一控制訊號之頻率倍頻，以産生一倍頻訊號；

- 第一影像記憶體，用來接收以及暫存該等像素資料；
- 第二影像記憶體，用來將該第一影像記憶體所储存並輸出的該等像素資料延遲一圖框週期後輸出；
一第三影像記憶體，用來將該第二影像記憶體所储存並輸出的該等像素資料延遲一圖框週期後輸出；
一記憶體控制器，用來依據該倍頻訊號，來控制該第二影像記憶體以及該第三影像記憶體之操作；
一處理電路，用來依據經該第二影像記憶體以及該第三影像記憶體延遅後所輸出的該等像素資料，來産生複數

六，申請專利範圍
筆 過 激 驅 動 像 素 資 料；以及
一比較電路，用來比較該第二影像記憶體所延遲的該等
像素資料以及該第三影像記憶體所延遲的該等像素資
料，以決定該處理電路所產生的該等過激驅動像素資料之資料值。

II
凅

H
凅

佪

第 $7 / 27$ 頁

第 $11 / 27$ 頁

第 $1 / 27$ 頁

第 $3 / 27$ 頁

第 $4 / 27$ 頁

第 6／27 頁

第 $8 / 27$ 頁

第 $10 / 27$ 頁

第 $11 / 27$ 頁

第 $15 / 27$ 頁

第 $16 / 27$ 頁

第 $17 / 27$ 頁

第 $18 / 27$ 頁

第 $19 / 27$ 頁

第 $12 / 27$ 頁

第 $13 / 27$ 頁

第 $14 / 27$ 頁

第 $15 / 27$ 頁

第 $16 / 27$ 頁

第 $17 / 27$ 頁

第 $18 / 27$ 頁

第 $19 / 27$ 頁

第 20／27 頁

第 $22 / 27$ 頁

第 $25 / 27$ 頁

第 $27 / 27$ 頁

Electronic Version v14
Stylesheet Version v14.0

Given Name:	Shih-Chung
Family Name:	Wang
Residence:	
City of Residence:	Kao-Hsiung City
Country of Residence:	TW
Address-1 of Mailing Address:	No. 246-1, Jhong-Jhou 2nd Rd., Chi-Jin District
Address-2 of Mailing Address:	
City of Mailing Address:	Kao-Hsiung City
State of Mailing Address:	
Postal Code of Mailing Address:	
Country of Mailing Address:	TW
Phone:	
Fax:	
E-mail:	
Inventor 3:	
Applicant Authority Type:	Inventor
Citizenship:	TW
Given Name:	Yuh-Ren
Family Name:	Shen
Residence:	
City of Residence:	Tai-Nan City
Country of Residence:	TW
Address-1 of Mailing Address:	No. 33, Lane 185, Yu-Feng St., Community 19,
Address-2 of Mailing Address:	Hsin-Dong Li, East District
City of Mailing Address:	Tai-Nan City
State of Mailing Address:	
Postal Code of Mailing Address:	
Country of Mailing Address:	TW
Phone:	
Fax:	
E-mail:	
Inventor 4:	
Applicant Authority Type:	Inventor
Citizenship:	TW
Given Name:	Cheng-Jung
Family Name:	Chen
Residence:	
City of Residence:	Miao- Li Hsien
Country of Residence:	TW
Address-1 of Mailing Address:	No. 2, San-Min St., Community 13, Chung-Hwa Li,

```
Address-2 of Mailing Address: Jhu-Nan Town
City of Mailing Address:
Miao- Li Hsien
State of Mailing Address:
Postal Code of Mailing Address:
Country of Mailing Address: TW
Phone:
Fax:
E-mail:
```

Attorney Information:
practitioner(s) at Customer Number:
027765
as our attorney(s) or agent(s) to prosecute the application identified above, and to transact all business in the United States Patent and Trademark Office connected therewith.

TRANSMITTAL

Electronic Version v1.1
Stylesheet Version v1.1.0

Title of Invention	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD
Application Number : Date : First Named Applicant: Yung-Hung Shen Confirmation Number: Attorney Docket Number: VASP0001USA	
I hereby certify applicants or of official cor and/or impris I , the unders submitted to style sheet o prosecution part of the of	that the use of this system is for OFFICIAL correspondence between patent heir representatives and the USPTO. Fraudulent or other use besides the filing spondence by authorized parties is strictly prohibited, and subject to a fine ment under applicable law. ned, certify that I have viewed a display of document(s) being electronically U United States Patent and Trademark Office, using either the USPTO provided software, and that this is the document(s) I intend for initiation or further a patent application noted in the submission. This document(s) will become ial electronic record at the USPTO.

