
PTO/SB/05 (07-07)
Approved for use through 06/30/201 o. OMB 0651-0032

U.S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE
Under the Paoerwork Reduction Act of 1995 no oersons are reauired to resoond to a collection of information unless it disolavs a valid OMB control number.

r CROSS1120-33 ""' UTILITY Attorney Docket No.

PATENT APPLICATION First Inventor Geoffrey B. Heese

TRANSMITTAL Title Storage Router and Method for ...

"
(Only for new nonprovisional applications under 37 CFR 1.53(b)) Express Mail Label No. N/A

~

APPLICATION ELEMENTS
Commissioner for Patents

ADDRESS TO: P.O. Box 1450
See MPEP chapter 600 concerning utility patent application contents. Alexandria VA 22313-1450

1.[{] Fee Transmittal Form (e.g., PTO/SB/17) ACCOMPANYING APPLICATION PARTS

2.0
(Submit an original and a duplicate for fee processing)

Applicant claims small entity status.
9. 0 Assignment Papers (cover sheet & document(s)) See 37 CFR 1.27.

3.0 Specification [Total Pages 25 1 Name of Assignee Both the claims and abstract must start on a new page
(For information on the preferred arrangement, see MPEP 608.01(a))

4.[{] Drawing(s) (35 U.S.C. 113) [Total Sheets 2 1

5. Oath or Declaration [Total Sheets 4 1 10. 0 37 CFR 3.73(b) Statement OPowerof
a. @ Newly executed (original or copy) (when there is an assignee) Attorney
b. A copy from a prior application (37 CFR 1.63(d))

0or continuation/divisional with Box 18 completed) 11.0 English Translation Document (if applicable)
i. DELETION OF INVENTOR{S}

Signed statement attached deleting inventor(s) 12. 0 lnfof5'tion Disclosure Statement (PTO/SB/08 or PT0-1449)
name in the prior application, see 37 CFR Copies of citations attached
1.63(d)(2) and 1.33(b).

6.0 Application Data Sheet. See 37 CFR 1. 76
13. 0 Preliminary Amendment

7.0 CD-ROM or CD-R in duplicate, large table or
14. O Return Receipt Postcard (MPEP 503)

t=.Jputer Program (Appendix)
Landscape Table on CD (Should be specifically itemized)

8. Nucleotide and/or Amino Acid Sequence Submission 15. O Certified Copy of Priority Document(s)

(if applicable, items a. - c. are required) (if foreign priority is claimed)
a. 0 Computer Readable Form (CRF)
b. Specification Sequence Listing on: 16. O Nonpublication Request under 35 U.S.C. 122(b)(2)(B)(i).

0

Applicant must attach form PTO/SB/35 or equivalent.

i. CD-ROM or CD-R (2 copies); or
17. 0 Other: Cert. ofTransmission and Identification of ii.O Paper

c. 0 Statements verifying identity of above copies Change in Power of Attorne}!

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in the first sentence of the
specification following the title, or in an Application Data Sheet under 37 CFR 1. 76:

0 Continuation 0 Divisional 0 Continuation-in-part (CIP) of prior application No.: 12/552,885

Prior application information: Examiner Unknown Art Unit: 2181

19. CORRESPONDENCE ADDRESS

I .f I The address associated with Customer Number: I 44654 I OR D Correspondence address below

Name

Address

City I State Zip Code

Country
....-;? _.. 1 Telephone Email

Signature ~p--~ 1 Date January 20, 201 0

Name
Jol1!i'L. Adair Registration No. I

(Print!Tvoe) . (Attornev/Aaent) 48•828

This collection of information is required by 37 CFR 1.53(b). The information is required to obtain or retain a benefit by the public which is to file (and by the
USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to
complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer,
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, ca/11-800-PT0-9199 and select option 2.

Oracle Ex. 1002, pg. 1

ATTORNEY DOCKET NO.
CROSS 1120-33

1

PATENT APPLICATION
CUSTOMER NO. 44654

STORAGE ROUTER AND METHOD FOR PROVIDING

VIRTUAL LOCAL STORAGE

TECHNICAL FIELD OF THE INVENTION

[0001] This application is a continuation of, and claims a benefit of priority under 35

U.S.C. 120 of the filing date of U.S. Patent Application Serial No. 12/552,885

entitled "Storage Router and Method for Providing Virtual Local Storage" filed

09/02/2009, which is a continuation of and claims the benefit of priority of U.S.

Application Serial No. 11/851,724 entitled "Storage Router and Method for

Providing Virtual Local Storage" filed 09/07/2007, which is a continuation of and

claims the benefit of priority of U.S. Patent Application Serial No. 11/442,878

entitled "Storage Router and Method for Providing Virtual Local Storage" filed

09/07/2007, which is a continuation of and claims the benefit of priority of U.S.

Patent Application Serial No. 11/353,826 entitled "Storage Router and Method for

Providing Virtual Local Storage" filed on 02/14/2006, now U.S. Patent No.

7,340,549 issued 03/04/2008, which is a continuation of and claims the benefit of

priority of U.S. Patent Application Serial No. 10/658,163 entitled "Storage Router

and Method for Providing Virtual Local Storage" filed on 09/09/2003 now U.S.

Patent No. 7,051,147 issued 05/23/2006, which is a continuation of and claims

the benefit of benefit of priority of U.S. Patent Application Serial No. 10/081,11 0

by inventors Geoffrey B. Hoese and Jeffery T. Russell, entitled "Storage Router

and Method for Providing Virtual Local Storage" filed on 02/22/2002, now U.S.

Patent No. 6, 789,152 issued on 09/07/2004, which in turn is a continuation of

and claims benefit of priority of U.S. Application No. 09/354,682 by inventors

Geoffrey B. Hoese and Jeffrey T. Russell, entitled "Storage Router and Method

for Providing Virtual Local Storage" filed on 07/15/1999, now U.S. Patent No.

6,421,753 issued on 07/16/2002, which in turn is a continuation of and claims

benefit of priority of U.S. Patent Application Serial No. 09/001,799, filed on

12/31/1997, now U.S. Patent No. 5,941,972 issued on 08/24/1999, and hereby

incorporates these applications and patents by reference in their entireties as if

they had been fully set forth herein.

Oracle Ex. 1002, pg. 2

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0002]

2

This invention relates in general to network storage devices, and more

particularly to a storage router and method for providing virtual local storage on

remote SCSI storage devices to Fibre Channel devices.

BACKGROUND OF THE INVENTION

[0003] Typical storage transport mediums provide for a relatively small number of

devices to be attached over relatively short distances. One such transport

medium is a Small Computer System Interface (SCSI) protocol, the structure and

operation of which is generally well known as is described, for example, in the

SCSI-1, SCSI-2 and SCSI-3 specifications. High speed serial interconnects

provide enhanced capability to attach a large number of high speed devices to a

common storage transport medium over large distances. One such. serial

interconnect is Fibre Channel, the structure and operation of which is described,

for example, in Fibre Channel Physical and Signaling Interface (FC-PH), ANSI

X3.230 Fibre Channel Arbitrated Loop (FC-AL), and ANSI X3.272 Fibre Channel

Private Loop Direct Attach (FC-PLDA).

[0004] Conventional computing devices, such as computer workstations, generally

access storage locally or through network interconnects. Local storage typically

consists of a disk drive, tape drive, CD-ROM drive or other storage device

contained within, or locally connected to the workstation. The workstation

provides a file system structure that includes security controls, with access to the

local storage device through native low level block protocols. These protocols

map directly to the mechanisms used by the storage device and consist of data

requests without security controls. Network interconnects typically provide

access for a large number of computing devices to data storage on a remote

network server. The remote network server provides file system structure, access

control, and other miscellaneous capabilities that include the network interface.

Access to data through the network server is through network protocols that the

server must translate into low level requests to the storage device. A workstation

with access to the server storage must translate its file system protocols into

network protocols that are used to communicate with the server. Consequently,

Oracle Ex. 1002, pg. 3

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

3

from the perspective of a workstation, or other computing device, seeking to

access such server data, the access is much slower than access to data on a

local storage device.

SUMMARY OF THE INVENTION

[0005] In accordance with the present invention, a storage router and method for

providing virtual local storage on remote SCSI storage devices to Fibre Channel

devices are disclosed that provide advantages over conventional network

storage devices and methods.

[0006]

[0007]

According to one aspect of the present invention, a storage router and storage

network provide virtual local storage on remote SCSI storage devices to Fibre

Channel devices. A plurality of Fibre Channel devices, such as workstations, are

connected to a Fibre Channel transport medium, and a plurality of SCSI storage

devices are connected to a SCSI bus transport medium. The storage router

interfaces between the Fibre Channel transport medium and the SCSI bus

transport medium. The storage router maps between the workstations and the

SCSI storage devices and implements access controls for storage space on the

SCSI storage devices. The storage router then allows access from the

workstations to the SCSI storage devices using native low level, block protocol in

accordance with the mapping and the access controls.

According to another aspect of the present invention, virtual local storage on

remote SCSI storage devices is provided to Fibre Channel devices. A Fibre

Channel transport medium and a SCSI bus transport medium are interfaced with.

A configuration is maintained for SCSI storage devices connected to the SCSI

bus transport medium. The configuration maps between Fibre Channel devices

and the SCSI storage devices and implements access controls for storage space

on the SCSI storage devices. Access is then allowed from Fibre Channel initiator

devices to SCSI storage devices using native low level, block protocol in

accordance with the configuration.

Oracle Ex. 1002, pg. 4

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0008]

[0009]

[001 0]

4

A technical advantage of the present invention is the ability to centralize local

storage for networked workstations without any cost of speed or overhead. Each

workstation accesses its virtual local storage as if it were locally connected.

Further, the centralized storage devices can be located in a significantly remote

position even in excess of ten kilometers as defined by Fibre Channel standards.

Another technical advantage of the present invention is the ability to centrally

control and administer storage space for connected users without limiting the

speed with which the users can access local data. In addition, global access to

data, backups, virus scanning and redundancy can be more easily accomplished

by centrally located storage devices.

A further technical advantage of the present invention is providing support for

SCSI storage devices as local storage for Fibre Channel hosts. In addition, the

present invention helps to provide extended capabilities for Fibre Channel and for

management of storage subsystems.

Oracle Ex. 1002, pg. 5

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

5

BRIEF DESCRIPTION OF THE DRAWINGS

[00 11]

[0012]

[0013]

[0014]

[0015]

[0016]

A more complete understanding of the present invention and the advantages

thereof may be acquired by referring to the following description taken in

conjunction with the accompanying drawings, in which like reference numbers

indicate like features, and wherein:

FIGURE 1 is a block diagram of a conventional network that provides storage

through a network server;

FIGURE 2 is a block diagram of one embodiment of a storage network with a

storage router that provides global access and routing;

FIGURE 3 is a block diagram of one embodiment of a storage network with a

storage router that provides virtual local storage;

FIGURE 4 is a block diagram of one embodiment of the storage router of

FIGURE 3; and

FIGURE 5 is a block diagram of one embodiment of data flow within the storage

router of FIGURE 4.

Oracle Ex. 1002, pg. 6

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

6

DETAILED DESCRIPTION OF THE INVENTION

[0017] FIGURE 1 is a block diagram of a conventional network, indicated generally at

10, that provides access to storage through a network server. As shown, network

10 includes a plurality of workstations 12 interconnected with a network server 14

via a network transport medium 16. Each workstation 12 can generally comprise

a processor, memory, inpuUoutput devices, storage devices and a network

adapter as well as other common computer components. Network server 14 uses

a SCSI bus 18 as a storage transport medium to interconnect with a plurality of

storage devices 20 (tape drives, disk drives, etc.). In the embodiment of FIGURE

1, network transport medium 16 is a network connection and storage devices 20

comprise hard disk drives, although there are numerous alternate transport

mediums and storage devices.

[0018]

[0019]

In network 1 0, each workstation 12 has access to its local storage device as well

as network access to data on storage devices 20. The access to a local storage

device is typically through native low level, block protocols. On the other hand,

access by a workstation 12 to storage devices 20 requires the participation of

network server 14 which implements a file system and transfers data to

workstations 12 only through high level file system protocols. Only network

server 14 communicates with storage devices 20 via native low level, block

protocols. Consequently, the network access by workstations 12 through network

server 14 is slow with respect to their access to local storage. In network 10, it

can also be a logistical problem to centrally manage and administer local data

distributed across an organization, including accomplishing tasks such as

backups, virus scanning and redundancy.

FIGURE 2 is a block diagram of one embodiment of a storage network, indicated

generally at 30, with a storage router that provides global access and routing.

This environment is significantly different from that of FIGURE 1 in that there is

no network server involved. In FIGURE 2, a Fibre Channel high speed serial

transport 32 interconnects a plurality of workstations 36 and storage devices 38.

A SCSI bus storage transport medium interconnects workstations 40 and storage

Oracle Ex. 1002, pg. 7

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0020]

[0021]

[0022]

7

devices 42. A storage router 44 then serves to interconnect these mediums and

provide devices on either medium global, transparent access to devices on the

other medium. Storage router 44 routes requests from initiator devices on one

medium to target devices on the other medium and routes data between the

target and the initiator. Storage router 44 can allow initiators and targets to be on

either side. In this manner, storage router 44 enhances the functionality of Fibre

Channel 32, by providing access, for example, to legacy SCSI storage devices

on SCSI bus 34. In the embodiment of FIGURE 2, the operation of storage router

44 can be managed by a management station 46 connected to the storage router

via a direct serial connection.

In storage network 30, any workstation 36 or workstation 40 can access any

storage device 38 or storage device 42 through native low level, block protocols,

and vice versa. This functionality is enabled by storage router 44 which routes

requests and data as a generic transport between Fibre Channel 32 and SCSI

bus 34. Storage router 44 uses tables to map devices from one medium to the

other and distributes requests and data across Fibre Channel 32 and SCSI bus

34 without any security access controls. Although this extension of the high

speed serial interconnect provided by Fibre Channel is beneficial, it is desirable

to provide security controls in addition to extended access to storage devices

through a native low level, block protocol.

FIGURE 3 is a block diagram of one embodiment of a storage network, indicated

generally at 50, with a storage router that provides virtual local storage. Similar to

that of FIGURE 2, storage network 50 includes a Fibre Channel high speed serial

interconnect 52 and a SCSI bus 54 bridged by a storage router 56. Storage

router 56 of FIGURE 3 provides for a large number of workstations 58 to be

interconnected on a common storage transport and to access common storage

devices 60, 62 and 64 through native low level, block protocols.

According to the present invention, storage router 56 has enhanced functionality

to implement security controls and routing such that each workstation 58 can

Oracle Ex. 1002, pg. 8

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0023]

[0024]

[0025]

8

have access to a specific subset of the overall data stored in storage devices 60,

62 and 64. This specific subset of data has the appearance and characteristics of

local storage and is referred to herein as virtual local storage. Storage router 56

allows the configuration and modification of the storage allocated to each

attached workstation 58 through the use of mapping tables or other mapping

techniques.

As shown in FIGURE 3, for example, storage device 60 can be configured to

provide global data 65 which can be accessed by all workstations 58. Storage

device 62 can be configured to provide partitioned subsets 66, 68, 70 and 72,

where each partition is allocated to one of the workstations 58 (workstations A, B,

C and D). These subsets 66, 68, 70 and 72 can only be accessed by the

associated workstation 58 and appear to the associated workstation 58 as local

storage accessed using native low level, block protocols. Similarly, storage

device 64 can be allocated as storage for the remaining workstation 58

(workstation E).

Storage router 56 combines access control with routing such that each

workstation 58 has controlled access to only the specified partition of storage

device 62 which forms virtual local storage for the workstation 58. This access

control allows security control for the specified data partitions. Storage router 56

allows this allocation of storage devices 60, 62 and 64 to be managed by a

management station 76. Management station 76 can connect directly to storage

router 56 via a direct connection or, alternately, can interface with storage router

56 through either Fibre Channel 52 or SCSI bus 54. In the latter case,

management station 76 can be a workstation or other computing device with

special rights such that storage router 56 allows access to mapping tables and

shows storage devices 60, 62 and 64 as they exist physically rather than as they

have been allocated.

The environment of FIGURE 3 extends the concept of single workstation having

locally connected storage devices to a storage network 50 in which workstations

Oracle Ex. 1002, pg. 9

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0026]

[0027]

9

58 are provided virtual local storage in a manner transparent to workstations 58.

Storage router 56 provides centralized control of what each workstation 58 sees

as its local drive, as well as what data it sees as global data accessible by other

workstations 58. Consequently, the storage space considered by the workstation

58 to be its local storage is actually a partition (i.e., logical storage definition) of a

physically remote storage device 60, 62 or 64 connected through storage router

56. This means that similar requests from workstations 58 for access to their

local storage devices produce different accesses to the storage space on storage

devices 60, 62 and 64. Further, no access from a workstation 58 is allowed to the

virtual local storage of another workstation 58.

The collective storage provided by storage devices 60, 62 and 64 can have

blocks allocated by programming means within storage router 56. To accomplish

this function, storage router 56 can include routing tables and security controls

that define storage allocation for each workstation 58. The advantages provided

by implementing virtual local storage in centralized storage devices include the

ability to do collective backups and other collective administrative functions more

easily. This is accomplished without limiting the performance of workstations 58

because storage access involves native low level, block protocols and does not

involve the overhead of high level protocols and file systems required by network

servers.

FIGURE 4 is a block diagram of one embodiment of storage router 56 of FIGURE

3. Storage router 56 can comprise a Fibre Channel controller 80 that interfaces

with Fibre Channel 52 and a SCSI controller 82 that interfaces with SCSI bus 54.

A buffer 84 provides memory work space and is connected to both Fibre Channel

controller 80 and to SCSI controller 82. A supervisor unit 86 is connected to Fibre

Channel controller 80, SCSI controller 82 and buffer 84. Supervisor unit 86

comprises a microprocessor for controlling operation of storage router 56 and to

handle mapping and-security access for requests between Fibre Channel 52 and

SCSI bus 54.

Oracle Ex. 1002, pg. 10

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0028]

[0029]

[0030]

10

FIGURE 5 is a block diagram of one embodiment of data flow within storage

router 56 of FIGURE 4. As shown, data from Fibre Channel 52 is processed by a

Fibre Channel (FC) protocol unit 88 and placed in a FIFO queue 90. A direct

memory access (DMA) interface 92 then takes data out of FIFO queue 90 and

places it in buffer 84. Supervisor unit 86 processes the data in buffer 84 as

represented by supervisor processing 93. This processing involves mapping

between Fibre Channel 52 and SCSI bus 54 and applying access controls and

routing functions. A DMA interface 94 then pulls data from buffer 84 and places it

into a buffer 96. A SCSI protocol unit 98 pulls data from buffer 96 and

communicates the data on SCSI bus 54. Data flow in the reverse direction, from

SCSI bus 54 to Fibre Channel 52, is accomplished in a reverse manner.

The storage router of the present invention is a bridge device that connects a

Fibre Channel link directly to a SCSI bus and enables the exchange of SCSI

command set information between application clients on SCSI bus devices and

the Fibre Channel links. Further, the storage router applies access controls such

that virtual local storage can be established in remote SCSI storage devices for

workstations on the Fibre Channel link. In one embodiment, the storage router

provides a connection for Fibre Channel links running the SCSI Fibre Channel

Protocol (FCP) to legacy SCSI devices attached to a SCSI bus. The Fibre

Channel topology is typically an Arbitrated Loop (FC_AL).

In part, the storage router enables a migration path Fibre Channel based, serial

SCSI networks by providing connectivity for legacy SCSI bus devices. The

storage router can be attached to a Fibre Channel Arbitrated Loop and a SCSI

bus to support a number of SCSI devices. Using configuration settings, the

storage router can make the SCSI bus devices available on the Fibre Channel

network as FCP logical units. Once the configuration is defined, operation of the

storage router is transparent to application clients. In this manner, the storage

router can form an integral part of the migration to new Fibre Channel based

networks while providing a means to continue using legacy SCSI devices.

Oracle Ex. 1002, pg. 11

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0031]

[0032]

[0033]

11

In one implementation (not shown), the storage router can be a rack mount or

free standing device with an internal power supply. The storage router can have

a Fibre Channel and SCSI port, and a standard, detachable power cord can be

used, the FC connector can be a copper DB9 connector, and the SCSI connector

can be a 68-pin type. Additional modular jacks can be provided for a serial port

and an 802.3 1 OBaseT port, i.e. twisted pair Ethernet, for management access.

The SCSI port of the storage router an support SCSI direct and sequential

access target devices and can support SCSI initiators, as well. The Fibre

Channel port can interface to SCSI-3 FCP enabled devices and initiators.

To accomplish its functionality, one implementation of the storage router uses: a

Fibre Channel interface based on the HEWLETT-PACKARD TACHYON HPFC-

5000 controller and a GLM media interface; an Intel 80960RP processor,

incorporating independent data and program memory spaces, and associated

logic required to implement a stand alone processing system; and a serial port

for debug and system configuration. Further, this implementation includes a SCSI

interface supporting Fast-20 based on the SYMBIOS 53C8xx series SCSI

controllers, and an operating system based upon the WIND RIVERS SYSTEMS

VXWORKS or IXWORKS kernel, as determined by design. In addition, the

storage router includes software as required to control basic functions of the

various elements, and to provide appropriate translations between the FC and

SCSI protocols.

The storage router has various modes of operation that are possible between FC

and SCSI target and initiator combinations. These modes are: FC Initiator to

SCSI Target; SCSI Initiator to FC Target; SCSI Initiator to SCSI Target; and FC

Initiator to FC Target. The first two modes can be supported concurrently in a

single storage router device and are discussed briefly below. The third mode can

involve two storage router devices back to back and can serve primarily as a

device to extend the physical distance beyond that possible via a direct SCSI

connection. The last mode can be used to carry FC protocols encapsulated on

Oracle Ex. 1002, pg. 12

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0034]

[0035]

[0036]

12

other transmission technologies (e.g. ATM, SONET), or to act as a bridge

between two FC loops (e.g. as a two port fabric).

The FC Initiator to SCSI Target mode provides for the basic configuration of a

server using Fibre Channel to communicate with SCSI targets. This mode

requires that a host system have an FC attached device and associated device

drivers and software to generate SCSI-3 FCP requests. This system acts as an

initiator using the storage router to communicate with SCSI target devices. The

SCSI devices supported can include SCSI-2 compliant direct or sequential

access (disk or tape) devices. The storage router serves to translate command

and status information and transfer data between SCSI-3 FCP and SCSI-2,

allowing the use of standard SCSI-2 devices in a Fibre Channel environment.

The SCSI Initiator to FC Target mode provides for the configuration of a server

using SCSI-2 to communicate with Fibre Channel targets. This mode requires

that a host system has a SCSI-2 interface and driver software to control SCSI-2

target devices. The storage router will connect to the SCSI-2 bus and respond as

a target to multiple target IDs. Configuration information is required to identify the

target IDs to which the bridge will respond on the SCSI-2 bus. The storage router

then translates the SCSI-2 requests to SCSI-3 FCP requests, allowing the use of

FC devices with a SCSI host system. This will also allow features such as a tape

device acting as an initiator on the SCSI bus to provide full support for this type

of SCSI device.

In general, user configuration of the storage router will be needed to support

various functional modes of operation. Configuration can be modified, for

example, through a serial port or through an Ethernet port via SNMP (simple

network management protocol) or the Telnet session. Specifically, SNMP

manageability can be provided via a 802.3 Ethernet interface. This can provide

for configuration changes as well as providing statistics and error information.

Configuration can also be performed via TELNET or RS-232 interfaces with

menu driven command interfaces. Configuration information can be stored in a

Oracle Ex. 1002, pg. 13

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0037]

[0038]

[0039]

[0040]

13

segment of flash memory and can be retained across resets and power off

cycles. Password protection can also be provided.

In the first two modes of operation, addressing information is needed to map from

FC addressing to SCSI addressing and vice versa. This can be 'hard'

configuration data, due to the need for address information to be maintained

across initialization and partial reconfigurations of the Fibre Channel address

space. In an arbitrated loop configuration, user configured addresses will be

needed for AL_PAs in order to insure that known addresses are provided

between loop reconfigurations.

With respect to addressing, FCP and SCSI 2 systems employ different methods

of addressing target devices. Additionally, the inclusion of a storage router

means that a method of translating device IDs needs to be implemented. In

addition, the storage router can respond to commands without passing the

commands through to the opposite interface. This can be implemented to allow

all generic FCP and SCSI commands to pass through the storage router to

address attached devices, but allow for configuration and diagnostics to be

performed directly on the storage router through the FC and SCSI interfaces.

Management commands are those intended to be processed by the storage

router controller directly. This may include diagnostic, mode, and log commands

as well as other vendor-specific commands. These commands can be received

and processed by both the FOP and SCSI interfaces, but are not typically

bridged to the opposite interface. These commands may also have side effects

on the operation of the storage router, and cause other storage router operations

to change or terminate.

A primary method of addressing management commands though the FCP and

SCSI interfaces can be through peripheral device type addressing. For example,

the storage router can respond to all operations addressed to logical unit (LUN)

zero as a controller device. Commands that the storage router will support can

Oracle Ex. 1002, pg. 14

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0041]

[0042]

[0043]

[0044]

14

include INQUIRY as well as vendor-specific management commands. These are

to be generally consistent with SCC standard commands.

The SCSI bus is capable of establishing bus connections between targets. These

targets may internally address logical units. Thus, the prioritized addressing

scheme used by SCSI subsystems can be represented as follows:

BUS:TARGET:LOGICAL UNIT. The BUS identification is intrinsic in the

configuration, as a SCSI initiator is attached to only one bus. Target addressing

is handled by bus arbitration from information provided to the arbitrating device.

Target addresses are assigned to SCSI devices directly through some means of

configuration, such as a hardware jumper, switch setting, or device specific

software configuration. As such, the SCSI protocol provides only logical unit

addressing within the Identify message. Bus and target information is implied by

the established connection.

Fibre Channel devices within a fabric are addressed by a unique port identifier.

This identifier is assigned to a port during certain well-defined states of the FC

protocol. Individual ports are allowed to arbitrate for a known, user defined

address. If such an address is not provided, or if arbitration for a particular-user

address fails, the port is assigned a unique address by the FC protocol. This

address is generally not guaranteed to be unique between instances. Various

scenarios exist where the AL-PA of a device will change, either after power cycle

or loop reconfiguration.

The FC protocol also provides a logical unit address field within command

structures to provide addressing to devices internal to a port. The FCP _CMD

payload specifies an eight byte LUN field. Subsequent identification of the

exchange between devices is provided by the FQXID (Fully Qualified Exchange

I D).

FC ports can be required to have specific addresses assigned. Although basic

functionality is not dependent on this, changes in the loop configuration could

Oracle Ex. 1002, pg. 15

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0045]

[0046]

15

result in disk targets changing identifiers with the potential risk of data corruption

or loss. This configuration can be straightforward, and can consist of providing

the device a loop-unique ID (AL_PA) in the range of" 01 h" to "EFh." Storage

routers could be shipped with a default value with the assumption that most

configurations will be using single storage routers and no other devices

requesting the present ID. This would provide a minimum amount of initial

configuration to the system administrator. Alternately, storage routers could be

defaulted to assume any address so that configurations requiring multiple

storage routers on a loop would not require that the administrator assign a

unique ID to the additional storage routers.

Address translation is needed where commands are issued in the cases FC

Initiator to SCSI Target and SCSI Initiator to FC Target. Target responses are

qualified by the FQXID and will retain the translation acquired at the beginning of

the exchange. This prevents configuration changes occurring during the course

of execution of a command from causing data or state information to be

inadvertently misdirected. Configuration can be required in cases of SCSI

Initiator to FC Target, as discovery may not effectively allow for FCP targets to

consistently be found. This is due to an FC arbitrated loop supporting addressing

of a larger number of devices than a SCSI bus and the possibility of FC devices

changing their AL-PA due to device insertion or other loop initialization.

In the direct method, the translation to BUS:TARGET:LUN of the SCSI address

information will be direct. That is, the values represented in the FCP LUN field

will directly map to the values in effect on the SCSI bus. This provides a clean

translation and does not require SCSI bus discovery. It also allows devices to be

dynamically added to the SCSI bus without modifying the address map. It may

not allow for complete discovery by FCP initiator devices, as gaps between

device addresses may halt the discovery process. Legacy SCSI device drivers

typically halt discovery on a target device at the first unoccupied LUN, and

proceed to the next target. This would lead to some devices not being

Oracle Ex. 1002, pg. 16

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

[0047]

[0048]

[0049]

16

discovered. However, this allows for hot plugged devices and other changes to

the loop addressing.

In the ordered method, ordered translation requires that the storage router

perform discovery on reset, and collapses the addresses on the SCSI bus to

sequential FSP LUN values. Thus, the FCP LUN values 0-N can represent N+1

SCSI devices, regardless of SCSI address values, in the order in which they are

isolated during the SCSI discovery process. This would allow the FCP initiator

discovery process to identify all mapped SCSI devices without further

configuration. This has the limitation that hot-plugged devices will not be

identified until the next reset cycle. In this case, the address may also be altered

as well.

In addition to addressing, according to the present invention, the storage router

provides configuration and access controls that cause certain requests from FC

Initiators to be directed to assigned virtual local storage partitioned on SCSI

storage devices. For example, the same request for LUN 0 (local storage) by two

different FC Initiators can be directed to two separate subsets of storage. The

storage router can use tables to map, for each initiator, what storage access is

available and what partition is being addressed by a particular request. In this

manner, the storage space provided by SCSI storage devices can be allocated to

FC initiators to provide virtual local storage as well as to create any other desired

configuration for secured access.

Although the present invention has been described in detail, it should be

understood that various changes, substitutions, and alterations can be made

hereto without departing from the spirit and scope of the invention as defined by

the appended claims.

Oracle Ex. 1002, pg. 17

ATTORNEY DOCKET NO.
CROSS 1120-33

WHAT IS CLAIMED IS:

17

PATENT APPLICATION
CUSTOMER NO. 44654

1. A storage router for providing virtual local storage on remote storage devices,

comprising:

a first controller operable to interface with a first transport medium, wherein the first

medium is a serial transport media; and

a processing device coupled to the first controller, wherein the processing device is

configured to:

maintain a map to allocate storage space on the remote storage devices to

devices connected to the first transport medium by associating representations of the devices

connected to the first transport medium with representations of storage space on the remote

storage devices, wherein each representation of a device connected to the first transport

medium is associated with one or more representations of storage space on the remote storage

devices;

control access from the devices connected to the first transport medium to the

storage space on the remote storage devices in accordance with the map; and

allow access from devices connected to the first transport medium to the remote

storage devices using native low level block protocol.

2. The storage router of Claim 1, wherein the map associates a representation of

storage space on the remote storage devices with multiple devices connected to the first

transport medium.

3. The storage router of Claim 1, wherein the storage space on the remote storage

devices comprises storage space on multiple remote storage devices.

4. The storage router of Claim 1, wherein the map associates a representation of a

device connected to the first transport medium with a representation of an entire storage space

of at least one remote storage device.

5. The storage router of Claim 1, wherein the map resides at the storage router and

is maintained at the storage router.

Oracle Ex. 1002, pg. 18

ATTORNEY DOCKET NO.
CROSS 1120-33

18

PATENT APPLICATION
CUSTOMER NO. 44654

6. The storage router of Claim 1, wherein the native low level block protocol is

received at the storage router via the first transport medium and the processing device uses the

received native low level block protocol to allow the devices connected to the first transport

medium access to storage space specifically allocated to them in the map.

7. The storage router of Claim 1, wherein the storage router is configured to receive

commands according to a first low level block protocol from the device connected to the first

transport medium and forward commands according to a second low level block protocol to the

remote storage devices.

8. The storage router of Claim 7, wherein the first low level block protocol is an FCP

protocol and the second low level block protocol is a protocol other than FCP.

9. The storage router of Claim 1, wherein the map comprises one or more tables.

10. The storage router of Claim 1, wherein the virtual local storage is provided to the

devices connected to the first transport medium in a manner that is transparent to the devices

and wherein the storage space allocated to the devices connected to the first transport medium

appears to the devices as local storage.

11. The storage router of Claim 1, wherein the storage router provides centralized

control of what the devices connected to the first transport medium see as local storage.

12. The storage router of Claim 1, wherein the representations of storage space

comprise logical unit numbers that represent a subset of storage on the remote storage devices.

13. The storage router of Claim 12, wherein the storage router is operable to route

requests to the same logical unit number from different devices connected to the first transport

medium to different subsets of storage space on the remote storage devices.

14. The storage router of Claim 1, wherein the representations of devices connected

to the first transport medium are unique identifiers.

Oracle Ex. 1002, pg. 19

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

19

15. The storage router of Claim 14, wherein the unique identifiers are world wide

names.

16. The storage router of Claim 1, wherein the storage router is configured to allow

modification of the map in a manner transparent to and without involvement of the devices

connected to the first transport medium.

17. The storage router of Claim 1, wherein the processing device is a

microprocessor.

18. The storage router of Claim 1, wherein the processing device is a microprocessor

and associated logic to implement a stand-alone processing system.

19. The storage router of Claim 1, wherein the first transport medium is a fibre

channel transport medium and further comprising a second transport medium connected to the

remote storage devices that is a fibre channel transport medium.

20. A storage network comprising:

a set of devices connected a first transport medium, wherein the first transport medium;

a set of remote storage devices connected to a second transport medium;

a storage router connected to the serial transport medium;

a storage router connected to the first transport medium and second transport medium

to provide virtual local storage on the remote storage devices, the storage router configured to:

maintain a map to allocate storage space on the remote storage devices to

devices connected to the first transport medium by associating representations of the devices

connected to the first transport medium with representations of storage space on the remote

storage devices, wherein each representation of a device connected to the first transport

medium is associated with one or more representations of storage space on the remote storage

devices;

control access from the devices connected to the first transport medium to the

storage space on the remote storage devices in accordance with the map; and

Oracle Ex. 1002, pg. 20

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

20

allow access from devices connected to the first transport medium to the remote

storage devices using native low level block protocol.

21. The storage network of Claim 20, wherein the map associates a representation

of storage space on the remote storage devices with multiple devices connected to the first

transport medium.

22. The storage network of Claim 20, wherein the storage space on the remote

storage devices comprises storage space on multiple remote storage devices.

23. The storage network of Claim 20, wherein the map associates a representation

of a device connected to the first transport medium with a representation of an entire storage

space of at least one remote storage device.

24. The storage network of Claim 20, wherein the map resides at the storage router

and is maintained at the storage router.

25. The storage network of Claim 20, wherein the native low level block protocol is

received at the storage router via the first transport medium and the storage router uses the

received native low level block protocol to allow the devices connected to the first transport

medium access to storage space specifically allocated to them in the map.

26. The storage router of Claim 20, wherein the storage router is configured to

receive commands according to a first low level block protocol from the device connected to the

first transport medium and forward commands according to a second low level block protocol to

the remote storage devices.

27. The storage network of Claim 20, wherein the first low level block protocol is an

FCP protocol and the second low level block protocol is a protocol other than FCP.

28. The storage network of Claim 20, wherein the map comprises one or more

tables.

Oracle Ex. 1002, pg. 21

ATTORNEY DOCKET NO.
CROSS 1120-33

PATENT APPLICATION
CUSTOMER NO. 44654

21

29. The storage network of Claim 20, wherein the virtual local storage is provided to

the devices connected to the first transport medium in a manner that is transparent to the

devices and wherein the storage space allocated to the devices connected to the first transport

medium appears to the devices as local storage.

30. The storage network of Claim 20, wherein the storage router provides centralized

control of what the devices connected to the first transport medium see as local storage.

31. The storage network of Claim 20, wherein the representations of storage space

comprise logical unit numbers that represent a subset of storage on the remote storage devices.

32. The storage network of Claim 31, wherein the storage router is operable to route

requests to the same logical unit number from different devices connected to the first transport

medium to different subsets of storage space on the remote storage devices.

33. The storage network of Claim 20, wherein the representations of devices

connected to the first transport medium are unique identifiers.

34. The storage network of Claim 33, wherein the unique identifiers are world wide

names.

35. The storage network of Claim 20, wherein the storage router is configured to

allow modification of the map in a manner transparent to and without involvement of the devices

connected to the first transport medium.

36. The storage network of Claim 20, wherein the first transport medium is a fibre

channel transport medium and the second transport medium is a fibre channel transport

medium.

37. A method for providing virtual local storage on remote storage devices

comprising:

Oracle Ex. 1002, pg. 22

ATTORNEY DOCKET NO.
CROSS 1120-33

22

PATENT APPLICATION
CUSTOMER NO. 44654

connecting a storage router between a set of devices connected to a first transport

medium and a set of remote storage devices, wherein the first transport medium is a serial

transport medium;

maintaining a map at the storage router to allocate storage space on the remote storage

devices to devices connected to the first transport medium by associating representations of the

devices connected to the first transport medium with representations of storage space on the

remote storage devices, wherein each representation of a device connected to the first transport

medium is associated with one or more representations of storage space on the remote storage

devices;

controlling access from the devices connected to the first transport medium to the

storage space on the remote storage devices in accordance with the map; and

allowing access from devices connected to the first transport medium to the remote

storage devices using native low level block protocol.

38. The method of Claim 37, wherein the map associates a representation of storage

space on the remote storage devices with multiple devices connected to the first transport

medium.

39. The method of Claim 37, wherein the storage space on the remote storage

devices comprises storage space on multiple remote storage devices.

40. The method of Claim 37, wherein the map associates a representation of a

device connected to the first transport medium with a representation of an entire storage space

of at least one remote storage device.

41. The method of Claim 37, wherein the map resides at the storage router and is

maintained at the storage router.

42. The method of Claim 37, further comprising:

receiving the native low level block protocol at the storage router via the first transport

medium;

Oracle Ex. 1002, pg. 23

ATTORNEY DOCKET NO.
CROSS 1120-33

23

PATENT APPLICATION
CUSTOMER NO. 44654

using the received native low level block protocol at the storage router to allow the

devices connected to the first transport medium access to storage space specifically allocated

to them in the map.

43. The method of Claim 37, further comprising receiving commands at the storage

router according to a first low level block protocol from the device connected to the first transport

medium and forwarding commands according to a second low level block protocol to the remote

storage devices.

44. The method of Claim 43, wherein the first low level block protocol is an FCP

protocol and the second low level block protocol is a protocol other than FCP.

45. The method of Claim 37, wherein the map comprises one or more tables.

46. The method of Claim 37, wherein the virtual local storage is provided to the

devices connected to the first transport medium in a manner that is transparent to the devices

and wherein the storage space allocated to the devices connected to the first transport medium

appears to the devices as local storage.

47. The method of Claim 37, wherein the storage router provides centralized control

of what the devices connected to the first transport medium see as local storage.

48. The method of Claim 37, wherein the representations of storage space comprise

logical unit numbers that represent a subset of storage on the remote storage devices.

49. The method of Claim 48, wherein the storage router is operable to route requests

to the same logical unit number from different devices connected to the first transport medium to

different subsets of storage space on the remote storage devices.

50. The method of Claim 37, wherein the representations of devices connected to

the first transport medium are unique identifiers.

Oracle Ex. 1002, pg. 24

ATTORNEY DOCKET NO.
CROSS 1120-33

24

PATENT APPLICATION
CUSTOMER NO. 44654

51. The method of Claim 50, wherein the unique identifiers are world wide names.

52. The method of Claim 51, wherein the storage router is configured to allow

modification of the map in a manner transparent to and without involvement of the devices

connected to the first transport medium.

53. The method of Claim 1 wherein connecting the storage router between a set of

devices connected to a first transport medium and a set of remote storage devices further

comprises connecting the storage router between a first fibre channel transport medium and a

second fibre channel transport medium.

Oracle Ex. 1002, pg. 25

ATTORNEY DOCKET NO.
CROSS 1120-33

25

STORAGE ROUTER AND METHOD FOR

PROVIDING VIRTUAL LOCAL STORAGE

ABSTRACT OF THE DISCLOSURE

PATENT APPLICATION
CUSTOMER NO. 44654

[0050] A storage router and storage network provide virtual local storage on remote

storage devices. A plurality of devices are connected to a first transport medium.

In one embodiment, a storage router maintains a map to allocate storage space

on the remote storage devices to devices connected to the first transport medium

by associating representations of the devices connected to the first transport

medium with representations of storage space on the remote storage devices.

The storage router controls access from the devices connected to the first

transport medium to the storage space on the remote storage devices in

accordance with the map and allows access from devices connected to the first

transport medium to the remote storage devices using native low level block

protocol.

Oracle Ex. 1002, pg. 26

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention: STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE

First Named Inventor/Applicant Name: Geoffrey B. Haese

Filer: John L. Adair/Delia Narvaiz

Attorney Docket Number: CROSS1120-33

Filed as Large Entity

Utility under 35 USC 111 (a) Filing Fees

Description Fee Code Quantity Amount
Sub-Total in

USD($)

Basic Filing:

Utility application filing 1011 1 330 330

Utility Search Fee 1111 1 540 540

Utility Examination Fee 1311 1 220 220

Pages:

Claims:

Claims in excess of 20 1202 33 52 1716

Miscellaneous-Filing:

Petition:

Oracle Ex. 1002, pg. 27

Description Fee Code Quantity Amount
Sub-Total in

USD($)

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Miscellaneous:

Total in USD ($) 2806

Oracle Ex. 1002, pg. 28

Electronic Acknowledgement Receipt

EFSID: 6845953

Application Number: 12690592

International Application Number:

Confirmation Number: 8115

Title of Invention: STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE

First Named Inventor/Applicant Name: Geoffrey B. Haese

Customer Number: 44654

Filer: John L. Adair/Delia Narvaiz

Filer Authorized By: John L. Adair

Attorney Docket Number: CROSS1120-33

Receipt Date: 20-JAN-201 0

Filing Date:

TimeStamp: 16:24:15

Application Type: Utility under 35 USC 111 (a)

Payment information:

Submitted with Payment yes

Payment Type Deposit Account

Payment was successfully received in RAM $2806

RAM confirmation Number 3127

Deposit Account 503183

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

Oracle Ex. 1002, pg. 29

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document
Document Description File Name

File Size(Bytes)/ Multi Pages
Number Message Digest Part /.zip (ifappl.)

23572

1 Miscellaneous Incoming Letter
CROSS1120-33_Cert_Transmiss

ion.pdf
no 1

7d03f1 dc62be0e2f8fd6d2793fc0af2a9d51
966

Warnings:

Information:

153882

2 Miscellaneous Incoming Letter
CROSS1120-33_1d_chg_POA.

no 6
pdf

c7162bfeeceb5044f313e4c768dc96c5d595
1a60

Warnings:

Information:

3 Oath or Declaration filed
CROSS1120-33_Declaration_fr_

parent.pdf

125807

no 4
c84a 7 ce 304d 73 8dabf7 4ae00 15 855 66f64a

a261

Warnings:

Information:

36044

4
Drawings-only black and white line

CROSS1120-33_Drawings.pdf no 2
drawings

f06f4160ea41 d04338498da87a96713f1652
c97b

Warnings:

Information:

75251

5 Transmittal of New Application CROSS1120-33_ Transmittal.pdf no 1
bcbbc251 aa07bf22f000918791 a0e6c8517

dac9

Warnings:

Information:

89877

6 CROSS1120-33_Application.pd yes 25
516836a9c3cb832e9c0eee0634652871 cfb

45e3a

Multipart Description/PDF files in .zip description

Document Description Start End

Specification 1 16

Claims 17 24

Abstract 25 25

Warnings:

Oracle Ex. 1002, pg. 30

Information:

36748

7 Fee Worksheet (PT0-875) fee-info. pdf no 2

13f98da56b3ebe3eaa50c6aeefcc73a79b31
Od2f

Warnings:

Information:

Total Files Size (in bytes) 541181

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New A~~lications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International A~~lication under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/E0/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International A~~lication Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 181 0), a Notification of the International Application Number
and of the International Filing Date (Form PCT/R0/1 OS) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Oracle Ex. 1002, pg. 31

Electronic Acknowledgement Receipt

EFSID: 6845953

Application Number: 12690592

International Application Number:

Confirmation Number: 8115

Title of Invention: STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE

First Named Inventor/Applicant Name: Geoffrey B. Haese

Customer Number: 44654

Filer: John L. Adair/Delia Narvaiz

Filer Authorized By: John L. Adair

Attorney Docket Number: CROSS1120-33

Receipt Date: 20-JAN-201 0

Filing Date:

TimeStamp: 16:24:15

Application Type: Utility under 35 USC 111 (a)

Payment information:

Submitted with Payment yes

Payment Type Deposit Account

Payment was successfully received in RAM $2806

RAM confirmation Number 3127

Deposit Account 503183

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

Oracle Ex. 1002, pg. 32

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document
Document Description File Name

File Size(Bytes)/ Multi Pages
Number Message Digest Part /.zip (ifappl.)

23572

1 Miscellaneous Incoming Letter
CROSS1120-33_Cert_Transmiss

ion.pdf
no 1

7d03f1 dc62be0e2f8fd6d2793fc0af2a9d51
966

Warnings:

Information:

153882

2 Miscellaneous Incoming Letter
CROSS1120-33_1d_chg_POA.

no 6
pdf

c7162bfeeceb5044f313e4c768dc96c5d595
1a60

Warnings:

Information:

3 Oath or Declaration filed
CROSS1120-33_Declaration_fr_

parent.pdf

125807

no 4
c84a 7 ce 304d 73 8dabf7 4ae00 15 855 66f64a

a261

Warnings:

Information:

36044

4
Drawings-only black and white line

CROSS1120-33_Drawings.pdf no 2
drawings

f06f4160ea41 d04338498da87a96713f1652
c97b

Warnings:

Information:

75251

5 Transmittal of New Application CROSS1120-33_ Transmittal.pdf no 1
bcbbc251 aa07bf22f000918791 a0e6c8517

dac9

Warnings:

Information:

89877

6 CROSS1120-33_Application.pd yes 25
516836a9c3cb832e9c0eee0634652871 cfb

45e3a

Multipart Description/PDF files in .zip description

Document Description Start End

Specification 1 16

Claims 17 24

Abstract 25 25

Warnings:

Oracle Ex. 1002, pg. 33

Information:

36748

7 Fee Worksheet (PT0-875) fee-info. pdf no 2

13f98da56b3ebe3eaa50c6aeefcc73a79b31
Od2f

Warnings:

Information:

Total Files Size (in bytes) 541181

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New A~~lications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International A~~lication under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/E0/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International A~~lication Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 181 0), a Notification of the International Application Number
and of the International Filing Date (Form PCT/R0/1 OS) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Oracle Ex. 1002, pg. 34

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF TRANSMISSION VIA EFS-WEB SYSTEM I Atty Docket No.
CROSS1120a33

In the Application of:
Geoffrey B. Hoese

Mail Stop: Patent Application Date Filed:
Commissioner for Patents Herewith
P.O. Box 1450 Title:
Alexandria, VA 22313-1450 Storage Router and Method for Providing Virtual

Local Storage
Dear Sir:

I hereby certify that the attached Utility Patent Application Transmittal Form,

Declaration (copy from parent), Identification of Change in Power of Attorney Under 37 CFR

1.63(d)(4), Continuation Patent Application and copies of Drawings (2 sheets) are being

deposited electronically using the United States Patent Office EFS-Web System on

January 20, 201 0

Respectfully submitted,

Sprinkle IP Law Group

~~-
D r N . 15 e 1a arva1z

Oracle Ex. 1002, pg. 35

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IDENTIFICATION OF CHANGE IN POWER OF ATTORNEY Atty. Docket No.

UNDER 37 C.F.R. 1.63(d)(4) CROSS1120-33

Applicant
Geoffrey B. Hoese, et al.
Application Number I Date Filed
Unknown January '2010
Title
Storage Router and Method for Providing Virtual
Local Storage
Confirmation Number: I Group Art Unit
Unknown Unknown

Commissioner for Patents

P.O. Box 1450

Certificate of Transmission Under 37 C.F.R. § 1.8

I hereby certify that this correspondence is being transmitted to
the U.S. Patent and "D"~demark Office via the EFS-Web filing

Alexandria, VA 22313-1450
sysl<>m on Janua<y ~/taAJ- ,

Dear Sir:
Delia Narvaiz ~

The above-referenced application is a continuation application of and claims priority

from U.S. Patent Application No. 12/552,885 filed on 09/02/2009 ("Prior Application"). The

power of attorney and correspondence address were changed during the prosecution of the

Prior Application. 37 C.F.R. 1.63(d)(4) states:

Where the power of attorney or correspondence address was
changed during the prosecution of the prior application, the
change in power of attorney or correspondence address must be
identified in the continuation or divisional application. Otherwise,
the Office may not recognize in the continuation or divisional
application the change of power of attorney or correspondence
address during the prosecution of the prior application.

As evidenced by Exhibit A submitted herewith, during the prosecution of Prior Application,

the power of attorney was changed to attorneys under Customer No. 44654, all of the firm of

Sprinkle IP Law Group, and the correspondence address was changed to:

Customer No. 44654
Sprinkle IP Law Group

1301 W. 25th Street, Suite 408
Austin, Texas 78705

Oracle Ex. 1002, pg. 36

ATTORNEY DOCKET NO. Patent Application
CROSS1120-33 Customer ID: 44654

Please recognize these changes in U.S. instant application. Please call the undersigned

with any question you may have regarding this matter.

Dated: Sa11 2~ zor{)
1301 W. 25th Street, Suite 408
Austin, Texas, 78705
Tel. (512) 637-9220
Fax. (512) 317-9088

Respectfully submitted,

Sprinkle IP Law roup
Attorneys f · t

Oracle Ex. 1002, pg. 37

EXHIBIT "A"

Oracle Ex. 1002, pg. 38

APPLICATION NUMBER

12/552,885

44654
SPRINKLE IP LAW GROUP
1301 W. 25TH STREET
SUITE 408
AUSTIN, TX 78705

FILING OR 37l(C) DATE

09/02/2009

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Addre"': COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Vuginia 2231J-1450
www.uspto.gov

FIRST NAMED APPLICANT A TTY. DOCKET NO.fflTLE

Geoffrey B. Haese CROSS1120-30

CONFIRMATION NO. 5484
POA ACCEPTANCE LETTER

llllllllllllllllllllllmrn~~~~mm~~1~~~~~~~~ 11111111111111111111n1

Date Mailed: 09/22/2009

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 09/02/2009.

The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the
above address as provided by 37 CFR 1.33.

/bcao/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

Oracle Ex. 1002, pg. 39

·-··.--------------
IN Tt. ~.JTED STATES PATENT AND TRADl .Z OFFICE

REVOCATION AND POWER OF ATTORNEY AND
CHANGE OF MAILING ADDRESS

Applicants
Geoffrey B Hoese, et. al.
Application Number ,. Filed
10/658,163 9/9/2003
For
STORAGE ROUTER AND METHOD FOR PROVIDING

VIRTUAL LOCAL STORAGE

Group Art Unit
2186
Confirmation No.
5675

Examiner
Unknown

Certification Under 37 C.F.R. §1.B

Commissioner for Patents
P.O. Box 1450

I hereby certiiy tha! 1his documeni is beiJJo transmitted to COMMISSIONER
FOR PATENTS via facsimile on v;- J'J 2004.

,'! ib \. .)
Alexandria, VA 22313-1450 u, (. ' '-· r; : .J\ c ' p /\ • v 1 v~~----... . _ ~ I J-l::...L_..J'.._-...

' / Signed Name

Dear Sir: ·:Vln.e_.ito ·b,Q_..\J2..C.:U.--"-
Prinied Name

Crossroads Systems, Inc., 100% owner of the above-identified patent application, as evidenced

by the Assignment recorded on December 31, 1997 on Reel/Frame: 8929/0290, hereby revokes

all previous Powers of Attorney and appoints the following attorneys under Customer No. 44654,

all of the firm of .SPRINKLE IP LAW GROUP, to prosecute the .above-identified Patent and to

transact all business in the Patent and Trademark Office connected therewith.

STEVEN R. SPRINKLE
JOHN ADAIR

Registration No. 40,825
Registration No. 48,828
Registration No. 51 ,388 ARI AKMAL

Direct all telephone calls and correspondence to:

Customer No. 44654
SPRINKLE IP LAW GROUP

P.O. Box 684767
Austin, TX 78768-4767
Attn: Steven Sprinkle

Tel. (51 2) 637.9220 I Fax (512) 37i .9088

I hereby state 1 am authorized to act on behalf of CROSSROADS SYSTEMS, INC.

Respectfully submitted,

Dated: ?{j;J '2004

Oracle Ex. 1002, pg. 40

10/658,163

44654
SPRINKLE !P LAW GROUP
1301 W. 25TH STREET
SUITE 408
AUSTIN, TX 78705

FII,.INGORS71 (c)DATE

09/09/2003

UNITED STATE.<; DEPARTMENT 07? COMMERCE
United St.a~• Pataut anti. Tr .. d.emttdl Of11oe
Jlddrc": GOMMISSIONER FOR PATEJ\"l'S

P.O. :!lox 1450
Alt:Xandri~ Vitntnta 22~13~10::50
'VIm\~1~io.gfJ\,.

F!RST NAlv.!ED~A.PPLfCANT A TTY. DOCKET NO.fTITLE

Geoffrey B. Haese CROSS1120-13

CONFIRMATION NO. 5675

OCOOOOOOO 18039068
"OC000000018039068*

Date .Mailed: 0.2l1.P/2006

NOTJCE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 07/26/2005.

The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the
above address as provided by 37 CFR i .33 .

.. . ·. :. .· ~ - . -

ATTOR.L'\ffiY/P...PPLICP...NT COPY

Oracle Ex. 1002, pg. 41

ATTORNEY DOCKET
064113.0103

1

Copy
From
Parent

DEC~~TION ~~ POh~R OF ATTORNEY

As the below named inventor, I declare that:

P~~TENT

My residence 1 post office address and citizenship are as

stated below next to my name/ that I believe I am the

original, first and joint inventor of the subject matter which

is claimed and for which a patent is sought on the invention

or design entitled STOR~GE ROUTER ~~ METHOD FOR PROVIDING

VIRTUAL LOCAL STORAGE, the specifica~ion of which (check one)

--~X- is attached hereto; or

\'las filed on as

and was Application Serial No.

amended on (if applicable);

that I have reviewed and understand the contents of the

above-identified specification/ including the claims, as

amended by any amendment referred to above; and that I

acknowledge the duty to disclose to the U.S. Patent and

Trademark Office all information known to me to .be material to

patentability as defined in 37 C.F.R. § l.56.

I hereby claim foreign priority benefits under 35 U.S.C.

§ 119 of any foreign application(s} for patent or inventor 1 s

certificate listed below and have also identified below any

foreign application(s) for patent or inventor 1 s certificate

having a filing date before that of the application on which

priority is claimed:

Number

None.

AUSOI:123882.l

Countrv
Date

Filed

Priority
Claimed

(Yes) (No)

Oracle Ex. 1002, pg. 42

Jl5TORNEY DOCKET
064ll3.0103

PATENT

2

I hereby claim th~ benefit under 35 U.S.C. § 120 of any

United States application(s) listed below and, insofar as the

subject matter of each of the claims of this application is

not disclosed in the prior United States application(s) in the

manner provided by the first paragraph of 35 D. S.C. § 112, I

acknowledge the duty to disclose to the u.s. Patent and

Trademark Office all information known to me to be material to

patentability as defined in 37 C.F.R. § 1.56 which became

available between the filing date of the prior application(s)

and the national or PCT internation~l filing date of this

application:

Application
Serial Number Date F-lled Status

None.

I hereby appoint:

Jerry W. Mills
Robert M. Chiaviello, Jr.
Ann C. Livingston
William N. Hulsey III
Thomas R. Felger
Charles 8. Fish
Wei Wei ~eang
Kevin J. Meek
Anthony E .. Peterman
Barton E. Showalter
David G. Wille
Philip w. Woo
B":radley_P. Williams
Terry J. Stalford
Christopher W. Kennerly
Daniel P. Stewart
Roger J. Fulghum
Rodger L. Tate
Scott F. Partridge
James B. Arp~n

James Remenick

AUSO!;I238821

Reg. No. 23,005
Reg. No. 32,461
Reg. No. 32,479
Reg. No. 33,.402
Reg. No. 28,842
Reg. No. 35,870
Reg. No. 33,305
Reg. No. 33,738
Reg. No. 38,270
Reg. No. 38,302
Reg. No. 38,363
Reg. No. 39,880
Reg . No . 4 0 , 2 2 7

Reg. No. 39,522
Reg. No. 40,675
Reg. No. 41,332
Reg. No. 39,678
Reg. No. 27 1 399
Reg. No. 28,142
Reg. No. 33,470
Reg. No. 36,902

Oracle Ex. 1002, pg. 43

P.4TTOP..NEY DOCKET
064.113.0103

Jay B. Johnson
Christopher c. Campbell
Stacy B. Margolies
Robert w. Holland
Steven R. Sprir..kle

PATENT

3

Reg. No. 38,193
Reg. No. 37,291
Reg. No. 39,760
Reg. No. 4C,020
Reg. No. 40,825

all of the fi::::-m of Baker & Botts, L.L.P., my attorneys with

full power of substitution and revocation/ to prosecute this

application and to transact all business in the United States

Patent and Trademark Office connected therewith/ and to file

and prosecute any international patent applications filed

thereon before any international authorities.

Baker & Botts, L.L.P.
2001 Ross Avenue
Dallas, Texas 75201-2980

Direct T~lPnhon~ Calls To:

&~thony E. Peterma~
at (512) 322-2599
Atty. Docket No.064113.0l03

I declare that all statements made herein of my own k_~ow1edge

are true and that all statements made on information and

belief are believed to be true; and further that these

statements were made with the knowle~ge that willful false

statements and the like so made are punishable by fine or

imprisonment[or both, under Section ~001 of Title 18 of the

United States Code, and that such willful false statements may

jeopardize the validity of the application or any patent

issuing thereon.

AUS01:1238&2.1

Oracle Ex. 1002, pg. 44

ATTORNEY DOCKET
064113. Cl03

Fu~l name of the first inventor

Inventor•s signature

Date

Residence (City, County, State)

Citizenship

Post Office Address

4

Full name of the second inventor

Inventor•s signature

Date

Residence (City, County, State)

Citizenship

Post Office Address

AUS01:123882.1

PATENT

Geoffrey B. Roese

Austin, T~avis County,
Texas

United States of America

1904 Ann Arbor Avenue
Austin, Texas 78704 ·

Jeffry T. Russel~

~~/~~
(/~, /"' a a, 1 '! 9 z

I •

Cibolo, Guadalupe County,
Texas

United States of America

205 Karib~.Cdve ·:
Cibolo, Texas 78108

Oracle Ex. 1002, pg. 45

1/2

12 12 12 10
{

FIG. 1

18
SCSI BUS

12 14 20 DISK DISK 20 DISK 20

42
46

DISK

36 FIG. 2
\
.30

40 42

c- :::
STORAGE DEVICE

5~ 58 58 60,
GLOBAL -65 \ \ :---' 62

WORKSTATION WORKSTATION WORKSTATION
DATA)

.... h -...,

A 8 c 56
\ SCSI

STORAGE DEVICE

STORAGE BUS· WORKSTATION ---- 66
FIBRE 5~ t ROUTER t ~4

A STORAGE
CHANNEL I l ! WORKSTATION ----I I B STORAGE

WORKSTATION WORKSTATION I MANAGEMENT I

0 E
L.,.

STATION
f<t_j WORKSTA Tl ON

C STORAGE
......,_~

5~ 5~ 7~ WORKSTATION
D STORAGE r---~

68

70

72
c -::::

) -STORAGE DEVICE
50

64_7 ITIRKSTATION,_

FIG. 3 STORAGE -74
.._ -

Oracle Ex. 1002, pg. 46

FIBRE CHANNEL~

!
56

FIBRE CHANNEL CONTROLLER

FC 90
PROTOCOL

FIBRE CHANNEL.......,.._.....

92

)
56

BUFFER

86

8.6

SUPERVISOR
PROCESSING

54

..........---.-SCSI BUS

FIG. 4

1\J
i\3

SCSI CONTROLLER

DMA SCSI
INTERFACE BU~FER PROTOCOL

.......--,....-SCSI BUS

96

84 FIG. 5

Oracle Ex. 1002, pg. 47

PTO/SB/06 (12-04)

Date: 01/20/10 Approved for use through 7/3112006. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number

Substitute for Form PT0-875 12/690,592

APPLICATION AS FILED- PART I OTHER THAN
(Column 1) (Column2) SMALL ENTITY OR SMALL ENTITY

FOR NUMBER FILED NUMBER EXTRA RATE($) FEE($) RATE($) FEE($)
BASIC FEE N/A N/A
(37 CFR 1.16(a). (b), or (c))

N/A N/A 330
SEARCH FEE N/A N/A N/A N/A 540 (37 CFR 1.16(k), (i), or (m))
EXAMINATION FEE N/A N/A (37 CFR 1.16(0), (p), or(q))

N/A N/A 220
TOTAL CLAIMS 53 33 x$26 x$52 1716 (37 CFR 1.16(i)) minus 20 = OR
INDEPENDENT CLAIMS 3 . x$110 x$220
(37 CFR 1.16(h)) minus 3 =

If the specification and drawings exceed 1 00
APPLICATION SIZE sheets of paper, the application size fee due Is
FEE $260 ($130 for small entity) for each additional

(37 CFR 1.16(s)) 50 sheets or fraction thereof. See
35 U.S.C. 41(a)(1)(G) and 37 CFR

MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.160)) 195 390

* If the difference in column 1 is less than zero, enter "0" in column 2. TOTAL TOTAL 2806

APPLICATION AS AMENDED- PART II
OTHER THAN

(Column 1) (Column 2) (Column 3) SMALL ENTITY OR SMALL ENTITY

CLAIMS HIGHEST ADD I- ADD I·
REMAINING NUMBER PRESENT

< AFTER PREVIOUSLY EXTRA RATE($) TIONAL RATE($) TIONAL
1- AMENDMENT PAID FOR

FEE($) FEE($)
z w Total . Minus .. OR
:i (37 CFR 1.16(1)) = X = X =
0 z Independent . Minus ... = = X = w (37 CFR 1.16(h)) X OR :i
< Application Size Fee (37 CFR 1.16(s))

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16U)) N/A OR N/A

TOTAL
OR

TOTAL
ADD'T FEE ADD'T FEE

(Column 1) (Column 2) (Column 3) OR

CLAIMS HIGHEST ADD I· ADD I-
REMAINING NUMBER PRESENT

m AFTER PREVIOUSLY EXTRA RATE($) TIONAL RATE($) TIONAL
1- AMENDMENT PAID FOR FEE($) FEE($)
z w Total OR :i . Minus .. = = X = 0 (37 CFR 1.16(1)) X
z Independent w . Minus ... = X = X = :i (37 CFR 1.16(h)) OR
< Application Size Fee (37 CFR 1.16(s))

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16(j)) N/A OR N/A

TOTAL TOTAL
ADD'T FEE. OR ADD'T FEE

• If the entry in column 1 is less than the entry in column 2, write '0' in column 3. .. If the 'Highest Number Previously Paid For* IN THIS SPACE is less than 20, enter '20' If the 'Highest Number Previously Paid For* IN THIS SPACE is less than 3, enter '3' .
The "Highest Number Previously Paid For" (Total or Independent) is the highest number tound in the appropriate box in column 1.

Th1s collection of 1nformat1on IS requ1red by 37 CFR 1.16. The mformat1on IS requ1red to obtam or retam a benefit by the public wh1ch 1s to file (and by the

USPTO to process) an application. Confidentiality is governed by 35 U.S. C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete,

including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments

on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Paten

and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS

ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313·1450.

If you need assistance in completing the form, call 1-800-PT0-9199 and select option 2.

Oracle Ex. 1002, pg. 48

UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION

Ul\TfED STI\TES DEPA RTME'IT OF COMMERCE
United States Patent and Trademark Office
Adill"'· COMMISSIO'JER FOR PATENTS

PO Box 1450
Alexandria, Virgmia 22313-1450
\VVi\V.USpto.gov

NUMBER
FILING or

37l(c)DATE FIL FEE REC'D ATTY.DOCKET.NO

12/690,592 01/20/2010

44654

2806 CROSS1120-33 53
CONFIRMATION NO. 8115

FILING RECEIPT
SPRINKLE IP LAW GROUP
1301 W. 25TH STREET
SUITE 408

llllllllllllllllllllllll]~!l]~~~~~~~~~~~u~ ~Utllllllllllllllllllllllll
AUSTIN, TX 78705

Date Mailed: 02/03/2010

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the
application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please
submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Geoffrey B. Haese, Austin, TX;
Jeffry T. Russell, Cibolo, TX;

Power of Attorney: The patent practitioners associated with Customer Number 44654

Domestic Priority data as claimed by applicant
This application is a CON of 12/552,885 09/02/2009
which is a CON of 11/851,724 09/07/2007
which is a CON of 11/442,878 05/30/2006 ABN *
which is a CON of 11/353,826 02/14/2006 PAT 7,340,549
which is a CON of 10/658,163 09/09/2003 PAT 7,051,147
which is a CON of 10/081,110 02/22/2002 PAT 6,789,152
which is a CON of 09/354,682 07/15/1999 PAT 6,421,753
which is a CON of 09/001,799 12/31/1997 PAT 5,941,972
(*)Data provided by applicant is not consistent with PTO records.

Foreign Applications

If Required, Foreign Filing License Granted: 02/02/2010

The country code and number of your priority application, to be used for filing abroad under the Paris Convention,
is US 12/690,592

Projected Publication Date: 05/13/2010

Non-Publication Request: No

Early Publication Request: No
page 1 of 3

Oracle Ex. 1002, pg. 49

Title

STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE

Preliminary Class

710

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing
of patent applications on the same invention in member countries, but does not result in a grant of "an international
patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent
protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordance with its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must
issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application
serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it
can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative,
this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may
call the U.S. Government hotline at 1-866-999-HAL T (1-866-999-4158).

GRANTED

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as

page 2 of 3

Oracle Ex. 1002, pg. 50

set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless
it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter
as imposed by any Government contract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselves of current regulations especially with
respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and
Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed
from the filing date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

page 3 of 3

Oracle Ex. 1002, pg. 51

UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION NUMBER

12/690,592

44654
SPRINKLE IP LAW GROUP
1301 W. 25TH STREET
SUITE 408
AUSTIN, TX 78705

FILING OR 3 71 (C) DATE

01/20/2010

Ul\TfED STI\TES DEPA RTME'IT OF COMMERCE
United States Patent and Trademark Office
Adill"'· COMMISSIO'JER FOR PATENTS

PO Box 1450
Alexandria, Virgmia 22313-1450
\VVi\V.USpto.gov

FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

Geoffrey B. Haese CROSS1120-33
CONFIRMATION NO. 8115

POA ACCEPTANCE LETTER

IIIIIIIIIIIIIIIIIIIIIIII]~!I]~~~~~~~~~~~IUU!IIlllllllllllllllllllllllllll

Date Mailed: 02/03/2010

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 01/20/2010.

The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the
above address as provided by 37 CFR 1.33.

/abirhane/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

Oracle Ex. 1002, pg. 52

UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION NUMBER

12/690,592

44654
SPRINKLE IP LAW GROUP
1301 W. 25TH STREET
SUITE 408
AUSTIN, TX 78705

FILING OR 3 71 (C) DATE

01/20/2010

Ul\TfED STI\TES DEPA RTME'IT OF COMMERCE
United States Patent and Trademark Office
Adill"'· COMMISSIO'JER FOR PATENTS

PO Box 1450
Alexandria, Virgmia 22313-1450
\VVi\V.USpto.gov

FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

Geoffrey B. Haese CROSS1120-33
CONFIRMATION NO. 8115

PUBLICATION NOTICE

111111111111111111111111]~!1]~~~~~~~~11111U~ ~~~~I] 11111111111111111111111

Title:STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE

Publication No.US-20 1 0-0 121993-A 1
Publication Date:05/13/201 0

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37
CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the
Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to
applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth
in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of
Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382,
by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of
Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the
dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent
Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and
Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to
publication, such status information is confidential and may only be obtained by applicant using the private side of
PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent
Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

Oracle Ex. 1002, pg. 53

-
'

oPAJO
~
"0

., HAY 2 4 2010 :;)
~ JY/

'OEMf..,
Application Number 12/690,592

Filing Date 01/20/2010
INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 1 of I 9 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where

Initials No. Number-Kind Code (if known) MM-00-YYYY Applicant of Cited Document
Relevant Passages or Figures

Appear

A1 3,082,406 3/19/1963 L. D. Stevens
A2 4,092,732 5/30/1978 Ouchi
A3 4,170,415 10/9/1979 Lemeshewsky, et al.
A4 4,415,970 11/15/1983 Swenson, et al.
A5 4,455,605 6/19/1984 Cormier, et al.
A6 4,504,927 3/12/1985 Callan
A7 4,533,996 8/6/1985 Gartung, et al.
AS 4,573,152 2/25/1986 Greene, et al.
A9 4,603,380 7/29/1986 Easton, et al.
A10 4,620,295 10/28/1986 Aiden, Jr.
A11 4,644,462 2/17/1987 Matsubara, et al.
A12 4,695,948 9/22/1987 Blevins, et al.
A13 4,697,232 9/29/1987 Brunelle, et al.
A14 4,715,030 12/22/1987 Koch,etal.
A15 4,751,635 6/14/1988 Kret
A16 4,787,028 11/22/1988 Finforck, et al.
A17 4,807,180 2/21/1989 Takeuchi, et al.
A18 4,811,278 3/7/1989 Bean, et al.
A19 4,821,179 4/11/1989 Jensen, et al.
A20 4,825,406 4/25/1989 Bean, et al.
A21 4,827,411 5/2/1989 Arrowood, et al.
A22 4,835,674 5/30/1989 Collins, et al.
A23 4,845,722 7/4/1989 Kent et al.
A24 4,864,532 9/5/1989 Reeve, et al.
A25 4,897,874 1/30/1990 Lidensky, et al.
A26 4,947,367 8/7/1990 Chang, et al.
A27 4,961,224 10/2/1990 Yung
A28 5,072,378 12/10/1991 Manka
A29 5,077,732 12/31/1991 Fischer, et al.
A30 5,077,736 12/31/1991 Dunphy, Jr., et al.
A31 5,124,987 6/23/1992 Milligan, et al.
A32 5,155,845 10/13/1992 Seal, et al.
A33 5,163,131 11/10/1.992 Row, et al.
A34 5,185,876 2/9/1993 Nguyen, et al.
A35 5,193,168 3/9/1993 Corrigan, et al.
A36 5,193,184 3/9/1993 Belsan, et al.
A37 5,202,856 4/13/1993 Glider, et al.
A38 5,210,866 5/11/1993 Milligan, et al.

Examiner I I Date I
Signature Considered

Oracle Ex. 1002, pg. 54

Application Number 12/690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 2 I of 19 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where
Initials No. Number-Kind Code (if known) MM-DD-YYYY Applicant of Cited Document

Relevant Passages or Figures
Appear

A39 5,212,785 5/18/1993 Powers, et al.
A40 5,214,778 5/25/1993 Glider, et al.
A41 5,226,143 7/6/1993 Baird, et al.
A42 5,239,632 8/24/1993 Lamer
A43 5,239,643 8/24/1993 Blount, et al.
A44 5,239,654 8/24/1993 lng-Simmons, et al.
A45 5,247,638 9/21/1993 O'Brien, et al.
A46 5,247,692 9/21/1993 FL&imura
A47 5,257,386 10/26/1993 Saito
A48 5,297,262 3/22/1994 Cox, et al.
A49 5,301,290 4/5/1994 Tetzlaff, et al.
A 50 5,315,657 5/24/1994 Abadi, et al.
A51 5,317,693 5/31/1994 Elko, et al.
A 52 5,331,673 7/19/1994 Elko, et al.
A 53 5,347,384 9/13/1994 McReynolds, et al.
A 54 5,355,453 10/11/1994 Glider, et al.
A 55 5,361,347 11/1/1994 Glider, et al.
A 56 5,367,646 11/22/1994 Pardillos, et al.
A 57 5,379,385 1/3/1995 Shomler
A 58 5,379,398 1/3/1995 Cohn, et al.
A 59 5,388,243 2/7/1995 Glider, et al.
A60 5,388,246 2/7/1995 Kasi
A61 5,394,402 2/28/1995 Ross, et al.
A62 5,394,526 2/28/1995 Crouse et al.
A63 5,396,596 3/7/1995 Hashemi, et al.
A64 5,403,639 4/4/1995 Belsan, et al.
A65 5,410,667 4/25/1995 Belsan, et al.
A66 5,410,697 4/25/1995 Baird, et al.
A67 5,414,820 10/9/1995 McFarland, et al.

A68 5,416,915 5/16/1995 Mattson, et al.
Examiner I I Date J
Signature Considered

Oracle Ex. 1002, pg. 55

Application Number 121690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 3 1 of 1 9 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite
Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where

Initials No. MM-DD-YYYY Applicant of Cited Document
Relevant Passages or Figures

Number-Kind Code (if known) Appear

A69 5,418,909 5/23/1995 Jachowski, et al.

A70 5,420,988 5/30/1995 Elliott
A71 5,423,026 6/6/1995 Cook, et al.
A72 5,423,044 6/6/1995 Sutton, et al.
A73 5,426,637 6/20/1995 Derby, et al
A74 5,430,855 7/4/1995 Wash, et al.

A75 5,450,570 9/12/1995 Richek, et al.
A76 5,452,421 9/19/1995 Beardsley, et al.
A77 5,459,857 10/17/1995 Ludlam, et al.

A78 5,463,754 10/31/1995 Beausoleil, et al.
A79 5,465,382 11/7/1995 Day, Ill, et al.

ABO 5,469,576 11/21/1995 Dauerer, et al.
A81 5,471,609 11/28/1995 Yudenfriend, et al.
A82 5,487,077 1/23/1996 Hassner, et al.

A83 5,491,812 2/13/1996 Pisello, et al.

A84 5,495,474 2/27/1996 Olnowich, et al.
ASS 5,496,576 3/5/1996 Jeong_
A86 5,504,857 4/2/1996 Baird, et al.

A87 5,507,032 4/9/1996 Kimura

A88 5,511,169 4/23/1996 Sud a

A89 5,519,695 5/21/1996 Purohit, et al.

A90 5,530,845 6/25/1996 Hiatt, et al.

A91 5,535,352 7/9/1996 Bridges, et al.

A92 5,537,585 7/16/1996 Blickerstaff, et al.

A93 5,544,313 8/6/1996 Shachnai, et al.

A94 5,548,791 8/20/1996 Casper, et al.

A95 5,564,019 10/8/1996 Beausoleil, et al

A96 5,568,648 10/22/1996 Coscarella, et al.

A97 5,581,709 12/3/1996 Ito, et al.

A98 5,581,714 12/3/1996 Amini, et al.

Examiner I I Date I
Signature Considered

Oracle Ex. 1002, pg. 56

Application Number 12/690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 4 I of 19 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where

Initials No. MM-DD-YYYY Applicant of Cited Document
Relevant Passages or Figures

Number-Kind Code (if known) Appear

A99 5,581,724 12/3/1996 Belsan et al.
A100 5,596,562 6/21/1997 Chen
A101 5,596,736 1/21/1997 Kerns

A102 5,598,541 1/28/1997 Malladi

A103 5,613,082 3/18/1997 Brewer, et al.
A104 5,621,902 4/15/1997 Cases, et al.
A105 5,632,012 5/20/1997 Belsan, et al.

A106 5,634,111 5/27/1997 Oeda, et al.

A107 5,638,518 6/10/1997 Malladi
A108 5,642,515 6/24/1997 Jones, et al.
A109 5,659,756 8/19/1997 Hefferon, et al.

A110 5,664,107 9/2/1997 Chatwanni, et al.
A111 5,680,556 10/21/1997 Begun, et al.

A112 5,684,800 11/4/1997 Dobbins, et al.

A113 5,701,491 12/23/1997 Dunn, et al.
A114 5,712,976 1/27/1998 Falcon, et al.

A115 5,727,218 3/10/1998 Hotchkin

A116 5,729,705 3/17/1998 Weber

A117 5,743,847 4/28/1998 Nakamura, et al.

A118 5,748,924 5/5/1998 Llorens, et al.

A119 5,571,971 5/12/1998 Dobbins, et al.

A120 5,751,975 5/12/1998 Gillespie, et al.

A121 5,764,931 6/9/1998 Schmahl, et al.

A122 5,768,623 6/16/1998 Judd, et al.

A123 5,774,683 6/30/1998 Gulick

A124 5,778,411 7/7/1998 DeMoss

A125 5,781,715 7/14/1998 Sheu

A126 5,802,278 9/1/1998 lsfeld, et al.

A127 5,805,816 9/8/1998 Picazo, Jr., et al.

A128 5,805,920 9/8/1998 S_Q_renkle, et al.

Examiner I Date I
Signature Considered

Oracle Ex. 1002, pg. 57

Application Number 12/690,592

Filing Date 01/20/2010
INFORMATION DISCLOSURE
STATEMENT BY APPLICANT

First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 5 I of Is Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite
Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where

Relevant Passages or Figures
Initials No. Number-Kind Code (if known) MM-DD-YYYY Applicant of Cited Document Appear

A129 5,809,328 9/15/1998 Nogales, et al.

A130 5,812,754 9/22/1998 Lui, et al.

A131 5,819,054 10/6/1998 Ninomiya, et al.

A132 5,825,772 10/20/1998 Dobbins, et al.

A133 5,835,496 11/10/1998 Yeung, et al.

A134 5,845,107 12/1/1998 Fisch, et al.

A135 5,848,251 12/8/1998 Lomelino, et al.

A136 5,857,080 10/5/1999 Jander, et al.
A137 5,860,137 1/12/1999 Raz, et al.

A138 5,864,653 1/26/1999 Tavallaei, et al.

A139 5,867,648 2/2/1999 Foth, et al.
A140 5,884,027 3/16/1999 Garbus, et al.
A141 5,889,952 3/30/1999 Hunnicutt, et al.

A142 5,913,045 6/15/1999 Gillespie, et al.

A143 5,923,557 7/13/1999 Eidson

A144 5,933,824 8/3/1999 DeKoning, et al.

A145 5,935,205 8/10/1999 Mura_y_ama, et al.

A146 5,935,260 8/10/1999 Ofer

A147 5,941,969 8/24/1999 Ram, et al.

A148 5,941,972 8/24/1999 Haese, et al.

A149 5,946,308 8/31/1999 Dobbins, et al.

A150 5,953,511 9/14/1999 Sescilia, et al.

A151 5,959,994 9/28/1999 Bo_gg_s, et al.

A152 5,963,556 10/5/1999 Varghese, et al.

A153 5,974,530 10/26/1999 Young

A154 5,978,379 11/2/1999 Chan, et al.

A155 5,978,875 11/2/1999 Asano, etal.

A156 5,991,797 11/23/1999 Futral, et al.

A157 6,000,020 12/7/1999 Chin, et al.

A158 6,041,058 3/21/2000 Flanders, et al.
Examiner I I Date I
Signature Considered

Oracle Ex. 1002, pg. 58

Application Number 12/690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 6 1 of 1 9 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where
Relevant Passages or Figures Initials No. Number-Kind Code (if known) MM-DD-YYYY Applicant of Cited Document Appear

A159 6,021,451 2/1/2000 Bell, et al.

A160 6,029,168 2/22/2000 Frey

A161 6,032,269 2/29/2000 Renner, Jr.
A162 6,041,381 3/21/2000 Hoese

A163 6,055,603 4/25/2000 Ofer, et al.
A164 6,065,087 5/16/2000 Keaveny, etal.

A165 6,070,253 5/30/2000 Tavallaei, et al.

A166 6,073,209 6/6/2000 Bergsten

A167 6,073,218 6/6/2000 DeKoning, et al.

A168 6,075,863 6/13/2000 Krishnan, et al.
A169 6,081,849 6/27/2000 Born, et al.

A170 6,098,128 8/1/2000 Velez-McCaskey et al.

A171 6,098,149 8/1/2000 Ofer, et al.
A172 6,108,684 8/22/2000 DeKonin_g_, et al

A173 6,118,766 9/12/2000 Akers

A174 6,131,119 10/10/2000 Fukui

A175 6,134,617 10/17/2000 Weber

A176 6,141,737 10/31/2000 Krantz, et al.

A177 6,145,006 11/7/2000 Vishlitsky, et al.

A178 6,147,976 11/14/2000 Shand, et al.

A179 6,147,995 11/14/2000 Dobbins, et al.

A180 6,148,004 11/14/2000 Nelson, et al.

A181 6,173,399 1/9/2001 Gilbrech

A182 6,185,203 2/6/2001 Berman

A183 6,202,153 3/13/2001 Diamant, et al.

A184 6,209,023 3/27/2001 Dimitroff, et al.

A185 6,219,771 4/17/2001 Kikuchi, et al.

A186 6,223,266 4/24/2001 Sartore

A187 6,230,218 5/8/2001 Casper, et al.

A188 6,243,827 6/5/2001 Renner, Jr.

I I Date I
Considered

Oracle Ex. 1002, pg. 59

Application Number 121690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 7 I of j9 Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines Where

Initials No. Number-Kind Code (if known) MM-DO-YYYY Applicant of Cited Document
Relevant Passages or Figures

Appear

A189 6,260,120 7/10/2001 Blumenau, et al.

A190 6,268,789 7/31/2001 Diamant, et al.

A191 6,308,247 10/23/2001 Ackerman

A192 6,330,629 12/11/2001 Kondo, et al.
A193 6,330,687 12/11/2001 Griffith
A194 6,341,315 1/22/2002 Arroyo, et al.
A195 6,343,324 1/29/2002 Hubis, et al.

A196 6,363,462 3/26/2002 Bergsten

A197 6,401,170 6/4/2002 Griffith, et al.

A198 6,421,753 7/16/2002 Heese, et al.
A199 6,425,035 7/23/2002 Heese, et al.

A200 6,425,036 7/23/2002 Heese, et al.

A201 6,425,052 6/23/2002 Hashemi

A202 6,453,345 9/17/2002 Trcka, et al.

A203 6,484,245 11/19/2002 Sanada, et al.

A204 6,529,996 3/4/2003 Nguyen, et al.

A205 6,547,576 4/15/2003 Peng, et al.

A206 6,560,750 5/6/2003 Chien, et al.

A207 6,563,701 5/13/2003 Peng, et al.

A208 6,775,693 8/10/2004 Adams

A209 6,792,602 9/14/2004 Lin, et al.

A210 6,820,212 11/16/2004 Duchesne, et al.

A211 6,854,027 2/8/2005 Hsu, et al.

A212 6,862,637 3/1/2005 Stupar

A213 6,874,043 3/29/2005 Treggiden

A214 6,874,100 3/29/2005 Rauscher

A215 6,910,083 6/21/2005 Hsu, et al.

A216 7,065,076 6/20/2006 Nemazie

A217 7,127,668 10/24/2006 McBryde, et al.

A218 7,133,965 11n12006 Chien

Examiner I I Date I
Signature Considered

Oracle Ex. 1002, pg. 60

Application Number 12/690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 8 l of Ia Attorney Docket Number CROSS1120-33

U.S. PATENT DOCUMENTS

Examiner Document Number Publication Date Name of Patentee or Pages. Columns, Lines Where

Initials Cite No. Relevant Passages or Figures
Number-Kind Code (if known) MM-DD-YYYY Applicant of Cited Document Appear

A219 7, 188,111 3/6/2007 Chen, et al.

A220 7,216,225 5/8/2007 Haviv, et al.
A221 7,251,248 7/31/2007 Trossell, et al.
A222 7,281,072 10/9/2007 Liu, et al.
A223 0470,486 2/18/2003 Cheng
A224 2002/0083221 6/27/2002 Tsai, et al.
A225

2006/0277326 12/7/2006 Tsai, et al.
A226 2006/0294416 12/28/2006 Tsai, et al.
A227 2006/0218322 09/2006 Hoese, et al.

FOREIGN PATENT DOCUMENTS
Foreign Patent Document Publication Date

Pages, Columns. Lines Where Examiner Cite Name of Patentee or
Initials No. Country Code-Number-Kind Code MM-DD-YYYY Relevant Passages or Figures

(if known) (Number43)
Applicant of Cited Document Appear

81 GB 2296798 A 7/10/1996 Spring Consultants Limited
82 GB 2297636A 8/7/1996 Spring Consultants Limited
83 JP 8-230895 9/10/1996 Kikuchi, et al.
84 EP 081 0530 A2 12/3/1997 Sun Microsystems, Inc.
85 EP 0827059 A2 3/4/1998 NEC Corporation
86 WO 99/34297 A 1 7/8/1999 Crossroads Systems, Inc.

Examiner I I Date I
Signature Considered

Oracle Ex. 1002, pg. 61

Application Number 12/690,592

INFORMATION DISCLOSURE
Filing Date 01/20/2010

STATEMENT BY APPLICANT
First Named Inventor Geoffrey B. Hoese

Group Art Unit 2111

Examiner Name Unknown

Sheet 9 I of j9 Attorney Docket Number CROSS 1120-33

U.S. PATENT DOCUMENTS

Examiner Cite Document Number Publication Date Name of Patentee or Pages, Columns, Lines

Initials No. MM-DD-YYYY Applicant of Cited Document
Where Relevant Passages

Number-Kind Code (if known) or Figures Appear

FOREIGN PATENT DOCUMENTS

Foreign Patent Document Publication Date
Pages, Columns, Lines Examiner Cite Name of Patentee or

Initials No. MM-DD-YYYY Where Relevant Passages
Country Code-Number-Kind Code (if known)

(Number43)
Applicant of Cited Document or Figures Appear

87 GB 2341715 03/22/2000 SpringTek Limited
88 JP 6301607 10/28/1994 Hitachi Ltd.
89 wo 98/36357 08/20/1998 Transwitch Corporation

810 wo 91/03788 3/21/1991 Auspex Systems, Inc.
811 wo 1997033227 8/4/1998 Nippon Telegraph &

AMP; Telephone Corp.
812 AU 647414 3/24/1994 Auspex Systems, Inc.
813 AU 670376 7/11/1996 Auspex Systems, Inc.
814 CA 2066443 10/21/2003 Auspex Systems, Inc.
815 EP 0490973 2/25/1998 Auspex Systems, Inc.
816 IL 095447 5/30/1994 Auspex Systems, Inc
817 IL 107645 9/12/1996 Auspex Systems, Inc.
818 JP 10097493 4/14/1998 Sun Microsyst. Inc.
819 JP 1997251437 9/22/1997 Toshiba Corporation
820 JP 1993181609 7/23/1993 NEC Corp.
821 JP 1997185594 7/15/1997 Tandem Computers,

Inc.
822 JP 1995020994 1/24/1995 Hitachi, Ltd.
823 JP 5502525 4/28/1993 Auspex Systems, Inc.
824 JP 5181609 7/23/1993 Nippon Electric Co.
825 Hitachi Seisakusho

JP 720994 1/24/1995 Co., Ltd.

