UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SONY CORPORATION, SAMSUNG ELECTRONICS CO., LTD., and SAMSUNG DISPLAY CO., LTD.

Petitioners

Patent No. 7,202,843 Issue Date: April 10, 2007 Title: DRIVING CIRCUIT OF A LIQUID CRYSTAL DISPLAY PANEL AND RELATED DRIVING METHOD

CORRECTED PETITION FOR INTER PARTES REVIEW

OF U.S. PATENT NO. 7,202,843

No. IPR2015-00863

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Table of Contents

I. Mandatory Notices (37 C.F.R. § 42.8)
III. Identification of Challenge (37 C.F.R. § 42.104(b)(1)-(3))
and Relief Requested (37 C.F.R. § 42.22(a)(1)) 2
A. Background of the '843 Patent
B. Printed Publications Relied On
1. Sony-1003: U.S. Patent Application Publication
No. 2003/0156092 (August 21, 2003) ("Suzuki")
2. Sony-1004, Sony-1005: Japanese Laid Open Patent Application
No. 2002-132224 (May 9, 2002) and
Certified English Translation Thereof ("Nitta")
3. Sony-1006: U.S. Patent Application Publication
No. 2002/0044115 (April 18, 2002) ("Jinda")
4. Sony-1007: U.S. Patent Application Publication
No. 2003/0048247 (March 13, 2003) ("Ham")7
C. Statutory Grounds for Challenge
D. Claim Construction
IV. How the Challenged Claims Are Unpatentable (37 C.F.R. § 42.104(b)(4)-(5)) 8
A. Claims 4-9 Would Have Been Obvious Over Suzuki in View of Nitta9
1. Claim 4
i. A method for driving a liquid crystal display (LCD) panel,
ii. the LCD panel comprising:
a. a plurality of scan lines;
b. a plurality of data lines;
c. and a plurality of pixels, each pixel being connected to a
corresponding scan line and a corresponding data line,
and each pixel comprising a liquid crystal device and a
switching device connected to the corresponding
scan line, the corresponding data line, and the liquid crystal device,
iii. and the method comprising: receiving continuously
a plurality of frame data,
iv. generating a plurality of data impulses for each pixel within
every frame period according to the frame data; and
v. applying the data impulses to the liquid crystal device of
one of the pixels within one frame period via the data line
connected to the pixel in order to control a transmission
rate of the liquid crystal device of the pixel19

::

2. Claim 5: The method of claim 4 further comprising: delaying	
the frame data to generate a plurality of corresponding	
delayed frame data; and comparing current frame data and	
corresponding delayed data to determine voltage values of	
the data impulses when generating the data impulses	21
3. Claim 6: The method of claim 5 wherein the data impulses	
are a first data impulse and a second data impulse applied to	
the liquid crystal device of the pixel in sequence with the frame period 2	23
4. Claim 7: The method of claim 6 further comprising determining	
a difference between the first data impulse and the second	
data impulse according to the current frame data and the	
corresponding delayed frame data2	24
5. Claim 8: The method of claim 4 further comprising: applying	
a scan line voltage to the switch device of the pixel via the scan	
line connected to the pixel in order to have the data impulses be	
applied to the liquid crystal device of the pixel2	26
6. Claim 9: The method of claim 4 wherein each frame data comprises	
a plurality of pixel data, and each pixel data corresponds to a pixel 2	28
B. Claims 4-9 Would Have Been Obvious Over Jinda in View of Nitta	30
1. Claim 4	31
i. A method for driving a liquid crystal display (LCD) panel,	31
ii. the LCD panel comprising: a plurality of scan lines, a plurality	
of data lines, and a plurality of pixels, each pixel being	
connected to a corresponding scan line and a corresponding	
data line, and each pixel comprising a liquid crystal display	
device and a switching device connected to the corresponding	
scan line, the corresponding data line, and the liquid crystal device,	
a. a plurality of scan lines;	
b. a plurality of data lines;	33
c. and a plurality of pixels, each pixel being connected to a	
corresponding scan line and a corresponding data line, and	
each pixel comprising a liquid crystal device and a	
switching device connected to the corresponding	
scan line, the corresponding data line, and the liquid crystal device, 3	33
iii. and the method comprising: receiving continuously a	
	34
iv. generating a plurality of data impulses for each pixel	
within every frame period according to the frame data;	34

v. and applying the data impulses to the liquid crystal device	
of one of the pixels within one frame period via the data	
line connected to the pixel in order to control a transmission	
rate of the liquid crystal device of the pixel	36
2. Claim 5: The method of claim 4 further comprising: delaying	
the frame data to generate a plurality of corresponding delayed	
frame data; and comparing current frame data and corresponding	
delayed data to determine voltage values of the data impulses	
when generating the data impulses	38
3. Claim 6: The method of claim 5 wherein the data impulses are	
a first data impulse and a second data impulse applied to	
the liquid crystal device of the pixel in sequence within the frame period 4	10
4. Claim 7: The method of claim 6 further comprising determining	
a difference between the first data impulse and the second	
data impulse according to the current frame data and the	
corresponding delayed frame data 4	11
5. Claim 8: The method of claim 4 further comprising: applying	
a scan line voltage to the switch device of the pixel via	
the scan line connected to the pixel in order to have the data	
impulses be applied to the liquid crystal device of the pixel 4	13
6. Claim 9: The method of claim 4 wherein each frame data comprises	
a plurality of pixel data, and each pixel data corresponds to a pixel 4	
C. Claims 4, 8, and 9 Would Have Been Obvious in View of Ham 4	15
1. Claim 4	
i. A method for driving a liquid crystal display (LCD) panel, 4	
ii. The LCD panel comprising: 4	
a. a plurality of scan lines;	
b. a plurality of data lines;	17
c. and a plurality of pixels, each pixel being connected to	
a corresponding scan line and a corresponding data line,	
and each pixel comprising a liquid crystal device and a	
switching device connected to the corresponding	
scan line, the corresponding data line, and the liquid crystal device, 4	17
iii. and the method comprising: receiving continuously a	
plurality of frame data;	18
iv. generating a plurality of data impulses for each pixel	10
within every frame period according to the frame data;	19
v. and applying the data impulses to the liquid crystal device	
of one of the pixels within one frame period via the data	
line connected to the pixel in order to control a transmission	-
rate of the liquid crystal device of the pixel5	90

2. Claim 8: The method of claim 4 further comprising: applying	
a scan line voltage to the switch device of the pixel via the scan	
line connected to the pixel in order to have the data impulses be	
applied to the liquid crystal device of the pixel	51
3. Claim 9: The method of claim 4 wherein each frame data	
comprises a plurality of pixel data, and each pixel data	
corresponds to a pixel.	52
V. The Grounds Related to Suzuki, Jinda, and Ham	
Are Not Redundant of One Another	53
VI. Conclusion	
VII. Abridged Claim Charts	

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.