Submitted By:	Elec. Sign.
Winston Hsu Registered Number: 41,526	Winston Hsu

Documents being submitted:	Files
us-assignment	VASP0001-usassn.xml
	us-assignment.xsl
	us-assignment.dtd
	VASP0001ASS1.tif
	VASP0001ASS2.tif
us-request	VASP0001-usrequ.xml
	us-request.dtd
	us-request.xsl
us-fee-sheet	VASP0001-usfees.xml
	us-fee-sheet.xsl
	us-fee-sheet.dtd
us-declaration	VASP0001-usdecl.xml
	us-declaration.dtd
	us-declaration.xsl
us-power-of-attorney-grant	VASP0001-uspoat.xml
	us-power-of-attorney-grant.dtd
	us-power-of-attorney-grant.xsI
us-declaration	VASP0001DEC1.tif
us-declaration	VASP0001DEC2.tif
application-body	VASP0001-trans.xml
	us-application-body.xsl
	application-body.dtd
	wipo.ent
	mathml2.dtd
	mathml2-qname-1.mod
	isoamsa.ent
	isoamsb.ent
	isoamsc.ent
	isoamsn.ent
	isoamso.ent
	isoamsr.ent
	isogrk3.ent
	isomfrk.ent
	isomopf.ent
	isomscr.ent
	isotech.ent
	isobox.ent
	isocyr1.ent
	isocyr2.ent
	isodia.ent
	isolat1.ent
	isolat2.ent
	isonum.ent
	isopub.ent
	mmlextra.ent
	mmalias.ent
	soextblx.dtd
	vasp0001usa-01.tif
	vasp0001usa-02.tif

	vasp0001usa-03.tif
vasp0001usa-04.tif	
vasp0001usa-05.tif	
vasp0001usa-06.tif	
vasp0001usa-07.tif	
vasp0001usa-08.tif	
vasp0001usa-09.tif	
vasp0001usa-10.tif	

Electronic Version v08

Stylesheet Version v08.0

Title of Invention	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD			
Application Number				
Date :				
First Named Applicant: Yung-Hung Shen				
Attorney Docket Number: VASP0001USA				
TOTAL FEE AUTHORIZED \$ 425				
Patent fees are subject to annual revisions on or about October 1st of each year.				
Filing as small entity				
BASIC FILING FEE				
Fee Description		Fee Code	Amount \$	Fee Paid \$
Utility Filing Fee		2001	385	385

EXTRA CLAIM FEES

Fee Description	Extra Claim	Fee Code	Amount \$	Fee Paid \$
Total Claims :9	0	2202	0	0
Independent Claims :2	0	2201	43	0
Subtotal For Extra Claims Fees: $\$ 0$				

ASSIGNMENT FEES

Fee Description	Property Number	Quantity	Fee Code	Amount \$	Fee Paid \$
Recording Each Patent Assignment Per Property Fee	00000000	1	8021	40	40

AUTHORIZED BILLING INFORMATION

The commissioner is hereby authorized to charge indicated fees and credit any overpayments to:

Deposit account number:
500801
Access Code
Deposit name:

Deposit authorized name:
NORTH AMERICA INTERNATIONAL PATENT OFFICE
WINSTON HSU

Signature:	VAEB-JMXX-8IIL
Date (YYYYMMDD):	2004-01-07
Charge Assignment Fees Required Under 37 C.F.R. Section 1.21 (h).	
Charge Any Additional Fee Required Under 37 C.F.R. Sections 1.16 and 1.17.	

DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN APPLICATION DATA SHEET (37 CFR 1.76)

Electronic Version v11

Stylesheet Version v10

Title of \quad DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND Invention RELATED DRIVING METHOD

As the below named inventors, we declare that:

This declaration is directed to the invention titled: " DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD"

We believe that we are the original and first inventors of the subject matter which is claimed and for which a patent is sought;

We have reviewed and understand the contents of the above-identified application, including the claims, as amended by any amendment specifically referred to above;

We acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to us to be material to patentability as defined in 37 CFR 1.56 , including for continuation-in-part applications, material information which became available between the filing date of the prior application and the national or PCT International filing date of the continuation-in-part application.

All statements made herein of own knowledge are true, all statements made herein on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001, and may jeopardize the validity of the application or any patent issuing thereon.