Examiner I f Date I
Signature Considered

Oracle Ex. 1002, pg. 62

Application Number 121690,592

INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 11 1 of 19 Atty Docket Number CROS51120-33

Examiner
Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C4 Black Box, SCSI Fiberoptic Extender, Single-Ended, Product Insert, 2
pages, 1996 6/18/1905

C5 Block-Based Distributed File Systems, Anthony J. McGregor, July 1997
C6 Compaq StorageWorks HSG80 Array Controller ACS Version 8.3

(Maintenance and Service Guide) 11/98
C7 Compaq StorageWorks HSGSO Array Controller ACS Version 8.3

(Configuration and CLI Reference Guide) 11/98
ca CRD-5500, RAID DISK ARRAY CONTROLLER Product Insert, pp. 1-5
C9 CRD-5500, SCSI RAID CONTROLLER OEM Manual, Rev. 1.3, February

26, 1996, pp. 1-54 2/26/1996
C10 CRD-5500, SCSI RAID CONTROLLER Users Manual, Rev. 1.3,

November21, 1996, pp.10-92 11/21/1996
C11 DIGITAL StorageWorks HSZ70 Array Controller HSOF Version 7.0 EK-

SHZ70-RM.A01 CLI Reference Manual. 7/1/1997
C12 DIGITAL Storage Works, HSZ70 Array Controller, HSOF Version 7.0 EK-

HSZ70-CG. A01, Digital Equipment Corporation, Maynard,
Massachusetts 7/1/1997

C13 DIGITAL StorageWorks, Using Your HSZ70 Array Controller in a SCSI
Controller Shelf (DS-BA356-M Series), User's Guide, pp. 1-1 through A-5
with index, January 1998. 1/1/1998

C14 DIGITAL StorageWorks HSZ70 Array Controller HSOF Version 7.0 EK-
HSZ70-SV. A01 1997-

C15 DIGITAL StorageWorks HSG80 Array Controller ACS Version 8.0 (User's
Guide 1/98

C16 DP5380 Asynchronous SCSI Interface, National Semiconductor
Corporation, Arlington, TX, Ma_y_ 1989, pp. 1-32

C17 Emerson, "Encor Communications: Performance evaluation of switched
fibre channel 1/0 system using--FCP for SCSI" February 1995, IEEE, pp.
479-484 2/1/1995

C18 Fiber channel (FCS)/ATM internetworking: a design solution
C19 Fiber Channel storage interface for video-on-demand servers by

Anazaloni, et al. 6/15/1905
C20 Fibre Channel and ATM: The Physical Layers, Jerry Quam WESCON/94,

published 27-29 September 1994. Pages 648-652.
C21 GenS S-Series XL System Guide Revision 1.01 by Chen 6/18/1905
C22 Graphical User Interface for MAXSTRAT GenS/Gen-S Servers User's

guide 1.1 6/11/1996

C23 High Performance Data transfers Using Network-Attached Peripherals at
the national Storage Laboratory by Hyer 2/26/1993

Examiner Signature I Date ·considered

Oracle Ex. 1002, pg. 63

Application Number 12/690,592

INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 12 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C24 IFT-3000 SCSI to SCSI Disk array Controller Instruction Manual Revision
2.0 by lnfotrend Technologies, Inc. 1995-

C25 Implementing a Fibre Channel SCSI transport by Snively 1994-
C26 "lnfoServer 150--lnstallation and Owner's Guide", EK-INFSV-OM-001,

Digital Equipment Corporation, Maynard, Massachusetts 1991, Chapters 1
and 2

C27 lnfoServer 150VXT Photograph

C28 IBM Technical Publication: Guide to Sharing and Partitioning IBM Tape
Library Dataservers, November 1996, pp. 1-256 11/1/1996

C29 IBM Technical Publication: Magstar and IBM 3590 High Performance
Tape Subsystem Technical Guide, November 1996, pp. 1-269 11/1/1996

C30 Misc. Reference Manual Pages, SunOS 5.09
C31 lnfoserver 100 System Operations Guide, First Edition Digital Equipment

Cor2_oration, 1990
C32 Johnson, D. B., et at., The Peregrine High Performance RPC System",

Software-Practice and Experience, 23(2):201-221, Feb. 1993
C33 Local-Area networks for the IBM PC by Haugdahl
C34 New serial 1/0s speed storage subsystems by Bursky 2/6/1995
C35 Petal: Distributed Virtual Disks, Edward K. Lee and Chandramohan A

Thekkath, ACM SIGPLAN Notices, Volume 31, Issue 9, September 1996,
pages 84-92.

C36 Pictures of internal components of the lnfoServer 150, taken from
http://bindarydinosaurs.couk/Museum/Digitallinfoserver/infoserver.php in
Nov. 2004.

C37 Raidtec FibreArray and Raidtec FlexArray UltraRAID Systems", Windows
IT PRO Article, October 1997

C38 S.P. Joshi, "Ethernet controller chip interfaces with variety of 16-bit
processors," electronic Design, Hayden Publishing Co., Inc., Rochelle
Partk, NJ, October 14, 1982. pp 193-200

C39 Simplest Migration to Fibre Channel Technology" Article, Digital
Equipment Corporation, November 10, 1997, published on PR Newswire ·11/1 0/1997

C40 Systems Architectures Using Fibre Channel, Roger Cummings, Twelfth
IEEE Symposium on Mass Storage Systems, Copyright 1993 IEEE.
Pages 251-256

C41 Office Action dated 01/21/03 for 10/174,720 (CROSS1120-8) 1/21/2003
C42 Office Action dated 02/27/01 for 09/354,682 (CROSS1120-1) 2/27/2001
C43 Office Action dated 08/11/00 for 09/354,682 (CROSS 1120-1) 8/11/2000
C44 Office Action dated 12/16/99 for 09/354,682 (CROSS1120-1) 12/16/1999
C45 Office Action dated 11/06/02 for 1 0/023,786 (CROSS 1120-4) 11/6/2002
C46 Office Action dated 01/21/03 for 10/081,110 (CROSS1120-5) 1/21/2003

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 64

Application Number 121690,592

INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 1 3 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C47 Office Action in Ex Parte Reexamination 90/007,127, mailed February 7,
2005. 2/7/2005

C48 Office Action in Ex Parte Reexamination 90/007,125, mailed February 7,
2005. 2/7/2005

C49 Office Action in Ex Parte Reexamination 90/007, 126, mailed February 7,
2005. 2/7/2005

C50 Office Action in Ex Parte Reexamination 90/007,124, mailed February 7,
2005. 2/7/2005

C51 Office Action in Ex Parte Reexamination 90/007,123, mailed February 7,
2005. 2/7/2005

C52 European Office Action issued April 1, 2004 in Application No.
98966104.6-2413 4/1/2004

C53 Office Action dated 1/27/2005 in 10/658,163 (CROSS1120-13) 1/27/2005
C54 DIGITAL "System Support Addendum", SSA 40.78.01-A, AE-PNZJB-TE,

pgs 1-3 4/1/1993
C55 DIGITAL "Software Product Description", SSA 40.78.01, AE-PNZJB-TE,

pgs 1-3 4/1/1993
C56 DIGITAL EQUIPMENT CORPORATION, "lnfoServer 100 Installation and

Owner's Guide", Order Number EK-DIS1 K-IN-001, First Edition 10/1/1990
C57 DIGITAL EQUIPMENT CORPORATION, "lnfoServer 100 System

Operation Guide", Order Number EK-DIS1 K-UG-001, First Edition, pgs i-
Index 5 10/1/1990

C58 ELLIOTI, 'Working Draft American National Standard, Project T1 0/1562-
D, Revision 5, pgs. i-432 7/9/2003

C59 SATRAN, "Standards-Track," May 2001, iSCSI, pgs. 9-87 11/1/2000
cso SATRAN, et al. "IPS Internet Draft, iSCSI, pgs 1-8 11/1/2000
C61 APT TECHNOLOGIES, INC., "Serial ATA: High Speed Serialized AT

Attachment", Rev. 1.0a, pgs. 1-310 1/7/2003
C63 Defendant's First Supplemental Trial Exhibit List, Crossroads Systems,

Inc., v. Chaparral Network Storage, Inc., C.A. No. A-OOCA-217-SS (W.O.
Tex. 2001). (CO-Rom)

C64 Defendant's Third Supplemental Trial Exhibit List, Crossroads Systems,
Inc. v. Pathlight Technology, Inc., C.A. No. A-OOCA-248-SS (W.O. Tex.
2001) (CO-Rom)

C65 Plaintiff's Fourth Amended Trail Exhibit List, Crossroads Systems, Inc. v.
Chaparral Network Storage, Inc, C.A. No. A-OOCA-217-SS (W.O. Tex.
2001) (CO-Rom)

C66 Plaintiff's Revised Trial Exhibit List, Crossroads Systems, Inc. v. Pathlight
Technology, Inc., C.A. No. A-OOCA-248-SS (W.O. Tex. 2001). (CO-Rom)

C67 Trail Transcripts, Crossroads Systems, Inc. v. Chaparral Network Storage,
Inc., C.A. No. A-OOCA-217-SS (W.O. Tex. 2001) Day 1 -5 (CO-Rom)

C68 Trail Transcripts, Crossroads Systems, Inc. v. Pathlight Technology, Inc.,
C.A. No. A-OOCA-248-SS ('/'{D. Tex. 2001). Day 1-4 (CO-Rom)

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 65

Application Number 12/690,592
INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 14 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C72 Datasheet for CrossPoint 4100 Fibre Channel to SCSI Router (Dedek Ex
41 (ANCT 117-120)) (CD-ROM Chaparral Exhibits D012)

C73 Symbios Logic- Software Interface Specification Series 3 SCSI RAID
Controller Software Release 02.xx (Engelbrecht Ex 2 (LSI1421-1658))
(CD-ROM Chaparral Exhibits D013) 12/3/1997

C74 Press Release- Symbios Logic to Demonstrate Strong Support for Fibre
Channel at Fall Comdex (Engelbrecht 12 (LSI 2785-86)) (CD-ROM
Chaparral Exhibits D016) 11/13/1996

C75 OEM Datasheet on the 3701 Controller (Engelbrecht 13 (LSI 01837-38))
(CD-ROM Chaparral Exhibits D017) 6/17/1905

C76 Nondisclosure Agreement Between Adaptec and Crossroads Dated
10/17/96 (Quisenberry Ex 25 (CRDS 8196)) (CD-ROM Chaparral Exhibits
D020) 10/17/1996

C77 Organizational Presentation on the External Storage Group (Lavan Ex 1
(CNS 182242-255)) (CD-ROM Chaparral Exhibits D021) 4/11/1996

C78 Bridge Phase II Architecture Presentation (Lavan Ex 2 (CNS 182287-295))
(CD-ROM Chaparral Exhibits D022) 4/12/1996

C79 Bridge. C, Bridge Between SCSI-2 and SCSI-3 FCP (Fibre Channel
Protocol) (CD-ROM Chaparral Exhibits P214)

C80 Attendees/Action Items from 4/12/96 Meeting at BTC (Lavan Ex 3 (CNS
182241)) (CD-ROM Chaparral Exhibits D023) 4/12/1996

C81 Brooklyn Hardware Engineering Requirements Documents, Revision 1.4
(Lavan Ex 4 (CNS 178188-211)) (CD-ROM Chaparral Exhibits D024) by
Pecone 5/26/1996

C82 Brooklyn Single-Ended SCSI RAID Bridge Controller Hardware OEM
Manual, Revision 2.1 (Lavan EX 5 (CNS 177169-191)) (CD-ROM
Chaparral Exhibits D025) 3/2/1996

C83 Coronado Hardware Engineering Requirements Document, Revision 0.0
(Lavan Ex 7 (CNS 176917-932)) (CD-ROM Chaparral Exhibits D027) by
O'Dell 9/30/1996

C84 ESS/FPG Organization (Lavan Ex 8 (CNS 178639-652)) (CD-ROM
Chaparral Exhibits D028) 12/6/1996

cas Adaptec MCS ESS Presents: Intelligent External 1/0 Raid Controllers
"Bridge" Strategy (Lavan Ex 9 (CNS 178606-638)). (CD-ROM Chaparral
Exhibits D029) 2/6/1996

C86 AEC-7313 Fibre Channel Daughter Board (for Brooklyn) Engineering
Specification, Revision 1.0 (Lavan Ex 10 (CNS 176830-850)) (CD-ROM
Chaparral Exhibits D030) 2/27/1997

C87 Bill of Material (Lavan Ex 14 (CNS 177211-214)) (CD-ROM Chaparral
Exhibits D034) 7/24/1997

C88 AEC-. 44128, AEC-7412/B2 External RAID Controller Hardware OEM
Manual, Revision 2.0 (Lavan Ex 15 (CNS 177082-123)) (CD-ROM
Chaparral Exhibits D035) 6/27/1997

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 66

Application Number 121690,592

INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet j5 1 of j9 Atty Docket Number CROSS1120-33

Examiner
Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C89 Coronado II, AEC-7312A Fibre Channel Daughter (for Brooklyn) Hardware
Specification, Revision 1.2 (Lavan Ex 16 (CNS 177192-210)) (CD-ROM
Chaparral Exhibits D036) by Tom Yang 7/18/1997

C90 AEC-4412B, AEC7412/3B External RAID Controller Hardware OEM
Manual, Revision 3.0. (Lavan Ex 17 (CNS 177124-165)) (CD-ROM
Chaparral Exhibits D037) 8/25/1997

C91 Memo Dated 8/15/97 to AEC-7312A Evaluation Unit Customers re: B001
Release Notes (Lavan Ex 18 (CNS 182878-879)) (CD-ROM Chaparral
Exhibits D038) 8/15/1997

C92 Brooklyn Main Board (AES-0302) MES Schedule (Lavan Ex 19 (CNS
177759-763)) (CD-ROM Chaparral Exhibits D039) 2/11/1997

C93 News Release-Adaptec Adds Fibre Channel Option to its External RAID
Controller Family (Lavan Ex 20 (CNS 182932-934)) (CD-ROM Chaparral
Exhibits D040) 5/6/1997

C94 AEC-4412B/7412B User's Guide, Rev. A (Lavan Ex 21) (CD-ROM
Chaparral Exhibits D041) 6/19/1905

C95 Data Book- AIC-7895 PCI Bus Master Single Chip SCSI Host Adapter
(Davies Ex 1 (CNS 182944-64))_(CD-ROM Chaparral Exhibits D046) 5/21/1996

C96 Data Book- AIC-1160 Fibre Channel Host Adapter ASIC (Davies Ex 2
(CNS 181800-825)) (CD-ROM Chaparral Exhibits D047) 6/18/1905

C97 Viking RAID Software (Davies Ex 3 (CNS 180969-181026)) (CD-ROM
Chaparral Exhibits D048) 6/18/1905

C98 Header File with Structure Definitions (Davies Ex 4 (CNS 180009-018))
(CD-ROM Chaparral Exhibits D049) 8/8/1996

C99 C++ SourceCode for the SCSI Command Handler (Davies Ex 5 (CNS
179136-168)) (CD-ROM Chaparral Exhibits D050) 8/8/1996

C100 Header File Data Structure (Davies Ex 6 (CNS 179997-180008)) (CD-
ROM Chaparral Exhibits D051) 1/2/1997

C101 SCSI Command Handler (Davies Ex 7 (CNS 179676-719)) (CD-ROM
Chaparral Exhibits D052) 1/2/1997

C102 Coronado: Fibre Channel to SCSI Intelligent RAID Controller Product Brief
(Kalwitz Ex I (CNS 182804-805_1} (CD-ROM Chaparral Exhibits D053)

C103 Bill of Material (Kalwitz Ex 2 (CNS 181632-633)) (CD-ROM Chaparral
Exhibits D054) 3/17/1997

C104 Emails Dated 1/13-3/31/97 from P. Collins to More: Status Reports
(Kalwitz Ex 3 (CNS 182501-511)) (CD-ROM Chaparral Exhibits D055)

C105 Hardware Schematics for the Fibre Channel Daughtercard Coronado
(Kalwitz Ex 4 (CNS 181639-648)) (CD-ROM Chaparral Exhibits D056)

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 67

Application Number 12/690,592
INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 16 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C106 Adaptec Schematics re AAC-340 (Kalwitz Ex 14 CNS 177215-251)) (CD-
ROM Chaparral Exhibits D057)

C107 Bridge Product Line Review (Manzanares Ex 3 (CNS 177307 -336)) (CD-
ROM Chaparral Exhibits D058)

C108 AEC Bridge Series Products-Adaptec External Controller RAID Products
Pre-Release Draft, v.6 (Manzanares Ex 4 (CNS 174632-653)). (CD-ROM
Chaparral Exhibits D059) 10/28/1997

C109 Hewlett-Packard Roseville Site Property Pass for Brian Smith (Dunning Ex
14 (HP 489) (CD-ROM Chaparral Exhibits D078) 11/7/1996

C110 Distribution Agreement Between Hewlett-Packard and Crossroads
(Dunning Ex 15 (HP 326-33) (CD-ROM Chaparral Exhibits D079)

C111 HPFC-5000 Tachyon User's Manuel, First Edition (PTI 172419-839) (CD-
ROM Chaparral Exhibits D084) 5/1/1996

C112 X3T10 994D- (Draft) Information Technology: SCSI-3 Architecture Model,
Rev. 1.8 (PTI 165977) (CD-ROM Chaparral Exhibits D087)

C113 X3T10 Project 1047D: Information Technology- SCSI-3 Controller
Commands (SCC), Rev, 6c (PTI 166400-546) (CD-ROM Chaparral
Exhibits D088) 9/3/1996

C114 X3T10 995D- (Draft) SCSI-3 Primary Commands, Rev. 11 (Wanamaker
Ex 5 (PTI 166050-229)) (CD-ROM Chaparral Exhibits D089) 11/13/1996

C115 VBAR Volume Backup and Restore (CRDS 12200-202) (CD-ROM
Chaparral Exhibits D099)

C116 Preliminary Product Literature for Infinity Commstor's Fibre Channel to
SCSI Protocol Bridge (Smith Ex 11; Quisenberry Ex 31 (SPLO 428-30)
(CD-ROM Chaparral Exhibits D143) 8/19/1996

C117 Letter dated 7/12/96 from J. Boykin to B. Smith re: Purchase Order for
Evaluation Units from Crossroads (Smith Ex 24) CRDS 8556-57) (CD-
ROM Chaparral Exhibits D144) 7/12/1996

C118 CrossPoint 4100 Fibre Channel to SCSI Router Preliminary Datasheet
(Hulsey Ex 9 (CRDS 16129-130)) (CD-ROM Chaparral Exhibits D145) 11/1/1996

C119 CrossPoint 4400 Fibre Channel to SCSI Router Preliminary Datasheet
(Bardach Ex. 9, Quisenberry Ex 33 (CRDS 25606-607)) (CD-ROM
Chaparral Exhibits D153) 11/1/1996

C120 Fax Dated 07/22/96 from L. Petti to B. Smith re: Purchase Order from
Data General for FC2S Fibre to Channel SCSI Protocol Bridge Model 11
(Smith Ex 25; Quisenberry Ex 23; Bardach Ex 11 (CRDS 8552-55; 8558)
(CD-ROM Chaparral Exhibits D155) 7/22/1996

C121 Email Dated 12/20/96 from J. Boykin to B. Smith re: Purchase Order for
Betas in February and March (Haese Ex 16, Quisenberry Ex 25; Bardach
Ex 12 (CRDS 13644-650) (CD-ROM Chaparral Exhibits D156) 12/20/1996

C122 Infinity Commstor Fibre Channel Demo for Fall Comdex, 1996 (Haese Ex
15, Bardach Ex 13{CRDS 27415) (CD-ROM Chaparral Exhibits D157)

Examiner Signature Date Considered

Oracle Ex. 1002, pg. 68

Application Number 12/690,592
INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 17 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C123 Fax Dated 12/19/96 from B. Bardach to T. Rarich re: Purchase Order
Information (Bardach Ex. 14; Smith Ex 16 (CRDS 4460)) (CD-ROM
Chaparral Exhibits 0158) 12/19/1996

C124 Miscellaneous Documents Regarding Comdex (Quisenberry Ex 2 (CRDS
27415-465)) (CD-ROM Chaparral Exhibits 0165)

C125 CrossPoint 4100 Fibre Channel to SCSI Router Preliminary Datasheet
(Quisenberry) Ex 3 (CRDS 4933-34) (CD-ROM Chaparral Exhibits 0166)
(CD-ROM Chaparral Exhibits 0166)

C126 CrossPoint 4400 Fibre to Channel to SCSI Router Preliminary Datasheet;
Crossroads Company and Product Overview (Quisenberry Ex 4 (CRDS
25606; 16136)) (CD-ROM Chaparral Exhibits 0167)

C127 Crossroads Purchase Order Log (Quisenberry Ex 9 (CRDS 14061-062))
(CD-ROM Chaparral Exhibits 0172)

C128 RAID Manager 5 with RDAC 5 for UNIX V.4 User's Guide (LSI-01854)
{CD-ROM Chaparral Exhibits P062) 9/1/1996

C129 Letter dated May 12, 1997 from Alan G. Leal to Barbara Bardach
enclosing the original OEM License and Purchase Agreement between
Hewlett-Package Company and Crossroads Systems, Inc. (CRDS 02057)
(CD-ROM Chaparral Exhibits P130)

C130 CR4xOO Product Specification (CRDS 43929) (CD-ROM Chaparral
Exhibits P267) 6/1/1998

C131 Symbios Logic- Hardware Functional Specification for the Symbios Logic
Series 3 Fibre Channel Disk Array Controller Model 3701 (Engelbrecht Ex
3 (LSI-1659-1733) (CD-ROM Pathlight Exhibits 0074)

C132 Report of the Working Group on Storage 110 for Large Scale Computing;
Department of Computer Science Duke University: CS-1996-21 (PTI
173330-347). (CD-ROM Pathlight Exhibits 0098)

C133 Brian Allison's 1999 Third Quarter Sales Plan (POX 38)CNS 022120-
132)) (CD-ROM Pathlight Exhibits 0201) 6/5/2001

C134 Brooklyn SCSI-SCSI Intelligent External RAID Bridge Definition Phase
External Documentation ((CD-ROM Pathlight Exhibits 0129)

C135 StorageWorks HSx70 System Specification by Steve Sicola dated 6/11/96
4:57pm, Revision 4. 6/11/1996

C136 ANSI TR X3.xxx-199x, Revision 9 of X3-991 D. Draft Proposed X3
Technical Report- Small Computer System Interface- 3 Generic
Packetized Protocol (SCSI-GPP). Computer and Business Equipment
Manufacturers Assoc.

C137 Enterprise Systems Connection (ESON) Implementation Guide, July 1996,
IBM International Technical Support Organization, Poughkeepsie Center 7/1/1996

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 69

Application Number 12/690,592
INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 18 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C138 Digital Delivers Industry-Leading Enterprise-Class Storage Solutions.
StorageWorks Family Provides Easiest Path to Fibre Channel. Three
pages by Company News Oneall dated 09/09/04 9/9/2004

C139 American National Standard for Information Technology- Fibre Channel
Protocol for SCSI. ANSI X3.269-1996 6/18/1905

C140 F1710A File Control Unit and F6493 Array Disk Subsystem by Hitoshi
Matsushima, Shojiro Okada and Tetsuro Kudo. 2/3/1995

C141 The Legend of AMDAHL by Jeffrey L. Rodengen (5 pages)
C142 Office Action dated February 6, 2007 from the Japanese Patent Office

regarding related application No. 526873/2000. 2/6/2007
C143 lnfoServer 100 System Operation Guide, Order Number EK-DIS1 K-UG-

001
C144 iNFOsERVER 100 Installation and Owner's Guide, Order Number EK-

DIS1 K-IN-001
C145 Software Product Description: Product Name: lnfoServer 100 Software,

Version 1.1 SPD 38.59.00 11/1/1991
C146 Software Product Description: Product Name: lnfoServer Client for

UL TRIX, Version 1.1, SPD 40.78.01 4/1/1993
C147 Draft Proposed American National Standard. X3.269-199X, Revision 012.

Information System- dpANS Fibre Channel Protocol fo SCSI. 12/4/1995
C148 lmpactdata Launches Breakthrough Architecture for Network Storage. 11/13/1996
C149 lmpactdata .. News Release: lmpactdata Introduces New Storage

Architecture for High Performance Computing. 2 Pages. 11/12/1996
C150 lmpactdata .. News Release: lmpactdata's Network Peripheral Adapter

(NPA) Pushes Technology Envelope of Data Storage Management in
High-Speed Computing Environments. 2 Pages. 11/12/1996

C151 lmpactdata .. News Release: lmpactdata and Storage Concepts Announce
Integration of FibreRAID II Storage Solution with lmpactdata's Distributed
Storage Node Architecture (DSNA). 2 _pages. 11/18/1996

C152 lmpactdata .. News Release: Breece Hill Libraries Now Able to Attach
Directly to High Speed Networks Peripheral Adapter from lmpactdata. 2
Pages. 11/20/1996

C153 lmpactdata- DSNA Questions and Answers. 22 Pages.
C154 lmpactdata - Network Storage Solutions. 4 pages.
C155 Network Storage Building Blocks. 2 Pages.
C156 lmpactdata - NPA (Network Peripheral Interface). 4 Pages
C157 lmpactdata - CPI (Common Peripherallnterfae). 2 Pages

C158 lmpactdata - SNC (Storage Node Controller). 2 Pages
C159 lmpactdata- DSNA (Distributed Storage Node Architecture) Protocol. 2

Pages
C160 lmpactdata - DS-50. 2 Pages
C161 lmpactdata- Corporate Fact Sheet. 1 Page

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 70

Application Number 12/690,592
INFORMATION Filing Date 01/20/2010

DISCLOSURE First Named Inventor Geoffrey B. Hoese

STATEMENT Group Art Unit 2111

Examiner Name Unknown
Sheet 19 1 of 19 Atty Docket Number CROSS1120-33

Examiner Cite No. OTHER PRIOR ART-- NON PATENT LITERATURE DOCUMENTS Date Initials

C162 Raider-5 "Disk Array Manual for the UltraSCSI Controller". Part No. 261-
0013-002. 191 Pages

C163 lmpactdata -White Paper: Distributed Storage Node Architecture (DSNA).
January, 1997 01/97

C164 lmpactdata- DSNA Distributed Storage Node Architecture "Reference
Guide". 44 Pages

C165 F1710 Logic Specification
C166 Translation of Final Office Action issued in JP 526873/2000 mailed

05/14/08.
4 Pages. 5/14/2008

C167 Office Action issued in USPA 11/851,837 dated 12/22/08, Hoese, 7 pages 12/22/2008
C168 English Translation of Japanese Laid-Open Publication No. 5-181609. 9

pgs. 7/23/1993
C169 English Translation of Japanese Laid-Open Publication No. 7-20994. 57

pgs 1/24/1995
C170 F171 0 File Control Unit (FCU) Logical Specifications. 11 Pages 12/9/1997

Examiner Signature I Date Considered

Oracle Ex. 1002, pg. 71

-'' (0)

,,2i:UK Patent Application ne,GB .,1)2 296 798 ,,3,A
(431 Date o.f A ublication 10.07.1996

1211 Application No 9500173.1

1221 Date of Filing 05.01.1995

1711 Appllcantlsl
Spring COnsultants Umhed

Uncorpcireted In the United Kingdom)

Unit 5, Ashbi'Ook Mews, Westbrook Street.
in.EiNBURV. Oxon, OX11 9QA,; United Kingdom

r121 lnwittorlsl
Andri!W Plul George RandaU
Nonnan Hamilton Burkies ..

(741 Agerlt andlor Address for Service
AtkinSon & Co
Sixth Floor,High Holbom House, 52-54 High Holbom,
LOND.ON, WC1V 6SE. United Kingdom .

(541 Storing dita 'efficiently ~m a RAID

(51) INTCL6

G06F 12/02

(521 UK CL !Edition 0 I
G4AAMX

1561 Documents Cited
None

1581 Field of Search
. UK CL !Edition N I G4A AMX
INT CL 6 G06F 12/02
ONUNE DATABASES : WPI, INSPEC

(57) Data is stored in such a way that a plurality of user terminals 16 are given access to a large storage
volumi:l in the form 'of a redundant array of inexpensive drives (RAID 5) 21 to 25. The. large storage volume is
divided into a plurality of storage blocks and each of said blocks has a capacity which is smaller than the size
of an emulated logical disc drive. In operation. physical blocks of data are mapped onto an emulated drive as
storage is required up to a predetermined capacity. ·

21

Figure 1

G)
ttJ

'"->
N
<.o '
0')
'J c.o
00

')>

Oracle Ex. 1002, pg. 72

V.:: '• ' .·. i .':I - • • l

·;: ·.
1 •• • '

-.: 1
' ..c. ~ '•

21

'DRIVE
1

22

23

Figure 1

1/4

17

USER2

USER3.

USER4

Oracle Ex. 1002, pg. 73

Vt· ...

~
f :,t

• .1 • ' •
... " ,,

! •. ••
!
i

2/4

32,.. v
I

25~
I

21
\.

' '
I

I

I

.. I I
I

2L.
I

CPU

I

MEMORY

,. '

2J

-· ' r
·)

20

Figure 2

26
(

\ 2/
/

/

I

I ..

I

I

30
\

-

)
i
l '

Oracle Ex. 1002, pg. 74

f,l . I : ,.,
I • ~ "

I -
I -

"' ~ ,,

3/4

USER IDENTIFIES LOGICAL DISC

S~RVERINSTRUCTED

SERVER LOADS SECTOR MAPPING TABLE

SERVER IDENTIFIES AVAILABLE SPACE

USER IDENTIFIE:S FILE AND LOGICAL SECTORS

READ WRITE OR READ DATA ?

WRITE

SUFFICIENT SPACE IN LAST BLOCK ?

YES

WRITE DATA TO BLOCK

LOCATE NEW BLOCK

. WRITE DATA TO BLOCK

LOCATE BLOCKS TO READ FROM

READ DATA AND SUPPLY TO USI::R

Figure 3

Oracle Ex. 1002, pg. 75

4/4

62 LOCAL SECTOR 63 61

7 SELECTION ~
' LOCAL ·USER NETWORK·

tNiERFACE ""' OPERATING -,
INTERFACE

f---o

SYSTEM
..

. FILE SELECTION.

y SERVER. ... SERVER
' PHYSICAL ~ jNT~RFA~E . "" OP.ERATING "' ·DISC .

SYSTEM l .. I

65 SERVER BLOCK ' 67 SELECTION 66

68

SECTOR TABLE
SELECT

ADDRESSED BLOCKS

Figure.4

TRANSFER
OF DATA

: .~--

t . l
l
I

.. i
.i

i
. I

!

Oracle Ex. 1002, pg. 76

~~·

2296798

STORING DATA

The present invention relates to storing.data. In particular, the present

invention .relates to an environment in which a plurality of user terminals

5 . have shared access to a .large storage volume.

' '

Systems are known in which data storing devices, often referred to as

volumes, are shared amongst a plurality of user terminals or workstations.

Typically, the volume is associated with a local workstation, referred to as a

sel'Ver, and the totality of the workstations are iritetconnected by a network, .

10 · such a5 an.ethetnet Such an arrangement provides efficient shared access to

· ·· . files provided that the amo~t of data contained within each file .is small

compared to the transmission bandwidth proVided by the network. In

operation, given that many userS may be sharing the network bandwidth, the·

bandwidth allocated to any one particular user will be significantly less than

15 the theoretical maximum provided by the network. Thus, as files get larger,
. ' '

. it is preferable for the workstations to be given direct access to a storage

volume such that operational time is not lost while waiting for data to be

ttansferted. For example, an A4 full colour image may consist of a total of

30 Mbytes of data. When transmitted over typical networks, a trarisfer

20 dtiration of several minutes may take place before the totaiity of the data has '

be·en received. ·.

A problem with providing direet access to discs is that only .one.

workstation may be given access to the data and in order for the data to be

loaded into another machine, .. it may be necessary to physically move

25 transferrable discs, such as SCSI optical discs. Systems also exist tinder

which a plurality of users may share direct access to a· data storage device

Oracle Ex. 1002, pg. 77

·.

5

2

and, consequently, measures must be implemented to remove the risk of

contention problems. Thus, a particular workstation must release access to

a particular. file or disc partition before any of the other workstations may be

allowed to write to tliat file.

In knoWn systems, system specific softWare must be loaded into each

workstation, so that each workstation is provided with· instructions relating to

the contention protocols. In addition, a plurality of workstations are given

access to the shared volume by effectively dividing the volume into a

plurality of partitions. thus, in this way~ a first workstation may write and

10 read data to a first partition of the disc, with a second workstation writing and·

reading to a second partition of the disc. At a later date, the first workstation

may release the first partition, thereby alloWing another workstation to be

given access to this partition. In. this way, a plurality of workstations may

each access ·_partitions within the voh:Jme without the data needing to be

1 5 transferred, thereby significantly improving operational performance.

A problem with the above amingement is that the partitioning of the

disc may result in substantial storag~ regions being taken lip that are only

available for .one workstation at any one time but do not_actlially contain valid

data. Thus, for example, ten partitions of a very large disc volmne may each
. .

20 contain a relatively small amount of data. However, although a substantial

25

amount ·of empty space remains on the disc, as far as the system is concerned,

. . it would. not be possible for this space to be allocated to another workstation,
.) .· . .

·given that, as far as the system is concerned, the storage volume is fully

.allocated.

According to a fust aspect of the preSent invention, there is provided

· a method of storing data wherein a plurality of user terminals access a large

Oracle Ex. 1002, pg. 78

· ..
. ,•

3

storage volume, comprising steps of emulating the presence of a logical disc

drive having a predetermined capacity; dividing said storage volume into a

plurality of storage regions, wherein each of said regions is smaller than· the

size of an emulated logical disc drive; and mapping physical regions of data

5 to an emulated drive dynamically as additional ·storage is required, up to said

predetermined capacity.

Thus, in accordance with said first aspect, a workstation may be given

access to a logical disc. drive which it perceives as having a predetenriined

·. capacity. For example, the predetermined capacity may be similar to that

10 provided by an optical disc providing 600 Mbytes of storage. However,

physical storage locations on the large storage volUme are only allocated,

region by region, as the workstation demands additional storage through the

Writing of larger files to the disc.

In· a preferred embodiment, a look-up table is· associated with each

.15 accessible logical drive ~d .a particular look-up table is loaded when its

associated logical drive is selected.

According to a second aspeCt of the present invention, there ·is provided

apparatus for storing data;. having a plurality of user terrilinals and means for

each of said terminals to be given access to said stored data, comprising

20 means for emulating the presence o{ a logical disc drive having a.

predetermined capaCity; means for dividing a storage volume into a plurality

of storage regions, wherein each of said regions is smaller than the size.of an

emulated iogical disc drive; and mapping means for mapping said physical

regions of data to an emulated drive dynamically ·as additional storage is

. ·25 required, up to said predetermined capacity.

Oracle Ex. 1002, pg. 79

s·

4

The system will now be described by way of example only, with .

reference to the accompanying Figures, in which:

Figure 1 shows an environment in which a plurality of workstations

have access to a shared storage volume including a shared file server;

Figure 2 details the shared file server identified in Figure 1;

. Figure 3 illustrates an application of the system shown in Figure 1; and

Figure 4 shows a schematic representation of the system, including the

dynamic allocation of storage regions.

An environment in which a plurality of users have access·. to a .shared

I 0 ·storage volume is illustrated in Figute I. In the enviroiunent shown iri Figlire

1, each workstation is provided with a processor IS, a visual display unit 16,

an interface device in the fonn of a keyboard and/or a mouse or ttackerball

etc. 17 and a local disc drive storage device 18.

Each processor 1 s is connected to a server interface 19 which allows

1 S said· processors 15 to communicate with a shared file server 20. - The file

server 20' is connected to typically five physical hard disc drives 21' 22,. 23,

24 and 25.· This disc drive combination provides typically thirty-six Gbytes

of storage with an access speed of typi~ally 10 'Mbytes per second.

Disc drives il to 25 may be configured as a redundant array,
20 conimoniy referred to as a redundant array of inexpensive discs (RAiD). lit

the preferred implementation, five discs are _provided and the coding used tO

write data to the disc is commonly referred to as RA1D S. Thus, under this

'. ·:

Oracle Ex. 1002, pg. 80

5

protocol, redundant data is written to the discs such that if one of the drives

becomes inoperable or suffers irretrievable damage, all of the data can be

reconstituted from the remaining fotir drives.

Data is written to the drives in· the form of identifiable blocks or

5 regions of a predetermined length. The size of these blocks is determined

from a trade-off between .disc space optimisation and disc fragnientatioh.

However, the system· is primarily designed for storing large graphics files •

. therefore blocks may be quite large and it is proposed that said blocks should

have a size between two Mbytes and thirty-two Mbytes. Similarly, it. is

10 possible that the block size could be configurable for a particular application.

ln operation, a user issues commands under softWare control which

effectively result in a logical drive being made available by the server 20.

Communication between the user and the server 20 is effected via the
' .

interface 19 and as far ·as the user is coneemed, interface 19 presents a

15 standard small computer serial interface (SCSI) to the processor 15. Once a

logical disc has been established, the user may access this drive.

The u~er's workstation receives data to the effect that it has been given ·

access to a disc of a predetermined size, say 600 Mbytes for example, but ih

actuality, physical space is only allocated.dynamically in regions a5 storage

space for the storage of actual data is required.

Thus, in the system sho~ in Figilre 1 the server does not i~mediately
allocate 600 Mbytes of storage to a user when access to a 600 Mbyte .logical

drive is requested. Space on drives 21 throuib 25 is not divided into 600

Mbytes (or similar) partitions. Drives 21 through 25 are divided into blocks

!
i
1
I
!

l
l
I
l
l

Oracle Ex. 1002, pg. 81

·.

6

of between two and thirty-two Mbytes and blocks are only Written to as data

becomes ~vailable.

For the benefit of this illustration, it wilJ be assumed that storage space

on drives 21 through 25 has been divided into blocks of two Mb}rtes, thereby

5 making two Mb)'te blocks available for data storage purposes. As data is

written to the drives, ':'ia an interface 19, said data will occupy one of said

two Mbyte blocks. As the volume of data in'creases beyond two Mb)'tes, the

server 20 will identify a new block of two Mbytes and data originating from

a user Will then continue to be written to this new two Mbyte block. Thlis,

1 0' ' for example, if a user has written a total of five Mbytes, the server is required

to maintain a list ofwhere·these five Mbytes actually reside .on the drives, in

terrils of three two-Mbyte blocks. However, as far as the user is concerned,

five Mb}rtes of data have been written to on a logical drive having '600

Mbytes of available capacity.

Data is conventionally written to. disc drives in terms of identifiable .

blocks. As far as the user is concerned, data is written to as blocks on a 600 ·

Mbyte logical drive~ which are in tum inapped onto real blocks on the RAID.

However, the logical blocks may be writte~ to in a subStantially similar way

. to that in which real drives would be re-written to. Thus, it is not necessary .

20 for data to be written to the logical drives ill what appears to be a contiguous

.region of dl5c space. Although the actual stoi'age.allocated for a logical drive

is distributed over the RAID, the logical drives may appear, from the user's

. point of vieW, to be fragmented themselves. Thus, logical blocks of data may·

appear displaced over a to,Pcal drive; effectively emulating the presen~ ·of

25 fragmentatiort on tJ:te logical disc. The system emulates such a situation· by

providing mapping fll'Stly of blocks to logical drive locations and then ·

mapping ·&om logical drive lociltions to block locations on the RAiiJ.

i
.;

Oracle Ex. 1002, pg. 82

·

5

7

Many users may be given access to many virtual drives, al1owing data

to be accessed via many workstations without actuaJly being transferred over .

a network. However, when ·capacity is allocated it ~s not wasted, in that

blocks of t:Wo Mbytes are only allocated as actual storage is required.

In a preferred einbodilnent, it is envisaged that a s~rver 20 would allow

up to sixteen users to be connected thereto, although provision is made for

server boxes to be connected in tandem, thereby providing access to a further

16 users for each box so connected.

The server 20 is detailed in Figure 2~ lrltemally, a 32 bit parallel bus

10 25 provides communication between user interface circuits 26, disc drive

interfaces 27, an internal processing unit 28 and internal program and data

.memory 29.

The server 20 is ci1nneCted to each user interface 19 via a respective

.· iiiteiface circuit 26 via two coaxial cables 30, providing a bi-directional link

15 capable of conveying 100 Mbytes per second. Similarly, disc interface

circuits 27 provide a parallel acceS$ to disc drives 21 through 25 and using

. connections of this type, it is necessary for disc drives 21 through 25 to be

in close proximity to server box 20. In practice, the combination of server

20 along with disc drives 21 through 25 could be housed in a common

20 housing with· a shared power supply. However, coaxial cables 30 allow the·

users to be positioned at a significant distance froin the server 20 and the

interfaces are such that they will 8llow runs in excess of I 00 metres. Thus,

these serial co:tmections are similar or may take advantage of high speed

ethemet links.

Oracle Ex. 1002, pg. 83

. i

5

i.

8

In an alternative embodiment, user processors 15 are connected to the

server 20 via conventional SCSI interfaces which, although reducing the

overall complexity of the system, also reduce the maximum distance between

the server 20 and the proeessors 15.

An application of the system is illustrated in Figure 3. At step 41 a

user identifies a logical disc, either by ·running server related software or, .

alternatively, in response to manual operations of a device connected to

interface 19. Thus, if it is not possible to embed server software within a

user's terminal, it is poSsible to provide interfaces 19 with additional control

1 0 devices such that, in response to ·manUal operation of switches etc., commands

are sent· to serVer 20 so as to establish a logical disc connection.

Col:ninunication ofthis type, allowing a user to send commands to the

server 20~ is achieved using vendor unique command blocks, which are data

areas provided for specific proprietary applications within the SCSI standard.

15 Thus, in responSe to user- originating commands, the server is instrUcted at

step 42 to the effect that a user requires access to a logical drive.

For each logical drive which may be made available to the user8, it

heing rioted that once a logical drive has been established by any particular

user, other users may be given access to it, it is necessary for the server 20

20 to create a sector mapping table for that particular logical drive. Thus, in
. .

·response to commands generated by a user's processor, establishing logical

sectors of a SCSI disc; it is necessary for the server 20 to map these logical

·seCtors onto physical blocks or groups of physical blocks ·stored within .the

physical drives 21 through 25. At the CPU 28, reference is made to a Jook-

25 up table stored within memory 29 which, as previou~ly stated, identifies

physical data blocks held by the redundant disc array. Thus, the -CPU is

Oracle Ex. 1002, pg. 84

9

required to generate the sector instructions relevant for the pnysicaJ drives 21

through 25, which are issued to respective ones of said drives via respective

interface circuits 27.

Once a user has requested use of a logical drive, the server identifies

5 . the space available to the user at step 44, in response to which the user may

identifY particular files to be written to or read from the logical :drive.

At step 46 it is determined whether the user wishes to write data to ot

read data from a logical drive. If data .is being written to the drive, an

enquiry is made at step 47 as to whether space is available on the last ble>ck

10 to be written to. If space is available, data is written to the neXt identified

block at step 48. Alternatively, if su:ffi.cient space is not available on the last

bioek, a new block is selected at step 49 and data is written· to this block at

. step SO.

If a read operation is identified at step 46, the physica:t blocks to be

.15 ~d are identified at step 51, the data is read at step 52 and supplied to the

requesting user in a suitable form. Thereafter, the process inay be repeated

and further identifications may be made at step 41 ..

A schematic representation of the system is illustrated in Figlire 4, At

a workstatiori, a user is presented with a user interface, capable of providing

20 an environment for alloWing existing logical drives to be selected and

providing the capacity for new diives to be defined.

The user interface 61 is in tum supported by a local operating system

62. Thus, an operator m8kes a file· selection via user interface 61 and it is

Oracle Ex. 1002, pg. 85

..

i •

10

then necessary for the local operating system 62 to generate commands which

may be interpreted by the physical storage system.

As far as the local operating system 62 is concerned, the system is

making access to conventional SCSI disc· drives. Thus, the local operating

5 system 62 communicates with a network interface, illustrated as 63 and·

physically consisting of interface 19 shown in Figure .1. The network

interface 63 receives staildard SCSI. commands from the local operating·

system 62 and in tum generates modulated data for transmission over the

serial link, shoWn as 64, colinecting the network. interface 63 to a· server

1 0 interface 64. · . A physical representation of sertrer interface 64 is identified in

Figure 2 as 26.

The transmission of data between the loCal operating system 62 and the

network interface 63 conforms to establish SCSI protocols. However, the

co~unication between network interface 63 and server interface 64 is

15 internally defmed by the system and is designed, in a prefelred ·embodiment,

to provide maximum data transfer rates over substantial lengths of cable, such

aS coaxial cable. Furthermore, the connection between the network interface

63 and the server interface 65 is bi-directional.

The network inteiface 63 is primarlJy concerned With driving signalS
. . . .

20 · generated by the local operating system 62 so that they may be transmitted

· over the serial communication link 64. However, the sector indications

· generated by the local operating system 62 are conveyed to the server

interface 65 and' it is the server operating system 66 which is. required' t~

convert SCSI sector selectitins into addresses for physical blocks loeated on

25 · the array of physical drives ..

Oracle Ex. 1002, pg. 86

'-

11

Thus, .the server operating system 66 supplies addressing signals to the

physical discs, identified as 67 whereafter data transfer is effected.

· The server operating system 66 converts SCSI sector definitions into

addressable physical data blocks by means of a look-up table, identified as 68.

, 5 A look-up table is defined for each logical drive aild when a logical drive is

selected by an operator its associated look-up table is loaded to an operating

aiea of memory 29 within the server 20. Thus, within the operating system.

66, a logical drive is identified, resulting in a table 68 being loaded.

Thereafter, SCSI sector selections are supplied as inputs to said table, :which

10 then results in addreSses for physical data blocks being gei1erated a5 outputs.

Thus, as illustrated in Figure 4, the table 68 effectively points 'to addressable

data blocks 69 in the array of physical data storing discs 21 through 25.

Oracle Ex. 1002, pg. 87

..

12

CLAIMS

1 : A method of storing data wherein a plurality of user tennimils

access a large storage volume~ comprising steps of

emulating the presence of a logical disc drive having a predetennined

5 capaCity; .

dividing said storage volume into a plurality of storage . regions,

wherein each of said regions is smaller than the size of ari emulated logical

disc drive; and

mapping said physical regions · of data to an emulated dnve

10 . dynamically as additional storage is required, · up to said predetermmed

capacity.

2. A method according to claim 1, wherein a plurality of logical

drives· are accessible to a user.

3. A method according to claim 2, wherein a look-up table is

15 associated with each accessible logical drive and a particular look-up table is ·

loaded when its associated logical drive is selected. ·

4. A method according to any of claims 1 to 3, wherein: the logical

drives appear to a user system iil a form compatible with a local physical disc

diive.

20 5. A iiiethod according to claim 4, wherein said logical drive is

connected via. a small computer serial interface (SCSI).

6. A method according to any· of claims 1 to 5, wherein the size ·

of said regions is variable and pre-set for a particular application.

Oracle Ex. 1002, pg. 88

13

7. Apparatus for storing data, having a plurality of user tenninals

and means for each of said terminals to be given access to said stored data,

comprising

means for emulating the presence of a logical disc drive having a

5 predetermined capacity;

means for dividing a storage vohnne into a plurality of storage regions,

wherein each of said regions is smaller than the size of an emulated logical

disc drive; and

mapping means for mapping said physical regions of data to an

10 . emulated . drive dynamically as additional storage is . required, up to said

predetermined capacity.

8. Apparatus according to claim 7, including means for defining

a plurality of logical drives, each accessible to a user.

9. ApparatUs ·according to claim 8, including means for defining

15 · a look-up table associated with each of said logical drives and means for

loading a particular look-up table when its associated logical drive is selected.

20

10. Apparatus according to any· of claims 7 to 9, including means

for presenting a logical drive to a system user in a form compatible with· a

local physical disc drive.

11. Apparatus aceording to claim 10, wherein said logical disc drive

is connectable via a small computer serial interface (SCSI). ·

. . .

12. ApparatUs according to any of claims 7 to I 1, including means
for pre-setting the size of said regions for a particular application.

Oracle Ex. 1002, pg. 89

5

14

l3. Apparatus according to any of claims 7 to 11, wherein the size

of said regions is variable in response to operator requests and said means for

emulating the presence of the logical drive is arranged to supply data to. a

user terminal identifying the size of a logical drive being emulated.

14. A method of storing data substantially as herein described with

reference to the accompanying Figures.

15. Apparatus for storing data substantially as herein described with

reference to the accompanying Figures.

Oracle Ex. 1002, pg. 90

Application No:
Claims searehed:

Patents Act 1977

GB 9500173.1
1-15

Search Report under Section 17

Databases searched:

Examiner:
Date of search:

Mr S J Probert
6 April 1995

· UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CJ (Ed.N): G4A AMX

Int Cl (Ed.6): G06F 12/02

Other: Online Databases : WPI, INSPEC

Docinnents considered to be relevant:

Category ·Identity of document and relevant passage Relevant
to claims

None

X Documa11 illdic:atin,g Lad: or ooVdly or invmlive c.ep
y Documall indic:atin: Lad: or invallive step ir wmbinc:d

witb one or moi'e otbl:l' docllmc:IJU or llaJI'lC i:alqcnj ..

&. Member of tbe same p..tem family

A Doalma1t i:ndic:aling ta:bnological blc.kgrtllllld and/or aatc or lbe an.
P Doauncill published ou or after the decla~ priority date but before

lbe ~ date or this invcution.
E Pllal1 doc:umenl publisbcd on or after. but witb priority dite earlier

tban. tbll fllina date or 1lUJ application.

Oracle Ex. 1002, pg. 91

(12)UK Patent Application ,,9,GB 11112 297 636 (13)A

1211 Application No 9502377.6

1221 Date of Filing 02.02.1995

17t) Applicentlsl
Spring Consultants Umhad

llneorPc~rllted In tM United Kingdom)

Unit 5, Ashbrook Mttws. W.stb~k Street.
BLEWBURY. «mon, OX11 9QA, United Kingdom

172) liwentor(il)
Norman Hamilton Burldeil
Andrew Paul George RancbiU

1741 Agent lind/or Address fo'r Service
Atldnson & Co
Sixth Floor,High Holborn HCKisa, 52-54 High HoibOm,
LONDON, WC1V 6$£, United Kingdom

(43) Date of A Publication 07.08.1996

1511 INT CL8

GOGF3/06

1521 UK CL (Edition 0 I
G4AAFSAMX

1561 Doct.iments Cited
EP 0078183 A2
Dialog raeord 01425541 of UNIX R.vlaw, vol. 9.' No.•,
AprU 1991, page 98 ·

158) Field of Search
UK CL !Edition N I G4A AFS AMX
INT CL 8 Go&F 3/0&
ONUNE: WPI, INSPEC, COMPUTER DATABASE

(54) Storing data on emulated, logieal, removable, disc drives

157) Data is stored on a large storage volume
implemented as a redundant array of five ineKpensive
discs 121·25). This volume is controlled so as to emulate
the presence of a plurality of logical drives.
Workstations 115,1 6) accessing the drives perceive them
as removable SCSI drives. Consequently, when a
remote workstation closes access to a previously
accessed logical drive, a disc dismount command is
generated, as required by a removable disc drive,
thereby enabling other workstations to obtain access to
that drive.

Figure 1

G)
OJ
I')

"' <.0
.........
0)
w
(J)

)>

Oracle Ex. 1002, pg. 92

21

DRIVE
1

22

23

Figure 1

1/5

17

USER2

USER3

USER4

Oracle Ex. 1002, pg. 93

~-;

,(- ..

.215

r

321 v
25.._......-

I

2r
I
I

'
-,

I
I -,

I
I
I

.J "l
I

I
I

I
r

I

I

28 . I

'---- I

CPU
-,

I

I

MEMORY
I -, ,

) I

29
I

.r

20
)

Figure 2

26
(

\ ~· 3 I
7 '

0

-

I
I

l

l
I

1
I

I

I
I

I
I

I
I

Oracle Ex. 1002, pg. 94

.....
~ ,. . '

3/5

USER IDENTIFIES LOGICAL ,.. r-.-DRIVE 31

!
LOCAL OPERATING SYSTEM ,... r-.-REQUESTS ACCESS

32

'l
SERVER GRANTS ACCESS AND ,..

RETURNS SIZE AND TYPE _ I'-33

l
DATA TRANSFER ,... r--34

!
USER TERMINATES ACCESS --........:, 35

!
WORKSTATION ISSUES ,..

'-....-· DISMOUNT COMMAND 36

!
NETWORK ACTS UPON
DISMOUNT COMMAND -r'-- 37

- !
WAIT FOR NEXT USER -1'----· COMMAND 38

Figure. 3

Oracle Ex. 1002, pg. 95

'. ·'

4/5

62 LOCAL SECTOR 63
SELECTION

USER LOCAL SCSI
INTERFACE ---~ OPERATING 1--~ INTERFACE

SYSTEM

65

FILE SELECTION

SERVER BLOCK
SELECTION

SECTOR TABLE
SELECT

66

68

ADDRESSED BLOCKS

Figure 4

67

Oracle Ex. 1002, pg. 96

' '
'

,• '

5/5

I START
I .-

7 1-..... WAIT FOR WORKSTATION
COMMAND

..

EMULATE EMPTY DRIVE
\:.73

INSTRUCTED TO MOUNT ? . 1
NO 72

~

YES
REPLY •NOT READY•

.......

'--75
DRIVE FREE?

NO , 74

YES
:...,.. 76 ALLOCATE PARTITION

77 '\!.. REPLY "MOUNTED•

I
.~

78 l).. WAIT FOR COMMANDS

EMULATE DISC .
.""'\ '

'so
"\.NO

-
DISMOUNT? 79

.I

YES

81 ,.. DE~ALLOCATE PARTITION

82 "\
REPLY "DISMOUNTED•

.
F1gure 5

Oracle Ex. 1002, pg. 97

t ~ ••

2297636

STORING DATA

The present invention relates to storing data. In particular, the present

invention relates to large storage volumes controlled so as to emulate the

5 presence of a plurality of logical drives.

Systems are known in which a large storage volume emulateS the

presence· of a plurality of smaller volumes, which in tum may assist a user by

facilitating logical ammgement of data, such that data of a firSt type may be

kept separate from data of a second type. As far as an operating system is

10 concerned, it has access to a plurality of drives as an altermitive to having

access to only one drive. Most operating systems are capable of controlling

a plurality of logical drives in this way; within limits.

In more sophisticated environments, it is possible for a plurality of

u5ers to be given access to a shared volume divided into a plurality of logical

15 drives. The division of the volume into a plurality oflogical drives facilitates

the interchange of information between users. Thus, a frrst user may log onto

a logical drive, manipulate data contained within that drive and then log o~

so as to allow another user to be given access to the logical drive. ~uch a

procedure is particularly attractive when large data files are being handled,

20 such as data files representing fuJJ colour graphic images, where the transfer

of data, even over relatively fast networks, may take a considerable amount

of time.

In addition, a large shared volume may be constructed first to provide

relatively fast access times, along with levels of redundancy, such that a

Oracle Ex. 1002, pg. 98

2

single destructive event would not result in the whole data being lost, with

recovery procedures being included as part of the overall Structure.

Increasingly, computer workstations are being provided with localised

processing capabilities having recognised ·and well supported operating

5 systems. Examples are Apple Macintosh computers, IBM personal computers

and Unix workstations etc. All of these systems have recognised protocols

for the transfer of data. Thus, ·given the ablDldance of well supported

operating systems, it is preferable to take full advantage of these operating

systems so as to minimise the degree of bespoke software which needs to be

1 0 generated and subsequently supported. System designs are restricted if full

adherence to existing standards must be maintained, however, in some

environments, an established system of operation may already be functional

and the extent to which this system may be modified by the addition of new

software etc., may be severely restricted. In some situations, the inStallation

15 of a new suite of networking software may invalidate software agreements

relating to primary localised processing.

In an environment in which a large storage volume emulates a plurality

of discs, contention problems occur and the control processor must ensure that

strict housekeeping routines are maintained, such that, for example, a

20 previously accessed logical drive is properly deactivated when a particular

user has finished with it, so that said drive may be accessed by other users

and the overall integrity of this system is maintained. However, the degree

to which network software requires to be embedded within workstation

· software should be minimised and it is undesirable for the network to place

25 additional const:r3ints on the workstations so as to assist the network's

processing devices with their housekeeping tasks.

Oracle Ex. 1002, pg. 99

3

According to a first aspect of the present invention, there is provided

a method of storing data, wherein a large storage volume emulates a plurality

of logical drives; said logical drives emulate removable disc drives; and the

closing of access to a previously accessed logical drive generates a disc

5 dismount command.

Thus, an advantage of the present invention is that the logical drives ·

emulated by the large storage volume are presented to users in the fonn of

removable disc drives, although in preferred practical realisations, they would

· actuaily be embodied within an environment of large fixed drives, so as to ·

10 optimise data capacity and disc access speed. However, operating systems for

the individual workstations are fully conversant with the requirements of

removable disc drives and, as required by the present invention, they will

issue commands to said drives, informing the drive that access is no longer

required.

15 In this way, it is possible to ensure that all necessary housekeeping

procedures are effected when control over a logical disc drive is relinquished,

either as part of normal. operations or due to a software or hardware fault.

Thus, for example, it is possible to ensure that directory information, cached

in memory, is written back to disc, thereby updating the disc's directory,

20 before releasing access to the logical drive. Thus, by emulating removable

drives of this type, workstation software will automatically provide the

necessary levels of housekeeping in order to ensure that access to a logical

drive is released when no longer required by a particular operatOr.

The local workstation will interface with a logical drive over standBrd

25 interfaces, provided for accessing removable disc drives. The workstation

software will generate a disc dismount command and as far as the said

Oracle Ex. 1002, pg. 100

4

softWare is conceined, a dismount of the removable disc will be effected_

thereby releasing the tie between the local workstation and that particular

logical disc drive. However, within the network, this com.riland will be

interpreted to the effect that the processor no longer requires . access to the

5 logical drive, thereby allowing housekeeping procedures· to be performed by

the network processor.

Preferably, the logical drives emulate removable SCSI drives which

may be capable of storing between 200 MBytes and 900 MB}rtes of data.

According to a second aspect of the present invention there is provided

1 0 apparatus, including a large storage volume; a control device arranged to

control data transfer with said storage volume and to provide user terminal

access to said storage volume by emulating the presence of a plurality of

removable disc drives wherein user terminals generate a disc dismount

command when closing access to a previously accessed logical drive; and the

15 · control device responds to said disc dismount command by terminating

connection to said previously connected logical drive.

In a preferred embodiment, the control device is arranged to read

directory information from an access logical drive and said directory

information stored on the disc is updated in response to a disc dismount

20 command .

. The invention will now be described by way· of example only, with

reference to· the accompanying figures, in which:

Figure 1 shows a system in which a plurality of workstations have

access to a shared storage volume, including a file server;

Oracle Ex. 1002, pg. 101

5

Figure 2 details the file server shown in Figure 1;

Figure 3 details operations perfonned by the system shown in Figure

1; and

Figute 4 represents the logical operations effected by the system shown

5 · in Figure 1, including removable disc emulation;

Figure 5 details the removable disc emulation procedures perfonned by

the file server shown in Figure 1.

A system is shown in Figure 1 in which a plurality of users have

access to a shared storage volume. At each user workstation, the user is

10 provided with a processor 15, a visual display unit 16, a keyboard, mouse or

similar interface device 17 and a local disc drive 18.

Each processor 15 includes conventional software so as to implement

an operating system, allowing data transfer between the processor 15 and the

disc drive 18. In addition, the operating system also facilitates data transfer

15 between the processors 15 and a shared file server 20. In this preferred

embodiment, the file server 20 is connected to five physical hard disc drives

21, 22, 23, 24 and 25, which in combination provide a total of thirty-six

GBytes of storage with an access speed of typically 10 MBytes per second.

Disc drives 21 to is are configured as a redundant array. in which

20 act:Ua.J data is stored on four of the drives, with parity data stored on the fifth.

In this way, any one of the physical drives 21 to 25 may be removed from

the system, possibly due to operational failure (head crash etc.) whereafter

said data may be re-constituted from the data available from the other four.

Oracle Ex. 1002, pg. 102

6

Thus, data integrity and reliability are assured without the need for

implementing regular back-up procedures. The use of a plurality of disc

drives in this way is known in the art as a redundant array of inexpensive

discs. In the preferred embodiment this is implemented in accordance with

5 the RAID 5 recommendation.

Data is written to the drives in the form of identifiable blocks or

·regions of a predetermined length. The size of these blocks is determined

from a trade..:.off between disc space optimisation and disc fragmentation. The

system is primarily designed for storing large full colour graphics files and

10 blocks have a size of, typically, between two MBytes and thirty-two MBytes,

although block size may be· configurable so as to suit particular applications.

In operation, users issue commandS under software control which result in

logical drives being made available by the server 20. Communication

between users and the server .20 is implemented using established protocols.

15 In the preferred embodiment, the standard small computer systems interface

(SCSI) is implemented and suitable interface cards are mounted in association

with processor 15 and server 20. Thus, once a logical drive has been

established by the server 20, this drive may be accessed by the user who

perceives the drive as a conventional SCSI drive, accessed via conventional

20 protocols within the local operating system.

The server 20 is arranged to provide access to a total of sixteen user

workstationS and a further sixteen workstations may be given access by

~onnecting a similar server in tandem With the first. The server is detailed

in Figure 2 and, . internally, a thirty-two bit parallel bus 25 provides

25 · · compmnication between the user interface circuits 26 and disc drive interfaces

27. The server is controlled in response to commands issued by the central

Oracle Ex. 1002, pg. 103

7

processing unit 28 which in tum receives programmed instructions from an

internal memory device 29.

As previously stated, the server 20 is connected to each processor of

a user workstation via a SCSI interface. The range of such interfaces is

5 limited and in alternative embodiments it may be necessary to provide
)

alternative connections, possibly via coaxial cables, so as to increase the

. distance between the server and the workstations. It is therefore envisaged

that systems will be designed specifically for particular applications, so as to

.optimise connections between workstations and the server. Thus, in some

1 0 environments, a large number . of workstations may be provided relatively

. close to the server 20, in which case conventional SCSI interfaces may be

employed whereas, in alternative arrangements, workstations may be

. distributed quite widely throughout a building, requiring more robust

. connections between the processors and the server 20. It is envisaged that

15 connections of this type should aJlow the workstations to be displaced from

the server by distances in excess of 1 po metres, having characteristics similar

to· high speed etherilet links.

Typical operation of the system shown in Figure 1 is detailed in Figure

3. As far as the operating system executable by each user workstation is

20 concerned, the workstation effectively has access to a large number of

removable disc drives, although ·these are actually emulated by the server 20.

In some situations, standard operating system software interfaces may be

implemented within the user workstations so as to allow users to gain access

to these logical drives. However, ·as the number of logical drives increases,

25 it may be necessary to improve the environment provided for users, so that

they are aware of the presence of the disc drives and are provided with an

interface which facilitates access to them. However, these user interfaces

Oracle Ex. 1002, pg. 104

8

would be overlaid over the operating system so that computer generated

commands would result in instructions being generated at the operating

system level.

Referring to Figure 3, a user identifies a logical disc drive to which

5 access is required and identifies this logical disc drive at step 31. In response

to the ltieal request made at step 31, the lOcal operating system implements

measures to effect a request to access the logical disc drive, using

conventional protocols. In particular, the processor 15 issues commands· over

the SCSI interface connected to the server 20.

10 In response to the request made at step 32~ the server 20 will determine

whether the logical disc drive is available and if the drive is available, it wiJJ

grimt access to the requesting workstation. As part of the SCSI protocol, the

server will return data back to the requesting workstation, identifying the size

of the logical drive and the drive type. Data relating to the drive type is very

15 relevant to the present invention. In particular, data is returned back to the

requesting workstation identifying the drive type as a removable drive having,

in the preferred embodiment, a total of 600 MBytes of available capacity.

· Thus,· it should be appreciated, that the emulated drives differ

significantly from the actUal physical drives in two respects. Firstly, the

20 · emulated drives are significantly smaller .than the actual physical drives on

which they are being emulated, primarily to ensure that a large number of

such drives may be supported by the system. Secondly, the physical drives

are actually fixed drives ~d remain permanently in place. Thus, when the

server writes data to a particular physical location, the server is assured that

25 this physical location will ~emain in place and will not be exchanged for some

other data storage medium. However, in the emulated envirorunent, the

Oracle Ex. 1002, pg. 105

9

requesting processors are infonned that the drives to which they are writing

should be treated removable drives, effectively warning the processor that

these drives may be replaced and that a subsequent data transfer operation to

that particular drive would not necessarily result in the same information

5 being available on the storage medium.

In the system itself. the emulated drives are not physically rephtced by

other recording media and it is not actUally necessary for a physical

dismounting operation to be perfonned when data access has been completed.

However, by informing the remote .processors that they are dealing with

10 removable disc drives, the resulting dismount or unload command issued by

the operating systems of the remote processors will ensure that the server 20

has been instructed to the effect that the remote processors have completed

their data transfer operations, thereby ensuring that the processor 20 receives

sufficient information for it to complete its housekeeping tasks, thereby

15 allowing other workstations to be given access to emulated drives once they

have been released from a data transfer operation.

· Thus, to summarise, when the server 20 grants access to an emulated

logical disc drive, it infonns the requesting processor that it has been given
/ '

access to a removable disc drive having a total capacity of 60Q MBytes .

. 20 · Conventionally, data is Written to disc drives as identifiable blocks. In

·order to optimise available storage space, these blocks would nonnalJy reside

on physical drives as contiguous regions of storage, effectively reducing

fragmentation. However, it is not essential ·for the data to be perceived as

residing in contiguous regions. In the present embodiment, the workstation

25 · processors may write data to the logical disc drives as they feel fit. Thus a

logical disc drive may be perceived as being fragmented.

Oracle Ex. 1002, pg. 106

10

Thus, at step 34 data transfer takes place and the workstation •s local

operating software may read and write to the logical drives as if they were

local removable disc drives. However, given the nature of the RAID 5 drives

21 to 25, the rate of data transfer is substantially higher and only restriCted

5 by the capabilities of the interface circuits employed. Thus, as far as the

workstation processor is concerned, along with its operating software, it is

interfacing with a standard removable disc drive. Ho~ever, as far as the

actuaJ operator is concerned, the rate of data transfer is significantly higher

and, due to the parallel nature of the may, said transfer rate significantly

10 exceeds that available from fast local hard drives. Thus, the operator is

provided with the advantage of faSt data access while at the same time

allowing data to· be shared betWeen a plurality of users as if the data were

contained on removable excluingeable drives. Furthermore, the physical

removing and exchange of drives is not necessary and only occurs at a logical

15 level.

After data transfer has been completed, a user will normally take

measures to terminate access to the logical drive. Thus, at step 35, a user

may request access to another drive or implement alternative local processing

operations. In either event, the workstation operating system is:SUes a

20 dismount coDliiland to the server 20 at step 36. This dismollilt command is

required when the operating system bas been · given access to real

dismountable drives which, as previously stated, is acted upon by the server

20 so as to complete the hoUsekeeping procedures.

At step 37 theseiver 20 acts upon the dismount command by releasirig

is the logical drive such that it may be accessed by other workstations.

Thereafter, at step 38, the server waits for the next uSer command.

Oracle Ex. 1002, pg. 107

11

The releasing of a logical drive will include updating the directory for

that drive. In order to improve disc access speed, disc directories are cached

in memory and directory updates are made locally while the processor has

access to the disc. Upon receiving the dismount command, the updated

5 directory information from the cache memory will be rewritten back to the

directory on the disc, thereby maintaining the integrity of the directory data

stored on the disk.

The system operating the software will be aware of the way in which

removable disc directories are handled and the. system will include measures

10 for accommodating power faillires and program errors etc. Thus, measures

can be taken to effect a disc reset, upon detecting that a particular partition

has become unavailable or .disconnected, whereafter, when access has been
regained in that particular diive, information will be read to the effect that n:o

· assumptions may be made about the data contained on the disc and it would

15 be necessary to re-assess that data.

Although the system erl1ulates logical drives having, for example, 600

MBytes of available storage, physical space on the RAID 5 drives 21 to 25

is actually alloCated dynamically in regions as storage space· for the storage .

of actual data is required. Thus, although users appear to be given access to

20 logical drives having a total of 600 MBytes, space on the actual RAID · 5

drives is not divided into 600 MByte partitions. Drives 21 to 25 are divided

into blocks of between two and thirty-two MBytes and blocks are allocated

dynamically as and when they are required.

The actual size of blocks on the RAID 5 di:ives may be variable,

25 although it will be assumed herein that, for a particular application, two
· MByte blocks will be identified. As data is written to a logical drive, via the

Oracle Ex. 1002, pg. 108

12

server 20, the data will physically occupy an identifiable two MByte block.

As the volume of data increases beyond two MBytes, the server 20 will

identify a new two MByte data block and data originating from the user will

then be directed. to this new block. Thus, if a user has created a total of five

5 .MBytes, the server is required to maintain a list of where these five MBytes

actwllly reside on the drives, in tenns of three two MByte blocks. However,

as far as the user is concerned, five MBytes of data have been written to on

a removable drive having a total of 600 ~ytes of available capacity.

At a workstation, a user is presented with the user interface capable of

10 providing an environment for allowing existing logical drives to be selected

and for new logical drives to be defined. The user interface 61 is in turn .

supported by a local operating system 62, which is responsible for generatirig

commands which are in turn interpreted by the interface.

As far as the local operating system 62 is concerned, aceess is being

15 made to a conventiorutl SCSI disc drive and communication is effected over

a conventional SCSI interface 63, resident at the workstation, to a server

SCSI interface 65. This communication conforms to establish SCSI ·

protocols; thereby substantially reducing the need for embedding beSpoke

software within the lOcal workstation environments.

20 A serVer operating system 66 converts SCSI sector definitions into .

addressable physical data blocks by means of a look-up table, identified by

reference 68. A look-up table is defined for each logical drive and When a
logical drive is selected by an operator, its associated look-up table is Jolided

to an operating area of memory 28 within the server 20. Thus, within the ·

25 server operating system 66, _a logical drive is identified, resulting in a table

68 being loaded. Thereafter, SCSI sector selections are supplied as inputs to

Oracle Ex. 1002, pg. 109

5

13

the table, which then results in addresses for physical data blocks being

generated as outputs. Thus, as illustrated in Figure 4, the table 68 effectively

points to addressable data blocks 69 in the anay of physical data storing discs

21 to 25.

The server operating system 66 allows the SCSI environment of the

user terminal to interface with the emulated environment of the server. Thus,

it is necessary for the server operating system to emulate an SCSI disc drive

and procedures for performing this emulation are detailed in Figure 5.

The procedures shown in Figure 5 are executed within a multi-tasking

10 eiwironment, such that similar procedures may be performed for each of the

user terminals. The procedures shown in Figure 5 therefore represent

instructions executed on behalf of a particular workstation.

At step 71 the system waits for a workstation con:iinand and upon

. receiving such a command a question is asked at step 72 as to whether this

IS is a "mount" command. A "mount" command instructs the server to moUJit

a selected removable drive and data transfers via the server 20 can only be

performed if the server has received such an instruction. Thus, if the question

asked at step 72 is answered in the negative, control is directed to step 73,

whereupon procedures are performed to emulate an empty drive. Thus, this

20 · would include the generation of error messages to the effect that the drive is

not ready etc.

If an instruction to mount a drive is generated by the workstation, the

question asked at step 72 is answered in the affinnative, resulting in control

being directed to step 74. At step 74 a question is asked as to whether the

2S drive is free and if another user workstation has been given access to that

Oracle Ex. 1002, pg. 110

14

particular drive, the question asked at step 74 will be answered in the

negative, resulting in a reply being generated at step 75 to the effect that the

drive is not ready. Thereafter, control is retmned to step 71. However, ifthe

drive is free the question asked at step 74 is answered in the aftlimative~

5 resulting in control being directed to step 76.

At step 76 a partition is identified representing the regions Within

. which data for the emulated drive may be read from or wiitten to .

. Thereafter, control is directed to step 77, whereupon a reply is returned back

. to the requesting workstation to the effect that the disk has been rnowited and
10 control is directed to step 78.

At step 78 the server waits for further conunands from the user ·

workstation and in response to receiving such a command, a question is·asked

at step 79 as to whether this is a dismount command. lfthe.cominand is not

a dismount comiiland further emulation of a removable disc is performed at

15 step 81 and control is returned to step 78.

Upon detecting a dismoUJit command at step 79, control is directed to

step 81, whereUpOn the partition is de-allocated and a reply is issued to the

user workstation at step 82 to the effect that the disc bas been dismounted.
. .

Theteafter control is returned to step 71, whereupon the server waits for the·

20 next workstation command.

Oracle Ex. 1002, pg. 111

' '

~--------------------------------------

15

CLAIMS

1. A method of storing data, wherein a large storage voliune

emulates a plurality of logical drives; said logical driveS emulate removable

disc drives; and the closing of access to a previously accessed logical drive

5 generates· a disc dismount command.

10

·2. A method according to claim 1, wherein the logical drives

· emulate removable SCSI drives.

3. A method according to claim 2, wherein. each of said logical

drives provides between 200 MBytes arid 900 MBytes of data storage.

4. A method according to any of claims 1 to 3, wherein data is

written to the physical Storage volume in identifiable blocks. ·

5. A method according to claim 4, wherein each of said blocks

provides between one MByte and sixty-four MBytes of storage.

6. A method according to claim 4 or claim 5, wherein a mappirig

1 S table maps sectors of an emulated disc onto blocks of the physical volume.

7.· A methOd according to claim4 or clait:n 5, wherein blockS are
allocated dynamically as storage is required.

8. A method according to any of claims I to 7, wherein the storage

volume is implemented as an array of disc storage devices.

Oracle Ex. 1002, pg. 112

5

16

9. A method according to claim 8, wherein the array has redundant

discs.

10. A method according to claim 8. or claim 9, wherein the array

has between four and twelve discs.

11. A method according to any of claims 1 to 1 0, wherein directory

infortnation stored on an accessed disc is updated in responSe to a disc

dismo'unt command.

12. A method according to any of claims 1 to l 0, wherein directory

information stored on an accessed disc is updated on detecting that .a user

10 terminal has been disconnected and can no longer access a previoU.Sly

accessed logical drive.

13. Data storage apparatus, including a large storage volume;

a control device arranged to control data transfer with said storage

volume and to provide user terminal access to said storage volume ·by

15 emulating the presence of a plurality of removable disc drives, wherein

20

user terminals generate a disc dismount command when closing access

to a previously accessed logical drive; and

the control device respondS to said disc dismount corturiand by

terminating connection to said previously connected logical drive.

14. Apparatus according to claim 13, wherein the logical drives

emulate removable SCSI drives.

15. Apparatus according to clBim 14, wherein each of said logical

drives. provides between 200 MBytes and 900 MBytes of data storage.

Oracle Ex. 1002, pg. 113

17

16. · Apparatus according to any of claims 13 to 15, wherein the

control device is arranged to write data to the physical storage volume in the

fortn of identifiable blocks.

17. Apparatus according to claim 16, wherein each of blocks

5 provides between 1 MByte and 64 Bytes of storage.

18. Apparatus according to claim 16 or Claim 17, wherein the

control device is arranged to access mapping tables, mapping sectors of an

emulated disc onto blocks of the physical volume.

19. Apparatus according to any of claims 16 to 18, wherein the

10 control device is arranged to dynamically allocate blocks a.s storage is

required ..

20. Apparatus according to any of claitns 13 to 19, where the

storage volume is implemented as an array of disc Storage devices.

21. Apparatus according to· Claim iO, wherein the array includes

15 redundant discs.

22. Apparatus according to claim 20 or claim 21, wherein the atray

bas between four and 12 discs.

23. Apparatus according to any of claims 13 to 22, wherein the

control device is arranged to read direCtory information trom an accessed

20 logical drive, and the directory infonnation stored on the disc is updated in

response to a disc dismount command.

Oracle Ex. 1002, pg. 114

18

24. Apparatus according to any of chums 13 to 22, wherein· the

control device is arranged to read directory infonnation from an accessed

logical drive and directory infonnation stored on a logical disc drive is

updated by the control device in response to detecting that a user terminal has

5 been disconnected and can no longer access. a previously accessed logical

drive.

25. A method of storing data substantially as herein described with

reference to the accompanying drawings.

26. A data storage apparatus substantially as herein described With

1 0 reference to the accompanying drawings.

Oracle Ex. 1002, pg. 115

a
~

Application No:
· Claims seardled:

Patents Act 1977

. GB 9502377.6
1-26

Search Report under Section 17

Databases searched:

Examiner:
Date of search:

Geoff Western
3 May 1995

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CJ (Ed.N): G4A (AFS, AMX) ·

lnt Cl (Ed.6): G06F (3/06)

Other: On-line: WPI, INSPEC, COMPUTER DATABASE

Documents considered to be relevant:

Category Identity of document and relevant passage Relovlllll
to claims

A EP-0078683-A2 (FUJITSU) See whole document .
A Dialog record 01425541 of UNIX Review, vol9, No 4, April 1991, page

98

X Document indicatiq t.r:t of IIO'IIC1Iy or iDvcntivc 111:p
y Documcat ind"!UilD,a t.r:t or imcatm .rep if eombiDOd

wilh one Of 'lnOI'C ocher~ or I&IDC UU:JOrY.

.

A Doc:um:rl ~ llldmolo~ bacqround Uld/or IUU: or the ait.
P Document publilbcd oo or l&r the ded.aml priority d."e bul before

die filiDa data of lhiJ imentioo.
E Palenl dotumcnt pub!iJhed oo or a!Wr, bus wilh priot11y dall: eartiu

llun. lhc fiJlJw dall: of lhiJ applicatloo.

Oracle Ex. 1002, pg. 116

,t

JP1996230895A

Bibliographic Fields

Document Identity

(t9)[§Hrmll

B*ml~slflT (JP)

. (12)[~~~}Jij]

~f#l~!lf1}~ (A)

(11)[1}f#llii% l

4iff#ll¥8-230895

(43)[~!mB]

:iJIJiX;8~(1996)9~ 1 OB

Public Availability

(43)[~m!Bl

:iJIJiX;8~(1996)9~ 1 OB

Technical

(54)[~1!J'lO'):i;~]

ti:!mlli'iftJI'lO')~i*

(51)[m!~~~H:l'!mllf; 61llil
B65D 30/10

81120

[FI)

B65D 30/10 B

81120 B

[KW~tr~o:>~l

3

[!:l:lliHf~fml

OL

[~JU!lcl

3

Filing

[IUtmt*l
:fij

(21)[1:1Hiiili~]

~lm:i¥7-39844

(22)[1±1!m8]

J¥fit7~(1995)2fj28 8

(19) [Publication Office)

Japan Patent Office (JP)

(12) [Kind ofDocument)

Unexamined Patent Publication (A)

(11) [Publication Number ofUnexamined Application)

Japan Unexamined Patent Publication Hei 8- 230895

(43) [Publication Dale ofUm:xamim.:d Application]

1996 (1996) September to•

(43) [Publication Date ofUnexamined Applic~tion]

1996 (1996) September to•

(54) [Title of Invention)

BAG FOR CEREAL STORAGE

(51) [International Patent Classification, 6th Edition)

B65D 30/10

81120

[FI]

B65D 30110 B

81120B

[Number of Claims)

3

[Form of Application)

OL

[Number of Pages in Document)

3

[Request for Examination)

•
(21) [Application Number)

Japan Patent Application Hei 7- 39844

(22) [Application Date)

1995 (1995) February 28•

Page 1 Paterra® InstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 117

JP1996230895A

Parties

Applicants

(71)[Wilii.A.l

[~jjl)iJ.I:.f5-]

595029554

[~:g:sz.l;t:g~]

timCJ ~-
[ttPJT:SZ.I;i:jjg-j'i}f]

tiT~Pii.=.!lM!Il4tliiiiiT::*::**4tli3504iJ.I:±t!l.

Inventors

(72)[~1!Jj;ft]

[~:g]

QCl ~-

[ttPJT:SZ.I;i:jjg-j'i}f]

tlr~~=--~4tliiiiT::*:::¥:;c$:4tlii3504iJ.I:±t!l.

Agents

(74)[ftJJ!l.A.]

[~JJ!l.±l

[~:g:sz.l;t:g:fll;]

5# an~ <*2:g)

Abstract

(57)[JU~l

[!3 rt-Jl
;c$: §UJII;i:*O):&WJII'Tii~tlii .!JI::ft L '1t~~m
11Tiilfi0)£UMH£m"t .g;::t::a:: 13 eqc"t ~.
[fa fit]

.?lt,:::li~O)~!Ui~IITii"t ~~!miiTiilfl 0)

~f*i:if.,?'t'. -{HIJI::OOCJffi!la ~~fitL..t::~i*
1 :a=mtlt. ~OOCJ$ la ~jl:§:fd:~~I::~L)i¥ft.J'
iiJtml:fafitL... 1}~0)tflllll?<U!£ 2 I::~LJp;]!f!O)t!
~~~51"t~ll&51!1!3 ~~~i* 1l::~ltt::t0) 
"t:if.,~. 

(71) [Applicant] 

[Identification Number) 

595029554 

[Name] 

IDGUCID HIDEKAZU 

[Address] 

1996-9-10 

Niigata Prefecture Mishima-gun *sheet •oaza "'*sheet 
3504address 

(72) [Inventor] 

[Name] 

Higuchi Hidekazu 

[Address] 

NiigataPrefecture Mishima-gun *sheet *Oaza "'*sheet 
3504address 

(74) [Attomey(s) Representing All Applicants) 

[Patent Attorney] 

[Name) 

Yoshii * Sakae (2 others ) 

(57) (Abstract) 

[Objective) 

this invention designates that bag for cereal storage which can 
do long-term storage of rice simply is offered as objective . 

[Constitution] 

With bag for cereal storage which stores rice , cereal grain , 
soybean or other cereal, bag 1 which formed opening lain 
one side is provided, said opening part la sealing up 
configuration is possibly done with appropriate means , it is 
somethingwhich provides aspiration part 3 which air of 
interior is absorbed with cleaner 2 of public knowledge in said 
bag l. 

Page 2 Paterra® lnstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 118



JP1996230895A 

Claims 

[ilt:~lfiil!:sltel)iil!m] 

rm:s~tt.n: 11 
*·~.::k]i~C1)~lU:RT~9 .Q~rtli'T~m C1) 

~~~~?~.-~r=~oW~B~~k~-~ 
~It' lti~ OW~lm:E:tJ:~~I=J::LJI!fi'filJ'iml=
+1il:fi2L. 1}~C1)tfll!*l1.11=J::LJ(1;]$0)~~~~SI
9 .Q~slftll~llti~•'=~'tt.::.e:~~mc9 .Q
DUII'T~JfJO)~-.

[Uf:sltt.ft2]

m;ttt.n: 1 t2S£0)DlJili'T~mO)a•r=tt:lt. '~.
. ~~O)~OW~~WI=t-tL ~rflt:HII=ff~J'i2~t.::.
c~!lt:W:c9 .QG:rtlfTiftFnO)~•.

mt:s~tt.n:Jl

~l:l!tt.n: 1,2 1. '1'tl.l.l' 1 t.n:r=~S!O)G:IiRTilm
Cl)~·l=i:lt.'~. ~-0)~0$~~:jiij:9.Q~

-:Jif•~m ltt.::.c~~~t:mc9 .QlUlili'Tilm C1) a
~.

Specification

[~ljijO)Wf.WtJ~BJU

[0001]

[Claim(s))

[Claim 1)

1996-9-10

With bag for cereal storage which stores rice , cereal grain ,
soybean or other cereal , bag which formed opening in one
side is provided, said opening part sealing up configuration is
possibly done with appropriate means , bag . for cereal
storage which designates that aspiration part which air of
interior is absorbed with cleaner of public knowledge is
provided in the said bag as feature

[Claim2)

In bag for cereal storage which is stated in Claim I, the .
opening of bag was formed in width detail vis-a-vis base the
bag . for cereal storage which designates that as feature

[Claim 3)

In bag for cereal storage which is stated in Claim I , 2any one
claim , the bag . for cereal storage which designates that .
clamps which the opening of bag chimping is done is
provided as feature

[Description of the Invention]

[0001)

Page 3 Paterra® InstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 101367,296)

Oracle Ex. 1002, pg. 119

JP1996230895A

- [i.!Uit..I.:O);f!Jffl~!Y]

~§!l!ijl;l:, *.~.:*:li~O)~M~:!j~JtllraWrin"t
.Q r::iJ!:f!Jt.;::ftllill'i'iilffl 0)~~ r: l!ll"t .Q:f.O)"t'
iV;,.Q.

[0002]

[fJU!: 0) it t;$j .bH.F§!I3Jln<f!;~ l..J::? c"t .Q ijll!9]

· ~*- *.tA:,:*:li~O)iltft~1liJtllra'Hl'i'inT .Q~
~cl.. "'C, 9~11;Jr::~m~t~1fll~~E~-t .Qllt!mll'i'
itrU!j.JllO)$i~(W.""F, t1t*-9ll)tM£~~:h "'CL'
.Q.

[0003]

;:O)fJ'E*0lJI;I:, ~~O)"'F/;;I:]!I!ij~?-t' JJ...k~
JIMfl.. "CJ1'JtflltJ<i!Ui!"C~.Ql!Uil~H~fitl.., -;::.0)

~~0) t:P r::*~O)ilt!m~llll~ Lt.: .;~mmt~1fll
~ ~ ~l!!'tfllt'llll::li!~L. lmD~1flJO)~'@.(it
~~lllHB"t .Qc!A':'@. "t .Q.)~t!Ull.L.t.;::tJ<i;*~
~:!iJtllrdlll'i'in"t .Q:f,(J)"C if.,.Q 0

[0004]

l..n'L~tJ%, ~m~t~Jl!JI;I:D~(J)l!&~fFm:t.J<m
~W!ra,Ltl'§!tlr~:h "f, J::-:>"'C, ~~fi'E*-911(1)
~·-~1i:JmM~~~2~L~~:h~~.;~
L'.
[0005]

c:;:~"t', ;:O)Jm!i~Jl!J(])2~1::l;I:~~&'Hf•O)
rm ltlm6':> tJ<f!!!.?;:cr:tc~:.~t.J<. ;:CT.>~~CT.>tm 1t
M6':>l::J:: LJ!jt~f.l<1-'t.;::<~?"Cl. \.Q~1*~J:::jiij:
V:D~t.l<mt.AL. fi'E:?"C, *t::, -tl,GM~CT.>
l!&~~~~L~~:h~~G"f.~~.;:CT.>ilt~
ll'i'ifl.WJll CT.>~i* l;l:fm!tt:i.J< ~<. ~~~~HY..J"Cif.l
.Q.

[0006]

* §!aJJ r;~: r.,,Jm~M.ili:L.t.:~nll'i'iflm CT.> ~1*~
m:~"t .Q:f.O)"Cif.I.Q.

[0007]

[ijli!Jm~M.ill:"t M.:6':>(J)i!f.~l

jifHt~iii~~!fflL "C;f;:§!BJJCT.>~ l§'~~llJJ"t .Q.

[0008]

· ~.::!i~(J) ~~tn~ll'i'ifl"t .Qilt!mll'i'iflm CT.>
91*"t'if.I-:>"C, -{l!IJI::6f.j[::J'tfllla~Jf~fitLt.:~~
I ~~It, ~fm 0 tfllla ~iilli:~i!f.~I::J:; LJ~!t
iiJflliJ::mntL. ~~(J)fi~- 2 I::J::LJ~tfl!CT.>~

1996-9-10

[Field of Industrial Application]

rice , cereal grain , soybean or other cereal long period it
stores this invention, it is something regarding the bag for
convenient cereal storage.

[0002]

[Prior Art And Problems To Be Solved By The Invention]

Until recently, bag (Below, Prior Art Example) of cereal
storage dedicated which arranges oxygen scavenger inside
bag long period is stored rice , cereal grain , soybean or other
cereal~ bag which, is proposed .

(0003)

As for this Prior Art Example , adhering doing transparent
film in lower of bag ,interior when window portion which
visible it is possible is formed and rice or other cereal is
stored up in this bag , while arranging oxygen scavenger in
the this said window portion position , visible doing color
change (When oxygen it adsorbs, it changes color.) of
oxygen scavenger it issomething which rice etc long period is
stored.

[0004)

But, oxygen scavenger is shown, depends and adsorption
action of oxygen only the specified time when it is a this said
Prior Art Example , must exchange as needed oxygen
scavenger.

[0005]

It means that by way, opening closing of bag
accompaniesexchange of this oxygen scavenger naturally, but
oxygen flows into the bag where oxygen has decreased
depending upon opening closingofthis bag again, therefore,
in addition, if adsorptive elimination of oxygen is not done
from one, it does not become, after all, as for bag of this grain
storage dedicated waste is many, it is a inefficient .

[0006]

this invention is something which offers bag for cereal
storagewhich solves problem .

. [0007]

[Means to Solve the Problems]

Referring to attached figure, you explain gist of this
invention.

[0008)

It is something which relates to bag for cereal storage
whichdesignates that aspiration part 3 where with bag for
cereal storagestoring rice , cereal grain , soybean or other
cereal , it provides bag 1 which formed opening I a in the one

Page 4 Paterra® lnstantMT® Machine Translation (l).S. Pal Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 120

JP1996230895A

~~11&sl"t~J!&slflll3 ~~~1* 1 r::a5trtt::::.c
~~~c"t ~ft~tlli'iRm o:>~f*r:: ~~tO)-r:if.l 
~. 

[0009] 

~*~ 1 ta~to:>lUnlli'iRmO)Qf*r::t:>L '"t:. 
~1* 1 O)m)CJ{lfl1a ~~{lfll::~'l.., "Crt'I*!III::~Jilt 
L. t:: ::.c~~Wc"t ~~Mili'iftm 0) ~f*r:: ~~ 
tO)l!if.l~. 

[0010] 

3ff*~ 1,2 L '"f;h,il' 1 ~l::la~O)ft111li'iftffl 
O)Qf*l::t:;L , .. C. ~1* 1 o:>m! CJ '€fil la ~~~"t 
~~~1* 4 ~31l:rtt::::.c~~-ct" ~DMII'Tift 
m O)~f*r=~~to:>-r:~7.>.

. [001 1)

[fFfflJ

~1* 1 r:*a;O)lJtiJ~Jlif:II!L., !mCJ{lfl 1a ~~
1i:tJ:=Fm:-r:~t;tL., 11&5lflll3 1::1}~0)fl§llffitl2
~ila5l:L. "t:~i* 1 ~O)~ll'i.~I1&51T~.

[0012]

[~~~J)

· ~iiilcl::i$:§!Bjj0)-~~@IJ~~;r-L.t::t0)1:, 1;1.
"FI::m,B)JT ~.

[0013]

~~~JroQf 1 rcJ:i!'!fi:r:~ur~'ff-t~i!I!Jl
tl~JilttMDiiiOO*fl!liX:~"t~.

~Qf* 1 O)..t{lfllcl:$t;$1BLJ~I:~Jilt"2:;h,, ;::O)'Jf:.
$Ill LJ{lflO)~'(filtJ<mJ [J {lfl ,1a (::a5!:~"2:;h,~ o

' [0014]

;::O)I*')CJifll la lcl:i!'!:§:tJ:.g.JiX;~Diil!Jiltff~L.t::~
•~i*~c~M~i*~~~tJ:~1}~0)~••
4 r:J::LJ~M"t~. ·

~i*tr..JI:Ici:~M!!!lf* 4a o:>!!!l~I::~Mt:!Ji* 4b
O)t:!J~~il*.AL. "Cii!ii=lti:J::LJmJCJ'(fil la ~~ll
"t~.

[0015]

~1* 1 o:>..t!li{ll!JI:Icl:l1&51$ 3 tJ<~Ji.t"2:;h, "CL'
7.>.

;::O)J!&51illl3 lcl:~i* 1J::#a5~:"2:n~~Ji.t~Diii!l
o:>J.t~i* 8 r::~liii~n n '~·

1996-9-10

side, sealing up configuration does said opening part 1a
possibly with theappropriate means , absorbs air of interior
with cleaner 2 of public knowledge is provided in said bag 1
as feature.

[0009]

In bag for cereal storage which is stated in Claim 1, the
opening 1a of bag 1 was formed in width detail vis-a-vis base
itis something which relates to bag for cereal storage
whichdesignates that as feature. ·

[0010]

It is something which relates to bag for cereal storage
whichdesignates that clamps 4 which opening 1a of bag 1
clamping isdone is provided as feature in bag for cereal
storage whichis stated in Claim 1 , 2any one claim .

[0011]

[Working Principle]

rice or other cereal is stored up in bag 1, opening 1a is sealed
up with theappropriate means , cleaner 2 of public knowledge .
is connected to aspiration part 3 and air inside bag 1 is
absorbed.

[0012]

[Working Example(s)]

Being something which illustrates one Working Example of
this invention , you explain drawing· below.

(0013)

As for bag 1 of this working example it forms with
transparent synthetic resin member which possesses strength
moderately.

upper part of said bag 1 is formed by taper , end of this taper
section is set to opening 1a

[0014]

clamping it does this opening 1a with clamping concave body
4 a and clamps 4 formed with appropriate synthetic resin of
public knowledge which whichconsists of clamping convex
body4 b.

Inserting convex stripe of clamping convex body 4 b in
recessed rib of clamping concave body 4 a concretely,
opening 1a it is plugged by both.

[0015]

aspiration part 3 is formed to top end of bag 1.

this aspiration part 3 is installed in afixing body 8 of synthetic
resin which is installedin bag 1.

Page 5 Paterra® InstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat Pending Ser. ·No. 10/367,296)

Oracle Ex. 1002, pg. 121

JP1996230895A

.:.CT.>.lt.~f* SI;J:~f* 1I:;J!mt~:h.t.::~:rt.i:trfll::
Jt.~~:tt~-tCT.>"t:i!i)-:>-c • .ll:.~f* 8 CT.>*~ r::m
mtl..t.::ll::.~tli 51:~fi.~&~~M:L. "'C~f*: 1 I:
ll::.~~:h.~.

~~ 6 r;J:#. 7 r;J:*~tJ<~sl~:tt~.:.c~ltfi.lt.
9 ~?-< Jt-~-. 9I;J:tt, 10 r;J:llall*tlt 2 CT.>~ 51*
-.A 2a ~~rd'lt..:<i'iJ&tr.JI::l!'Hf!jj;!1i,lil::9 ~~
(f) ~.Xtli -c: 61)~. .

[0016]

:$:~1i'tligJJI;J:..tiii!CT.>J:?I::~Iitl..t.::t.l'b, ~f* 1
~1::{§1Jxl1*~l&~L.. ~~f* 1 CT.>m!Otfl\ la
~~M:f*4 -c:~M:L. "'C~f* 1 ~@f:t9 ~(m!CJ'OO
1a r;~:m~Ji!&l.. "'C~M:'t ~.)o

.:.CT.>W~~:h.t::!jj;!1i!l-c:~f* 1 CT.>I!!l sl :00 3 r::t~all*
#.It 2 CT.>l!&51*-.A 2a ~itil*L. "'C-t:"CT.>"Fnmi~~
t\:tli 10I::E1:Hl1tl..6?, lla~t\12~tF!IIJ~1t"'C1ii
f* 1 ~CT.>!g~~l!&sl9~t. ~i* 1 ~~;J:~MK~
:h.i'iJ&IY-JI::;Jlt!g!jj;!1i!lc!::~~.

[0017]

J:-:>"'C. *~:liWlra,I!Tiil't ~ta~r::r;J:ji~E:JI~
tit 2 -c:~f* 1 ~~ffi~'t ~ct. '?fifl!lt~tF~-c:
7Jft.:.c!::i::tJ~.

[0018]

*t.::, *~D1lif§IJCT.>~51illl3 1;1:# 6 tJ{~fti;,:h. "'C
t. '~1.:,. ~f* I J::I:JCT.>Jt!gtf;:1i!ltJ<::fS!c!::~-:>"'CM
1!&519~11!l!. tt 9 ~m!'I:&L "'C-t~f* I ~l::!g~
tJ<~J,. 9 ~.:.c!::l;l:{/(f~l:ltfi.ll:.~:h.. M'!Cl..t::~
*f§IH::J:tL.~$1¥-JI::*CT.>IIi'ii~ftt. '*f~.:.tr::
fJ~.

[0019]

J!l::. *~Dl!i{§ll l;l:filtj~(f)ij.~~~ ~~it~~*
{§llc!::I;J:JitJ~J. !g~~~lli~~tt. ;Jlt!gtf;:1i!l~t'F
t:e9 .Q-tCT.>""C:i!i).QtJ,;, ~f* I CT.>~~tJ<~Pl..,
-t:-:ttt.:lt~f* 1 CT.>~'f.A~-.A:fJ<1>tJ<"'C71fiC
.:.cr::~.Qc!::c!::-tr::~f* 1 ~CT.>*"'-t~Z:~:h. •
.:.CT.> sr:il':it. '-c-t*CT.> Sl:~tJ:!UtiiiiTifttJ<i'iJtmc!::
tJ.Q.

[0020]

[§!a)l(f)~"]

:;$:§!BJ!I;J:..tiii!CT.>J:?I:ff41itLt.::tJ';, *~CT.>~
9:CT.>:IiWlll'i'ift~.§.-::> Sl:~fifl$1::~7L '*f.Q~:h.
t::ft9:1l'i'iilf!CT.>~f*c!::~.Q.

199(}.:.9-10

this aftxing body 8 being something which afixing is done in
. window hole position which is installed in bag 1, in outer
perimeter of aftxing body 8 the clamping doing window hole
surrounding edge with afixing sheet 5 which "' facilities
itdoes, aftxing is done in bag 1.

As for sign 6 as for valve , 7 as for filter , 9 which prevents
the fact that rice etc is absorbed as for plug , I 0 it is a
softening sheet inorder to designate suction hose 2a of cleaner
2 if possible as closely adhered state without gap .

(0016)

Because above-mentioned way configuration it did this
working example , for example rice is stored up inside bag 1,
opening 1a of said bag I clamping isdone with clamps 4 and
bag 1 is sealed up (Turning back, clamping it does opening
Ia.) .

this with state which is sealed up fitted covering doing suction
hose 2a of cleaner 2 in aspiration part 3 of bag 1, bottom end
contacting the softening sheet 10, cleaner 2 operating, when it
absorbs air inside the bag 1, inside of bag 1 is done and
exhaust if possible becomes vacuum state .

[0017)

Depending, when long period it stores rice , it means that
issufficient simple operation that exhaust it does inside bag 1
with theas needed cleaner 2:

(0018)

In addition, as for aspiration part 3 of this working example
because valve 6 isprovided, vacuum state inside bag 1
becoming defect , wheme-absorbing, opening plug 9, as for
air flowing into the bag 1 it is prevented securely, before it
compares to Prior Art Example whichwas inscribed and it
means to be possible to store rice in the efficient .

[0019)

Furthermore, because as for this working example only
oxygen it disappears, itis something which produces vacuum
state, volume of bag 1 decreases, as it means that that much
storage space of bag 1 may belittle and also moisture inside
bag 1 is removed air unlike Prior Ari Example which
disappears, Satisfactory long-term storage of rice becomes
possible at this point.

[0020)

[Effects of the Invention]

Because above-mentioned way configuration it did this
invention, it becomes bag for cereal storage which and can do
long-term storage of the rice or other cereal satisfactorily
simply, is superior.

Page 6 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 122

...

JP1996230895A

[fS!iiiiO>!Vi~~~llJl]

[fSI1]

*~111!i01JO>~tltl@"t:it;.Q.

[fSJZ]

. *~111!i~O>~SI!O>Wiiiiil@"t:iVJ.Q.

[fSI3]

*~1l1!i 01J O>iiffl~ Jm~;r-"t~HJU~-c:iVJ.Q.

Ia

mlO$

2

m~w

3

*51$
4

~tiff*

Drawings

[1@1]

[1@2]

Ia.

[Brief Explanation of the Drawing(s)]

[Figure I]

It is a oblique view of this working example.

[Figure 2]

1996-9-10

It is a sectional view of principal part of this working
example.

[Figure 3)

It is a oblique view which shows use state of this working
example.

[Explanation of Symbols in Drawings]

bag

Ia

opening

2

cleaner

3

aspiration part

4

clamps

[Figure 1]

[Figure 2)

Page 7 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 101367,296)

Oracle Ex. 1002, pg. 123

·~ .:

JP1996230895A 1996-9-10

[1@3]. [Figure 3]

Page 8 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 101367,296)

Oracle Ex. 1002, pg. 124

N
<(

0
M
l()

0 .,...
CX)

0
0. w

(19) 1 Europlilsches Patentamt

European Patent Office

Office europeen des brevets

l~llm 1~1111~11~1111~ IIIII ~111111111111111111 ~11111~~11111111 ~II
(11) EP 0 810 530 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
03.12.1997 Bulletin 1997/49

(21) Application number: 971 07935.5

(22) Date of filing: 15.05.1997

(84) Designated Contracting States:
DE FRGBNLSE

(30) Priority: 31.05.1996 US 656641

(71) Applicant:
SUN MICROSYSTEMS, INC.
Mountain View, CA 94043 (US)

(72) Inventors:
• Schmahl, Kenneth A.

San Jose, CA 95136 (US)
• Tedone, Matthew J.

Sunnyvale, CA 94087 (US)

(51) Int. Cl.6 : G06F 13/368

• Schell, John C.
Sunnyvale, CA 94087 (US)

• Karrninsky, Igor
San Jose, CA 95129 (US)

• Chan, Ray P.
Cupertino, CA 95014 (US)

(74) Representative:
. Zangs, Ratner E., Dlpl.-lng. et al
Hoffmann EHie,
Patent- und Rechtsanwlilte,
Arabellastrasse 4
81925 MOnehen (DE)

(54) A method and apparatus for passing bus mastership

(57) A method for passing mastership of a bus is
described. According to the method, it is determined
whether to use the bus. If the bus is to be used, it is
determined whether the bus is available. H the bus is
available, the bus is accessed and a signal is generated
to indicate that the bus is being accessed. A timer is
also started and access to the bus is yielded when the
timer expires. A processor that passes mastership to a
shared resource is also described. The processor com­
prises a resource accessing unit The resource access­
ing unit allows the processor to access a resource upon
receiving a first signal from a component coupled to the
resource. The resource accessing unit yields access of
the resource to the component upon receiving a second
signal from the component

Primed by Aanl< Xerox (UK) Business Servieas
2.14.23/.U

FIG. 7

Oracle Ex. 1002, pg. 125

EP 0 810 530 A2 2

Description

FIELD OF THE INVENTION

The present invention pertains to the field of bus s
regulation. More specifically, th.e present invention
relates to an apparatus and method for passing bus
mastership between multiple devices.

without using an external arbiter.

SUMMARY OF THE INVENTION

A method for passing mastership of a resource is
described. According to the method, it is determined
whether to use the bus. If the bus is to be used, it is
determined whether the bus is available. If the bus is
available, the bus is accessed and a signal is generated

BACKGROUND OF THE INVENTION

When multiple devices reside on a bus, coordina-

10 to indicate that the bus is being accessed. A timer is
also started and access to the bus is yielded when the
timer expires.

A processor that passes mastership of a shared
resource is described. The processor comprises a

tion of access to the bus is necessary. Coordination of
access to the bus insures that multiple devices desiring
to communicate will not assert control and data lines for
different transfers at the same time and cause bus con·
tention.

One approach to coordinating bus access is the
use of one or more bus masters in the system. A bus
master controls access to the bus. It initiates and con­
trols all bus requests. A processor must be able to initi·
ate a bus request for access to a memory device and
thus is always a bus master. A memory device is usually

15 resource accessing unit. The resource accessing unit
allows the processor to access a resource upon receiv­
ing a first signal from a component coupled to the
resource. The resource accessing unit yields access of
the resource to the component upon receiving a second

a slave since it will respond to read and write requests
but never generate its own requests.

20 signal from the component. The processor further com­
prises a signal generation unit. The signal generation
unit is coupled to the resource accessing unit The sig·
nal generation unit generates a third signal when the
processor has gained access to the resource and gen-

25 erates a fourth signal when the processor has yielded
access to the resource. A bus has multiple masters when there are multiple

central processing units (CPUs) or when inpuUoutput
(UO) devices can initiate a bus transaction. If there are
multiple masters. an arbitration scheme is required
among the masters to decide who gets the bus next. A ao
bus arbiter is typically used to implement the arbitration
scheme. In a bus arbitration scheme, a deVice wanting
to use the bus signals a bus request and is later granted
the bus. After a grant, the device cen use the bus, later
signaling to the bus arbiter that the bus is no longer 35

required. The bus arbiter can then grant the bus to
another device. Most multiple-master buses have a set
of bus signals for perlorming requests and grants. A bus
release line is also needed if each device does not use
its own request line to release the bus. Sometimes the 40

signals used for bus arbitration have physically separate
lines. while in other systems the data lines of the bus
are used for this function. Arbitration is often a fixed pri·
ority, as is the case with daisy-chained devices or an
approximately fair scheme that randomly chooses 45

which master gets the bus.
The use of a bus arbiter has several drawbacks.

The addition of a bus arbiter requires additional power
to operate. This is a problem for computer systems
operating under tight power constraints. Implementing a so
bus arbiter also requires additional space in the compu-
ter system. Thus, depending upon the environment of
the computer system. the availability of physical space
may not permit the implementation of a bus arbiter. Per­
haps most importantly, the use of an additional compo- 55

nent for the purpose of arbitration adds an undesirable
cost to the overall computer system.

Thus, what is needed is an apparatus that passes
ownership of a resource between a plurality of devices

2

BRIEF DESCRIPTION OF THE PBAW!NGS

The present invention is illustrated by way of exam­
ple and not by way of limitation in the figures of the
accompanying drawings, in which like references indi·
cate similar elements and in which:

Figure 1 illustrates a multi-processor computer sys·
tem implementing an embodiment of the invention;
Figures 2 illustrates processors from two different
computer systems implementing an embodiment of
the invention;
Figures 3 illustrates the present invention as imple­
mented in a mass storage system;
Figure 4 is a table illustrating the mastership states
in one embodiment of the present invention;
Figure 5 is a state diagram illustrating the transition
order of the states illustrated in Figure 4;
Figure 6 illustrates a block diagram of one embodi­
ment of a processor implementing the present
invention; and
Figure 7 is a flow chart illustrating a method of
passing mastership of a shared resource.

PETAlLED DESCRIPTION

A method and apparatus for accessing data in a
memory is described. In the following description. for
the purposes of explanation. numerous specific details
are set forth in order to provide a thorough understand­
ing of the present invention. It will be apparent, however,
to one skilled in the art that the present invention may

Oracle Ex. 1002, pg. 126

3 EP 0 810 530 A2 4

be practiced without these specific details. In other
instances, well-known structures and devices are
shown in block diagram form in order to avoid unneces·
sarily obscuring the present invention.

Referring to Figure 1, the computer system upon 5

which the preferred embodiment of the present inven·
tion can be implemented is sha.vn as 100. Computer
system 100 comprises a bus or other communication
means 101 for communicating information, and proces­
sors 102 and 103 coupled with bus 101 for processing 10

information. System 1 00 further comprises a random
access memory (RAM) or other dynamic storage device
104 (referred to as main memory), coupled to bus 101
for storing information and instructions to be executed
by processors 1 02 and 1 03. Main memory 104 also may 15

be used for storing temporary variables or other inter·
mediate information during execution of instructions by
processors .1 02 and 1 03. Computer system 1 00 also
comprises a read only memory (ROM) and/or other
static storage device 106 coupled to bus 101 for storing 20

static information and instructions for processors 102
and 103. Data storage device .1 07 is coupled to bus 101
for storing information and instructions. Instructions
from a computer readable media which are executable
by processors 102 or 103 may be stored onto data stor· 25

age device 107. A data storage device 107 such as a
magnetic disk or optical disk and its corresponding disk
drive can be coupled to computer system 100.

Computer system 1 00 can also be coupled via bus
101 to a display device 121, such as a cathode ray tube 3D

(CRT), for displaying information to a computer user. An
alphanumeric input device 122, including alphanumeric
and other keys, is typically coupled to bus 101 for com·
municating information and command selections to
processors 102 and 103. Another type of user input 35

. device is cursor control123, such as a mouse. a track-
ball, or cursor direction keys for communicating direc·
tion information and command selections to processor
102 and for controlling cursor movement on display 121.
This input device typically has two degrees of freedom 4D

in two axes, a first axis (e.g., x) and a second axis (e.g.,
y), which allows the device to specify positions in a
plane.

Alternatively, other input devices such as a stylus or
pen can be used to interact with the display. A displayed 45

object on a computer screen can be selected by using a
stylus or pen to touch the displayed object. The compu-
ter detects the selection by implementing a touch sensi·
tive screen. Similarly, a light pen and a light sensitive
sereen can be used for selecting a displayed object. 50

Such devices may thus detect selection position and the
selection as a single operation instead of the "point and
click.· as in a system incorporating a mouse or trackball.
Stylus and pen based input devices as well as touch
and light sensitive screens are well known in the art 55

Such a system may also lack a keyboard such as 122
wherein all interface is provided via the stylus as a writ·
ing instrument (like a pen) and the written text is inter·
preted using optical character recognition (OCR)

3

techniques.
Figure 1 illustrates one embodiment of the present

invention where bus 101 is shared between two proces­
sors 102 and 103 in the same computer system 100. In
order to prevent bus contention, only one of processors
102 or 103 may access bus 101 at one time. Processor
102 is only allowed to access bus 101 during its desig·
nated bus mastership state. Similarly, processor 1 03 is
only allowed to access bus 101 during its designated
bus mastership state. The bus mastership state of the
system is determined by tokens or signals that proces·
sors 102 and 103 generate. In one embodiment of the
present invention, processors 1 02 and 1 03 generate a
signal on line 130 each time they gain access to bus
101, relinquish access to bus 101 or wish to gain access
to bus 101. In another embodiment of the present inven­
tion, the signal generated by one of the processors on
line 130 may be a single signal or a plurality of signals.
The signals generated by processor 1 02 are sent to
processor 1 03 via line 130 and the signals generated by
processor 103 are sent to processor 102 via line 130.
Each processor has a copy of the signals generated by
itseH and the signals generated by the other processor.
Each processor is aware of the current bus mastership
state of the system 100.

Figure 2 illustrates an embodiment of the present .
invention where a processor 1 02 from a first computer
system 250 and a second processor 202 from a second
computer system 251 share access to a shared
resource 210. Shared resource 210 is a resource which
may be accessed by only one of either processor 1 02 or
processor 202 at one time. Shared resource 21 0 may
be, for example, a bus or a memory. Shared resource
210 may be directly coupled to processor 102 and 202
or coupled to processors 1 02 and 202 via other buses
or components. Processor 102 is only allowed to
access shared resource 210 during its designated
resource mastership state. Processor 202 is only
allowed to access shared resource 210 during its desig­
nated resource mastership state. The resource master·
ship state of the systems is determined by tokens or
signals that the processors 102 and 202 generate. In
one embodiment of the present invention, processors
1 02 and 202 generate a signal each time they gain
access to shared resource 210, relinquish access to
shared resource 210 or wish to gain access to shared
resource 210. In one embodiment of the present inven­
tion. the signal generated by the processor 1 02 or 21 0
may be a single signal or a plurality of signals. The sig·
nals generated by processor 1 02 are sent to processor
202 on line 230 and the signals generated by processor
202 are sent to processor 102 on' line 230. Each proces·
sor has a copy of the signals generated by itseH and the
other processor. Each processor is aware of the current
bus mastership state of the computer systems.

Figure 3 illustrates an embodiment of the present
invention as implemented in a mass storage system
300. Mass storage system 300 comprises a first array of
storage elements 335 coupled to a hard disk assembly

Oracle Ex. 1002, pg. 127

5 EP 0 810 530 A2 6

331 and a second array of storage elements 345 cou­
pled to a hard disk assembly 341. The first and second
array of storage elements 335 and 345 are accessed by
a host (not shown) via one of the host interface units
304 or 314 and one of buses 301 or 311. Buses 301 and 5

311 maybe implemented, for example, by a conven­
tional fiber channel interface, a serial storage architec-
ture interface, a small computer system interface
(SCSI), a P1394 interface, or other well known inter­
faces. Hard disk assembly 331 comprises to interface 10

the first array of storage elements 335 with bus 301.
Hard disk assembly 331 includes a register 332 which is
used for storing data to be read by processors 302 and
312. Hard disk assembly 341 operates to interface the
second array of storage elements 345 with bus 311. 15
Hard disk assembly 341 includes a register 342 which is
used for storing data to be read by processors 302 and
312.

present invention, a timer 355 in processor 302 and a
timer 356 in processor 312 is set each time mastership
of shared bus 320 is taken by a new master. The mas-
tership of shared bus 320 is passed each time the tim­
ers 355 and 356 time out. The signals generated by
processor 302 are sent to processor 312 via line 350
and the signals generated by processor 312 are sent to
processor 302 via line 350. Each processor has a copy
of the signals generated by itself and the other proces­
sor. Each processor 302 or 312 is aware of the current
bus mastership state of the system 300.

In one embodiment of the present invention, there
are four bus mastership states recognized by proces­
sors 302 and 312 of system 300. Figure 4 is a table illus­
trating the four states. At state 1 , processor 302 (Device
1) has mastership of shared bus 320. State 1 occurs
when processor 302 generates a 0 signal and proces­
sor 312 (Device 2) generates a 0 signal on line 350. At
state 2, bus mastership is to be transferred from proces-An environmental service center 325 provides envi­

ronmental services such as temperature control and
power to mass storage system 300. Environmental
service center 325 also provides data regarding the
environmental services of mass storage system 300.
Environmental service center 325 may be implemented
by any known circuitry. Processor 302 is coupled to bus
301 and shared bus 320. Processor 302 polls the envi·
ronmental service center 325 by reading environmental
service data from environmental service center 325 via
shared bus 320. Processor 302 stores the environmen­
tal service data in memory unit 303. Processor 302
operates to monitor the environment of mass storage
system 300 and maintains the system's integrity when

20 sor 302 to processor 312. State 2 occurs when proces­
sor 302 generates a 1 signal and processor 312
generates a 0 signal on line 350. At state 3, processor
312 has mastership of shared bus 320. State 3 occurs
when processor 302 generates a 1 signal and proces-

the environment is out of tolerance range. Similarly,
processor 312 is coupled to bus 311 and shared bus
320. Processor 312 polls the environmental service
center 325 by reading environmental service data from
environmental service center 325 via shared bus 320.
Processor 312 stores the environmental service data in
memory unit 313. Processor 312 operates to monitor
the environment of mass storage system 300 and main­
tains the system's integrity when the environment is out
of tolerance range.

Environmental service data from environmental
service center 325 may only be accessed by one of
processors 302 and 312 via shared bus 320 at a time ..
Processor 302 is only allowed to access shared bus 320
during its designated bus mastership state. Processor

25 sor 312 generates a 1 signal on line 350. At state 4, bus
mastership is to be transferred from processor 312 to
processor 302. State 4 occurs when processor 302 gen­
erates a 0 signal and processor 312 generates a 1 sig­
nal on line 350. Figure 5 is a state diagram illustrating

30 the order in which states 1-4 shown in Figure 4 are exe­
cuted. It should be appreciated that the number of
states, the order in which the states are executed, and
the number of signals used to represent the states may
change depending on the implementation of the present

35 invention.
Figure 6 illustrates one embodiment of processor

302. Processor 302 includes computation and control
unit 610. In one embodiment of the present invention,
computation and control unn 610 includes two fiber

40 channel arbitrated loop ports, a block of embedded
RAM, a host bus interface, and a processing unit Com­
putation and control unit 610 operate to poll environ­
mental service data from the environmental service
center and to control the environment of computer sys-

45 tern 300.

312 is only allowed to access shared bus 320 during its
designated bus mastership state. The bus mastership
state of the system 300 is determined by tokens or sig- 50

nals that processors 302 and 312 generate. In one
embodiment of the present invention, the bus master-

Processor 302 further includes resource accessing
unit 620, timer 355, and signal generation unit 631.
Resource accessing unit 620 keeps track of the bus
mastership states of memory storage system 300 and
signals computation and control units 610 to poll the
environmental service center 325 when processor 302
receives mastership of shared bus 320. Resource
accessing unit 620 receives signals from processor 312
via line 350 which indicate when processor 320 is ready
to transition into a next state. Resource accessing unit
620 is coupled to timer 355. Resource accessing unit
620 resets timer 355 when mastership of bus 320 is
taken by a new master. After a predetermined amount
of time, timer 355 times out. This informs resource

ship state is changed by signals generated by proces­
sors 302 or 312 when one of the processors gains
access to bus 320, relinquishes access to bus 320, or 55

wishes to gain access to bus 320. In another embodi·
ment of the present invention, the signal generated by
each processor 302 or 312 may be a single signal or a
plurality of signals. In still another embodiment of the

4

Oracle Ex. 1002, pg. 128

7 EP 0 810 530 A2 8

accessing unit 620 that shared bus 320 is to be passed
to another master. Resource accessing unit 620
instructs signal generation unit 630 to generate a signal

ing data exchange and stores the data into memory unit
313. Processor 302 continues to write new data into
registers 332 and 342 until all the environmental service

on line 631 to indicate that processor 302 is ready to
transition into the next state. The bus mastership state 5

of system 300 is determined by the signals generated

data in memory unit 303 has been written into registers
332 and 342 and transferred into main memory 313.
Processor 312 operates similarly to processor 302 in

by processors 302 and 312. Resource accessing unit
620, timer 355 and signal generation unit 630 may be
implemented in hardware, sottware or a combination of
hardware and software. In the embodiment of the inven- 10

updating the environmental service data in memory unit
303 when system 300 is in a state where processor 312
has mastership of shared bus 320. In an alternate
embodiment of the present invention, a single line and a
single set of signals are used by processors 302 and lion shown in Figure 6, resource accessing unit 620,

timer 355, and signal generation unit 630 are imple­
mented in hardware external to computation and control

312 to pass mastership of shared bus 320 during polling
and exchange of environmental service data.

unit 610. In an alternate embodiment of the present
invention, resource accessing unit 620 and signal gen- 15

eration unit 630 are software modules implemented by

In a situation where processor 302 becomes. inop­
erable and falls to generate a signal to processor 312
indicating that it is ready to transition into the next bus
mastership state within a predetermined period of time, a set of instructions executed by processor 302. Proces-

sor 312 operates similarly to processor 302 and may be
implemented by the same components which may be
used to implement processor 302.

The present invention allows arbitration of master­
ship to a shared resource between two devices where
neither is master of the other without the use of an
external arbiter. In a preferred embodiment of the
present invention where the resource accessing unit
and signal generation unit is implemented in software,
arbitration is achieved without requiring additional
power or space from the system.

Although Figure 6 illustrates an embodiment of the
present invention where resource accessing unit 620,
signal generation unit 630 and timer 355 reside inside
processor 302, it should be appreciated that these com­
ponents may reside in any agent sharing access to a
shared resource to arbitrate access to the shared
resource.

a timer in processor 312 will time out. This will indicate
to processor 312 that processor 302 is inoperable. In

20 response, processor312 will take exclusive bus master­
ship of shared bus 320. Similarly, in a situation where
processor 312 inoperable and fails to generate a signal
to processor 312 indicating that it is ready to transition
into the next bus generation state within a predeter-

25 mined period of time. a timer in processor 302 will time
out. This will indicate to processor 302 that processor
312 is inoperable. In response, processor 302 will take
exclusive bus mastership of shared bus 320.

Figure 7 is a flow chart illustrating a method for
30 passing mastership of a shared resource between two

devices. At step 701, it is determined whether to use the
shared resource. This determination may be made by
checking a timer which records the time a first device
has had access to the resource. After a first predeter-

35 mined amount of time, the timer times out indicating that
it is time for the second device to access the shared
resource. H it is not time to use the shared resource,
control returns to step 701. Hit is time to use the shared

In one embodiment of the present invention, proc­
essor 302 updates the environmental service data in
main memory 313 after processor 302 has polled envi­
ronmental service data from environmental service
center 325 and while system 300 is in a state where 40

processor 302 has bus mastership of shared bus 320.

resource, control proceeds to step 702.
At step 702, it is determined whether the shared

resource is available. This determination may be made
by checking a resource accessing unit for the current
resource mastership state. H the resource mastership
state is one where the first device has mastership, the

In this embodiment of the present invention. processor
312 also updates the environmental service data in
main memory 303 after processor 312 has polled envi­
ronmental service data from environmental service
center 325 and while system 300 is in a state where
processor 312 has bus mastership of shared bus 320.

Processor 302 updates the environmental service
data in main memory 313 through a data exchange. A
second line (not shown) is used to communicate mas­
tership of shared bus 320 between processors 302 and
312 during the data exchange in a manner similar to
which line 350 communicates mastership of shared bus
320 during data polling. Processor 302 writes environ­
mental service data into registers 332 and 342 of hard
disk assembly 332 and 342 when it has mastership of
shared bus 320 during data exchange. Processor 312
reads the environmental system data from registers 332
and 342 when it has mastership of shared bus 320 dur-

45 shared resource is unavailable and control proceeds to
step 703. H the shared resource is available, control pro­
ceeds to step 705.

At step 703, it is determined whether the first device
has had mastership of the shared resource for over a

50 second predetermined amount of time. This determina­
tion may be made by checking the timer which records
the time when the first device had access to the shared
resource. If the first device did not have mastership of
the shared resource for over the second predetermined

55 period of time, control returns to step 702. H the first
device did have mastership of the shared resource for
over the second predetermined amount of time. control
proceeds to step 704.

At step 704, exclusive mastership of the shared

5

Oracle Ex. 1002, pg. 129

9 EP 0 810 530 A2 10

resource is given to the second device and the first
device is excluded from being considered a possible
master of the shared resource in the future.

At step 705, mastership of the shared resource is
given to the second device. A signal is generated indi· 5

eating that the shared resource has been accessed by
the second device ard the timer is reset.

At step 706. determine whether mastership of the
shared resource should be passed to a different device.
This determination can be·made by checking to see if 10

the timer has timed out past the first predetermined
period of time. If the timer has timed out past the first
predetermined period of time, it is time to pass master­
ship of the shared resource to a different resource and
control proceeds to step 707. If the timer has not timed 15

out past the first predetermined period of time, control
returns to step 706.

At step 707, a signal is generated by the second
device indicating that the second device is ready to tran­
sition to the next state of resource mastership where it · 20

is not the master of the shared resource. Control pro­
ceeds to step 701.

In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifi· 25

cations and changes may be made thereto without
departing from the broader spirit and scope of the
invention. The specification and drawings are, accord­
ingly, to be regarded in an illustrative rather than a
restrictive sense. 30

Claims

1. A method for passing bus mastership, comprising:

determining whether a bus is available;
accessing the bus and generating a signal indi­
cating that the bus is being accessed if the bus
is available;

35

starting a timer in response to accessing the 40

bus; and
yielding access. to the bus when the timer
expires.

2. The method of claim 1 further comprising the step 45

of re-starting the timer after yielding access to the
bus.

3. The method of claim 1 further comprising the step
of generating a signal irdicating that access to the so
bus has been yielded.

4. The method of claim 1 further comprising the step
of determining whether the bus has been accessed
longer than a predetermined amount of time if the 55

bus is unavailable and gaining access to the bus if
the bus has been accessed longer than the prede·
termined amount of time.

6

5. The method of claim 1, wherein determining
whether the bus is available comprises the step of
checking to see whether a bus agent has generated
a signal indicating that it is accessing the bus.

6. A computer-readable medium having stored ther­
eon sequences of instructions, the sequences of
instructions including instructions which, when exe­
cuted by a processor, cause the processor to per­
form the steps of:

determining whether a bus is available;
accessing the bus and generating a signal indi­
cating that the bus is being accessed if the bus
is available;
starting a timer in response to accessing the
bus; and
yielding access to the bus when the timer
expires.

7. The computer-readable medium of claim 6 further
comprising instructions which, when executed by
the processor, would cause the processor to per­
form the step of restarting the timer after yielding
access to the bus.

8. The computer-readable medium of claim 6 further
comprising instructions which, when executed by
the processor, would cause the processor to per­
form the step of generating a signal indicating that
access to the bus has been yielded.

9. The computer-readable medium of claim 6 further
comprising instructions which, when executed by
the processor, would cause the processor to per·
form the step of determining whether the bus has
been accessed longer than a predetermined
amount of time if the bus is unavailable and gaining
access to the bus if the bus has been accessed
longer than the predetermined amount of time.

10. The computer-readable medium of claim 6, wherein
the step of determining whether the bus is available
comprises the step of checking to see whether a
bus agent has generated a signal indicating that it is
accessing the bus.

11. A processor, comprising:

a resource accessing unit allowing the proces­
sor to access a resource upon receiving a first
signal from a component coupled to the
resource and yielding access of the resource to
the component upon receiving a second signal
from the component.

12. The processor of claim 11 further comprising:

a signal generation unit, coupled to the

Oracle Ex. 1002, pg. 130

11 EP 0 810 530 A2 12

resource accessing unit, generating a third sig­
nal when the processor has gained access to
the resource and generating a fourth signal
when the processor has yielded access to the
resource. 5

13. The apparatus of claim 11 further comprising a
timer, coupled to the signal generation unit, allocat·
ing a time period when the third and fourth signals
are generated. 10

14. The apparatus of claim 11 , wherein the component
is a second processor.

bus.

21. A bus arbitrating apparatus residing in a bus agent
configured to communicate with a processor based
system including a memory, bus, and display, com­
prising:

a resource accessing unit allowing the bus
agent to access the bus upon receiving a first
signal from a component coupled to the . bus
and yielding access of the bus to the compo­
nent upon receiving a second signal from the
component.

1_5. The apparatus of claim 11, wherein the component 15 22. The bus arbitrating apparatus of claim 21, further
is a plurality of processors. comprising:

16. The apparatus of claim 11 , wherein the resource is
a bus.

17. The apparatus of claim 11, wherein the resource is
a memory.

18. A computer system, comprising

20

a signal generation unit, coupled to the
resource accessing unit, generating a third sig­
nal when the bus agent has gained access to
the resource and generating a fourth signal
when the bus agent has yielded access to the
resource.

(A) a bus;
25 23.. A system for arbitrating a bus between a first bus

agent and a second bus agent comprising:
(B) a first processor. coupled to the bus, having

(1) a first signal generation unit generating
a first signal when the first processor has 30

gained access to the bus and generating a
second signal when the first processor has
yielded access to the bus; and
(2) a first bus accessing unit allowing the
first processor to access the bus upon 35

receiving a third signal and yielding access
to the bus upon receiving a fourth signal;

(C) a second processor, coupled to the bus and
the first processor, having 40

(1) a second signal generation unit gener­
ating the fourth signal when the second
processor has gained access to the bus
and generating the third signal when the 45

second processor has yielded access· to
the bus; and
(2) a second bus accessing unit allowing
the second processor to access the bus
upon receiving the second signal and so
yielding access to the bus upon receiving
the first signal.

19. The computer system of claim 18 further compris-
ing an array of storage devices coupled to the first 55

and second processors.

20. The computer system of claim 18 further compris·
ing an environmental service center coupled to the

7

a first signal generation unit generating a first
signal when the first bus agent has gained
access to the bus and generating a second sig­
nal when the first bus agent has yielded access
to the bus;
a first bus accessing unit allowing the first bus
agent to access the bus upon receiving a third
signal and yielding access to the bus upon
receiving a fourth signal, wherein the first sig­
nal generation unit and the first bus accessing
unit reside inside the first bus agent;
a second signal generation unit generating the
fourth signal when the second bus agent has
gained access to the bus and generating the
third signal when the second bus agent has
yielded access to the bus; and
a second bus accessing unit allowing the sec­
ond bus agent to access the bus upon receiv­
ing the second signal and yielding access to
the bus upon receiving the first signal, wherein
the second signal generation unit and second
bus accessing unit reside inside the second
bus agent

24. The system of claim 23 further comprising an array
of storage devices coupled to the first and second
bus agents.

25. The system of claim 23 further comprising an envi­
ronmental service center coupled to the bus.

Oracle Ex. 1002, pg. 131

EP 0 810 530 A2

FIG. 1

Mass Storage Main Memory Read Only
Memory Device Display ..._ .1Q.i 106 1QI ~ 121

tl. "- ~ ~ ?-

"'
.., 7 < 7

Keyboard
K=~ Bus

.122 1Q1

tl. "?-

~; Cursor Control II'- "' ' m ...
Processor

~
Processor 100 102 w.

(
130

8

Oracle Ex. 1002, pg. 132

Display • _,A...___

ill ~

Keyboard 1e= ~
122 1v- - I r

Cursor Controll/'---
123 'V

EP 0 810 530 A2

FIG. 2

Main Memory
104

Read Only
Memory

106

Bus
101

Processor
102

Shared Resource 230
210

Main Memory
204

9

Processor
202

Bus
£Q1

Read Only
Memory

206

Mass Storage
Device

107

Mass Storage
Device

207

Oracle Ex. 1002, pg. 133

ESC
~

HDA

I~ I

HDA

331

Shared Bus
~

I 342 I
341

EP 0 810 530 A2

FIG.3

Processor Main Memory
~§55]...... ~

Processor Main Memory
312 ':11':1
-~ ~

10

Host
Interface

314

Oracle Ex. 1002, pg. 134

EP 0 810 530 A2

FIG. 4
State Device 1 Device 2 Mastershi

1 0 0 Device 1 is master
2 1 0 Mastership is to be passed from Device 1 to Device 2
3 1 1 Device 2 is master
4 0 1 Mastership is to be passed from Device 2 to Device 1

FIG. 5
State 1

.State 4

State 3

11

Oracle Ex. 1002, pg. 135

•• I •

EP 0 810 530 A2

FIG. 6

Timer 355 1

,,

Computation 'II

and Resource Signal Control Unit Accessing .;~ Generation - Unit -.,. ""
Unit

620 ~

II'

350 631 §1Q
~ .,.)

'V

12

Oracle Ex. 1002, pg. 136

Pass mastership,
indicate transition,
and restart timer

Pass mastership,
restart timer 707

EP 0 810 530 A2

FIG. 7

No

No

No

13

Pass mastership
permanently 704

Oracle Ex. 1002, pg. 137

N
<
Q)
an
c
.......
N
CX)

c
a..
w

(19) J) Europllsches Patentamt

European Patent Office

Office europeen des brevets

~~~~~ 1~111~11~111~ 11~1 ~~~ ~~~~~~ llllll~llllll~llllllllllll 
(11) EP 0 827 059 A2 

(12) EUROPEAN PATENT APPLICATION 

(43) Date of publication: 
04.03.1998 Bulletin 1998H 0 

(21) Application number: 97114612.1 

(22) Date offiling: 22.08.1997 

(84) Designated Corrtracting Slates: 
AT BE CH DE OK ES F1 FR GB GR IE IT U LU MC 
NLPTSE 
Designated Extension States: 
ALLTLVROSI 

(30) Priority: 30.08.1996 JP 230895/96 

(71) Applicant: NEC Corporation 
Mlnato-ku, Tokyo 108-01 (JP) 

(54) Disk apparatus 

(57) The apparatus enables access authorization to 
be assigned solely to specific host devices. A control 
device (106) comprises: an address registration unit 
(1 04), in which 111e host address of each host device has 
been registered for authorizing access, a command 
interpretation and execution unit (102) which on receipt 
of a command from a host device via a host device inter­
face outputs 111e host address of 111e host device based 
on the comrnand. and an address verification unit (103) 
for verifying the host address output from a command 

FIG.l 

(51) lnt Cl.6: G06F 1/00, G06F 3/06 

(72) Inventors: 
• Kikuchi, Yoshihlde 

Mlnato-ku, Tokyo 108-01 (JP) 
• Akagl, Masanobu 

Mlnato-ku, Tokyo 108-01 (JP) 

(74) Representative: 
von Samson-Himmelstjema, Friedrich R., Dipl.· 
Phys. 
SAMSON & PARTNER 
Wldenmayerstrasse 5 
80538 MOnchen (DE) 

interpretation and execution unit (102) against the host 
address registered in-111e address registration unit 
(104), as well as deterTnining whe111er or not the partie· 
ular host device has access authorization. The corn· 
rnand interpretation and execution unit (1 02) 
incorporates an au111orization pending function, so 111at 
on receipt of a command from a host device, the com­
mand is interpreted and executed only after access is 
authorized by 111e address verification unit (1 03). 

1 0 1 : DISK APPARATUS . : 
j 

:·----L---·-------------------··------------ ---;-----··--1 
i 1 1 2 i 
i t 
i, ----------1 i, 

102: 
I ! ! 
I 

! ! ! 
! ! ! 
! ··--·-----J ! 
i ! i ~n 1 

L----·-·---·-------·-----··----··-··--·-------------·------J 

Prtraad by Xe101 (UK) BualnaG& Sorvtma 
2.15.11fJ.4 

Oracle Ex. 1002, pg. 138



EP 0 827 059 A2 2 

Description 

BACKGROUND OF THE INVENTION 

Field of the Invention s 

The present invention relates to a disk apparatus, 
and in particular to a disk apparatus which can be 
accessed by a plurality of host devices. 

Description of the Related Art 
JO 

a plurality of hosts devices, access authorization can 
not be restricted to specific host devices. 

Furthermore, with the move to large volume disk 
apparatus, it is possible to consider partitioning a single 
disk and then having each host use a different partition, 
but with conventional disk apparatus it has not been 
possible, while using a single interface, to identify a host 
device and then have each host device use a different 
partition. 

SUMMARY OF THE INVENTION 

H is an object of the present invention to improve 
the deficiencies inherent in the conventional devices 

Wrth conventional disk apparatus, each host con· 
trois the disk or disk array directly, and disk security is 
controlled by the host device to which the disk is con· 
nected. File sharing with this type of file server client 
system is disclosed for example in Japanese Patent 
Application, First Publication No. Hei-4-58349. 

A block diagram showing the configuration of a con· 
ventional disk apparatus Is shown in Figure 6. A con· 
ventional disk apparatus 201 comprises a command 
interpretation and execution unit 202 which interprets 
commands from a host device as well as executing 
those commands, and a data storage unit 203 in which 
data is stored. The command interpretation and execu· 
tion unit 202, In the case of a read command for elC8.111-

ple, interprets the command, and recognizing the 
command as a read command directs the data storage 

75 discussed above, and in particular to provide a disk 
apparatus in which each host device can be treated dif· 
ferently, so that for example access authoriza1ion can be 
assigned solely to specific host devices, or furthermore, 
each host device can gain access to a different partition 

20 while using the same interface. 
A first apparatus according to the present invention 

comprises: a host device interface for sending and 
receiving data to and from a plurality of host devices, a 
data storage device for storing data to be sent to a host 

25 device, and a control device for controlling the writing of 
data to, and the reading of data from, the data storage 
device .. 

unit 203 to read. The data storage unit 203 reads the 
stored data based on the read directions from the corn- so 
mand interpretation and execution unit 202, and then 
transfers the data to the host device. 

Common ways of connecting the host device and 
the disk apparatus include a SCSI (Small Computer 
System Interface) and Fibre Channel. Consequently, 35 

the command interpretation and execution unit 202 
interprets commands from the SCSI or Fibre Channel 
and then outputs commands such as read and/or write, 
to the disk data storage unit 203. 

Wrth this type of conventional disk apparatus, usu· 40 

ally a single host device is connected to the disk appa· 
ratus. Furthermore, even in those cases where a 
plurality of host devices are connected to a common 
disk Interface, with current technology it is possible for 
any of the host devices to access the disk. 45 

With advances in technology relating to the inter· 
face between the host device and the disk apparatus 
however, it has become feasible to connect a plurality of 
host devices. Using Fibre Channel, it is possible for 
example to use loops (FC.AL) to connect together more so 
than 100 devices including both host devices and disk 
apparatus. Moreover, If switching fabric is employed the 
number of devices which can be connected together 
increases even further. Utilizing the high speed of inter· 
faces, it is also possible to connect a plurality of host 55 
devices and disk apparatus to a single interface. With 
conventiOnal disk apparatus, a problem arises that in 
the case where a single disk is able to be accessed by 

2 

The control device comprises an address registra· 
tion unit, in which the host address of each host device 
has been registered in advance, for the purpose of 
authorizing access, a command interpretation and exe-
cution unit which on receipt of a command from a h.ost 
device via the host device interface outputs the host 
address of the host device based on the command, and 
an address verification unit for verifying the host 
address output from the command interpretation and 
execution unit against the host address registered in the 
address registration unit, and for determining whether 
or not the particular host device has access authorize· 
tion. The command interpretation and execution unit is 
configured to include an authorization pending function, 
so that on receipt of a command from a host device, the 
comi'TlQJ1CJ is interpretlld and executed only after access 
is authorized by the address verification unit. 

With this first apparatus, the host address is 
extracted from the command sent. from a host device 
and verified against those host addresses registered in 
the address registration unit for the purpose of deter· 
mining access authorization. As a result, if access is 
authorized, the disk apparatus accepts the command 
which has been sent and disk read/write functions are 
performed. In this WfJJ/, only authorized host devices 
gain access to the data storage unit 

As a second apparatus according to the present 
invention a construction is adopted where, in addition to 
the items which characterize the farst apparatus, a host 
information storage unit in which information about the 
hosts such as host names and passwords is stored, is 

Oracle Ex. 1002, pg. 139



3 EP 0 827 059 A2 4 

incorporated into the address registration unit, and a 
host check unit which, on receipt of host information 
from a host, determines whether or not that particular 
host has access authorization based on the host infor· 
mation received from the host and the host information s 
stored in the host information storage unit, is incorpo­
rated into the command interpretation and execution 
unit, and this host check unit incorporates an address 
registration function which registers the access authori· 
zation based on the host information, and the host 10 

address determined for the host device, in the address 
registration unit. 

With this second apparatus, when a host device 
logs in to the disk apparatus seeking authorization to 
use the disk, the address is regis1ered in the address 15 

registration unit, and subsequently, the host address is 
extracted from any commands sent from the host device 
and verified against the host address registered in the 
address registration unit, and in those cases where 
access is authorized the command interpretation and 20 

execution unit transmits the command from the host 
device to the data storage unit and executes the com· 
mand. In this way, any alterations in host address can 
ba easny accommodated. 

With a third apparatus, a construction is adopted 25 

where in addition to the items which characterize the 
second apparatus, the host check unit incorporates a 
startup setting function which requests host information 
from a plurality of host devices when the control device 
is activated. 

With this third apparatus, host information relating 
to access authorization is not stored internally bafore­
hand, but rather is sent from the host devices which 

30 

and offset information which has been stored in 
advance, and generates offset information which corre­
sponds to the particular host device and sends this 
information to the actual partition address generation 
unit. The actual partition address generation unit com­
bines the theoretical disk address included in the com­
mand from the host device and the offset information, 
and generates an actual disk partition address. In this 
way, the disk partition corresponding to the host device 
from which the command was sent is accessed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Figure 1 is a block diagram sha.Ning the configura­
tion of a first embodiment of the present invention; 
Figure 2 is an explanatory diagram displaying a 
phase transition state of a SCSI bus: 
Figure 3 is a block diagram sha.Ning an example 
configuration of hardware resources of a disk appa- · 
ratus according to the first embodiment shown in 
Figure 1; 
Figure 4 is a block diagram sha.Ning the configura­
tion of a second embodiment of ihe present inven· 
lion: 
Figure 5 is a block diagram sha.Ning the configura­
tion of a third embodiment of the present invention: 
and 
Figure 6 is a block diagram showing a configuration 
based on current technology. 

DESCRIPTION OF THE PREFERRED EMBODI· 
MENTS 

control the disk at the point of disk startup. Conse- Next is a description of the preferred embodiments 
quently, the amount of non volatile memory set aside for 36 of the present invention, with reference to the drawings. 
data storage can be reduced. 

As a fourth apparatus according to the present 
invention a construction is adopted where, in addition to 
the items which characterize the first apparatus, the 
control device comprises: an offset information genera- 40 

tion unit, which on the basis of a host address output 
from the command interpretation and execution unit 
generates offset information for the disk partition for that 
particular host device, and an actual partition address 
generation unit which on the basis of the address for 46 

reading and writing to the disk apparatus, and the offset 
information, generates an actual disk partition address 
and then outputs that actual partition address to the 
command interpretation and execUtion unit. 

With this fourth apparatus, the disk capacity is par- so 
titioned amongst the various host devices, and the vari· 
ous host addresses and the offset information for each 
partition are coordinated beforehand. When a com­
mand is received from a host device, the command 
interpretation and execution unit extracts the host 55 

address from the command and sends it to the offset 
information generation unit. The offset information gen· 
eration unit then uses a correlation chart of host devices 

3 

First embodiment 

A block diagram showing the configuration of a disk 
apparatus according to a first embodiment of the 
present invention is shown in Figure 1. As is shown in 
Figure 1, a disk apparatus 101 coi'J1)rises a host device 
interface 112 for sending and receiving data to and from 
a plurality of host devices, a data storage device (data 
storage unit) 105 for storing data to be sent to a host 
device, and a control device 106 for controlling the writ­
ing of data to, and the reading of data from, the data 
storage device 105. 

The control device 106 comprises: an address reg­
istration unit 104, in which the host address of each host 
device has been registered for authorizing access, a 
command interpretation and execution unit 102 which 
on rec:eipt of a command from a host device via the host 
device interface outputs the host address of the host 
device based on the command, and an address verifies· 
tion unit 1 03 for verifying the host ac!dress output from 
the command interpretation and execution unit 102 
against the host address registered in the address reg-

Oracle Ex. 1002, pg. 140



5 EP 0 827 059 A2 6 

istration unit 104, and for determining whether or not the 
particular host device has access authorization. 

The command interpretation and execution unit 102 
incorporates an authorization pending function, so that 

In this way, the disk apparatus is able to ascertain 
the SCSI 10, namely the host address, of the other 
device. Further details are given in "Open design No. 1" 
(Published by CQ, 1994), pages 4 to 19. 

on receipt of a command from a host device, the com- 5 

mand is interpreted and executed only after access is 
authorized by the address verification unit 103. 

In the case of a Fibre Channel, because communi-
cation is serial, the host address is recorded within the 
frame and so once again the disk apparatus is able to 
ascertain the host address of the other device. The command interpretation and execution unit 102 

first receives a command from a host device, extracts Furthermore nowadays, in addition to those men-
the host address from the command and outputs it to 10 

the address verification unit 103. The address verffica-
tioned above, there are other protocols (such as IP 
(Internet ProtocoQ) which although not widely used as 
disk interfaces, do include a host address which 
becomes the transmission source. 

tion unit 103 reads the host addresses s!Dred in the 
address registration unit 104 for the purpose of deter­
mining access authorization and verifies the host 
address sent from the command interpretation and exe- 15 

cution unit 102. The access authorization information 
generated as a result of this verification process is then 
relayed back to the command interpretation and execu· 

An example configuration· of the above embodiment 
which uses a general purpose CPU (central processing 
unit) is shown in Figure 3. A disk apparatus 101 com­
priSes a CPU 106 which performs the centralized func-
tion of controlling reading and writing. The CPU 1 06 is 
connected to various circuit devices via a bus 107. Of 
these devices, a ROM (read only memory) 1 08 is mem­
ory solely for reading, and stores various programs and 

tion unit 102 by the address verification unit 103. 
In those cases where access is authorized, the 20 

command interpretation and execution unit 102 sends 
the command received from the host device to the data 
storage unit 105, and the disk apparatus command, 
such as a data read/Write command, is carried out in the 
same manner as for conventional disks. 

The technique for determining access authorization 
could for example involve the registration of the host 
addresses of those host devices for which access is 
authorized in the address registration unit 104 and com­
parison of these address with the host address 
extracted from each command, with authorization being 
given in the case of a matching address. Alternatively, 
the host addresses of those host devices for which 
access iS not authorized could be registered in the 
address registration unit 104, and authorization given if 
the host address extracted from the command did not 
match any of the registered addresses. 

With the above example it was assumed that the 
host address was imbedded in the command, but in 
practice, the host address can sometimes be identified 
in exchanges prior to, or after the command. An exam­
ple is presented in way of an explanation below. 

For example in the case of a SCSI, the bus phase 

ftxeddata. 
A RAM (random access memory) 109 is memory 

which is used, as required, for temporarily storing data 
25 during execution of a program. 

A non volatile memory 110 is memory which can be 
written to by the CPU, and the content of which is saved 
when the power is turned off. A disk interface 111 is an 
interface for exchanging data and commands between 

so the CPU and a data storage unit 1 05 which will be either 
a disk or some other storage medium 

A host device interface 112 is an interface for 
exchanging commands and data from a host device 
with the disk apparatus 101. In the case of a disk array, 

35 a SCSI is used for both the host device interface 112 
and for the disk interface 111 , but generally it is accept­
able for the host device interface 112 and the disk inter­
face 111 to be of different types. 

For example, a Fibre Channel could be used for the 
4D host device interface 112 and a SCSI used for the disk 

interface 111. In small apparatus the disk s!Drage 
medium itseH is used as the ~ta storage unit 1 05, but 
in large apparatus such as disk arrays the disk drive 

can be roughly divided up as shown in Figure 2. Wrth a 
SCSI generally the host device interface is the initiator 45 

and the disk apparatus interface the target. When send-

itseH can be used as the data storage unit 105. 
Next is a description of the use of the hardware 

resources shown in Figure 3 to bring to realization the 
function blocks of Figure 1. The command interpretation 
and execution unit 102 of Figure 1 is configured using 
the CPU 106, the bus 107, the ROM 108, the RAM 109, 

ing a command to the disk apparatus, the host device 
interface, the initiator, secures the bus in the arbitration 
phase, selects the disk apparatus in the selection 
phase, and then enters the information transfer phase 
for sending the command or data. 

Within this series of phases. the initiator outputs itS 
own 10 and the 10 of the target it is aiming to select in 
the selection phase. The specified disk apparatus, 
namely the target, on confirming it has been selected 
corresponds by &witching the bus BSY signal to 1rue·. 
At this point, the target samples the data bus and iden­
tifies the 10 of the initiator. 

50 the disk interface 111 and the host device interface 112 
of Figure 3. Similarly, the address verification unit 1 03 is 
configured using the CPU 106, the bus 107, the ROM 
108, and the RAM 109. 

The address registration unit 104 Can be configured 
ss using the non volatile memory 11o:··Moreover. a 

read/write capable disk drive can be used as the data 
storage unit 105. In those instances where a disk drive 
with a SCSI interface is used as the data storage unit, 

4 

Oracle Ex. 1002, pg. 141



7 EP 0 827 059 A2 8 

the commands which can be sent from the command 
interpretation and execution unit 1 02 to the data storage 
unit 1 05 are not limited to just read and write commands 
for data, but can also indicate commands in general 
retained by the SCSI interface. Furthermore, the disk 5 

drive can comprise any form which allows data storage, 
and can therefore be configured from memory with a 
power backup function or from non volatile memory. 

Next is a description of the operation of a disk appa­
ratus configured as shown in Figure 3. First, host 10 

addresses are stored in advance in the non volatile 
memory 110. The stored host addresses can be rewrit-
ten by the CPU 106, but will not be erased when the 
power is switched off. Consequently, when power is 
suppliedtothediskapparatus 101, the host addresses 15 

which have been previously stored are able to be read 
out 

The command interpretation and execution unit 102 
of Figure 1 receives commands from the host devices at 
the host d&Yice interface 112 and stores them temporar- 20 

ily in the RAM 109. The CPU 106 uses the programs 
stored in the ROM 108 for interpreting a command from 
a host device and extracting the host address. The thus 
extracted host address is then verified against the host 
addresses stored in the non volatile memory 11 0 by the 25 

CPU 106. In the method where the host addresses for 
those devices which are authorized for access are 
stored in the non volatile memory 110, access is author­
ized when the host address extracted from the com­
mand from the host device matches one of the host 30 

addresses stored in advance in the non volatile mem­
ory. 

ratus. it is possible to imagine a technique where on 
startup of the disk apparatus the access authorization 
determining host addresses are transferred from the 
host device which controls the disk, and then stored in 
the RAM 109. Wrth this technique, the amount of non 
volatile memory 110 can be greatly reduced. 

Second embodiment 

A block diagram showing the configuration of a disk 
apparatus according to a second embodiment of the 
present inVention is shown in Figure 4. This is an 
embodiment which allows the setting of the host 
address afterwards. This embodiment will be eJCplained 
in terms of the login operation from a host device to 
obtain authorization for using the disk apparatus, and 
the normal access operation. 

First. in the login operation, the host information 
sent from a host device is used to determine whether 
that particular host device should be authorized. A disk 
apparatus 113 of this embodiment comprises a com-
mand interpretation and execution unit 114 for interpret­
ing and executing commands from host devices. The 
command interpretation and execution unit 114 
receives a command from a host device and extracts 
the necessary host information required to authorize 
usage of the disk apparatus as well as the host address 
accompanying that host information, and sends it all to 
a host check unit 115. 

In the host check unit 115. this information is veri-
fied against access authorization determining host infor­
mation which has been stored in advance in a host 
information storage unit 116. Examples of host informa­
tion include the host device name, and a password. In 

In those cases where access is authorized, the 
CPU 106 sends a cominand to the disk interface 111 in 
order to execute the command from the host device, 
which had been temporarily stored in the RAM 109. The 
disk interface 111 executes the command by sending it 
to the data storage unit 105. In those cases where infor­
mation needs to be relayed to the host d&Yice as a result 

35 those cases where the comparison results in a match, 
the host address sent from the command interpretation 
and execUtion unit 114 is registered in an address reg­
istration unit 118 as an access authorization determin-
ing address. 

of the command being executed, the disk interface 40 

informs the CPU 106 that it has received a result. 
Once the host address has been registered in the 

address registration unit 118 in this way, the remaining 
operation is the same as for the first embodiment Upon 
receiving a command from a host device the command 
interpretation and execution unit 114 extracts the host 

On receiving this notification the CPU 106 receives 
the result from the disk interface 111, stores it temporar-
ily in the RAM 109, and then transfers the result to the 
host device interface. In this way, commands from a 
host device are first judged as to whether access is pos­
sible, and then following execution, any result of the exe­
cution is returned to the host device. 

With the above example, the host address stored 
temporarily in the RAM 109 and the access authoriza­
tion determining host addresses stored in the non vola­
tile memory 110 were compared, but in some cases the 
reading of non volatile memory is time consuming, and 
so it is possible to imagine a technique where on startup 

45 address from the command. It then sends this address 
to an address verification unit 117 and the address ver­
ification unit 117 verifies the address against the access 
authorization determining host addresses stored in the 
address registration unit 118 and then relays an access 

50 authorized or access denied message back to the com­
mand interpretation and execution unit 114. In the case 
where access is authorized, the command interpreta­
tion and execution unit 114 sends a command to the 
data storage unit 105 in order to execute the command. 

of the disk apparatus the access authorization deter- 55 
mining host addresses stored in the non volatile mem-

Wrth the second embodiment, the actual circuit 
configuration could take the form shown in Figure 3, as 
was the case with the first embodiment The command 
interpretation and execution unit 114 of Figure 4 could 

ory 110 are transferred to the RAM 109. 
Furthermore as with the invention of the first appa-

5 

Oracle Ex. 1002, pg. 142



9 EP 0 827 059 A2 10 

then be configured comprising the CPU 106, the bus 
107, the ROM 108, the RAM 109, the disk interface 111, 
and the host device interface 112 of Figure 3. Similarly, 
the host check unit 115 and the address verification unit 
117 can be configured comprising the CPU 106, the bus s 
107, the ROM 108, and the RAM 109. Furthermore, the 
host information unit 116 and the address registration 
unit 104 can be configured using the non volatile mem­
ory 110. 

host devices. 

With the invention of the second apparatus, the 
information registered in advance in the disk apparatus 
by the user is not host addresses, but rather host infor­
mation. Each host address is registered prior to that 
host device using the disk apparatus, so that once reg-
istered, subsequent recognition of the host device can 
be based on the host address imbedded in normal com­
mands. Therefore procedures can be vastly simplified in 

Third embodiment 

A block diagram showing the configuration of a disk 
apparatus according to a third embodiment of the 
present invention is shown in Figure 5. A disk apparatus 
119 of this embodiment comprises a command interpre­
tation and execution unit 120 for interpreting and exe­
cuting commands from a host device. The command 
interpretation and execution unit 120 extracts a host 
address from any disk read/write command sent from a 
host device and outputs it to an address offset informa­
tion conversion unit 121, and also outputs a disk parti-

10 comparison with the technique where host information 
is exchanged each time the disk apparatus is accessed. 
Furthermore. because the information registered in 
advance in the disk apparatus does not include host 
addresses, even if the interface configuration or address 

1s is changed there is little effect, allowing high security to 
be maintained. 

With the invention of the third apparatus. following 
disk startup the host addresses relating to access 
authorization are received from the host device which 

tion address extracted from the read/write command to 

20 controls the disk apparatus, and stored internally. This 
offers the advantage that complicated programming 
relating to host address registration does not need to be 
provided on the disk. 

an actual partition address conversion unit 122. Wrth the invention of the fourth apparatus, the disk 
The technique used by the command interpretation 

and execution unit 120 for extracting a host address is 
as was outlined for the first embodiment. The host 
address output from the command interpretation and 
execution unit 120 is input into the address offset infor­
mation conversion unit 121. Offset information which 
indicates a disk partition corresponding to each host 
device, has been stored in advance in the address off· 

25 apparatus is able to identify a host device from the host 
address imbedded within the command sent from the 
host device. Moreover because a partition offset infor· 
mation value is stored for each host device, the disk 
apparatus is able to allocate a different disk partition to 

so each host device. Consequently, a single disk appara­
tus can essentially appear as a different disk to each 
host device, enabling the efficient usage of inodern 
large volume disk apparatus. set information conversion unit 121, and the host 

address input from the command interpretation and 
execution unit 120 is converted to this offset informa- 35 

tion. 
The actual partition address conversion unit 122 

combines the disk partition address output from the 
command interpretation and execution unit 120 with the 
offset information output from the address offset infor- 40 

mation conversion unit 121, and generates an actual 
disk partition address which it then outputs to the com­
mand interpretation and execution unit 120. The com­
mand interpretation and execution unit 120 outputs a 
read/write command to the data storage unit 1 05 based 45 

on the actual disk partition address. The data storage 
unit 105 executes the command output from the actual 
partition address conversion unit 122 by, for example, 
reading out data to the host device, or receiving and 
storing data from the host device. so 

The present invention is configured and functions in 
the manner outlined above, with the invention of the first 
apparatus enabling the provision of a highly secure and 
advanced disk apparatus of a type not currenUy availa-
ble, wherein determination of access authorization for a 55 

host device is based on the host address imbedded in 
the command sent from that particular host device, thus 
enabling commands to be accepted only from specified 

6 

Claims 

1. A disk apparatus comprising, a host device inter­
face (112) for sending and receMng data to and 
from a plurality of host devices, data storage means 
(105) for storing data to be sent to said host 
devices, and control means (1 06) for controlling the 
writing of data to, and the reading of data from, said 
data storage means (105), characterized in that 
said control device (106) comprises: an address 
registration unit (104; 118), in which the host 
address of each host device has been registered in 
advance, for the purpose of authorizing access, a 
command interpretation and execution unit (1 02; 
114; 120) which on receipt of a command from a 
host device via said host device interface (112) out­
puts the host address of said host device based on 
said command, and an address verification unit 
(1 03) for verifying the host address output from said 
command interpretation and execution unit (102; 
114) against the host address registered in said 
address registration unit (104; 118), and for deter­
mining whether or not the particular host device has 
access authorization, and said command interpre-

Oracle Ex. 1002, pg. 143



11 EP 0 827 059 A2 12 

tation and execution unit (102; 114; 120) incorpo-
rates an authorization pending function, so that on 
receipt of a command from a host device, the com-
mand is interpreted and executed only after access 
is authorized by said address verification unit (1 03). 5 

2. A disk apparatus according to claim 1, wherein a 
host information storage unit (116) in which infor-
mation about the hosts such as host names and 
passwords is stored, is incorporated into said 10 

address registration unit (1 04; 118), and a host 
check unit (115) which, on receipt of host informa-
tion from a host. determines whether or not that 
particular host has access authorization based on 
the host information received from the host and the 15 

host information stored in said host information 
storage unit (116), is incorporated into said com-
mand interpretation and execution unit (102; 114; 
120), and said host check unit (115) incorporates 
an address registration function which register& the 20 

access authorization based on the host informa-
tion, and the host address determined for the host 
device, in said address registration unit (104; 118). 

3. A disk apparatus according to claim 2, wherein said 25 

host check unit (115) incorporates a startup setting 
function which requests host information from a plu-
rality of host devices when said control means 
(106) is activated. 

30 

4. A disk apparatus according to claim 2, wherein said 
control means (106) comprises: an offset informa-
tion generation unit (121), which on the basis of a 
host address output from said command interpreta-
tion and execution unit (102; 114; 120) generates 35 

offset information for the disk partition for that par-
ticular host device, and an actual partition address 
generation unit (122) which on the basis of the 
address for reading and writing to the disk appara· 
tus, and the offset information, generates an actual 40 

disk partition address and then outputs that actual 
partition address to said command interpretation 
and execution unit (102; 114; 120). 

5. A disk apparatus according to claim 1, wherein said 45 

command interpretation and execution unit (102; 
114: 120) extracts said host address from said 
command received from said host device. 

50 

55 

7 

Oracle Ex. 1002, pg. 144



CD 

FIG.l 
1 0 1 : DISK APPARATUS 
/ 

,- ____ ...L":::._ _________ ------------------ --------r--------------: 

1 1 2 '-. I HOST DEVICE 
"-.1 INTERFACE 

--~ 0 6 :CONTROL DEVICE 
: ---------------------------
1 L.._1 0 4 L 1 0 3 -------r-----~-;;: 

I --- I I ··L l 

REGISTRATION VERIFICATION COMMAND INTERPRETATION ADDRESS H ADDRESS 
UNIT UNIT AND EXECUTION UNIT 

I 

[_ _____ ----------------------------------- -~---- ------ J 

1 0 5"""' I DATA STORAGE 
"-l UNIT 

I 

I 

I 

I 
I 
I 

I 

I I 
I I L _________________________________________ . _________________ J 

m ., 
0 

~ 
Ia 
t 

Oracle Ex. 1002, pg. 145



~ 

IQ 

ARBITRATION 
PHASE 

.FIG.2 

~ 

SELECTION/ 
RESELECTION 

PHASE 
~ 

INFORMATION 
TRANSFER PHASE 
COMMAND PHASE) 

DATA PHASE 
STATUS PHASE 
MESSAGE PHASE 

m , 
0 

~ 
m 
t 

'· 

Oracle Ex. 1002, pg. 146



0 

1 0 1 : DISK APPARATUS 
J 

FIG.3 

,--/_· __ _ ------------------------- ---------

1 0 6 --l 

I 
I 

I 

L 
CPU 

1 0 7 : BUS : 

--~--~~ I ----
). 

1 1 
1 0 9 

~ NON VOLATILE 
MEMORY 

F==='~ 

I 
I 
L 1os 

____________________________________________________ j 

QJ 
0 

~ 
m 
t 

'· 

Oracle Ex. 1002, pg. 147



... -

FIG.4 
r- 1 1 3 : DISK APPARATUS 

,----------/~------------------------------r------------------ -l 
1 L..:1s. L11s.. t L114 

HOST INFORMATION H HOST CHECK 14 I COMMAND INTERPRETATION 
STORAGE UNIT UNIT AND EXECUTION UNIT 

L11s 
I 

c17 
ADDRESS REGISTRATION H ADDRESS VERIFICATION 

UNIT UNIT 

1 0 5 """"'\. I DATA STORAGE 
~ UNIT 

L-- ---------------------------------------------------------- __ .J 

m ., 
0 

f:i 
m 
~ 

'· 

Oracle Ex. 1002, pg. 148



EP 0 827 059 A2 

FIG.S 
1 1 9 : DISK APPARATUS 
_./ 

~----------..,..-------------- ------- ---- --l 

I 
I 

1 2 0 ....___ COMMAND 
.--------1 INTERPRETATION ...,.____, 

AND EXECUTION 

1 2 1 
.~ 

ADDRESS OFFSET 
INFORMATION 

CONVERSION UNIT 

UNIT 

,J.22 

ACTUAL PARTITION 
ADDRESS CONVERSION 

UNIT 

1 0 5 ~ DATA STORAGE 
UNIT 

·I 

L---------------------------------------_j 

r------

I 

I 
I 

FIG.6 
2 0 1 :CONVENTIONAL 

--------- r---- r:-_ --.J DISK APPARATUS 
-----l 

COMMAND 
INTERPRETATION AND 

EXECUTION UNIT 

DATA STORAGE 
UNIT 

20 

2 0 2 I 

3 

I 

I 
I 

- I 

I 

I I 

I I 
L ___ ------------------------ _ _j 

12 

Oracle Ex. 1002, pg. 149



PCT WORLD JNTBL,L.BCTUAL PROPERTY ORGANIZATION 
International Bureau . 

INTERNATIONAL APPUCATION PUBUSHED UNDER TilE PATENT COOPERATION TREATY (PCT) 

(51) International Patent C1assifl.eation 6: (11) International Publli:ation Number: WO 99/34297 
G06F 13100 At 

(43) International Publication Date: 8 July 1999 (08.07.99) 

(21) International Application Number: . PCTIUS98127689 (81) Designated States: CA, JP, European patent (AT, BE, CH. CY, 
DE, DK., ES, PI, FR, GB, GR, m, IT, LU, MC, NL, PT, 

(22) International Filing Date: 28 December 1998 (28.12.98) SE). · 

Published (30) Priority Data: 
09/001,799 31 December 1997 (31.12.97) US With international search report. 

(71) Applicant: CROSSROADS SYSTEMS, INC. [US/US]; Suite 
Il-300, 9390 Rcse.arc.h Boulevard, Austin, TX 78759 (US). 

(72) Inventors: HOESE. Geoffrey, B.; 1904 Ann Arbor Avenue, 
Austin, TX 78704 (US). RUSSELL, Jeffry, T.; 205 Kariba 
Cove, Cibolo, TX 78108 (US). 

(74) Agent: HULSEY, William, R., m; Gray Cary Ware & 
Freidenrlch u.P, Suite 1440, 100 Congress Avenue, Austin, 
TX 78701 (US). 

(54) Title: STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL STORAGE 

58 58 60 

STORAGE Dt.VICE 
WORKSTATION 
A STORAGE 

WORKSTATION 
B STORAGE 

WORKSTATION 
C STORAGE 

58 58 WORKSTATION 
D STORAGE 

) STORAGE DEVICE 
50 

64 74 

(57) Abstract 

66 

68 

70 

72 

A storage router (56) and storage network (50) provide virtual local storage on remote SCSI storage devices (60, 62, 64) to Fibre 
Channel devices. A plurality of Fibre Channel devices, such as workstations (58), are c:onnected to a Fibre Channel transport medium (52), 
and a plurality of SCSI storage devices (60, 62, 64) are connected to a SCSI bus transport medium (54). The storage router (56) interfaces 
between the Fibre Channel transport medium (52) and the SCSI bus transport medium (54). The storage router (56) maps between the 
workstations (58) and the SCSI storage devices (60, 62, 64) and implements access controls for storage space on the SCSI storage devices 
(60, 62, 64). The storage router (56) then allows access from the workstations (58) to the SCSI storage devices (60, 62, 64) using native 
low level, block protocol in accordance with the mapping and the access controls. 

Oracle Ex. 1002, pg. 150



FOR THE PURPOSES OF IN.FORMATION ONLY 

Codes used to identify States party to the Per on the front pages of pamphlets publishing international applications under the Per. 

AL Albania ES Spaill LS Lesolbo SJ SloYellia 
AM Annen Ia 111 Ymland LT U!bwmia SK Slovalcia 
AT AIISUia F'R Ptance LU l.mcmbourg SN Sc=gal 
AU Anstralia GA Gabon LV Latvia sz Swaziland 
A'L Azerllajjan GB United Kingdom MC Monaco TD 01311 
BA Bosnia and Hcn:egovina GE Georgia MD Republic of Moldova TG Togo 
BB Bm>adoa GH Ghana MG Madagascar TJ TaJikistan 
BE Belgium GN Guinea MK The former Yugoslav TM 1\ulanonislan 
BF Burkina Paso GR Gn:ece Republic of Macedonia TR '1\utey 
BG Bulgaria HU Hungary ML Mali Tr 'l'tlnidad 111111 Tobago 
BJ Benin IE JrelBDd MN Moagolia UA Ukraine 
BR Brazil IL lsmcl MR MauriWiia UG UgandA 
BY Belmls IS Iceland MW Malawi us Uniled Slales of Ametica 
CA Canada IT llaly MX Mc:lil:o uz. Uzbcldstan 
CF Central African Republic JP Japan NE Nige< VN VietNBIII 
CG CoaJ!O KE Kenya NL Nclhcrlands YU Yugoslavia 
CH Swiuetland KG KYfliYUilln NO Norway zw Zimbabwe 
Cl Cllte d1volre KP Dcmocralic Poople's NZ New Zealmld 
CM Carnerooo Republic of tcon.a PL Po 'Wid 
CN China KR Republic or ~<~na Yr Ponupl 
cu Cuba KZ Ka:ratslaD RO Ronwrla 
a Czedl Republic: LC Saim Lucia RU Rnasilm Pc:denuicm 
Dl! Germmly LJ ~ SD SWiaJI 
DK Demnart LK Sri LBDla! SE Sweden 
I!.E BsUmia LR Liberia SG Singapore 

Oracle Ex. 1002, pg. 151



wo 99/34197 PCT/US98/17689 

1 

STORAGE ROUTER AND METHOD FOR PROVIDING VIRTUAL LOCAL 

STORAGE 

TECHNICAL FIELD OF THE INVENTION 

This invention relates in general to network 

storage.devices, and more particularly to a storage 

router and method for providing virtual local storage on · 

remote SCSI storage devices to Fibre Channel devices 

Oracle Ex. 1002, pg. 152



wo 99/34297 PCTIUS98/l7689 

2 

BACKGROUND OF THE INVENTION 

Typical storage transport mediums provide for a 

relatively small number of devices to be attached over 

relatively short distances. One such transport medium is 

5 a Small Computer System Interface (SCSI) protocol, the 

structure and operation of which is generally well known 

as is described, for example, in the SCSI-1, SCSI-2 and 

SCSI-3 specifications. High speed serial_interconnects 

provide enhanced capability to attach a large number of 

10 high speed devices to a common storage transport medium 

over large distances. One such serial interconnect is 

Fibre Channel, the structure and operation of which is 

described, for example, in Fibre Channel Physical ~d 

Signaling Interface (FC-PH), ANSI X3.230 Fibre Channel 

15 Arbitrated Loop (FC-AL), and ANSI X3.272 Fibre Channel 

Private Loop Direct Attach (FC-PLDA). 

Conventional computing devices, such as computer 

workstations, generally access storage locally or through 

network interconnects. Local storage typically consists 

20 of a disk drive, tape drive, CD-ROM drive or other 

storage device contained within, or locally connec~ed to 

the workstation. The workstation provides a file system 

structure, that includes security controls, with access 

to the local storage device through native low level, 

25 .block protocols. These protocols map directly to the 

mechanisms used by the storage device and consist of data 

requests without security controls. Network interconnects 

typically provide access for a large number of computing 

Oracle Ex. 1002, pg. 153



W099134297 PCTIUS98/l7689 

3 

devices to data storage on a remote network server. The 

remote network server provides file system structure, 

access control, and other miscellaneous capabilities that 

include the network interface. Access to data through 

5 the network server is through network protocols that the 

server must translate into low level requests to the 

storage device. A workstation with access to the server 

storage must translate its file system protocols into 

network protocols that are used to communicate with the 

10 server. Consequently, from the perspective of a 

workstation, or other computing device, seeking to access 

such server data, the access is much slower than access 

to data on a local storage device. 

Oracle Ex. 1002, pg. 154



W099134297 PCT/US98127689 

4 

SI]MMARY. OF THE INVENTION 

In accordance with the present invention, a storage 

router and method for providing virtual local. storage on. 

remote SCSI storage devices to Fibre Channel devices are 

5 disclosed that provide advantages over conventional 

network storage devices and methods. 

According to one aspect of the present invention, a 

storage router and storage network provide virtual local 

storage on remote SCSI storage devices to Fibre Channel 

10 devices. A plurality of Fibre Channel devices, such as 

workstations, are connected to a Fibre Channel transport 

medium, and a plurality of SCSI storage devices are 

connected to a SCSI bus transport medium. The stor~ge 

router interfaces between the Fibre Channel transport 

15 medium and the SCSI bus transport medium. The storage 

router maps between the worksta~ions and the SCSI storage 

devices and implements access controls for storage space 

on the SCSI storage devices. The storage router then 

allows access from the workstations to the SCSI storage 

20 devices using native low level, block protocol in 

accordance with the mapping and the access controls. 

According to another aspect of the pre~ent 

invention, virtual local storage on remote SCSI storage 

devices is provided to Fibre Channel devices. A Fibre 

25 Channel transport medium and a SCSI bus transport medium 

are interfaced with. A configuration is maintained for 

SCSI storage devices connected to the SCSI bus transport 

medium. The configuration maps between Fibre Channel 

Oracle Ex. 1002, pg. 155



W099/34297 PCTIUS98127689 

5 

devices and the SCSI storage devic.es and implements 

access controls for storage space on the SCSI storage 

devices. Access is then allowed from Fibre Channel 

initiator devices to SCSI storage devices using native 

5 low level, block protocol in accordance with the 

configuration. 

A technical advantage of the pre.sent invention is 

the ability to centralize local storage for networked 

workstations without any cost of speed or overhead. Each 

10 workstation access its virtual local storage as if it 

work locally connected. .FUrther, the centralized storage 

devices can be located in a significantly remote position 

even in excess of ten kilometers as defined by Fibr~ 

Channel standards. 

15 Another technical advantage of the present invention 

is the ability to centrally control and administer 

storage space for connected users without limiting the 

speed with which the users can access local data. In 

addition, global access to data, backups, virus scanning 

20 and redundancy can be more easily accomplished by 

centrally located storage devices. 

A further technical advantage of the p~esent 

invention is providing support for SCSI storage devices 

as local storage for Fibre Channel hosts. In addition, 

25 the present invention helps to provide extended 

capabilities for Fibre Channel and for management of 

storage subsystems. 