FULL NAME OF INVENTORS:

Inventor 1: Yung-Hung Shen	Inventor
Signature:	Citizen of : TW
Inventor 2: Shih-Chung Wang	Inventor
Signature:	Citizen of : TW
Inventor 3: Yuh-Ren Shen	Inventor

Signature :	Citizen of : TW
Inventor 4: Cheng-Jung Chen	Inventor
Signature :	Citizen of : TW

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:
I believe I am the sole (if only one name appears below), or joint (if more than one name appears), original and first inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled :
"DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD"
\qquad The specification for the above entitled invention is filed herewith.
The specification for the above entitled invention was filed previously
with application serial number: \qquad Filing Date: \qquad
I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability of the invention disclosed in this application in accordance with Title 37, Code of Federal Regulations, Section 1.56 (a). I further acknowledge the duty in any continuation-in-part application to disclose to the Patent and Trademark Office all information known to be material to the patentability of the invention disclosed in this application, as defined in 1.56 , which became available to me between the filing date of the prior application and the filing date of this application

PRIORITY CLAIM

\qquad There is no claim of priority

POWER OF ATTORNEY
As a named inventor, I hereby appoint the following attorneies to prosecute this
application and to transact all related business in the Patent and Trademark Office:
Winston Hsu
Registration $\# 1,526$ WinstonHsugaipo.com.tw
P.O. Box 506 ,
Merrifield, Virginia 22116 ,
U.S.A
TEL: $(02) 8923-7350$

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued hereon.

Date: \qquad

Printed Name: Post Office Address: and Residence Citizen of:

14F-3, No. 88, Da-Syue Rd., Hsin-Chu City, Taiwan, ROC.
ROC.

Date: \qquad
Printed Name: Post Office Address: and Residence Citizen of:

Shih-Chung Wang
No. 246-1, Jhong-Jhou 2nd Rd., Chi-Jin District, Kao-IIsiung City, Taiwan, R.O.C.
R.O.C.

Date: \qquad

Printed Name:
Post Office Address:
and Residence
Citizen of:
Fuhren Shan
No. 33, Lane 185, Yu-Fong St., East District, Tai-Nan
City, Taiwan, R.O.C.
R.O.C.

Date: \qquad

Printed Name: Post Office Address: and Residence
\qquad
Cheng-Jung Chen
No. 2, San-Min St., Community 13, Chung-Hwa Li, Jhu-Nan Town, Mao- Li Hsien, Taiwan, R.O.C. Citizen of: R.O.C.

POWER OF ATTORNEY OR AUTHORIZATION OF AGENT

Electronic Version v05
Stylesheet Version v05.0

Description

DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

Background of Invention

[0001] 1. Field of the Invention
[0002] The invention relates to a driving circuit of a liquid crystal display (LCD) panel and its related driving method, and more particularly, to a driving circuit for applying over two data impulses to a pixel electrode within one frame period, and its related driving method.
[0003] 2. Description of the Prior Art
[0004] A liquid crystal display (LCD) has advantages of lightweight, low power consumption, and low divergence and is applied to various portable equipment such as notebook computers and personal digital assistants (PDAs). In addition, LCD monitors and LCD televisions are gaining in popularity as a substitute for traditional cath-
ode ray tube (CRT) monitors and televisions. However, an LCD does have some disadvantages. Because of the limitations of physical characteristics, the liquid crystal molecules need to be twisted and rearranged when changing input data, which can cause the images to be delayed. For satisfying the rapid switching requirements of multimedia equipment, improving the response speed of liquid crystal is desired.
[0005] Generally when driving an LCD, a driving circuit receives a plurality of frame data and then generates corresponding data impulses, scan voltages, and timing signals, according to the frame data, in order to control pixel operation of the LCD. Each of the frame data includes data for refreshing all of the pixels within a frame period; thus each of the frame data can be regarded as including a plurality of pixel data, and each of the pixel data is for defining the gray level that a pixel is required to reach within a frame period. In the general standard, each pixel can switch among $256\left(2^{8}\right)$ gray levels, thus each of the pixel data is 8 bits in length.
[0006] Please refer to Fig. 1 showing a timing diagram of pixel data values varying in accordance with the frames. When driving a pixel, the driving circuit receives a plurality of
pixel data used for driving the pixel in sequence. As shown in Fig.1, GN, GN+1, GN+2 are the pixel data received in frame periods $N, N+1, N+2$, and the driving circuit determines the gray level of the pixel in the frame periods $N, N+1, N+2$ according to the values of the pixel data GN, GN+1, GN+2. In general, the larger the value of the pixel data is, the larger the gray level is. The driving circuit generates a data impulse corresponding to a frame period according to the pixel data GN, GN+1, GN+2, and applies the pulse to a pixel electrode of the corresponding pixel to have the pixel be in the appropriate gray level as required within each frame period.
[0007] Please refer to Fig. 2 showing a timing diagram of different transmission rates of a pixel, varying in accordance with the frames. Two curves C1, C2 are measured when the driving circuit changes the transmission rate from T1 to T2 beginning at frame period N . The curve C 1 shows the transmission rate of a pixel not overdriven corresponding to the frames, and the curve C2 shows the transmission rate of the pixel overdriven corresponding to the frames. The U.S. published application No. 2002/0050965 is one of the references of the conventional overdriving method. There is a time delay when charging liquid crystal
molecules, so that they cannot twist at a predetermined angle at a predetermined transmission rate. As shown by the curve C1, in the case of not being overdriven, the transmission rate cannot reach a predetermined level in the frame period N but has to wait until the frame period $N+2$. Such a delay causes blurring. In order to improve that, some conventional LCD are overdriven, which means applying a higher or a lower data impulse to the pixel electrode to accelerate the reaction speed of the liquid crystal molecules, so that the pixel can reach the predetermined gray level in a predetermined frame period. As shown by the curve C 2 , in the case of being overdriven, although the reaction speed of the liquid crystal molecules is faster than in case of not being overdriven, the transmission rate has to wait until frame period $\mathrm{N}+1$ to reach T2. Thus, the requirement of reaching T2 in the frame period N still remains unsatisfied.