Oracle Ex. 1002, pg. 156



. wo 99/342.97 PCf/US98/2.7689 

6 

BRIEF DESCRIPTION OF THE pRAWINGS 

A more complete understanding of the present 

invention and the advantages thereof may be acquired by 

referring to the following description taken in 

s conjunction with the accompanying drawings, in which like 

reference numbers indicate like features, and wherein: 

FIGURE 1 is a block diagram of a conventional 

network that provides storage through a network server; 

FIGURE_2 is a block diagram of one embodiment of a 

10 storage network with a storage router that provides 

global access and routing; 

15 

FIGURE 3 is a block diagram of one embodiment of a 

storage network with a storage router that provides .. 

virtual local storage; 

FIGURE 4 is a bl9ck diagram of one embodiment of the 

storage router of FIGURE 3; and 

FIGURE 5 is a block diagram of one embodiment of 

data flow within the storage router of FIGURE 4. 

Oracle Ex. 1002, pg. 157



wo 99134297 PCT/US98127689 

7 

pETAII,Ep QESCRIPTIQN OF THE INYENTION 

FIGURE 1 is a block diagram of a conventional 

network, indicated generally at 10, that provides access 

to storage through a network server. As shown, network 

s 10 includes a plurality of workstations 12 interconnected 

with a network server 14 via a network transport medium 

16. Each workstation 12 can generally comprise a 

processor, memory, input/output devices, storage devices 

and a network adapter as well as other common computer 

10 components. Network server 14 uses a SCSI bus 18 as a 

storage transport medium to interconnect with a plurality 

of storage devices 20 (tape drives, disk drives, etc.). 

In the embodiment of FIGURE 1, network transport medium 

16 is an network connection and storage devices 20 

15 comprise hard disk drives, although there are numerous 

alternate transport mediums and storage devices. 

In network 10, each workstation 12 has access to its 

local storage device as well as network access to data on 

storage devices 20. The access to a local storage device 

20 is typically through native low level, block protocols. 

On the other hand, access by a workstation 12 to storage 

devices 20 requires the participation of ne~work server 

14 which implements a file system and transfers data to 

workstations 12 only thro~gh high level file system 

25 protocols. Only network server 14 communicates with 

storage devices 20 via native low level, block protocols. 

Consequently, the network access by wo~kstations 12 

through network server 14 is slow with respect to their 

Oracle Ex. 1002, pg. 158



W099134297 PCT/US98/27689 

8 

access to local storage. In network 10, it can Also be a 

logistical problem to centrally manage and administer 

local data distributed across an organization, including 

accomplishing tasks such as backups, virus scanning and 

5 redundancy. 

FIGURE 2 is a block diagram of one embodiment of a 

storage network, indicated generally at 30, with a 

storage router that provides global access and routing. 

This environment is significantly different from that of 

10 FIGURE 1 in that there is no network server involved. In 

FIGURE 2, a Fibre Channel high speed serial transport 32 

interconnects a plurality of workstations 36 and storage 

devices 38. A SCSI bus storage transport medium 

interconnects workstations 40 and storage devices 42. A 

15 storage router 44 then serves to interconnect these 

mediums and provide devices on either medium global, 

transparent access to devices on the other medium. 

Storage router 44 routes requests from initiator devices 

on one medium to target devices on the other medium and 

20 routes data between the target and the initiator. 

Storage router 44 can allow initiators and targets to be 

on either side. In this manner, storage ro~ter 44 

enhanpes the functionality of Fibre Channel 3~ by 

providing access, for example, to legacy SCSI storage 

25 devices on SCSI bus 34. In the embodiment of FIGURE 2, 

the operation of storage router 44 can be managed by a 

management station 46 connected to the storage router via 

a direct serial connection. 

Oracle Ex. 1002, pg. 159



W099/34297 PCT/US98/27689 

9 

In storage network 30, any workstation 36 or 

workstation 40 can access any storage device 38 or 

storage device 42 through native low level, block 

.protocols, and vice versa. This functionality is enabled 

s by storage router 44 which routes .requests and data as a 

generic transport between Fibre Channel 32 and SCSI bus 

34. Storage router 44 uses tables to map devices from 

one medium to the other and distributes requests and dat.a 

across Fibre Channel 32 and SCSI bus ·34 without any 

10 security access controls. Although this extension of the 

high speed serial interconnect provided by Fibre Channel 

32 is beneficial, it is desirable to provide security 

controls in addition to extended access to storage .. 

devices through a native low level, block protocol. 

15 FIGURE 3 is a block diagram of one embodiment of a 

storage network, indicated generally at 50, with a 

storage router that provides virtual local storage. 

Similar to that of FIGURE 2, storage network so includes 

a Fibre Channel high speed serial interconnect 52 and a 

20 SCSI bus 54 bridged by a storage router 56. Storage 

router 56 of FIGURE 3 provides for a large number of 

workstations 58 to be interconnected on a c9mmon storage 

transport and to access common storage devices 60, 62 and 

64 through native low level, block protocols. 

25 According to the present invention, storage router 

56 has e~nced functionality to implement security 

controls and routing such that each workstation 58 can 

have access to a specific subset of the overall data 

Oracle Ex. 1002, pg. 160



W099/34297 PCT/US98127689 

10 

stored in storage devices 60, 62 and 64. This specific 

subset of data has the appearance and characteristics of 

local storage and is referred to herein as virtual local 

storage. Storage router 56 allows the configuration and 

5 modification of the storage allocated to each attached 

workstation 58 through the use of·mapping tables or other 

mapping techniques. 

As shown in FIGURE 3, for example, storage device 60 

can be configured to provide global dat~ 65 which can be 

10 accessed by all workstations 58. Storage device 62 can 

be configured to provide partitioned subsets 66, 68, 70 

and 72, where each partition is allocated to one of the 

workstations 58 (workstations A, B, C and D) . Thea~ 

subsets 66, 68, 70 and 72 can only be accessed by the 

15 associated workstation 58 and appear to the associated 

workstation 58 as local storage accessed using native low 

level, block protocols. Similarly, storage device 64 can 

be allocated as storage for the remaining workstation 58 

(workstation E) . 

20 Storage router 56 combines access control with 

routing such that each workstation 58 has controlled 

access to only the specified partition of storage device 

62 which forms virtual local storage for the workstation 

58. This access control allows security control for the 

25 specified data partitions. Storage router 56 allows this 

allocation of storage devices 60, 62 and 64 to be managed 

by a management station 76. Management station 76 can 

connect directly to storage router 56 via a direct 

Oracle Ex. 1002, pg. 161



wo 99/34297 PCI'IUS98/27689 

11 

connection or, alternately, can interface with storage 

router 56 through either Fibre Channel 52 or SCSI bus 54. 

In the latter case, management station 76 can be a 

workstation or other computing device with special rights 

5 such that storage router 56 allows access to mapping 

tables and shows storage devices 60, 62 and 64 as they 

exist physically rather than as they have been allocated. 

The environment of FIGURE 3 extends the concept of a 

single workstation having locally connected storage 

10 devices to a storage network 50 in which workstations 58 

are provided virtual local storage in a manner 

transparent to workstations 58. Storage router 56 

provides centralized control of what each workstati9n 58 

sees as its local drive, as well as what data it sees as 

15 global data accessible by other workstations 58. 

Consequently, the storage space .considered by the 

workstation 58 to be its local storage is actually a 

partition (i.e., logical storage definition) of a 

physically remote storage device 60, 62 or 64 conne.cted 

20 through storage router 56. This means that similar 

requests from workstations 58 for access to their local 

storage devices produce different accesses to the storage 

space on storage devices 60, 62 and 64. Further, no 

access from a workstation 58 is allowed to the virtual 

25 local storage of another workstation 58. 

The collective storage provided by storage devices 

60, 62 and 64 can have blocks allocated by programming 

means within storage router 56. To accomplish this 

Oracle Ex. 1002, pg. 162



W099/34297 PCTIUS98/l7689 

12 

function, storage router 56 can include routing tables 

and security cqntrols that define storage allocation for 

each workstation 58. The advantages provided by 

implementing virtual local storage in centralized storage 

s devices include the ability to do collective backups and 

other collective administrative functions more easily. 

This is accomplished without limiting the performance of 

workstations 58 because storage access involves native 

low level, block protocols and does not involve the 

10 overhead of high level protocols and file systems 

required by network servers. 

FIGURE 4 is a block diagram of one embodiment of 

storage router 56 of FIGURE. 3. Storage router 56 c~n 

comprise a Fibre Channel controller 80 that interfaces 

15 with Fibre Channel 52 and a SCSI controller 82 that 

interfaces with SCSI bus 54. A buffer 84 provides memory 

work space and is connected to both Fibre Channel 

controller 80 and to SCSI controller 82. A ·supervisor 

unit 86 is connected to Fibre Channel controller 80, SCSI 

20 controller 82 and buffer 84. Supervisor unit 86 

comprises a microprocessor for controlling operation of 

storage router 56 and to handle mapping and.security 

access for requests between Fibre Channel 52 and SCSI bus 

54. 

25 FIGURE 5 is a block diagram of one embodiment of 

data flow within storage router 56 of FIGURE 4. As 

shown, data from Fibre Channel 52 is processed by a· Fibre 

Channel (FC) protocol unit 88 and placed in a FIFO queue 

Oracle Ex. 1002, pg. 163



W099/34297 PCT IUS98127689 

13 

90. A direct memory access (DMA) interface 92 then takes 

data out of FIFO queue 90 and places it in buffer 84. 

Supervisor unit 86 processes the data in buffer 84 as 

represented by supervisor processing 93. This processing 

5 involves mapping between Fibre Channel 52 and SCSI bus 54 

and applying access controls and routing functions. A 

DMA interface 94 then pulls data from buffer 84 and 

places it into a buffer 96. A SCSI protocol unit 98 

pulls data from buffer 96 and communicates the data on 

10 SCSI bus 54. Data flow in the reverse direction, from 

SCSI bus 54 to Fibre Channel 52, is accomplished in a 

reverse manner. 

The storage router of the present invention is .. a 

bridge device that connects a Fibre Channel link directly 

15 to a SCSI bus and enables the exchange of SCSI command 

set information between application clients on SCSI bus 

devices and the Fibre Channel ~inks. Further, the 

storage router applies access controls such that virtual 

local storage can be established in remote SCSI storage 

20 devices for workstations on the Fibre Channel link. In· 

one embodiment, the storage router provides a connection 

for Fibre Channel links running the SCSI Fibre Channel 

Protocol (FCP) to legacy SCSI devices attached to a SCSI 

bus. The Fibre Channel topology is typically an 

25 Arbitrated Loop (FC_AL). 

In part, the storage router enables a migration path 

to Fibre Channel based, serial SCSI networks by providing 

connectivity ·for legacy SCSI bus devices. The storage 

Oracle Ex. 1002, pg. 164



WO 99134297 PCf/US98/27689 

14 

router can be attached to a Fibre Channel Arbitrated Loop 

and a SCSI bus to support a number of SCSI devices. 

Using configuration settings, the storage router can make 

the SCSI bus devices available on the Fibre Channel 

5 network as FCP logical units. Once the configuration is 

defined, operation of the storage router is transparent 

to application clients. In this manner, the storage 

router can form an integral part of the migration to new 

Fibre Channel based networks while providing a means to 

10 continue using legacy SCSI devices. 

In one implementation (not shown), the storage 

router can be a rack mount or free standing device with 

an internal power supply. The storage router can h~ve a 

Fibre Channel and SCSI port, and a standard, detachable 

15 power cord can be used, the FC connector can be a copper 

DB9 connector, and the SCSI connector can be a 68-pin 

type. Additional modular jacks can be ·provided for a 

serial port and a 802.3 lOBaseT pert, i.e. twisted pair 

Ethernet, for management access. The SCSI port of the 

20 storage router an support SCSI direct and sequential 

access target devices and can support SCSI initiators, as 

well. The Fibre Channel port can interface_to SCSI-3 FCP 

enabled devices and initiators. 

To accomplish its functionality, one implementation 

25 of the storage router uses: a Fibre Channel interface 

based on the HEWLETT-PACKARD ·TACHYON HPFC-5000 controller 

and a GLM media interface; an Intel 80960RP processor, 

incorporating independent data and program memory spaces, 

Oracle Ex. 1002, pg. 165



wo 99/34297 PCf/US98127689 

15 

and associated logic required to.implement a stand alone 

processing system; and a serial port for debug and system 

configuration. Further, this implementation includes a 

SCSI interface supporting Fast-20 based on the SYMBIOS 

5 53C8xx series SCSI controllers, and an operating system 

based upon the WIND RIVERS SYSTEMS VXWORKS or IXWORKS 

. kernel, as determined by design. In addition, the 

storage router includes software as required to control 

basic functions of the various elements, and to provide 

10 appropriate translations between the FC and ~CSI 

protocols. 

The storage router has various modes of operation 

that are possible between FC and SCSI target and 

initiator combinations. These modes are: FC Initiator to 

15 SCSI Target; SCSI Initiator to FC Target; SCSI Initiator 

to SCSI Target; and FC Initiator to FC Target. The first 

two modes can be supported concurrently in a 

single storage router device are discussed briefly below. 

The third mode can involve two storage router devices 

20 back to back and can.serve primarily as a device to 

extend th~ physical distance beyond that possible via a 

direct SCSI connection. The last mode can pe used to 

carry FC protocols encapsulated on other transmission 

technologies (e.g. ATM, SONET), or to act as a bridge 

25 between two FC loops (e.g. as a two port fabric). 

The FC Initiator to SCSI Target mode provides for 

the basic configuration of a server using Fibre Channel 

to commUnicate with SCSI targets. This mode requires 

Oracle Ex. 1002, pg. 166



W099/34297 PC1'/US98/27689 

16 

that a host system have an FC attached device and 

associated device drivers and software to generate SCSI-3 

FCP requests. This system acts as an initiator using the 

storage router to communicate with SCSI target devices. 

s The SCSI devices supported can include SCSI-2 compliant 

direct or sequential access (disk or tape) devices. The 

storage router serves to translate command and status 

information and transfer data between SCSI-3 FCP and 

SCSI-2, allowing the use of standard SCSI-2 devices in a 

10 Fibre Channel environment. 

The SCSI Initiator to PC Target mode provides for 

the configuration of a server using SCSI-2 to communicate 

with Fibre Channel targets. This mode requires that. a 

host system has a SCSI-2 interface and driver.software to 

15 control SCSI-2 target devices. The storage router will 

connect to the SCSI-2 bus and respond as a target to 

multiple target IDs. Configuration information is 

required to identify the target IDs to which the bridge 

will respond on the SCSI-2 bus. The storage router then 

20 translates the SCSI-2 requests to SCSI-3 FCP requests, 

allowing the use of FC devices with a SCSI host system. 

This will also allow features such as a tape device 

acting as an initiator on the SCSI bus to provide full 

support for this type of SCSI device. 

25 In general, user configuration of the storage router 

will be needed to support various functional modes of 

operation. Configuration can be modified, for example, 

through a serial port or through an Ethernet port via 

Oracle Ex. 1002, pg. 167



W099/34297 PCI'IUS98/27689 

17 

SNMP (simple network management protocol) or a Telnet 

session. Specifically, SNMP manageability can be 

provided via an 802.3 Ethernet interface. This can 

provide for configuration changes as well as providing 

s statistics and error infprmation. Configuration can also 

be performed via TELNET or RS-232 interfaces with menu 

driven command interfaces. Configuration information can 

be stored in a segment of flash memory and can be 

retained across resets and power off cycles. Password 

10 protection can also be provided. 

In the first two modes of operation, addressing 

information is needed to map from FC addressing to SCSI 

addressing and vice versa. This can be 'hard' 

configuration data, due to the need for address 

15 information to be maintained across initialization and 

partial reconfigurations of the Fibre Channel address 

space. In an arbitrated loop configuration, user 

configured addresses will be needed for AL_PAs in order 

to insure that known addresses are provided between loop 

20 reconfigurations. 

With respect to addressing, FCP and SCSI 2 systems 

employ different methods of addressing targ~t devices. 

Additionally, the inclusion of a storage router means 

that a method of translating device IDs needs to be 

25 implemented. In addition, the sto:rage router can respond 

to commands without passing the commands through to the 

opposite. interface. This can be implemented to allow all 

generic FCP and SCSI commands to pass through the storage 

Oracle Ex. 1002, pg. 168



W099/34297 PCTIUS98J27689 

18 

router to address attached devices, but allow for 

configuration and diagnostics to be performed directly on 

the storage router through the FC and SCSI interfaces. 

Management commands are those intended to be 

5 processed by the storage router controller directly. 

This may include diagnostic, mode, and log commands as 

well as other vendor-specific commands. These commands 

can be received and processed by both the FCP and SCSI 

interfaces, but are not typically bridged to the opposite 

10 interface. These commands may also have side effects on 

the operation of the storage router, and cause other 

storage router. operations to change or terminate. 

A primary method of .addressing management comm~ds 

though the FCP and SCSI interfaces can be through 

15 peripheral device type addressing. For example, the 

storage router can respond to all operations addressed to 

logical unit (LUN) zero as a controller device. Commands 

that ~he storage router will support can include INQUIRY 

as well as vendor-specific ·management commands. These 

20 are to be generally consistent with sec standard 

commands. 

The SCSI bus is capable of establishing bus 

co~ections between targets. These targets may 

internally address logical units. Thus, the prioritized 

25 addressing scheme used by SCSI subsystems can be 

represented as follows: BUS:TARGET:LOGICAL UNIT. The BUS 

identification is intrinsic in the configuration, as a 

SCSI initiator is attached to only one·bus. Target 

Oracle Ex. 1002, pg. 169



wo 99134197 PCf/US98/l7689 

19 

addressing is handled by bus arbitration from information 

provided to the arbitrating device. Target addresses are 

assigned to SCSI devices directly, though some means of 

configuration, such as a hardware jumper, switch setting, 

5 or device specific software configuration. As such, the 

SCSI protocol provides only logical unit addressing 

within the Identify message. Bus and target information 

is implied by the established.connection. 

Fibre Channel devices within a fabric are addressed 

10 by a unique port identifier. This identifier is assigned 

to a port during certain well-defined states of the FC 

protocol. Individual ports are allowed to arbitrate for 

a known, user defined address. If such an address ;s not 

provided, or if arbitration for a particuiar user address 

15 fails, the port is assigned a unique address by the FC 

protocol. This address is generally not guaranteed to be 

unique between instances. Various scenarios exist where 

the AL-PA of a device will change, either after power 

cycle or loop reconfigUration. 

20 The_FC protocol also provides a logical unit address 

field within command structures to provide addressing to 

devices internal to a port. The FCP_CMD payload 

specifies an eight byte LUN field. Subsequent 

identification of the exchange between devices is 

25 provided by the FQXID (Fully Qualified Exchange ID) . 1 

FC ports can be required to have specific ·addresses 

assigned. Although basic functionality is not dependent 

on this, changes in the loop configuration could result 

Oracle Ex. 1002, pg. 170



\ 

W099/34297 PCT/US981l7689 

20 

in disk targets changing identifiers with the potential 

risk of data corruption or loss. This configuration can 

be straightforward, and can consist of providing the 

device a loop-unique ID (AL_PA) in the range of "01h" to 

5 "EFh." Storage routers could be shipped with a default 

value with the assumption that most configurations will 

be using single storage routers and no other devices 

requesting the present ID.· ·This would provide a minimum 

amount of initial configuration to the system 

10 administrator. Alternately, storage routers could be 

defaulted to assume any address so that configurations 

requiring mu·l tiple storage routers . on a loop would not 

require that the administrator assign a unique ID to the 

additional storage routers. 

15 Address translation is needed where commands are 

issued in the cases FC Initiator to SCSI Target and SCSI 

Initiator to FC Target. Target responses are qualified 

by the FQXID and will retain the translation acquired at 

the beginning of the exchange. This prevents 

20 configuration changes occurring during the course of 

execution of a command.from causing data or state 

information to be inadvertently misdirected~ 

Configuration can be required in cases of SCSI Initiator 

to FC Target, as discovery may not effectively allow for 

25 FCP targets to consistently be found. This is due to an 

FC arbitrated loop supporting addiessing of a larger 

number of devices than a SCSI bus and the possibility of 

PC devices changing their AL-PA due to device insertion 

Oracle Ex. 1002, pg. 171



W099/34297 PCf/US98/27689 

21 

or other loop initialization. 

In the direct method, the ~ranslation to 

BUS:TARGET:LUN of the SCSI address information will be 

direct. That is, the values represented in the FCP LUN 

5 field will directly map to the values in effect on the 

SCSI bus. This provides a clean translation and does not 

require SCSI bus discovery. It also allows devices to be 

dynamically added to the SCSI bus without modifying the 

address map. It may not allow for complete discovery by 

10 FCP initiator devices, as gaps between device addresses 

may halt the discovery process. Legacy SCSI device 

drivers typically halt discovery on a target device at 

the first unoccupied LUN, and proceed to the next t~rget. 

This would lead to some devices not being discovered. 

15 However, this allows for hot plugged devices and other 

changes to the loop addressing. 

In the ordered method, ordered translation requires 

that the storage router perform discovery on r~set, and 

collapses the addresses on the SCSI·bus to sequential FCP 

20 LUN values. Thus, the FCP LUN values O-N can represent 

N+1 SCSI devices, regardless of SCSI address values, in 

the order in which they are isolated during.the SCSI 

.discovery process. This would allow the FCP initiator 

discovery process to identify all mapped SCSI devices 

25 without further configuration. This bas the limitation 

that hot-plug~ed devices will not be identified until the 

next reset cycle. In this case, the address may also be 

altered as well. 

Oracle Ex. 1002, pg. 172



W099/34297 PCT/US98127689 

22 

In addition to addressing, according to the present 

invention, the storage router provides configuration and 

access controls that cause certain requests from FC 

Initiators to be directed to assigned virtual local 

5 storage partitioned on SCSI storage devices. For 

example, the same request for LUN o (local storage) by 

two different FC Initiators can be directed to two 

separate subsets of storage. The storage router can use 

tables to map, for each initiator, what storage access is 

10 available and what partition is being addressed by a 

particular request. In this manner, the storage space 

provided by SCSI storage devices can be allocated to FC 

initiators to provide virtual local storage as well,.as to 

create any other desired configuration for secured 

15 access. 

Although the present invention bas been described in 

detail, it should be understood that various changes, 

substitutions, and alterations can be made hereto without 

departing from the spirit and scope of the invention as 

20 defined by the appended claims. 

Oracle Ex. 1002, pg. 173



W099/34297 PCI'IUS98/27689 

23 

WHAT IS CLAIMED Is: 

1. A storage router for providing virtual local 

storage on remote SCSI storage devices to Fibre Channel 

devices, comprising: 

5 a buffer providing memory work space for the storage 

router; 

a Fibre Channel controller operable to connect to 

and interface with a Fibre Channel transport medium; 

a SCSI controller operable to connect to and 

10 interface with a SCSI bus transport medium; and 

a supervisor unit coupled to the Fibre Channel 

controller, the SCSI controller and the buffer, the 

supervisor unit operable: 

to maintain a configuration for SCSI storage 

15 devices connected to the SCSI bus transport medium that 

maps between Fibre Channel devices and SCSI storage 

devices and that implements access controls for storage 

space on the SCSI storage devices; and 

to process data in the buffer to interface 

20 between the Fibre Channel controller and the SCSI 

controller to allow acces~ from Fibre· C~annel initiator 

devices to SCSI storage devices using native low level, 

block protocol in accordance with the configuration. 

Oracle Ex. 1002, pg. 174



WO 99/34297 PCf/US98127689 

24 

2. The storage router of Claim 1, whereip the 

configuration maintained by the supervisor unit includes 

an allocation of subsets of storage space to associated 

Fibre Channel devices, wherein each.subset is only 

5 accessible by the associated Fibre Channel device. 

10 

3. The storage router of Claim 2, wherein the 

Fibre Channel devices comprise workstations. 

4. The storage router of Claim 2, wherein the SCSI 

storage devices comprise hard disk drives. 

5. The storage router of Claim 1, wherein th~ 

Fibre Channel controller comprises: 

15 a Fibre Channel (FC) protocol unit operable to 

connect to the Fibre Channel tr~nsport medium; 

a first-in-first-out queue coupled to the Fibre 

Channel protocol· unit; and 

a direct memory access (DMA) interface coupled to 

20 the first-in-first-out queue and to the buffer. 

6. The storage router of Claim 1, wh~rein the SCSI 

controller comprises: 

a SCSI protocol unit operable to connect to the SCSI 

25 bus transport medium; 

an internal buffer coupled to the SCSI protocol 

unit; and 

a direct memory access (DMA) interface coupled to· 

Oracle Ex. 1002, pg. 175



5 

wo 99134297 PCT/US98/l7689 

25 

the internal buffer and to the buffer of the storage 

router. 

7. A storage network, comprising: 

a Fibre Channel transport medium; 

a SCSI bus transport medium; 

a plurality of workstations connected to the Fibre 

Channel transport medium; 

a plurality of SCSI storage devices connected to the 

10 SCSI bus transport medium; and 

a storage router interfacing between the Fibre 

Channel transport medium and the SCSI bus transport 

medium, the storage router providing virtual local .. 

storage on the SCSI storage devices to the workstations 

15 and operable: 

20 

25 

to map between the workstations and the SCSI. 

storage devices; 

to implement access controls for storage.space 

on the SCSI storage devices; and 

to allow access from the workstations. to the 

SCSI storage devices using native low level, block 

protocol in accordance with the mapping and.access 

controls. 

B. The storage network of Claim 7, wherein the 

access controls include an allocation of subsets of 

storage space to associated workstations, wherein each 

subset is only accessible by the associated workstation. 

Oracle Ex. 1002, pg. 176



5 

W099/34297 PCT/US98127689 

26 

9~ The storage network of Claim 7, wherein the 

SCSI storage devices comprise hard disk drives .. 

10. The storage network of Claim 7, wherein the 

storage router comprises: 

a buffer providing memory work space for the storage 

router; 

a Fibre Channel controller operable to connect to 

10 and interface with a Fibre Channel transport medium, the 

Fibre Channel controller further operable to pull 

outgoing data from the buffer and to place incoming data 

into the buffer; 

a SCSI controller operable to connect to and 

15 interface with a SCSI bus transport medium, the SCSI 

controller .further operable to pull outgoing data from 

the buffer and to place incoming data into the buffer; 

and 

a supervisor unit coupled to the Fibre Channel 

20 controller, the SCSI controller and the buffer, the 

supervisor unit operable: 

to maintain a configuration for t~e SCSI 

storage devices that maps between Fibre Channel devices 

and SCSI storage devices and that imple~ents the access 

25 controls for storage space on the SCSI storage devices; 

and 

to process data in the buffer to interface 

between the Fibre Channel controller and the SCSI 

Oracle Ex. 1002, pg. 177



W099/J4297 PCf/US98/l7689 

27 

controller to allow access from workstations to SCSI 

storage devices in accordance with the configuration. 

11. A method for providing virtual local storage on 

5 remote SCSI storage devices to Fibre Channel devices, 

comprising: 

interfacing with a Fibre Channel transport medium; 

interfacing with a SCSI bus transport medium; 

maintaining a configuration for SCSI storage devices 

10 connected to the SCSI bus transport medium that maps 

between Fibre Channel devices and the SCSI storage 

devices and that implements access controls for storage 

space on the SCSI storage devices; and 

allowing access from Fibre Channel initiator devices 

15 to SCSI storage devices using na~ive low level, block 

protocol in accordance with the configuration. 

12. The method of Claim 11, wherein maintaining the 

configuration includes allocating subsets of storage 

20 space to associated Fibre Channel devices, wherein each 

subset is only accessible by the associated Fibre Channel 

device. 

13. The method of Claim 12, wherein the Fibre 

25 Channel devices comprise workstations. 

14. The method of Claim 12, wherein the SCSI 

storage devices comprise hard disk drives.· 

Oracle Ex. 1002, pg. 178



wo 99/34297 PCf/US98/l7689 
112 

12 12 .12 10. 

i 
FIG. 1 

18 
SCSI BUS 

12 14 20 DISK DISK 20 DISK 20 

42 
46 

DISK 

36 FIG. 2 
\ 
30 42 

~ :::: 
STORAGE DEVICE 

5~ 5~ 5~ 60, 
GLOBAL t-65 !--"' ~2 

WORKSTATION 
DATA 

WORKSTATION WORKSTATION 
A B c 56 ...... - ~ _.;. 

STORAGE DEVICE \ SCSI 
STORAGE BUS· WORKSTATION 

~ -
FIBRE ~ t ROUTER f ~4 

A STORAGE 
CHANNEL I t I WORKSTATION -I I 

8 STORAGE 
~ 

WORKSTATION WORKSTATION I MANAGEMENT I 

D E 
L..., 

STATION 
!"t.J WORKSTATION 

C STORAGE ~ 1-

5~ /a 7~ WORKSTATION r.. D STORAGE 1-

66 

68 

70 

72 
r.- ::::: 

! .... -STORAGE DEVICE 
50 

64../ WORKSTATION . 
I' 

FIG. 3 E STORAGE t-74 
..... -

Oracle Ex. 1002, pg. 179



86 

FIBRE CHANNEl....__.., 

) 
56 

FIBRE CHANNEL CONTROLLER 

F'C · 90 DMA 
PROTOCOL \ INTERFACE 

FIBRE CHANNEL~ 

I ~ ! 
SUPERVISOR 56 
PROCESSING 

~SCSI BUS 

FIG. 4 

SCSI CONTROLlER 

DMA . · SCSI 
INTERFACE BU~FER PROTOCOL 

96 

~84 FIG. 5 

~sCSI BUS 

1\,) 

....... 
1\,) 

s 
~ 
~ 
"' -..J 

"t1 

~ r:n 
"' QO 

i:J 
-..J 
0\ 
QO 
\0 

Oracle Ex. 1002, pg. 180



INTERNATIONAL SEARCH REPORT International application No. 

PCT/US98/27689 

A. CLASSIFICATION OF SUBJECT MATTER 

IPC(6) :G06F 13/00 
US CL ;710/129, 128. 2 

According to International Patell1 Classification OPC) or to both national claS.sification 8lld IPC 

B. FIELDS SEARCHED 

Minimum documell1ation sc:arclled (classifiCB.lion system followed by classification symbols) 

u.s. : 710/129, 128, 2 

Documelllll1ion sc:arclled ol.hc:r than minimum documentation to the extent that such documents are included in the: fields searched 

Electronic data base consulted during the international search (name of data base Blld, where praa.icable, se.arch terms used) 

STN. APS, DIALOG 

c. DOCUMENTS CONSIDERED TO BE RELEVANT 

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 

A US 5,748,924 A (LLORENS et al.) 05 May 1998, entire document 1-14 

A us 5,835,496 A (YEUNG et al.) 10 November 1998, entire 1-14 
document .. 

A US 5,768,623 A (JUDD et al.) 16 June 1998, entire document 1-14 

A US 5,809,328 A (NOGALES et al.) 15 September 1998, entire 1-14 
document 

A US 5,812,754 A (LUI et al.) 22 September 1998, entire document 1-14 

D Further documents are listed in the continuation of Box C. D See patent family annex. . Spooia~ c:::atogoria of c:itod documents: 'T' - dowment publimod aflcr tho inwnatimutl filing data or priority 
dato and not in COIIflict with thf application but cited to urukrstand 

'A' clocumentdc!inins thf soncrt~l>18tt. of thf an whi<:h i> -comid......t thf principle or thoory uncktlyins thf innnbon 
ID be of particular rolovancJ 

'E' -liet document publi>hcd on or after tho_ inlimotional filin& dato 
·x· document oC partiDula:r relovanoci the claimed invention ca.rmol be 

~onaidorod DOYel or cannot bo ~jdorad to involve an in•c:nti•o step 

'L' dOwment which mey throw doubta oo priority claim(a) or •bieb i> WMD tho dowment n talton oloDe 
cited to .,.abli>h thf publication dato of anotho.- citation or othor •v· doaimcnt of putic:ular rolovanac; thcl ola:imod invention c::anoot bo •pctial reason tal 1peaincdl 

comiderod to i.n.-olvo an iD•cutiYo •"P wbm tho document U 
·o· doaunonl rdurln,. to an oral disclosure. usc. c:du:Dition or other combiMd with OJM 01 man oibct' 1uch documcnt::a., auch combination .... .,. bciDg obvia111 10 a penon •killed in thf at .,.. docwncnt publi>bcd praor to the mt.cmational filllll dato but latatr than .,.. clocummt member of tho Amo P"tt.nt fwily 

the pnority date claimed 

Date of the actual completion of the international searcn Dale of mailing of the international searcn report 

12 MARCH 1999 
- 05 APR 1999 

Name and mailing ~ddress of the ISA/US Authorized officer 
Commissioner of Pattnts 1111d Trademarks 

CHRISTOPHER SHI~ ")_ ---.._ Box PCT 1-WashingtOn. D.C. 20231 

Facsimile No. (703) 305-3230 Telepnone No. (703) 305-9600 c:::J'7¥ 
Form PCT/ISA/210 (second sheet)(July 1992) * 

Oracle Ex. 1002, pg. 181



(12)U_KPatentApplication (19)GB ,,,>2341715 ,,a>A 

(211 Application No 9820213.8 

(22) Date of Filing 17.09.1998 

(711 Aprlir.AnH~~:l 

Springtl:k Limited 

143} Date of A Publication 22.03.2000 

1511 INTCL7 

G11B20/18 

152) UK CL !Edition R ) 
GSR RB33RGB 

(lnc:orpor.rted in the United Kingdom) 
Unit 3 Asbbroolc Mews, Westbrook Stteet. 
BLEWBURY. Oxon, OX11 90A. United Kingdom 

(561 Documents Cited 
EP 0795812A1 
EP 0569236 A2 
WO 93/18455 A1 
US 5SS1132A 

EP 0717357 A2 EP 0559313 A2 
El' 0485110 A2 'EP 0450801 A2 
WO 91/20076 A1 WO 91/14982 A1 

(72) Jnventor(s) 
Andrew Paul George Randell (58) Field of Search 

1741 Agent and/or Address for Service 
Atkinson Burrington 

UK Cl !Edition P I 044 AES • GSR RAC RB33 RGB 
INT CLc:; G06F 11!10, GnB 20!18 

The Technology Park. 60 Shirland lane.. SHEFFIELD, 
59 3SP, United Kingdom 

(54) Abstract ntle 
Magnetic disk redundant array 

EDOCWPI 

(57) A plurality of magnetic disk drives (301, 302, 303) are configured to store machine readable data in a 
protected way such that data is recoverable in the event of a single disk failure. The array of disks is housed for 
.application directly into an existing disk bay of a computer (101). The array is connectable to the computer as 
if it were a single conventional computer disk and the drives are controlled by an operating system on the 
computer as ifthey were a single storage volume. 

413 

Rgure4 

At least one drawing originally filed was Informal and the print reproduced here Is talcen from~ later filed formal copy. 

This print takes account of replacement documents submitted after the date of filing to enable tile application to comply 
with the formal requirements of the Patent6 Rules 1995 )> 

Oracle Ex. 1002, pg. 182



I 
I j 
I 

I! 
J 

! 

II 

liB 

~I 

Figure 1 

102 

103 

107 

106 

105 

108 

101 

Oracle Ex. 1002, pg. 183



.. 
. . ' 

2/8 

) 

108 

./ 

101 

Figure2 

Oracle Ex. 1002, pg. 184



318 

. .. 

302 

303 

Figure3 

Oracle Ex. 1002, pg. 185



413 
f 

.. · 

418 

., 
~417 

'if 415 

406 

414 

403 

lJ 
~ 
,fJ 

~=~~~,g 

Figure 4 

405 

Oracle Ex. 1002, pg. 186



-(J 

Q 
() : 
@ :: 

~ ll 
0 := 

5/8 

501 ' 502 

503 413 

Figure 5 

Oracle Ex. 1002, pg. 187



-•. 

6/8 

.- c .-..... 
(.C) 

'> 
"' 

~I ~I ~I 

~~ g\ gl 

l 
r--

I 
~I 

gl gl 

Oracle Ex. 1002, pg. 188



718 

404 

Figure 7 

Oracle Ex. 1002, pg. 189



8/8 

T . f 
802 

~804 

801 

Figure 8 

Oracle Ex. 1002, pg. 190



/ 

2341715 

1 

Data Storage 

The present invention relates to an array of magnetic disks configured 

to store machine readable data in a protected way, such that data is 

s recoverable in the event of disk failure. 

10 

Arrays configured to store machine readable data in a protected way 

are known and are often referred to as a redundant array of inexpensive 

disks, usually abbreviated to the acronym "RAID". Several RAID procedures 

are known and most of these share the approach of generating redundant 

data by an exclusive ORing process from which, in the event of any of the 

disks failing, all of the data can be reconstituted from the remaining 

operational disks. 

When all of the disks are operational, the array is said to be working in 

its protected mode. In the event of one disk failure, the system may still 

15 remain operational, in that data may be read from the disks, but the data 

ceases to be protected and a further disk failure would result in data loss. 

With a single dfsk failure the system is said to be working in an unprotected 

mode at which point an operator would be advised that disk replacement is 

required and that the lost data needs to be reconstituted. Thus, a disk would 

20 be physically removed, replaced and then the lost data would be 

reconstituted on to the new disk. 

A:s personal computer systems and workstations become more 

powerful, allowing more sophisticated software applications to be executed 

and the degree of data storage avafiable in such systems increases. with 

25 disks containing several gigabytes of data now becoming widely used, a 

greater demand has been created for the installation of protected systems 

using disk redundancy. Complete RAID subsystems may be purchased for 

external connection but a problem with such known systems is that the cost 

can be very prohibitive. In many situations, the cost of such a RAID system 

Oracle Ex. 1002, pg. 191



·~ 

... 
•, 

2 

tends to be higher than the cost of a personal computer system. Thus, there 

is a requirement for providing RAID protection at reduced cost. 

Personal computer systems are usually housed in desktop units or 

tower units having spare bays allowing additional disks to be received. Thus, 

5 it is possible for many hard disk drives to be included within a tower housing 

and additional interface cards may be provided if required. Thereafter, it is 

possible for the RAID calculations to be effected by the resident host CPU, 

such that the additional extra cost is quite modest. However, a major problem 

with such a configuration is that a significant processor overhead is required 

10 in order to perform the RAID calculations, resulting in a severe degradation in 

. overall system performance. 

According to a first aspect of the present invention, there is provided a 

plurality of data storage devices configured to store machine readable data in 

a protected way such that data is recoverable in the event of a single device 

15 failure, wherein the devices are housed for application directly into an existing 

disk bay for a computer; the devices are connectable to a disk interface as if 

they were a single conventional storage volume; and said devices are 

controlled by an operating system installed on a computer as if they were a 

single storage volume. 

20 In a preferred embodiment, the disks are interfaced to an IDE 

connection and three disks may be received in respective IDE connections. 

Preferably, the array presents a SCSI interface to a host computer 

and the array may be configured to be housed in two or more five and one 

quarter inch drive bays. 

25 According to a second aspect of the present invE;~ntion, there is 

provided a method of equipping a personal computer with a plurality of data 

storage devices configured as a redundant array by interfacing said devices 

to conventional five ·and one quarter inch drive bays, such that protected 

machine readable data is recoverable in the event of a single disk failure, 

30 comprising the steps of supporting the array within an existing disk bay for a 

Oracle Ex. 1002, pg. 192



3 

computer; connecting the array to the computer as if it were a single 

conventional computer disk; and controlling said drives by an operating 

system installed on a computer as if it were a single storage volume. 

The invention will now be described by way of example only, with 

5 reference to the accompanying drawings, in which: 

10 

Agure 1 shows a personal computer system; 

Figure 2 shows an array of disks being inserted into a computer 

system; 

Figure 3 details the array shown in Figure 2; 

Figure 4 shows an exploded view of the array identified in Figure 3; 

Figure 5 shows a rear face view of the array back plane; 

Figure 6 shows a circuit for implementing RAID calculations; and 

Figure 7 illustrates the removal of a damaged disk from the array; and 

Figure 8 shows an alternative embodiment for the extrusion identified 

15 in Figure 4. · 

A personal computer system is shown in Figure 1 in which a main 

system tower 101 supplies visual information to a visual display unit 102 and 

receives manual commands via a keyboard 103. The main system tower 

houses a central processing unit, memory circuits and other standard 

20 associated electronics as is well known in the art. The personal computer 

system may be an IBM PC type system. a Mackintosh system or any other 

computer type equipment used for individual use, possibly in a networked 

configuration. Alternatively, the main system tower 101 may constitute a 

network server, possibly running an appropriate server operating system, 

25 such as Windows NT server. 

Tower 101 includes conventional five and one quarter inch disk bays. 

Wrthin these disk bays a plurality of devices have been mounted, including a 

three and a half inch floppy disk drive 105, a tape streamer 106, a CD ROM 

drive 107 and an array of magnetic disks 108, embodying the present 

30 invention. 

Oracle Ex. 1002, pg. 193



4 

Array 1 08 is detailed in Figure 2 and is shown being installed into the 

main system tower 1 01. The array 1 08 of magnetic disks is configured to 

store machine readable data in a protected way such that data is recoverable 

in the event of a single disk failure. The array of disks is housed for 

5 application directly into an existing disk bay of a computer, such as the main 

system tower 101. The array is connectable to the computer as if it were a 

single conventional computer disk and the array is operated by an operating 

system installed on the computer as if rt were a single disk. 

10 

Each empty drive bay is protected by a removable plastic cover and 

unit 107 locates within an aperture equivalent to the width of two bays, 

requiring the removal of two such covers. The array includes a housing 201, 

locatable within the two bay aperture and towards its rear includes 

conventional power and data connectors; such that the housing as a whole is 

connected to the main system tower using a conventional SCSI connection. 

15 Thus, the main system perceives the disk array as if it were a single disk and 

the operating system, executed by the main system. controls the operation of 

the array using equivalent commands to those required for the operation of a 

single storage volume. 

The array 107 is detailed in F;gure 3 and contains a total of three IDE 

20 drives 301, 302 and 303. An exploded view of the array is illustrated in Figure 

4, which shows each of the individual IDE drives 301, 302 and 303 being 

supported by aluminium extrusions, in the form of a left extrusion 401 and a 

right extrusion 402. These extrusions hold the disk drives 301, 302 and 303 

firmly in place and facilitate the removal and replacement of individual disk 

25 drives when disk failure occurs. 

Disk drives 301, 302 and 303 are located in relatively close proximity 

and in order to maintain preferred operational temperatures, an electric fan 

403 is positioned between the front of the disk drives and a front housing 

404. In this respect, the main front housing includes ventilation grilles 405. 

Oracle Ex. 1002, pg. 194



5 

Each IDE drive 301, 302 and 303 locates within a conventional IDE 

socket 406, 407, 408, in addition to respective power supply sockets 409, 

410, 411. Thus, from the perspective of each IDE drive, the physical drives 

are located into sockets substantially similar to those found on an IDE bus of · 

5 a standard computer system. 

RAID calculations are performed within the device itself, using 

conventional hardware RAID circuiby mounted on circuit board 412, having 

electrical connections to the back plane circuit board 413. Right extrusion 402 

defines a cavity 414, configured to receive circuit board 412. The extrusions 

10 401 and. 402 are held in position by an upper plate 415 and a lower plate 

416, secured by appropriate bolts 417. 

The rear face of back plane 413 is illustrated in Figure 5. The back 

plane includes a conventional SCSI socket 501 and a power supply socket 

502. The array therefore presents itself to the main system as a single disk 

15 drive, requiring a single disk drive connection via SCSI interface 501. 

Back plane 413 also indudes rows of holes 503 to facilitate ventilation 

of the disks. Thus, cooling air is brought in through ventilation holes 405, · 

blown between the disks 301, 302 and 303 and then exits through holes 503. 

The circuit implemented on board 412 is illustrated diagramatically in 

20 Figure 6. The circuit includes a central processing unit 601 which 

communicates with an input/output circuit 602 via a CPU bridge 603. In 

addition, operation of CPU 601 is controlled by a CPU mode select circuit 

604. Power from the housing is directed to a three volt supply regulating 

circuit 605, arranged to supply power to operational circuits via supply rails. 

25 The CPU 601 receives data relating to the operational environment 

from an environmental detecting circuit 606. This inforrmition may be 

received directly, as shown in Figure 6, or it may be directed via other control 

circuitry to allow combined environmental information to t>e returned to the 

CPU 601. 

Oracle Ex. 1002, pg. 195



. 1 

·~ 
I 

6 

Further output circuitry includes IDE controllers 607 and 608 and a 

SCSI controller 609. These circuits communicate with the back plane sockets 

via a one hundred and eighty way connector 610. 

Input/output circuit 602 supplies driving current to six LED's 701, 702, 

5 703, 704, 705 and 706 shown in Figure 7. Each of these LED's is visible by 

means of respective holes 711, 712. 713, 714, 715 and 716 in the front panel 

404. Each LED is a Hewlett Packard HSMF-C655 and actually includes a 

green LED and a red LED which may be operated independently. 

10 

LED 701 indicates the overall operational integrity of the system and 

primarily confirms that CPU 601 is operating correctly. Thus, when the 

system is fully operational, LED 701 is illuminated green. Alternatively, if 

faults have been detected within the controller, LED 701 is illuminated red. 

LED 702 represents the environmental monitoring status and is 

primarily concerned with operational temperature. Environmental circuit 606 

15 includes a temperature sensor and a fault condition is generated if this 

sensor detects that operational temperatures have become excessive. In 

addition, a tachometer is associated with fan · 403 and a fault condition is 

generated if this detects that rotation of the fan has ceased. Malfunction of 

fan 403 represents a serious problem in that this could result in all three 

20 drives being permanently damaged such that no protection is offered by the 

RAID configuration. The system also detects the presence of appropriate 

voltages on voltage supply rails, as supplied by power supply unit 605 in 

addition to detecting appropriate terminator power on the SCSI bus. 

25 

30 

When the supply rail voltages are correct, SCSI terminator power is 

correct, the fan is operational and the system is working at its optimal 

operational temperature, LED 702 is illuminated green. If the system 

encounters problems and diverges from its preferred operational 

characteristics. such a condition is detected and LED 702 is illuminated 

orange. Under these conditions, further operation of the system is permitted 

but warnings may be generated to the effect that a job should be closed 

Oracle Ex. 1002, pg. 196



7 

down and that the device should be investigated. If problems continue and 

the situation worsens, particularly if the operational temperature becomes 

very high, LED 702 is illuminated red. Under these conditions, power to the 

drives Is removed and an error condition is generated such that further 

5 access to the drives is not pennitted. 

LED 703 indicates that the SCSI connection is fully operational by 

being illuminated green. Furthennore, when the SCSI bus is actually in use, 

LED 703 is illuminated orange. 

LED's 704, 705 and 706 represents operational characteristics of the 

10 individual drives 301, 302 and 303 respectively. When the drives are 

operational, the LED's are illuminated green and then illuminated orange 

when the actual data transfer takes place. Furthermore, if a disk error is 

detected, to the effect that an individual disk has failed, its respective LED is 

illuminated red. 

15 In response to a single disk failure, lt is preferable for the system to be 

placed off-line and for the damaged disk to be replaced immediately so that 

the lost data may be reconstituted and the system returned to protected 

mode operation. In order to replace a disk, the front panel is removed, an 

operation facilitated by the front panel 404 being retained simply to the main 

20 housing by means of an interference connection. Having removed the front 

panel 404 it is restrained by wires 717 required for supplying electrical power 

to fan 403. 

The disk drives include tapped holes towards their fron1-right carrier 

and each of said tapped holes receives a threaded stud 719. Stud 719 allows 

25 its respective disk 301 to 303 to be removed by the application of a stud hook 

720. Force is applied in the direction of arrow 721, thereby forcing the 

respective disk drive away from its IDE and data sockets. such as sockets 

406 and 409 etc. 

An alternative embodiment is illustrated in Figure B. In this 

30 embodiment, side panels and a base panel are fabricated as a single 

Oracle Ex. 1002, pg. 197



·1 

8 

extrusion 801. The housing is then completed by the application of a top 

panel802. The top panel802 is secured to the lower extrusion 801 by means 

of botts 803 and circuitry held within the extrusion is further secured by an 

adhesive clip 804. 

Oracle Ex. 1002, pg. 198



9 

Claims 

1. A plurality of data storage devices configured to store machine 

readable data in a protected way such that data is recoverable in the event of 

5 a single device failure, wherein 

the devices are housed for application directly into an existing disk bay 

far a computer; 

the devices are connectable to a disk interface as if they were a single 

conventional storage volume; and 

1 o said devices are controlled by an operating system installed on a 

computer as if they were a single storage volume. 

2. Data storage devices according to daim 1. wherein said 

storage devices are magnetic disk drives. 

15 

3. Data storage devices according to claim 2, wherein the 

magnetic disks are interfaced to an IDE connection. 

4. Data storage devices according to daim 3, wherein three disks 

20 are received in respective IDE connections. 

5. Data storage devices according to any of claims 1 to 3, wherein 

said devices present a SCSI interface to a host computer. 

25 6. Data storage device according to any of claims 1 to 5, 

configured to be housed in two or more five and one quarter inch drive bays. 

7. Data storage devices according to any of claims 1 to 6, 

including means for detecting when said devices are operating in non-ideal 

30 conditions. 

Oracle Ex. 1002, pg. 199



...... · 

10 

8. Data storage devices according to claim 7. including means for 

detecting when said devices are operating at excessive temperatures. 

5 9. Data storage devices according to claim 7 or claim 8, including 

10 

15 

20 

means for detecting non-operation of a cooling fan. 

10. Data storage devices according to claim 7 or claim 8, including 

means for directly detecting an excessive operational temperature. 

11. Data storage devices according to ahy of claims 7 to 10, 

including means for removing drive power to said devices upon detecting a 

non-ideal operating condition. 

12. Data storage devices according to any of claims 1 to 11, 

including a detachable front panel and a cooling fan secured to said front 

panel, including ventilation openings arranged to direct a cooling air·stream 

between the individual devices. 

13. A plurality of data storage devices according to any of claims 1 

to 12, wherein said devices are connectable in a computer housing and the 

devices are controlled by the operating system of said computer. 

14. A method of equipping a personal computer with a plurality of 

25 data storage devices configured as a redundant array by interfacing said 

devices to conventional five and one quarter inch drive bays, such that 

protected machine readable data is recoverable in the event of a single disk 

failure. comprising the steps of 

supporting the array within an existing disk bay for a computer: 

Oracle Ex. 1002, pg. 200



! 

I 

5 

11 

connecting the array to the oomputer as if it were a single conventional 

computer disk; and 

controlling said drives by an operating system installed on a computer 

as if it were a single storage volume. 

15. A method according to claim 14, wherein said data storage 

devices are magnetic disk drives. 

16. A method according to claim 15, wherein said magnetic disk 

10 drives are interfaced to an IDE connection. 

17. A method according to claim 16, wherein three disks are 

received in respective IDE connections. 

15 18. A method according to any of claims 14 to 17, wherein said 

devices present a SCSI interface to a host computer. 

19. A method according to any of claims 14 to 18, wherein said 

devices are housed in two or more five and one quarter inch drive bays. 

20 

20. A method according to any of daims 14 to 19, wherein non-

ideal operating conditions for said devices are detected. 

21. A plurality of data storage devices substantially as herein 

25 described with reference to the accompanying Figures. 

22. A method of equipping a personal computer substantially as 

herein described with reference to the accompanying Figures. 

Oracle Ex. 1002, pg. 201



' . 

Application No: 

Pat1?nt 
Office 

Examiner: Julyan Elbro 
Claims searched: 

GB 9820213.8 
1 to 22· Date of search: 4 January 1999 

Patents Act 1977 
Search Report under Section 17 

Databases searched: 

UK Patent Office collections, including GB, EP, WO & US patent specifications, in: 

UK Cl (Ed.Q): G5R (RGB, RB33, RAC); G4A (AES) 

Int Cl (Ed.6): G06F 11110; GliB 20118 

Other: EDOC WPI 

Documents considered to be relevant: 

Category Identity of document and relevant passage 

X EP 0795812 Al HITACHI see figure 1 and pages 2-3. 

X EP 0717357 A2 SYMBIOSIS LOGIC see abstract and figure 2. 

X EP 0569313 A2 INTERNATIONAL BUSINESS MACHINES see 
abstract and figures 1 and 3. 

X EP 0569236 A2 COMPAQ see figure 2 and pages 2-4. 

X EP 0485110 A2 ARRAY TECHNOLOGY see abstract. 

X EP 0450801 A2 INTERNATIONAL BUSINESS MACIDNES see 
abstract, column 22 line 34 to column 23 line 11, 
and column 27 lines 15-25. 

X WO 93/I8455 AI ARRAY TECHNOLOGY see abstract, figure 1, 
and page 10 lines 2-26. 

X WO 91120076 AI STORAGE TECHNOLOGY see abstract and figure 
I. 

X WO 91/14982 AI SF2 CORPORATION see abstract and figures 1 
and 2. 

_Relevaru 
to claims 

1-20 

1-20 

I-20 

l-20 

l-20 

l-20 

1-20 

l-20 

1-20 

X Doc:ulnc71t ilxlicaring lack of novelty or inventive step 
Y Document indicating laclc of invenlive sll!p if combined 

..,. itb Dill: or more other docwnems of same categOry. 

A Document indlcaling lllclmo!ogie:al background and/or slate of the art. 
p Documem published on or amr the declarocl priorily date but before 

tlu: filing date of '!his invention . 

&. Member of the sam~ patent.fam:tly 
E l'a~:em document published on or after. but with priori!)' date earlier 

than, the filing date of !his applic:arion. 

An Executive Agency of the Department ofTr:~de and Industry 

Oracle Ex. 1002, pg. 202



I:· 

\ 
,I 

Application No: 
Claims searched: 

GB 9820213.8 
1 to 22 

~ 
Office 

_13 

Category Identity of document and relevant passage 

Examiner: 
Date of search: 

X US 5651132 A HITACHI see abstract and figure l. 

() 
:.>_..,.-c.: 

Il\"VESTOR n\ PEOPLE 

Julyan Elbro 
4 January 1999 

Relevant 
to claims 

1-20 

X Doc:WDCill indicating lack of novelty or invenlive step 
Y Docwnent indicating lack of inventive lll:p if combined 

wim one or more omer dOCIIIDtne ofsame ca1t gory. 

A Documeru i.ldicaling u:dmological bacltgTou.nd and/or state of !he an. 
P Document pub lis bed on or afil:r the declared priority date bur before 

d:te filiui dale of this inveotion. 

& Mernbc:r or the same patr:nt family 
E Plltent doc:ume111 published on or after, but with priority date earlier 

d:Jan. the liliog date of this applicalion. 

An mcutive Agency of the Department of Trade and Industry 

Oracle Ex. 1002, pg. 203



.. 

I • 

JP1994301607A 

Bibliographic Fields 

Document Identity 

(19)[~fi~] 

B;;t;;~~~lfJT(JP) 

(12)[11-~fljjll] 

1H#l~~lf1}~ (A) 

(11)[11-BWi~J 

~~Ijl6-301 607 

(43)[11-~B] 

IJI~6~(1 994) 1 OFI28 B 

Public Availability 

(43)[11-~B] 

!j!~6~(1994) 1 0Fl28 B 

Technical 

(54)[~BJIO):f, ftJ;] 

-::( JI.-77?-I:!A.l/Oftil]tilf!);it 

(5l)[~~~~Ht~~ sllil 
G06F 13/00 351 B 7368-5B 

13/12 340 F 8133-SB 

n~~ttli 0) ~J 

5 

[ 1::1:1 Jjjff~ !iJU 
OL 

[::E:i!U!!I:J 
10 

Filing 

[:S:jfi~*l 

*gilf* 
(21)[1::1:1Jjj;t~] 

~JifiiJL5-86000 

(22)[1::ejjj B] 

:!JL~5~(1 993)4Fl1313 

Parties 

Applicants 

(71 )[ l::e)jj)..] 

( 19) [Publication Office] 

Japan Patent Office (JP) 

(12) [Kind of Document] 

Unexamined Patent Publication (A) 

1994-10-28 

(11) [Publication Number of Unexamined Application) 

Japan Unexamined Patent Publication Hei 6- 301607 

(43) [Publication Date of Unexamined Application] 

1994 (1994) October 28* 

(43) [Publication Date of Unexamined Application] 

1994 (1994) October 28"' 

(54) [Title oflnvention] 

MULTI ACCESS 1/0 CONTROL SYSTEM 

(51) [International Patent Classification, 5th Edition] 

G06F 13/00 351 B 7368-SB 

13/12 340 F 8133-5B 

[Number of Claims] 

5 

[Form of Application] · 

OL 

[Number of Pages in Document] 

10 

[Request for Examination] 

Unrequested 

(21) [Application Number] 

Japan Patent Application Hei 5- 86000 

(22) [Application Date] 

1993 (1993) April 13"' 

(71) [Applicant] 

Page 1 Paterra® lnstantMT® Machine Translation (U.S. PaL Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367 ,296) 

Oracle Ex. 1002, pg. 204



JP1994301607A 

[~~1]11~] 

000005108 
[5:;~ .){l;t~~] 

~:r.t~tt B :lL!.!tFiiJT 
[ {ifi}f.){l;t~fi]f] 

~*mTftW~~m~~~~T§61!i~ 

Inventors 

(72)[~aJl~l 

[5:;~] 

!f!:M~ 1llll 
[ tt fiJT .){ l;t ~ fiJT] 

~~JII ~ifil~~ m""F~fit81 01!i:tt!! B U:!.!tF 
ji]f :;t?-<.A~.A7k$~ifll~ 

Agents 

(74)[ ftl!.A.l 
[#!!±] 

[fl:;~.){l;t~~] 

~*~ 
Abstract 

(57)[~f..J] 

[ 13 ttq] 

tifl!:0')11f~lBl!:J!1;\i:il:iJ'i;fi~O') I/0 "TI'\-{.A 
"'-0')7 ?-I! .At: '6Jtm.!::"t i>. 

rmfiX:J 
fl~O')tl!f¥fB!!!J!1;\i:li: 20,30,40 ,!:-:( JL-77?-I!.A 
l!iiHlfiJ~il! 50 t: FDDIIO l:tl~L..-:( JL-77?-1! 
.A$1]llf!J1;li:li: 50 l;t, IIO"T 1\-{.A 70,80,901: SCSI 

fl$.)!t~tl.. "(!, '~· 

fiU!Bl!:!! 1,\i: til ;t • -:(; t- .:r 7 ? -1! .A l!ill llfP 1,\i: i1" 
FDDI ?v-..£..1:7?-I!.A"t~. 

;t.·;~t-?-?l!illllfll$ soo l;t, iiUU!HI1;\i:ilil'i; 
O')"T-9-t: FDDI -{//y.7.I-.A ""t:~:'ill:ml..t.:~. -:f 
Cl t-::JJv~~ifll520 ""t:l;t, SCSI :fD t-:::J Jt-1:~~ 
L.. I/0 TI\-{.A$1Jtl!Jail 510 t:1l'"L. "( I/0 .:;::,,., 

.At:7?-I!.A "t ~. 

[Identification Number] 

000005108 

[Name] 

HITACHI LTD. (DB 69-054-1503) 

[Address] 

1994-10-28 

Tokyo Chiyoda-ku Kanda Surugadai 4-Chome 6 

(72) [Inventor] 

[Name] 

*"'* Atsushi 

[Address] 

Kanagawa Prefecture Ebina City Shimoimaizumi 81 Oaddress 
Hitachi office systems department • · 

(74) [Attomey(s) Representing All Applicants] 

[Patent Attorney] 

[Name] 

Suzuki"' 

(57) [Abstract] 

[Objective] 

access to I/0 device of plural is made possible from 
information processing apparatus of plural . 

[Constitution] 

information processing apparatus 20, 30, 40 and multi access 
control device 50 of plural are connected to FDDllO, the 
multi access control device SO SCSI is connected to I/0 
device 70, 80, 90. 

To multi access control device access it does information 
processing apparatus , with FDDiframe . 

data from information processing apparatus transmission and 
reception after doing, in protocol conversion section 520;it 
converts network control unit 500, to SCSI protocol with 
FDDiinterface, through 110 device control unit 510,access it 
does I/0 device . . 

Page 2 Paterra® InstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 205



JP1994301607 A 1994-10-28 

20 30 40 

l 0 FDDI 
500 ii&"-~ 

5 2 o. iliti::IJ!I 
510 ~7'11-i.'-. 

Claims 

r~~lfm*O)w!iEJ 

[~*l.i I] 

.:t-·;~f-.'?-?~1't'L "L*i~C7)'1J11~9.1H.!Uii1i.~Hf . 
*YCLt.::..-A.T-.L..l::it;>l.'"C, ~.:t-·;~f-.'?-?o:>4:..­
'J.7I-A-l!i1Jti!ll~fi?.:t-·;~f-.'?-?lliilti!li-'¥W:c, 
II04:..-'J.7.I.-A.~1't'L "C*illO)I!O'TI\..{A.~ 
lliiJli!IJ-t.Q 110 7''-1A-l!i1Jm-=¥W:c. ~.:t-·;~t--'?­
?l!iiH)fll-=¥W:c 110 7, \4A-lliilti!li-=¥W:o:>-1:..-'J.7.I. 
-A.~!l~fi?:1c 1--:::J Jt.-iA:!l-=¥W:tJ,i;tJ:.Q -;r 
Jl-'f7?-I!A.l!illli!IJ-'¥W:~~It, illrfc!*ill(C7)'1J11~ 
9!HJ1!~1i.l:t~? Jv'f7?-I!A-l!illf31J-'¥W:~1tL "C 
iitrtc*ill!O) 110 7, ,.., A-1::7 ?-I! A--t .Q;:c~~ 
~c"t.Q'i'Jv'f7?-I!A. 110 lliiJll!ll:1.iito 

[~~*J.R 2] 

iitrtc 110 T ,.,..{A lliilll!ll-=¥~~ iilJg[! 1/0 T I,.., A 
r;~q O)l!iiJf31Jfl1lr::f;lqM-t .Q;:t~~Jtc-t .Qa~*li 
1 i[!~O)? Jv'f7?-I!A. 110 l!i1Jt)!j1:1Jito 

rm*l.i 3l 

iitrEmll!O)~~·~~~~•rrL~m~7-
'J.~ ~ iitrtc? Jv'f7?-I!.A lliilf31J-=¥W:~1't'L -rlttr 
i(!PJT~O) 1/0 T I,.., .Al::~~L. ~~~~-J!l!~ 
is: 0) ll!i~§t ~~I:: 7 filiO)t~~-J!l!~W:l:: tJJ ~) 

[Claim(s)) 

[Claim I) 

Through network , through network control means and 1/0 
interface which do interface control of said network in system 
which connects information processing apparatus of plural, 
the multi access control means which consists of protocol 
conversion means which converts 110 device control means 
and the said network control means and 110 device control 
means which control 110 device of plural interface providing, 
As for information processing apparatus of aforementioned 
plural through said multi access control means, in the I/0 
device of aforementioned plural access multi access 1/0 
control system . which designatesthat· it does as feature 

[Claim2) 

multi access 1/0 control system . which is stated in Claim 1 
which designates that theaforementioned 110 device control 
means is built in to control unit inside theaforementioned I/0 
device as feature 

[Claim 3] 

Treatment data which information processing apparatus of 
aforementioned plural executed, through aforementioned 
multi access control means , it houses in theaforementioned 
predetermined 110 device , changes to information processing 

Page 3 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 206



JP1994301607 A 

~~-~~~ro•~-~~~~.D~•~~ 
-~iJ<t&~~:ht::: I/O ~r\...f;;:<:.~~lmL "CA~ 
~tiSt"t ~;:c!::~~~c!::"t ~g~*l.ft 1 tc!l!2ro-x 
JL-77?-1!;;:<:. 1/0 lB!Jlftll::tJ:a:. 

[~~*ti 4] 

i!iJta~·~·~~jl:(;l:, [J-:t.JJ(., 1/0 ~1\...(;;:<:. 
~::f!i"L. ~o-:t.lJL- 110 ~ !'\...f;;:<:.l::~~~:tl.~1W 
~~. i!iJtc-x JL-77?-t!;;:<:.lB!J~.:f.~~:l'tL -c. 
i!trictw~•~~tlr::~ r.t;"t ~ 110 ~, \4 ;;:<:.l::t& 
~L "C'J\·_:~?7·_:~:f"t~;:.!::~~Wc!::"t~~ili*:tli 
1 ta!l!2o:>-x JL-77?-tz;;:<:. 110 ftlJ~::tJ:a:. 

[ ~\!})~ lJl 5] 

Dta 110 4/1il7.:x::-;;:<:.f;t. ~~~Jiflo:>1'/1il7 
.:x::-;;:<:..!::S'l:~~m(/)-f/1il7.:x::-;;:<:.tJ''=>ft4A1l:~:tL 
-ct. '~;:c!::~~~c!::"t .Q~>l<:lli 1 12!1!2o:>x JL-7 
7?-1!;;:<:. 110 lB!Jtall::tJ:a:. 

Specification 

[§!B,JJO)~~t.j:~Bj)] 

[0001] 

[H£ :l;J:.O)~Jl'fl$1'!1] 

:;t;;~Bjjl;l:. 'X Jl-77?-1!;;:<:. 110 lB!Jlft!J::tJ:a:I:.~L. 
~l::::t-Yt-'7-?~:l'tL -c.ml!l:o:>M~A~lit'ill 
~tl*5CLt::::.,.;;:<:.'T.L..I::i!St. '"C' • .ml!l:ro'!R~·~ 
llt~:fJ''=>7?-tz;;:<:.'i'iJ~~ 110 ~,.\-f;;:<:.roftlJ~1:i 
:a:r::~"t ~. 

[0002] 

[~*O)ti{iij] 

I/O ~J\-(;;<.~.mlio:>Ai.ll!~tiii::J:?"C~fflT 
~ti{iJii::L -c. i§!J~Ict. ~003¥ 4-196737 i5-~~ 
r::tafl!2~nt:::1:i:a:tJ<if.>~. 

;:ro:n:a:r::i!St. '"CI<I:. 1 'El'o:>i*!il' m:::::~:.,'J-JL­
~.mi!I:'El' o:>*;;:<:.t-:::::~:.,t:: .J.. -1ili:~::f!i"t .Q:to:> 
1:. *;;:<:.t-:::::~/t::.J..-1iliJ''=>roS'l:~~-;r~,,._,7 
7 1J/1'Lt:::~. :::J/t-O-JL-.:::L.=.·_:~H:::iiUIIL. 
~:::J/t-o-JL-.:J..=. ·:~t-1<1:*;;:<:. t-iiURJiflo:>;;:<:.-1' ''./ 
7~Klt~L. ilitR~:tl.t:::*;;:<:.t-(7)~-1;1~'1*lil'ffl 
:::::!/')-J(.,(;:tf:l :t.l"t ~. 

[0003] 

[~BJJtJ<~];R;LJ:?c!::T ~~Ul 

L:fJ'Lfci:iJ<i;. J:.tcLt:::t!Wil<l:. ~*;;:<:.t--f/97 
.:x::-;;:<:.mr::~.ll:r::' \·;.~77~Kltrt-ct. '~o:>-r:.,, 

1994-10-28 

apparatus of preparatory at time of damage of said 
information processing apparatus , as for information 
processing apparatus of said preparatory , referring to 110 
device where aforementioned treatment data is housed, the 
multi access 1/0 control system . which it states in Claim! 
which designates that it continuestreatrnent as feature 

[Claim 4] 

information which aforementioned each information 
processing apparatus , possesses local 110 device , isrecorded 
to said local 1/0 device , through aforementioned multi access 
control means , housing in 1/0 device which corresponds to 
aforementioned information processing apparatus , backup the 
multi access I/0 control system . which is stated in Claim 1. 
which designates thing which isdone as feature 

[Claim 5] 

As for aforementioned 110 interface , from interface of 
transmission dedicated and interface of reception dedicated 
configuration multi access 110 control system . whichis stated 
in Claim 1 which designates that it is done as feature 

[Description of the Invention] 

[0001] 

[Field oflndustrial Application] 

this invention regards multi access 1/0 control system , 
through especially network , from the information processing 
apparatus of plural it regards control system of accessible 110 
device in system which connects information processing 
apparatus of plural . 

[0002] 

[Prior Art] 

There is a system which is stated in for example Japan 
Unexamined Patent Publication Hei 4- 196737disclosure as 
technology whichshares 110 device with processing unit of 
plural. 

Regarding this system , being something which shares 
console for the conservation of 1 with host computer of plural 
table , buffering after doing, itnotifies received information 
from host computer to control unit , said control unit sets the 
Switch for host selection, outputs data of host which 
isselected to console for conservation. 

[0003] 

[Problems to be· Solved by the In~ention) 

But, because technology which was inscribed in each every 
host interface has provided buffer in independence, amount of 

Page 4 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 207



JP1994301607A 

-t:?.:r:7ii1'J<tb<~LJ, '*f::. *A.I-i!URA-1·;.~ 
70'>J::?tJWfl"O'>"-t:?.:r:7a-!£H1U::L. ~.; 
1:. *A.t-flti:~E!3-t .Qf&O)*A.t-1::.--1!?.:r:­
A~*~~a-e~~"t.QO">~.~~"t.Q*A.t-~ 
tb <~.Q ~~fi~i*tJ<J;:!~Ht:; "t .Q~~tr:. il:f& 
~O)*A.H:~L "'C 1 ~0)~::,_.~-Jva-~~Lt::: 
+l\l!itL1'J':!*.Q.:: ~tJ<-c:~tJt. 'CL '?XlffitJ<~? 
t::. 

[0004] 

*~~0)§~~-ii:~O)·~~~~~~.;.m 
~0) I/0 T'I'\.-(A......,0)7~i:!A.a-i'iJftti~"t.Q~ 
'"'77~-I!A. 110 11i!J~1.i:r.tt-m~-t .Q.::~I=~ 
.Q. 

[0005] 

[~!U~a-M.~"t .Qt:::d.>0'>-¥~1 

'jjiJfc! § aqa-iflit"t .Qt::d.>l:, fii)j(;JR 1 ii!~O)~ 
BJl~l;i:, .:t-·;.~t-?-~t-1}-L "'Cil:fl(O'>fjlf~~~ 
~fit-~~Lt::~A.-T ..£..1:~1. '"'C. ~.::t·•:Jr'J­
~0'>1::.--~7.:x:-A.11i!J~a-t=r?.:t-·;~r?-~11i!J~ 
"¥-~~-I/O 1::.--~7.:x:-A.a-1tL "'Cii:~O) 110 7 
J\1A.t-11i!Jfftll"t.Q 110 =j/\4A.11i!Jfftll-¥$5l:.!::, ~ 
::t-·;~t-?-~11i!J~-¥$5l:~ 110 .::;,\1A.11i!J~-¥$5l: 
0'>1/1!7.:r:-A.ill::lt!a-t=r?:1o t-~Jvill:~-¥~ 
f.l'i;tJ.Q'l Jv77~-I!A-11i!J~-¥$5l:a-~rt, liiJaa 
ii:I!!O'>ffl~~~~fil;i:~'l Jv77 ~-I:! A. 11i!J~ 
-¥$5l:a-1tL "'CliiJ!i:!ii:~O) I/0 TI\1A.I:7~-I! 
A. "t .Q.::.~a-~~c!:::L "'Ct. '.Q. 

[0006] 

81'4*JR 2 fc!tiO)~~'"C!I<i:. jj'ijfc! I/0 TI\1A.11i!J 
~-¥$5l:a-ii1.ifr! I/0 TI\1A.J1:10)11i!HlW!flli:J1:1i! 
"t .Q.::~t!ji,¥~~L -ct. '.Q. 

[0007] 

m)j(;JR3E·O'>~~-c:~.Mfc!il:l!lO'>M~~ 
~~mttJ<~f'rLt::~~.::;-1!a-, ii1.ifr!'l Jv77 
~-!!A-11ilJfftiJ-¥$5l:a-1tL -cMtaPJT~a> 110 .::;,,., 
A.I:~ML. ~-~~~~ii:O>~~~~~I: 
7irmO">t'i!t~~~~fii:~LJD'x. ~7irma>f'l!t 
~~~~ii:~.ii1.iEm~=r-11~~~~~~ 
110 .::;,\1A.a-~~mL -cmJ!!!a-m~-t.Q.::~t~
~~L "'CL'.Q.

[0008]

m)j(;JR4E·O'>~~-c:~,ii1.iE~M~m~~
Dltl<i:, o-:t.JJv 110 .::;,\1A.a-fl"L. ~0-:t.JJv
II07,\1A.r:tau~~.Qfl!f~a-. ii1.iE'l Jv77
~-I!A-1!ilJfftiJ-¥$5l:til"L -c. M!ct1t¥Hm~~t~r:

1994-10-28

hardware to become many, inaddition, to need hardware of
peculiar like host selection switch , becausefurthermore, host
interface connector of a quantity which is suitable to quantity
of host are needed, when host which is connected becomes
many as device entirety does scale-up , There was a
deficiency that only configuration which connects console of
1 vis-a-vis host of plural table it is possible to take.

(0004]

objective of this invention is to offer multi access l/0 control
system which makes access to 110 device of plural possible
from information processing apparatus of plural .

[0005]

[Means to Solve the Problems]

In order to achieve aforementioned objective , with invention
whichis stated in Claim I, through network , through network
control means and the 1/0 interface which do interface control
of said network in system which connects the information
processing apparatus ofpluriil, multi access control means
which consists of protocol conversion means whichconverts
I/0 device control means and said network control means and
110 device control means which control I/0 device of plural
interface providing, information processing apparatus of
aforementioned plural through said multi access control
means , hasdesignated that access it does as feature in I/0
device of theaforementioned plural .

[0006]

With invention which is stated in Claim 2, it designates
thataforementioned 110 device control means is built in to
control unit inside theaforementioned 1/0 device as feature.

[0007]

With invention which is stated in Claim 3, treatment data
which information processing apparatus of aforementioned
plural executed, through theaforementioned multi access
control means , it houses in aforementioned predetermined
I/0 device , changesto information processing apparatus of
preparatory at time of damage of said information processing
apparatus , the information processing apparatus of said
preparatory referring to I/0 device where
aforementionedtreatrnent data is housed, has designated that it
continues treatrnentas feature.

[0008]

With invention which is stated in Claim 4,
aforementionedeach information processing apparatus , it
possesses local I/0 device , information which is recorded to
the said local 1/0 device , through aforementioned multi

Page 5 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I 0/367 ,296)

Oracle Ex. 1002, pg. 208

JP1994301607 A

~(;&9 ~ I/0 -T r\1'.AI:~ML. T.I\·:,~'J)'·:;-:1'9
~;:ca:~~cL. -r:.L '~.

[0009]

iJJ*l1i 5 aci.t(])~BJl"t:l;:t:, iitrac Ilo -1:--~7:r.­
.Aict:, ia~4ma.>-<:--~7.:r.-.Ac~~l.Jm(])
-<:--~7:r.-.AtJ'b+ltfilC:~n -r:.L'~;:ct:~~c
L. -n,~. .

[0010]

[fFffl]

*i:l!(l,)11f$lB!H!I!~tic'<' JL-'f7'J-tt.Allitlta~J~
jl:t;< FDDI l:tlrt'2::tl-, x JL-'f7'Jit.Allitltail~
11: l;:t:, I/0 T 1 \-(.AI: SCSI ti*!C'2::tl-T.L '~.

'<' Jt-'f7'Jit.Al!itlf!ll~ill;:t:, ;t--;~t-?-'Jllitltall
mJc-:fOt-:::JJL-~flmJc I/0 T r\.-(;AtfJtaiJmh'J'b
+JtfilC:'2::tL T.L '~•

ffl$IB!H!I!~ill;:t:, x JL-'f7'Jit.Allitltail~11:"
FDDI 7v-.L..1:7'Jit.A'9~. .

::1'--;~t-?-'JiWJf!!Jtflll;:t:, 11Uii5!!!:!.!1!~11:1J'b(l)-T­
~t: FDDI -1/~7:r.-.A "t:ia~~Lt.:f&:, -:to 1-:::J
JL-~tltfll"t:l;:t:, SCSI -:to 1-:::JJvl:~flL., I/0 7
1\-(.:Allitltalltfllt:il'L. -r:. 1/0 7 r\1'.At:7'Jit.A '9
~.

;:;tLI:J:LJ, ~*(]) 110 7r\.-(.AI:fcJi;~J!t:1JD
;t~;::ctJ:<, '<' JL-'f7'Jit.A$1ltail~ilt:#1JD9
~(])~ 1:' *i:~(])11fl(i~!.!l!~iltJ'b*i:l!(l,) 1/0
-r ''-1-At:llitlf!ll'"t ~;:ctJ<1:2"~.

[0011]

[~111§~]]

~;t '"'F, *~IIJl(])-~~ma:(fgoot: mL '-r:. ~-~*
~~=~11Jl'9~.

181 11ct:. *~IIJl(])-~~ml:f*~~.A.::r.L..mnl(;
1811:i!i>~.

*~~(])~~7.L..~.*i:l!(1)8$1i~!.!l!~il
20. 30,40 .!::'<' Jt-'f7'Jit.A\1illtall~il 50 tJ<
FDDI(FiberDistributed Data lnterface)lO(LAN)
l:fl~'2:n -r:.mfilC:~n n '~·
[0012]

FDDIIO l:tl*"C~:Itt:::1Jil!iM:J!I!&iirt 20, 30, 40
l;:t:, "':/ JL-'f7'Jit.Allitlf!IJ~ii!t 50" FDDI 7v­
.L.1:7'Jit.A '9 ~.

X JL-'f7'Jit.A\1i!Jtall~fii 50 l;:t:, FDDI-1/~7:r.
-.A llitlf!llt:fi?::t··:~l- '7 -'J\1i!J ta!J'8fl 500 .!:: •

1994-10-28

access control means , housing in 110 device
whichcorresponds to aforementioned information processing
apparatus , it designates that backup it does as feature.

[0009]

With invention which is stated in Claim 5, as for
theaforementioned 110 interface , it designates that
configuration it is done asfeature from interface of
transmission dedicated and interface of thereception
dedicated.

[0010]

[Working Principle]

information processing apparatus and multi access control
device of plural are connected by FDDI, the multi access
control device SCSI is connected to I/0 device .

multi access control device configuration is done from
network control unit and protocol conversion section and I/0
device control unit .

To multi access control device access it does information
processing apparatus , with FDDiframe .

data from information processing apparatus transmission and
reception after doing, in protocol conversion section,it
converts netWork control unit , to SCSI protocol with
FDDlinterface , through I/0 device control unit ,access it does
I/0 device.

Because of this, multi access control device is added only, can
control 110 device of the plural from information processing
apparatus of plural without adding what modification to
conventional I/0 device .

[0011]

[Working Example(s)]

Below, one Working Example of this invention is explained
concretely making use of drawing .

Figure 1 is system diagram which relates to one Working
Example of this invention .

system of this invention is done, information processing
apparatus 20, 30, 40 and multi access control device 50 of
plural FDDI (Fiber Distributed data interface) being
connected by 10 (LAN), configuration .

[0012]

To multi access control device 50 access it does information
processing apparatus 20, 30, 40 which is connected to the
FDDIIO, with FDDlframe.

multi access control device 50 configuration is done· from
protocol conversion section 520 which converts I/0 device

Page 6 Paterra® lnstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 209

JP1994301607 A

SCSI60 1:: 1fH!C ~ tl. "'C L' .Q I/0 "T '\ -'f A
70,8o,9o(~;tlt. 1\-t:-T-<A?tJcO)tatlUl
i*~IIDt@tJc(l)iiliK-'¥~)(1)1fiJJ~~fi"? 110 -T
r\-{A1fl!J~$ 510 c, FDDI :11J,..:::JJL-&t$ SCSI
:1c ,..:::JJL-(1)-'f;.;$17z-Ait~~fi?:1c ,..:::JJL­
it~lill520 tl'b+Jl~~;h.. "'(!, \.Q.

[0013]

IBJ 2 l;t, 7 JL-7'7?-t!A1fl!J!ifp~tf! 50 (1)/IJ-:J?
+Jl~@"eili).Q.

7JL-7'7?-t!A1fitl!iflJ~ilt 50 1::}.;1.,\"'(, -1'-·;.+?
-?1fltl~$ 500 c. 110 -;::,\-'fA1fitl!iflJlill510 c,
RAM523 c. 7?-t!Atll!iflJ$ 5241;t 110 r\A 525
I::J::-:>"'Ctl*it~tl.. :11J-t!·:r+J· 521 c, ROM522
c,7?-t!Atll!iflJ$ 5241;t:11J-t!•;rt;-J\A 5261::
J::-:>"'Ctl~~*'-"'Cl. \.Q.

[0014]

:1c ,..:::J JL-it~ ~fi"? t::. th (1) :1c 'i 5 J...l;t,
ROM522 l::~$1ll~tl.. :1c-tz·;rt;- 521 ...t."eilibfF
"9 .Q.

:$:~1J!!i01l"'C!I;t, 110 1\.A 525 (1){tffl$~"'Fif.Q
t::.thl:::tc-tz·;~·•:t-~\A 526 ~i!ilt"'CL \.Qt.><, 1w
~IB!U.lll~ilt 20, 30, 40 tl'i;(1)7?-t!Aimf.lt><ilf
L 'ifi~l::l;t, 110 I \Ac:11J-t!•;~4fl \A~F<i.l-1 \
AI::L, "'C+Jl~L, "'CtJ::L '•

[0015]

7?-t!Atll!iflJ$ 524 l;t, -1'-·;~,..?-?t!J~$ 500
il:t::.l;t I/0 TI\-{Ait!J!iflJOO 510 jJ\i;:;fiJ-tz·;~-lj-
521 "(l)I!J)Ot?j.it!J!iflJ~t=r?c3:t:l:::1c-tz'.!J-lf s21
tl'i; RAM523, ;t.·;~,._?-?t!J~lill 500, I/O -T
1\-'fAit!J!iflJ$ 510 "(1)7?-t!A1fitl~~t$1::;f.•;~
,..?-?tiJ!iflJ$ 500, 110 T /\-'fAitll!iflJlill510 jJ\

t; RAM523 "(1)7?-t!Aitl]!iflJ~fi"-:>"'CL '.Q.

[0016]

ROM522 1:: l;t, :1c lj 7 .L. (1) $1:: FDDI (1)

MAC(Media Access Control) 7 t: 1/ A~ :tMfi"t
.Q.

RAM523 l;t, -T-$1i!iK:& tF:Yl:'(F;ffl(l)J \·;~77
c L, "'Cit .lll"t .Q lift>' I:, -1'-·;~ ,._?-?til~$
500,110 -;::,\-1Aitll!iflJ1!1! 510 "'-(l)itiJ!iflJ~fi"?t::.
ttJ(l)"'f-<A? 1J:1$1~~cL -cttm"t .Q.

il:t::., 7 JL-7-7?-t!Aitll!iflJ~ili:PiJ(l)AT-?IA
~Jm~ I/0 -T1 \-{Aia(l);:Jm~(l)t.:thi::-T-:1
JL-cl.., -cttm"t.Q.

[0017]

ISI3 l;t, 11U1Bn!m~liltJ'i;7JL-'T7?-t!Aitll!iflJ
~ill"' (l)tJJ !iflJ7 v-.L. (1)7-;t-7 ·;~ ,..~ ;r-"t!SI

1994-10-28

control unit 510 and FDDiprotocol and SCSI protocol which·
control I/0 device 70, 80, 90 (for example hard disk or other
storage media and circuit or other communication means')
whichis connected to network control unit 500 and SCSI 60
which do FDDiinterface control interface .

[0013)

Figure 2 is block diagram of multi access control device 50.

In multi access control device 50, network control unit 500
and 1/0 device control unit 510 and RAM 523 and access
control section524 are connected with 110 bus 525, processor
521 and ROM 522 and access control section 524 are
connected with processor bus 526.

[0014]

program in order to do protocol conversi~n is housed in ROM
522, operates on processor 521.

With this working example , processor bus 526 is provided in
order to lower usage ofiiO bus 525, but when access
frequency from information processing apparatus 20, 30, 40 is
low, configuration it ispossible to do with 110 bus and
processor bus as same bus .

[0015]

access control section 524, as interruption control to processor
521 is done from network control unit 500 or 110 device
control unit 510, from processor 521 does access control to
RAM 523 from access control and network control unit 500,
110 device control unit 510 to RAM 523, network control unit
500, 110 device control unit 510.

[0016]

In ROM 522, MAC (Media access control)·address ofFDDI
is housed to other than program .

Besides you use as buffer for data transmission and reception,
youuse RAM 523, as [disukuriputa] region in order to control
to network control unit 500, 110 device control unit 510.

In addition, you use management or other for every status .
management and 1/0 device inside multi access control device
as table.

[0017]

Figure 3 is figure which shows format of control frame to
multi access control device from information processing ·

Page 7 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 210

JP1994301607 A

"t:IY.>.Q.

lSl 3 f::}.)L '"C. FODI A.•y';f IOO(ANSI tli!¥)1::
SNAP A.•:J':f 110, IP A.•y';f 120, TCP A.•y';f
130(~"(Request For Comment "t:~JUE:~:h. "CL'
.Q), "'f-J;. 140 ~#1JDL.$1Jlif!J~ff?.

[0018]

ti!il&~JJI!.~li': 20,30,40 c'":l Jl;7-7?-t:!.A$1JUIJ~
11 50 co:> ra, o:> ~~lit m 1.i'C.J Dll'i Ff lt!J UIJI;;I:.
TCP(Transmission Cotrol Proto~ol)l::cl: ~Jff?.

[OOI9]

:r-J;. I4o 1c1:. lt!Jfifii::Tc·;;? l4Io. 14so c~m
Ito "'f-J;. I46o i"J''=>+Jin!t~:h. n '"C. $1Jfifll:1c·;;
?l;t, 1 P.J3Hll!!o:>:1c·;;?t.J'b~.Q.

'*f::.. ~i~ 110 "'f-J;. I460 l;tf:t1JDL. "Ctci:L 'L.
IY.>.QL 'lci:#:IJOL.tJ<"Ctci:L 'i"J<, :!ll:;k::;n,-k~
1;;1:, FODI mf&I.::¥W!T" .QIZ~t.J<;Y.,.Q.

[0020]

$1Jlif!J:1C':J? 1410, 1450 1;1: 28 J\..(f-i"J'bWJJil!:~
;h..Q.

$1Jfif1J:1C·;;? 1410 I::;I';)L'"C, lliiJUIJ:1C•;;?~
l41ll;t, 2 J\..(t-0)7-{-)l;,_:"t:;Y.,~). $JJ~C·y
?o:>t(£1\..ft--llt~1FT".

::J'":l./,_:7-:r.-1'./t:::"':Jt- 14121;;1:, I t:::"·;;t-il'b~~J.
~tJ.Q:::J'":l/,_: 0)$1Jlif!J:1C•;;?t.J<;!i$;il... "CL \.QfJ'
st.J,~;r;:T".

"o"o:>flilfi;I::::J'":l/,.:7-:r...f::.dJL., "I" O)fliljf;I::::J'":l
;.,r:.:r:r...f;.,tr.>~J~mT".

[00.21]

"'f1\..f.A IDI413 1;1:, 2 1\..ft-o:>7-<-Jl;r:"t:tr.>
LJ , SCSI_ID 4 t:::" •:; t- • LUN(Logicai Unit
Number) 4 t:::"•;;t-, Bi;~ LUN 8 t:::"•;;t-i"J'b+Jinlt~
;h..Q.

COB 7;lJ--'":l•;;t-I4141;;1:. 5 t:::"·yf-0)?-<-Ji;r:"t:
IY.>.Q.

COB 1;1:, 6 1\-1'1'-,IO 1\..ft-,I2 1\..(t-tJ<;Y.,.QO)"t:
. -fO),i.j}lj~;r\:L "CL '.Q.

"0" i"J(6 I\..(f- ;" 1" fJ(10 I\..(t-, "2" i"J(12 I\..(t­

~;r\:T.

[0022]

1-:iE~tQJ.!I:.t:::"·:;t- 1415 1;1:. 1 t:::"':Jt-0)7-{-JI;t:
"t:IY.>.Q.

~-r:~-c-~o:>~~~L."'f-J;.A~~~?
"Cti7-*Hi5-L.fJL 'f::.l:ho:>t::" •:Jt-"t:IY.>.Q.

1994-10-28

apparatus.

In Figure 3 , SNAPheader 1 I 0 , lP header I20, TCP header
130 (Being stipulated with all Request For Comment, it is), it
adds data 140 to FDDiheader 100 (ANSistandard)
andcontrols.

[0018]

It does sending verification and order control between
information processing apparatus 20, 30, 40 and multi access
control device 50, with TCP (transmission Cotrol protocol).

[0019)

As for data 140, configuration being done from control block
1410, 1450 and thetransmission 110 data 1460, as for control
block, it consists of block of 1 to plural .

In addition, it is possible to add transmission 110 data 1460 it
is notnecessary, and, or to add, but maximum frame length
has necessity to conformto FDDlstandard .

[0020]

control block 1410, 1450 configuration is done from 28 byte.

In control block 1410, control block length I411, with field of
2 byte , shows theentire byte length of control block .

command chain bit 14I2 consists of I bit, shows whether or
not which control block of the different command is
continual.

When " 0 " being, there is a command chain and shows time
of command chain none, *l''.

[0021]

device IDI413, with field of2 byte, SCSI _ID 4bit, LUN
(Logical Unit Number) configuration is donefrom 4 bit ,
extended LUN 8bit.

CDBformat 1414 is field of 5 bit.

Because COB are 6 byte, !Obyte, 12byte, type has been
shown.

"0 "6 byte, *l'' 10 byte, *2* 12 byte are
shown.

[0022]

lllegitimate long control bit 1415 is field of I bit :

read request and actual it starts reading and data length differs
and error it is a bit because it does not report.

Page 8 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 101367,296)

Oracle Ex. 1002, pg. 211

JP1994301607 A

"1 "(1)c!:::~I7-¥1H!rit'f, "o"(T) c!:::~I7-$12
~9.Q.

[0023]

~ 7$12~t::>:JI-1416Icl:, 1 t::'·,:~t-(1)7-(-Jvt-:'-r:tv.>
.Qo

"1"(1)c!:::~~JJI!~ 7~~ 7¥1ii5-::10•,:~?(~ 4)'l::
*Hi5-9.Q.

"0"(1)1!iflci:$12~LtJL 'o

[0024]

:::r:('::.,..t: 1421 lei:, 8 t::'·,:~HT.>7-<-Jvt-:'-r:tv.>.Q.

-T-9:¥1:-Fa. -T-9~-Fa. -:t W77?i!.A.tlltil1J
iiim: so r::>t.t-t .Qmff-t.t.!:'~ff-1".

SCSI N0.1422(;;1:, 8 t::'·,:~I-(1)7-<-Jvt-:''l::iP).Q.

-:t JL-77?-t:!.A.\Ufjfi!jl~m; 50 (;l;J'l::til!l(T) SCSI~
\U!Jt!fii9.Qtfir~l::, c(J) SCSI tl'~~}.!IJ"'t.Qf::d)
(1) tw*H -r: tv.> .Q o

'Y-"T::.,...A. N0.1420 (;;1: .. 16 t.::'·,:~I-(1)7-(-Jvt-:''l::
tv.>.Qo

tw~!BnJJI!~il: 2o,3o,4o tJ';(T)~>!tc!::-:tJL-77?
i!.A.\Uilt!fll~il: 50 fJ\i;(J)$!7¥1ii5-~>t.tJ;t;~it.Q
t::6?(1)1Jlf¥1i~tv.>.Qo

[0025]

-T-9:t.l"7::.,..t-14I81cl:, 41\.{t-(!)7-(-Jvt:-r:tv.>
LJ' ~ig*t::lcl:§:ig"t .Q7-9-&~7f-T.

CDBI419 (;;1:, :;$:~~~~1;;1: io J\.{1-'l::iP)L),
SCSI m:t:&1::¥l9l!Lt:: CDB ~:t:&t:lli"'t .Q.

[0026]

~ 4 rc~:. -:t JL-77?-t:!.A.ttlt!fll~fiu';tw*H~JJ!l
~il:""-(1)~ 77 v- ..t..(J)7;t..:...-:t'.:l t-~ff-T~
-r:tv.>.Qo

~l::i;>L'"t" .. FDDI ·,_·_:,'/ 100. SNAP r...·_:,1/
110. IP "-•,:~1/120, TCP "-•,:~1/130 lei:, iiiJlii!Lt.:
t (1) c!::: f.ll tfi "(:tv.> .Q 0

-T-9 140 lei:, *l7¥!i~::fo·;.r? 1470 c!::::¥1:-FaitO
-T-9 1480 tl'i;f141it~;h "t"L '.Qo

[0027]

*l7$12~::f[]·;.r? 1470 (;;1:, 16 J\.-(l-tJ'i;f14/i£~
;h "t'L'.Q.

*l7*H~::ft:l';1?-& 14711;;1:, 16 t.::'·;.rl-(!)7-(-)l;
~iP)LJ .. tit7*Hi5-::11J·,:~?(J)f£J \.{1-l!~ff-T o

~ 7*H~7z.{::.,..t:'·,:~l- 1472(;;1:, I t.::'·;.rt-(1)7-(­
Jvt-:''l::iP)LJ .. ~ 7 *H~tJ{fi~Jltv.>.Q~€i 1:."1 "~

1994-10-28

" At time of 1 '' error it does not report, " when 0
"being, error it reports.

[0023]

End report bit 1416 is field of I bit .

" At time of I '' treatment end is reported with
endreport block (Figure 4).

When " 0 " being, it does not report.

[0024]

command 1421 is field of 8 bit .

data reception , data transmission and indication etc for multi
access control device 50 are shown.

SCSI NO.l422 is field of8 bit.

When SCSI of plural is controlled inside multi access control
device 50, it is a information in order to identify which SCSI .

sequence N0.1420 is field of 16 bit.

It is a information because end report from multi access
control device 50 it corresponds withrequest from information
processing apparatus 20, 30, 40.

[0025)

data count 1418 with field of 4 byte , shows data length which
ittransmits or receives, or.

CDBI419 with this working example with 10 byte, houses
CDB whichconforms to SCSI standard .

[0026]

Figure 4 is figure which shows format of end frame to the
information processing apparatus from multi access control
device.

In figure, FDDiheader 100, SNAP header 110 , IP header 120,
TCP header 130 is similar to those which are
mentionedearlier.

data 140 configuration is done from end report block 1470
and thereception 110 data 1480.

[0027]

End report block 1470 configuration is done from 16 byte .

End report block length 1471, with fee jpl1 of 16 bit, shows
theentire number of bytes of end report block .

End report chain bit 1472, when with field of I bit, end report
is a plural , " sets 1 '' .

Page 9 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I 0/367,296)

Oracle Ex. 1002, pg. 212

JP1994301607A

~~"t~o

[0028]

.7..7-$1.A 1474 ~~- 16 t::·:;I-0):7-(-Jl-t:~~

.Q.

;::0)-;)-(-Jl-t:l~ • .:r:?-O)ft!l[~jf-"9~t: 1)7
-(t::::'•:;l-4 t:·:;t-, J:7-.A7-$1.A?1'-Jl-t: 12 t:
·:; 1-f.J\ i;f$inlt~:h.Q 0

SAVE DMA :t.Jr)::.,-1- 1473 1~. 4 t\..fi-0)?-(­
Jl-t:~~~). -T-$1:;/Jr)::,.,t-1418 .!::~~~=~Jm~
7 L.t:::t\1'1-111:0)&~~~., 0

iJJJ.itlt. -T-$1:;/Jr)::,.,t- 1418 i.J< 1000 t\-1'1--r!.
~~~=~Jml..t:::-T-$1iJ< 1000 t\-{1-0)~~ .lltt 
:7-<-Jl-t:l~. 0 .!::t.;:~. 

[0029] 

1m 5 1~. {jj*&~JmilU't 20. tw*&~Jm~i'i: 30 il' 
; ~ Jl-77?-1!.7..lfi!J~~i'i: 50 A.(T)7?-I!.A'Y­
?"J .A '!'jf-"9 0 

J.:J.r. tw*&~Jm~i'i:t.J'; 110 .:;::,,..,.7.. ...... -=f-$1 
'!'~~l2l:uta~ 0) ~ni!liJJJ 0) ii!I.JtF~ maJ.J-; ~. 

[0030] 

{jj*&~.!UI~i'i: 20 i.J'i;~Jl-77?-1!.7..lfi!J~~i'i: 
50 ...... .:;::-~-~]2:.3j.~liJjf-'!'im 3 l::jf-"9?1.;-..£.,. 
:7 ;;t-~'.:I 1-~:i~:Fa-9 ~ 0 

.:t-·:;1-?-?lfi!J~$ 500 1~?1.;-k'!':Jl:i~L.. -:J 
0 t-::JJI-~J:lifll 520 i.J'i;:!J>d)lJl~:ht::: RAM523 
J:.O)t\•:;?yi::-T-$1'!'~~"9-Q. 

.:t-·:;1-?-?lfi!J~$ 500 ~~- -T-1Z~Ul~. W!Jll:. 
tfj..'!'7?-1!.7..$1J~rul 524 '!':ftl.. ·c1o-l!·:;-lt 521 
1::)1~"9~0 

[0031] 

11f¥&~1!1!~i'i: 20 f.J\i;O)-T-1Zif~~,;lj.mjf-O) 
~- 1W*&~!Hll!~i'i: 30 .i.J'i;~ Jl-77?-1!.7..lfi!J~ 
~i'i: 5o ....... .:r-1Zi!f~i6.1j..m;;r-'!'~m 3 l::jf-"9:7 
1.;-k?::t-~·:;t-~ia-Fa-9 go 

.:t-·:;1-?-?lfi!J~$ 500 I~?L;:_k'!':Jl:Fal..-:/0 
1-:::JJI-~J:l$ 520 i.J'i;7d>l!l~:ht::: RAM523 J:. 
O)J \·:;?yi::"T-~'!'~~"9 ~0 

.:t-·:;1-?-?lfi!J~$ 500 1~. -T-1Z~Ul~ • .,Jll:. 
ij.'!'??-1!.7..$1]~$ 524 '!':ftl.. "(:10-1!•:;-l,t 521 
1::)1~"9 .Q. 

@!.., f'jlj*&~Jm~ll: 20 f.J\i;O)~J!!!f.J<;tr;~~~ 
0) ~"t:"O)~J!!!f.J<$! 7 "9 .Q "t~~II1liHi .!::t.i:.Q o 

1994-10-28 

is a plural , " sets I &apos;&apos; . 

[0028) 

status 1474 is field of 16 bit . 

this field shows light heavy of error, [shibiritibitto] 
configuration it is done from4 bit, error status field 12bit. 

SAVE DMA count 1473, with field of 4 byte , shows 
difference of number ofbytes which process end is done in 
data count 1418 and fact. 

for example data count 1418 being 1 000 byte , when data 
which was treated actuallyis 1 000 byte , said field becomes 
withO. 

(0029] 

Figure 5 shows access sequence to multi access control device 
50 from information processing apparatus 20, information 
processing apparatus 30. 

Below, operation of Working Example when from 
information processing apparatus data is writtento 110 device 
is explained. · 

[0030) 

From information processing apparatus 20 to multi access 
control device 50 it transmits with frame fmmat which shows 
data writing indication in Figure 3 . 

network control unit 500 receives frame , houses data in 
buffer on the RAM 523 which is beforehand transferred from 
protocol conversion section 520 . 

network control unit 500, after data storage , through access 
control section 524, notifies theinterruption.to processor 521. 

[0031) 

After data writing indication from information processing 
apparatus 20, from information processing apparatus 30 to the 
multi access control device 50, it transmits with frame format 
which shows data writing indication in Figure 3 . 

network control unit 500 receives frame and houses data in 
buffer on the RAM 523 which is beforehand transferred from 
protocol conversion section 520 . 

network control unit 500, after data storage , through access 
control section 524, notifies theinterruption to processor 521. 

However, because treatment from information processing 
apparatus 20 is ahead, until thattreatment ends, it becomes 
treatment reservation . 

Page 10 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 213



JP1994301607A 

[0032] 

i!tll~D~J.~:W:rtt.::1o t-::::~J~it~rul 52o ra:. :W:Fs 
L..t.::n .... -.L..(])"•:J1i~A;ffi-L.. TCP. IP(lnternet 
Protocol)~i.m~ft?a 

-=f(])tlt, fli!Jtill:::ftJ•;J? 1410 ~~ffi-"l} .Q. 

7;t-~·.;~t-tJ<JE'*'t.ti;l;l: SCSI NO.l422. fJ{ 

4A IDI413 tJ<~-t SCS11::~L.. "C:J~::..;t:~§t 
ft"t .QQ 

::::J~::.....i-!"Cl)§tfil;l:. RAM523 l:..(])=f.fA? 1)-:/'J. 
1:: CDB ~~~L..t.:tlt.IJO TJ{4A$1]1ftl!rul510 
f1;J{])J\-i-!"r?:r.7v~A'J.I::®!l!!J~tJ,rt.Q;:cl:: 
J::LJft?o 

::::J~::.....t:~:i:ltt.: I/0 TI\4Afli!J1ftj]{fll 510 1;1:. 
SCSI :l:Jl~l::~-::>1:7-t::l--v-:.....3::...... -t!v?:..... 
3::.....' ;(·.;.~1!-~' ::::J~:..-t:?:r.-;::(~JI3L..t.:Wt. 
fllfi&~l.!l!.~il20 I::J::-:>'L}~~~nt.:'f§IJ;tl;l: l/0 
TI\-{A 70 I::~L.. 'Lf-'J.~iiS~ft?. 

[0033] 

;:Cl)~Cl)f-'J.~iiSI;I:, DMA(Direct Memory 
Access) '"C'ft? o 

-'f-'J.~i1S~7Wt. 1/0 f;\.{A 70 tl'ibA-'f­
'J.&lt::::J~:..-t:::::~::.....-:J•J-t--tJ<mi;.t\, -r<.Q. 

;:;h.~:i:ltt.:. 1/0 f ,{4A fli!J1ftl!$510 1;1:-:/tJ-1! 
·.;~"'.t 521 "Cl)j!tlj~DIJ.~7?1!A$1]1ftl!{fll 524 ~1)­
L.. 'Llili~"lJ".Q. 

[0034] 

i!tiJ~DIJ.~:i:ltt.::1tJ-t!•!i"'.t 521 1;1:, RAM523 1:: 
~t:l'i~.t\, 'LL'.QA-'f-'J.A~~ffi-"l}.Q. 

-=f(])Ut, jgi4 I::~L..t.:~ 7¥1Hs·:::fiJ•:J?, IP "''!! 
1f, TCP r.:_.:J1f. SNAP"·:J1f~ RAM523l:..l::fl: 
Ji!C:L... :f'··.:JI--'J-?$1Jtill$ 500 f1;J(])J\-i-!"r?:r.7 
v~ A'J.I::iiSFst~ff-~lt~~t,·. 

;:;h.~:i:ltt.:;f'.•.:Jr'J-?$JJ1ftjl$ 500 1;1:, FDDI 
:1tJr::JJt..I::Vt-=>'L~7i&ili~'hUIH.!!,J.!!!~il20 
l::mFs"lJ".Q. 

[0035] 

1llf*!i~l.!l!.~tl20 Cl)~J11ljJ(~ 7 We. ~llf¥&~l11l~ 
fit 30 Cl)~J.!!!~ft?. 

-=f(])!l!!Jfl:la:. jj'ij~L..t.:m*!i~J.!I!~t~: 20 Cl)ifll€i 
cf<llti'"C'iY.>.Q(])'"C'. ~BJll;l:1!:ilii§T .Q. 

[0036] 

jgi61;1:, ~ JL-'T7?1!A$1Jtill~flci/Of;\4A 
~-1* it:; ~itt.: t;r;€; (]) ff!:!Cl)~:IJ1!! 0lJ Cl)t$t Ji!C:~~ 

1994-10-28 

[0032) 

protocol conversion section 520 which receives interruption 
analyzes the header of frame which is received and does 
TCP , IP (internet protocol ) treatment. 

After that, control block 1410 is analyzed. 

command is issued format vis-a-vis SCSI which normal mule 
SCSI NO.l422, device ID1413 shows. 

It issues command, after housing CDB in [disukuriputa) on 
RAM 523,by making starting on hardware register inside l/0 
device control unit 510. 

l/0 device control unit 510 which receives command , 
following to SCSI standard , does the data transfer transition 
after doing arbitration , selection , message , command phase , 
vis-a-vis for example l/0 device 70 which isappointed with 
information processing apparatus 20. 

(0033) 

It does data transfer at time of this, with DMA (direct 
memory access ). 

After data transfer ending, stator and [komandokonpuriito ] 
are sent from 1/0 device 70. 

This was received, l/0 device control unit 510 through access 
control section 524, notifies theinterruption to processor 521. 

(0034] 

processor 521 which receives interruption analyzes status 
which ishoused in RAM 523. 

After that, end report block , IP header , TCP header , 
SNAPheader which is shown in Figure 4 is drawnup on RAM 
523, transmission indication is written to hardware register 
inside network control unit 500. 

network control. unit 500 which receives this, following to 
FDDiprotocol , transmits endreport to information processing 
apparatus 20. 

[0035] 

Treatment of information processing apparatus 20 after 
ending, treats information processing apparatus 30. 

Because operation is similar to case of information processing 
apparatus 20 which ismentioned earlier, it abbreviates 
explanation. 

[0036] 

Figure 6 is figure which shows configuration of other 
Working Example when multi access control device and l/0 

Page 11 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 214



JP1994301607 A 

T'[g11!®i>. 

T't~f)1:>, -f*i~I::J::?L', I/0 -Tr\4APi!O)lli!J 
lftil~(SCSI ::J/1-0-?)t.l< I/0 'fJ\4Al!il]lftlll}ll 
510 t:iJjHtn~JL., ~t?-r, ~ 21::ff--t I/O -=f1\ 
4Al!ill1a!J~ 510 t:~lt{>~~t.J<t~(t~~J. ii1!tl 
1/0 T I \"f'APi!O) 110 lli!JtalJ$ 700 l::l!il]1a!J::fO•;,~? 
:a:;,rr-t~~nitt:~i>::c!:::r::t~i>. 

[0037] 

~ 1 l;t, :u!.lf.l~1iU&~l!~flb'J'.;.yiilli~1l!f¥R 
~~~~~O)w~~t:rr?~~O)~O)~~~ 
O)U\~t:ff-T'~1!®i>.

:u!.lf.l~1l!i¥a~Jlll~ilt 21,221;1:, ~~t:~fTT'i>
~~1::. x Jv7'7?-I!Al!illlftil~ilt 50 t:1t'L. L',
ff::i:O) 110 -Tri4A 10 11'!1::sltl2"tl!i¥R 11 t:t&
~~~Til. 

~L -c. mm~m¥R~Im~m: 21,22 r::ll!l~t.J<~ 
~Lt.:.!:::~ • .Yfiii ~1W¥R~~~ilt 23 (;1: 110 -T I\ 
4A 70 Pi!O)sl*li2"tW¥!i 71 t:~3fl±ll.. L'. ~~ 
HjtfiTi>. 

[0038] 

~ 8 1;1:. tl!i¥1i~~~il:t: 1/0 -Tt\4AI::J::?'"C 
I\ •;J?J"•;J-:/T {>~~ O)-fl!!0)~1J!!i i?JJ O)U\}il(;t:ff-
9~1!&;)~). ~HW¥1i~~~il:l;to-:t.JJv 110 -T 
i\4At:iiltU.:mlil(;t:mb-cL 'i>. 

[0039] 

~tl!f¥R~~~ilt 20,3o,4o r;t. ~n-fno-:t.JJv 
110 -Tt\4A 201.301.401 r::-T-9t:ttE'I±l9 
.!:::btl::, ffl¥fi~~~iif 20 1;1:, i?JJ:iU;f 1/0 'f1\ 
4A 701::, ti!f¥!i~~~li!t30 1;1: 110 71'i4A 80 
r::, tw~~l!~ilt 4o 1;1: 110 -T1\-1'A 9o r::~n 
-fn-T-9~i!E-I±lt... -T-9t:,'·::~?7·;~-:f9 
i>. 

;:O)tf~l±lL.I;l:, iiir~L.t.:~ 5 O).Y-7".:/AI::J:: 
?-err?. 
[0040] 

~ 91;1:. x Jv7'7?-i!Allil]1a!J~fi;/J<2 ~0) SCSI 
t:lli!J1a!J9 i>-ft!!O)~ti!!if§IJO)U\Jil(;~;'f--t 0 

;:0)~1J!!if§IJ1!1cl:. -?O)x Jv77?-I!Alli!JOO~ 
fi;/J'i; 2 ~0) SCSI t:lli!JOOL. -:IJ~i!m.W.If.lc!::: 
t... -ft!!::?t::'itml!J:mr::t.. n 'i>. 

[0041] 

~f::i1SL 'L', SCSI ::J/1-0-? 511 f;l:i!i~W.If.l 

1994-10-28 

device are unified. 

With namely, unification, control unit (SCSI controller) 
inside I/0 device shoulder doesto substitute I/0 device control 
unit 510, therefore, necessity to provide I/0 device control 
unit 510 which is shown in Figure 2 is gone, means to take 
treatment system whichdirectly transfers control block to 110 
control unit 700 inside 110 device . 

[0037) 

Figure 7 is figure which shows configuration of other 
Working Example when changeover to preparatory 
information processing apparatus is done from current system 
information processing apparatus . 

When treatment is executed, through multi access control 
device 50, it takes over the current system information 
processing apparatus 21, 22, inside 110 device 70 of option 
and it houses treats information 71. 

When and, fault occurs in current system information 
processing apparatus 21, 22, preparatory information 
processing apparatus 23 takingover information 71 inside I/0 
device 70 reading *, continues treatment. 

[0038) 

As for Figure 8 , information processing apparatus in figure 
which shows configuration oftheother Working Example 
when backup it does, as for each information processing 
apparatus configuration whichhas local 110 device is taken 
with 110 device . 

[0039] 

As for each information processing apparatus 20, 30, 40, as 
data is written out in respective local I/0 device 201, 30 I, 
401, as for information processing apparatus 20, in for 
example 110 device 70, as for information processing 
apparatus 30 in 110 device 80,inforrnation processing 
apparatus 40 it writes out data respectively in 110 device 90, 
data backup does. 

It writes out this , with sequence of Figure 5 which is 
mentionedearlier. 

(0040] 

Figure 9 shows configuration of other Working Example 
where multi access control device controls SCSI of2. 

With this Working Example, it controls SCSI of2 from multi 
access control device of the one , on one hand makes 
transmission dedicated , designates other as reception 
dedicated. 

[0041) 

In figure, as for SCSI controller 511 with transmission . -

Page 12 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 215



JP1994301607A 

\:iV,L), SCSI :::J;:,.,f-CJ-5 512 (;;J:!J1:~-Jfj\:iV, 

~. 

-fl.."'(, I/0 -T 1 \-{A 70 ""O')~~~ci'j.(;;j: SCSI :::1 
:.-1-0-5 511 ~JfJL'. 110-TJ\-{A 70 f.l\i;O')~ 
ci'j.f,:L,(;;J: SCSI ::J:.-1-0-5 5I2 ~.ffi.L'-l>• 

t::t:::L... 110 71 \"'f'AI::)l;t-t ~::J'l:.-~r;:m.m:Yl: 
~l::f.l'il':bi;T~"'C SCSI ::J:.-1-0-5 511 \:fi 
?. 
[0042] 

;;$::~1i1!i-@JJO)nitl<!:~ I/0 "T1\"'f'Ail< I i5-0')i:;'@; 
l::!f\'fr::3lJJ~ eq\:;V,-l>. 

?'i!I;:LJ. Tl\"'f'Af.J{ I i5'1::4~~\:~-l>O')\:, 7-
t::'!-v-~3:.-, -I!L-?~3:.-~:IiUJ.JO') llEJO)ci'j.fi 
L', -fO'){t 0')7 ?-I! A Bitl::l;;l:7-t: 1-v-~3 
:.-, -I!L-?~3:.-~1!\I~"t -l>;::.!:t.J<tiH~-l>. 

fJt-:>"'C. SCSI O')?.:x:-;(ii3\:::J'l:.-~::JZ1 1J 
-J-iam~. I \A?IJ-"t -l>;::.!:t.J:<, :jiij:'(J::J'l:.­
~7.:t-;(~"t-l>;::.!:~\:·~O')\:,.~~T­
'J7 ?-I!AtJ<iiJ~.!:tJ-l>. 

[0043] 

~ciS. ;;t;::~Dtii-@lJict..t~L. t::tO') O')iml::. :1CJ­
~~""'AI-~~~mL '-l>;::e:r::J::-:>"'C, :nit:!tO') IIO 
7 1\"'f'AI:: ISJ-0)7-'J~i!ie:1il"t ~J::?I::~Jil(; 
"t-l>;::.!:~~~-*~*~I-?-?.-1':.-'J7.:x:­
A(;t_t~L.t:: FDDI,SCSI I::IIQ:JE~;h. 9, imO')* 
·:~!-?-?, -{:,'J7.:x:-A \:;V,-:>"'CtJ::L '• 

[0044] 

[~lljj0)3lJJ~) 

J;l_t, ~llJlLf::J::?I::, ~)jtlji 1 ~iltO')~BJll:: 
J::nlt. *·;..rl-?-?l!lllfli!J=f.~.!: 110 -T1\-1'Al!lll 
fli!I=F-$9:c:f o 1-:::1 Jt..i<!t~=F-~5tf.l' .;t.J:-l> 'l w'f7 
?-I!Al!llltltl~~~~lt"'CL \-l>O')\:. I/0 T I\-{ A 
~ i<!t!! "t -l>;::.!:: ~ <. :ni 1!1 0') tlUfB& J.!fl.~ii il'.; 
*ll!tO') I/0 -Tr\"'f'A""0')7?-I!Ai.J<i>J~I::t,J: 
-l>. 

[0045] 

~tf:iltiA 2 ~2iltO')~BJli::J::nl1. 110 "T1\"'f'Al!lll 
fll!l$c 1/0 -T r\-{A~O') SCSI ::J:.-I-0-5.!:~;1t 
!flit I... "'(1;\-l>O')\:. ~ji~Jil(;~fli'il;Jl.it\:•-l>. 

[0046] 

~~*l.il 3 ~iltO')~aJJr::J::nrt. :nit:~tO')m~~ 
J!l!~iit.l<~fil...f::~J.!fl.7-'J~ 1/0 "Tr\"'f'AI:: 
~tf!L. "'CL '-l>O')\:. ~~~1.:Bitr::a~r::7{J1it.l.J 
~~fi?;::.!:t.J<\:~-l>. . 

1994-10-28 

dedicated , as for SCSI controller 512 it is a reception 
dedicated. 

And, it starts reading writing to I/0 device 70 from I/0 device 
70 makinguse of SCSI controller 511, SCSI controller 512 
uses. 

However, command for I/0 device does with all SCSI 
controller 511 regardless oftransrnit receive. 

(0042] 

system of this working example, when 110 device 1 is, is 
especially effective . 

In other words, because specific is possible device to I, only 
the initial one time does arbitration , selection , after that it is 
possible at time of the access to abbreviate arbitration , 
selection. 

Therefore, after (komandokonpuriito ] transmitting, without 
BASF Lee doing with the phase transition of SCSI , because 
again it can make command phase , high speed data access 
becomes possible. 

[0043] 

Furthermore, this working example can do in order by fact 
that for other thanthose which were inscribed, broad cast 
function is used, distribution fabric to do same data to I/0 
device of plural , configuration , inaddition network , interface 
is not limited in FDDI, SCSI which was inscribed, isgood 
even with other network , interface . 

[0044) 

[Effects of the Invention] 

As above, explained, according to invention which is stated in 
the Claim I, because multi access control means which 
consists of network control means and I/0 device control 
means and protocol conversion means is provided, from 
information processing apparatus of plural access to the 110 
device of plural becomes possible without modifying I/0 
device. 

[0045] 

According to invention which is stated in Claim 2, because 
the SCSI controller inside I/0 device control unit and I/0 
device is converted commonly, equipment configuration can 
be simplified. 

[0046] 

According to invention which is stated in Claim 3, because 
thetreatrnent data which information processing apparatus of 
plural executed is housed in the 110 device , it is possible at 
time of damage to do preparatory changeover in the high 
----..:1 

Page 13 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 216



JP1994301607 A 

[0047) 

ID!t*Ii 4 ~lttCT.>~fiJII::J;:.tt,l;f, I \·:;?7·:;-::J.::r 
-11~-;t;~J!I!"t '.);:c:IJ<~~, ~1:: DAT CT.> Yo 
~~ml.iiJ'fnit.i: 1/0 .::;= J\.{.A~ffll.'t.:±l!~' 110 .::;= 
I\;( .Afiji::J \ -:JJ;}7-y-::J"t '.)m'*R~J:!l!~fii~4\¥ 
:ii::"t ;.;;:cr::J:: LJ. ;~.::;=1'7VJm:tJ<~~~::t.i:;.;. 

[0048] 

ID!i*Ii 5!2lttCT.>~!I,iji::J;:;h,l;f, SCSI ~~-(g.;(;:_, 
1Z?.:r.-.Ac~m-<;_.,;r?.:r.-.Ar::~lf!L. "t't. \'-' 
CT.>t:, ii1li.AJL---::J·:;t-CT.> I/O .::;,\.-f.A7?1z.A~ 
~~"t ;.;;:c:tJ<~~;.;. 

r lSI iii 0) rm !t!ta::m a,ij 1 

[ISI1) 

;;t;:~IIACT.>-~1Jiff~JI::f*-'.)-:,.,.A.:;:-.L..m.JiK;ISI~if.> 

'-'· 
[ISI2) 

-:c Jt-77?1z.A$1J~~~O)::fo·:;?m.liK;~S~~if.> 
'-'· 
[ISI3) 

f'IU&~J:!l!~~:IJ'i;-:c Jt-77?-t!.Al!ill~~~" 
CT.>t!J~7L.t-.L..O)?:>t--:c·:;t-~jf-'"9@~if.>~. 

[lSI4] 

-:c~77?-iz.AM~~~~i;M*R~J:m~~" 
0)~ 7? L.t-.L..O)?:;t--:('·:;t-~jf-"t@~if.>~. 

[lSI5] 

1iHIBl!:JI~~:IJ,i;-:c Jt-77?i!.Alfi!J~~tii"'-
0)7?1z.A-:..--7;_.,.A~jf-T. 

[lSl6] 

-:c Jt-77?-iz.Al!iiJ~~tl[c 110 ..:r 1 \.-f.A~-i* 
it~-ttt.:~~CT.>it!!.CT.>~Ii1!l-01JO)mnK:~if.>~. 

[ ISI7] 

~m•m*R~Im~tii~.-;~~••*R~Jm~tl[ 
~O)~~~~"~~~CT.>it!!.0)~1J!ff~O)mnK:~ 
ff-"tlSI~if.>'.). 

[ISIS]· 

11U&~J!I!~~~ 1/0 TI\;(.AI::J::?"t'l\•:;?7·:; 
-::J"t;.;~~(])it!!.O)~Ii1!l~O)mJlK:~jf-"t@~if.> 

'-'· 

speed. 

[0047] 

1994-10-28 

According to invention which is stated in Claim 4, it 
ispossible to manage backup data monistically, when 
demountable 110. device like theespecially DA T is used, 
media management becomes easy by specificdoing 
information processing apparatus which backup is done in 
every I/0 device . 

[0048] 

According to invention which is stated in Claim 5, because 
the SCSI is separated.into transmission interface and 
reception interface, I/0 device access of high throughput can 
be actualized. 

[Brief Explanation of the Drawing(s)] 

[Figure I) 

It is a system diagram which relates to one Working Example 
of this invention. · 

[Figure 2] 

It is a block diagram of multi access control device . 

[Figure 3] 

It is a figure which shows format of control frame to multi 
access control device from information processing apparatus . 

[Figure 4] 

It is a figure which shows format of end frame to information 
processing apparatus from multi access control device . · 

[Figure 5] 

access sequence to multi access control device is shown from 
information processing apparatus . 

[Figure 6) 

It is a configuration of other Working Example when multi 
access control device and l/0 device areunified. 

[Figure 7] 

It is a figure which shows configuration of other Working 
Example when changeover to preparatory information 
processing apparatus is done from current system information 
processing apparatus . 

[Figure 8] 

information processing apparatus it i~ a figure which shows 
configuration of other Working Example when backup it does 
with I/0 device .. 

Page 14 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 101367,296) 

Oracle Ex. 1002, pg. 217



JP1994301607 A 

[ISJ9] 

":l Jv77?-I!.Ai!illtlll~fltJ( 2 ::$:0') SCSI t-f51Jtlll 
TQ~O')~~~O')m~t-~TISJ~~Q. 

[ f,fii}Cl) ~ BJU 

10 

FDDI 

20 

11UfH!!B.Ut11 
30 

11UIB!Hll!~'il 

40 

1w¥1H.!Ull!~11 

50 

-:r Jv77?-tz.Ai!illttll~fl 
500 

.::t-·:~l-'7-?f51Jttll$ 

510 

110 -T,\1.Af51Jttllrul 

520 

:1 o 1-:::1) v !A: t~H!Il 
60 

SCSI 

70 

IIO-TJ\-{.A 

80 

IIOTJ\-{.A 

90 

I/0-TI\-{.A 

Drawings 

[ISJ1] 

1994-10-28 

[Figure 9] 

It is a figure which shows configuration of other Working 
Example where the multi access control device controls SCSI 
of2. 

[Explanation of Symbols in Drawings] 

10 

FDDI 

20 

information processing apparatus 

30 

information processing apparatus 

40 

information processing apparatus 

50 

multi access control device 

500 

network control unit 

510 

110 device control unit 

520 

protocol conversion section 

60 

SCSI 

70 

1/0 device 

80 

1/0 device 

90 

110 device 

[Figure 1] 

Page I 5 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 1 0/367,296) 

Oracle Ex. 1002, pg. 218



JP1994301607 A 

20 

1 0 FDD I 

[[ID9] 

30 

1/0 
7 J'(.{ .A 

(a) 

7 0 

40 

50 0 '*'!/ ~r:J-Q 
~J~'Illl ' ' 

5 2 o :to t- :::uv 
~~$ 

5 1 0 I /0-TJ'(-{ .A 
ili!JOOffi! 

I/0 
.:;= 1'<.{ .A 

(b) 

[Figure 9] 

60 SCSI 

I/0 
7 1'\.{ .A 

(n) 

9 0 

1994-10-28 

Page 16 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 219



JP1994301607 A 

I 0 

[1812] 

1 0 

1 0 
[Figure 2] 

1 0 

51 0 !_ _________________________________________ J 

6 0 

[@3] [Figure 3] 

1994-10-28 

Page 17 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 220



JP1994301607A 
100 110 tao 130 140 
~ < 

rl SNAP l p 
TCP I FDDl"-~:!1' "-~!/ "'~!I "'~:!/ 

" 
1411~ ,.., 

14 14 
~~ 

14 1 3 

14 2 0 

14 1 8 

1 4 1 9 

([gj4] 

' 
~ 

~ 

~ 

~. 

SJIIV'1ll~~!JI St:SI No. 'J'fiJ 

7'1'.-(;:ID 1 ~, r ::I'V~}: --
t.t---7:-r;;t.llo. 't ~ 

7'-Mo~?::,;J. 

C D B 

r 't 5 

I '"'('((I 
. -------------- 14.7 0 

SAVE DMA :b?;:tl-

[ISJ5] 

r-1 

r---
I'--

7-9. 

4 21 

1 4 1 2 l'fiJ:h{)l!, ~ 

1416 ~~ 
1415 ~~ 

[Figure 4] 

14 7 4 

1473 

[Figure 5] 

1994-10-28 

Page 18 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,54&; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 221



JP1994301607A 

T'-:!Z'l!Ji6ti'J.Rt~ 

T'-:-~-1JiOiJ.tll~ 

aT?v-.umm 

.77\.1-..w!fi:i 

[@6] 