Summary Of Invention

[0008] It is therefore a primary objective of the claimed invention to provide a driving circuit of an LCD panel and its relating driving method to solve the problem mentioned above.
[0009] Briefly, the present invention provides a method for driving an LCD panel. The LCD panel includes a plurality of
scan lines, a plurality of data lines, and a plurality of pixels. Each pixel is connected to a corresponding scan line and a corresponding data line, and each pixel includes a liquid crystal device and a switching device connected to the corresponding scan line, the corresponding data line, and the liquid crystal device. The method includes receiving continuously a plurality of frame data, generating a plurality of data impulses for each pixel in every frame period according to the frame data and applying the data impulses to the liquid crystal device of one of the pixels within one frame period via the data line connected to the pixel in order to control the transmission rate of the liquid crystal device of the pixel.
[0010] The present invention further provides a driving circuit for driving an LCD panel including a blur clear converter for receiving frame data every frame period, each frame data comprising a plurality of pixel data and each pixel data corresponding to a pixel, the blur clear converter delaying current frame data to generate delayed frame data and generating a plurality of overdriven pixel data in every frame period for each pixel; a source driver for generating a plurality of data impulses to each pixel according to the plurality of overdriven pixel data generated by the blur
clear converter and applying the data impulses to the liquid crystal device of the pixel via the scan line connected to the pixel in order to control the transmission rate of the liquid crystal device; and a gate driver for applying a scan line voltage to the switch device of the pixel so that the data impulses can be applied to the liquid crystal device of the pixel.
[0011] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

Brief Description of Drawings

[0012] Fig. 1 is a timing diagram of the pixel data values varying in accordance with the frames according to the prior art.
[0013] Fig. 2 is a timing diagram of different transmission rates of the pixel varying in accordance with the frames.
[0014] Fig. 3 is a block diagram of a driving circuit and an LCD panel according to the present invention.
[0015] Fig. 4 is a circuit diagram of the LCD panel.
[0016] Fig. 5 is a timing diagram of pixel data values varying in accordance with frames.
[0017] Fig. 6 is a timing diagram of the transmission rate of the pixel varying in accordance with the frames.
[0018] Fig. 7 is a block diagram of the blur clear converter according to the first embodiment of the present invention.
[0019] Fig. 8 is a block diagram of the blur clear converter according to the second embodiment of the present invention.
[0020] Fig. 9 is a timing diagram of original pixel data received by the blur clear converter varying in accordance with the frames.
[0021] Fig. 10 is a timing diagram of overdriven pixel data generated by the blur clear converter varying in accordance with the frames.