1994-10-28 

:to 1- ::vv 
OW520 

I /071'<-1 A l /OT'IH A a 
flilJQS!O 70 

?v-.L.3't~ 
RAMI:?li-.L. 
~~~·I? 7" 1) ';)If 

lliOi'JI.
(wv-.L.

?v-.L.3'tffl
R{\MI:711-~(
~~ ~7YIJ::.t

SCSI::J;;>;:.tjt
.Zlkilil..,

!&(I.
tfibi!/.llii:fj:

i 7~1!~1!-$-r~~. tli9lm
I 'I

~Oil j ~v'l:-11 J-qHU

I
:r-~1!1'11

:;..:r-~::t. (A)

.I J'q:t~:n1~-f

l 1lJij.(j.

I c
I A7'-~7.ft

711-.l..Htli~' llf77 v-.L.fli~ 1-'

~ .

3tfl!7ll-b.~

~I> S C S I ::J"'<'::.t !-!
'iltlllt...

:em 1J.m7it

?v-.L.Hm~
J;J.r(A> ~.:fillr;

[Figure 6]

Page 19 Paterra® lnstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 222

JP1994301607 A 1994-10-28

2 0 30 40
{ < ~

........- 11?111~ 11~31 t----------- ~-~ll I--

1 ~ r 1-' 50 0 *':J J~slJ-1
50 !tJJ~

Jllo::J-71 i!;;:. ftlj~~M: ~ l_...-5 2 0 ~ii:JJlJ

7 0 O"' I-
f-.1

I / 0 ~JJllff!S r ~;_.,7 0 I /071'~-1' .A

[~8] [Figure 8]

Page 20 Paterra® lttstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 223

JP1994301607A

20 30 40

2 0 1 3 0 l, 4 0 1
D-:tJJ!II/Or/~-1 A P-:tJJ!II/0-TJ'\...f :A O-:JJ)v!/0-Trt;...f A

1 0

60 SCSI

7 2 8 2 9 2

[rgj7J [Figure 7]

.1994-10-28

Page 21 Paterra® InstantMt® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 224

JP1994301607 A

2 1

1 0

2 2

Jj,.ffi 2 ----------

1994-10-28

23

~ 1

Page 22 Paterra® lnstantMT® Machine Translation (U.S. Pat Ser. No. 6,490,548; Pat. Pending Ser. No. 1 0/367,296)

Oracle Ex. 1002, pg. 225

PCT WORLD INTELLEC1UAL PROPERTY ORGANIZATION
International Bureau

IN1ERNATIONAL APPLICATION PUBLISHED UNDER TiiE PATENT COOPERATION TREATY (PCD
(51) International Patent Classification 6 : (11) International Publication Number: WO 98/36357

Al G06F 12/00
(43) International Publication Date: 20 August 1998 (20.08.98)

(21) International Application Number: PCT/US98/02131 (81) Designated States: CA, CN, D.., JP, MX, NO, European patent
(AT, BE, CH, DE, DK, ES, Fl, FR., GB, GR, IE, IT, LU,

(22) International Filing Date: 5 February 1998 (05.02.98) MC, NL, PT, SE).

(30) Priority Data:
08n96,085

Published
5 February 1997 (05.02.97) us

(71) Applicant: TRANSWITCH CORPORATION [US/US]; 3 En­
terprise Drive, Shelton, CT 06484 (US).

(72) Inventors: LAU, Joseph, C.; IF, 29 Bamboo Road Ill, Sci­
ence-based Industry Park, Hsinchu ('IW). ROY, Subhash,
C.; Apartment 3A, 905 Mix Avenue, Hamden, CT 06514
(US). CAILAERTS, Dirk, L., M.; Hoevestraat 13, B-3110
Rotselaar (BE). V ANDEWEERD, Ivo, Edmond, Nicole;
Vuurkruisenlaan I, B--3500 Hassett (BE).

(74) Agent: GORDON, David, P.; 65 Woods End Road, Stamford,
CT 06905 (US).

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SHARED MEMORY CONTROL USING MULTIPLE LINKED LISTS WITH POINTERS, STATUS FLAGS, MEMORY
BLOCK COUNTERS AND PARITY

HOO POIHJIR (
POSillON COUNT£R ;

FlAG TAIL POIN1ER ,..-...
UNK LIST #1 I BI.DCK POINTER ill IBI.OCKPOINTER Ill I BUICK COUNTER I I QUEIJf...EID'JY I
UNK LIST f2 IBLOCKPOINTER Ill I BLOCK POINTER Ill I lllDCK COUNTER I I QUDlE.JliPIY . I

.
liNK LIST fN I BI.DCK POINlER Ill IBLOCKPOINTER Ill I BI.DCK COUNTER I I QUElJE..E)IPIY I
FREE usr IBt.OCKPOINTER Ill I tm USED I IBtOCKCOIJNTER I I QUEIJE....EJ,II'lY I

UNUSED I BlOCK POINTER I

(57) Abstract

Apparatus and methods for allocating shared memory utilizing linked lists (LLs) use a management RAM which controls the flow
of data to/from a shared memory (RAM), and stores information regarding a number of LLs and a free link list (FLL) in the RAM, and a
block pointer tci unused RAM locations. A head pointer (HP), tail pointer (TP), block counter and empty flag {EF) are storetl for each data
link list. The HP and TP each include a block pointer and a position counter. The block counter contains the number of blocks used in
the particular queue. An EF indicates an empty queue. The FLL includes a HP, a block counter, and an EF. Each page of RAM receiving
the incoming data includes locations for storing data. The last location of the last page in a block stores a next-block pointer plus parity
information, and in the last block of a queue, is set to all ones. An independent agent used in the background monitors the integrity of the
LL structure.

Oracle Ex. 1002, pg. 226

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the Per on the front pages of pamphlets publishing international applications under the Per.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Annc:nia FI Finland LT Lithuania SK Slovakia
AT Austria FR Prance LU Luxembourti SN Senegal
AU Australia GA Gabon LV La!via sz Swaziland
AZ Aurbaijan GB United Kingdom MC MOIWXI TD Chad
BA Bosnia and Herzegovillll GE Gemgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajilcistan
BE Belgium GN Guinea MK 1bc: lbnner Yugoslav TM Turkmenistan
BF Burlrlna Paso GR Grm:e Republic of Macedonia TR Turkey
BG Bulgaria HU Hungruy ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland MN Mongolia UA Ukraine
BR Bruit IL lmlel MR Mauritania VG Uganda
BY Belanls IS Iceland MW Malawi us United States of America
CA Canada IT Italy MX Mrllico uz Uzbekistan
CF Central A friCBII Republic JP Japan NE Niger VN Viel Nam
CG Congo KE Kenya NL Nerhcrland& YU Yugoslavia
CH Swit=land KG Kyrgyzstan NO Norway zw Zimbabwe
CI Cllle d'Ivoire KP Dcmoc:ratic People's NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
cu Cnba KZ Kazalastan RO Romania
cz Ca:ec::h Republic LC Saint Lucia RU Russian Federation
DR Oermany u Liec:hu:nsrein SD Sudan
DK Denmarlc LK Sri Lanka SE Sweden
EE Estonia LR Liberia SG Singapore

Oracle Ex. 1002, pg. 227

W098136357 PCT/US98/02131

1

SHARED MEMORY CONTROL USING MULTIPLE LINKED LISTS WITH POINTERS, STATIJS FLAGS, MEMORY
BLOCK COUNTERS AND PARITY

This application is related to co-owned u.s. Serial No.
08/650,910, filed May 17, 1996, which is hereby incorporated by
reference herein in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to memory management. More

particularly, the present invention relates to apparatus and
methods of managing a plurality of data queues stored in linked
lists in a shared common memory. The invention has particular
application to the use of a very large scale integrated circuit
(VLSI) for the buffering of telecommunications information such
as ATM data, although it is not limited thereto.

2. State of the Art

In high speed communication networks, the management of buffer
resources is one mechanism of increasing network performance.
One group of methods of managing buffer resources is known as
sharing, where a single RAM is simultaneously utilized as a
buffer by a plurality of different channels. Various sharing
methods are known (see Velamuri, R. et al., "A Multi-Queue

Flexible Buffer Manager Architecture", ~Document No. 0-7803-
0917-0/93) and each has inherent advantages coupled with inherent

·disadvantages in terms of blocking probability, utilization,
throughput, and delay. What is common to all sharing methods,
however, is that a mechanism is required to direct data into
appropriate locations in the RAM in a desired order so that the
data can be retrieved from the RAM appropriately. One such
mechanism which is well known is the use of link lists which are
used to manage multiple queues sharing a common memory buffer.
Typically, a link list comprises bytes qf data, where each byte

has at least one pointer (forward and/or backward) attached to
it, thereby identifying the location of the next byte of data in
the queue. The link list typically includes extensive

Oracle Ex. 1002, pg. 228

W0981363S7 PCf/US98/02131

2

initialization and self-check procedures which are carried out by

a microprocessor on a non-real-time basis. Thus, the use of
standard prior art link list structures to manage multiplex
queues sharing a common memory is not readily adaptable for VLSI
implementation, and is likewise not particularly suited to the
handling of very high speed telecommunications information where
processing and handling are dictated by the data rate of the
real-time telecommunications signal.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
an apparatus and method for control of memory allocation.

It is another object of the invention to provide a new link
list structure for managing queues in a shared memory.

It is a further object of the invention to provide a single
VLSI which utilizes a link list structure for managing queues of
high speed real time data in a shared memory.

It is an additional object of the invention to provide a link
list apparatus and method for controlling the flow of
Asynchronous Transfer Mode (ATM) telecommunications data into and
out of a shared buffer.

Another object of the invention is to provide an apparatus and
method for VLSI control of ATM data into and out of a shared RAM
by utilizing a separate RAM containing information related to the
plurality of link lists in the shared RAM.

In accord with the objects of the invention a management RAM
contained within a VLSI is provided for controlling the flow of
data into and out of a shared memory (data RAM) . The management
RAM is preferably structured as an x by y bit RAM which stores
information regarding y-2 data link lists in the shared RAM, a
free link list in the shared RAM, and a block pointer to unused
shared RAM locations. Information stored in the x bits for each

Oracle Ex. 1002, pg. 229

W0981363S7 PCf/US98/02131

3

data link list includes a head pointer, a tail pointer, a block
counter and an empty flag. In a preferred embodiment
particularly applicable to the control of ATM data, the head and
tail pointers are each composed of a block pointer and a position

counter, with the position counter indicating a specific page in
a block which is made up of a set of contiguous pages of memory,
and the block pointer pointing to the block number. Regardless
of how constituted, the head pointer contains the address of the
first word of the first memory page of the link list, and the
tail pointer preferably contains the address of the first word of
the last memory page in the link list. The block counter
contains the number of blocks used in the particular queue, and
has a non-zero value if at least one page is used in the queue.
The empty flag indicates whether the queue is empty such that the
content of the link list should be ignored if the queue-empty
flag indicates that the queue is empty.

Information stored in the management RAM for the free link list
includes a head pointer, a block counter, and an empty flag, but
does not need to include a tail pointer as free blocks are added
to the top of the free list according to the preferred embodiment
of the invention. As is discussed below in more detail, as data
from different channels is directed into blocks of the data RAM,
a link list is kept for each channel. As data is read out of the
data RAM, blocks become available to receive new data. It is
these freed blocks which are added to the free list. Block space
can be assigned from the free list before or after the unused
blocks (discussed below) are used.

To avoid excessive initialization requirements, an unused-block
pointer is provided in the management RAM, as discussed above,
and provides a pointer to the next unused block in memory.
Initially all link lists, including the free list, are empty, and
the unused block pointer is set to the number of blocks in the
memory. As data is written to a block of shared RAM memory, the
unused block pointer is decremented. When the unused block

pointer equals zero, all of the cell blocks are included in the
link lists (including the free link list) .

Oracle Ex. 1002, pg. 230

W0981363S7 . PCT/US98/02131

4

According to a preferred aspect of the invention, each memory

page of the shared data RAM receiving the incoming data (which

RAM is managed by the management RAM) is composed of M contiguous
memory addresses. Depending on the memory type, each address

location can be of size B bits. The most common sizes are eight
bits (byte), sixteen bits (word), thirty-two bits, and sixty-four
bits. The first M-1 locations in the page are used to store data.
The last (M'th) location of the last page in the block preferably

is used to store the address of the first location of the next
block of the queue plus an odd parity bit; i.e., the M'th

location of the last page in the block stores a next block
pointer plus parity information. If there are no more blocks in

the queue, the M'th location in the last page is set to all ones.

According to another aspect of the invention, an independent
agent is utilized. in the background to monitor the integrity of
the_ link list structure. The independent agent monitors the sum
of the count of all of the link list block counters plus the
unused blocks to ensure that it equals the total number of memory
blocks in the common RAM. If not, an error is declared.
Likewise, the independent agent checks each link list stored in
the management RAM for the following error conditions: head and

tail pointers are equal and the block counter is not of value

one; head and tail pointers are different and the block counter

is one; and, block counter equals zero. If desired, the
independent agent can also monitor the block pointers stored in
the M'th location of the last page of each block to determine

parity errors and/or to determine errors using parity or CRC.

Using the methods and apparatus of the invention, four

operations are defined for ATM cell management: cell write, cell
read, queue clear, and link list monitoring. In the cell write

operation, a cell is stored into a queue. More particularly,

when an ATM cell is received at a port w.so that it is to be
stored in queue number n (which stores cells of priority v for

port w), a determination is first made as to whether the queue is
empty. If it is not empty, the queue status (i.e., the tail

Oracle Ex. 1002, pg. 231

W0981363S7 PCf/US98/0ll3l

5

pointer and position counter stored in·management RAM) is
obtained, and a determination is made as to whether a new block
will be needed to be added to the queue. If a new block is not
required, the cell is written to the location indicated by the

tail pointer position, and the tail pointer position counter for
that queue in the management RAM is updated. If this is the last
page of a block, the M'th location of the page (in the shared

memory) is set to all ones. If a new block is required, either
because the queue was empty or because a previous cell had been
written into the last page of a block, a block must be obtained.
If it is a first block of a queue, initial queue parameters are
stored. If it is not the first block of the link list, a block
is obtained from the free list and the free list is updated; or
the block is obtained from the unused blocks and the block
pointer for the unused blocks is updated. Then, the cell is
written to the queue, and the tail pointer, position counter, and
block counter for the queue are all updated in the management
RAM.

The cell read operation is utilized where a cell is to be read
from a queue. In the cell read operation, the cell indicated by
the head pointer and head pointer position counter for that queue
is read from the queue. After reading the cell from the queue a
determination is made as to whether the cell was either the last
cell in a block and/or the last cell in the queue. If it is
neither, then the queue status is updated {i.e., the head pointer
position counter is changed), and another cell read operation is
awaited~ If the cell is the last cell in the block, then the
queue status preferably is checked for correctness by verifying

the parity of the pointer (using a parity bit), and is updated by
changing the head pointer and head pointer position counter. The
free list is updated by adding the freed block to the head of the
free list, and the free list and link list block counters are
updated. If the cell is the last cell in the queue, the
procedure for the last cell in the block is followed, and the
queue empty flag is set.

Oracle Ex. 1002, pg. 232

W0981363S7 PCf/US98/0l131

6

The queue clear operation is a microprocessor command provided
for the purpose of clearing a queue. When the queue clear

operation is presented, the queue status is. updated by setting
the queue flag, and the blocks in the queue are added to the head

of the free list which is likewise updated.

The link list monitoring operation is the agent which monitors

the integrity of the link list structure whenever the cell write,

cell read, and queue clear operations are not running. As set
forth above, the link list monitoring operation monitors the
linked lists for errors by checking that the sum of the count of

all of the link list block counters plus the .unused blocks equals
the total number of memory blocks in the common RAM, that when
head and tail pointers are equal the block counter is set to one,

that when head and tail pointers are different the block counter
is not set to one, etc.

Additional objects and advantages of the invention will become
apparent to those skilled in the art upon reference to the
detailed description taken in conjunction with the provided
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of an apparatus incorporating the

link list memory management RAM of the invention.

Figure 2 is a chart showing the structure of the memory

management RAM of Figure 1.

Figure 3a is a diagram of an example of the shared data memory
of the apparatus of Figure 1.

Figure 3b is a diagram of the details of a page of one of the
blocks shown in Figure 3a.

Figure 3c is a diagram of an example of the information

contained in the memory management RAM of Fig. 1 for managing the
shared data memory example of Figure 3a.

Oracle Ex. 1002, pg. 233

W098136357 PCTIUS98102131

7

Figures 4a - 4d are flow charts for the write, read, queue

clear, and link list monitoring operations carried out by the

flow controller of the apparatus of Figure l.

Figures 5a-5d are state machine diagrams for a write, read,
clear, and monitor state machine according to the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention will now be described with reference to the
physical layer VLSI portion of an ATM destination switch

described in parent u.s. Serial No. 08/650,910, although it is
not limited thereto. As seen in Fig. 1, and as discussed in the
parent application, the physical layer portion 130 of the ATM
destination switch 100 preferably includes a UTOPIA interface
150, a managing RAM 162, a flow controller 166, a microprocessor
interface 167, channel interface buffers 170, and a RAM interface
175. The flow controller 166 is coupled to the UTOPIA interface
160, the managing RAM 162, the microprocessor interface 167, the
channel interface buffers 170, and the RAM interface 175. The
UTOPIA interface generally receives cells of ATM data in a byte­
wide format, and passes them to the flow controller 166. Based

on the destination of the cell (as discussed in the parent
application), and the priority of the cell, the flow controller

166 writes the cell into an appropriate output buffer 170. The

output buffer is preferably capable of storing at least two ATM

cells so that one cell can be read out_of the buffer as another

is being read into the buffer without conflict. If buffer space

is not available for a particular cell at a particular time, the

flow controller 166 forwards the ATM cell via the RAM interface
175 to a desired location in a shared RAM 180 (which may be on or
off chip) based on information contained in the managing RAM 162

as discussed in more detail below. When room becomes available
in the output buffer 170 for the cell, the flow controller 166

reads the data out of the shared RAM 180, and places it in the
buffer 170. In the background, when not receiving data from the

UTOPIA interface, and when not reading data from or writing data
to the shared RAM 180 or writing data to the buffers, the flow

Oracle Ex. 1002, pg. 234

W098136357 PCI'/US98/02131

8

controller 166 monitors the integrity of the link list structure

contained in the managing RAM, as is described in more detail

below. In addition, the flow controller 166 cari perform various

functions in response to microprocessor command received via the

microprocessor interface 167.

The managing RAM 162 may serve various functions, including
providing information for assisting in the processing of the

header of the ATM cell as discussed in the parent application
hereto. For purposes of this invention, however, the managing
RAM 162, or at least a portion thereof, is preferably provided as

a x bit by y word RAM for the purpose of managing y-2 link lists

which are set up in the shared RAM 180 (y-2 equalling the product
of w ports times v priorities). Thus, as seen in Fig. 2, a link

list information structure for y-2 data queues includes: a head
pointer, a tail pointer, a block counter, and a queue empty flag
for each of the y-2 data queues; a free list block pointer, block
counter, and queue empty flag for a free list.; and a block
pointer for the unused blocks of memory. Each head pointer and

tail pointer preferably includes a block po~nter and a position
counter, with the block pointer used for pointing to a block in
the memory, and the position counter being used to track pages
within a block of memory. Thus, for example, where ATM cells of
fifty-three bytes of data are to be stored in the shared memory,
and each cell is to be stored on a "page", a block having four

contiguous pages may be arranged with the position counter being

a two bit counter for referencing the page of a blo~k. The block
counter for each queue is used to reference the number of blocks

contained within the queue. The queue empty flag when set·

indicates that the queue is empty, and that the pointers

contained within the queue as well as the block count can be

ignored.

As suggested above, the head pointer for each link list queue
contains the address of the first word of the first memory page

of the queue in the shared memory. The tail pointer for each

link list queue contains the address of the first word of the

last memory page in the queue. Each memory page of the shared

Oracle Ex. 1002, pg. 235

W0981363S7 PCf/US98/02131

9

memory is composed of M contiguous memory addresses. Depending

on the memory type, each address location can be of size B bi.ts,
with common sizes being eight bits (byte), sixteen bits (word),

thirty-two bits, or sixty-four bits. In accord with the
preferred embodiment of the invention, the address locations are
sixteen bits in length with the first M-1 locations in a page
containing the stored information. The M'th location of a last
page in a block is used to store a next block pointer which is
set to the first location of the next block plus an odd parity
bit. Where the block is the last block in the queue, the M'th
location of the last page in the last block is set to all ones.
Where the page is neither the last page of the block, nor the
last block in the queue, the M'th location of the page is not
utilized. In the preferred embodiment of the invention used with
respect to ATM telecommunications data, each page is thirty-two
words in length (i.e., M = 32), with each word being sixteen
bits. Thus, an ATM cell of fifty~three bytes can be stored on a
single page with room to spare. It should be appreciated, that
in some applications, only the data payload portion of the ATM
cell (i.e., forty-eight bytes), and not the overhead portion
(five bytes) will be stored in the shared memory. In other
applications, such as in switches where routing information is

added, cells of more than fifty-three bytes may be stored.
Regardless, with a thirty-two word page, system addressing is

simplified.
An example of the memory organization of the shared memory is

seen in Fig. 3a. In Fig. 3a, two active link list data queues
are represented, as well as a free list queue and an unused
block. In particular, memory blocks 512, 124, and 122 are shown
linked together for a first queue, memory blocks 511, 125, and

123 are linked together for a second queue, memory blocks 510 -
125 are linked together for the free list queue, and memory

blocks 121 - 1 are Unused. It will be appreciated that in the
preferred embodiment of the invention, each page contains thirty­
two sixteen bit words. Thus, the thirty-second (M'th) word of

memory block 512 (seen in more detail in Fig. 3b) contains a

pointer (the ten least significant bits) which points to memory
block 124, the thirty-second word of memory block 124 contains a

Oracle Ex. 1002, pg. 236

W098!36357 PCTIUS98/0ll31

10

pointer which points to memory block 122, and the thirty-second
word of memory block 122 contains all ones, thereby indicating
the last word in the queue. Likewise, the· thirty-second word of
memory block 511. contains a pointer which points to memory block
125, the thirty-second word of memory block 125 contains a
pointer which points to memory block 123, and the thirty-second

word of memory block 123 contains all ones, thereby indicating
the last word of that queue.

The free list of Fig. 3a is seen extending from block 510 to
block 126. The unused blocks run from block 121 to block 1.

Turning to Fig. 3c, specifics are seen of the management RAM
which would be associated with managing the shared memory in the
state of Fig. 3a. In particular, information for link list #1 is
seen with a head pointer having a block pointer having a value
equal to 512 and a position counter set at "00" to indicate a
first page of memory in the block storing data. The tail pointer
of the link list #1 information has a block pointer having a
value equal to 122 and a position counter set to "11" to indicate
·that all pages of block 122 are being used. The block counter of
the information for link list #1 is set to a value of three, and
the queue empty flag is not set (i.e., equals zero). Information
for link list f2 is seen with a head pointer having a block
pointer having a value equal to 511 and a position counter set at
"01" to indicate that the data first occurs at a second page of
the block (i.e., the first page already having been read from the
block) . The tail pointer of the link list f2 information has a
block pointer having a value equal to 123 and a position counter

set at "10" which indicates that there is no data in the last
page of the block. The block counter of the link list.#2
information is also set to a value of three, and the queue empty
flag is not set. The value of the head and tail pointers and
block count for the information of link list fN are not
indicated, as the queue empty flag of link list #N is set (equals
one), thereby indicating that the pointers and block counter do

not store valid data. Likewise, while details of information for
other link lists are not shown, the only data of interest would

Oracle Ex. 1002, pg. 237

W0981363S7 PCTIUS98/02131

11

be that the queue empty flags related to all of those link lists

would equal one to indicate that no valid data is being stored

with reference to those link lists. The head pointer of the free
list information has a block pointer set to a value 510, and a
block count of 385. The queue empty flag of the free list is not
set, as the free list contains data. Finally, the·block pointer
relating to the Unused queue is shown set to a value of 121. It
is noted that in order to increase performance, the free list
head pointer and block counter information is preferably
implemented in a series of flip-flops, and is thus readily
available for purposes discussed below with reference to Figs.
4a-4d. The queue empty flags are also preferably similarly

implemented.

It should be appreciated that by providing the queue empty
flags and an Unused block pointer, excessive initialization
requirements are eliminated. As suggested above, the queue empty
flag indicates that there is no valid data for a link list and
that the head and tail pointers for that link list and the block
counter of that link list can be ignored. The Unused block
pointer is provided to point to the next unused block in shared
memory. As memory pages are written or used, the Unused block
pointer is decremented until a value of zero is reached. At that

point, all cell blocks are included in the link lists (including
the free list) • As previously mentioned, when a block is read
from the shared memory, the available block is added to the free

list. When a new block is required for adding to a link list·,
the block space may be taken from either the free list or from
the Unused blocks, and available blocks from the free list may be

taken either before or after the Unused blocks are used.

Turning now to Figure 4a, a flow chart of operations of the

flow controller 166 of the apparatus 100 of Figure 1 is seen with
respect to writing data to the shared memory. It is noted that
while the operations are shown in flow chart form, in accord with

the preferred embodiment of the invention, the operations are
carried out in hardware. When the flow controller 166 determines
that it is receiving an ATM cell which cannot be written into a

Oracle Ex. 1002, pg. 238

W0981363S7 PCT/US98/0llll

12

buffer directly, the flow controller makes a determination at 200

(by checking the management RAM queue empty flag associated with
that queue} as to whether the queue which should receive that

cell is empty. If the queue is not empty, at 202 the queue
status (i.e., the tail pointer and position counter} for that

queue is obtained, and at 204 a determination is made as to

whether a new block will be needed to be added to the queue
(i.e. , is the posit ion counter equal to "11"} . If a new block is

not required,. at 206 the cell is written to the shared RAM

location indicated by the tail pointer position counter for that

queue (stored in management RAM}, and at 208 the tail pointer

position counter for that queue is updated. At 210, a

determination is made as to whether the cell is being written
into the last page of a block. If so, at 212 the flow controller

writes a word of all ones into the M'th location of the page (in
the shared memory} •

If it is determined that a new block of shared RAM is required
to store the incoming cell because at 200 the queue was empty, at
214, a block is obtained from the either the free list or from
unused RAM. If the block is obtained from the free list, at 216,
the free list information is updated by changing the head pointer
of the free list (i.e., setting the head pointer to the value

stored in the M'th location of the last page of the obtained

block}, and by decrementing the block counter associated with the

free list. If the block is obtained from the unused RAM, the

block pointer for the unused RAM is decremented at 216.

Regardless, at 218, the cell is written to the queue, and at 220,

the tail pointer and block counter for the queue are both updated

in the management RAM (with the block counter being set to the

value one.), and the queue empty flag is changed.

If it is determined that a new block of shared RAM is required

to store the incoming cell because at 204 the tail pointer
·position counter of the link list indicated that the entire tail

block is storing data, at 222, a block is obtained from the

either the free list or from unused RAM. If the block is

obtained from the free list, at 224, the free list is updated by

Oracle Ex. 1002, pg. 239

W098/36357 PCf/US98/0l131

13

changing the head pointer of the free list (i.e., setting the.

head pointer to the value stored in the M'th location of the last

page of the obtained block), and by decrementing the block

counter associated with the free list~ If the free list becomes
empty because a block is removed, the queue empty flag of the
free list is set. If the block is obtained from the unused RAM,
the block pointer for the unused RAM is decremented at 224.

Regardless, at 228, the cell is written to the queue, and at 230,

the tail pointer and block counter for the queue are both updated
in the management RAM.

The details of the flow controller operation with respect to a

cell read operation (i.e., where a cell is to be read from a
queue because a buffer is available to receive the cell) is seen
in Fig. 4b. In particular, when a data buffer becomes available,
the flow controller at 250 reads the head pointer and tail
pointer in the management RAM for the link list associated with

the available data buffer. Then, at 252, the flow controller
reads from shared memory the cell at the location in the shared

memory indicated by the head pointer, and provides the cell to
the data buffer. After the data has been read, the flow
controller determines at 254 (based on the head pointer and tail
pointer) whether the cell was the last cell in the queue, and at
256 (based on the head pointer position counter) whether the cell
was the last cell in· a block. If it is neither, then at· 258 the

queue status is updated (i.e., the head pointer position counter
is changed), and another cell read operation is awaited. If at
254 it is determined that the cell is the last cell in the queue,
at 260, the head pointer for the free list (obtained from the

management RAM) is inserted into the last word of the last page

of the freed block. Then at 262, the free list in the management

RAM is updated by adding the freed block to the head of the free

list; i.e., by updating the free list block pointer and block
counter. At 264, the queue empty flag is set for the link list

which now has no blocks. If the free list was empty prior to

adding the freed block, the free list must be initialized (with

appropriate head pointer and block counter) and the queue empty
flag changed at 264. In addition, in the case were the free list

Oracle Ex. 1002, pg. 240

W0981363S7 PC'f/US98/01131

14

was empty prior to adding the freed block, the last word in the

freed block in the shared RAM should be set to all ones.

If at 256 it is determined that the cell which has been read

out of shared memory is the last in a block, then at 266, the

head pointer for the free list as obtained from the management

RAM is inserted into the last word of the last page of the freed

block. Then, at 268, the queue status for the link list is

updated by changing the block pointer and position counter of the

head pointer (to the value contained in the last word of the page

of memory being read out of the shared memory), and by

decrementing the block counter. Again, it is noted that if the

free list was empty prior to adding the freed block, the free

list must be initialized (with appropriate head pointer and block

counter) and the queue empty flag changed, and the last word in

the freed block in the shared RAM should be set to all ones. It
is also noted, that upon obtaining the pointer in the M'th

location of the last page of the block, according to the

preferred embodiment of the invention, at 270, a parity check is

done on the.pointer. At 272, the calculated parity value is

compared to the parity bit stored along with the pointer. Based

on the comparison, at 274, a parity error condition can be

declared, and sent as an interrupt message via the microprocessor

interface port 167 (Fig. 1) to the microprocessor (not shown).

Preferably, when a parity error is found, the microprocessor

treats the situation as a catastrophic error and reinitializes

the management and data RAMs.

Figure 4c sets out the operation with respect to the queue

clear microprocessor command (received via the microprocessor

interface 167) . When the queue clear operation is presented, at

270 the queue status for the link list is updated by setting the

queue empty flag, and at 272, the blocks in the queue are added

to the head of the free list which is updated in a manner

discussed above (Fig. 4b) with reference to the cell read

operation.

Oracle Ex. 1002, pg. 241

W098136357 PCTIUS98/0l131

15

The link list monitoring operation seen in Fig. 4d is the
hardware agent which monitors the integrity of the link list
structure whenever the cell write, cell read, and queue clear
operations are not running. The link list monitoring operation
preferably monitors four different error conditions. In
particular, at 280, the counts of all of the link list block
counters (including the free list) where the queue empty flag for

those link lists are not set are summed together with the unused
blocks and compared the total number of memory blocks in the
common RAM. If the sum does not equal the total number of memory
blocks in the common RAM, at 281, an error condition is declared
by triggering a microprocessor interrupt bit. At 282, the head
and tail block pointers of each link list are compared. If at
284 the head and tail block pointers are determined to be equal,
at 286 the block counter is checked, and if not equal to one, at
287 an error condition is declared. If the head and tail block
pointers are not equal when compared at 284, at 288 the block
counter is checked, and if the block count is equal to one, at
289 an error condition is declared. At 290, the block counter
for each link list whose queue empty flag is not set is checked;
and if the block counter equals zero, at 291 an error condition
is declared.

According to the preferred embodiment of the invention, the

write, read, clear, and monitoring operations of the flow
controller are carried out in hardware which may be generated by
using HDL code to synthesize hardware gates via use a VHDL
compiler. Figures Sa-Sd are state machines diagrams
corresponding to the HDL code, including a write state machine
(Fig. Sa), a read state machine (Fig. Sb), a clear state machine
(Fig. Sc), and a monitoring state machine (Fig. Sd). The gates
created using the code may be standard cell technology or gate
array technology.

It should be appreciated that the invention is not intended to
be limited to a strictly hardware implementation, but is also
intended to apply to memory management utilizing a microprocessor
with associated firmware (e.g., a ROM).

Oracle Ex. 1002, pg. 242

W0981363S7 PCTIUS98102131

16

There have been described and illustrated herein an apparatus
and method ~or management of shared memory. While particular

embodiments of the invention have been described, it is not
intended that the invention be limited thereto, as it is intended

that the invention be as broad in scope as the art will allow and
that the specification be read likewise. Thus, while the
invention has been described with reference to VLSI implemented
ATM equipment, it will be appreciated that the invention has
broader applicability. Also, while specific details of RAM
sizes, etc. have been disclosed, it will be appreciated that the
details could be varied without deviating from the scope of the
invention. For example, while a management of RAM of size x bits
by y words has been described for managing y-2 link lists of
data, it will be appreciated that the management RAM could assume
different sizes. Thus, for example, instead of using a separate
word for the unused block pointer, the unused block pointer could
be located in the "tail pointer" location of the free list (which
itself does not use a tail pointer), thereby providing a
management RAM of x bits by y words for managing y-1 link lists
of data. In addition, rather than providing the information
related to the link lists with the head pointer, tail pointer,

block counter, and queue empty flag in that order, the variables
of the link list could be reordered. Similarly, instead of
providing a shared memory having pages of thirty-two words in
depth, each word being sixteen bits in length, it will be
appreciated that memories of different lengths and depths could

be utilized. Also, rather than locating the pointer to the next
block in the last word of the last page of a previous block, it
will be appreciated that the pointer could be located in a

different location. Further yet, while specific flow charts have
been disclosed with respect to various operations, it will be
appreciated that various aspects of the operations can be
conducted in different orders. In addition, while particular
code.has been disclosed for generating gate arrays which conduct

the operations in hardware, it should be appreciated by those

skilled in the art that other code can be utilized to generate
hardware, and that hardware and/or firmware can be generated in

Oracle Ex. 1002, pg. 243

W098136357 PCTIUS98/02131

17

different manners. Furthermore, while the invention was

described with respect to separate RAMs for the management RAM

and the shared data RAM, it will be appreciated that both

memories may be part of a larger single memory means. It will

therefore be appreciated by those skilled in the art that yet
other modifications could be made to the provided invention

without deviating from its spirit and scope as so claimed.

Oracle Ex. 1002, pg. 244

W098136357 PCT/US98102131

18

Claims:

1. Apparatus for managing the storage of data in a memory,

comprising:
a)_ a shared memory means having a plurality of data storage

locations;
b) control means for receiving said data and forwarding said

data to desired of said plurality of data storage locations in

said shared memory means, wherein said data is stored in said
plurality of data storage locations in the form of a plurality of
link lists, each link list having a head;

c) management memory means for storing information regarding
each of said plurality of link lists, said information including
a head pointer and a queue empty flag for each link list, said
head pointer for each particular respective link list pointing to
a location of a respective said head of that particular link
list, and said queue empty flag for a link list indicating that
that link list has no valid data contained therein.

2. An apparatus according ·to claim 1, wherein:
said control means reads data from said shared memory means,
at least a plurality of said data storage locations are in the

form of a free link list, said free link list relating to data
storage locations from which data has been read by said control

means, and
said management memory means includes a pointer and a queue

empty flag for said free link ~ist.

3. An apparatus for managing the storage of data in a memory,

comprising:
a) a shared memory means having a plurality of data storage

loc~tions;

b) control means for receiving said data and forwarding said
data to desired of said plurality of data storage locations in
said shared memory means, and for reading data from said shared
memory means, wherein said data is stored in said plurality of

data storage locations in the form of a plurality of link lists,
each link list having a head;

Oracle Ex. 1002, pg. 245

W098/36351 PCTIUS98/0l13l

19

c) management memory means for storing information regarding

each of said plurality of link lists, said information including
a head pointer for each link list queue, said head pointer for
each particular respective link list pointing to a location of a
respective said head of that particular link list,

wherein upon initialization, at least a plurality of said data
storage locations of said shared memory means are unused, and
after utilization, at least a plurality of said data storage
locations are in the form of a free link list, said free link
list relating to data storage locations from which data has been
read by said control means, and

wherein said management memory means includes a pointer to at
least one of said unused data storage locations, and said
management memory means includes a pointer for said free link
list.

4. An ·apparatus according to any preceding claim, wherein:
at least upon initialization, at least a plurality of said data

storage locations of said shared memory means are unused, and
said management memory means includes a pointer to at least·one

of said unused data storage locations.

5. An apparatus according to any previous claim, wherein:
said shared memory means is arranged in a plurality of blocks

with each block having a plurality of said data storage
locations, and

said information stored in said management_memory means
regarding each of said plurality of link list queues includes a
block counter for each of said plurality of link list queues,
each block counter counting the number of blocks contained.in
that link list queue.

6. An apparatus according to claim 5, wherein:
each of said plurality of blocks is arranged as a plurality of

contiguous pages with each page having a plurality of said data
storage locations, and

Oracle Ex. 1002, pg. 246

W0981363S7 PCT/US98/0%131

20

each said head pointer comprises a block pointer which points

to a block and a page counter which points to a page in said

block.

7. An apparatus according to claim 5, wherein:

each block storing data includes at least one location

containing one of (i) a pointer to a next block in the link list,

and (ii) an indicator which indicates that the block is the last

block in the link list.

8. An apparatus according to claim 7, wherein:
said pointer to a next block in the link list includes a parity

bit for said pointer.

9. An apparatus according to claim 6, wherein:

each block storing data includes at least one location in a
last page of that block containing one of (i) a pointer to a next
block in the link list, and (ii) an indicator which- indicates
that the block is the last block in the link list.

10. An apparatus according to any previous claim, wherein:
said information includes a tail pointer for each link list

containing said data.

11. An apparatus according to claim 6, wherein:
said information includes a tail pointer for each link list

containing said data,
each of said plurality of blocks is arranged as a plurality of

contiguous pages with each page having a plurality of said data

storage locations,

each said head pointer comprises a first block pointer which

points to ~ block and a page counter which points to a page in

said block, and

each said tail pointer comprises a second block pointer which

points to a tail block and a page counter which points to a page

in said tail block.

Oracle Ex. 1002, pg. 247

W0981363S7 PCf/US98/02131

21

12. An apparatus according to claim 6, wherein:
said data comprises ATM data received in cell format, and each

said page includes enough of said data storage locations to store
all of the data contained in an ATM cell.

13. An apparatus according to claim 12, wherein:
each page includes thirty-two sixteen bit word locations.

14. An apparatus according to claim 5, wherein:
said control means reads data from said shared memory means;
at least a plurality of said data storage locations are in the

form of a free link list, said free link list relating to data
storage locations from which data has been read by said control
means, and

said management memory means includes a pointer, a block
counter, and a queue empty flag for said free link list,

at least a plurality of said data storage locations of said
shared memory means are unused, and

said management memory means includes a pointer to said at
le~st one of said unused data storage locations, and

said control means includes means for comparing a sum of counts
of said block counters of each link list containing data, said
free link list, and said unused pointer to the number of blocks
in said shared memory means.

15. An apparatus according to claim 14, wherein:'
said control means further comprises means for generating an

error signal is said sum of counts does not equal said number of
blocks in said shared memory means.

16. An apparatus according to claim 10, wherein:
said control means includes means for comparing, for each link

list containing data, said tail pointer to said head pointer.

Oracle Ex. 1002, pg. 248

W098136357 PCI'IUS98/02131

22

17. An apparatus according to claim 16, wherein:
said control means further comprises means for generating an

error signal if said tail pointer and said head pointer for a
link list containing data point to an identical block, and said
block counter for said link list does not equal one.

18. An apparatus according to claim 16, wherein:
said control means further comprises means for generating an

error signal if said tail pointer and said head pointer for a
link list containing data point to different blocks, and said
block counter for said link list equals one.

19. An apparatus according to claim 5, wherein:
said control means further comprises means for checking the

count of each block counter of a link list where the queue empty
flag is not set, and for generating an error signal if the count
is zero and the queue empty flag is not set.

20. An apparatus according to any preceding claim, wherein:
said control means and said management memory means are

contained on a single integrated circuit.

21. An apparatus according to claim 5, wherein:
said management memory means includes said pointer, a block

counter, and a queue empty flag for said free link list, and

said control means includes means for comparing a sum of counts
of said block counters of each link list containing data, said

free link list, and said .unused pointer to the number of blocks
in said shared memory means, and means for generating an error

signal is said sum of counts does not equal said number of blocks
in said shared memory means.

Oracle Ex. 1002, pg. 249

W0981363S7 PCf/US98/02131

23

22. An apparatus according to claim 10, wherein:
said control means includes means for comparing, for each link

list containing data, said tail pointer to said head pointer, and
means for generating an error signal if either

'(i) said tail pointer and said head pointer for a link list
·containing data point to an identical block, and said block

counter for said link list does not equal one, or
(ii) said tail pointer and said head pointer for a link list

containing data point to different blocks, and said block counter
for said link list equals one.

23. A method of managing the storage of data utilizing a
controller, a shared memory having a plurality of data storage
locations, and a management memory, said method comprising:

a) using said controller to forward received data to desired of
the plurality of data storage locations in the shared memory,
wherein the data is stored in the plurality of data storage
locations in the form of a plurality of link lists, each link
list having a head; and

b) storing information regarding each of the plurality of link

lists in the management memory, said information including a head
pointer and a. queue empty flag fo.r each link list, said head
pointer for each particular respective link list pointing to a
location of a respective said head of that particular link list,
and said queue empty flag for a link list indicating that that
link list has no valid data contained therein.

Oracle Ex. 1002, pg. 250

RXD(l-6)
RXCK 1-6
FrAq 1-6

~ FrAq 1-6
to TXD 1-6 (/)

~ r:~~~ ~ -~~/
m

~ TXON(1-6)
E1 LB(1-6)
:0
c:
hi
"' $

/'
100

.. I CHANNEL 1

CHANNEL 2

...... I CHANNEL 3

• ,. • 1 CHANNEL 4

.... I CHANNEL 5

...... I CHANNEL 6

0(7-0)
A(6~

RD /RD/WB
WR

RDY/DTACK
INTER

MOTO
PRClK

170

MICROPROCESSOR
INTERFACE

PORT

~· - ... --·-----·---- --· ·-·-------· -- --

130

TRANSMIT CELL
INPUT BLOCK 1.-- 162

-""0
:;:o

~5
~=e
P:-8
=::~ c:o
~F;; §:;:o
'-"'

00
I

[]J

::::::t

c
d
IJ
):>

~
;!
("")
rrJ

SRAM
INTERFACE

PORT

167

150

TxSOC
TTD(7-0)
TxCLAV
TilllB
TxClK
TxADD(4-0)

SA(15-0)
...._ SD(15-0)

SOE
SW£
SCS1
SCS2

RAM v1BO

FIG.1

~

...........
~

~

~
s e
~·

'"d g
\1)

~
~ -

Oracle Ex. 1002, pg. 251

UNK UST #1

~ UNK UST #2

I
en·
ffi UNK UST #N
~

~ FREE UST
m
N

.$ UNUSED

(
POSmON COUNTER ")

HEAD POINTER TAIL POINTER f FLAG
------~~~ ~ ~------~ I BLOCK POINTER I II I BLOCK POINTER I II I BLOCK COUNTER I I QUEUE_EMPTY I

I . BLOCK POINTER I II I BLOCK POINTER I II I BLOCK COUNTER I I QUEUE_EMPTY ·I
•

I BLOCK . POINTER I II I BLOCK POINTER I II I BLOCK COUNTER I I QUEULEMPTY .,

I BLOCK POINTER I II I NOT USED I I BLOCK COUNTER I I QUEULEMPTY I

I BLOCK POINTER I

FIG.2

N
'-.....
~

~

·~
0
10 s
e
!!)·

"a

~
tg

~
c.~

Oracle Ex. 1002, pg. 252

W0981363S7

3/11

BLOCK MEMORY ADDRESS

512

511

510

L-

c:;: 126

.___ 125

124

L.-...,.- 123

122

122

SED UNU
BLO CKS

1

. . .

ALL Is

ALL Is

. . .

FIG.3a

+1

+31

+32

PCf/US98/02131

LAST PAGE IN MEMORY
BLOCK 512

DATA

. . .
DATA

OOOOOP0001111100

FIG.3b

Oracle Ex. 1002, pg. 253

en c
OJ ;
en
:I:
m
!!I
SJ
c
F;;
N
E3

-- ·-·-- ·--- -··------- ·----~---------

(· POSITION COUNTE;

HEAD POINTER TAIL POINTER FlAG - -LINK LIST #1 lr:-1 o':""':o-:::-'oo~o--oo--o{ij)--r-,.-,1 I 000111101 ol1l1l I oooooooo11 I I o -,

LINK LIST #2 · I 0111111111loPI looo1111 011!1lol I oooooooo11 I I o I

LINK LIST #N lxxxxxxxxx)(MXI lxxxxxxxxxXMXI I xxxxxxxxxxxl I 1 -I

FREE LIST I o 11111111@ I I xxxxxxxxx}ij<l I o 11 oooooo 1 I I o I

UNUSED . 1000111 TOOIJ

FIG.3c

~

"""' ~ ~

·~
0

~
el
~·

~
ra
~
)oa

w ...

Oracle Ex. 1002, pg. 254

l • •• W098136357

OBTAIN
QUEUE
STATUS

WRITE
CELL

TO RAM

UPDATE
TAIL POINTER

p_osmoN
COUNTER

NO

202

YES

206

208

YES

5/11

OBTAIN .
BLOCK
FROM

FREE UST .
OR UNUSED

UPDATE
FREE LIST

OR UNUSED
BLOCK

POINTER

WRITE
CELL

TO RAM

UPDATE
TAIL POINTER

&
BLOCK

COUNTER
CHANGE

EMPTY FlAG

WRITE
ONES INTO

M'TH
LOCATION
OF PAGE

FIG.4a

214

216

218

220

212

SUBSTITUTE SHEET (RULE 26)

PCTIUS98/02131

222

OBTAIN
BLOCK
FROM

FREE LIST
OR UNUSED

224

UPDATE
FREE LIST

OR UNUSED
BLOCK

POINTER

228

WRITE
CELL

TO.RAM

230

UPDATE
TAIL POINTER

&
BLOCK

COUNTER

Oracle Ex. 1002, pg. 255

W098/36357

READ
POINTERS

READ
CEU.

FROM RAM

274

DECLARE
ERROR

250

252

NO

6/11

INSERT FREE
UST HEAD

POINTER INTO
LAST WORD OF
. FREED BLOCK

UPDATE
HEAD POimER

AND BLOCK
COUtm:R

OF UNK UST

CHECK
POINTER
PARilY

FIG.4b

266

268

270

~IJB!n"ITtJTI!! SJ.I~Fr IRUL~ 26\

PCfiUS98/02131

INSERT FREE
UST HEAD

POINTER INTO
LAST WORD OF
FREED BLOCK

260

262

UPDATE FREE
UST BLOCK
POINTER &

BLOCK
COUNTER

SET QUEUE
EMPTY FLAG

FOR UNK UST

264

CHANGE FREE UST
QUEUE EMPTY FLAG

AND SET ~ WORD
TO ALL ONES

Oracle Ex. 1002, pg. 256

W0981363S7 PCT/US98/02131

270 "'\
7/11

QUEUE ADD BLOCK v 272
CLEAR BY TO FREE UST
SElllNG AND

QUEUE EMPTY UPDATE
FLAG FREE usr FIG.4c
SUM BLOCK
COUNTERS 280

AND UNUSED
BLOCKS

COMPARE 282
HEAD & TAIL

POINTERS

FIG.4d

SUBSTITUTE SHEET (RULE 26)

Oracle Ex. 1002, pg. 257

W098/363S7

USENOlYElUSED

PCI'IUS98/02131

8/11

WRITE STATE MACHINE

IRAMREADY

FIG.5a
~IIR~TlTIITI= ~WI=FT fRill I= ~R\

WRmNGEXTISTINGBLOCK

QUEUECLEAR

QUEUECLfAR/
LASTWORD

Oracle Ex. 1002, pg. 258

W098/363S7 PCf/US98/02131

9/11

QUEUE CLEAR

FIG.Sb

Oracle Ex. 1002, pg. 259

W098/363S7

QUEUESEMPlY

10/11

CLEAR STATE MACHINE

QUEU~CLEAR

DONTTOUCHFREEUST
& IRAMBUSY

IRAMRDY

FREEUSTCNT /=0

FIG.5c

SUBSTITUTE SHEET (RULE 26)

·. . ..

PCT/US98/0l131

Oracle Ex. 1002, pg. 260

W098136357

11/11

MONITORING STATE MACHINE

INITIAL

IRAMBOSY AND
CURRENTQUEUEEMPTY ______ ..~---_

NOMONITORINGALLOWED
OR ERRORFOUNDDURINGCHECK

FIG.5d

SUBSTITLITE SHEET (RULE 26)

PCf/US98/02131

QUEUESEMPTY OR
NOMONITORINGALLOWED

OR IRAMBUSY OR
CHECK COMPLETED

ERRORFOUNDDURINGCHECK ·

Oracle Ex. 1002, pg. 261

I (
t ,.,

~

) ' ..
~t INTERNATIONAL SEARCH REPORT International application No.

PCTJUS98/02131

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :006F 12100
USCL :711/ISJ

According to International Piltcnt Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation acarchcd (classification system followed by classification symbols)

u.s. ; 71111S3, 7111.207, 3701232. 3701398

1
i Documentation scarchod other than minimum documentation to the extent that such documents arc included in the fields searched

Electronic data base consulted during the international acarch· (name of data base and, where practicable, search terms used)

APS, MAYA

c. DOCUMENTS CONSIDERED TO BE RELEVANT

Category• Citation of document. with. indication, where appropriate, of the rclcvan.t passages Relevant to claim No.

X US 5,390,175 A (HILLER ET AL.) 14 February 1995, col. 45, line 1-5, 7, 8, 10, 14-
- · 10; Fig. 24; col. 37, line 20; col. 37, line 25; col. 21, line 35; col. 19, 20, 21, 22, 23
y 22, line 37; col 20, line 63; col. 54, line 34; col. 55, line 53; col.

35, line 56; col. 21, line 60; col. 37, line 19; col. 35, line 56 6, 9, 11-13

y US 5,123,101 A (SINDHU) 16 June 1992, col. 21, line 68. 6, 9, 11-13

A,P US 5,654,962 A {ROSTOKER ET AL) OS August 1997' 1-23

0 Further documents arc listed in the continuation of Box C. 0 Sec patent family annex.

. Spocial cat.osorioo or citod docv.menu: ·r Ialor docwn- publilhcd all<:r lha intomat.ional r.Jins dato or priarity .,.. c!-=cnt da(onmg the ltata or lha lilt which .. not coosidcrad
dato aad not in C<mnict with lbo IIJ'Plicatina but citad lo Wldandaad

lo boo or particular
the priftciplo or lheary undarlyins tho imt..,tion

'E' -lior documorrt publilbcd OD or •ll<:r tho internatioaal lilins dato ·x· docwnorrt of puticular rolonnce; lho claimed invom.ioo caDDOt bo
c:onoidorod aonl ar connot bo -.sidarad to involve tul inv..W.e atap

'L' doaumoat whicb IIIII)' u.r- doubU OD pricrlly olaim(a) ar wbiob U. wbeo the cloa.aDom ;, talcm oloae
citod to oalabliob the publiaaliotl dato or UIOthor citatioft or Olbor

•y• docu>llorrt or puticular rokro- tho ol.aimed imontion canDO!. bo lpOOial rouoa (u apoci(IOd)
~ to iDYolvo ..., invorrtiv• a1Aip wha lho clooumorrt io

•o• docu>ll- rororrina lo m aral cliocJoaure., we.. ...t.ibitiOD or other combined •ilh 0110 or more other auch documcota. auch combimtioD
ma111 beiDa olwiowl to 1 peraoll alcUled in tho 1ft

'P' .tocwn , pubiDbcd prior to tho intcraotional raJins c1ato but Jatar lhaa '&.' docu>ll- member or the palolll romily
the priority dalll claimed

Date of the actual completion of the international acarch Date or mailing or the interuational acarch report

30 MARCH 1998 0 4 AUG 199"8
Name and mailing addrcsa of the ISAIUS ,, ~~ """' ~

~
Commissioner of Patents and Trademarb

~DAVID LANOJAHR BoxPCT
Wuhingtoa. rn:. 20231

Facsimile No. (103) 305-3230 c:lephonc No. (103) JOS-4034
-

Fnnn PCTIISA/.210 (second shcct)(Julv 1992)•

Oracle Ex. 1002, pg. 262

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INFORMATION DISCLOSURE STATEMENT Atty. Docket No. (Opt.)

BY APPLICANT CROSS1120-33

-oPAp
~ ioQ

tt~Y Z 4 1610 ;. J

~
tf ~AOEMJI.\\~ -

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir,

Applicant
Geoffrey B. Hoese, et al.
Application Number Filed
121690,592 01/20/2010
For
Storage Router and Method for Providing Virtual
Local Storage
Group Art Unit Examiner
2111 Unknown
Confirmation Number:
8115

Certification of Transmission Under 37 C.F .R. 1.8

I hereby certify that this correspondence is being deposited with the
U.S. Postal Service as First Class Mail in a box addressed to The
Commission r for Patents, P.O. Box 1450, Alexandria, VA 22312-
1450 on --lo'--"...l.::.-....,.-~"")

Signature

{1uv~&o.::>b

Applicant respectfully requests, pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, that the

information listed on the attached ~B08AIB form(s) be considered and cited in the examination

of the above-identified application. A copy of U.S. Patent(s) and U.S. Patent Application

Publication(s) listed on the attached SB08A form is not being submitted with this Information

Disclosure Statement pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(i) by the U.S. Patent and

Trademark Office. A copy of foreign patent documents as well as the information listed on the

attached SB08B form is enclosed for the convenience of the Examiner.

Ill This Information Disclosure Statement is being submitted within three months of

the filing date of a national application other than a continued prosecution application under 37

C.F.R. § 1.53(d).

D This Information Disclosure Statement is being submitted within three months of

the date of entry of the national stage as set forth in 37 C. F. R. § 1.491 in an international

application;

Jilf This Information Disclosure Statement is being submitted before the mailing of a

first Office action on the merits; or

Oracle Ex. 1002, pg. 263

'A TIORNEY DOCKET NO.
CROSS 1120-33

Page 2 of 3

Customer No. 44654
Serial No. 12/690,592

0 This Information Disclosure Statement is being submitted before the mailing of a

first Office action after the filing of a request for continued examination under 37 C.F.R.

§1.114.

0 This Information Disclosure Statement is being submitted after the period

specified in 37 C.F.R. § 1.97(b) and before the mailing date of any of a final action under

37 C.F.R. § 1.113, a notice of allowance under 37 C.F.R. § 1.311, or an action that otherwise

closes prosecution in the application, and is accompanied by one of:

0 The statement specified in 37 C.F.R. § 1.97(e); or

0 The fee set forth in 37 C.F.R. § 1.17(p). Applicant hereby authorizes the

Commissioner to deduct the amount of $180 from Deposit Account No.

50-3183 of Sprinkle IP Law Group for the filing fee of this Information

Disclosure Statement.

0 This Information Disclosure Statement is being submitted after the period

specified in 37 C.F.R. § 1.97(c) and on or before payment of the issue fee and is accompanied

by:

0 The statement specified in 37 C.F.R. § 1.97(e); and

0 The fee set forth in 37 C.F.R. § 1.17(p). Applicant hereby authorizes the

Commissioner to deduct the amount of $180 from Deposit Account No.

50-3183 of Sprinkle IP Law Group for the filing fee of this Information

Disclosure Statement.

Pursuant to 37 C.F.R. § 1.97(e), Applicant hereby states:

0 That each item of information contained in the information disclosure

statement was first cited in any communication from a foreign patent office in a counterpart

foreign application not more than three months prior to the filing of the information disclosure

statement; or

0 That no item of information contained in the information disclosure

statement was cited in a communication from a foreign patent office in a counterpart foreign

application, and, to the knowledge of the person signing the certification after making

reasonable inquiry, no item of information contained in the information disclosure statement

was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to

the filing of the information disclosure statement.

Furthermore, pursuant to 37 C.F.R. §§ 1.97(g) and (h), no representation is made that a

search has been made or that this information is material to patentability of the present

application.

Oracle Ex. 1002, pg. 264

.A TIORNEY DOCKET NO.
CROSS 1120-33

Page 3 of 3

Customer No. 44654
Serial No. 12/690,592

Applicant respectfully submits that the claims of Applicant's above-referenced patent

application are patentably distinguishable from the listed information.

Dated:

1301 W. 25th Street, Suite 408
Austin, Texas 78705
Tel. (512) 637-9220
Fax. (512) 317-9088

Respectfully submitted,

Sprinkle IP Law Group
Attorneys for Applicant

J~---.

~~828

Oracle Ex. 1002, pg. 265

...... m
~ en
0 en
'lli:t
0
a.
w

(19)

Europiiisches Patenta'mt '

European Patent Office

Office europeen des brevets (11) EP 0 490 973 81

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
25.02.1998 Bulletin 1998109

(21) Application number: 90913922.2

(22) Date of filing: 20.08.1990

(51) lntcl.s: GOGF 17/30, G06F 15/16

(86) International application number:
PCT/US90J04711

(87) International publication number:
WO 91/03788 (21.03.1991 Gazette 1991/07)

(54) PARALLEL 110 NETWORK FILE SERVER ARCHITECTURE

DATEIENPROZESSORAUFBAU IM PARALLELEN EINGANGS/AUSGANGS NETZWERK

ARCHITECTURE DE SERVEUR DE FICHIER, EN RESEAU ENTREE/SORTIE PARALLLELE

(84) Designated Contracting States: • BLIGHTMAN, Stephen, E.
AT BE CH DE OK ES FR GB IT Ll LU NL SE San Jose, CA 95133 (US)

(30) Priority: 08.09.1989 US 404959

(43) Date of publication of application:
24.06.1992 Bulletin 1992126

(60) Divisional application: 97112889.7

(73) Proprietor: AUSPEX SYSTEMS, INC.
Santa Clara, CA 95054 (US)

(72) Inventors:
• ROW, Edward, John

Mountain View, CA 94064 (US)
• BOUCHER, Laurence, B.

Saratoga, CA 95070 (US)
• PITTS, William, M.

Los Altos, CA 94022 (US)

(74) Representative: Barnard, Eric Edward et al
BROOKES & MARTIN
High Holborn House
52154 High Holborn
London WC1V 6SE (GB)

(56) References cited:
WO·A-89103086
US.A· 4 819159
us-A- 4 897 781

US·A· 4 710 868
US·A· 4 887 204

• COMPUTER STANDARDS AND INTERFACES
vol. 8, no. 1, 1988, LAUSANNE CH pages 45 • 48
I XP51969 A.OSADZINSKI 'THE NETWORK FILE
SYSTEM (NFS)'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Prlnled by Jouve, 75001 PARIS (FA)

Oracle Ex. 1002, pg. 266

I
EP 0 490 973 81

Description

The present application is related to the following European Patent Applications:

5 1. MULTIPLE FACILITY -OPERATING SYSTEM ARCHITECTURE, Serial Number 90914006.3 (0490180), and

2. ENHANCED VMEBUS PROTOCOL UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND BLOCK
MODE DATA TRANSFER. Serial Number 90914333.1 (0490988).

10 BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to computer data networks, and more particularly, to network file server architectures for
15 computer networks.

Description of the Related Art

Over the past ten years, remarkable increases in hardware price/performance ratios have caused a startling shift
20 in both technical and office computing environments. Distributed workstation-server networks are displacing the once

pervasive dumb terminal attached to mainframe or minicomputer. To date, however, network 1/0 limitations have con­
strained the potential performance available to workstation users. This sttuation has developed in part because dramatic
jumps in microprocessor performance have exceeded increases in netWork VO performance.

In a computer network, individual user workstations are referred to as clients, and shared resources for filing,
25 printing, data storage and wide-area communications are referred to as servers. Clients and servers are all considered

nodes of a network. Client nodes use standard communications protocols to exchange service requests and responses
wtth server nodes.

Present-day network clients and servers usually run the DOS, Macintosh OS, OS/2, or Unix operating systems.
Local networks are usually Ethernet or Token Ring at the high end, Arcnet in the midrange, or LocaiTalk or StarLAN

30 at the low end. The client-server communication protocols are fairly strictly dictated by the operating system environ­
ment -- usually one of several proprietary schemes for Pes (NetWare, 3Pius, Vines, LAN Manager, LANServer); Ap­
ple Talk for Maclntoshes; and TCPIIP wtth NFS or RFS for Unix. These protocols are all well-known in the industry.

Unix client nodes typically feature a 16- or 32-btt microprocessor with 1-8 MB of primary memory, a 640 x 1024
pixel display, and a built-in network interface. A 40-100 MB local disk is often optional. Low-end examples are

35 80286-based PCs or 68000-based Macintosh l's; mid-range machines include 80386 PCs, Macintosh ll's, and
680XO-based Unix workstations; high-end machines include RISC-based DEC, HP, and Sun Unix workstations. Servers
are typically nothing more than repackaged client nodes, configured in 19-inch racks rather than desk sideboxes. The
extra space of a 19-inch rack is used lor additional backplane slots, disk or tape drives, and power supplies.

Driven by RISC and CISC microprocessor developments, client workstation performance has increased by more
40 than a factor of ten in the last few years. Concurrently, these extremely fast clients have also gained an appetite for

data that remote servers are unable to satisfy. Because the 1/0 shortfall is most dramatic in the Unix environment, the
description of the preferred embodiment of the present invention will focus on Unix file servers. The archttectural prin­
ciples that solve the Unix server 110 problem, however, extend easily to server performance bottlenecks in other op­
erating system environments as well. Similarly, the description of the preferred embodiment will focus on Ethernet

45 implementations, though the principles extend easily to other types of networks.
In most Unix environments, clients and servers exchange file data using the Network File System ('NFS'), a stand­

ard promulgated by Sun Microsystems and now widely adopted by the Unix community. NFS is defined in a document
entitled, 'NFS: Network File System Protocol Specification,' Request For Comments (RFC) 1094, by Sun Microsys­
tems, Inc. (March 1989).

50 While simple and reliable, NFS is not optimal. Clients using NFS place considerable demands upon both networks
and NFS servers supplying clients wtth NFS data. This demand is particularly acute for so~lled diskless clients that
have no local disks and therefore depend on a file server for application binaries and virtual memory paging as well
as data. For these Unix client-server configurations, the ten-to-one increase in client power has not been matched by
a ten-to-one increase in Ethernet capacity, in disk speed, or server disk-to-network 1/0 throughput.

55 The result is that the number of diskless clients that a single modem high-end server can adequately support has
dropped to between 5·1 0, depending on client power and application workload. For clients containing small local disks
for applications and paging, referred to as dateless clients, the client-to-server ratio is abou1 twice this, or between
10-20.

2

Oracle Ex. 1002, pg. 267

EP 0 490 973 81

Such low clienVserver ratios cause piecewise network configurations in which each local Ethernet contains isolated
traffic for its own 5·1 0 (diskless) clients and dedicated server. For overall connectivity, these local networks are usually
joined together with an Ethernet backbone or, in the future, with an FDDI backbone. These backbones are typically
connected to the local networks either by IP routers or MAC-level bridges, coupling the local networks together directly,

s or by a second server functioning as a network interface, coupling servers for all the local networks together.
In addition to performance considerations, the low client-to-server ratio creates computing problems in several

additional ways:

1. Sharing. Development groups of more than 5·10 people cannot share the same server, and thus cannot easily
10 share files without file replication and manual, multi-server updates. Bridges or routers are a partial solution but

inflict a performance penalty due to more network hops.
2. Administration. System administrators must maintain many limited-aipacity servers rather than a few more
substantial servers. This burden includes network administration, hardware maintenance, and user account ad­
ministration.

15 3. File System Backup. System administrators or operators must conduct multiple file system backups, which can
be onerously time consuming tasks. It is also expensive to duplicate backup peripherals on each server (or every
few servers if slower network backup is used).
4. Price Per Seat. With only 5-10 clients per server, the cost of the server must be shared by only a small number
of users. The real cost of an entry-level Unix workstation is therefore significantly greater, often as much as 140o/o

20 greater, than the cost of the workstation alone.

The widening 1/0 gap, as well as administrative and economic considerations, demonstrates a need for higher­
performance, larger-aipacity Unix file servers. Conversion of a display-less workstation into a server may address disk
capacity issues, but does nothing to address fundamental VO limitations. As an NFS server, the one-time workstation

25 must sustain 5-1 0 or more times the network, disk, backplane, and file system throughput than it was designed to
support as a client. Adding larger disks, more network adaptors, extra primary memory, or even a faster processor do
not resolve basic architectural I/O constraints; 1/0 throughput does not increase sufficiently.

Other prior art computer architectures, while not specifically designed as file servers, may potentially be used as
such. In one such well-known architecture, a CPU, a memory unit, and two 1/0 processors are connected to a single

30 bus. One of the VO processors operates a set of disk drives, and if the architecture is to be used as a server, the other
1/0 processor would be connected to a network. This architecture is not optimal as a file server, however, at least
because the two 1/0 processors cannot handle network file requests without involving the CPU. All network file requests
that are received by the network 1/0 processor are first transmitted to the CPU, which makes appropriate requests to
the dlsk-1/0 processor for satisfaction of the network request.

3S In another such computer architecture, a disk controller CPU manages access to disk drives, and several other
CPUs, three for example, may be clustered around the disk controller CPU. Each of the other CPUs can be connected
to its own network. The network CPUs are each connected to the disk controller CPU as well as to each other for
interprocessor communication. One of the disadvantages of this computer architecture is that each CPU in the system
runs its own complete operating system. Thus, network file server requests must be handled by an operating system

40 which is also heavily loaded with facilities and processes for performing a large number of other, non file-server tasks.
Additionally, the interprocessor communication is not optimized for file server type requests.

In yet another computer architecture, a plurality of CPUs, each having its own cache memory for data and instruction
storage, are connected to a oommon bus with a system memory and a disk controller. The disk controller and each of
the CPUs have direct memory access to the system memory, and one or more of the CPUs can be connected to a

45 network. This architecture is disadvantageous as a file server because, among other things, both file data and the
instructions for the CPUs reside in the same system memory. There will be instances, therefore, in which the CPUs
must stop running while they wait for large blocks of file data to be transferred between the system memory and the
network CPU. Additionally, as with both of the previously described computer architectures, the entire operating system
runs on each of the CPUs, including the network CPU.

so In yet another type of computer architecture, a large number of CPUs are connected together in a hypercube
topology. One or more of these CPUs can be connected to networks, while another can be connected to disk drives.
This architecture is also disadvantageous as a file server because, amongst other things each processor runs the
entire operating system. lnterprocessor communication is also not optimal for file server applications.

US-A-4819159 describes a data control unit for use with a data network which employs a mass storage device, a
ss file processor, a butler memory with a cache and a storage processor unit coupleable to the mass storage device and

the file processor. The file processor serves to translate file system requests into store and retrieval requests activated
in the mass storage device.

WO·A-89/03086 describes a network composed of a plurality of PC's linked to a main frame computer with a data

3

Oracle Ex. 1002, pg. 268

EP 0 490 973 81

base via a number of intermediate computers. The intermediate computers serve to respond to network file requests
and to additionally pr<,>vide resources for the PC's.

An article entitled 'The Network File System' (NFS) by A. Osadzinski published in Computer Standards and Inter­
faces Vol. 8 (1g88/89) No. 1 describes a NFS protocol which provides transparent file access for client work stations

5 from a file server with a mass storage device and a host processor linked together with a network.

SUMMARY OF THE INVENTION

As is known, for example from WO-A-ag/03086, the present invention provides a network server apparatus for
10 use with a first data network and a mass storage device, including a host processor unit capable of running remote

procedures defined by a client node on said network.
In accordance with the invention, the apparatus comprises an intertace processor unitcoupleable to the network

and to the mass storage device and means in said intertace processor unit for satisfying network storage requests
from said network to store data from said network in said mass storage device, lor satisfying network retrieval requests

15 from said network to retrieve data from said mass storage device to said network, and for transmitting predefined
categories of messages from said network to said host processor unit for processing in said host processor unit,. said
transmitted messages including all requests by a network client to run client-defined procedures on said network server
apparatus.

An implementation of the invention involves a file server architecture comprising one or more network controllers,
20 one or more file controllers, one or more storage processors, and a system or buffer memory, all connected over a

message passing bus and operating in parallel with a Unix host processor. The network controllers each connect to
one or more network, and provide all protocol processing between the network layer data format and an internal file
server format for communicating client requests to other processors in the server. Only those data packets which cannot
be interpreted by the network controllers, for example client requests to run a client-defined program on the server,

25 are transmitted to the Unix host for processing. Thus the network controllers, file controllers and storage processors
contain only small parts of an overall operating system, and each is optimized for the particular type of work to which
it is dedicated.

Client requests for file operations are transmitted to one of the file controllers which, independently of the Unix
host, manages the virtual file system of a mass storage device which is coupled to the storage processors. The file.

30 controllers may also control data buffering between the storage processors and the network controllers, through the
system memory. The file controllers preferably each include a local buffer memory for caching file control information,
separate from the system memory for caching file data. Additionally, the network controllers, file processors and storage
processors are all designed to avoid any instruction fetches from the system memory, instead keeping all instruction
memory separate and local. This arrangement eliminates contention on the backplane between microprocessor in-

35 struction fetches and transmissions of message and file data.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular embodiments thereof, and reference will be made to the
40 drawings, In which:

Fig. 1. is a block diagram of a prior art file server architecture;
Fig. 2 is a block diagram of a file server architecture according to the invention;
Fig. 3 is a block diagram of one of the network controllers shown in Fig. 2;

45 Fig. 4 is a block diagram of one of the file controllers shown in Fig. 2;

50

55

Fig. 5 is a block diagram of one of the storage processors shown in Fig. 2;
Fig. 6 is a block diagram of one of the system memory cards shown in Fig. 2;
Figs. 7 A-C are a flowchart illustrating the operation of a fast transfer protocol BLOCK WAITE cycle; and
Figs. SA-C are a flowchart illustrating the operation of a fast transfer protocol BLOCK READ cycle.

DETAILED DESCRIPTION

For comparison purposes and background, an illustrative prior-art file server architecture will first be described
with respect to Fig. 1. Fig. 1 is an overall block diagram of a conventional prior-art Unix-based file server for Ethernet
networks. It consists of a host CPU card 10 with a single microprocessor on board. The host CPU card 10 connects
to an Ethernet #1 12, and it connects via a memory management unit (MMU) 11 to a large memory array 16. The host
CPU card 10 also drives a keyboard, a video display, and two AS232 ports (not shown). It also connects via the MMU
11 and a standard 32-bit VME bus 20 to various peripheral devices, including an SMD disk controller 22 controlling

4

Oracle Ex. 1002, pg. 269

EP 0 490 973 81

one or two disk drives 24, a SCSI host adaptor 26 connected to a SCSI bus 28, a tape controller 30 connected to a
quarter-inch tape drive 32, and possibly a network lt2 controller 34 connected to a second Ethernet 36. The SMD disk
controller 22 can communicate with memory array 16 by direct memory access via bus 20 and MMU 11, with either
the disk controller or the MMU acting as a bus master. This configuration is illustrative; many variations are available.

s The system communicates over the Ethemets using industry standard TCPIIP and NFS protocol stacks. A de-
scription of protocol stacks in general can be found in Tanenbaum, 'Computer Networks' (Second Edition, Prentice
Hall: 1988). File server protocol stacks are described at pages 535-546.

Basically, the following protocol layers are implemented in the apparatus of Fig. 1:
Network Layer. The network layer converts data packets between a format specific to Ethemets and a format which

to is independent of the particular type of network used. the Ethernet -specific format which is used in the apparatus of
Fig. 1 is described in Hornig, 'A Standard For The Transmission of IP Data grams OVer Ethernet Networks, • RFC 894
(April1984).

The Internet Protocol (IP) Layer. This layer provides the functions necessar}t to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected system of networks. For messages to be sent from

15 the file server to a client, a higher level in the server calls the IP module, providing the internet address of the destination
client and the message to transmit. The IP module performs any required fragmentation-of the message to accommo­
date packet size limitations of any intervening gateway, adds internet headers to each fragment, and calls on the
network layer to transmit the resulting internet datagrams. The internet header includes a local network destination
address (translated from the internet address) as well as other parameters.

20 For messages received by the I P layer from the network layer, the IP module determines from the internet address
. whether the datagram is to be forwarded to another host on another network, for example on a second Ethernet such

as 36 in Fig. 1, or whether it is intended for the server itself. If it is intended for another host on the second network,
the IP module determines a local net address for the destination and calls on the local network layer for that network
to send the datagram. If the datagram is intended for an application program within the server. the IP layer strips off

25 the header and passes the remaining portion of the message to the appropriate next higher layer. The internet protocol
standard used in the illustrative apparatus ofFig. 1 is specified in Information Sciences Institute, 'Internet Protocol,
DARPA Internet Program Protocol Specification," RFC 791 (September 1981).

TCP/UDP Layer. This layer is a datagram service with more elaborate packaging and addressing options than the
IP layer. For example, whereas an IP datagram can hold about 1,500 bytes and be addressed to hosts, UDP datagrams

30 can hold about 64KB and be addressed to a particular port within a host. TCP and UDP are alternative protocols at
this layer; applications requiring ordered reliable delivery of streams of data may use TCP, whereas applications (such
as NFS) which do not require ordered and reliable delivery may use UDP.

The prior art file server of Fig. 1 uses both TCP and UDP. It uses UDP tor file server-related services, and uses
TCP for certain other services which the server provides to network clients. The UDP is specified in Postel, •user

35 Datagram Protocol,' RFC 768 (August 28, 1980). TCP is specified in Postel, 'Transmission Control Protocol,' RFC
761 (January 1980) and RFC 7g3 (September 1981).

XDRIRPC Layer. This layer provides functions callable from higher level programs to run a designated procedure
on a remote machine. It also provides the decoding necessary to permit a client machine to execute a procedure on
the server. For example, a caller process in a client node may send a call message to the server of Fig. 1. The call

40 message includes a specification of the desired procedure, and its parameters. The message is passed up the stack
to the RPC layer, which calls the appropriate procedure within the server. When the procedure is complete, a reply
message is generated and RPC passes it back down the stack and over the network to the caller client. RPC is described
in Sun Microsystems, Inc., "RPC: Remote Procedure Call Protocol Specification, Version 2,' RFC 1057 (June 1988).

RPC uses the XDR external data representation standard to represent information passed to and from the under-
45 lying UDP layer. XDR is merely a data encoding standard, useful for transferring data between different computer

architectures. Thus, on the network side of the XDRIRPC layer, information is machine-independent; on the host ap­
plication side, it may not be. XDR is described in Sun Microsystems, Inc., "XDR: External Data Representation Stand­
ard,' RFC 1014 (June 1987).
· NFS Layer. The NFS ("network file system") layer is one of the programs available on the server which an RPC

so request can call. The combination of host address, program number, and procedure number in an RPC request can
specify one remote NFS procedure to be called.

Remote procedure calls to NFS on the file server of Fig. 1 provide transparent, stateless, remote access to shared
files on the disks 24. NFS assumes a file system that is hierarchical, with directories at all but the bottom level of files.
Client hosts can call any of about 20 NFS procedures including such procedures as reading a specified number of

55 bytes from a specified file; writing a specified number of bytes to a specified file; creating, renaming and removing
specified files; parsing directory trees; creating and removing directories; and reading and setting file attributes. The
location on disk to which and from which data is stored and retrieved is always specified in logical terms, such as by
a file handle or I node designation and a byte offset. The details of the actual data storage are hidden from the client.

5

Oracle Ex. 1002, pg. 270

EP 0 490 973 81

The NFS procedures, together with possible higher level modules such as Unix VFS and UFS, perform all conversion
of logical data addresses to physical data addresses such as drive, head, track and sector identification. NFS is spec­
ified in Sun Microsystems, Inc., "NFS: Network File System Protocol Specification,• RFC 1094 (March 1989).

With the possible exception of the network layer, all the protocol processing described above is done in software,
s by a single processor in the host CPU card 10. That is, when an Ethernet packet arrives on Ethernet 12, the host CPU

10 performs all the protocol processing in the NFS stack, as well as the protocol processing for any other application
which may be running on the host 10. NFS procedures are run on the host CPU 10, with access to memory 16 for both
data and program code being provided via MMU 11. Logically specified data addresses are converted to a much more
physically specified form and communicated to the SMD disk controller 22 or the SCSI bus 28, via the VME bus 20,

10 and all disk caching is done by the host CPU 10 through the memory 16. The host CPU card 10 also runs procedures
for performing various other functions of the file server, communicating with tape controller 30 via the VME bus 20.
Among these are client-defined remote procedures requested by client workstations.

If the server serves a second Ethernet 36, packets from that Ethernet are transmitted to the host CPU 10 over the
same VME bus 20 in the form of IP datagrams. Again, all protocol processing except for the network layer is performed

15 by software processes running on the host CPU 10. In addition, the protocol processing for any message that is to be
sent from the server out on either of the Ethernets 12 or 36 is also done by processes running on the host CPU 10.

It can be seen that the host CPU 10 performs an enormous amount of processing of data, especially if 5-10 clients
on each of the two Ethernets are making file server requests and need to be sent responses on a frequent basis. The
host CPU 10 runs a multitasking Unix operating system, so each incoming request need not wait for the previous

20 request to be completely processed and returned before being processed. Multiple processes are activated on the
host CPU 10 for performing different stages of the processing of different requests, so many requests may be in process
at the same time. But there is only one CPU on the card 10, so the processing of these requests is not accomplished
in a truly parallel manner. The processes are instead merely time sliced. The CPU 10 therefore represents a major
bottleneck in the processing of file server requests.

25 Another bottleneck occurs in MMU 11, which must transmit both instructions and data between the CPU card 10
and the memory 16. All data flowing between the disk drives and the network passes through this interface at least twice.

Yet another bottleneck can occur on the VME bus 20, which must transmit data among the SMD disk controller
22, the SCSI host adaptor 26, the host CPU card 1 0, and possibly the network #2 controller 24.

30 PREFERRED EMBODIMENT -QVERALL HARDWARE ARCHITECTURE

In Fig. 2 there is shown a block diagram of a network file server 100 according to the invention. It can include
multiple network controller (NC) boards, one or more file controller (FC) boards, one or more storage processor (SP)
boards, multiple system memory boards, and one or more host processors. The particular embodiment shown in Fig.

35 2 includes four network controller boards 110a-110d, two file controller boards 112a-112b, two storage processors
114a-114b, four system memory cards 116a-116d for a total of 192MB of memory, and one local host processor 118.
The boards 110, 112, 114, 116 and 118 are connected together over a VME bus 120 on which an enhanced block
transfer mode as described in the ENHANCED VMEBUS PROTOCOL application identified above may be used. Each
of the four network controllers 110 shown in Fig. 2 can be.connected to up to two Ethemets 122, for a total capacity

40 of B Ethernets 122a-122h. Each of the storage processors 114 operates ten parallel SCSI busses, nine of which can
each support up to three SCSI disk drives each. The tenth SCSI channel on each of the storage processors 114 is
used for tape driVes and other SCSI peripherals.

The host 118 is essentially a standard SunOs Unix processor, providing all the standard Sun Open Network Com­
puting (ONC) services except NFS and IP routing. Importantly, all network requests to run a user-defined procedure

45 are passed to the host for execution. Each of the NC boards 110, the FC boards 112 and the SP boards 114 includes
its own independent 32-bit microprocessor. These boards essentially offload from the host processor 118 virtually all
of the NFS and disk processing. Since the vast majority of messages to and from clients over the Ethemets 122 involve
NFS requests and responses, the processing of these requests in parallel by the NC, FC and SP processors, with
minimal involvement by the local host 118, vastly improves file server performance. Unix. is explicitly eliminated from

so virtually all network, file, and storage processing.

OVERALL SOFTWARE ORGANIZATION AND DATA FLOW

Prior to a detailed discussion of the hardware subsystems shown in Fig. 2, an overview of the software structure
55 will now be undertaken. The software organization is described in more detail in the above-identified application entitled

MULTIPLE FACILITY OPERATING SYSTEM ARCHITECTURE.
Most of the elements of the software are well known in the field and are found in most networked Unix systems,

but there are two components which are not: Local NFS ("LNFS') and the messaging kemel ('MK') operating system

6

Oracle Ex. 1002, pg. 271

EP 0 490 973 81

kernel. These two components will be explained first.
The Messaging Kernel. The various processors in file server 100 communicate with each other through the use

of a messaging kernel running on each of the processors 110, 112, 114 and 118. These processors do not share any
instruction memory, so task-level communication cannot occur via straightforward procedure calls as it does in con-

s ventional Unix. Instead, the messaging kernel passes messages over VME bus 120 to accomplish all necessary inter­
processor communication. Message passing is preferred over remote procedure calls for reasons of simplicity and
speed.

Messages passed by the messaging kernel have a fixed 128-byte length. Within a single processor. messages
are sent by reference; between processors, they are copied by the messaging kernel and then delivered to the desti-

to nation process by reference. The processors of Fig. 2 have special hardware, discussed below, that can expediently
exchange and buffer inter-processor messaging kernel messages.

The LNFS Local NFS interface. The 22-function NFS standard was specifically designed for stateless operation
using unreliable communication. This means that neither clients nor server can be sure if they hear each other when
they talk (unreliability). In practice, an in an Ethernet environment, this works well.

ts Within the server 100, however, NFS level datagrams are also used for communication between processors, in
particular between the network controllers 110 and the file controller 112, and between the host processor 118 and the
file controller 112. For this internal communication to be both efficient and convenient, it is undesirable and impractical
to have complete statelessness or unreliable communications. Consequently, a modified form of NFS, namely LNFS,
is used for internal communication of NFS requests and responses. LNFS is used only within the file server 100; the

20 external network protocol supported by the server is precisely standard, licensed NFS. LNFS is described in more
detail below.

The Network Controllers 110 each run an NFS server which, after all protocol processing is done up to the NFS
layer, converts between external NFS requests and responses and internal LNFS requests and responses. For exam­
ple, NFS requests arrive as RPC requests with XDR and enclosed in a UOP datagram. After protocol processing, the

25 NFS server translates the NFS request into LNFS form and uses the messaging kernel to send the request to the file
controller 112.

The file controller runs an LNFS server which handles LNFS requests both from network controllers and from the
host 118. The LNFS server translates LNFS requests to a form appropriate for a file system server, also running on
the file controller, which manages the system memory file data cache through a block 110 layer.

30 An overview of the software in each of the processors will now be set forth.

Network Controller 110

The optimized dataflow of the server 100 begins with the intelligent network controller 110. This processor receives
35 Ethernet packets from client workstations. It quickly identifies NFS-destined packets and then performs full protocol

processing on them to the N FS level, passing the resulting LNFS requests directly to the file controller 112. This protocol
processing includes IP routing and reassembly, UOP demultiplexing, XOR decoding, and NFS request dispatching.
The reverse steps are used to send an NFS neply back to a client. Importantly, these time-consuming activities are
performed directly in the Network Controller 110, not in the host 118.

40 The server 100 uses conventional NFS ported from Sun Microsystems, Inc., Mountain View, CA. and is NFS
protocol compatible.

Non-NFS network traffic is passed directly to its destination host processor 118.
The NCs 110 also perform their own IP routing. Each network controller 110 supports two fully parallel Ethernets.

There are four network controllers in the embodiment of the server 100 shown in Fig. 2, so that server can support up
45 to eight Ethemets. For the two Ethemets on the same network controller 11 0, 1 P routing occurs completely within the

network controller and generates no backplane traffic. Thus attaching two mutually active Ethemets to the same con­
troller not only minimizes their internet transit time, but also significantly reduces backplane contention on the VME
bus 120. Routing table updates are distributed to the network controllers from the host processor 118, which runs either
the gated or routed Unix demon.

so While the network controller described here is designed for Ethernet LANs, it will be understood that the invention

55

can be used just as readily with other network types, including FOOl.

Fila Controller 112

In addition to dedicating a separate processor for NFS protocol processing and IP routing, the server 100 also
dedicates a separate processor, the intelligent file controller 112, to be responsible for all file system processing. It
uses conventional Berkeley Unix 4.3 file system code and uses a binary-compatible data representation on disk. These
two choices allow all standard file system utilities (particularly block-level tools) to run unchanged.

7

Oracle Ex. 1002, pg. 272

EP 0 490 973 81

The file controller 112 runs the shared file system used by all NCs 110 and the host processor 118. Both the NCs
and the host processor communicate with the file controller 112 using the LNFS interface. The NCs 110 use LNFS as
described above, while the host processor 118 uses LNFS as a plug-in module to SunOs's standard Virtual File System
("VFS") interface.

s When an NC receives an NFS read request from a client workstation, the resuning LNFS request passes to the
FC 112. The FC 112 first searches the system memory 116 buffer cache for the requested data. If found, a reference
to the buffer is returned to the NC 110. If not found, the LRU (least recently used) cache buffer in system memory 116
is freed and reassigned for the requested block. The FC then directs the SP 114 to read the block into the cache buffer
from a disk drive array. When complete, the SP so notifies the FC, which in tum notifies the NC 100. The NC 110 then

10 sends an NFS reply, with the data from the buffer, back to the NFS client workstation out on the network. Note that the
SP 114 transfers the data into system memory 116, if necessary, and the NC 110 transferred the data from system
memory 116 to the networks. The process takes place without any involvement of the host 11 B.

15

Storage Processor

The intelligent storage processor 114 manages all disk and tape storage operations. While autonomous, storage
processors are primarily directed by the file controller 112 to move file data between system memory 116 and the disk
subsystem. The exclusion of both the host 118 and the FC 112 from the actual data path helps to supply the performance
needed to service many remote clients.

2o Additionally, coordinated by a Server Manager in the host 118, storage processor 114 can execute server backup
by moving data between the disk subsystem and tape or other archival peripherals on the SCSI channels. Further, if
directly accessed by host processor 11 8, SP 114 can provide a much higher performance conventional disk interface
for Unix, virtual memory, and databases. In Unix nomenclature, the host processor 118 can mount boot, storage swap,
and raw partitions via the storage processors 114.

25 Each storage processor 114 operates ten parallel, fully synchronous SCSI channels (busses) simunaneously. Nine

30

of these channels support three arrays of nine SCSI disk drives each, each drive in an array being assigned to a
different SCSI channel. The tenth SCSI channel hosts up to seven tape and other SCSI peripherals. In addition to
performing reads and writes, SP 114 performs device-level optimizations such as disk seek queue sorting, directs
device error recovery, and controls DMA transfers between the devices and system memory 116.

Host Processor 11 8

The local host 118 has three main purposes: to run Unix, to provide standard ONC network services for clients,
and to run a Server Manager. Since Unix and ONC are ported from the standard SunOs Release 4 and ONC Services

35 Release 2, the server 1 00 can provide identically compatible high-level ONC services such as the Yellow Pages, Lock
Manager, DES Key Authenticator, Auto Mounter, and Port Mapper. Sun/2 Network disk booting and more generaiiP
internet services such as Telnet, FTP, SMTP, SNMP, and reverse ARP are also supported. Finally, print spoolers and
similar Unix demons operate transparently.

The host processor 118 runs the following software modules:
40 TCP and socket layers. The Transport Control Protocol ("TCP"), which is used for certain server functions other

than NFS, provides reliable bytestream communication between two processors. Socket are used to establish TCP
connections.

VFS interface. The Virtual File System ("VFS") interface is a standard SunOs file system interface. It paints a
uniform file-system picture for both users and the non-file parts of the Unix operating system, hiding the details of the

45 specific file system. Thus standard NFS, LNFS, and any local Unix file system can coexist harmoniously.
UFS interface. The Unix File System ("UFS") interface is the traditional and well-known Unix interface for commu­

nication with local-to-the-processor disk drives: In the server 100, it is used to occasionally mount storage processor
volumes directly, without going through the file controller 112. Normally, the host 118 uses LNFS and goes through the
file controller.

so Device layer. The device layer is a standard software interface between the Unix device model and different physical
device implementations. In the server 100, disk devices are not attached to host processors directly, so the disk driver
in the host's device layer uses the messaging kernel to communicate with the storage processor 114.
. Route and Port Mapper Demons. The Route and Port Mapper demons are Unix user-level background processes

that maintain the Route and Port databases for packet routing. They are mostly inactive and not in any performance
ss path.

Yellow Pages and Authentication Demon. The Yellow Pages and Authentication services are Sun..QNC standard
network services. Yellow Pages is a widely used munipurpose name-to-name directory lookup service. The Authenti­
cation service uses cryptographic keys to authenticate, or validate, requests to insure that requestors have the proper

8

Oracle Ex. 1002, pg. 273

EP 0 490 973 81

privileges for any actions or data they desire.
Server Manager. The Server Manager is an administrative application suite that controls configuration, logs error

and performance reports, and provides a monitoring and tuning interface for the system administrator. These functions
can be exercised from either system console connected to the host 118, or from a system administrator's wor1<station.

5 The host processor 118 is a conventional OEM Sun central processor card, Mode13E/120. It incorporates a Mo-
torola 68020 microprocessor and 4MB of on-board memory. Other processors, such as a SPARC-based processor,
are also possible.

The structure and operation of each of the hardware components of server 100 will now be described in detail.

to NETWORK CONTROLLER HARDWARE ARCHITECTURE

Fig. 3 is a block diagram showing the data path and some control paths for an illustrative one of the network
controllers 110a. It comprises a 20 MHz 68020 microprocessor 210 connected to a 32-bit microprocessor data bus
212. Also connected to the microprocessor data bus· 212 is a 256K byte CPU memory 214. The low order 8 bits of the

t5 microprocessor data bus 212 are connected through a bidirectional buffer 216 to an 8-bit slow-speed data bus 218.
On the slow-speed data bus 218 is a 128K byte EPROM 220, a 32 byte PROM 222, and a multi-function peripheral
(MFP) 224. The EPROM 220 contains boot code for the network controller 110a, while the PROM 222 stores various
operating parameters such as the Ethernet addresses assigned to each of the two Ethernet interfaces on the board.
Ethernet address information is read into the corresponding interface control block in the CPU memory 214 during

20 initialization. The MFP 224 is a Motorola 68901, and performs various local functions such as timing, interrupts, and
general purpose 110. The MFP 224 also includes a UART for interfacing to an RS232 port 226. These functions are
not critical to the invention and will not be further described herein.

The low order 16 bits of the microprocessor data bus 212 are also coupled through a bidirectional buffer 230 to a
16-bit LAN data bus 232. A LAN controller chip 234, such as the Am7990 LANCE Ethernet controller manufactured

25 by Advanced Micro Devices, Inc. Sunnyvale, CA, interfaces the LAN data bus 232 with the first Ethernet 122a shown
in Fig. 2. Control and data for the LAN controller 234 are stored in a 512K byte LAN memory 236, which is also connected
to the LAN data bus 232. A specialized 16 to 32 bit Fl FO chip 240, referred to herein as a parity Fl FO chip and described
below, is also connected to the LAN data bus 232. Also connected to the LAN data bus 232 is a LAN DMA controller
242, which controls movements of packets of data between the LAN memory 236 and the FIFO chip 240. The LAN

so DMA controller 242 may be a Motorola M68440 DMA controller using channel zero only.
The second Ethernet 122b shown in Fig. 2 connects to a second LAN data bus 252 on the network controller card

11 Oa shown in Fig. 3. The LAN data bus 252 connects to the low order 16 bits of the microprocessor data bus 212 via
a bidirectional buffer 250, and has similar components to those appearing on the LAN data bus 232. In particular. a
LAN controller 254 interfaces the LAN data bus 252 with the Ethernet 122b, using LAN memory 256 for data and

35 control •. and a LAN DMA controller 262 controls DMA transfer of data between the LAN memory 256 and the 16-bit
wide data port A of the parity FIFO 260.

The low order 16 bits of microprocessor data bus 212 are also connected directly to another parity FIFO 270, and
also to a control port of a VMEIFIFO DMA controller 272. The FIFO 270 is used for passing messages between the
CPU memory 214 and one of the remote boards 110, 112, 114, 116 or 118 (Fig. 2) in a manner described below. The

40 VMEIFIFO DMA controller 272, which supports three round-robin non-prioritized channels for copying data, controls
all data transfers between one of the remote boards and any of the FIFOs 240, 260 or 270, as well as between the
FIFOs 240 and 260.

32-bit data bus 274, which is connected to the 32-bit port B of each of the FIFOs 240, 260 and 270, is the data
bus over which these transfers take place. Data bus 274 communicates with a local 32-bit bus 276 via a bidirectional

45 pipelining latch 278, which is also controlled by VMEIFIFO DMA controller 727, which in turn communicates with the
VME bus 120 via a bidirectional buffer 280.

The local data bus 276 is also connected to a set of control registers 282, which are directly addressable across
the VME bus 120. The registers 282 are used mostly for system initialization and diagnostics.

The local data bus 276 is also coupled to the microprocessor data bus 212 via a bidirectional buffer 284. When
so the NC 110a operates in slave mode, the CPU memory 214 is directly addressable from VME bus 120. One of the

remote boards can copy data directly from the CPU memory 214 via the bidirectional buffer 284. LAN memories 236
and 256 are not directly addressed over VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of an ASIC, the functions and operation of which are described
in the Appendix. The FIFOs 240 and 260 are configured for packet data transfer and the FIFO 270 is configured for

ss massage passing. Referring to the Appendix, the FIFOs 240 and 260 are programmed with the following bit settings
in the Data Transfer Configuration Register:

9

Oracle Ex. 1002, pg. 274

5

10

15

20

25

EP 0 490 973 81

Bit Definition Setting

0 WDMode N/A

1 Parity Chip N/A

2 Parity Correct Mode N/A

3 B/16 bits CPU & PortA interface 16 bits(1)

4 Invert Port A address 0 no (0)

5 Invert Port A address 1 yes (1)

6 Checksum Carry Wrap yes (1)

7 Reset no (0)

The Data Transfer Control Register is programmed as follows:

Bit Definition Setting

0 Enable PortA Req/Ack yes (1)

1 Enable PortS Req/Ack yes (1)

2 Data Transfer Direction (as desired)

3 CPU parity enable no(O)

4 PortA parity enable no (0)

5 PortS parity enable no(O)

6 Checksum Enable yes (1)

7 PortA Master yes (1)

Unlike the configuration used on FIFOs 240 and 260, the microprocessor 210 is responsible for loading and un­
loading Port A directly. The microprocessor 210 reads an entire 32-bit word from port A with a single instruction using
two port A access cycles. Port A data transfer is disabled by unsetting bits 0 (Enable PortA Req/Ack) and 7 (PortA

30 Master) of the Data Transfer Control Register.
The remainder of the control settings in FIFO 270 are the same as those in FIFOs 240 and 260 described above.
The NC 110aalso includes a command FIFO 290. The command FIFO 290 includes an input port coupled to the

local data bus 276, and which is directly addressable across the VME bus 120, and includes an output port connected
to the microprocessor data bus 212. As explained in more detail below, when one of the remote boards issues a

35 command or response to the NC 11 Oa, it does so by directly writing a 1-word (32-bit) message descriptor into NC
110a's command FIFO 290. Command FIFO 290 generates a 'FIFO not empty' status to the microprocessor 210,
which then reads the message descriptor off the top of FIFO 290 and processes it. If the message is a command, then
it includes a VME address at which the message is located (presumably an address in a shared memory similar to 214
on one of the remote boards). The microprocessor 210 then programs the FIFO 270 and the VMEIFIFO DMA controller

40 272 to copy the message from the remote location into the CPU memory 214.
Command FIFO 290 is a conventional two-port FIFO, except that additional circuitry is included for generating a

Bus Error signal on VME bus 120 if an attempt is made to write to the data input port while the FIFO is full. Command
FIFO 290 has space for 256 entries.

A noteworthy feature of the architecture of NC 11 Oa is that the LAN buses 232 and 252 are independent of the
45 microprocessor data bus 212. Data packets being routed to or from an Ethernet are stored in LAN memory 236 on the

LAN data bus 232 (or 256 on the LAN data bus 252), and not in the CPU memory 214. Data transfer between the LAN
memories 236 and 256 and the Ethernets 122a and 122b, are controlled by LAN controllers 234 and 254, respectively.
while most data transfer between LAN memory 236 or 256 and a remote port on the VME bus 120 are controlled by
LAN DMA controllers 242 and 262, FIFOs 240 and 260, and VMEIFIFO DMA controller 272. An exception to this rule

so occurs when the size of the data transfer is small, e.g., less than 64 bytes, in which case microprocessor 210 copies
it directly without using DMA. The microprocessor 210 is not involved in larger transfers except in initiating them and
in receiving notification when they are complete.

The CPU memory 214 contains mostly instructions for microprocessor 210, messages being transmitted to or from
a remote board via FIFO 270, and various data blocks for controlling the FIFOs, the DMA controllers and the LAN

55 controllers. The microprocessor 210 accesses the data packets in the LAN memories 236 and 256 by directly address­
ing them through the bidirectional buffers 230 and 250, respectively, for protocol processing. The local high-speed
static AAM in CPU memory 214 can therefore provide zero wait state memory access for microprocessor 210 inde­
pendent of network traffic. This is in sharp contrast to the prior art architecture shown in Fig. 1, in which all data and

10

Oracle Ex. 1002, pg. 275

5

EP 0 490 973 81

data packets, as well as microprocessor instructions for host CPU card 1 0, reside in the memory 16 and must com­
municate with the host CPU card 10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as separate buses in Fig. 3, it will be understood that they may
instead be implemented as a single combined bus.

NETWORK CONTROLLER OPERATION

In operation, when one of the LAN controllers (such as 234) receives a packet of information over its Ethernet
122a, it reads in the entire packet and stores it in corresponding LAN memory 236. The LAN controller 234 then issues

10 an interrupt to microprocessor 210 via MFP 224, and the microprocessor 210 examines the status register on LAN
controller 234 (via bidirectional buffer 230) to determine that the event causing the interrupt was a •receive packet
completed. "In order to avoid a potential lockout of the second Ethernet 122b caused by the prioritized interrupt handling
characteristic of MFP 224, the microprocessor 210 does not at this time immediately process the received packet;
instead, such processing is scheduled for a polling function.

15 When the polling function reaches the processing of the received packet, control over the packet is passed to a
software link level receive module. The link level receive module then decodes the packet according to either of two
different frame formats: standard Ethernet format or SNAP (IEEE 802 LCC) format. An entry in the header in the packet
specifies which frame format was used. The link level driver then determines which of three types of messages is
contained in the received packet: (1) IP, (2) ARP packets which can be handled by a local AAP module, or (3) ARP

20 packets and other packet types which must be forwarded to the local host 118 (Fig. 2) for processing. If the packet is
an ARP packet which can be handled by the NC 110a, such as a request for the address of server 100, then the
microprocessor 210 assembles a response packet in LAN memory 236 and, in a conventional manner, causes LAN
controller 234 to transmit that packet back over Ethernet 122a. It is noteworthy that the data manipulation for accom­
plishing this task is performed almost completely in LAN memory 236, directly addressed by microprocessor 210 as

25 controlled by instructions in CPU memory 214. The function is accomplished also without generating any traffic on the
VME backplane 120 at all, and without disturbing the local host 118.

If the received packet is either an ARP packet which cannot be processed completely in the NC 11 Oa, or is another
type of packet which requires delivery to the local host 118 (such as a client request for the server 100 to execute a
client-defined procedure), then the microprocessor 210 programs LAN DMA controller 242 to load the packet from

30 LAN memory 236 into FIFO 240, programs FIFO 240 with the direction of data transfer, and programs DMA controller
272 to read the packet out of FIFO 240 and across the VME bus 120 into system memory 116. In particular, the
microprocessor 210 first programs the LAN DMA controller 242 with the starting address and length of the packet in
LAN memory 236, and programs the controller to begin transferring data from the LAN memory 236 to port A of parity
FIFO 240 as soon as the FIFO is ready to receive data. Second, microprocessor 210 programs the VMEIFIFO DMA

35 controller 272 with the destination address in system memory 116 and the length of the data packet, and instructs the
controller to begin transferring data from port B of the FIFO 260 onto VME bus 120. Finally, the microprocessor 210
programs Fl FO 240 with the direction of the transfer to take place. The transfer then proceeds entirely under the control
of DMA controllers 242 and 272, without any further involvement by microprocessor 210.

The microprocessor 210 then sends a message to host 118 that a packet is available at a specified system memory
· 40 address. The microprocessor 210 sends such a message by writing a message descriptor to a software-emulated

command FIFO on the host, which copies the message from CPU memory 214 on the NC via buffer 284 and into the
host's local memory, in ordinary VME block transfer mode. The host then copies the packet from system memory 116
into the host's own local memory using ordinary VME transfers. · ·

If the packet received by NC 110a from the network is an IP packet, then the microprocessor 210 determines
45 whether it is (1) an IP packet for the server 100 which is not an NFS packet; (2) an IP packet to be routed to a different

network; or (3) an NFS packet. If it is an IP packet for the server 100, but not an NFS packet, then the microprocessor
210 causes the packet to be transmitted from the LAN memory 236 to the host 118 in the same manner described
above with respect to certain ARP packets. ·
· If the I P packet is not intended for the server 100, but rather is to be routed to a client on a different network, then

so the packet is copied into the LAN memory associated with the Ethernet to which the destination client is connected. If
the destination client is on the Ethernet 122b, which is on the same NC board as the source Ethernet 122a, then the
microprocessor 21 0 causes the packet to be copied from LAN memory 236 into LAN 256 and then causes LAN controller
254 to transmit it over Ethernet 122b. (Of course, if the two LAN data buses 232 and 252 are combined, then copying
would be unnecessary; the microprocessor 210 would simply cause the LAN controller 254 to read the packet out of

ss the same locations in LAN memory to which the packet was written by LAN controller 234.)
The copying of a packet from LAN memory 236 to LAN memory 256 takes place similarly to the copying described

above from LAN memory to system memory. For transfer sizes of 64 bytes or more, the microprocessor 210 first
programs the LAN DMA controller 242 with the starting address and length of the packet in LAN memory 236, and

11

Oracle Ex. 1002, pg. 276

EP 0 490 973 81

programs the controller to begin transferring data from the LAN memory 236 into port A of parity FIFO 240 as soon as
the FIFO is ready to receive data. Second, microprocessor 210 programs the LAN DMA controller 262 with a destination
address in LAN memory 256 and the length of the data packet, and instructs that controller to transfer data from parity
FIFO 260 into the LAN memory 256. Third, microprocessor 210 programs the VMEIFIFO DMA controller 272 to clock

s words of data out of port B of the FIFO 240, over the data bus 274, and into port B of FIFO 260. Finally, the microproc­
essor 210 programs the two FIFOs 240 and 260 with the direction of the transfer to take place. The transfer then
proceeds entirely under the control of DMA controllers 242, 262 and 272, without any further involvement by the mi­
croprocessor 210. Like the copying from LAN memory to system memory, if the transfer size is smaller than 64 bytes,
the microprocessor 210 performs the transfer directly, without DMA.

to When each of the LAN DMA controllers 242 and 262 complete their work, they so notify microprocessor 210 by a
respective interrupt provided through MFP 224. When the microprocessor 210 has received both interrupts, it programs
LAN controller 254 to transmit the packet on the Ethernet 122b in a conventional manner.

Thus, IP routing between the two Ethernets in a single network controller 110 takes place over data bus 274,
generating no traffic over VME bus 120. Nor is the host processor 118 disturbed lor such routing, in contrast to the

15 prior art architecture of Fig. 1. Moreover, all but the shortest copying work is performed by controllers outside micro­
processor 210, requiring the involvement of the microprocessor 210, and bus traffic on microprocessor data bus 212,
only lor the supervisory functions of programming the DMA controllers and the parity FIFOs and instructing them to
begin. The VMEIFIFO DMA controller 272 is programmed by loading control registers via microprocessor data bus
212; the LAN DMA controllers 242 and 262 are programmed by loading control registers on the respective controllers

20 via the microprocessor data bus 212, respective bidirectional buffers 230 and 250, and respective LAN data buses
232 and 252, and the parity FIFOs 240 and 260 are programmed as set forth in the Appendix.

II the destination workstation of the IP packet to be routed is on an Ethernet connected to a different one of the
network controllers 11 0, then the packet is copied into the appropriate LAN memory on the NC 11 0 to which that
Ethernet is connected. Such copying is accomplished by first copying the packet into system memory 116, in the manner

25 described above with respect to certain ARP packets, and then notifying the destination NC that a packet is available.
When an NC is so notified, it programs its own parity FIFO and DMA controllers to copy the packet from system memory
116 into the appropriate LAN memory. It is noteworthy that though this type of IP routing does create VME bus traffic,
it still does not involve the host CPU 118.

If the IP packet received over the Ethernet 122a and now stored in LAN memory 236 is an NFS packet intended
ao for the server 100, then the microprocessor 210 performs all necessary protocol preprocessing to extract the NFS

message and convert it to the local NFS (LNFS) format. This may well involve the logical concatenation of data extracted
from a large number of individuaiiP packets stored in LAN memory 236, resulting in a linked list, in CPU memory 214,
pointing to the different blocks of data in LAN memory 236 in the correct sequence.

The exact details of the LNFS format are not important lor an understanding of the invention, except to note that
35 it includes commands to maintain a directory of files which are stored on the disks attached to the storage processors

114, commands for reading and writing data to and from a file on the disks, and various configuration management
and diagnostics control messages. The directory maintenance commands which are supported by LNFS include the
following messages based on conventional NFS: get attributes of a file (GETATTR); set attributes of a file (SETATTR);
look up a file (LOOKUP); created a file (CREATE); remove a file (REMOVE); rename a file (RENAME); created a new

40 linked file (LINK); create a symlink (SYMLINK); remove a directory (RMDIR); and return file system statistics (STATFS).
The data transfer commands supported by LNFS include read from a file (READ); write to a file (WRITE); read from a
directory (READDIR); and read a link (READLINK). LNFS also supports a buffer release command (RELEASE), for
notifying the file controller that an NC is finished using a specified buffer in system memory. It also supports a VOP­
derived access command, for determining whether a given type access is legal lor specified credential on a specified

45 file.
If the LNFS request includes the writing of file data from the LAN memory 236 to disk, the NC 11 Oa first requests

a buffer in system memory 116 to be allocated by the appropriate FC 112. When a pointer to the buffer is returned,
microprocessor 21 0 programs LAN DMA controller 242, parity FIFO 240 and VMEIFI FO DMA controller 272 to transmit
the entire block of file data to system memory 116. The only difference between this transfer and the transfer described

so above for transmitting IP packets and ARP packets to system memory 116 is that these data blocks will typically have
portions scattered throughout LAN memory 236. The microprocessor 210 accommodates that situation by program­
ming LAN DMA controller 242 successively for each portion of the data, in accordance with the linked list, alter receiving
notification that the previous portion is complete. The microprocessor 210 can program the parity FIFO 240 and the
VMEIFIFO DMA controller 272 once for the entire message, as long as the entire data block is to be placed contiguously

55 in system memory 116. If it is not. then the microprocessor 210 can program the DMA controller 272 for successive
blocks in the same manner LAN DMA controller 242.

If the network controller 11 Oa receives a message from another processor in server 100, usually from file controller
112, that file data is available in system memory 116 for transmission on one of the Ethemets, lor example Ethernet

12

Oracle Ex. 1002, pg. 277

EP 0 490 973 81

122a, then the network controller 110a copies the file data into LAN memory 236 in a manner similar to the copying of
file data in the opposite direction. In particular, the microprocessor 210 first programs VMEIFIFO OMA controller 272
with the starting address and length of the data in system memory 116, and programs the controller to begin transferring
data over the VME bus 120 into port B of parity FIFO 240 as soon as the FIFO is ready to receive data. The micro-

s processor 210 then programs the LAN DMA controller 242 with a destination address in LAN memory 236 and then
length of the file data, and instructs that controller to transfer data from the parity FIFO 240 into the LAN memory 236.
Third, microprocessor 210 programs the parity FIFO 240 with the direction of the transfer to take place. The transfer
then proceeds entirely under the control of DMA controllers 242 and 272, without any further involvement by the mi­
croprocessor 210. Again, if the file data is scattered in multiple blocks in system memory 116, the microprocessor 210

10 programs the VMEIFIFO DMA controller 272 with a linked list of the blocks to transfer in the proper order.
When each of the DMA controllers 242 and 272 complete their work, they so notify microprocessor 210 through

MFP 224. The microprocessor 210 then performs all necessary protocol processing on the LNFS message in LAN
memory 236 in order to prepare the message for transmission over the Ethernet 122a in the form of Ethernet IP packets.
As set forth above, this protocol processing is performed entirely in network controller 11 Oa, without any involvement

15 of the local host 118.
It should be noted that the parity FIFOs are designed to move multiples of 128-byte blocks most efficiently. The

data transfer size through port 8 is always 32-bits wide, and the VME address corresponding to the 32-bit data must
be quad-byte aligned. The data transfer size for port A can be either 8 or 16 bits. For bus utilization reasons, it is set
to 16 bits when the corresponding local start address is double-byte aligned, and is set at 8 bits otherwise. The TCP/

20 IP checksum is always computed in the 16 bit mode. Therefore, the checksum word requires byte swapping if the local
start address is not double-byte aligned.

Accordingly, for transfer from port 8 to port A of any of the Fl FOs 240, 260 or 270, the microprocessor 21 0 programs
the VMEIFIFO DMA controller to pad the transfer count to the next 128-byte boundary. The extra 32-bit word transfers
do not involve the VME bus, and only the desired number of 32-bit words will be unloaded from port A.

25 For transfers from port A to port 8 of the parity FIFO 270, the microprocessor 210 loads port A word-by-word and
forces a FIFO full indication when it is finished. The FIFO full indication enables unloading from port B. The same
procedure also takes place for transfers from port A to port B of either of the parity FIFOs 240 or 260, since transfers
of fewer than 128 bytes are performed under local microprocessor control rather than under the control of LAN DMA
controller 242 or 262. For all of the FIFOs, the VMEIFIFO DMA controller is programmed to unload only the desired

30 riumber of 32-bit words.

FILE CONTROLLER HARDWARE ARCHITECTURE

The file controllers (FC) 112 may each be a standard off-the-shelf microprocessor board, such as one manufactured
35 by Motorola Inc. Preferably, however, a more specialized board is used such as that shown in block diagram form in

Fig.4.
Fig. 4 shows one of the FCs 112a, and it will be understood that the other FC can be identical. In many aspects it

is simply a scaled-down version of the NC 110a shown in Fig. 3, and in soma respects it is scaled up. Like the NC
110a, FC 112a comprises a 20MHz 68020 microprocessor 310 connected to a 32-bit microprocessor data bus 312.

40 Also connected to the microprocessor data bus 312 is a 256K byte shared CPU memory 314. The low order 8 bits of
the microprocessor data bus 312 are connected through a bidirectional buffer 316 to an 8-bit slow-speed data bus 318.
On slow-speed data bus 318 are a 128K byte PROM 320, and a multifunction peripheral (MFP) 324. The functions of
the PROM 320 and MFP 324 are the same as those described above with respect to EPROM 220 and MFP 224 on
NC 110a. FC 112a does not include PROM like the PROM 222 on NC 110a, but does include a parallel port 392. The

45 parallel port 392 is mainly for testing and diagnostics.
Like the NC 11 Oa, the FC 112a is connected to the VME bus 120 via a bidirectional buffer 380 and a 32-bit local

data bus 376. A set of control registers 382 are connected to the local data bus 376, and directly addressable across
the VME bus 120. The local data bus 376 is also coupled to the microprocessor data bus 312 via a bidirectional buffer
384. This permits the direct addressability of CPU memory 314 from VME bus 120.

so FC 112a also includes a command FIFO 390, which includes an input port coupled to the local data bus 376 and
which is directly addressable across the VME bus 120. The command Fl FO 390 also includes an output port connected
to the microprocessor data bus 312. The structure, operation and purpose of command FIFO 390 are the same as
those described above with respect to command FIFO 290 on NC 110a.

The FC 112a omits the LAN data buses 323 and 352 which are present in NC 110a, but instead includes a 4
ss megabyte 32-bit wide FC memory 396 coupled to the microprocessor data bus 312 via a bidirectional buffer 394. As

will be seen, FC memory 396 is used as a cache memory for file control information, separate from the file data infor­
mation cached in system memory 116.

The file controller embodiment shown in Fig. 4 does not include any DMA controllers, and hence cannot act as a

13

Oracle Ex. 1002, pg. 278

5

EP 0 490 973 81

master for transmitting or receiving data in any block transfer mode, over the VME bus 120. Block transfers do occur
with the CPU memory 314 and the FC memory 396, however. with the FC 112a acting as an VME bus slave. In such
transfers. the remote master addresses the CPU memory 314 or the FC memory 396 directly over the VME bus 120
through the bidirectional buffers 384 and, if appropriate, 394.

FILE CONTROLLER OPERATION

The purpose of the FC 112a is basically to provide virtual file system services in response to requests provided in
LNFS format by remote processors on the VME bus 120. Most requests will come from a network controller 110, but

10 requests may also come from the local host 118.
The file related commands supported by LNFS are identified above. They are all specified to the FC 112a in terms

of logically identified disk data blocks. For example, the LNFS command for reading data from a file includes a spec­
ification of the file from which to read (file system ID (FSID) and file ID (inode)), a byte offset, and a count of the number
of bytes to read. The FC 112a converts that identification into physical form, namely disk and sector numbers, in order

15 to satisfy the command.
The FC 112a runs a conventional Fast File System (FFS or UFS), which is based on the Berkeley 4.3 VAX release.

This code performs the conversion and also performs all disk data caching and control data caching. However, as
previously mentioned, control data caching is performed using the FC memory 396 on FC 112a, whereas disk data
caching is performed using the system memory 116 (Fig. 2). Caching this file control information within the FC 112a

20 avoids the VME bus congestion and speed degradation which would result if file control information was cached in
system memory 116. The memory on the FC 112a is directly accessed over the VME bus 120 for three main purposes.
First, and by far the most frequent, are accesses to FC memory 396 by an SP 114 to read or write cached file control
information. These are accesses requested by FC 112a to write locally modified file control structures through to disk,
or to read file control structures from disk. Second, the FC's CPU memory 314 is accessed directly by other processors

25 lor message transmissions from the FC 112a to such other processors. For example, if a data block in system memory
is to be transferred to an SP 114 for writing to disk. the FC 112a first assembles a message in its local memory 314
requesting such a transfer. The FC 112a then notifies the SP 114, which copies the message directly from the CPU
memory 314 and executes the requested transfer.

A third type of direct access to the FC's local memory occurs when an LNFS client reads directory entries. When
30 FC 112a receives an LNFS request to read directory entries, the FC 112a formats the requested directory entries in

FC memory 396 and notifies the requestor of their location. The requestor then directly accesses FC memory 396 to
read the entries.

The version of the UFS code on FC 112a includes some modifications in order to separate the two caches. In
particular, two sets of buffer headers are maintained, one for the FC memory 396 and one for the system memory 116.

35 Additionally, a second set of the system buffer routines (GETBLK(), BRELSEQ, BREAD(), BWRITE(), and BREADA
())exist. one for buffer accesses to FC Mem 396 and one for buffer accesses to system memory 116. The UFS code
is further modified to call the appropriate buffer routines for FC memory 396 for accesses to file control information,
and to call the appropriate buffer routines for the system memory 116 for the caching of disk data. A description of UFS
may be found in chapters 2, 6, 7 and 8 of "Kernel Structure and Flow," by Rieken and Webb of .sh consulting (Santa

40 Clara, California: 1988).
When a read command is sent to the FC by a requestor such as a network controller, the FC first converts the file,

offset and count information into disk and sector information. It then locks the system memory buffers which contain
that information, instructing the storage processor 114 to read them from disk if necessary. When the buffer is ready,
the FC returns a message to the requestor containing both the attributes of the designated file and an array of buffer

45 descriptors that identify the locations in system memory 116 holding the data.
After the requestor has read the data out of the buffers, it sends a release request back to the FC. The release

request is the same message that was returned by the FC in response to the read request; the FC 112a uses the
information contained therein to determine which buffers to free.

A write command is processed by FC 112a similarly to the read command, but the caller is expected to write to
so (instead of read from) the locations in system memory 116 identified by the buffer descriptors returned by the FC 112a.

Since FC 112a employs write-through caching, when it receives the release command from the requestor, it instructs
storage processor 114 to copy the data from system memory 116 onto the appropriate disk sectors before freeing the
system memory buffers for possible reallocation.

The READDIR transaction is similar to read and write, but the request is satisfied by the FC 112a directly out of
ss its own FC memory 396 after formatting the requested directory information specifically for this purpose. The FC 112a

causes the storage processor read the requested directory information from disk if it is not already locally cached. Also,
the specified offset is a 'magic cookie" instead of a byte offset, identifying directory entries instead of an absolute byte
offset into the file. No file attributes are returned.

14

Oracle Ex. 1002, pg. 279

EP 0 490 973 81

The READLINK transaction also returns no file attributes, and since links are always read in their entirety, it does
not require any offset or count.

For all of the disk data caching performed through system memory 116, the FC 112a acts as a central authority
for dynamically allocating, deallocating and keeping track of buffers. If there are two or more FCs 112, each has ex-

s elusive control over its own assigned portion of system memory 116. In all of these transactions, the requested buffers
are locked during the period between the initial request and the release request. This prevents corruption of the data
by other clients.

Also in the situation where there are two or more FCs, each file system on the disks is assigned to a particular
one of the FCs. FC #0 runs a process called FC_VICE_PRESIDENT. which maintains a list of which file systems are

10 assigned to which FC. When a client processor (for example an NC 11 0) is about to make an LNFS request designating
a particular file system, it first sends the fsid in a message to the FC_ VICE_PRESIDENT asking which FC controls the
specified file system. The FC_VICE_PRESIDENT responds, and the client processor sends the LNFS request to the
designated FC. The client processor also maintains its own list of fsid/FC pairs as it discovers them, so as to minimize
the number of such requests to the FC_VICE_PRESIDENT.

15

STORAGE PROCESSOR HARDWARE ARCHITECTURE

In the file server 100, each of the storage processors 114 can interface the VME bus 120 with up to 10 different
SCSI buses. Additionally, it can do so at the full usage rate of an enhanced block transfer protocol of 55MB per second.

20 Fig. 5 is a block diagram of one of the SPs 1148. SP 114b is identical. SP 1148 comprises a microprocessor 51 0,
which may be a Motorola 68020 microprocessor operating at 20M Hz. The microprocessor 510 is coupled over a 32-bit
microprocessor data bus 512 with CPU memory 514, which may include up to 1MB of static RAM. The microprocessor
510 accesses instructions, data and status on its own private bus 512, with no contention from any other source. The
microprocessor 510 is the only master of bus 512.

25 The low order 16 bits of the microprocessor data bus 512 interface with a control bus 516 via a bidirectional buffer
518. The low order B bits of the control bus 516 interface with a slow speed bus 520 via another bidirectional buffer
522. The slow speed bus 520 connects to an MFP 524, similar to the MFP 224 in NC 11 Oa (Fig. 3), and with a PROM
526, similar to PROM 220 on NC 110a. The PROM 526 comprises 128K bytes of EPROM which contains the functional
code for SP 1148. Due to the width and speed of the EPROM 526, the functional code is copied to CPU memory 514

30 upon reset for faster execution.
MFP 524, like the MFP 224 on NC 110a, comprises a Motorola 68901 multifunction peripheral device. It provides

the functions of a vectored interrupt controller, individually programmable 110 pins, four timers and a UART. The UART
functions provide serial communications across an AS 232 bus (not shown in Fig. 5) for debug monitors and diagnostics.
Two of the four timing functions may be used as general--purpose timers by the microprocessor 510, either independ-

35 ently or in cascaded fashion. A third timer function provides the refresh clock for a DMA controller described belolol(
and the fourth timer generates the UART clock. Additional information on the MFP 524 can be found in 'MC 68901
Multi-Function Peripheral Specification,' by Motorola, Inc. The eight general--purpose 110 bits provided by MFP 524
are configured according to the following table:

40 Bit Direction Definition

7 input Power Failure is Imminent- This functions as an early warning.

6 input SCSI Attention - A composite of the SCSI. Attentions from all 1 0 SCSI channels.

45

5 input Channel Operation Done - A composite of the channel done bits from all 13 channels of the
DMA controller, described below.

4 output DMA Controller Enable. Enables the DMA Controller to run.
50

3 input VMEbus Interrupt Done- Indicates the completion of a VMEbus Interrupt.

2 input Command Available - Indicates that the SP'S Command Fifo, described below, contains one or

55 more command pointers.

1 output External Interrupts Disable. Disables externally generated interrupts to the microprocessor 510.

15

Oracle Ex. 1002, pg. 280

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

(continued)

Bit Direction Definition

0 output Command Fifo Enable. Enables operation of the SP'S Command Fifo. Clears the Command
Fifo when reset.

Commands are provided to the SP 114a from the VME bus 120viaa bidirectional buffer 530, a local data bus 532,
and a command FIFO 534. The command FIFO 534 is similar to the command FIFOs 290 and 390 on NC 110a and
FC 112a, respectively, and has a depth of 256 32-bit entries. The command FIFO 534 is a write-only register as seen
on the VME bus 120, and as a read-only register as seen by microprocessor 510. If the FIFO is full at the beginning
of a write from the VME bus, a VME bus error is generated. Pointers are removed from the command FIFO 534 in the
order received, and only by the microprocessor 510. Command available status is provided through 110 bit 4 of the
MFP 524, and as a long as one or more command pointers are still within the command FIFO 534, the command
available status remains asserted.

As previously mentioned, the SP 114a supports up to 10 SCSI buses or channels 540a-540j. In the typical con­
figuration, buses 540a-540i support up to 3 SCSI disk drives each, and channel 540j supports other SCSI peripherals
such as tape drives, optical disks, and so on. Physically, the SP 114a connects to each of the SCSI buses with an ultra­
miniature D sub connector and round shielded cables. Six 50-pin cables provide 300 conductors which carry 18 signals
per bus and 12 grounds. The cables attach at the front panel of the SP 114a and to a commutator. board at the disk
drive array. Standard 50-pin cables connect each SCSI device to the commutator board. Termination resistors are
installed on the SP 114a.

The SP 114a supports synchronous parallel data transfers up to 5MB per second on each of the SCSI buses 540,
arbitration, and disconnect/reconnect services. Each SCSI bus 540 is connected to a respective SCSI adaptor 542,
which in the present embodiment is an AIC 6250 controller IC manufactured by Adaptec Inc., Milpitas, California,
operating in the non-multiplexed address bus mode. The AIC 6250 is described in detail in "AIC-8250 Functional
Specification, • by Adaptec Inc. The SCSI adaptors 542 each provide the necessary hardware interface and low-level
electrical protocol to implement its respective SCSI channel.

The 8-bit data port of each of the SCSI adaptors 542 is connected to port A of a respective one of a set of ten
parity FIFOs 544a-544j. The FIFOs 544 are the same as FIFOs 240, 260 and 270 on NC 110a, and are connected
and configured to provide parity covered data transfers between the 8-bit data port of the respective SCSI adaptors
542 and a 36-bit (32-bit plus 4 bits of parity) common data bus 550. The FIFOs 544 provide handshake, status, word
assembly/disassembly and speed matching FIFO buffering for this purpose. The FIFOs 544 also generate and check
parity for the 32-bit bus, and for RAID 5 implementations they accumulate and check redundant data and accumulate
recovered data.

All of the SCSI adaptors 542 reside at a single location of the address space of the microprocessor 510, as do all
of the parity FIFOs 544. The microprocessor 510 selects individual controllers and FIFOs for access in pairs, by first
programming a pair select register (not shown) to point to the desired pair and then reading from or writing to the control
register address of the desired chip in the pair. The microprocessor 510 communicates with the control registers on
the SCSI adaptors 542 via the control bus 516 and an additional bidirectional buffer 546, and communicates with the
control registers on FIFOs 544 via the control bus 516 and a bidirectional buffer 552. Both the SCSI adaptors 542 and
Fl FOs 544 employ 8-bit control registers, and register addressing of the Fl FOs 544 is arranged such that such registers
alias in consecutive byte locations. This allows the microprocessor 510 to write to the registers as a single 32-bit
register, thereby reducing instruction overhead.

The parity FIFOs 544 are each configured in their Adaptec 6250 mode. Referring to the Appendix, the FIFOs 544
are programmed with the following bit settings in the Data Transfer Configuration Register:

Bit Definition Setting

0 WDMode (0)

1 Parity Chip (1)

2 Parity Correct Mode (0)

3 8116 bits CPU & PortA interface (0)

4 Invert Port A address 0 (1)

5 Invert Port A address 1 (1)

6 Checksum Carry Wrap (0)

7 Reset (0)

16

Oracle Ex. 1002, pg. 281

5

10

IS

20

25

30

35

40

45

so

55

EP 0 490 973 81

The Data Transfer Control Register is programmed as follows:

Bit Definition Setting

0 Enable PortA Req/Ack (1)

1 Enable PortB Req/Ack (1)

2 Data Transfer Direction as desired

3 CPU parity enable (0)

4 PortA parity enable (1)

5 PortS parity enable (1)

6 Checksum Enable (0)

7 PortA Master (0)

In addition, bit 4 of the RAM Access Control Register (Long Burst) is programmed for 8-byte bursts.
SCSI adaptors 542 each· generate a respective interrupt signal, the status of which are provided to microprocessor

510 as 10 bits of a 16-bit SCSI interrupt register 556. The SCSI interrupt register 556 is connected to the control bus
516. Additionally, a composite SCSI interrupt is provided through the MFP 524 whenever any one of the SCSI adaptors
542 needs servicing.

An additional parity FIFO 554 is also provided in the SP 114a, for message passing. Again referring to the Appendix,
the parity FIFO 554 is programmed with the following bit settings in the Data Transfer Configuration Register:

Bit Definition Setting

0 WDMode (0)

1 Parity Chip (1)

2 Parity Correct Mode (0)

3 8(16 bits CPU & PortA interface (1)

4 Invert Port A address 0 (1)

5 Invert Port A address 1 (1)

6 Checksum Carry Wrap (0)

7 Reset (0)

The Data Transfer Control Register is programmed as follows:

Bit Definition Setting

0 Enable PortA Req/Ack (0)

1 Enable PortS Req/Ack (1)

2 Data Transfer Direction as desired

3 CPU parity enable (0)

4 PortA parity enable (0)

5 PortS parity enable (1)

6 Checksum Enable (0)

7 PortA Master (0)

In addition, bit 4 of the RAM Access Control Register (Long Burst) is programmed for 8-byte bursts.
Port A of FIFO 554 is connected to the Hi-bit control bus 516, and port B is connected to the common data bus

550. FIFO 554 provides one means by which the microprocessor 510 can communicate directly with the VME bus 120,
as is described in more detail below.

The microprocessor 51 0 manages data movement using a set of 15 channels, each of which has an unique status
which indicates its current state. Channels are implemented using a channel enable register 560 and a channel status
register 562, both connected to the control bus 516. The channel enable register 560 is a 16-bit write-only register,
whereas the channel status register 562 is a 16-bit read-only register. The two registers reside at the same address
to microprocessor 510. The microprocessor 510 enables a particular channel by setting its respective bit in channel
enable register 560, and recognizes completion of the specified operation by testing for a 'done• bit in the channel
status register 562. The microprocessor 510 then resets the enable bit, which causes the respective 'done' bit in the

17

Oracle Ex. 1002, pg. 282

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

channel status register 562 to be cleared.
The channels are defined as follows:

CHANNEL FUNCTION

0:9 These channels control data movement to and from the respective FIFOs 544 via the common data
bus 550. When a FIFO is enabled and a request is received from it, the channel becomes ready.
Once the channel has been serviced a status of done is generated.

11:10 These channels control data movement between a local data buffer 564, described below, and the
VME bus 120. When enabled the channel becomes ready. Once the channel has been serviced a
status of done is generated.

12 When enabled, this channel causes the DRAM in local data buffer 564 to be refreshed based on a
clock which is generated by the MFP 524. The refresh consists of a burst of 16 rows. This channel
does not generate a status of done. -

13 The microprocessor's communication FIFO 554 is serviced by this channel. When enable is set and
the FIFO 554 asserts a request then the channel becomes ready. This channel generates a status
of done.

14 Low latency writes from microprocessor 510 onto the VME bus 120 are controlled by this channel.
When this channel is enabled data is moved from a special 32 bit register, described below, onto the
VME bus 120. This channel generates a done status.

15 This is a null channel for which neither a ready status nor done status is generated.

Channels are prioritized to allow servicing of the more critical requests first. Channel priority is assigned in a
descending order starting at channel 14. That is, in the event that all channels are requesting service, channel 14 will
be the first one served.

The common data bus 550 is coupled via a bidirectional register 570 to a 36-bit junction bus 572. A second bidi­
rectional register 57 4 connects the junction bus 572 with the local data bus 532. Local data buffer 564, which comprises
1MB of DRAM, with parity, is coupled bidirectionally to the junction bus 572. It is organized to provide 256K 32-bit
words with byte parity. The SP 114a operates the DRAMs in page mode to support a very high data rate, which requires
bursting of data instead of random single-word accesses. It will be seen that the local data buffer 564 is used to im­
plement a RAID (redundant array of inexpensive disks) 'algorithm, and is not used for direct reading and writing between

·the VME bus 120 and a peripheral on one of the SCSI buses 540.
A read-only register 576, containing all zeros, is also connected to the junction bus 572. This register is used mostly

for diagnostics, initialization, and clearing of large blocks of data in system memory 116.
The movement of data between the FIFOs 544 and 554, the local data buffer 564, and a remote entity such as

the system memory 116 on the VME bus 120, is all controlled by a VMEIFIFO DMA controller 580. The VMEIFIFO
DMA controller 580 is similar to the VMEIFIFO DMA controller 272 on network controller 11 Oa (Fig. 3), and is described
in the Appendix. Briefly, it includes a bit slice engine 582 and a dual-port static RAM 584. One port of the dual-port
static RAM 584 communicates over the 32-bit microprocessor data bus 512 with microprocessor 510, and the other
port communicates over a separate 16-bit bus with the bit slice engine 582. The microprocessor 510 places command
parameters in the dual-port RAM 584, and uses the channel enables 560 to signal the VME/FIFO DMA controller 580
to proceed with the command. The VME/FIFO DMA controller is responsible for scanning the channel status and
servicing requests, and returning ending status in the dual-port RAM 584. The dual-port RAM 584 is organized as 1 K
x 32 bits at the 32-bit port and as 2K x 16 bits at the 16-bit port. A example showing the method by which the micro­
processor 510 controls the VMEIFIFO DMA controller 580 is as follows. First, the microprocessor 510 writes into the
dual-port RAM 584 the desired command and associated parameters for the desired channel. For example, the com­
mand might be, 'copy a block of data from FIFO 544h out into a block of system memory 116 beginning at a specified
VME address. • Second, the microprocessor sets the channel enable bit in channel enable register 560 for the desired
channel.

At the time the channel enable bit is set, the appropriate FIFO may not yet be ready to send data. Only when the
VMEIFIFO DMA controller 580 does receive a "ready" status from the channel, will the controller 580 execute the
command. In the meantime, the DMA controller 580 is free to execute commands and move data to or from other
channels.

18

Oracle Ex. 1002, pg. 283

EP 0 490 973 81

When the DMA controller 580 does receive a status of •ready' from the specified channel, the controller fetches
the channel command and parameters from the dual-ported RAM 584 and executes. When the command is complete,
for example all the requested data has been copied, the DMA controller writes status back into the dual-port RAM 584
and asserts 'done• for the channel in channel status register 562. The microprocessor 510 is then interrupted, at which

5 time it reads channel status register 562 to determine which channel interrupted. The microprocessor 510 then clears
the channel enable for the appropriate channel and checks the ending channel status in the dual-port RAM 584.

In this way a high-speed data transfer can take place under the control of DMA controller 580, fully in parallel with
other activities being performed by microprocessor 510. The data transfer takes place over busses different from mi­
croprocessor data bus 512, thereby avoiding any interference with microprocessor instruction fetches.

10 The SP 114a also includes a high-speed register 590, which is coupled between the microprocessor data bus 512
and the local data bus 532. The high-speed register 590 is used to write a single 32-bit word to an VME bus target
with a minimum of overhead. The register is write only as viewed from the microprocessor 510. In order to write a word
onto the VME bus 120, the microprocessor 510 first writes the word into the register 590, and the desired VME target
address into dual-port RAM 584. When the microprocessor 510 enables the appropriate channel in channel enable

15 register 560, the DMA controller 580 transfers the data from the register 590 into the VME bus address specified in
the dual-port RAM 584. The DMA controller 580 then writes the ending status to the dual-port RAM and sets the channel
'done• bit in channel status register 562.

This procedure is very efficient tor transfer of a single word of data, but becomes Inefficient for large blocks of data.
Transfers of greater than one word of data, typically for message passing, are usually performed using the FIFO 554.

20 The SP 114a also includes a series of registers 592, similar to the registers 282 on NC 110a (Fig. 3) and the

25

registers 382 on FC 112a (Fig. 4). The details of these registers are not important for an understanding of the present
invention.

STORAGE PROCESSOR OPERATION

The 30 SCSI disk drives supported by each of the SPs 114 are visible to a client processor. for example one of
the file controllers 112, either as three large, logical disks or as 30 independent SCSI drives, depending on configuration.
When the drives are visible as three logical disks, the SP uses RAID 5 design algorithms to distribute data tor each
logical drive on nine physical drives to minimize disk arm contention. The tenth drive is left as a spare. The RAID 5

30 algorithm (redundant array of inexpensive drives, revision 5) is described in 'A Case For a Redundant Arrays of Inex­
pensive Disks (RAID)', by Patterson et ill., published at ACM SIGMOD Conference, Chicago, Ill .• June 1-3, 1988.

In the RAID 5 design, disk data are divided into stripes. Data stripes are recorded sequentially on eight different
disk drives. A ninth parity stripe, the exclusive-or of eight data stripes, is recorded on a ninth drive. If a stripe size is
set to 8K bytes, a read of 8K of data involves only one drive. A write of 8K of data involves two drives: a data drive and

35 a parity drive. Since a write requires the reading back of old data to generate a new parity stripe, writes are also referred
to as modify writes. The SP 114a supports nine small reads to nine SCSI drives concurrently. When stripe size is set
to BK, a read of 64K of data starts all eight SCSI drives, with each drive reading one 8K stripe worth of data. The parallel
operation is transparent to the caller client.

The parity stripes are rotated among the nine drives in order to avoid drive contention during write operations. The
40 parity stripe is used to improve availability of data. When one drive is down, the SP 114a can reconstruct the missing

data from a parity stripe. In such case, the SP 114a is running in error recovery mode. When a bad drive is repaired,
the SP 114a can be instructed to restore data on the repaired drive while the system is on-line.

When the SP 114a is used to attach thirty independent SCSI drives, no parity stripe is created and the client
addresses each drive directly.

45 The SP 114a processes multiple messages (transactions, commands) at one time, up to 200 messages per second.

50

55

The SP 114a does not initiate any messages after initial system configuration. The following SP 114a operations are
defined:

01

02

03

05

06

07
08

09

NoOp

Send Configuration Data

Receive Configuration Data

Read and Write Sectors

Read and Write Cache Pages

IOCTL Operation

Dump SP 114a Local Data Buffer

StarVStop A SCSI Drive

19

Oracle Ex. 1002, pg. 284

s

10

IS

20

25

30

35

40

45

so

55

oc
OE
OF

EP 0 490 973 81

(continued)

Inquiry

Read Message Log Buffer

Set SP 114a Interrupt

The above transactions are described in detail in the above-identified application entitled MULTIPLE FACILITY
OPERATING SYSTEM ARCHITECTURE. For the understanding of the invention, it will be useful to describe the func­
tion and operation of only two of these commands: read and write sectors, and read and write cache pages.

Read and Write Sectors

This command, issued usually by an FC 112, causes the SP 114a to transfer data between a specified block of
system memory and a specified series of contiguous sectors on the SCSI disks. As previously described in connection
with the file controller 112, the particular sectors are identified in physical terms. In particular, the particular disk sectors
are identified by SCSI channel number (0-9), SCSI ID on that channel number (0-2), starting sector address on the
specified drive, and a count of the number of sectors to read or write. The SCSI channel number is zero if the SP 114a
is operating under RAID 5.

The SP 114a can execute up to 30 messages on the 30 SCSI drives simultaneously. Unlike most of the commands
to an SP 114, which are processed by microprocessor 510 as soon as they appear on the command FIFO 534, read
and write sectors commands (as well as read and write cache memory commands) are first sorted and queued. Hence,
they are not served in the order of arrival.

When a disk access command arrives, the microprocessor 510 determines which disk drive is targeted and inserts
the message in a queue for that disk drive sorted by the target sector address. The microprocessor 510 executes
commands on all the queues simultaneously, in the order present in the queue for each disk drive. In order to minimize
disk arm movements, the microprocessor 51 0 moves back and forth among queue entries in an elevator fashion.

If no error conditions are detected from the SCSI disk drives, the command is completed normally. When a data
check error condition occurs and the SP 114a is configured for RAID 5, recovery actions using redundant data begin
automatically. When a drive is down while the SP 114a is configured for RAID 5, recovery actions similar to data check
recovery take place.

Read/Write Cache Pages

This command is similar to read and write sectors, except that multiple VME addresses are provided for transferring
disk data to and from.system memory 116. Each VME address points to a cache page in system memory 116, the size
of which is also specified in the command. When transferring data from a disk to system memory 116, data are scattered
to different cache pages; when writing data to a disk, data are gathered from different cache pages in system memory
116. Hence, this operation is referred to as a scatter-gather function.

The target sectors on the SCSI disks are specified in the command in physical terms, in the same manner that
they are specified for the read and write sectors command. Termination of the command with or without error conditions
is the same as for the read and write sectors command.

The dual-port RAM 584 in the DMA controller 580 maintains a separate set of commands for each channel con­
trolled by the bit slice engine 582. As each channel completes its previous operation, the microprocessor 510 writes
a new DMA operation into the dual-port RAM 584 for that channel in order to satisfy the next operation on a disk
elevator queue.

The commands written to the DMA controller 580 include an op~;~ration code and a code indicating whether the
operation is to be performed in non-block mode, in standard VME block mode, or in enhanced block mode. The oper­
ation codes supported by DMA controller 580 are as follows:

OPCODE OPERATION

0 NO-OP

1 ZEROES --7 BUFFER Move zeros from zeros register 576 to local data buffer 564.

2 ZEROES --7 FIFO Move zeros from zeros register 576 to the currently selected FIFO on
common data bus 550.

20

Oracle Ex. 1002, pg. 285

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

(continued)

OPCODE OPERATION

3 ZEROES -+ VMEbus Move zeros from zeros register 576 out onto the VME bus 120. Used
for initializing cache buffers in system memory 116.

4 VMEbus -+ BUFFER Move data from the VME bus 120 to the local data buffer 564. This
operation is used during a write, to move target data intended for a
down drive into the buffer for participation in redundancy generation.
Used only for RAID 5 application.

5 VMEbus -+ FIFO New data to be written from VME bus onto a drive. Since RAID 5
requires redundancy data to be generated from data that is buffered
in local data buffer 564, this operation will be used only if the SP 114a
is not configured for RAID 5.

6 VMEbus-+ BUFFER & FIFO Target data is moved from VME bus 120 to a SCSI device and is also
captured in the local data buffer 564 for participation in redundancy
generation. Used only if SP 114a is configured for RAID 5 operation.

7 BUFFER -+ VMEbus This operation is not used.

8 BUFFER-+ FIFO Participating data is transferred to create redundant data or recovered
data on a disk drive. Used only in RAID 5 applications.

9 FIFO-+ VMEbus This operation is used to move target data directly from a disk drive
onto the VME bus 120.

A FIFO -+ BUFFER Used to move participating data for recovery and modify operations.
Used only in RAID 5 applications.

B FIFO -+ VMEbus & BUFFER This operation is used to save target data for participation in data
recovery. Used only i~ RAID 5 applications.

SYSTEM MEMORY

Fig. 6 provides a simplified block diagram of the preferred architecture of one of the system memory cards 116a.
Each of the other system memory cards are the same. Each memory card 116 operates as a slave on the enhanced
VME bus 120 and therefore requires no on-board CPU. Rather, a timing control block 610 is sufficient to provide the
necessary slave control operations. In particular, the timing control block 610, in response to control signals from the
control portion of the enhanced VME bus 120, enables a 32-bit wide buffer 612 for an appropriate direction transfer of
32-bit data between the enhanced VME bus 120 and a multiplexer unit 614. The multiplexer 614 provides a multiplexing
and demultiplexing function, depending on data transfer direction, for a six megabit by seventy-two bit word memory
array 620. An error correction code (ECC) generation and testing unit 622 is also connected to the multiplexer 614 to
generate or verify, again depending on transfer direction, eight bits of ECC data. The status of ECC verification is
provided back to the timing control block 610.

ENHANCED VME BUS PROTOCOL

VME bus 120 is physically the same as an ordinary VME bus, but each of the NCs and SPs include additional
circuitry and firmware for transmitting data using an enhanced VME block transfer protocol. The enhanced protocol is
described in detail in the above-identified application entitled ENHANCED VMEBUS PROTOCOL UTILIZING PSEU­
DOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA TRANSFER, and summarized in the Appendix here­
to. Typically transfers of LNFS file data between NCs and system memory, or between SPs and system memory, and

21

Oracle Ex. 1002, pg. 286

EP 0 490 973 81

transfers of packets being routed from one NC to another through system memory, are the only types of transfers that
use the enhanced protocol in server 100. All other data transfers on VME bus 120 use either conventional VME block
transfer protocols or ordinary non-block transfer protocols.

5 MESSAGE PASSING

As is evident from the above description, the different processors in the server 100 communicate with each other
via certain types of messages. In software, these messages are all handled by the messaging kernel, described in
detail in the MULTIPLE FACILITY OPERATING SYSTEM ARCHITECTURE application cited above. In hardware, they

10 are implemented as follows.
Each of the NCs 110, each of the FCs 112, and each of the SPs 114 includes a command or communication FIFO

such as 290 on NC 110a. The host 118 also includes a command FIFO, but since the host is an unmodified purchased
processor board, the FIFO is emulated in software. The write port of the command FIFO in each of the processors is
directly addressable from any of the other processors over VME bus 120.

15 Similarly, each of the processors except SPs 114 also includes shared memory such as CPU memory 214 on NC
1 1 Oa. This shared memory is also directly addressable by any of the other processors in the server 100.

If one processor, for example network controller 11 Oa, is to send a message or command to a second processor,
for example file controller 112a, then it does so as follows. First, it forms the message in its own shared memory (e.g.,
in CPU memory 214 on NC 110a). Second, the microprocessor in the sending processor directly writes a message

20 descriptor into the command Fl FO in the receiving processor. For a command being sent from network controller 11 Oa
to file controller 112a, the microprocessor 210 would perform the write via buffer 284 on NC 11 Oa, VME bus 120, and
buffer 384 on file controller 112a.

The command descriptor is a single 32-bit word containing in its high order 30 bits a VME address indicating the
start of a quad-aligned massage in the sender's shared memory. The low order two bits indicate the message type as

25 follows:

30

35

40

45

50

55

Type Description

0 Pointer to a new message being sent

1 Pointer to a reply message

2 Pointer to message to be forwarded

3 Pointer to message to be freed; also message acknowledgment

All messages are 128-bytes long.
When the receiving processor reaches the command descriptor on its command FIFO, it directly accesses the

sender's shared memory and copies it into the receiver's own local memory. For a command issued from network
controller 11 Oa to file controller 112a, this would be an ordinary VME block or non-block mode transfer from NC CPU
memory 214, via buffer 284, VME bus 120 and buffer 384, into FC CPU memory 314. The FC microprocessor 310
directly accesses NC CPU memory 214 for this purpose over the VME bus 120.

When the receiving processor has received the command and has completed its work, it sends a reply message
back to the sending processor. The reply message may be no more than the original command message unaltered,
or it may be a modified version of that message or a completely new message. If the reply message is not identical to
the original command message, then the receiving processor directly accesses the original sender's shared memory
to modify the original command message or overwrite it completely. For replies from the FC 112a to the NC 110a, this
involves an ordinary VME block or non-block mode transfer from the FC 112a, via buffer 384, VME bus 120, buffer 284
and into NC CPU memory 214. Again, the FC microprocessor 310 directly accesses NC CPU memory 214 for this
purpose over the VME bus 120.

Whether or not the original command message has been changed, the receiving processor then writes a reply
message descriptor directly into the original sender's command Fl FO. The reply message descriptor contains the same
VME address as the original command message descriptor, and the low order two bits of the word are modified to
indicate that this is a reply message. For replies from the FC 112a to the NC 110a, the message descriptor write is
accomplished by microprocessor 310 directly accessing command FIFO 290 via buffer 384, VME bus 120 and buffer
280 on the NC. Once this is done, the receiving processor can free the buffer in its local memory containing the copy
of the command message.

22

Oracle Ex. 1002, pg. 287

EP 0 490 973 81

When the original sending processor reaches the reply message descriptor on its command FIFO, it wakes up the
process that originally sent the message and permits it to continue. After examining the reply message, the original
sending processor can free the original command message buffer in its own local shared memory.

As mentioned above, network controller 11 Oa uses the buffer 284 data path in order to write message descriptors
5 onto the VME bus 120, and uses VMEIFIFO DMA controller 272 together with parity FIFO 270 in order to copy messages

from the VME bus 120 into CPU memory 214. Other processors read from CPU memory 214 using the buffer 284 data
path.

File controller 112a writes message descriptors onto the VME bus 120 using the buffer 384 data path, and copies
messages from other processors' shared memory via the same data path. Both take place under the control of micro-

10 processor 310. Other processors copy messages from CPU memory 314 also via the buffer 384 data path.
Storage processor 114a writes message descriptors onto the VME bus using high-speed register 590 in the manner

described above, and copies messages from other processors using DMA controller 580 and Fl FO 554. The SP 114a
has no shared memory, however, so it uses a buffer in system memory 116 to emulate that function. That is, before it
writes a message descriptor into another processor's command FIFO, the SP 114a first copies the message into its

15 own previously allocated buffer in system memory 116 using DMA controller 580 and FIFO 554. The VME address
included in the message descriptor then reflects the VME address of the message in system memory 116.

In the host 118, the command FIFO and shared memory are both emulated in software.

APPENDIX A
20

VMEIFIFO DMA Controller

In storage processor 114a, DMA controller 580 manages the data path under the direction of the microprocessor
510. The DMA controller 580 is a microcoded 16-bit bit-slice implementation executing pipelined instructions at a rate

· 25 of one each 62.5ns. It is responsible for scanning the channel status 562 and servicing request with parameters stored
in the dual-ported ram 584 by the microprocessor 510. Ending status is returned in the ram 584 and interrupts are
generated for the microprocessor 510.

Control Store. The control store contains the microcoded instructions which control the DMA controller 580. The
control store consists of 6 1 K x 8 proms configured to yield a 1 K x 4S bit microword. Locations within the control store

30 are addressed by the sequencer and data is presented at the input of the pipeline registers.
Sequencer. The sequencer controls program flow by generating control store addresses based upon pipeline data

and various status bits. The control store address consists of 1 0 bits. Bits 8:0 of the control store address derive from
a multiplexer having as its.inputs either an ALU output or the output of an inc rem enter. The incrementer can be pre load­
ed with pipeline register bits 8:0, or it can be incremented as a result of a test condition. The 1 K address range is

35 divided into two pages by a latched flag such that the microprogram can execute from either page. Branches, however
remain within the selected page. Conditional sequencing is performed by having the test condition increment the pipe­
line provided address. A false condition allows execution from the pipeline address while a true condition causes
execution from the address + 1. The alu output is selected as an address source In order to directly vector to a routine
or in order to return to a calling routine. Note that when calling a subroutine the calling routine must reside within the

40 same page as the subroutine or the wrong page will be selected on the return .
.6!:!:!· The alu comprises a single IDT49C402A integrated circuit. It is 16 bits in width and most closely resembles

four 2901 s with 64 registers. The alu is used primarily for incrementing, decrementing, addition and bit manipulation.
All necessary control signals originate in the control store. The lOT HIGH PERFORMANCE CMOS 1988 DATA BOOK,
incorporated by reference herein, contains additional information about the alu.

45 Microword. The 48 bit microword comprises several fields which control various functions of the DMA controller

50

55

580. The format of the microword is defined below along with mnemonics and a description of each function.

Al<8:0> 47:39

CIN38

RA<5:0> 37:32

RB<5:0> 31 :26

(Alu Instruction bits 8:0) The AI bits provide the instruction for the 49C402A alu. Refer to the IDT
data book for a complete definition of the alu instructions. Note that the 19 signal input of the
49C402A is always low.

(Carry INput) This bit forces the carry input to the alu.

(Register A address bits 5:0) These bits select one of 64 registers as the "A" operand for the alu.
These bits also provide literal bits 15:1 0 for the alu bus.

(Register B address bits 5:0) These bits select one of 64 registers as the "B' operand for the alu.
These bits also provide literal bits 9:4 for the alu bus.

23

Oracle Ex. 1002, pg. 288

LFD25

EP 0 490 973 81

(latched Flag Data) When set this bit causes the selected latched flag to be set. When reset this
bit causes the selected latched flag to be cleared. This bits also functions as literal bit 3 for the alu
bus.

5 LFS<2:0> 24:22 (Latched Flag Select bits 2:0) The meaning of these bits is dependent upon the selected source
for the alu bus. In the event that the literal field is selected as the bus source then LFS<2:0> function
as literal bits <2:0> otherwise the bits are used to select one of the latched flags.

LFS<2:0> SELECTED FLAG
10

0 This value selects a null flag.

1 When set this bit enables the buffer clock. When reset this bit disables the buffer clock.

15 2 When this bit is cleared VME bus transfers, buffer operations and RAS are all disabled.

3 NOT USED

4 When set this bit enables VME bus transfers.
20

5 When set this bit enables buffer operations.

6 When set this bit asserts the row address strobe to the dram buffer.
25

7 When set this bit selects page 0 of the control store.

SAC<1 ,0> 20,21 (alu bus SouRCe select bits 1 ,0) These bits select the data source to be enabled onto the alu bus.

30 SAC<1,0> Selected Source

0 alu
1 dual ported ram
2 literal

35 3 reserved-not defined

PF<2:0> 19:17 (Pulsed Flag select bits 2:0) These bits select a flag/signal to be pulsed.

PF<2:0> Flag
40

0 null

1 SGL_CLK
generates a single transition of buffer clock.

45

2 SET_VB
forces vme and buffer enable to be set.

3 CL_PEAA
clears buffer parity error status.

50

4 SET_DN
set channel done status for the currently selected channel.

55
5 INC_ADA

increment dual ported ram address.

24

Oracle Ex. 1002, pg. 289

EP 0 490 973 81

(oontinued)

PF<2:0> Flag

s 6:7 RESERVED - NOT DEFINED

DEST <3:0> 16:13 (DESTination select bits 3:0) These bits select one ol1 0 destinations to be loaded from the alu bus.

10 DEST<3:0> Destination

0 null

1 WR_RAM

IS
causes the data on the alu bus to be written to the dual ported ram.
D<15:0> ~ ram<15:0>

2 WR_BADD

loads the data from the alu bus into the dram address counters.

20

D<14:7> ~ mux addr<B:O>
3 WR_VADL

loads the data from the alu bus into the least significant 2 bytes of the VME address register.
D<15:2> ~ VME addr<15:2>

25 D1 ~ ENB_tional registers
D<15:2> ~ VME addr<15:2>
D1 ~ENB_ENH
DO~ENB_BLK

30 4 WR_VADH
loads the most significant 2 bytes of the VME address register.
D<15:0> ~ VME addr<31 :16>

5 WR_RADD
35 loads the dual ported ram address counters.

D<10:0> ~ram addr <10:0>

6 WR_WCNT

40
loads the word counters.
D15 ~ oount enable*
D<14:8>-+ oount <6:0>

7 WR_CO

45 loads the co-channel select register.
D<7:4> -+ C0<3:0>

8 WR_NXT
loads the next-channel select register.

50 D<3:0> ~ NEXT<3:0>

9 WR_CUR
loads the current-channel select register.
D<3:0> -+ CURR <3:0>

55

10:14 RESERVED -NOT DEFINED

25

Oracle Ex. 1002, pg. 290

5

10

15

20

25

30

35

40

45

so

55

EP 0 490 973 81

(continued)

DEST<3:0> Destination

15 JUMP
causes the control store sequencer to select the alu data bus.
D<8:0> -+ CS_A<8:0>

TEST <3:0> 12:9 (TEST condition select bits 3:0) Select one of 16 inputs to the test multiplexor to be used as the
carry input to the incrementer.

NEXT _A<8:0>

TEST<3:0> Condition

0 FALSE -always false

1 TRUE -always true

2 ALU_COUT -carry output of alu

3 ALU_EQ -equals output of alu

4 ALU_OVR -alu overflow

5 ALU_NEG -alu negative

6 XFR_DONE -transfer complete

7 PAR_ERR -buffer parity error

8 TIMOUT -bus operation timeout

9 ANY_ERR -any error status

14:10 RESERVED -NOT DEFINED

15 CH_RDY -next channel ready

8:0 (NEXT Address bits 8:0) Selects an instructions from the current page of the control store for
execution.

Dual Ported Ram. The dual ported ram is the medium by which command, parameters and status are communi­
cated between the DMA controller 580 and the microprocessor 510. The ram is organized as 1 K x 32 at the master
port and as 2K x 16 at the DMA port. The ram may be both written and read at either port. ·

The ram is addressed by the DMA controller 580 by loading an 11 bit address into the address counters. Data is
then read into bidirectional registers and the address counter is incremented to allow read of the next location.

Writing the ram is accomplished by loading data from the processor into the registers after loading the ram address.
Successive writes may be performed on every other processor cycle.

The ram contains current block pointers, ending status, high speed bus address and parameter blocks. The fol­
lowing is the format of the ram:

26

Oracle Ex. 1002, pg. 291

5

10

15

20

25

30

35

EP 0 490 973 81

OFFSET 31

0

4

58

sc

60

64

68

6C

70

74

78

??

ICURR POINTER 0 l STATUS 0

-------------------------------INITIAL POINTER 0

ICURR POINTER B I STATUS B

INITIAL POINTER B

not used not used

not used not used

ICURR POINTER D I STATUS 0

INITIAL POINTER 0

not used STATUS E

IHIGH SPEED BUS ADDRESS 31:210101

PARAMETER BLOCK 0

PARAMETER BLOCK n

0

The Initial Pointer is a 32 bit value which points the first command block of a chain. The current pointer is a sixteen
bit value used by the DMA controller 580 to point to the current command block. The current command block pointer
should be initialized to OxOOOO by the microprocessor 510 before enabling the channel. Upon detecting a value of
OxOOOO in the current block pointer the DMA controller 580 will copy the lower 16 bits from the initial pointer to the

40 current pointer. Once the DMA controller 590 has completed the specified operations for the parameter block the current
pointer will be updated to point to the next block. In the event that no further parameter blocks are available the pointer
will be set to OxOOOO.

45

so

55

The status byte indicates the ending status for the last channel operation performed. The following status bytes
are defined:

STATUS MEANING

0 NO ERRORS

1 ILLEGAL OP CODE

2 BUS OPERATION TIMEOUT

3 BUS OPERATION ERROR

4 DATA PATH PARITY ERROR

The format of the parameter block is:

27

Oracle Ex. 1002, pg. 292

5

10

15

20

EP 0 490 973 81

OFFS~T 31 0

0 FORWARD LINK

4 NOT USED WORD COUNT

8 VME ADDRESS 31:2, ENH, BLK

c TERM 0 OP 0 BUF ADDR 0

C+(4Xn) TERM n OP n BUF ADDR nl

FORWARD LINK -The forward link points to the first word of the next parameter block for execution. It allows
several parameter blocks to be initialized and chained to create a sequence of operations for execution. The forward
pointer has the following format:

A31:A2,0,0
25 The format dictates that the parameter block must start on a quad byte boundary. A pointer of OxOOOOOOOO is a special

case which indicates no forward link exists.
WORD COUNT - The word count specifies the number of quad byte words that are to be transferred to or from

each buffer address or talfrom the VME address. A word count of 64K words may be specified by initializing the word
count with the value of 0. The word count has the following format:

30 ID151D141D131D121D111D1 OID91DSID71D61D51D41D31D21D11DOI

35

40

45

so

55

The word count is updated by the DMA controller 580 at the completion of a transfer to/from the last specified
buffer address. Word count is not updated after transferring talfrom each buffer address and is therefore not an accurate
indicator of the total data moved to/from the buffer. Word count represents the amount of data transferred to the VME
bus or one of the FIFOs 544 or 554.

VME ADDRESS- The VME address specifies the starting address for data transfers. Thirty bits allows the address
to start at any quad byte boundary.

ENH - This bit when set selects the enhanced block transfer protocol described in the above-cited ENHANCED
VMEBUS PROTOCOL UTILIZING PSEUOOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA TRANS­
FER application, to be used during the VME bus transfer. Enhanced protocol will be disabled automatically when
performing any transfer to or from 24 bit or 16 bit address space, when the starting address is not 8 byte aligned or
when the word count is not even.

BLK- This bit when set selects the conventional VME block mode protocol to be used during the VME bus transfer.
Block mode will be disabled automatically when performing any transfer to or from 16 bit address space.

BUF ADDR -The buffer address specifies the starting buller address for the adjacent operation. Only 16 bits are
available for a 1M byte buffer and as a result the starting address always falls on a 16 byte boundary. The programmer
must ensure that the starting address is on a modulo 128 byte boundary. The buffer address is updated by the DMA
controller 580 after completion of each data burst.
lA 191A 181A 171A 161A 151A 141A 131A 121A 111A 1 OIA91ABIA71A61ASIA41

TERM -The last buffer address and operation within a parameter block is identified by the terminal bit. The DMA
controller 580 continues to fetch buffer address s and operations to perform until this bit is encountered. Once the last
operation within the parameter block is executed the word counter is updated and if not equal to zero the series of
operations is repeated. Once the word counter reaches zero the forward link pointer is used to access the next param­
eter block.

:o:o:o:o:o:o:o:o:r:
OP - Operations are specified by the op code. The op code byte has the following format:

:o:o:o:o:oP3:op2:oP1 :oPo:
The op codes are listed below ('FIFO' refers to any of the FIFOs 544 or 554):

28

Oracle Ex. 1002, pg. 293

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

OPCODE OPERATION

0 NO-OP

1 ZEROES -+ BUFFER

2 ZEROES-+ FIFO

3 ZEROES -+ VMEbus

4 VMEbus -+ BUFFER

5 VMEbus-+ FIFO

6 VMEbus-+ BUFFER & FIFO

7 BUFFER-+ VMEbus

B BUFFER-+ FIFO

9 FIFO -+ VMEbus

A FIFO-+ BUFFER

B FIFO -+ VMEbus & BUFFER

c RESERVED

D RESERVED

E RESERVED

F RESERVED

APPENDIXB

Enhanced VME Block Transfer Protocol

The enhanced VME block transfer protocol is a VMEbus compatible pseudo-synchronous fast transfer handshake
protocol for use on a VME backplane bus having a master functional module and a slave functional module logically
interconnected by a data transfer bus. The data transfer bus includes a data strobe signal line and a data transfer
acknowledge signal line. To accomplish the handshake, the master transmits a data strobe signal of a given duration
on the data strobe line. The master then awaits the reception of a data transfer acknowledge signal from the slave
module on the data transfer acknowledge signal line. The slave then responds by transmitting data transfer acknowl­
edge signal of a given duration on the data transfer acknowledge signal line.

Consistent with the pseudo-synchronous nature of the handshake protocol, the data to be transferred is referenced
to only one signal depending upon whether the transfer operation is a READ or WRITE operation.

In transferring data from the master functional unit to the slave, the master broadcasts the data to be transferred.
The master asserts a data strobe signal and the slave, in response to the data strobe signal, captures the data broadcast
by the master. Similarly, in transferring data from the slave to the master, the slave broadcasts the data to be transferred
to the master unit. The slave then asserts a data transfer acknowledge signal and the master, in response to the data
transfer acknowledge signal, captures the data broadcast by the slave.

The fast transfer protocol, while not essential to the present invention, facilitates the rapid transfer of large amounts
of data across a VME backplane bus by substantially increasing the data transfer rate. These data rates are achieved
by using a handshake wherein the data strobe and data transfer acknowledge signals are functionally decoupled and
by specifying high current drivers for all data and control lines.

The enhanced pseudo-synchronous method of data transfer (hereinafter referred to as "fast transfer mode") is
implemented so as to comply and be compatible with the IEEE VME backplane bus standard. The protocol utilizes
user-defined address modifiers, defined in the VMEbus standard, to indicate use of the fast transfer mode. Conventional
VMEbus functional units, capable only of implementing standard VMEbus protocols, will ignore transfers made using
the fast transfer mode and, as a result, are fully compatible with functional units capable of implementing the fast
transfer mode.

The fast transfer mode reduces the number of bus propagations required to accomplish a handshake from four
propagations, as required under conventional VMEbus protocols, to only two bus propagations. likewise, the number
of bus propagations required to effect a BLOCK READ or BLOCK WRITE data transfer is reduced. Consequently, by
reducing the propagations across the VMEbus to accomplish handshaking and data transfer functions, the transfer
rate is materially increased.

The enhanced protocol is described in detail in the above-cited ENHANCED VMEBUS PROTOCOL application,
and will only be summarized here. Familiarity with the conventional VME bus standards is assumed.

In the fast transfer mode handshake protocol, only two bus propagations are used to accomplish a handshake,

29

Oracle Ex. 1002, pg. 294

EP 0 490 973 81

rather than four as required by the conventional protocol. At the initiation of a data transfer cycle, the master will assert
and deassert oso· in the form of a pulse of a given duration. The deassertion of oso· is accomplished without regard
as to whether a response has been received from the slave. The master then waits for an acknowledgement from the
slave. Subsequent pulsing of oso• cannot occur until a responsive OTACK* signal is received from the slave. Upon

s receiving the slave's assertion of OTACK*, the master can then immediately reassert data strobe, if so desired. The
fast transfer mode protocol does not require the master to wait for the deassertion of OTACK* by the slave as a condition
precedent to subsequent assertions of DSO*. In the fast transfer mode, only the leading edge (i.e., the assertion) of a
signal is significant. Thus, the deassertion of either oso· or OTACK* is completely irrelevant for completion of a hand­
shake. The fast transfer protocol does not employ the 081* line for data strobe purposes at all.

10 The fast transfer mode protocol may be characterized as pseudo-synchronous as it includes both synchronous
and asynchronous aspects. The fast transfer mode protocol is synchronous in character due to the fact that DSO* is
asserted and deasserted without regard to a response from the slave. The asynchronous aspect of the fast transfer
mode protocol is attributable to the fact that the master may not subsequently assert oso• until a response to the prior
strobe is received from the slave. Consequently, because the protocol includes both synchronous and asynchronous

15 components, it is most accurately classified as "pseudo-synchronous.'
The transfer of data during a BLOCK WRITE cycle in the fast transfer protocol is referenced only to DSO*. The

master first broadcasts valid data to the slave, and then asserts OSO to the slave. The slave is given a predetermined
period of time after the assertion of oso• in which to capture the data. Hence, slave modules must be prepared to
capture data at any time, as DTACK* is not referenced during the transfer cycle.

20 Similarly, the transfer of data during a BLOCK READ cycle in the fast transfer protocol is referenced only to OTACK*.
The master first asserts DSO*. The slave then broadcasts data to the master and then asserts OTACK*. The master
is given a predetermined period of time after the assertion of OTACK in which to capture the data. Hence, master
modules must be prepared to capture data at any time as OSO is not referenced during the transfer cycle.

Fig. 7, parts A through C, is a flowchart illustrating the operations involved in accomplishing the fast transfer protocol
25 BLOCK WRITE cycle. To initiate a BLOCK WRITE cycle, the master broadcasts the memory address of the data to

be transferred and the address modifier across the OTB bus. The master also drives interrupt acknowledge signal
(lACK*) high and the LWORO* signal low 701. A special address modifier, for example "1 F,"broadcast by the master
indicates to the slave module that the fast transfer protocol will be used to accomplish the BLOCK WRITE.

The starting memory address of the data to be transferred should reside on a 64-bit boundary and the size of block
30 of data to be transferred should be a multiple of 64 bits. In order to remain in compliance with the VMEbus standard,

the block must not cross a 256 byte boundary without performing a new address cycle.
The slave modules connected to the OTB receive the address and the address modifier broadcast by the master

across the bus and receive LWORD* low and lACK* high 703. Shortly after broadcasting the address and address
modifier 701, the master drives the AS• signal low 705. The slave modules receive the AS* low signal707. Each slave

35 individually determines whether it will participate in the da~ transfer by determining whether the broadcasted address
is valid for the slave in question 709. If the address is not valid, the data transfer does not involve that particular slave
and it ignores the remainder of the data transfer cycle.

The master drives WRITE* low to indicate that the transfer cycle about to occur is a WRITE operation 711. The
slave receives the WRITE* low signal713 and, knowing that the data transfer operation is a WRITE operation, awaits

40 receipt of a high to low transition on the oso· signal line 715. The master will wait until both DTACK* and BEAR* are
high 718, which indicates that. the previous slave is no longer driving the OTB.

The master proceeds to place the first segment of the data to be transferred on data lines 000 through 031, 719.
After placing data on 000 through 031, the master drives OSO* low 721 and, after a predetermined interval, drives
oso· high 723.

45 In response to the transition of DSO* from high to low, respectively 721 and 723, the slave latches the data being
transmitted by the master over data lines 000 through 031, 725. The master places the next segment of the data to
be transferred on data lines 000 through 031, 727, and awaits receipt of a OTACK* signal in the form of a high to low
transition signal, 729 in Fig. 7B.

Referring to Fig. 7B, the slave then drives OTACK* low, 731, and, after a predetermined period of time, drives
so DTACK high, 733. The data latched by the slave, 725, is written to a device, which has been selected to store the data

735. The slave also increments the device address 735. The slave then waits for another transition of OSO* from high
to low737.

To commence the transfer of the next segment of the block of data to be transferred, the master drives DSO* low
739 and, after a predetermined period of time, drives oso· high 741. In response to the transition of DSO* from high

ss to low, respectively 739 and 7 41 , the slave latches the data being broadcast by the master over data lines 000 through
D31, 7 43. The master places the next segment of the data to be transferred on data lines DOO through 031, 7 45, and
awaits receipt of a DTACK* signal in the form of a high to low transition, 747.

The slave then drives OTACK* low, 749, and, after a predetermined period of time, drives OTACK* high, 751. The

30

Oracle Ex. 1002, pg. 295

EP 0 490 973 81

data latched by the slave, 743, is written to the device selected to store the data and the device address is incremented
753. The slave waits for another transition of DSO* from high to low 737.

The transfer of data will continue in the above-described manner until all of the data has been transferred from
the master to the slave. After all of the data has been transferred, the master will release the address lines, address

5 modifier lines, data lines, lACK* line, LWORD*Iine and DSO* line, 755. The master will then wait for receipt of a DTACK*
high to low transition 757. The slave will drive DTACK*Iow, 759 and, after a predetermined period of time, drive DTACK*
high 761. In response to the receipt of the DTACK* high to low transition, the master will drive AS* high 763 and then
release the AS* line 765.

Fig. 8, parts A through C, is a flowchart illustrating the operations involved in accomplishing the fast transfer protocol
to BLOCK READ cycle. To initiate a BLOCK READ cycle, the master broadcasts the memory address of the data to be

transferred and the address modifier across the DTB bus 801. The master drives the LWORD* signal low and the
lACK* signal high 801. As noted previously, a special address modifier indicates to the slave module that the fast
transfer protocol will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the address and the address modifier broadcast by the master
15 across the bus and receive LWORD* low and lACK* high 803. Shortly after broadcasting the address and address

modifier 801, the master drives the AS* signal low 805 .. The slave modules receive the AS*Iow signal807. Each slave
individually determines whether it will participate in the data transfer by determining whether the broadcasted address
is valid for the slave in question 809. If the address is not valid, the data transfer does not involve that particular slave
and it ignores the remainder of the data transfer cycle.

20 The master drives WRITP high to indicate that the transfer cycle about to occur is a READ operation 811. The
stave receives the WRITE* high signal813 and, knowing that the data transfer operation is a READ operation, places
the first segment of the data to be transferred on data lines DOO through D31 819. The master will wait until both
DTACK* and BEAR* are high 818, which indicates that the previous slave is no longer driving the DTB.

The master then drives DSO* low 821 and, after a predetermined interval, drives DSO* high 823. The master then
25 awaits a high to low transition on the DTACK* signal line 824. As shown in Fig. 88, the slave then drives the DTACK*

signal low 825 and, after a predetermined period of time, drives the DTACK* signal high 827.
In response to the transition of DTACK* from high to low, respectively 825 and 827, the master latches the data

being transmitted by the slave over data lines 000 through D31, 831. The data latched by the master, 831, is written
to a device, which has been selected to store the data the device address is incremented 833.

30 The slave places the next segment of the data to be transferred on data lines DOO through D31, 829, and then
waits for another transition of DSO* from high to low 837.

To commence the transfer of the next segment of the block of data to be transferred, the master drives DSO* low
839 and, after a predetermined period of time, drives DSO* high 841. The master then waits for the DTACK* line to
transition from high to low, 843.

35 The slave drives DTACK*Iow, 845, and, after a predetermined period of lime, drives DTACK* high, 847.1n response
to the transition of DTACK* from high to low, respectively 839 and 841, the master latches the data being transmitted
by the slave over data lines DOO through D31, 845. The data latched by the master, 845, is written to the device selected
to store the data, 851 in Fig. 8C, and the device address is incremented. The slave places the next segment of the
data to be transferred on data lines DOO through D31, 849.

40 The transfer of data will continue in the above-described manner until all of the data to be transferred from the
slave to the master has been written into the device selected to store the data. After all of the data to be transferred
has been written into the storage device, the master will release the address lines, address modifier lines, data lines,
the lACK* line, the LWORD line and DSO• line 852. The master will then wait for receipt of a DTACK• high to low
transition 853. The slave will drive DTACK*tow 855 and, after a predetermined period of time, drive DTACK• high 857.

45 In response to the receipt of the DTACK* high to low transition, the master will drive AS* high 859 and release the AS*
line 861.

To implement the fast transfer protocol, a conventional 64 mA tri-state driver is substituted for the 48 mA open
collector driver conventionally used in VME slave modules to drive DTACK*. Similarly, the conventional VMEbus data
drivers are replaced with 64 mA tri-state drivers in 80-type packages. The latter modification reduces the ground lead

50 inductance of the actual driver package itself and, thus, reduces "ground bounce• effects which contribute to skew
between data, DSO• and DTACK*. In addition, signal return inductance along the bus backplane is reduced by using
a connector system having a greater number of ground pins so as to minimize signal return and mated-pair pin induct­
ance. One such connector system is the "High Density Plus" connector, Model No. 420-8015.000, manufactured by
Teradyne Corporation.

55

31

Oracle Ex. 1002, pg. 296

EP 0 490 973 81

APPENDIXC

Parity FIFO

s The parity FIFOs 240, 260 and 270 (on the network controllers 110), and 544and 554 (on storage processors 114)
are each implemented as an ASIC. All the parity FIFOs are identical, and are configured on power-t~p or during normal
operation for the particular function desired. The parity FIFO is designed to allow speed matching between buses of
different speed, and to perform the parity generation and correction for the parallel SCSI drives.

The FIFO comprises two bidirectional data ports, Port A and Port B, with 36 x 64 bits of RAM buffer between them.
10 Port A is 8 bits wide and Port B is 32 bits wide. The RAM buffer is divided into two parts, each 36 x 32 bits, designated

RAM X and RAM Y. The two ports access different halves of the buffer alternating to the other half when available.
When the chip is configured as a parallel parity chip (e.g. one of the FIFOs 544 on SP 114a), all accesses on Port B
are monitored and parity is accumulated in RAM X and RAM Y alternately.

The chip also has a CPU interface, which may be 8 or 16 bits wide. In 16 bit mode the Port A pins are used as the
15 most significant data bits of the CPU interface and are only actually used when reading or writing to the Fifo Data

Register inside the chip.
A REO, ACK handshake is used for data transfer on both Ports A and B. The chip may be configured as either a

master or a slave on Port A in the sense that, in master mode the Port A ACK I ROY output signifies that the chip is
ready to transfer data on Port A, and the Port A REO input specifies .that the slave is responding. In slave mode,

20 however, the Port A REO input specifies that the master requires a data transfer, and the chip responds with Port A
ACK I ROY when data is available. The chip is a master on Port B since it raises Port B REO and waits for Port BACK
to indicate completion of the data transfer.

SIGNAL DESCRIPTIONS
25

Port A0-7, P

Port A is the 8 bit data port. Port A P, if used, is the odd parity bit for this port.

30 A Req, A Ack/Rdy

35

These two signals are used in the data transfer mode to control the handshake of data on Port A.

uP Data 0-7, uP Data P, uPAdd 0-2, CS

These signals are used by a microprocessor to address the programmable registers within the chip. The odd parity
signal uP Data P is only checked when data is written to the Fifo Data or Checksum Registers and microprocessor
parity is enabled.

40 Clk

45

50

55

The clock input is used to generate some of the chip timing. It is expected to be in the 10-20 Mhz range.

Read En, Write En

During microprocessor accesses, while CS is true, these signals determine the direction of the microprocessor
accesses. During data transfers in the WD mode these signals are data strobes used in conjunction with Port A Ack.

Port B 00.07, 1 0-17, 20-27, 30-37, OP-3P

Port B is a 32 bit data port. There is one odd parity bit for each byte. Port BOP is the parity of bits 00.07, PortB
1 P is the parity of bits 1 0-17, Port B 2P is the parity of bits 20-27, and Port B 3P is the parity of bits 30-37.

B Select, B Req, B Ack, Parity Sync, B Output Enable

These signals are used in the data transfer mode to control the handshake of data on Port B. Port B Req and Port
BAck are both gated with Port B Select. The Port BAck signal is used to strobe the data on the Port B data lines. The
parity sync signal is used to indicate to a chip configured as the parity chip to indicate that the last words of data involved

32

Oracle Ex. 1002, pg. 297

EP 0 490 973 81

in the parity accumulation are on Port B. The Port B data lines will only be driven by the Fifo chip if all of the following
conditions are met:

a. the data transfer is from Port A to Port 8;
5 b. the Port 8 select signal is true;

c. the Port B output enable signal is true; and
d. the chip is not configured as the parity chip or it is in parity correct mode and the Parity Sync signal is true.

Reset
10

This signal resets all the registers within the chip and causes all bidirectional pins to be in a high impedance state.

DESCRIPTION OF OPERATION

15 Normal Operation. Normally the chip acts as a simple FIFO chip. A FIFO is simulated by using two RAM buffers
in a simple ping-pong mode. It is intended, but not mandatory, that data is burst into or out of the FIFO on Port B. This
is done by holding Port 8 Sal signal low and pulsing the Port B Ack signal. When transferring data from Port B to Port
A, data is first written into RAM X and when this is full, the data paths will be switched such that Port B may start writing
to RAM Y. Meanwhile the chip will begin emptying RAM X to Port A. When RAM Y is full and RAM X empty the data

20 paths will be switched again such that Port B may reload RAM X and Port A may empty RAM Y.
Port A Slave Mode. This is the default mode and the chip is reset to this condition. In this mode the chip waits for

a master such as one of the SCSI adapter chips 542 to raise Port A Request for data transfer. If data is available the
Fifo chip will respond with Port A Ack/Rdy.

Port A WD Mode. The chip may be configured to run in the WD or Western Digital mode. In this mode the chip
25 must be configured as a slave on Port A. It differs from the default slave mode in that the chip responds with Read

Enable or Write Enable as appropriate together with Port A Ack/Rdy. This mode is intended to allow the chip to be
interfaced to the Western Digital 33C93A SCSI chip or the NCR 53C90 SCSI chip.

Port A Master Mode. When the chip is configured as a master, it will raise Port A Ack/Rdy when it is ready for data
transfer. This signal is expected to be tied to the Request input of a DMA controller which will respond with Port A Req

30 when data is available. In order to allow the DMA controller to burst, the Port A Ack/Rdy signal will only be negated
after every 8 or 16 bytes transferred.

Port B Parallel Write Mode. In parallel write mode, the chip is configured to be the parity chip for a parallel transfer
from Port B to Port A. In this mode, when Port B Select and Port B Request are asserted, data is written into RAM X
or RAM Y each time the Port B Ack signal is received. For the first block of 128 bytes data is simply copied into the

35 selected RAM. The next 128 bytes driven on Port B will be exclusive.QRed with the first 128 bytes. This procedure
will be repeated for all drives such that the parity is accumulated in this chip. The Parity Sync signal should be asserted
to the parallel chip together with the last block of 128 bytes. This enables the chip to switch access to the other RAM
and start accumulating a new 128 bytes of parity.

Port B Parallel Read Mode - Check Data. This mode is set if all drives are being read and parity is to be checked.
40 In this case the Parity Correct bit in the Data Transfer Configuration Register is not set. The parity chip will first read

128 bytes on Port A as in a normal read mode and then raise Port 8 Request. While it has this signal asserted the chip
will monitor the Port B Ack signals and exclusive-or the data on Port B with the data in its selected RAM. The Parity
Sync should again be asserted with the last block of 128 bytes. In this mode the chip will not drive the Port B data lines
but will check the output of its exclusive-or logic for zero. If any bits are set at this time a parallel parity error will be

45 flagged.
Port B Parallel Read Mode - Correct Data. This mode is set by setting the Parity Correct bit in the Data Transfer

Configuration Register. In this case the chip will work exactly as in the check mode except that when Port B Output
Enable, Port B Select and Parity Sync are true the data is driven onto the Port 8 data lines and a parallel parity check
for zero is not performed.

so Bvte Swap. In the normal mode it is expected that Port B bits 00-07 are the first byte, bits 10-17 the second byte,

55

bits 20-27 the third byte, and bits 30-37 the last byte of each word. The order of these bytes may be changed by writing
to the byte swap bits in the configuration register such that the byte address bits are inverted. The way the bytes are
written and read also depend on whether the CPU interface is configured as 16 or 8 bits. The following table shows
the byte alignments for the different possibilities for data transfer using the Port A Request I Acknowledge handshake:

1-~~i~~- Invert Addr 1 Invert Addr 0 Port B 00-07 Port B 10-17 Port 820-27 :~~ ~-:0.:-~~ ~ ---------- ---------- ---------- ---------- ----------
False False Port A Port A Port A Port A

33

Oracle Ex. 1002, pg. 298

5

10

15

20

25

30

35

40

45

50

EP 0 490 973 81

(continued)

CPU VF Invert Addr 1 Invert Addr 0 Port B00-07 Port B 10-17 Port B 20-27 Port B 30-37 ------- ---------- ---------- ---5V16o ___ -- -llvie 1--- ---bYte-:r--- --bVieT--

8 False True PortA Port A PortA PortA

byte 1 byte 0 byte3 byte 2

8 True False Port A Port A PortA PortA

byte 2 byte 3 byteO byte 1

8 True True PortA Port A PortA PortA

byte 3 byte 2 byte1 byte 0

16 False False Port A uP roc Port A uP roc

byteO byteO byte1 byte 1

16 False True uP roc Port A uP roc Port A

byte 0 byte 0 byte 1 byte 1

16 True False Port A uP roc PortA uP roc

byte1 byte 1 byteO byte 0

16 True True uP roc Port A uP roc PortA

byte1 byte 1 byteO byte 0

When the Fifo is accessed by reading or writing the Fifo Data Register through the microprocessor port in 8 bit
mode, the bytes are in the same order as the table above but the uProc data port is used instead of Port A. In 16 bit
mode the table above applies.

Odd Length Transfers. If the data transfer is not a multiple of 32 words, or 128 bytes, the microprocessor must
manipulate the internal registers of the chip to ensure all data is transferred. Port A Ack and Port B Req are normally
not asserted until all 32 words of the selected RAM are available. These signals may be forced by writing to the ap­
propriate RAM status bits of the Data Transfer Status Register.

When an odd length transfer has taken place the microprocessor must wait until both ports are quiescent before
manipulating any registers. It should then reset both of the Enable Data Transfer bits for Port A and Port Bin the Data
Transfer Control Register. It must then determine by reading their Address Registers and the RAM Access Control
Register whether RAM X or RAM Y holds the odd length data. It should then set the corresponding Address Register
to a value of 20 hexadecimal, forcing the RAM full bit and setting the address to the first word. Finally the microprocessor
should set the Enable Data Transfer bits to allow the chip to complete the transfer.

At this point the Fifo chip will think that there are now a full128 bytes of data in the RAM and will transfer 128 bytes
if allowed to do so. The fact that some of these 128 bytes are not valid must be recognized externally to the FIFO chip.

PROGRAMMABLE REGISTERS

Data Transfer Configuration Register (Read/Write)

Register Address 0. This register is cleared by the reset signal.

Bit 0 WD Mode. Set if data transfers are to use the Western Digital WD33C93A protocol, otherwise the Adaptec
6250 protocol will be used.

55 Bit 1 Parity Chip. Set if this chip is to accumulate Port B parities.

Bit 2 Parity Correct Mode. Set if the parity chip is to correct parallel parity on Port B.

34

Oracle Ex. 1002, pg. 299

5

10

15

20

25

30

35

40

45

50

55

Bit3

Bit4

BitS

BitS

Bit7

EP 0 490 973 81

(oontinued)

CPU Interface 16 bits wide. If set, the microprocessor data bits are combined with the Port A data bits to
effectively produce a 16 bit Port. All accesses by the microprocessor as well as all data transferred using
the Port A Request and Acknowledge handshake will transfer 16 bits.

Invert Port A byte address 0. Set to invert the least significant bit of Port A byte address.

Invert Port A byte address 1. Set to invert the most significant bit of Port A byte address.

Checksum Carry Wrap. Set to enable the carry out of the 16 bit checksum adder to carry back into the least
significant bit of the adder.

Reset. Writing a 1 to this bit will reset the other registers. This bit resets itself after a maximum of 2 clock
cycles and will therefore normally be read as a 0. No other register should be written for a minimum of 4
clock cycles after writing to this bit.

Data Transfer Control Register (Read/Write)

Register Address 1. This register is cleared by the reset signal or by writing to the reset bit.

BitO Enable Data Transfer on Port A. Set to enable the Port A Req/Ack handshake.

Bit 1 Enable Data Transfer on Port B. Set to enable the Port B Req/Ack handshake.

Bit2 Port A to Port B. If set, data transfer is from Port A to Port B. If reset, data transfer is from Port B to Port A.
In order to avoid any glitches on the request lines, the state of this bit should not be altered at the same
time as the enable data transfer bits 0 or 1 above.

Bit3 uProcessor Parity Enable. Set if parity is to be checked on the microprocessor interface. It will only be
checked when writing to the Fifo Data Register or reading from the Fifo Data or Checksum Registers, or
during a Port A RequesVAcknowledge transfer in 16 bit mode. The chip will, however, always re-generate
parity ensuring that correct parity is written to the RAM or read on the microprocessor interface.

Bit4 Port A Parity Enable. Set if parity is to be checked on Port A. It is checked when accessing the Fifo Data
Register in 16 bit mode, or during a Port A RequesVAcknowledge transfer. The chip will, however, always
re-generate parity ensuring that correct parity is written to the RAM or read on the Port A interface.

BitS Port B Parity Enable. Set if Port B data has valid byte parities. If it is not set, byte parity is generated internally
to the chip when writing to the RAMs. Byte parity is not checked whEm writing from Port B, but always checked
when reading to Port B.

BitS Checksum Enable. Set to enable writing to the 16 bit checksum register. This register accumulates.a 16 bit
checksum for all RAM accesses, including accesses to the Fifo Data Register, as well as all writes to the
checksum register. This bit must be reset before reading from the Checksum Register.

Bit7 Port A Master. Set if Port A is to operate in the master mode on Port A during the data transfer.

Data Transfer Status Register (Read On!yl

Register Address 2. This register is cleared by the reset signal or by writing to the reset bit.

Data in RAM X or RAM Y. Set if any bits are true in the RAM X, RAM Y. or Port A byte address registers.

35

Oracle Ex. 1002, pg. 300

5

10

15

20

25

30

35

EP 0 490 973 81

(oontinued)

Bit 1 uProc Port Parity Error. Set if the uProc Parity Enable bit is set and a parity error is detected on the
microprocessor interface during any RAM access or write to the Checksum Register in 16 bit mode.

Bit 2 Port A Parity Error. Set if the Port A Parity Enable bit is set and a parity error is detected on the Port A
interface during any RAM access or write to the Checksum Register.

Bit 3 Port 8 Parallel Parity Error. Set if the chip is configured as the parity chip, is not in parity correct mode,
and a non zero result is detected when the Parity Sync signal is true. It is also set whenever data is read
out onto Port B and the data being read back through the bidirectional buffer does not oompare.

Bits 4-7 Port 8 Byles 0-3 Parity Error. Set whenever the data being read out of the RAMs on the Port B side has
bad parity.

Ram Access Control Register (Read/Write)

Register Address 3. This register is cleared by the reset signal or by writing to the reset bit. The Enable Data
Transfer bits in the Data Transfer Control Register must be reset before attempting to write to this register, else the
write will be ignored.

BitO

Bit 1

Bit 2

Bit3

Bit4

Port A bvte address 0. This bit is the least significant byte address bit. It is read directly bypassing any
inversion done by the invert bit in the Data Transfer Configuration Register.

Port A bvte address 1. This bit is the most significant byte address bit. It is read directly bypassing any
inversion done by the invert bit in the Data Transfer Configuration Register.

Port A to RAM Y. Set if Port A is accessing RAM Y, and reset if it is accessing RAM X .

Port B to RAM Y. Set if Port 8 is accessing RAM Y, and reset if it is accessing RAM X .

Long Burst. If the chip is configured to transfer data on Port A as a master, and this bit is reset, the chip
will only negate Port A Ack/Ady after every B bytes, or 4 words in 16 bit mode, have been transferred. If
this bit Is set, Port A Ack/Rdy will be negated every 16 bytes, or 8 words in 16 bit mode.

Bits S· 7 Not Used.

40 RAM X Address Register (Read/Write)

45

50

55

Register Address 4. This register is cleared by the reset signal or by writing to the reset bit. The Enable Data
Transfer bits in the Data Transfer Control Register must be reset before attempting to write to this register, else the
write will be ignored.

RAM Y Address Register (Read/Write)

Bits 0-4

BitS

Bits 6-7

RAM X word address

RAM X full

Not Used

Register Address S. This register is cleared by the reset signal or by writing to the reset bit. The Enable Data
Transfer bits in the Data Transfer Control Register must be reset before attempting to write to this register, else the
write will be ignored.

Bits 0·4

BitS
RAM Y word address

RAM Yfull

36

Oracle Ex. 1002, pg. 301

EP 0 490 973 81

(continued)

Bits 6-7 Not Used

5 Fifo Data Register (Read/Write)

Register Address 6. The Enable Data Transfer bits in the Data Transfer Control Register must be reset before
attempting to write to this register, else the write will be ignored. The Port A to Port B bit in the Data Transfer Control
register must also be set before writing this register. If it is not, the RAM controls will be incremented but no data will

IO be written to the RAM. For consistency, the Port A to PortB should be reset prior to reading this register.

15

Bits 0-7 are Fifo Data. The microprocessor may access the FIFO by reading or writing this register. The RAM
control registers are updated as if the access was using Port A. If the chip is configured with a 16 bit CPU Interface
the most significant byte will use the Port A 0-7 data lines, and each Port A access will increment the Port A byte
address by 2.

Port A Checksum Register (Read/Write)

Register Address 7. This register is cleared by the reset signal or by writing to the reset bit.
Bits 0-7 are Checksum Data. The chip will accumulate a 16 bit checksum for all Port A accesses. If the chip is

20 configured with a 16 bit CPU interface, the most significant byte is read on the Port A 0-7 data lines. If data is written
directly to this register it is added to the current contents rather than overwriting them. It is important to note that the
Checksum Enable bit in the Data Transfer Control Register must be set to write this register and reset to read it.

25
PROGRAMMING THE FIFO CHIP

In general the fifo chip is programmed by writing to the data transfer configuration and control registers to enable
a data transfer, and by reading the data transfer status register at the end of the transfer to check the completion status.
Usually the data transfer itseH will take place with both the Port A and the Port B handshakes enabled, and in this case
the data transfer itself should be done without any other microprocessor interaction. In some applications, however,

30 the Port A handshake may not be enabled, and it will be necessary for the microprocessor to fill or empty the fifo by
repeatedly writing or reading the Fifo Data Register.

Since the fifo chip has no knowledge of any byte counts, there is no way of telling when any data transfer is
complete by reading any register within this chip itself. Determination of whether the data transfer has been completed
must therefore be done by some other circuitry outside this chip.

35 The following C language routines illustrate how the parity FIFO chip may be programmed. The routines assume

40

45

50

55

that both Port A and the microprocessor port are connected to !he system microprocessor, and return a size code of
16 bits, but that the hardware addresses the Fifo chip as long 32 bit registers.

37

Oracle Ex. 1002, pg. 302

s

10

EP 0 490 973 81

struct FIFO _regs {
unsigned Char config,a1,a2,a3 ;
unsigned Char control,b1,b2,b3;
unsigned Char status,c1,c2,c3;
unsigned Char ram access control,d1,d2,d3;
unsigned Char ram -x addr:-e1,e2,e3;
unsigned Char ram -v-addr ,f1,f2,f3;
unsigned long data; - ·
unsigned int checksum,h 1;
};

#define FIF01 ((struct FIFO _regs*) FIFO _BASE_ ADDRESS)

ts #define FIFO RESET Ox80
#define FIF0-16 BITS Ox08
#define FIFO-CA'J:tRY WRAP OX40
#define FIFO-PORT ~ ENABLE OX01
#define FIFO-PORT-B-ENABLE OX02

20 #define FIFO-PORT-ENABLES OX03
#define FIFO-PORT-A TO B Ox04
#define FIFO-CHEcT<StiMl:NABLE Ox40
#define FIFO-DATA IN RAM OX01
#define FIFO=FORCl=JfAM_FULL OX20

25

30

35

40

45

50

55

#define PORT A TO PORT B(fifo) ((fifo-> control) & 0x04)
#define PORT-A-BYTE AOORESS(fifo) ((fifO·>ram access control) &
Cbc03) - - .. - -
#define PORT A TO RAM V(fifo) ((fifo-> ram access control) & OX04)
#define POR"CB:To:RAM=Y(fifo) ((fifo-> ram_acoe~_control) & 0x08)

38

Oracle Ex. 1002, pg. 303

5

10

15

20

25

30
l

35

40

45

50

55

EP 0 490 973 81

I***
The following routine initiates a Fifo data transfer using two

values passed to it.

config_ data This is the data to be written to the configuration register.

control_ data This is the data to be written to the Data Transfer Control
Register. H the data transfer Is to take place
automatically using both the Port Aand Port B
handshakes, both data transfer enables bits should be
set in this parameter.

***I

FIFO initiate data transfer(config data, control data)
unsigned char corliig data, contrOl data: -
{ - -

FIF01·>config = config data I FIFO RESET; I* Set
Configuration value & Reset* I -

FIF01->control =control data & (-FIFO PORT ENABLES); /*Set
. everything but enaotes • 1 - -

FIF01->control = control data; I* Set data transfer
enables *I -
}

I***
The following routine forces the transfer of any odd bytes that

have been left in the Fifo at the end of a data transfer.
It first disables both ports, then forces the Ram Full bits, and then
re-enables the appropriate Port.
***I

FIFO force odd length transferO
{ - - - - .

FIF01->control &= -AFO_PORT_ENABLES; I* Disable Ports A & B
*I

if (PORT A TO PORT B(FIF01)) {
itlPORt:_A TO:RAM_Y(FIF01)) {

FIF01->ram Y addr"' FIFO FORCE RAM FULL; I*
SetRAMYfull*l -- - - -

}
else FIF01->ram X addr = AFO FORCE RAM FULL: /*Set

RAM X full *I - - - - -
FIF01·>control I= FIFO PORT B ENABLE; /*

Re-Enable Port B *I - - -
}
else {

if (PORT B TO RAM Y(FIF01)) {
Fl1=0'1·>ram Y addr = RFO FORCE RAM FULL; /*

Set RAM Y full *I - - - - -
}
else FIF01->ram X addr =FIFO FORCE RAM FULL; /*Set

RAM X full * / - - - - -

39

Oracle Ex. 1002, pg. 304

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

. , FIF01->control I = FIFO_ PORT_ A_ ENABLE ; /*
Re-Enable Port A * 1

}
}

/***
The following routine returns how many odd bytes have been

left in the Fifo at the end of a data transfer.
***/

int FIFO count Odd bytesQ
{ - - -

lnt number odd bytes;
number_ ocfd _ t>Yies = O;
if (FIF01·>status & FlFO DATA IN RAM) {

if (PORT A TO P'ORT B1Fif!'01)) {
number -odd bYtes "'

(PORT_ A_ BYTE_ ADORESS(FIF01)) ;

4;

}

}
else {

}
}

if (PORT A TO RAM V(FIF01))
numbe(' odd_ bytes + = (FIF01· >ram_ Y _ addr) *

else number_odd_bytes + = (FIF01->ram_X_addr) * 4;

If (PORT B TO RAM V(FIF01))
num'"ber-odd bytes = (FIF01->ram Y addr) * 4;

else number odd bYtes = (FIF01·>ram x-addr) • 4; - - --
return (number_ odd_ bytes);

, .. .
The following routine tests the microprocessor interface of the

chip. It first writes and reads the first 6 registers. It then writes 1 s. Os, and
an address pattern to the RAM, reading the data back and checking it.

The test returns a bit significant error code where eaCh bit
represents the address of the registers that failed.

Bit o = conflg register failed
Bit 1 = control register failed
Bit 2 = status register failed
Bit 3 = ram access control register failed
Bit 4 = ram X address register failed
Bit 5 = ram Y address register failed
Bit 6 = data register failed
Bit 7 = checksum register failed

***/

#define RAM_ DEPTH 64 f* number of long words in Fifo Ram * /.

reg_expected_data(6] = { Ox7F, OxFF, ())cOO, Ox1F, Ox3F, Ox3F };

40

Oracle Ex. 1002, pg. 305

5

10

IS

20

25

30

35

40

45

50

55

EP 0 490 973 81

char FIFO uprocessor interface testO
{ - - -

unsigned long test data:
char •register add'f;
lnt i; -
char j,error;
FIF01·>oonfig = FIFO RESET;
error=O; -
register addr =(char *) FIFOt;
j=t; -

I* first test registers o thru 5 *I

for (i=O; i<S; i+ +) {

f* reset the chip *I

register addr = oxFF; ! write test data *I
if (*register addr I= reg expected datap]) error I = j;
register aadr = 0; - I write OS to register *I

}

if (*register addr) error I = j;
•register addr = OxFF; f* write test data again *I
if (*register addr I= reg expected data[i]) error I = j;
FIF01->config = FIFO T\ESET; - /*reset the chip *I
if (*register_ addr) error l = j; /* register should be 0 *I
register addr + + ; !* go to next register * 1
j <<=1;

/* now test Ram data & checksum registers
test 1 s throughout Ram & then test OS * 1

for (test data = -t ; test data ! = 1; test data+ +) {
& Os *I - - -

I* test for 1 s

*I

FIF01->config = FIFO RESET I FIFO 16 BITS;
FIF01->control = FIFcY PORT A TO'S; -
for (i=-O;I<RAM DEPTH;!++) - - - !*write data to RAM

AF01->data = test data;
FIF01·>COntrol = O; -
for Q=O;i<RAM OEPTH;i+ +)

if (FIFaf::>data !=test data) error 1 = j; I* read &
check data * 1 -

if (FIF01->checksum) error 1 = Ox80; /*checksum
should= 0 *I

}

I* now test Ram data with address pattem
uses a different pattern for every byte * 1

test data=OX00010203; I* address pattem start* I
FIF01->config = FIFO RESET I FIFO 16 BITS I

FIFO CARRY WRAP; - - -
f!IF01->control = FIFO PORT A TO B I

FIFO CHECKSUM ENABlt; - - -
for Q=O;i<RAtl_OEPTH;i+ +) {

FIF01·>data = test_data; /*write address pattern *I

41

Oracle Ex. 1002, pg. 306

5

10

15

20

25

Claims

EP 0 490 973 81

}
test_ data + = OX04040404:

test data=Ox00010203; r address pattern start* 1
FIF01->control = FIFO CHECKSUM ENABLE;
for (i=O;i<RAM DEPTH;i++) { -

if (FIF01-:>status I= FIFO DATA IN RAM)
error I = OX04; - - 7* should be data in ram *I

If (FIF01->data I= test data) error 1 = j; I* read & check
address pattern *I -

}
test_ data + = Ox04040404;

if (FIF01->checksum I= 0x0102) error 1 = OxSO; /*test checksum of
address pattern *I

FIF01->config = FIFO_RESET I FIF0_16_BITS; I* inhibit carry wrap
*I

*I

}

FIF01->checksum = OxFEFE; I* writing adds to checksum • 1
if (RF01->checksum) error I =OxSO; I* checksum should be 0

if (FIF01->status) error I= Ox04;
return (error);

/* status should be 0 *I

1. Network server apparatus (1 00) for use with a first data network (122a) and a mass storage device, including a
host processor unit (118) capable of running remote procedures defined by a client node on said network, char-

30 acterised in that said network server apparatus further comprises:

an interface processor unit coupleable to said network and to said mass storage device; and
means (11 Oa, 112a, 114a, 116a, 120) in said interface processor unit for satisfying network storage requests
from said network to store data from said network in said mass storage device, for satisfying network retrieval

35 requests from said network to retrieve data from said mass storage device to said network, and for transmitting
predefined categories of messages from said network to said host processor unit for processing in said host
processor unit, said transmitted messages including all requests by a network client to run client-defined pro­
cedures on said network server apparatus.

40 2. Apparatus according to claim 1 , wherein said interface processor unit comprises:

a network control unit (11 Oa) coupleable to said network (122a);
a data control unit (112a, 114a) coupleable to said mass storage device;
a buffer memory (116a); and

45 means (210,212,214,220,222,224,232,234,236,252,254,256) in said network control unit:
for transmitting to said data control unit said network storage requests from said network to store specified
storage data from said network in said mass storage device,
for transmitting said specified storage data from said network to said buffer memory and from said buffer
memory to said data control unit,

so for transmitting to said data control unit said network retrieval requests from said network to retrieve specified
retrieval data from said mass storage device to said network,
for transmitting said specified retrieval data from said data control unit to said buffer memory and from said
buffer memory to said network, and
for transmitting said predefined categories of messages from said network to said host processor unit for

55 processing by said host processor unit.

3. Apparatus according to claim 2, wherein said data control unit comprises:

42

Oracle Ex. 1002, pg. 307

5

10

15

20

25

30

EP 0 490 973 81

a storage processor unit (114a) coupleable to said mass storage device;
a file processor unit {112a) and
means (310,312,314,320,324,390,396) in said file processor unit;
for translating said network storage requests from said network into requests to store data at specified physical
storage locations in said mass storage device,
for instructing said storage processor unit to write data from said buffer memory into said specified physical
storage locations in said mass storage device,