Detailed Description

[0022] Please refer to Fig. 3 showing a block diagram of a driving circuit 10 and an LCD panel 30 according to the present invention. The driving circuit 10 is for driving the LCD panel 30, which includes a signal controller 12, a blur clear converter 14 , a timing controller 16 , a source driver 18 , and a gate driver 20 . The signal controller 12 is for receiving composite video signals Sc, which includes frame data and timing data for driving the LCD panel 30, and processing the composite video signals Sc to separate
them into frame signals G and control signals C. Subsequently, the blur clear converter 14 continuously receives the control signals C and the frame data included in the frame signals G and generates processed frame signals G including a plurality of overdriven data according to the frame data. The timing controller 16 controls the source driver 18 and the gate driver 20 according to the frame signals G and the control signals C so that the source driver 18 and the gate driver 20 generate corresponding data line voltages and scan line voltages according to the plurality of overdriven data included in the frame signals G in order to drive the LCD panel 30 to generate images corresponding to the composite video signals Sc.
[0023] Please refer to Fig. 4 showing a circuit diagram of the LCD panel 30. The LCD panel 30 includes a plurality of scan lines 32 , a plurality of data lines 34 , and a plurality of pixels 36 . Each pixel 36 is connected to a corresponding scan line 32 and a corresponding data line 34, and each pixel 36 has a switching device 38 and a liquid crystal device 39 a.k.a. a pixel electrode. The switching device 38 is connected to the corresponding scan line 32 and the corresponding data line 34 , and the source driver 18 and the gate driver 20 control the operation of each pixel 36 via
the scan line 32 and the data line 34 . To drive the LCD 30, scan voltages are applied to the scan lines 32 to turn on the switching devices 38 , and data voltages are applied to the data lines 34 and transmitted to the pixel electrodes 30 through the switching devices 38 . Therefore, when the scan voltages are applied to the scan lines 32 to turn on the switching devices 38 , the data voltages on the data lines 34 will charge the pixel electrodes 39 through the switch devices 38 , thereby twisting the liquid crystal molecules. When the scan voltages on the scan lines 32 are removed to turn off the switching devices 38 , the data lines 34 and the pixels 36 will disconnect, and the pixel electrodes 39 will remain charged. The scan lines 32 turn the switching devices 38 on and off repeatedly so that the pixel electrodes 39 can be repeatedly charged. Different data voltages cause different twisting angles and show different transmission rates. Hence, the LCD 30 displays various images.
[0024] Please refer to Fig. 5 showing a timing diagram of pixel data values varying in accordance with frames. According to the present invention, when driving any pixel 36 of the LCD panel 30 , the driving circuit 10 generates a plurality of pixel data used for driving the pixel in sequence. As
shown in Fig.5, GN, GN(2), GN+1, GN+1(2), GN+2,
$\mathrm{GN}+2(2), \mathrm{GN}+3, \mathrm{GN}+3(2)$ are the pixel data generated in frame periods $N, N+1, N+2, N+3$. The driving circuit 10 generates two pieces of pixel data for each pixel 36 in every frame period. The driving circuit 10 drives the pixel to reach gray levels in the frame periods $N, N+1, N+2, N+3$ according to the values of the pixel data GN-GN+2(2). For instance, when the pixel data GN, GN(2) are generated, the source driver of the driving circuit 10 converts the pixel data GN, GN(2) into two corresponding data impulses and then applies them to the liquid crystal device 39 via the data line 32 in the frame period N in order to control the transmission rate of the liquid crystal device 39. Similarly, data impulses corresponding to the pixel data GN+1 - GN+3(2) are applied respectively to corresponding pixel electrodes 39 every half a frame period. Same as the prior art, the larger the value of the pixel data is, the higher the voltage of the corresponding data impulse is, and the larger the gray level value is.
[0025] Please refer to Fig. 6 showing a timing diagram of the transmission rate of the pixel 36 varying in accordance with the frames. As described above, the driving circuit 10 generates two pieces of pixel data in each frame period,
and then the source driver 18 generates two corresponding data impulses according to the two pieces of pixel data and applies them to the pixel electrode 39 of the corresponding pixel 36 in order to control the transmission rate and gray level of the pixel electrode 39. As shown in Fig.6, the driving circuit 10 changes the transmission rate of the pixel electrode 39 of a pixel 36 from T1 to T 2 in the frame period $\mathrm{N}+1$. The pixel electrode 39 is applied with two data impulses corresponding to the pixel data $\mathrm{GN}+1, \mathrm{GN}+1(2)$ in the frame period $\mathrm{N}+1$ at a time interval of half a frame period. As shown in Fig.6, although the transmission rate of the pixel electrode 39 cannot reach T 2 in the first half period $\mathrm{n}+2$ of the frame period $\mathrm{N}+1$, in the later half period $\mathrm{n}+3$ of the frame period $N+1$, the pixel electrode 39 is applied with another data impulse, so that the transmission rate can reach T2 in the frame period $\mathrm{N}+1$ as required. Therefore, blurring will not occur.
[0026] In the present embodiment, the two pieces of pixel data of each pixel in every frame period are generated by the blur clear converter 14. Please refer to Fig. 7 showing a block diagram of the blur clear converter 14. The blur clear converter 14 includes a multiplier 40 , a processing
circuit 42, a first image memory 44, a second image memory 46 , a first memory controller 48 , and a second memory controller 50. The multiplier 40 is for doubling the frequency of the control signal C to generate a multiplied signal C2. The first image memory 44 is controlled by the first memory controller 48 to delay current pixel data Gm for a frame period to generate delayed pixel data Gm-1 according to the control signal C. The processing circuit 42 generates a plurality of overdriven pixel data GN according to the current pixel data Gm and the delayed pixel data $\mathrm{Gm}-1$. The second image memory 46 stores the overdriven pixel data GN, and the second memory controller 50 controls the second image memory 46 to output two overdriven pixel data GN, GN(2) to each pixel 36 within a frame period according to the multiplied signal C2 in order to have the source driver 18 apply two data impulses to a specific pixel 36 within a frame period according to the two overdriven pixel data GN, GN(2).
[0027] Please refer to Fig. 8 showing a block diagram of the blur clear converter 60 according to the second embodiment of the present invention. The blur clear converter 60 functions the same as the blur clear converter 14 , which includes a multiplier 62, a first image memory 66, a second
image memory 68, a third image memory 70, a memory controller 64, a processing circuit 74, and a comparing circuit 72. The multiplier 62 is for doubling the frequency of the control signal C to generate a multiplied signal C 2 . The first image memory 66 is for receiving and temporarily storing a plurality of pixel data G. The second image memory 68 delays the plurality of pixel data G for a frame period to generate delayed pixel data $\mathrm{Gm}-1$. The third image memory 70 delays the pixel data Gm-1 for a frame period to generate delayed pixel data $\mathrm{Gm}-2$. Thus the pixel data Gm-2 lags the pixel data Gm-1 for a frame period, and so does the pixel data Gm-1 with respect to the pixel data Gm. The memory controller 64 controls the second image memory 68 and the third image memory 70 to output two overdriven pixel data in each frame period according to the multiplied signal C2. The processing circuit 74 generates two pieces of overdriven pixel data GN1, GN-1(2) for each pixel 36 in every frame period according to the pixel data Gm-1, Gm-2. The comparing circuit 72 compares the pixel data $\mathrm{Gm}-1$ with the pixel data $\mathrm{Gm}-2$ to determine the values of the overdriven pixel data GN-1, GN-1(2).
[0028] Please refer to Fig. 9 showing a timing diagram of original
pixel data received by the blur clear converter 60 varying in accordance with the frames, and Fig. 10 showing a timing diagram of overdriven pixel data generated by the blur clear converter 60 varying in accordance with the frames. As shown in Fig.9, the original pixel data received by the blur clear converter 60 in the frame periods N and $\mathrm{N}+1$ are respectively Gm and $\mathrm{Gm}+1$, with a difference Diff between each other. The blur clear converter 60 generates the two overdriven pixel data GN+1, GN+1(2) with a difference $\Delta \mathrm{G}$ between each other according to the original pixel data $\mathrm{Gm}, \mathrm{Gm}+1$. The difference $\Delta \mathrm{G}$ is determined by the comparing circuit 72 in Fig. 8 for driving the pixels 36 according to difference conditions. The difference $\Delta \mathrm{G}$ is determined according to the difference Diff between the original pixel data $G m$ and $G m+1$. For instance, when the difference Diff is less than a specific value, the comparing circuit 72 determines the difference $\Delta \mathrm{G}$ as 0 , that is equating the overdriven pixel data GN+1 to the overdriven pixel data GN+1(2). Or when the difference Diff is larger than a specific value, the comparing circuit 72 modulates the difference $\Delta \mathrm{G}$ to drive the LCD panel 30 properly.
[0029] In contrast to the prior art, the present invention discloses a driving circuit and relating driving method to generate
two pieces of pixel data in each frame period for every pixel on an LCD panel and then to generate two data impulses according to the two pieces of pixel data and to apply them to each pixel within a frame period in order to change the transmission rate of a pixel electrode. Thus, each of the pixels of the LCD panel is applied of a plurality of data impulses within a frame period, so that liquid crystal molecules of the pixels can twist to reach a predetermined gray level within a frame period, and blurring will not occur.
[0030] Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Electronic Version
Stylesheet Version v1.1.1

Claims

[c1] 1.A method for driving a liquid crystal display (LCD) panel, the LCD panel comprising:
a plurality of scan lines;
a plurality of data lines; and
a plurality of pixels, each pixel being connected to a corresponding scan line and a corresponding data line, and each pixel comprising a liquid crystal device and a switching device connected to the corresponding scan line, the corresponding data line, and the liquid crystal device, and
the method comprising:
receiving continuously a plurality of frame data; generating a plurality of data impulses for each pixel within every frame period according to the frame data; and
applying the data impulses to the liquid crystal device of one of the pixels within one frame period via the data line connected to the pixel in order to control a transmission rate of the liquid crystal device of the pixel.
[c2] 2. The method of claim 1 further comprising: delaying the frame data to generate a plurality of corre-
sponding delayed frame data; and comparing current frame data and corresponding delayed data to determine voltage values of the data impulses when generating the data impulses.
[c3] 3.The method of claim 2 wherein the data impulses are a first data impulse and a second data impulse applied to the liquid crystal device of the pixel in sequence within the frame period.
[c4] 4. The method of claim 3 further comprising: determining a difference between the first data impulse and the second data impulse according to the current frame data and the corresponding delayed frame data.
[c5] 5. The method of claim 1 further comprising: applying a scan line voltage to the switch device of the pixel via the scan line connected to the pixel in order to have the data impulses be applied to the liquid crystal device of the pixel.
[c6] 6. The method of claim 1 wherein each frame data comprises a plurality of pixel data, and each pixel data corresponds to a pixel.
[c7] 7. A driving circuit for driving an LCD panel, the LCD panel comprising:
a plurality of scan lines;
a plurality of data lines; and
a plurality of pixels, each pixel being connected to a corresponding scan line and a corresponding data line, and each pixel comprising a liquid crystal device and a switching device connected to the corresponding scan line, the corresponding data line, and the liquid crystal device,
the driving circuit comprising:
a blur clear converter for receiving frame data every frame period, each frame data comprising a plurality of pixel data and each pixel data corresponding to a pixel, the blur clear converter delaying current frame data to generate delayed frame data and generating a plurality of overdriven pixel data within every frame period for each pixel;
a source driver for generating a plurality of data impulses to each pixel according to the plurality of overdriven pixel data generated by the blur clear converter and applying the data impulses to the liquid crystal device of the pixel via the scan line connected to the pixel within one frame period in order to control transmission rate of the liquid crystal device; and a gate driver for applying a scan line voltage to the switch device of the pixel so that the data impulses can be applied to the liquid crystal device of the pixel.
[c8] 8. The driving circuit of claim 7 wherein the blur clear converter further comprises:
a multiplier for multiplying a frequency of a control signal to generate a multiplied signal;
a first image memory for delaying the pixel data for a frame period;
a processing circuit for generating the plurality of overdriven pixel data according to the pixel data and the pixel data delayed by the first image memory;
a second image memory for storing the overdriven pixel data;
a memory controller for controlling the second image memory according to the multiplied signal to output the plurality of overdriven pixel data to any pixel so that the source driver generates the data impulses to each pixel within one frame period according to the overdriven pixel data output by the second image memory.
[c9] 9. The driving circuit of claim 7 wherein the blur clear converter further comprises:
a multiplier for multiplying a frequency of a control signal to generate a multiplied signal;
a first image memory for receiving and temporarily storing the pixel data;
a second image memory for delaying the pixel data stored and output by the first image memory for a frame
period;
a third image memory for delaying the pixel data stored and output by the second image memory for a frame period;
a memory controller for controlling the second image memory and the third image memory according to the multiplied signal;
a processing circuit for generating the plurality of overdriven pixel data according to the pixel data delayed and output by the second image memory and the third image memory; and
a comparing circuit for comparing the pixel data delayed by the second image memory with the pixel data delayed by the third image memory in order to determine data values of the overdriven pixel data generated by the processing circuit.

DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

Abstract

 A method for driving a liquid crystal display (LCD) panel includes receiving continuously a plurality of frame data, generating a plurality of data impulses for each pixel every frame period according to the frame data, and applying the data impulses to a liquid crystal device of a pixel within a frame period via the data line connected to the pixel in order to control a transmission rate of the liquid crystal device.

Fig. I Prior art

Fig. 2 Prior art

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

ACKNOWLEDGEMENT RECEIPT

Electronic Version

Stylesheet Version v01

Title of Invention	DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD																															
Submision Type : Application Number:		Utility Patent Filing																														
		10/707741	\|																													
EFS ID:		53290																														
Server Response:		Confirmation Code	Message																													
		ISVR1 Sub Even app app	Submission was successfully submitted Even if Informational or Warning Messages appear below, please do not resubmit this application																													
		1 CON 1 17	1740																													
First Named Applicant: Attorney Docket Number: Timestamp:		Yung-Hung Shen																														
		VASP0001USA																														
		2004-01-08 01:40:10 EDT																														
From: File Listing:		us																														
		Doc. Name	File Name	Size (Bytes)																												
		us-assignment	VASP0001-usassn.xm\|		2004-01-08																											
		us-assignment	us-assignment.xs		2004-01-08																											
		us-assignment	U-assignment.std	10898	2004-01-08																											
		us-assignment	VASP0001ASS2.tif	31724	2004-01-08																											
		us-request	VASP0001-usrequ.xmI	3477	2004-01-08																											
		us-request	us-request.dtd	19064	2004-01-08																											
		us-request	us-request.xsi	33300	2004-01-08																											
		us-fee-sheet	VASP0001-ustees.xml	24912	2004-01-08																											
		us-fee-sheet	us-fee-sheet.did	11069	2004-01-08																											
		us-declaration	VASP0001-usdecl.xmI	1282	2004-01-08																											
		us-declaration	us-declaration.dtd	3833	2004-01-08																											
		us-declaration	us-declaration.xs	10015	2004-01-08																											
		us-power-of-attorney-grant	VASP0001-uspoat.xm\|	982	2004-01-08																											
		us-power-of-attorney-grant	us-power-of-attorney-grant.dtd	4923	2004-01-08																											
		us-power-of-attorney-grant	us-power-of-attorney-grant.xsl	${ }^{12448}$	2004-01-08																											
		us-declaration	VASP0001DEC1.tif	${ }_{38466}^{3214}$	2004-01-08																											
		application-body	VASP0001-trans.xmI	28337	2004-01-08																											
		application-body	us-application-body.xsI	83497	2004-01-08																											
		application-body	application-body.dtd	49498	2004-01-08																											
		application-body	wipo.ent	4956	2004-01-08																											
		application-body	mathml2.dtd	54588	2004-01-08																											
		application-body	mathm12-gname-1.mod	13225	2004-01-08																											
		application-body	Isoamsa.ent	5191	2004-01-08																											
		application-body	isoamsc.ent	1460	2004-01-08																											
		application-body	isoamsn.ent	5620	2004-01-08																											
		application-body	isoamso.ent		2004-01-08																											

	Doc. Name	File Name	Size (Bytes)	$\begin{gathered} \text { Date } \\ \text { (yyyyymmidd) } \end{gathered}$
	application-body	isoamsr.ent	7073	2004-01-08
	application-body	sogrk3.ent	3559	2004-01-08
	application-body	isomfrk.ent	4553	2004-01-08
	application-body	isomopf.ent	2571	2004-01-08
	application-body	isomscr.ent	4628	2004-01-08
	application-body	isotech.ent	5268	2004-01-08
	application-body	isobox.ent	3568	2004-01-08
	application-body	isocyrl.ent	5345	2004-01-08
	application-body	isocyri2.ent	2504	2004-01-08
	application-body	isodia ent	1508	2004-01-08
	application-body	isolat1.ent	5282	2004-01-08
	application-body	isolat2.ent	9007	2004-01-08
	application-body	sonum.ent	5913	2004-01-08
	application-body	isopub.ent	6621	2004-01-08
	application-body	mmlextra.ent	7901	2004-01-08
	application-body	mmalias.ent	38209	2004-01-08
	application-body	sooxtblx. .ttd	12870	2004-01-08
	application-body	vasp0001usa-01. if	3010	2004-01-08
	application-body	vasp0001usa-02.tif	3494	2004-01-08
	application-body	vasp0001usa-03.tif	5060	2004-01-08
	application-body	vasp0001usa-04.tif	4928	2004-01-08
	application-body	vasp0001usa-05.tif	5202	2004-01-08
	application-body	vasp0001usa-06.tif		2004-01-08
	application-body	vasp0001usa-07. itf	6812	2004-01-08
	application-body	vasp0001usa-08.tif		2004-01-08
	application-body	vasp0001usa-09.tif	2942	2004-01-08
	application-body	vasp0001usa-10.tif	3314	2004-01-08
	package-data	VASP0001-pkda.xml	10237	2004-01-08
	package-data	package-data..dtd	27025	2004-01-08
	package-data	Us-package-data. .xs	19263	2004-01-08
		Total files size	775693	
Message Digest:	d24bedf93b24	bbe45b45cfffd062a97e6f182		
Digital Certificate Holder Name:	cn=Winston H Attorneys,ou= Trademark Office,ou=Dep Commerce, $0=$ Government,	u=Registered nt and ment of		

[^0]: Jouve, 18, tue Saint-Denis, 75001 PARIS