for translating said network retrieval requests from said network into requests to retrieve data from specified
physical retrieval locations in said mass storage device, and
for instructing said storage processor unit to retrieve data from said specified physical retrieval locations in
said mass storage device to said buffer memory if said data from said specified physical locations is not already
in said buffer memory; and
means (510,512,514,524,532,534) in said storage processor unit for transmitting data between said buffer
memory and said mass storage device.

4. Apparatus according to claim 1, wherein said interface processor unit comprises:

a network control module {110a), including a network interface (234; 214) coupled to receive said network
retrieval requests from said network;
a file system control module (112a, 114a), including a mass storage device interface (540, 514) coupled to
said mass storage device; and
a communication path (120) coupled directly between said network control module and said file system control
module, said communication path carrying local retrieval requests prepared by said network control module
in response to said network retrieval requests, to retrieve specified retrieval data from said mass storage
device,
said file system control module retrieving said specified retrieval data from said mass storage device in re­
sponse to said local retrieval requests and returning said specified retrieval data to said network control module,
and said network control module preparing reply messages containing said specified retrieval data from said
file system control module for return transmission on said network.

S. Apparatus according to claim 4, wherein said file system control module returns said specified retrieval data directly
to said network control module.

6. Apparatus according to claim 4 or 5, Wherein said network interface is coupled further to receive said network
35 storage requests from said network, Wherein said network control module further prepares local storage requests

in response to said network storage requests, to store specified storage data in said mass storage device, said

40

network control module communicating said local storage requests to said file system control module, .
and wherein said file system control module further stores said specified storage data in said mass storage

device in response to said local storage requests.

7. Apparatus according to claim 6, Wherein said local storage requests are communicated to said file system control
module via said communication path (120).

8. Apparatus according to any preceding claim, wherein said host processor unit runs a general purpose operating
45 system, and wherein said interface processor unit runs no general purpose operating system.

9. Apparatus according to claim 8, wherein said general purpose operating system run on said host processor unit
is a UNIX operating system.

so 1 0. Apparatus according to any preceding claim, Wherein said interface processor unit includes means (214, 314, 514)
lor decoding all network file system NFS requests addressed to said interface processing unit from said network,
for performing all procedures for satisfying said NFS requests, and for encoding any NFS reply messages for return
transmission on said network.

55 11. Apparatus according to any preceding claim, wherein said transmitted messages include all calls issued by a
network client to said network server apparatus which are within a predefined set of remote procedure calls.

12. Apparatus according to any preceding claim, further comprising means in said interface processor unit for detecting

43

Oracle Ex. 1002, pg. 308

EP 0 490 973 81

requests from said network for an address of said network server apparatus, for preparing a response packet to
such an address request, and for transmitting said response packet over said network.

13. Apparatus according to any preceding claim, for use further with a second data network (122b), said interface
5 processor unit being coupleable further to said second network, further comprising means (210, 214, 230, 250,

234, 254) in said interface processor unit for detecting a request from said first network to route a message con­
tained in certain packets to a destination reachable over said second network, and means for transmitting said
message over said second network.

10

Patentanepruche

1. Netzwerkservervorrichtung (100) zur Verwendung mit einem ersten Datennetz (122a) und einer Massenspeicher­
einrichtung, umfassend eine Zentralrechnereinheit (118), die zum AusfOhren von durch einen Clientknoten im

15 Netzwerk definierten Fernprozeduren geeignet ist, dadurch gekennzeichnet, daB die Netzwerkservervorrichtung
Ierner umfaBt:

eine Schnittstellenprozessoreinheit, die an das Netzwerk und an die Massenspeichereinrichtung koppelbar
ist; und

20 Mittel (110a, 112a. 114a, 116a, 120) in dar Schnittstellenprozessoreinheit zum Befriedigen von Netzwerkspei­
cheranforderungen aus dem Netzwerk, Daten aus dam Netzwerk in der Massenspeichereinrichtung zu spei­
chern, zum Befriedigen von Netzwerkausleseanforderungen vom Netzwerk, Daten aus dar Massenspeicher­
einrichtung zum Netzwerk auszulesen und zum Ubertragen vorbestimmter Kategorien von Mitteilungen aus
dam Netzwerk zur Zentralrechnereinheit zum Verarbeiten in dar Zentralrechnereinheit, wobei die Obertragenen

25 Mitteilungen aile Anforderungen durch einen Netzwerkclient enthalten, clientdefinierte Prozeduren auf dar
Netzwerkservervorrichtung auszufOhren.

2. Vorrichtung nach Anspruch 1, wobei die Schnittstellenprozessoreinheit umfaBt:

30 eine an das Netzwerk (122a) koppelbare Netzwerksteuereinheit (110a);
eine an die Massenspeichereinrichtung koppelbare Datensteuereinheit (112a, 114a);
einen Pufferspeicher (116a); und
Mittel (210, 212, 214, 220, 222, 224, 232, 234, 236, 252, 254, 256) in der Netzwerksteuereinheit:
zum Ubertragen dar Netzwerkspeicheranforderungen aus dam Netzwerk zu dar Datensteuereinheit, urn be-

35 stimmte Speicherdaten aus dem Netzwerk in der Massenspeichereinrichtung zu speichern,
zurn Obertragen der bestimmten Speicherdaten aus dem Netzwerk zum Pufferspeicher und aus dem Puffer­
speicher zur Datensteuereinheit,
zum Ubertragen der Netzwerkausleseanforderungen a us dem Netzwerk zur Datensteuereinheit, urn bestimm­
te Auslesedaten aus der Massenspeichereinrichtung zum Netzwerk auszulesen,

40 zum Obertragen der bestimmten Auslesedaten aus der Datensteuereinheit zum Pul!erspeicher und aus dem
Pufferspeicher zum Netzwerk, und
zum Ubertragen der vorbestimmten Kategorien von Mitteilungen aus dam Netzwerk zur Zentralrechnereinheit
zum Verarbeiten durch die Zentralrechnereinhelt.

45 3. Vorrichtung nach Anspruch 2, wobei die Datensteuereinheit umfaBt:

eine an die Massenspeichereinrichtung koppelbare Speicherprozessoreinheit (114a);
eine Dateiprozessoreinheit (112a) und
Mittel (310, 312, 314, 320, 324, 390, 396) in der Dateiprozessoreinheit: zum Ubersetzen dar Netzwerkspei-

50 cheranforderungen aus dem Netzwerk in Anforderungen, Daten an bestimmten physikalischen Speicherstel­
len in dar Massanspeichareinrichtung zu speichem,
zum Anweisen dar Spaicherprozessoreinheit, Daten aus dam Pul!erspeicher in die bestimmten physikalischen
Speicherstellen in der Massenspeichereinrichtung zu schreiben,
zum Ubersetzen dar Netzwerkausleseanforderungen aus dam Netzwerk in Anforderungen, Daten von be-

55 stimmten physikalischen Auslesestellen in der Massenspeichereinrichtung auszulesen, und
zum Anweisen der Speicherprozessoreinheit, Daten von den bestimmten physikalischen Auslesestellen in
dar Massenspeichareinrichtung zum Pufferspeicher auszulesen, wenn die Daten von den bestimmten physi­
kalischen Stell en nicht bereits im Pufferspeicher sind; und

44

Oracle Ex. 1002, pg. 309

5

EP 0 490 973 81

Mittel (510, 512, 514, 524, 532, 534) in der Speicherprozessoreinheit zum Obertragen von Daten zwischen
dem Pufferspeicher und der Massenspeichereinrichtung.

4. Vorrichtung nach Anspruch 1, wobei die Schnittstellenprozessoreinheit umfaBt:

ein Netzwerksteuermodul (110a), umfassend eine Netzwerkschnittstelle (234; 214), die angekoppelt ist, um
die Natzwerkausleseanforderungen aus dem Netzwerk zu empfangen;
ein Dateisystemsteuermodul (112a, 114a), umfassend eine Massenspeichereinrichtungsschnittstelle (540;
514), die an die Massenspeichereinrichtung gekoppelt ist; und

10 einen Kommunikationsweg (120), der direkt zwischen dem Netzwerksteuermodul und dem Dateisystemsteu­
ermodul angekoppelt ist, wobei der Kommunikationsweg lokale Ausleseanforderungan ftihrt, die durch das
Netzwerksteuermodul in Antwort auf die Netzwerkausleseanforderungen vorbereitet sind. um bestimmte Aus­
lesedaten aus dar Massenspeichereinrichtung auszulesen,
wobei das Dateisystemsteuermodul die bestimmten Auslesedaten aus der Massenspaichereinrichtung in Ant-

IS wort auf die lokalen Ausleseanforderungen ausliest und die bestimmten Auslesedaten zu dem Netzwerksteu­
ermodul zuriickgibt,
und wobei das Netzwerksteuermodul Antwortmittailungen vorbereitet, die die bestimmten Auslesedaten vom
Dateisystemsteuermodul enthalten, zur Rticktibertragung auf das Netzwerk.

20 5. Vorrichtung nach Anspruch 4, wobei das Dateisystemsteuerrnodul die bestimmten Auslesadaten direkt zum Netz-
werksteuermodul zuriickgibt.

6. Vorrichtung nach Anspruch 4 oder 5, wobei die Netzwerkschnittstelle Ierner angekoppelt ist, um die Netzwerk­
speicheranforderungen aus dem Netzwerk zu empfangen, wobei das Netzwerksteuarmodul farner lokale Spei-

25 cheranforderungen in Antwort auf die Netzwerkspeicharanforderungen vorbereitet. bestimmte Speicherdaten in
der Massenspeichereinrichtung zu speichern, wobei das Netzwerksteuermodul die lokalen Speicheranforderun­
gen dem Dateisystemsteuermodul mitteilt,

30

und wobei das Dateisystemsteuermodul femer die bestimmten Speicherdaten in der Massenspeichereinrichtung
in Antwort auf lokale Speicheranforderungen speichert.

7. Vorrichtung nach Anspruch 6, wobei die lokalen Speicheranforderungen dem Dateisysternsteuermodul tiber den
Kommunikationsweg (120) mitgeteilt warden.

8. Vorrichtung nach einem der vorangegangenen Anspriiche, wobei die Zentralrechnereinheit ain universelles Be-
35 triebssystem ausfiihrt, und wobei die Schnittstellenprozessorelnhelt kein univarsalles Betriebssystem ausfiihrt.

9. Vorrichtung nach Anspruch 8, wobei das auf dar Zentralprozessoreinheit ausgafiihrte univarselle Betriebssystem
ein UNIX-Betriebssystem ist.

40 10. Vorrichtung nach einem dar vorangegangenen Anspriiche, wobei die Schnittstellenprozessoreinheit Mittel (214,
314, 514) zum Dekodieren aller Natzwerkdataisystem-NFS-Anforderungen, die vom Netzwerk an die Schnittstel­
lenverarbeitungseinheit gerichtet sind, um aile Prozeduren zum Befriedigen der NFS-Anforderungen durchzufiih­
ren, und um NFS-Antwortmitteilungen zur RiickObartragung auf das Netzwerk zu kodieren.

45 11. Vorrichtung nach einem der vorangegangenen AnsprOche, wobei die tibertragenen Mitteilungen aile durch einen
Netzwerkclient an die Netzwerkservervorrichtung ausgegebenen Aufrufe umfassen, die in einem vorbestimmten
Satz von Femprozaduraufrufen sind.

12. Vorrichtung nach einem der vorangegangenen Anspriiche, Ierner umfassend Mittel in der Schnittstellenprozes-
so soreinheit zum Erfassen von Anforderungen aus dam Netzwerk fiir eine Adresse der Netzwerkservervorrichtung,

zum Vorberaitan aines Antwortpakats fur eina derartiga Adressenanfordarung, und zum Obartragan des Antwort­
pakets iibar das Netzwerk.

13. Vorrichtung nach einam dar vorangaganganan Ansprtiche, zur Verwandung mit ainem zwaiten Datannetzwark
ss (122b), wobei die Schnittstellenprozessoreinheit Ierner an das zweite Netzwerk koppelbar ist, Ierner umfassend

Mittel (210, 214, 230, 250, 234, 254) in der Schnittstellenprozessoreinheit zum Erfassen einer Anforderung vom
erst en Netzwerk, um eine in gewissen Paketen enthaltene Mitteilung an ein iiber das zweita Netzwerk erreichbares
Ziel zu leiten, und Mittel zum Obertragen der Mitteilung tiber das zweite Netzwerk.

45

Oracle Ex. 1002, pg. 310

EP 0 490 973 81

Revendlcations

1. Dispositif serveur de reseau (100) destine t1 &tre utilise avec un premier reseau de donnees (122a) et un dispositif
de slackage de masse. comprenant una unite a pracesseur hOle (118) capable d'executer des procedures a dis-

5 lance definies par un noeud client sur I edit reseau, caracterise en ce que ledit dispositif serveur de reseau comprend
en outre:

10

15

20

25

30

35

40

45

50

55

une unite d'interface a processeur pouvant &tre couplee audit reseau et audit dispositif de stockage de masse ;
et
des moyens (110a, 112a, 114a, 116a, 120) dans ladite unite d'interface t1 processeur destines a satisfaire des
demandes de stockage reseau a partir dudit reseau pour stocker des donnees a partir dudit reseau dans led it
dispositif de stockage de masse, destines a satisfaire des demandes de recherches reseau a partir dudit
reseau pour rechercher des donnees a partir dudit dispositif de stockage de masse vers ledit reseau, et des­
tines a transmettre des categories predefinies de messages a partir dudit reseau vers ladite unite a processeur
hOle afin de trailer dans ladite unite a processeur hOle, lesdits messages transmis comprenant toutes les
demandes par un client du reseau pour executer des procedures definies par le client sur I edit dispositif serveur
de reseau.

2. Dispositif salon Ia revendication 1, dans lequelladite unite d'interface a processeur comprend :

une unite de regulation du reseau (110a) pouvant Atre couplee audit reseau (122a);
une unite de regulation de donnees (112a, 114a) pouvant etre couplee audit dispositif de slackage de masse;
una memoire tampon (116a); et
des moyens (210, 212, 214, 220, 222, 224, 232, 234, 236, 252, 254, 256) dans ladite unite de regulation du
reseau:
destines a transmettre vers ladite unite de regulation de donnees lesdites demandes de stockage reseau a
partir dudit reseau pour stocker des donnees de stockage specifiees a partir dudit reseau dans I edit dispositif
de stockage de masse,
destines a transmettre lesdites donnees de slackage specifiees a partir dudit reseau vers ladite memoire
tampon eta partir de ladite memoire tampon vers ladite unite de regulation de donnees,
destines a transmettre vers ladite unite de regulation de donnees lesdites demandes de recherches reseau
a partir dud it reseau pour rechercher des donnees de recherches specifiees a partir dud it dispositif de stockage
de masse vers ledit reseau,
destines a transmettre lesdites donnees de recherches specifiees a partir de ladite unite de regulation de
donnees vers ladite memoire tampon eta partir de ladite memoire tampon vers ledit reseau, et
destines a transmettre lesdites categories predefinies de messages a partir dudit reseau vers ladite unite a
processeur hOle afin d'IUre traitees par ladite unite A pracesseur hOle.

3. Dispositif selon Ia revendication 2, dans lequel ladite unite de regulation de donnees comprend:

une unite de stockage A processeur (114a) pouvant Atre couplee audit dispositif de stockage de masse;
une unite de fichier a processeur (112a) ; et
des moyens (310, 312, 314, 320, 324, 390, 396) dans ladite unite de fichiers a processeur:
destines A traduire lesdites demandes de slackage· reseau A partir dudit reseau en demandes pour stocker
des donnees a des emplacements specifies de stockage physique dans led it dispositif de stockage de masse,
destines a donner l'ordre A ladite unite de stockage a pracesseur d'ecrire des donnees a partir de ladite me­
moire tampon dans lesdits emplacements specifies de stockage physiques dans ledit dispositif de stockage
de masse,

destines a traduire lesdites demandes de recherches reseau A partir dudit reseau en demandes pour recher­
cher des donnees a partir des emplacements specifies de recherches physiques dans I edit dispositif stockage
de masse, at
destines a donner l'ordre a ladite unite de stockage A processeur de rechercher des donnees a partir desdits
emplacements specifies de recherches physiques dans ledit dispositif de stockage de masse vers ladite me­
moire tampon si lesdites donnees a partir desdits emplacements specifies physiques ne sont pas deja dans
ladite memoire tampon ; et
des moyens (510, 512, 514,524, 532, 534) dans ladite unite de stockageA processeurdestines a transmettre
des donnees entre tadite memoire tampon at ledit dispositif de stockage de masse.

46

Oracle Ex. 1002, pg. 311

EP 0 490 973 81

4. Dispositif salon Ia revendication 1, dans lequelladite unite d'interface a processeur comprend:

un module de r~gulation du rl!seau (11 Oa), comprenant una interface r~seau (234, 214) coupl~e pour recevoir
lesdites demandes de recherches reseau a partir dudit reseau ;

5 un module de regulation du systeme fichier (112a, 114a), comprenant une interface pour dispositif de stockage
de masse (540, 514) coupl~e audit dispositif de stockage de masse; et
un chemin de communication (120) directement couple entre ledit module de regulation du reseau at ledit
module de regulation du systeme fichier, ledit chemin de communication transportant des demandes de re­
cherches locales pr~parees par ledit module de regulation du r~seau en reponse auxdites demandes de re-

IO cherches reseau, afin de rechercher des donn~es de recherches specifiees a partir dudit dispositif de stockage
de masse,
ledit module de regulation du systeme fichier recherchant lesdites donnees de recherches specifiees a partir
du dispositif de stockage de masse en reponse auxdites demandes de recherches locales at retoumant les­
dites donnees de recherches specifiees vers !edit module de regulation du reseau,

75 at !edit module de regulation du reseau preparant des messages de reponse contenant lesdites donnees de
recherches specifiees a partir dudit module de regulation du systeme fichier afin de les retourner par trans­
mission sur ledit reseau.

5. Dispositif salon Ia revendication 4, dans lequelledit module de regulation du systeme fichier retourne directement
20 lasdites donn~es de recherches specifiees vars ledit module de regulation du reseau.

25

30

6. Dispositif salon Ia revendication 4 ou 5, dans lequel ladite interface reseau est en outre couplee pour recevoir
lesdites demandes de stockage reseau a partir dudit reseau,

dans lequel ledit module de regulation du reseau prepare en outre des demandes locales de stockage en
reponse auxdites demandes de stockage reseau, afin de stocker des donnees specifiees de stockage dans
ledit dispositif de stockage de masse, ledit module de regulation du reseau communiquant lesdites demandes
locales de stockage audit module de regulation du systeme fichier,
et dans lequel !edit module de regulation du systeme fichier stocke en outre lesdites donnees specifiees de
stockage dans ledit dispositif de stockage de masse en reponse auxdites demandes locales de stockage.

7. Dispositif selon Ia revendication 6, dans lequellesdites demandes locales de stockage sont communiquees audit
module de regulation du systeme fichier via ledit chemin de communication (120).

35 8. Dispositif salon l'une des revendications precedentes, dans lequelladite unite A processeur hOle executa un sys-
teme d'exploitation g{ml!ral, et dans lequalladite unite d'interface a processeur n'execute aucun systeme d'exploi­
tation general.

9. Dispositif salon Ia revendication 8, dans lequel !edit systeme d'exploitation general est execute sur ladite unite a
40 processeur hOte est un systeme d'exploitation UNIX.

10. Dispositif seton l'une des revendications precedentes, dans lequelladite unite d'interface a processeur comprend
des moyens (214, 314 ,514) destines a decoder toutes les demandes pour systemes de fichier reseau (NFS)
adressees a ladite unite d'interface a processeur a partir dudit resaau, destines a mener toutes las procedures

45 pour satisfaire lesdites demandes pour NFS, et destines a coder tousles messages de reponse pour NFS afin de
les retourner par transmission sur ledit reseau.

11. Dispositif salon l'une des revendications precedentes, dans lequellesdils messages transmis comprennent tous
les appels provenant d'un client du reseau audit dispositif serveur de reseau qui sont compris dans un jeu predefini

50 d'appels en procedure a distance ..

12. Dispositif salon l'une des revendications precedentes, comprenarit en outre des moyens dans ladite unite d'inter­
face a processeur destines a detecter des demandes a partir dud it n3seau pour une adresse dudit dispositif serveur
de reseau, destines a preparer un paquet de reponse a une telle demande d'adresse, et destines a transmettre

55 ledlt paquet de reponse a travers ledit reseau. .

13. Dispositif salon l'une des revendication precedentes, destine a etre en outre utilise avec un deuxieme raseau de
donnees (122b), ladite unite d'interface a processeur pouvant etre en outre coup lee audit deuxieme reseau, com-

47

Oracle Ex. 1002, pg. 312

5

10

15

20

25

30

35

40

45

50

55

EP 0 490 973 81

prenant en outre des moyens (210, 214, 230, 250, 234, 254) dans ladite unite d'interface a processeur destines
a detecter une demande a partir dudit premier reseau pour acheminer un message contenu dans certains paquets
vers une destination pouvant Atre atteinte a travers ledit deuxii!lme reseau, et des moyens destines a transmettre
ledit message a travers ledit deuxieme reseau.

48

Oracle Ex. 1002, pg. 313

ETHERNET #1
I

.l2 .• 1

HOST
CPU

CARD

1!!.

128 MB
MEMORY

16

(PRIOR ART>

FIG.-1

Oracle Ex. 1002, pg. 314

en
0

22o.
~c
~ -
~2b
~d
~

1
12

122
122g

1
12

122
122h ---.....

(
}

110 116
.... Y.W"'' \ 116b

110cl
HOd""'\ /- 116c

\,.J.. NET\o/ORK 116d
r-1- ~

CONTROLLER

I
I

I

,~

-

I

FILE

CONTROLLER
.,..

112b ~

FIG.-2

\
;.....

;.....
SYSTEM

MEMORY
LOCAL

J HOST
J

4 I

, y114b

~114o.

~ STORAGE
L- .

PROCESSOR
.....

--..

~
........

/us·

/1~0
}

m
"D
0

~
0

~
m ...

Oracle Ex. 1002, pg. 315

en ...

..L:::::; 210 RS232
1:;-226 r 110o. 220~ • c214 22~

~ CPU
EPROM PROM MrP ,__224 MEM
I I I I ~

I 1 f ~ I f:i2 218:::7 / 212

212..-....

32

234
ETHERNET A LAN

CTLR

32

212J

23p
LAN
MEM

116
25~

24p
LAN
DMA

CTLR

li6 232)

JA
270 l16 TO 32

240 1 BIT I }16
I rirO

B L_
....... ~ 272

262 A~~~~
r-

26o 32 : 1

16 16 TO 32 l :
r~~~ _.J l

A 278 1 ____ _.
I

,....
BUr

~282
~

FIG.-3 CNET\JORK CONTROLLER>

VME
BUS

m
"U
0

8
~
I:D _.

Oracle Ex. 1002, pg. 316

,----'-...., 310

JR

32

CPU
MEM

314 320

PROM

FIG.-4

32

392

PARALLEL
PORT

376

(FILE CONTROLLER)

326 r l12a

324

VME
BUS

m .,
0

8
~
w
o:J ...

Oracle Ex. 1002, pg. 317

en
w

510

534

32
~

m .,
0

8
~
m

Oracle Ex. 1002, pg. 318

"' ~
VME
BUS
120

,__
T

,__
I

=!2 , -

..

116m\
614 620

/
=!2 64

BUF I - , .. MUX , ..
MEMORY

8 ARRAY
ECC L-

~ , ~

I I 622

TIMING v--610
CONTROL

(SYSTEM MEMORY>

FIG.-6

I

m
"tl
0

8
~
w
m ...

Oracle Ex. 1002, pg. 319

EP 0 490 973 81

MASTER
/ 101 1 SLAVE

BROADCAST ADDRESS AND I ADDRESS MODifiER,
DRIVE L\JORD 11 LO\J I AND lACK• HIGH

I
I 7o3" • 1"""705 RECEIVE ADDRESS,

DRIVE AS • LO\J I ADDRESS MODIFJER,
L \JORD • LO\J AND

- I JACK• HIGH

I
I 707---.. • I RECEIVE AS. LO\J

I 709

I IS
ADDRESS VALID FOR

I THIS SLAVE

r711 I
'l

DRIVE \JRITE • LD\1 : I
713,

+ r 718 I RECEIVE \./~ITEIIE LO\J
\/AlT UNTlL DTACK• AND

7
S • BERR• ARE HIGH 1 -.,.

t /719 I \/AIT UNTIL Dso• GOES

PLACE DATA ON DOO-D31 I HIGH TO LO\J

I
,.-721 I

DRIVE DSO• LO'w' I I • ,-7231
DRIVE Dso• HIGH

I
r r-727 I 725'\

PLACE NEXT DATA ON I LATCH DATA F"RDM DOO-D31
DOO-D31

I
I r

(TO FIG.-7B) I (TO FIG.-7B J

FIG.-7A

55

Oracle Ex. 1002, pg. 320

EP 0 490 973 81

MASTER SLAVE

(FROM FIG-7A) I (FROM FIG-7A)

729 I 731' * r_ DRIVE DT ACK liE LD\v'
\v'AIT UNTIL DTACK• I 733 ~ •

HIGH TO LO\v' TRANSITION I DRIVE DTACK liE HIGH

- I 735-..,.

_,- 739 I \/RITE DATA INTO
SELECTED DEVICE AND

DRIVE DSO • LOV I INCREMENT DEVICE ADDRESS

• r741 I 737--... • DRIVE DSO • HIGH
\1 A IT FOR DSO •

I HIGH TO LO\v' TRANSITION

I

r745 1 743-----..
.

1

PLACE NEXT DATA ON I LATCH DATA FROM LINES
DOO-D31

I
DOO-D31

I 749 "-\ ,,
r 747 I DRIVE DTAcK• Lov

\v' AIT UNTIL DT ACK • 751 """' •
HIGH TO LOV TRANSITION I DRIVE DT ACK. HIGH

.... r
l 75h •

I 'WRITE DATA INTO

I
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

I • (TO FIG.-7C) (TO FIG.-7C)

FIG.-7B

56

Oracle Ex. 1002, pg. 321

EP 0 490 973 81

(FROM FIG.-7B (FROM FIG.-7B)

~ ~ COMPLETE NUMBER
DF CYCLES REQUIRED

TO TRANSFER ALL DATA

,
RELEASE ADDRESS LINE~ ~755
ADDRESS MODlflER LINES,

DATA LINES, L W'DRDIIf,
DSO•, AND lACK•

'
r757

W'AIT FOR DTACK• 759,
HIGH TO LO'w' TRANSITION

,,
I DRIVE DTACK• LD\J J

761'""'\ • l DRIVE DTACK* HIGH I

,.-763
DRIVE AS liE HIGH

/'" 765
RELEASE AS•

FIG.-7C

57

Oracle Ex. 1002, pg. 322

EP 0 490 973 81

MASTER

BROADCAST ADDRES~
ADDRESS MODIFIER AND
DRIVE L \JORD 11 LO\J

DRIVE AS • LO\J

'WAIT UNTIL DTACK• AND
BERR • ARE HIGH

DRIVE Dso• LOW ·

DRIVE DSO 11 HIGH

\./AIT UNTIL DTAcK•
HIGH TO LOV TRANSITION

801 SLAVE

805
I ao3

I RECEIVE ADDRESS,
ADDRESS MODIFIER AND

I L\JORD* LO\J

I
I
I
I
I
I 818

RECEIVE \JRITE • HIGH I
821 I

I
a23 I

1 ai 9,...--J.-----...:L-------.

I
I
I

PLACE DATA ON LINES
DOO-D31

FIG.-8A

58

Oracle Ex. 1002, pg. 323

EP 0 490 973 81

MASTER SLAVE

(FROM FIG.-8A) I (FROM FIG.-8A)

I 825\ •
I DRIVE DT ACK. LO\J

827~ •

I DRIVE DTACK• HIGH

• r-831 I
LATCH DATA FROM LINES I DOO-D31

1829--.,.
• r- 833

\JRITE DATA INTO I PLACE NEXT DATA ON
SELECTED DEVICE AND LINES DOO-D31

INCREMENT DEVICE ADDRESS j835~ • • r839l \1 AIT FOR DSO IE

DRIVE DSO • L0\1
HIGH TO LO\J TRANSITION

• r841 1

DRIVE DSO • HIGH
I

, I 843 I 845 ~ ·.~
WAIT UNTIL DTACK• I DRIVE DTAcK• Low

HIGH TO LO\J TRANSITION 847 *""' • ·
I DRIVE DTACK• HIGH

r 8451 849--....

LATCH DATA FROM LlNES I PLACE NEXT DATA ON
DOO-D31 LINES DOO-D31

• I • (TO FIG.-8C) (TO FIG.-8C)

FIG.-8B

59

Oracle Ex. 1002, pg. 324

,,
I

I' EP 0 490 973 81

(fROM f1G.-8B J (FROM fiG.-8B)

~ ~851

WRITE DATA INTO
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

s CONTINUE DATA TRANSfER
CYCLES UNTIL DATA

HAS BEEN TRANSFERRED

•
RELEASE ADDRESS LINES, v-852 ' ADDRESS MODIFIER LINES, I TRANSfER COMPLETE I

DATA LINES, L WORD•,
DSO liE AND IACH 11 LlNES

~
/853

\./All fOR DTACKIIE ass,
• HIGH TO LOW TRANSITION I DRIVE DTACK • LO'W I

8S7~

I DRIVE DTACK• HIGH J

-~
r 859

DRIVE AS • HIGH

r-.861
RELEASE AS•

FIG.-8C

60

Oracle Ex. 1002, pg. 325

09"544?
2 •1 " ...()8- 199i)'

I
I

:-unm
Number

:,..,." o ...

...)
-/-

19;- t~:l~~ ···D'DlD~:l~~ :,~ 8 ~
PATENT LAW, 5727. 1967 !If

. D. l D .!) ~ i1 V1 p :1
Application for Palenl

C: 11071

•.·•. '· ·. L------"-"_,1_/_D"'_J"'l_l'l...:....l 'Jif Anle/Posl-doted.

. ._

AUSPEX SYS.TEMS, 'INC.,
2952 Bunker Hill lane,
Santa Clara, ·.
ca. 95054; u.s.A~

1111111111111~1111111111111111111
00095447 01029 N

(Incorporated in the State of California, USA)

11l'l lUI""-----.. --· _________ ·----:...--•• - _ _ft:IJ:I IUlJDI ttJ:a
of ... ln ... atlon tlllo of which .. . Owner, br •lrfue of

PARALLEL 1/0 NETWORK FILE SERVER ARCHITECTURE

htNbr applr for • palollt to he :~ra11ted to Me 111 ret!Nd thenoof.

-1'$'1~" 111r:~:a • · - 1JW1 Dli:ID .nwp:a • IID"''p ,.., """" •
A.ppllcetlcn> of Oivlolon Appllcatio11 for Patent Ac14ltloo PrtoriiJ O.lm

tlliiD hl'i:':IZI IUDD'UI'I\71'2'1 • JD'IV"IIIOD ,.,.n ,:utll .IU"tD
from Appllc:atlon to P•tent/ Appl. NuMberiH.n o ... Con••nllon Count.,

No. _______ 'OJ:I No ... _ - '01:1

d•t•d 1:11"11 d•led Dt"D 07/ 404,959 8.9.89 u.s.A.
w1,. ,, 1m:s 'ltn-"'ll'rr:, ..,~, :ro "'t;• •

. P.O.A .. : v•••.,olltadiYidual .. tS.ch•dlto be filed l•l•r•

flt.d '" ~ ... r1n .,.,..,
-;a:j~ D":IDOD m'.CD'I JJDn

Add,.as for S...,lca 111 lar••l

S!i.!:l.f.Q!'j_Ji. . .£Q~l!?..-l:fQ..o...2.t!.i' :JL .. J-"! .. U!.~ D

p _,Q,....!l.._1U.:L _. ___ ~H~ .J .• n
R_eh!!yot _ _?6 122 _ ·- .?..~.1 2L~l~J.!!1

'IVP:II!Io, nD•nn 1990 nre ... : .. ~.!.!! _.,n;, ~~ ~ DWI SIQMluN of Applicant ..
For the Applicant, of the , •• , of This

-~ :1)1'~11 II7UI'W'I
For OHica Uae

Sanford T. Colb &l:o.
C: 11071

.~'J~ C'D'\7'\ ll'II,DIV l'IWI'l.o, l\\71.,~ ,,'Ill"'. Ull ,.,JU,,:I 1'"1111ll1 'UID:l Dmtl1 D'l:lll211.'1 Ml''l an'II'U J:II:IUS ~:I .,,, Dt\0 .
Tlus from. Jmprened wltlo U.e Se•l of U.e Pat•n\ Ollie• ami lndlc.a111111 the owmbe< e11d .d•le of lill109, certlfleo the flllioQ of the

"pplallon tloe pertlculerl of wlolch ••• ••I our

Delete whatever b lnepplic.eble .,,'lin nJI pnD • ======

--~-'

i:

Oracle Ex. 1002, pg. 326

-

--

*·

PARALLEL l/0 NETWORK FILE SERVER ARCHITECTURE

AUSPEX SYSTEMS, INC.
C: 11071

Oracle Ex. 1002, pg. 327

··.

::;'::== 095447/2 ...

- 1 -

·, 3fCKGROUND OF THE INYENT!ON

Field of the Invention

25 The invention relates to computer data net•,.;orks, ..

and more particularly, to network file .server

architectures for computer networks .

.. · .. : .:·.,.; : . .
•• ·._.r"'··· ·:· • ···.-~· •• "'_. ... :· •• ;··· ·=·: .. .• : . . :-... •. • ··=<=.: .:;- -::: .. =.: .. ; ·: . . .<• • .-·:: > .. , ... : .· .

..

.·

.....

Oracle Ex. 1002, pg. 328

•
-2-

pescription of the Related Art

Over the p~st ten years, remarkable increases in

hardware price/performance ratios have caused a

startling shift ip both technical and office computing

5 environments.· Distributed workstation-server networks

are displacing the once pervasive dumb terminal

attached to mainframe or minicomputer. To date,

however, network I/0 limitations have constrained the

potential performance available to workstation users.

10 This situation has developed in part because dramatic

jumps in microprocessor performance have exceeded

increases in network I/O performance.

In a computer network, individual user
.

workstations are referred to as client·S, and shared

15 resources for filing, printing, data storage and wide-

area communications are referred to as servers.

Ciients and servers are all considered nodes of a

network. Client nodes use standard communications

protocol.s to exchange service reqiiests and responses

20 with server nodes ..

Present-day network clients· and servers usually

run the DOS, Macintosh OS, OS/2, or Unix operating

systems. Local networks are usually Ethernet or Token

Ring at the high end, Arc net in the midrange, or

25 LocalTalk o~ StarLAN at the low end. · The client-server

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/69-7

Oracle Ex. 1002, pg. 329

•

·'

c (

-3-

communication protocols are fairly strictly dictated by

the operating. system environment usually one of

several proprietary schemes for PCs (NetWare, 3Plus,

Vines, LANManager, LANServer); AppleTalk for

5 Maclntoshes; and TCP/II:' with NFS or RFS for Unix.

These protocols are all well-known in the industry.

Unix client nodes typically feature a 16- or 32-

bit microprocessor with 1-8 MB of primary memory, a

640 x 1024 pixel display, and a built-in network

10 interface. A 40-100 MB local disk is often optional.

15

20

25

Low-end examples are 80286-based PCs or 68000-based

Macintosh I' s;. mid-range machines include 80366 PCs,

Macintosh II'S, . and 680XO-based Unix workstations;

high-end machines include RISC-based DEC, HP, and Sun

Unix workstations. Servers are typically nothing more

than repackaged client nodes, configured in 19-inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

disk"or tape drives, and power supplies.

Dr~ven by RISC and CISC microprocess~r

dev~lopments, client workstation performance has

increased by more than a factor of ten in·the last few

years. Concurrently, these extremely fast clients

have also gained an appetite for data that remote

servers are unable to satisfy. Because the I/O

shortfall is most dram·atic in the Unix environment, the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 330

•.

---····-· -· • ((

-4-

description of the preferred embodiment of the present

invention will focus on Unix file servers. The

architectural principles that solve the Onix server I/O

problem, however. extend easily to server performance

5 bottlenecks in other operating system environments as

10

well. Similarly, the description of the preferred

embodiment will focus on Ethernet implementations.

though the principles extend easily to other types of

networks.

In most Unix environments, clients and servers

exchange file data using the Network File System

(aNFSa);·a standard promulgated b¥ Sun Microsystems and

now widely adopted by t:he Unix community. NFS is

defined in a document entitled, aNFS: Network File

15 System Protocol Specification," Request For Comments

20

(RFC) 10941 by Sun Microsystems, Inc. (March 1989).

This document is incorporated herein by reference in

its entirety.

While simple and reliable 1 NFS is not optimal.

Clients .using NFS place considerable demands upon both

networks and NFS servers supplying clients with NFS

data. This demand is particularly acute for so-called

diskless clients that have no local disks and

therefore depend on a file server for application

25 binaries and virtual memory paging as well as data.

For these Onix client-server configurations 1 the ten-

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 331

r

((

-s-
to-one increase in client power has not been matched by

a ten-to-one increase in Ethernet capacity, in disk

speed, or server disk-to-network I/0 throughput.

The result is that the number of diskless clients

s that a single modern high-end server can adequately

support has dropped ·to between 5-10, depending on

client power and applicat~on workload. For clients

containing small local disks for applications and

paging, referred to as dataless clients, the client-

10 to-server ratio is about twice this, or between 10-20.

Such low client/server ratios cause piecewise

network configurations in which each local Ethernet

contains isolated traffic for its· own S-10 (diskless)

clients and dedicated server. For overall

15 connect! vi ty, these local networks are usually joined

together with an Ethernet backbone or, in the future,

with an FDDI backbone. These backbones are typically

connected to the local networks either by IP routers or

MAC-ievel bridges, coupling the local networks together

20 · directlY,, or by a second server functioning as a

network interface, coupling servers for all the local

network~ together.

In addition to performance considerations, the low

client-to-server ratio creates computing problems in

25 several additional ways:

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 332

-6-

1. Sharing. Development groups of more than 5-

10 people cannot share the same server, and thus cannot

easily share files without file replication and manual,

multi-server updates. Bridges or routers are a partial

5 solution but inflict a performance penalty due to more

network hops.

2. Administration. System administrators

must maintain many limited-capacity servers rather than

a few more substantial servers. This burden includes

10 network administration, hardware maintenance, and user

account administration.

3. File System Backup. System administrators or

operators must conduct multiple file system backups,

which can be onerously time consuming tasks. It is

15 also expensive to duplicate backup peripherals on each

20

server (or every few·servers.if slower network backup

is used).

4. Price Per Seat. With only 5-10 clients

per iierver, _the cost of the server must be shared by

only a _small number of users. The real cost of an

entry-level Unix workstation is therefore significantly

greater, often as much as 140% greater, than the cost

of the workstation alone.

The widening I/O gap, as well as administrative

25 and economic considerations, demonstrates a need for

higher-performance, larger-capacity Unix file servers.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 333

•

c (

-7-

Conversion of a display-less workstation into a server

may address disk capacity issues, but does nothinq to

address fundamental I/0 limitations. As an NFS server,

the one-time · workstation· must sustain 5-10 or more

5 times the network, disk, backplane, and file system

throughput than it was designed to support as a

client. Adding larger disks, more network adaptors,

extra primary memory, or even a faster processor do not

resolve basic architectural I/O constraints; I/O

10 throughput does not increase sufficiently.

Other prior art computer architectures, while not

specifically designed as file servers, may potentially

be used as such. rn one. such well-known architecture,

a CPU, a memory . unit, and two I/O processors are

15' connected to a single bus. One of the I/O processors

operates a set of disk drives, and if the architecture

is to be used as a server, the other I/0 processor

would be connected to a network. This architecture is

not optimal as a file server, however, at least because

20 the two I/0 processors cannot handle network file

requests without in~olvinq the CPU. All network file

requests that are received by the network I/0 processor

are first transmitted to the CPU, which makes

appropriate requests to the disk-I/O processor for

25 satisfaction of the network request.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7 .

Oracle Ex. 1002, pg. 334

•

.·

• (.

-8-

In another such computer architecture, a disk

controller CPU manages access to disk drives, and

several other CPUs, three for example, may be

clustered around the disk controller CPU. Each of the

5 other CPUs can be connecteQ. to its own network. The

network CPUs are each connected to the disk controller

CPU as well as to each other for interprocessor
:-

communication. One of the disadvantages of this

computer architecture is that each CPU in the system

10 runs its own complete operating system. Thus, network

f"ile server requests must be handled by an operating

syste~ which is also heavily loaded wi·th facilities a~d

processes for performing a large_ number of other, ·non

file-server tasks. Additionally, the interprocessor

15 communication is not optimized for file server type

20

requests.

In yet ·another computer architecture,_ a plurality

of CPOs, each having its own cache memory for data and

instruction storage, are connected to a common bus with

a system memory and a disk controtler. The disk

controller and each ·of the CPUs have direct memory

access to the system memory, and one or more of the

CPUs can be connected to a network. This architecture

is disadvantageous as a file server because, among

25 other things, both file data and the instructions for

the CPUs reside in the same system memory. There will

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 335

•

.·

,.

(c
-9-

be instances, therefore, in which the· CPUs must stop

running while they wait for large blocks of file data

to be transferred between system memory apd the ~etwork

CPU. Additionally, as with· both of the. previously

5 described computer architectures, the entire operating

system runs on each of the CPUs, includin~ the network

CPU.

In yet another type of computer architecture, a

large number of CPUs are connected together in a

10 hypercube topology. ·one of more of these CPUs can be

15

20

connected to ·networks, while another can be connected

to disk drives. This architecture is also

disadvantageous as_ a file server because, among other

things, each processor runs the entire operating

system. Interprocessor communication is also not

optimal for file server applications.

SUMMARY OF THE INYENTION

~he present invention involves a new, server-

specific I/0 architecture that is optimized for a Unix

file server'~ most common actions -- file operations.

Roughly stated, the invention involves a file server

architecture comprising one or ~-ore network

controllers, one or more file controllers, one or more

storage processors, and a system or buffer memory, all

25 connected over a message passing bus and operating in

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 336

•

• (c
-10-

parallel with the Unix host processor. The network

controllers each connect to. one or more network, and

provide all protocol processing between the network

layer data format and an internal file server format

5 for coDI.IIIunicating client requests to other processors

10

15

. .
in the server. Only those ~ata packets which cannot be

interpreted by the network controllers, for example

client requests to run a client-defined P.rogram on the

server, are transmitted to the Unix host for

processing. Thus the network controllers, file

controllers and storage processors contain only small

parts of an overall operating system, and each is

optimized for the particular type of work to which it

is dedicated.

Client requests for file operat.ions are

transmitted to one of the ·file controllers which,

independently of the Unix host, manages the virtual

file system of a mass storage device which is coupled

to the storage processors. The file controllers may

20 also control data buffering between the storage

processors and the network controllers, through the

25

system memory. The file controllers preferably each

include a local buffer memory for caching file control

information, separate from the system memory for

caching file data. Additionally, the network

controllers, file processors and storage processors are

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 337

•

----------···-· - -· ·-• (

-11-

all designed ~o avoid any instruction fetches from the

system memory, instead keeping all instruction memory

separate and local. This arrangement eliminates

contention on the backplane between microprocessor

5 instruction fetches and transmissions of message and

file data.

BRIEF DESCRIPTION OF THE DBAWINGS _

The invention will be described with respect to

particular embodiments thereof, and reference will be

10 made to the drawings, in which:

15

Fig. 1. is a block diagram of a prior art. file

server architecture;

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network

controllers shown in Fig. 2;

Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig. 5 is_ a. block diagram of one of the storage

20 process~rs shown in Fig. 2;

Fig. 6 is a block diagram of one of the system

memory cards shown in ~ig. 2;

Figs. 7A-C are a flowchart illustrating the

operation of a fast transfer protocol BLOCK WRITE

25 cycle; and

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/69-7

Oracle Ex. 1002, pg. 338

•

·e

5

(

-12-

Figs. SA-C are a flowch~~t illustrating the

operation of a fast transfer protoco~ BLOCK READ

cycle.

pETAlLED QESCRIPTION

For comparison purposes and background, an

illustrative prior-art file server architecture will

first be described with respect to Fig. 1. Fig. 1 is

an overall block diagram of a conventional prior-art

Unix-based file server for Ethernet networks. It

10 . consists of a host CPU card 10 with a single

15

microprocessor on board. The host CPU card 10 connects

to an Ethernet #1 12, and it connects via a memory

management unit (MMU) 11 to a large memory array 16.

The host CPU card 10 also drives a keyboard, a video

display, and two RS232 ports (not shown). It also

connects via the MMU 11 and a standard 32-bit VME bus

20 to various peripheral devices, including an SMD disk

controller 22 controlling one or two disk drives 24, a

SCSI J.:lost adaptor 26 con~ected to a SCSI bus 48, a

20 tape controller 30 connected to a quarter-inch. tape

drive 32, and possibly a network #2 controller 34

connected to a second Ethernet 36. The SMD disk

controller 22 can communicate with memory.array 16 by

direct memory access via bus 20 and MMU 11, with either

25 the disk controller or the MMU acting as a bus master.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 . 8/24/89-7

Oracle Ex. 1002, pg. 339

••••• c (

-13-

This configuration is illustrative; .many variations

are available.

The system communicates over the Ethernets using

industry standard. TCP /IP and NFS protocol stacks. A

5 description of protocol stacks. in general can be·~ound

in Tanenbaum, acomputer Networksa (Second Edition,

10

15

20

Prentice Hall: 1988). File serve~ protocol stacks are

described at pages_535-546. The Tanenbaum reference is

incorporated herein by reference.

Basically, the following protocol layers are

implemented in the apparatus of Fig. 1:

Network Layer. The network layer converts data

packets between a formal specific to Ethernets and a

format which is independent of the particular type of

network used. the Ethernet-specific format which is

used in the apparatus of Fig. 1 is described in Hornig,

"A Standard For The Transmission of IP Datagrams Over

Ethernet Networks, n RFC 894 (April 1984) I which is

inco#;>orated herein by reference.

The Internet Protocol (Ip) Layer. This layer

provides the functions necessary to deliver a package

of bits (an internet datagram) from a source to a

destination over an interconnected system of networks.

For messages to be sent from the file server to a

25 client, a higher level in the server calls the IP

module, providing the internet address of the

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 340

•

--.
(

-14-

destination client and the message to ~ransmit. The IP

module perform-s any required fragmentation of the

message to accommodate _packet size limitations of any

intervening gateway, adds internet headers to each

5 fragment, and calls on the network layer to transmit

the resulting internet datagrams. The internet header

includes a local network destination address

(translated from the internet address) as well as other

parameters.

10 For messages received by the IP layer from the

network layer, the IP module determines from the

internet address whether the_ datagram is to be

forwarded to another host on another network, for

example on -a second Ethernet such as 36 in Fig. 1, or

15 whether it is intended for the server itself. If it is

intended for another host on the second network, the IP

module determines a local ·net address for the

destination and calls on the local network layer for

that-network to send the dat~gram. If the datagram is

20 intended for an application program within-the server,

the IP · layer strips off the header and passes the

remaining portion o"f the message to the appropriate

next higher layer. The internet protocol standard used

in the illustrative apparatus of Fig. 1 is specified in

25 Information Sciences Institute, •Internet Protocol,

DARPA Internet Program Protocdl Specification,•· RFC 791

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 341

•

• c· (

-15-

(September 1981), which is incorpo,x:ated herein by

reference.

~~lJ.lD~ Li!!.:ll:~J::. This layer is a datagram service

with more elaborate packaging and addressing options

5 than the IP layer. For example, whereas ~n IP datagram

can hold about 1,500 bytes and be addressed to hosts,

UDP datagrams can hold about 64KB and be addressed to a
:·
particular port within a host. TCP and UDP are

alternative protocols at this layer; applications

10 requiring ordered reliabie delivery of.streams of data

may use TCP, whereas applications (such as NFS) which

do not require ord,ered and reliable deli very may use

UDP.

The prior art file server of Fig. 1 uses both TCP

15 .and UDP. 'It uses UDP for file server-related services,

and uses TCP for certain other services which the

serv~r provides to network clients. The UDP is

specified in Postel, •user Datagram Protocol,• RFC 768

(August 28, 1980), which is incorporated herein .by

20 reference. · TCP is specified in Postel, "Transmission

Control :Protocol," RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein by

reference.

XQR/RPC La:l{:er. This . layer provides functions

25 callable from higher level programs to run a designated

procedure on a remote· machine.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001

It also provides the

8/24/89-7

Oracle Ex. 1002, pg. 342

(c
-16-

decoding necessary to permit a cli~nt machine to

execute a procedure on the server. For example, a

caller process in a client node may send a call message

to the server of Fig. 1. The call message includes a

S specification of the desired procedure, and its

parameters. The message is passed up the stack to the

RPC layer, which calls the appropriate procedure within

the server. When the procedure is complete~ a reply

message is generated and RPC passes it· hack down the

10 stack and over the network to the caller client. RPC

1$

is . described in Sun Micro systems, Inc. 1 "RPC: Remote

Procedure Cal"l· Protocol Specification, Version 2 1 " RFC

1057 (June 1988); ·which is incorporated herein by

reference.

RPC uses the XDR external data representation

standard to represent information passed to and from

the underlying UDP layer. XDR is merely a data

encoding standard, useful for transferring data between

diffe"rent computer architectures. · Thus, on the network

20 side of · the XDR/RPC layer 1 information is machine­

independent; on the host application side, it may not

25

he. XDR is described in Sun Microsystems, Inc., "XDR:

External Data Representation Standard,". RFC 1014 (June

1987), which is incorporated herein by reference.

NFS Layer. The NFS ("network file system")

layer is one of the programs available on the server

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

I

I

I

Oracle Ex. 1002, pg. 343

f.·"'---

••

((

-17-

which an RPC request can call. The combination of host

address, program number, and procedure number in an RPC

request can specify one remote NFS procedure to ·be

called.

5 Remote procedure calls to NFS on the file server

of Fig. 1 provide transparent, stateless, remote access

to shared files on the disks 24. NFS assumes a file

system that is hierarchical, with directories as all

but the bottom level of files. Client hosts can call

10 any of about 20 NFS procedures incl~ding such

procedures as reading a s~e.c:.ified number of bytes from

a specified file; writing a specified number of bytes

to a specified f~le; crea_ting, renaming and removing

specified files; parsing directory trees; creating and

15 removin~ directories; an~ . reading and setting file

20

attributes. The location on disk to which and from

which data is stored and retrieved is always specified

.in logical terms, such as by a file handle or Inode

designation and a byte offset. The details of the

actual data storage ·are hidden· from the client. The

NFS procedures, together with possible higher ·level

modules such as Unix VFS and UFS, perform all

conversion of logical data addresses to physical data

addresses such as drive, head, .track and sector

25 identification; NFS is specified in Sun Microsystems,

Inc. , "NFS: Network File

Attorney Docket No.:AUSP7209
WPl/WSW/~USP/7209.001

Syst~m ~rotocol

8/24/89-7

Oracle Ex. 1002, pg. 344

•

((

-18-

Specification, • RFC 1094 (March 1989·), incorporated

herein by reference.

With the possible exception of· the network layer,

all the protocol processing described above is done in

5 software, by a single processor in the host CPU card

10. That is, when an Ethernet packet arrives on

Ethernet 12, the host CPU 10 performs all the protocol

processing in the NFS stack, as w.ell as the protocol

processing for any other application which may be

10 · running on the host 10. NFS procedures are run on the

host CPU 10, with access to memory 16 for both data and

program code being provided via MMD 11. Logically

specified data addresses are converted to a much more

physically specified form and communicated to the SMD

15 disk controller 22 or the SCSI bus 28, via the VME bus

20

20, and all disk caching is done by the host CPU 10

through the memory ~6. The host CPU card 10 also runs

procedures for performing various other functions of

the file serVer, communicating with tape controller 30

via the VME bus 20. Among- these are· client-defined

remote.procedures requested by client workstations.

If the server serves a.second Ethernet 36, packets

from that Ethernet are transmitted to the host CPU 10

over the same VME bus 20 in the form of IP datagrams.

25 Again, all protocol processing except for the network

layer is performed by software processes running on the

Attorney Docket No.':AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 345

5

c (

-19-

host CPU 10. In addition, the protocol processing for

any message that is to be sent from the server out on

either of the Ethernets 12 or 36 is also done by

processes running on the host CPU 10.

It can be seen that the· host CPU 10 performs an

enormous amount of processing of data, especially if

5-10 clients on each of the two Ethernets are making

file server requests and need to be sent·responses on a

frequent basis. The host CPU 10 runs a multitasking

10 Unix operating system, so each incoming request need

not wait for the previous request to be completely

processed and · returned before being processed.

Multiple processes are activated on the host CPU 10 for

performing different stages of the processing of

15 different requests, so many requests may be in process

at the same time. But there is only one CPU on the

card 10, so the processing of these requests is not

accomplished in a truly parallel manner. The processes

are instead merely time sliced. The CPO 10 theretore

20 represents a major bottleneck in the processing of file

server requests.

Another bottleneck· occurs in MMU 11, which· must

transmit both instructions and data between the CPU

card 10 and the memory 16. All data flowing between

25 the disk drives and the network passes through this

interface at least.twice.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 346

,..
••

:·!

!

_L
I

I

((

-20- 095447/2

Yet another bottleneck can occur· on the VHB bus

20, which must transmit data among· the SMD disk

controller 22, the SCSI host adaptor 26, the host CPU

card 10, and possibly the network 82 controller ~4.

S PREFERRED EMBODIMENT-QVEftALL HARDWARE ARQHITECTURE

In Fig. 2 thcr.e is shown a block diagram of a

network file server 100 according to the invention. It

can include multiple network controller (NC) boards,

one or more file controller (FC) boards, one or more

10 stor~ge processor (SP) boards, multiple system memory

boards, and one or more host processors. The

particular embodiment shown in Fig. 2 includes four

network controller boards 110a-110d,· two file

controller hoards ll?.a-112b, two· storage processors

15 114a-114b, four system memory cards 116a-116d for a

total of 192HB of memory, and one local host processor

118. The boards 110, 112, 114, 116 and 118 are

connected together over a VME bus 120 on which an

enhanced block transfer mode as described in the

20 ENIIANCED VMEBUS PROTOCOL application identified above

may be used. Each of the four network controllers 110

shown in Fig. 2 can be connected to up to two Ethernets

122, for a total capacity of 8 Ethernets 122a-122h.

Each of the stora9e processorB 114 operates ten

25· parallel SCSI busses, nine qf which can each support up

Attorney Docket No. :AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

i
j.
'

Oracle Ex. 1002, pg. 347

•

c (

-21-

to three SCSI disk drives each. The tenth SCSI channel

on each of the storage processors 114 is used for tape

dri v·es and other SCSI peripherals.

The host 118 is essentially a standard SunOs Unix

5 processor, providing all the standard Sun Open Network

Computing (ONC) services except NFS and IP routing.

Importantly, all network requests to run a user-

defined procedure are passed to the host for

execution. Each of the NC boards 110, the FC boards

10 112 ·and the SP boards 114 includes its own independent.

32-bit microprocessor. These boards essentially off-

load from the host processor 118 virtually all of the

NFS and disk processing. Since the vast majority of

messages ·to and from clients over the Ethernets 122

15 involve NFS requests and responses, the processing of

these requests in parallel by the NC, FC and SP

processors, with minimal involvement by the local host

118, vastly improves file server performance. Unix is

explicitly eliminated from virtually all network, file,

20 and storage processing.

OVERALL SOFTWARE ORGANIZATION AND DATA FLOW

Prior to a detailed discussion of the hardware

subsystems shown in Fig. 2, an overview of the software

structure will now be undertaken. The softwar~

25 organization is described in more detail in the above-

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/720.9. 001 8/24/89-7

Oracle Ex. 1002, pg. 348

c
-22-

identified application entitled MULTIPLE FACILITY

OPERATING SYSTEM ARCHITECTURE.

Most of the elements of the ~oftware are well

known in the field and are found in most networked Unix

5 systems. but there are two components which are not:

Local NFS (•LNFS") and the messaging kernel ("MK")

operating system kernel. These two components will be

explained first.

The Messagi.ng Kernel. The various processors in

10 file server 1.00 communicate with each other through the

use of a· -me~sag:ing kernel running on each of the

processors 110, 112·, 114 and 118. These processors do

not share any instruction memory, so task-level

communication cannot occur via straightforward

15 procedure calls as it does in conventional Unix.

Instead, the messaging kernel passes messages over VME

bus 120 to accomplish all necessary inter-processor

communication. Message passing is preferred over

remot"t~ procedure calls for reasons of simplicity and

20 speed.

Messages passed by the messaging kernel have a

fixed 128-byte .length. Within a single processor,

messages are sent by referencei between processors,

they are copied by the messaging .kernel and then

25 delivered to·the destination process by reference. The

processors of Fig. 2 ·have special hardware, discussed

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 349

·•
•

5

10

15

I ,
' i

20

25

! . ~ .

((

-23- 095447/2
below, that can expediently exchange and buffer inter-

processor messaging kernel messages .

:Ibe LNFS r.ocal NFS interface. The 22-function NFS

stnudord was specifically designed for stateless

operation using unreliable communic~tion. This means

that neither clie~ts nor server can be sure if they

hear each other when they talk (unreliability). In

practice,: in an ·Ethernet environment, this works ..
well.

Within the server 100, however, NFS level

datag~ams are also used for communication between

proce~sors, in particular between the network

controllers 110 and the file controller 112, and

between the host processor 118 and the file controller

112. For this internal communication to be both

efficient and convenient, it is undesirable and

impractical to have complete statelessness or

unreliable communications. Consequently, a modified

form of NFS, namely LNFS, is used for internal

communication of NFS requests and responses. LNFS is

used only ld...tJlin the file server 100; the external

network pr'?toc.ol supported by th.e serve:r is precisely

standard, licensed NFS. LNFS is described' in more

detail below.

The Network Controllers 110 each run an NFS server

which, after all protocol processing is done up to the

Attorney Docket No.:AUSP7209
WPI/WSW/AUSP/7209.001 8/24/89-7

i·
I

Oracle Ex. 1002, pg. 350

••

• C·

-24-

NFS layer, converts between external NFS requests and

responses and internal LNFS requests and responses.

For example, NFS requests.arrive as RPC requests with

XDR and enclosed in a UDP datagram. After protocol

5 processing, the NPS server translates the NFS request

10

15

into LNFS -f~~ and uses the messaging kernel to send

the request to the file controller 112.

The file controller runs an LNFS server which

handles LNFS requests both from network controllers and

from the host 118. The LNPS server translates LNFS

requests to a form appropriate for a file system

server, also running on the file con~roller, which

manages the system memory file dai;:.a cache through a

block I/0 layer.

An overview of the software in each of the

processors will now be set forth.

Network Controller 110

·The optimized dataflow of the server 1-00 begins

with the intelliqent network controller 110. This

20 processor receives Ethernet packets from client

workstations. It quickly identifies NFS-destined

packets and then performs full protocol processing on

them to the NFS level, passing the resulting LNFS

requests directly to the file controller 112. This

25 protocol processing includes IP routing and reassembly;

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 351

•

c (

-25-

UDP demultiplexing, XDR decoding, and NFS request

dispatching. The reverse steps are used to send an NFS

reply back to a client. Importantly, these time-

consuming activities are performed directly in the

5 Network Controller 110, not in the host 118.

The server 100 uses conventional NFS ported from

Sun Microsystems, Inc., Mountain View, CA, and is NFS

protocol compatible.

Non-NFS network traffic is passed directly to its

10 destination host processor 118.

The NCs 110 also perform their own IP routing.

Each network controller 110 supports two fully parallel

Ethernets. There are four network controllers in the

embodiment of the server 100 shown in Fig. 2, so that

15 server can support up to eight Ethernets. For the- two

Ethernets on the same network controller 110, IP

routing occurs completely within the network

controller and generates no backplane traffic. Thus

attaching two mutually active Ethernets to the same

20 controller not only minimizes their inter-net transit

time, ~ut also significantly reduces backplane

contention on the VME bus 120. Routing table updates

are distributed to the network controllers from the

host processor 118, which runs either the gated or

25 routed Unix demon.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 352

•
5

c (

-26-

While the network controller described here is

design~d for Ethernet LANs, it will be understood that

the invention can be used just as readily with other

network types, including FDDI.

Fil_e Controller 112

In addition to dedicating a separate proce·ssor for

- NFS protocol processing and IP routing, the server 100·

also dedicates. a SE!parate processor, the intelligent

file controller 112, to be responsible for all file

10 system processing. It uses conventional Berkeley Unix

4.3 .file system code and uses a binary-compatible data

15

representation on disk. These two choices allow all

standard file system utilities (particularly block-

level tools) to run unchanged.

The file controller 112 runs the shared file.

system used by all NCs 110 and the host processor 118.

·Both the NCs and the host processor communicate with

the flle controller 112 using the LNFS interface. The

NCs 110 use LNFS as described above, while the host

20 processor 118 uses LNFS as a plug-in module to SunOs's

standard Virtual File System·· (.. VFS 11) interface.

25

When. an NC receives an NFS read request' from a

client workstation, the resulting LNFS request passes

to the FC 112. The FC 112 first searches the system

memory 116 buffer cache for the requested data. If

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 353

•

•• (c
-27-

095447/2 i

found, a reference to the buffer is re~urned to the NC

110. If not found, the LRU (least recently used) cache

buffer in system memory 116 is freed and reassigned for

the requested block. •rhe FC then directs the SP 114 to

5 read the block into the cache buffer from a disk drive

array. When complete, the SP so notif~es the FC, Which

in turn notifies the NC HO· The NC 110 then. sends an

NFS reply, with the data from the buffer, back to the

NFS client workstation out on the network. Notf that

10 the SP 114 transfers the data into system memory 116,

15

if ne.cessary, and the NC 110 transfer·s. the data from

system memory 116 to the networks. The process takes

place without any involvement of the host 118.

Stgrage Processor

'l'he intelligent storage processor 1 i4 manages all

disk and tape storage operations. Whi.le autonomous,

storage processors are primarily directed by the file

controller 112 to move file data between system memory

116 and the disk subsystem. "The exclusion of both the

20 host 118 and the FC 112 from the actual data path helps

to supply the performance needed to service many

remote clients.

Additionally, coordinated by a Server Manager in

the host 118, storage processor 114"can execute server

25 backup by moving data between the disk subsystem and

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

I

.. L.......=.·

Oracle Ex. 1002, pg. 354

•
s

10

c (

-28-

tape or other archival peripherals on the SCSI

channels. Further, if directly accessed by· host

processor 118, SP 114 can provide a much higher

performance conventional disk interface for Unix,

virtual memory, and databases. In Unix nomenclature,

the host processor 118 can mount boot, storage swap,

and raw partitions via the storage processors 114. ·

Each storage processor 114 operates ten parallel,

fully synchronous SCSI channels (busses)

simultaneously. Nine of these channels support three

·arrays of nine SCSI disk drives each, each drive in an

array being assigned to a different SCSI channel. The

tenth SCSI · channel hosts up to seven tape and other

SCSI peripherals. In addition to performing reads and

15 writes, SP 114 performs device-level optimizations

such as disk seek queue sorting, directs device error

recovery, and controls DMA transfers between the

devices and system memory 116.

Host Processor 118

20 The local host 118 has three main purposes: to run

Unix, to provide standard ONC network services for

clients, and to run a Server Manager. Since Unix and

ONC are ported from the standard SunOs Release 4 and

ONC Services Release 2, the server 100 can provide

25 identically compatible· high-level ONC services such as

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 355

, .

•

••

5

c c
095447/2

-2·9-

the Yellow Pages, Lock Manager, DES.Key Authenticator,

Au to Mounter, and Port Mapper . Sun/2 Network disk

booting and more general IP internet services such as

'l.'elnet, F'l'P, SH"l'P, SNHP, and reverse AllP are also

supported. Finally, print spoolers and similar Unix

demons operate transparently.

The host processor 118 runs.the following software

modules:
•

TCP and fiOpket layer&· The Transport Control

10 Protocol ("TCP"), which is used for certain server

funct~ons other than NFS, provides reliable bytestream

commu~ication between two processors. socke~are used

to establish· TCP connections.

VFS interface. The Virtual File System· ("VFS")

15 interface is a standard SunOs file system interface.

It paints a uniform file-system picture for both users

and the non-file parts of the Unix operating system,

hiding the details of the specific file system. Thus

stand'ard NFS, LNFS, and any local Unix file system can

20 coexist harmoniously.

UFS interface. The Unix File System (•urs•)

interface is the traditional and well-known Unix

interface for communication with local-to-the-processor

disk drives. In the· server 100, it is used to

· 25 occasionally mount storage processor volumes directly,

without going through the file controller 112.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 356

•
5

10

15

c (

-30-

Normally, the host 118 uses LNFS' and goes through the

file controller.

Device l~yer. The device layer is a standard

software interface between the Unix device model and

different physical device implementations. In the

server 100, disk devices are not attached to host

processors directly,. so the disk driver in the host's

device layer uses the messaging kernel to communicate

with the storage prqcessor 114.

Route·and Port Mapper Demons. The Route and Port

Mapper demons are Unix user-level background processes

that maintain the Route and Port databases for packet

routing. They are mostly inactive and not. in any

performance path.
\

Yellow Pages and Authentication Demon. The Yellow

Pages and Au.thentication services are Sun-ONC standard

network services. Yellow Pages is a widely used

multipurpose name-to-name directory lookup service.

The Authentication service uses cryptographic keys to

20 authenticate, or validate, requests · to insure that

requestors have the proper privileges for any actions

or data they desire.

Seryer Manager. The Server Manager is an

administrative application suite that controls

25 configuration, logs error and performance reports, and

provides a monitoring and tuning interface for the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 357

•

c c
-31-

system administrator .. These functions ·can be exercised

from either system console connected to the host 118,

or from a system administrator's wprkstation.

The host processor 118 is a conventional OEM Sun

5 central processor card, Model 3E/120. It incorporates

a Motorola 680~0 microprocessor and 4MB of on-board

memory. .Other processors, such as a SPARC-based
:·

processor, are also possible.

The· structure and operation of each of the

10 hardware components of server 100 will now be described

in detail.

NETWORK CONTRQLLER HARQWARE ARCHITECTURE

Fig. 3 is a block diagram showing the data path

and some control paths for an illustrative one of the

15 network controllers 110a. It comprises a 20 MHz 68020

microprocessor 210 connected to a 32-bit microprocessor

data bus 212. Also connected to the microprocessor

data"bus 212 is a 256K byte CPU memory 214. The low

order 8 bits of the microprocessor data bus 212 are

20 connected through a bidirectional buffer 216 to an 8-

bit slow-speed data bus 218. On the slow-speed data

bus 218 is a 128K byte EPROM 220, a 32 byte PROM 222,

and a multi-function peripheral (MFP) 224. The EPROM

220 contains boot code for the network controller 110a,

25 while the PROM 222 stores various operating parameters

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 358

•
5

((

-32-

such as the Ethernet addresses assigned to each of the

two Ethernet interfaces on the board. Ethernet address

information is read into the corresponding interface

control block in the CPU memory 214 during

initialization. The MFP 224 is ·a "Motorola 68901, and

performs various local functions such as timing,

interrupts, and qeneral purpose I/0. The MFP 224 also

includes a UART for interfacing to an RS232 port 226.

These functions are not critical to the invention and

10 will not be further described herein.

The low order 16 bits of the microprocesso~ data

bus 212 are also coupled through a bidirectional buffer

230 to a 16-bit LAN data bus 232. A LAN controller

chip 234, such as the Am7990 LANCE Ethernet controller

15 manufactured by Advanced Micro Devices, Inc. Sunnyvale,

20

CA., interfaces the LAN data bus 232 with the first

Ethernet 122a shown in Fiq. 2. Control and data for

the LAN controller 234 are stored in a 512K byte LAN
..

memory 236, which is also connected to the LAN data bus

232. A specialized· 16 to 32 bit FIFO chip 240,

referred to herein a_s a parity FIFO chip and described

below, is also connected to the LAN data bus 232. Also

connected to the LAN data bus 232 is a LAN OMA

controller 242, which controls movements of packets of

25 data between ~he LAN memory 236 and the FIFO chip 240.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 359

•

..

5

(

-33-

The LAN DMA controller 242 may be a Motorola M68440 DMA

controller using cnannel zero only.

The second Ethernet 122b shown in Fig .. 2 connects

to a second LAN data bus 252 on the network 'controller

card 110a shown in Fig. 3. The LAN data bus 252

connects to the low order 16 bits of the

microprocessor data bus 212 via a bidirectional buffer

250, and has similar components to those appearing on

the LAN data bus 232. In particular, a LAN controller

10 254 interfaces the LAN data bus 252 with the Ethernet

15

122b, using LAN memory 256 for data and control, and a

LAN DMA controller . 262 controls DMA transfer of data

between the LAN m·emory 256 and the 16-bit wide data

port A of the parity FIFO 260.

The· low order 16 bits of microprocessor data bus

212 are also connected directly to another parity FIFO

270, and also to a control port of a VME/FIFO DMA

controller 272. The FIFO 270 is used for passing

messages between the CPU memory 214 and. one of the

20 remote ~oards 110, 112, 114, 116 or 118 (Fig. 2) in a

manner described below. The VME/FIFO DMA controller

272, which supports three round-robin non-prioritized

channels for copying data, controls all data transfers

between one of the remote boards and. any of the FIFOs

25 240, 260 or 270, as well as between the FIFOs 240 and

:i60.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 360

i.
!

... -

• ·095447/3

------------------------·--------------------*-------~----~~I~M------
((

-34-

32-b!t data bus 214. which is connected to the 32-

bit port B of each of the FIFOs 240, 260 and 270, is

the. dato bus over which these transfers take plaoe.

Data bus 274 communicates with a local 32-bit bus 276

S via a bidirectional pipelining late~ 278, ~hich is also

controlled by Vf'.IE/FIFO DHA controller 272 which in

turn communicates with the VME bus 120 via a

bidirectional buffer 280. ..
'l'he local data bus 276 is also connected to a set

10 of control registers 282, which are directly

addressable across the VHE bus 120. Tlae registers 282

are· used mostly for system initialization and

diagnostics.

The local data bus 276 is also coupled to the

15 microproceosor data bus 212 via a bldirectlon~l buf!er

28-1. When the NC I lOa operates in slave mode, the CPU

memory 214 is directly addressable from VME bus 120.

One of the remote boards can copy data directly from

the ci•u memory 214 via the bidirectional buffer 284.

20 LAN memories 236 end 256 are not directly addressed

over VI·1E bus 120.

The parity FIFOa 240, 260 and 270 each conaiut.of

an ASIC, the functions and operation nf which are

described in the 1\ppendh C. The FIFOs 240 and 260 ·are

25 configured for packet data transfer and the FIFO 270 ia

configured for m.essage passing.

1\t~orney Docket No.:AUSP7209
WPI/WSW/1\USr/7209.001

Referring. to the

B/24/89-7

Oracle Ex. 1002, pg. 361

•

5

10

15

20

25

I

I
!

t

'((
095447/2

-35-

Appendix C,. the f"IFOs 240 and 260 are programmed with the

following bit settings in the Data Transfer

Configuration Register:

Uefinition

0 WD J.lode

Parity Chip

2 .Parity Correct 14ode

Settin'g

N/A

N/A

N/A

3 8/16 bits CPU & PortA interface 16'bits (1)

4 Invert Port A addre~s 0

5 Invert Port A address· 1

6 Checksum Carry Wrap

1 Reset

..
no (0)

yes. (1)

yes (1)

no (0)

The Data Transfer Control Register is programmed

as follows:

0

2

l

4

5

6

1

Enable PortA Req/Ack

Enable PortB Req/Ack

Data Transfer Direction .

CPU parity enable

PortA parity enable

PortB parity enable

.Checksum Enable

PortA Master

yee (1)

yes (1)

(as desired)

no (0)

no (.0)

no (0)

yes (1)

yes (1)

Unlike the configuration used on f:I.FOs 240 and

260, the microprocessor 210 is responsible for loading

and unloading Port A directly. The microprocessor 210

Attorney Docket No. :11USP7209
WPI/WSW/AUSP/7209.001 8/24/89-7

-· -·-·

Oracle Ex. 1002, pg. 362

•

• (

- -36-

reads an entire 32-bit word from port·A with a single

instruction using two port A access cycles. . Port .A

data transfer is disabled by unsetting bits 0 (Enable

PortA ReqjAck). .. and 7 (PortA Master) of the Data

5 Transfer Control Register.

The remainder of the control settings in FIFO 270

are the same as those in FIFOs 240 and 260 .described

above.

The NC 110a also includes a command FIFO 290. The

10 command FIFO 290 includes an input port coupled to the

local data bus 276, and which is directly addressable

across the VME bus 120 I and includes an output port

connected to the microprocessor data bus 212. As

explained in more detail below, when one of the remote

15 boards issues a command or response to the NC 110a 1 it

does so by directly vriting a 1-word (32-bit) message

descriptor into NC 110a 1 s command FIFO 290. Command

FIFO 290 generates a uFIFO not empty" status to the

microprocessor 210, which then reads the message

20 descriptor off the top of FIFO 290 and processes it.

If the message is a command, then it includes a VME

address at which the message is located (presumably an

address in a shared memory similar to 214 on one of the

remote boards) . The microprocessor 210 then programs

25 . the FIFO 270 and the VME/FIFO DMA controller 272 to

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 363

•

E·

-37-

copy the message from the remote locat·ion into the CPU

.memory 214.

Command FIFO 290 is a conventional two-port FIFO,

except that additional circuitry is included . for

5 generating a Bus Error signal on VME bus 120 if an

attempt is made to write to the data input port while

the FIFO is full. Command FIFO 290 has space for 256

entries.

A noteworthy feature of the architecture of NC

10 110a is that the LAN buses 232 and 252 are independent

of the microprocessor data bus 212. Data packets being

routed to or from an Ethernet are stored in LAN memory

236 on the LAN data bus 232 (or 256 on the LAN data bus

252), and not in the CPU memory 214. Data transfer

15 between the -LAN memories 236 and 256 and the Ethernets

122a and 122b, are controlled by LAN controllers 234

and 254, respectively, while most data transfer between

LAN memory 236 or 256 and a remote port on the VME bus

120 are controlled by LAN DMA controllers 242 and 262,

20 FIFOs 240 a~d 260, and VME/FIFO DMA controller 272. An

exception to this rule occurs when the size of the data

transfer is small, e.g., less than 64 bytes, in which

-case microprocessor 210 copies it directly without

using DMA. The microprocessor 210 is not involved in

25 · larger transfers except in initiating them and in

receiving notification when they are complete.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 364

5

((

-38-

The CPU memory 214 contains mostly instructions

for microprocessor 210 1 messages being transmitted to

or from a remote board via FIFO 270, and various data

blocks for. ·controlling the FIFOs, the DMA controllers

and the LAN controllers. The ·microprocessor 210

accesses the data .packets in t~e LAN memori~s 236 and

256 by directly addressing them through the

bidirectional buffers 23Q and 250, respectively, for

protocol processing. The local high-speed static ~

10 in cpu·memory 214 can therefore provide zero wait state

memory. access for microprocessor 210 independent of

network traffic. This is . in sharp contrast to the

prior art architecture shown in Fiq. 1, in which all

data and data packets, as well as microprocessor

15 instructions for host CPU card 10, reside in the memory

16 and must communicate with the host CPU card 10 via

the MMU 11.

While the LAN data buses 232 and 252 are shown as

separate buses in Fig. 3, it will be understood that
..

20 they may instead be implemented as a single combined

bus.

NETWORK CONTROLLER OPERATION

In opeiatioi_l, when one of the LAN controllers

(such as 234) .receives a packet of information over its

25 Ethernet 122a, it reads in the entire packet and stores

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 365

r

• C . .

~39-

it in corresponding LAN memory 236. The LAN controller

234 then issues an interrupt to microprocessor 210 via

MFP 224, and the microprocessor 210 examines the status

register on LAN controller 234 (via bidirectional

5 buffer 230) to determine that the event causing t~e

interrupt was a areceive packet completed.a In order

to avoid a potential lockout of the second Ethernet

122b caused by the prioritized interrupt handling

characteristic of MFP 224, the microprocessor 210 does

10 not at this time immediately ·process d1e received

15

20

25

packet; instead, such pr~cessing is scheduled for a

polling function.

When the polling function reaches the processing

of the received packet, control over the packet 'is

passed to a software link level receive module. The

link level receive module then decodes the packet

according to . either of two different frame formats:

standard Ethernet format or SNAP (IEEE 802 LCC) format.

An entry in the header in the packet specifies ·which

frame format was used. The link level driver then

determines which of three types of messages is

contained in the received packet: (1) IP, (2) ARP

packets which can be handled by a local ARP module, or

(3) ARP packets and other packet types which must be

forwarded to the local host 118 (Fig. 2) for

processing. If the p·acket is an ARP packet which can

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 366

5

-40-

be handled by the NC 110a, such as a request for the

address of server 100, then the microprocessor 210

assembles a response·packet in LAN memory 236 and, in a

conve_ntional manner, causes LAN controller 234 to

transmit that packet back over Ethernet 122a. It is

noteworthy that the data manipulation for accomplishing

this task is performed almost completely in LAN memory

236, directly addressed by microprocessor 210 as

controlled by instructions in· CPU memory 214. The

10 function is accomplished also without generating any

traffic on the VME backplane 120 at all, and without

disturbing the local host 118.

If the received packet is either an ARP packet

which cannot be processed completely in the NC 110a, or

15· is another type of packet which requires delivery to

the local host 118 (such as a client request for the

server 100 to execute a client-defined procedure),

then the microprocessor 210 programs LAN DMA

controller 242 to ;toad the pack.et from LAN memory 236.

20 in~o FIFO 240, programs FIFO 240 with the direction of

data transfer, and programs DMA controller 272 to read

the packet out of FIFO 240 and across the VME bus 120

into system memory 116. In particular, the

microprocessor 210 first programs the L~N DMA

·25 controller 242 with the starting address and length of

the packet in LAN ·memory 236, and programs the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 367

i
. !

I

!

I

I
I
I·

•

-l.,._

I

•• '·
-41- 09544712,

controller to begin transferring data from the LAN

memory 236 to port A of parity FIFO 240 as soon as the

FIFO is ready to receive data. Second, microprocessor

210 proqr.nmn thP. · VHP./FIFO OMA controller 272 with the

5 destination address in system memory 116 arid the length

of the data packet, and instructs the controller to

10

15

begin transferring data from port B of the FIFO 260

onto VME bus 12.0. Finally, the microprocessor 210

programs FIFO 240 with the direction of the .tr'lnafer to

take place.· The transfer then proceeds ent.irely under

the control of DHA controllers 242 and 262, without any

further involvement by microprocessor 210.

The .. ~icroproceesor 210 then sends a messag-e to

host 118 that a packet is available at a specified

system memory address. The microprocessor 210 sends

such o mossaqe by writing a messag-e descriptor to a

software-emulated command FIFO on the host, which

copies the message from CPU memory 214 on the NC via

buffer 284 and into the host's local memory, in

20 ordinary VHE block transfer mode •. The host then copies

the packet from system memory 116 into the host's own

local memory using ordinary VME transfers.

If the packet received by NC llOa from the network

ls an IP packet, then the microprocessor 210 determines

25 whether it is (1) an IP packet for the server 100 which

is not an NFS p.acket; · (2) an IP packet to be routed to

Attorney Docket No.:AUSP7209
WPl/NSW/AUSP/7209.001 8/24/89-7

l '
i

·.--

Oracle Ex. 1002, pg. 368

(

-42-

a different network; or (3) an NFS packet. If it is an

IP packet for the server 100, but not an NFS packet,

then the microprocessor 210 causes the packet to be

transmitted from the LAN memory 236 to the host 118 in

5 the same manner described above with respect to certain

ARP packets.

If the IP packet is not intended for the server

100, but rather is to be routed to a client on a

different network, then the packet is copied into the

10 LAN memory associated with the Ethernet to .which the

15

destination client is connected. If the destination

client is on the Ethernet 122b, which is on the same

NC board as the source Ethernet 122a, then the

microprocessor 210 causes the packet to be copied from

LAN memory 236 into LAN 256 and then causes LAN

controller 254 to transmit it over Ethernet 122b. (Of

course, if the two LAN data buses 232 and 252 are

combined, then copying would be unnec~ssary; the

microprocessor 210 would simply cause the LAN

20 controller 254 to read the packet out of · the same

locations in LAN memory to which the packet was

written by LAN controller 234.)

The copying of a packet from LAN memory 236 to LAN

memory 256 takes place similarly to the copying

25 described above from LAN memory to system memory. For

tr~nsfer sizes of 64 bytes or more, the microprocessor

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 369

•
•

c
-43-

210 first programs the LAN DMA controller 242 with the

starting address and length of the packet in LAN memory

236, and programs the controller to begin transferring

data from the LAN memory 236 into port A of parity FIFO

5 240 as soon as the FIFO is ready to receive data.

10

Second, microprocessor 210 programs the LAN DMA

controller 262 with a destination address in LAN memory

256 and the length of the data packet, and instructs

that controller to transfer data from parity FIFO 260

into the LAN memory 256. Third, microproc.essor 210

programs the VME/FIFO DMA controller 272 to clock words

of data out of p~rt B of the FIFO 240, over the data

bus 274, and into port B of FIFO 260. F iJil&lly, the

microprocessor 210 programs the two FIFOs 240 and 260

15 with the direction of the transfer to take place. The

20

transfer then proceeds entirely under the control of

DMA controllers 242 1 262 and 272 1 w!thou~ any further

involvement by the microprocessor 210 .. Like the
..

copying from LAN memory to system · m·emory 1 if the

transfer size · is smaller than 64 bytes 1 the

microprocessor 210 performs the transfer directly,

without DMA.

When each of the LAN DMA controllers 242 and 262

complete their work, they so notify microprocessor 210

25 by a respectiv.e interrupt provided through MFP 224.

When the microproc~ssor 210 has received both

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 370

r-·-····
•

'. :
'

i
I
i

•

I
L
I

\ .

-44-
095447/2

interrupt~, it programs LAN controller 254 to transmit

the packet on the Ethernet 122b in a .conventional

manner.

'l"huA, Il' r.outing botwoen the two Etherneta in a

5 single network controller 110 takes place over data

bus 274, generating no traffic over VME bus 120. Nor

is the host processor 11~ disturbed fo~ such routing,

in contrast to the prio.r art architecture of Fig. 1.

Moreover, all but the shortest copying ~ork is

10 performed by controllers outside microprocessor 210,

·15

requ·iring the involvement of the microprocessor 210,

and bus traffic on microprocessor data bus 212, only

for the .~upervisory functions of programming the DMA

controllers and the parity FIFOs and instructing them

to begin. The VHE/FIFO OMA controller 272 is

programmed by loading control registers via

microprocessor data bus ·212; the LAN DMA controllers

242 and 262 are programmed by loading control registers

on the respective controllers via the microprocessor

20 data bus 212, respective bidirectional buffers 230 and

250, and respective LAN data buses 232 and 252, and the

parity FIFOs 240 and 260 are programmed as set forth in
1

the Appendix C. I
I

If the destination workstation of the IP packet to

25 be routed is on an Ethernet connected to a different

one of the network controllers 110. then the packet is

Attornt.!y Oocket No. :AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

i

I

Oracle Ex. 1002, pg. 371

•
• c

-45-

copied into the appropriate LAN memory on the NC 110 to

which that Ethernet is connected . Such copying is

accomplished by first copying the packet ~nto system

memory 116, in the manner described above with respect

s to certain ARP packets, and then notifyi~g the

destination NC that a packet is available. When an NC

is so notified, it programs its own parity FIFO and DMA

controllers to copy the packet from system memory 116

into the appropriate LAN memory.· It is noteworthy that

10 though this type of IP routing does create y-ME bu.s

traffic, it still does not involve the host CPU 118.

If the IP packet received over the Ethernet 122a

and now stored in LAN memory 236 is an NFS packet

inte'nded for the server 100, then the microprocessor

15 210 · performs. all necessary protocol preprocessing to

extract the NFS message and convert it to the local NFS

(LNFS) format. This may well involve the logical

concatenation of data extracted from a large number of

individual IP packets stored in LAN me~ory 236,

20 resulting in a linked list, in CPU memory 214, pointing

to the different blocks of data in LAN memory 236 in

the correct sequence.

The exact details of the LNFS format are not

important for an ~nderstanding of the invention, except

25 to note that it includes commands to maintain a

directory of files which are stored. on the disks

Attorney Docket No.:AUSP7209
WP 1/WSW/AUSP /72'09. 001 8/24/89-7

Oracle Ex. 1002, pg. 372

•
•

(_ (

-46-

attached to· the storage processors 114, commands for

reading and writing data to and from a file on the

disks, and various configuration management and

diagnostics control messages. The directory

5 maintenance commands which are supported by LNFS

include the following messages based on conventional

NFS: get attributes of a file (GETATTR); set attributes
:.

of a file (SETATTR); look up a file (LOOKUP); created a

file (CREATE); remove a file (REMOVE); rename a file

10 (RENAME); created a new link~d file (LINK); create a

symlink (SYMLINK); remove a directory (RMDIR); and

return file system statistics (STATFS). The data

transfer commands supported by LNFS include read from a

file (READ); write to a file (WRITE); read from a

15 directory (READDIR); and read a link (READLI~K). LNFS

also supports a buffer release command (RELEASE), for

notifying the file controller that an ·Nc ·is finished

using a specified buffer in· system memory. It also

supports a VOP-derived access command, for determining

20 whether a given type access is legal for specified

credential on a specified file.

25

If the LNFS request includes the writing of file

data from the LAN memory 236 ~o disk, the NC 110a first

requests a buffer in system memory 116 to be allocated

by the appropriate FC 112. When a pointer to the

buffer is returned, microprocessor 210 programs LAN OMA

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 373

•
•

. c. c
-47-

controller 242, parity FIFO 240 and VME/FIFO DMA

controller 272 to transmit the entire block of file

data to system memory 116. The only difference between

this transfer and the transfer described above for

5 transmitting IP packe·ts and · ARP packets to system

memory 116 is that these data blocks will typically

have portions scattered throughout LAN memory 236. The

microprocessor 210 accommodates that situation by

proqramminq LAN DMA controller 242 successively for

10 each portion of the data, in accordance with. the linked

list, after receiving notification that the· previous

portion is complete. The microprocessor 210 can

program the parity FIFO 240 and the VME/FIFO DMA

controller 272 once for the entire messaqe, as long as

15 the entire data block is to be placed contiguously in

system memory 116. If it is not, then the

microprocessor 210 can program the DMA controller 272

for successive blocks in the same manner LAN DMA

controller 242.

20 If the network controller 110a receives a message

from another processor in server 100, usually from file

controller 112, that file data is available in system

memory 116 for transmission on one of the Ethernets,

for example Ethernet 122a, then the network controller

25 llOa copies the file data into LAN memory 236 in a

manner similar to the copying of file data in the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 374

l
I

I
I
i
I

I !

i
-+-1

• -48- 095447/2
opposite direction. In particular, the microprocessor

210 first programs VHE/FIFO DMA controller 272 with the

starting address and length of the data in system

memory 116, and programs the controller to beqin

5 transferring data over the VHE bus 120 into port B of

parity FIFO 240 as soon as the !IFO is ready to receive

data. The microprocesso'r 210 then programs the LAN DHA

controller 242 with a destination address in LAN memory

236 and then length of the file data, and i.,ltstructs

10 that controller to transfer data from the parity FIFO

2'40 into _the LAN memory 236. Third, microprocessor

210 programs the parity FIFO 240 with the direction of

the transfer'to take place. The transfer then proceeds
f I • •

entirely under the control of DHA controllers 242 and

15 272, wi~hout any further involvement by t~e

20

microprocesnor 210. ~gain, if the file data is

scattered in multiple blocks in system memory 116, the

microprocessor 210 programs the VME/FIFO DHA controller

272 WLth a linked list of the blocks to transfer in the

proper order.

When each of the DMA controllers 242 and 262

complete their work, they so notify microprocessor 210:

through MFI? 224. The microprocessor 210 then performs

~11 necessary protocol processi.ng on the LNFS message

25 in LAN. memory 236 in order to prepare the mess~ge ·for

transmission over the Ethernet 122a in the form of

~ttor.au~y Docket No.: 1\USI?7209
Wl?l/WSW/1\USP/7209.001 8/24/89-7

. j

I
. ~

Oracle Ex. 1002, pg. 375

•

((

.-49-

Ethernet IP packets. As set forth above, this protocol

processing is performed entirely in network controller

110a, without any involvement of. the local host 118.

It .should be noted that the ·parity FIFOs are

5 designed to move multiples of 128-byte blocks most

efficiently. The data transfer size through port B is

always 32-bits wide, a~d the VME address corresponding

to the 32-bit data must be quad-byte aligned. The data

transfer size for port A can be either a· or 16 bits.

10 For bus utilization reasons, it is set to 16 bits when

the corresponding local start address is double-byte

aligned, and is set at 8 bits otherwise. The TCP/I~

checksum is always computed in the 16 bit mode.

Therefore'· the checksum word requires byte swapping if

15 the local start address is not ·double-byte aligned.

Accordingly, for transfer from port B to port A of

any of the FIFOs 240, 260 or 270, .. the microprocessor

210 programs the VME/FIFO DMA controller to pad the

trans"fer count to the next 128-byte boundary. The

20 extra 32-bit word transfers do .not involve the ~E bus,

and only the desired number of 32-bit words will be

unloaded from port A.

For transfers from port A to port B of the parity

FIFO 270, the microprocessor 210 loads port A word-by-

25 word and ·forces a FIFO full indication when it is

fini~hed. The FIFO f:ull indication enables unloading

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 376

•
•

(.

-so-

from port B . The same procedure also takes place for

transfers from port A to port B of either of the parity

FIFOs 240 or 260, since transfers of fewer than 128

bytes are'performed under local microprocessor control

5 rather than under the control of LAN DMA controller 242

10

15

or 262. For all of the . FIFOs 1 the VME/FIFO DMA

controller is proqrammed to unload only the desired

number of 32-bit words.

FILE CONTROLLER HARDWARE ARCHITECTURE

The file controllers (FC) 112 may each be a

standard off-the-shelf microprocessor board, such as

one manufactured by Motorola Inc. Preferably,

however, a more specialized board is used such as that

shown in block diaqram form in Fiq. 4.

Fiq. 4 shows one of the FCs 112a, and it will be

understood that the other FC can·b~ identical. In many

aspects it is simply a scaled-down version of the NC
..

110a shown in Fiq. 3, and in some respects it is scaled

up. Like the NC 110a, FC 112a comprises a 20MHz 68020

20 microprocessor 310 connected to a 32-bit microprocessor

data bus 312. Also connected to the microprocessor

data bus 312 is a 256K byte shared CPU memory 314.

The low order 8 bits of the microprocessor data bus 312

are connected throuqh a bidirectional buffer 316 to an

25 8-bit slow-speed data'bus 318. On slow-speed data bus

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 377

••

l

I

I
t

I
I

••

.•

\ .

-st- 095447/2

318 are a 128K byte PROM 320, and a multifunction

peripheral (MFP) 324 .. The functions of the PROM 320

and HFP 324 are the same as those described above with

r.P.B('IOcl; to F.:I:'RClM 220 nncl MFP 22-t on NC llOa. FC lUa

5 does not include PROM like the PRO!II 222 'on NC 110a,

but does include a parallel port 392. The parallel

port 392 is mainly fo~ t~sting and diagnostics.

Like the NC llOa, the FC ll2a is connected to the

VME bus 120 via a bidirectional buffer 380 aad a 32-

10 bit local data bus 376. A set of control registers. 382

are connected to the local data bus 3 7 6, and directly'

addressable across the VI4E bus 120. The local data bus

376 is a~so coupled to the microprocessor data bus 312

via a bidirectional buffer 384. This permits the

15 direct addressability of CPU memOry 314 from -VME bus

120.

FC 112a also include~!! a command FIFO 390, which

includes an input port coupled to the. local data bus

376 and which is directly addressable across the VME

20 bus 120. The command FIFO 390 also includes an output

25

port connected to the microprocessor data bus 312. The

structure, operation and purpose of command FIFO 390;

are the sa1t1e as those described above with respect to

command FIFO 290 on NC llOa.

The FC ll2a omits the LAN data buses 232 and ?.52

which are present in NC lloa·, but instead includes a 4

Attorney Docket No. !AUSP7209
WP 1/WS.W/AUSP /7209.001 8/24/89-7

Oracle Ex. 1002, pg. 378

•

··---··-· ((

-52-

megabyte 32-bit wide FC memory 396 coupled to the

microprocessor data bus 312 via a bidirectional buffer

394. As will be seen, FC memory 396 is used as a cache

memory for file control information, separate from the

5 file data information cached in system memory 116.

The file controller embodiment shown in Fig. 4

does not include any DMA controllers, and hence cannot

act as a master for transmitting or receiving data in

any block transfer mode, over the VME bus 120. Block

10 transfers do occur with the·cpu memory 314 and the FC

memory 396, however, with the FC 112a acting as an VME

bus slave. In such transfers, the remote master

addresses the CPU memory 314 or the FC memory 396

directly over the VME bus 120 through the bidirectional

15 buffers 384 and, if appropriate, 394·.

20

FILE CONTROLLER OPERATION

The purpose of the FC 112a is ba~ically to provide

virtual file system services in response to requests

provided in LNFS format by remote· processors on the

VME bus 120. Most requests will come from a network

controller 110, but requests may also come from the

local host 118.

The file related commands supported by LNFS are

identified above. They are all specified to the FC

25 112a in terms of logically identified disk data blocks.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 379

•

•

5

10

(

-53-

For example, the LNFS command for reading data from a

file includes a specification of the file from which to

read (file system ID (FSID) and file ID (inode)), a

byte offset, and a count of the number of bytes to

read. The FC 112a converts that identification into

physical form, namely disk and sector numbers, in order

to satisfy the command .
• =·

The FC 112a runs a conventional Fast File System

(FFS or UFS), which is based on the Berkeley 4. 3 VAX

release. This· code performs the conversion and also

performs all disk data caching and control data

caching. However, as previously mentioned, control

data caching is performed using the FC memory 396 on FC

112a, whereas disk data caching is performed using the

15 system memory 116 .(Fig. 2). Caching this file control

information within the FC 112a avoids the VME bus

congestion and speed degradation which woula result if

.• file control information was cached in system memory

116.

20 Th'e memory on the FC 112a is ·directly accessed

over the VME bus 120 for three main purposes. First,

and by far the most frequent, are accesses to FC memory

396 by an SP 114 to read o~ write cached file control

information. These are accesses requested by FC 112a

25 to ·write locally modified file control structures

through to disk, or. tci re'ad. file control structures

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 380

•
• (.

-54-

from disk. Second, the FC's CPU memory 314 is accessed

directly by other processors for message transmissions

from the FC 112a to such other processors. For

example, if a data block in system memory is to be

s. transferred to an SP 114 for writing to disk, the FC

10

15

112a first assembles a message in its local memory 314

requesting such a transfer. The FC 112a then notifies

the SP 114, which copies the message directly from the

CPU memory 314 and executes the ·.requested transfer.

A third type of direct access to. the FC' s local

memory occurs when an LNFS client reads directory

entries. When FC 112a receives an LNFS request to

read directory entries, the FC 112a formats the

requested directory entries in FC memory 396 and

notifies the requestor of their locat·ion. The

r~questor then directly accesses FC memory 396 to read

the entries.

The version of the UFS code on FC 112a includes

SOme modifications in order to separate the tw9 Caches.

20 In particular, two sets of buffer headers are

maintained, one for the .Fe memory 396 and one for the

system memory 116. Additionally, a second set of the

system buffer routines (GETBLK(), BRELSE(), BREAD(),

BWRITE(), and BREADA()) exist, one for buffer accesses

25 to FC Mem 396 and one for buffer accesses to system

memory 116. The UFS ~ode is further modified to call

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 381

•

.·

-55-

the appropriate buffer routines for FC memory 396 for

accesses to file control information, and to call the

appropriate buffer routines for the system memory 116

for the caching of disk data. A description of UFS may

5 be found in chapters 2, 6, 7 and 8 of •Kernel St~cture

and Flow,• by Rieken and Webb of .sh consulting (Santa

·Clara, California: 1988), incorporated herein by

reference.

When a read ·command is · sent to the FC by a

10 requestor such as a network controller, the FC first

converts the file, offset and count information into

disk and sector information. It then locks the system

memory buffers which contain that information,

instructing the storage processor 114 to read them from

15 disk if necessary.. When the buffer is ready, the FC

returns a message to the requestor containing both the

20

attributes of the designated file and an array of

buffer descriptors that identify the locations in

system memory 116 holding the data.

After the requestor has read the data out of the

buffers, it sends a release request back to the FC.

The release request is the same message that was

returned by the FC in response to the read request; the

FC 112a uses the information contained therein to

25 determine which buffers to free.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 382

•
• ··c,

·.:

c ..

-56-

A write command is processed by FC 112a similarly

to the read command, but the caller is expected to

write to (instead of read from} the locations in system

memory 116 identified by the buffer descriptors

5 ret~rned by the FC 112a. Since FC 112a employs write-

10

15

through caching, when it receives the release command

from the requestor, it instructs storage processor 114
:-

to copy the data from system memory 116 onto the

appropriate disk sectors before freeing the system

memory buffers for possible reallocation.

The READDIR transaction is similar to read and

write, but the request is satisfied by the FC 112a

directly out of its own FC memory 396 after formatting

the requested directory information specifically .for

this purpose. The FC 112a causes the storage

processor read the requested directory information from

disk if it is not already locall.Y ·cached. Also, the

specified offset is a •magic cookie." instead of a byte

offset, identifying directory entries inst~ad of an

20 absolute byte offset into the file. No file attributes

25

are returned.

The READLINK transaction also returns no file

attributes, and since links are always read in their

entirety, it does not require any offset or count.

For all of the disk data·caching performed through

system memory 116, the FC 112a acts as a central

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 ·8/24/89-7

--
i.

_I

I

Oracle Ex. 1002, pg. 383

•
•

c.

-57-

authority for dynamically allocating, deallocating and

keepi-ng track of buffers. If there are two or more FCs

112, each has exclusive control over its own assigned

portion of system memory 116. In all of t~ese

5 transactions, the requested buffers are locked during

the period between the initial request and the release

request. This prevents corruption of the data by other
: ..
clients.

Also in the situation where there are two or more

10 FCs, each file system on the disks is assigned to a

particular one of the FCs. FC 10 runs a process called

FC_VICE_PRESIDENT, which maintains a list of which file

systems are assigned to which FC. When a .client

proce~sor (for example an NC 110) is about to make an

15 LNFS request designating a particular file system, it

first sends the fsid in a· message to the

FC_VICE_PRESIDENT asking which· FC controls the

specified file system. The FC_VICE_PRESIDENT. responds,
..

and the client processor sends the LNFS ~equest to the

20 designated FC. ~he client processor also maintains its

own list of fsid/FC pairs as it discovers them, so as

to minimize the number of such requests to the

FC_VICE_PRESIDENT.

STORAGE PROCESSOR HARDWARE ARCHITECTURE

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 .8/24/89-7

Oracle Ex. 1002, pg. 384

••

•

I
:

J·

-58- 095447/2
In tha file server 100; each of the storage

processors 114 can interface the VHE bus 120 with up to

10 different SCSI buses. Additionally, it can do so.at

tho full usage rate of an enhanced block transfer

5 protocol of 55MB per second.

Fig. 5 is a block diagram of one of the SPa 114a.

SP ll4b is identical. SP 114a comprises a

microprocessor 510, which. may be a Motorola 68020

microprocessor operating at '20MHz. The micropJO,.ocessor

10 510 is coupled over a 32-bit mlcroprocessor data bus

512.with CPU.memory 514, which may include up to 1MB of

15

20

25

sta.l:ic RAM. The microprocessor 5~0 accesses

instructions, data and status on its own private bus

512, with no contention from any other source. The

microprocessor 510 is the.only master of bus 512.

The low order 16 bits. of the microprocessor data

bus 512 interface with a control bus 516 via a

bidirectional buffer 518. The low order 8 bits of the

control bus 516 interface with a slow speed bus 520 via

another bidirectional buffer 522. The slow speed bus

520 connects to an MFP 524 ,. similar to the HFP 224 in

NC l~Oa (Fig. 3), and with a PROM 526, similar to PROM·

220 on NC llOa. The PROM 526 comprises 128R bytes of'

EPROM which contains the functional code for SP ll4a •.

Due to the width and speed of the

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

I

"PROM 526, the;

I
8/24/89-7:

Oracle Ex. 1002, pg. 385

• c
-59-

functional code is copied to CPU memory 514 upon reset

for faster execution.

MFP 524, like the MFP 224 on NC 110a, comprises a

Motorola 68901 multifunction peripheral device. It
'

5 provides the functions of a vectored interrupt

controller, individually programmable I/0 pins, four

timers and a UART. The UART functions provide serial

communications across an RS 232 bus (not shown in Fig.

5) for debug monitors and diagnostics. ·Two of the four

10 timing functions may be used as general-purpose timers

by t~e microprocessor 510, either independently or in

cascaded fashion. A third timer function provides the

refresh clock for a DMA controller described below~ and

the fourth timer generates ·the UART clock. Additional

15 information on the MFP 524 can be found in "MC 68901

Multi-Function Peripheral Specification," by Motorola,

Inc., which ~s incorporated herein by reference.

The eight general-purpose I/0 bits provided by MFP

524 are configured according to the following table:

At'torney Docket No. :AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 386

,.,
5

10

15

20

25

30

35

-60-

~ Direction pefinition

7 input

6 input

5 input

4 output

3 input

2 input

1 output

0 output

Power Failure is Imminent
functions as an early warning.

SCSI Attention
SCSI. Attentions
channels.

A composite of
from all 10

This

the
SCSI

Channel Operation Done - A composite of
the channel done' bits from all 13
channels of the DMA controller,
described below.

DMA Controller E.nable. Enables the DMA
Controller to run.

VMEbus Interrupt Done Indicates the
completion of a VMEbus Interrupt.

Command Available - Indicates that the
SP'S Command Fifo, described below,
contains on~ or more command pointers.

External Interrupts Disable. Disables
externally generated interrupts to the .
microprocessor 510.

Command Fifo Enable. Enables operation
of the SP 1 S Command Fifo. Clears · the
Command Fifo when reset.

Commands are provided to the SP 114a from the VME

bus .120 via a bidirectional buffer 530,. a local data

bus 532, and a command FIFO 534. The command FIFO 534

is similar to the command FIFOs 290 and 390 on NC 110a

a~d FC 112a, respectively, and has a depth of 256 32-

bit entries. The command FIFO 534 is a write-only

register as seen on the VME bus 120 1 and as a read-

.only register· as seen by microprocessor 510. If the

FIFO is full at the beginning of a write from the VME

bus, a VME bus error is generated.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

Pointers are

8/24/89-7

Oracle Ex. 1002, pg. 387

(

-61-

removed from the command FIFO 534 in the order

received, and only by the microprocessor 510. Command

available status is provided through I/O bit 4 of the

MFP 524, and as a lonq as one or more command pointers

5 are still within the . command FIFO 534, the command

available status remains asserted.

As previously mentioned, the SP 114a supports up
r

to 10 SCSI buses or channels 540a-540j. ·In the typical

configuration, buses 540a-540i · support up to 3 SCSI

10 disk drives each, and· channel 540j· supports other SCSI

peripherals such as tape drives •. optical disks, and so

on. Physically. the SP 114a connects to each of the

SCSI buses with an ultra-miniature D sub connector and

round shielded cables. Six 50-pin cables provide 300.

15 conductors which carry 18 siqnals per bus and 12

ground~. The cables attach at the front panel of the

SP 1-14a and to a commutator board at the disk drive

array. Standard 50-pin cables con~ect each SCSI device

to the commutator board. Termination resistors are

20 installed on the SP 114a.

The SP 114a support~ synchronous paral,lel data

transfers up to 5MB per second on each of the SCSI

buses 540, arbitration, and disconnect/reconnect

services. Each SCSI bus 540 is connected to a

25 respective SCSI adaptor 542, which in the present

embodiment is an AIC .6250 controller IC manufactured by

Attorney.Docket N6.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 388

•

-.-- (

-62-

A~aptec Inc., Milpitas, California, operating in the

non-multiplexed address bus mode. The AIC 6250 is

described in detail in "AIC-6250 Functional

Specification," by Adaptec Inc., which is incorporated

5 herein by reference. The SCSI adaptors 542 each provide

the necessary hardware interface and low-level

electrical protocol to implement its respective SCSI

channel.

The 8-bit data port of each of the SCSI adaptors

10 542 is connected to port A of a respective one of a set

of ten parity FIFOs 544a-544j. The FIFOs 544 are the

same as FIFOs 240, 260 and 270 on NC 110a, and are

connected and configured to provide parity covered data

transfers between the 8-bit data port of the respective

15 SCSI adaptors 542 and a 36-bit (32-bit plus 4 bits of

parity) common data bus 550. The F;t:FOs 544 provide

handshake, status,· word assembly/disassembly and speed

matching FIFO buffering for this purpose. The FIFOs

544 also generate and check parity for the 32-bit. bus,

20 and for RAID 5 implementations they accumulate and

check redundant data and accumulate recovered data.

All of the SCSI adaptors 542 reside at a single

location of the address space of the microprocessor

510, as do all of the pa~ity FIFOs 544. The

25 .microprocessor 510 selects individual controllers and

FIFOs for access in p·airs, by first programming a pair

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 389

, ..

;

i
i i

!

\ I

I I . , I
. I I .
'.i
! i

I

t

• \ .

-63- 095447./2

select register (not shown) to point to the desired

pair and then reading from or writi!'g to ·the control

register address of the desired chip in the pair. The

mJ.cropr.oceonor 510 communicates with the control

5 registers on the SCSI adaptors 542 via the control bus

516 and an additional bidirectional buffer 546, and

communicates with the control registers on FIFOs 544
' .
via the control bus 516 and a bidirectional buffer 552.

Both the SCSI adaptors 542 and FIFOs 544 employ 8-bit

10 control registers, and register addressing of the FIFOs

544 is arranged such tha·t such registers alias in

consecutive byte locations. This •llows the

microproc~ssor 510 to write to the registers as a

single 32-bit register, thereby· reducing instruction

15 overhead.

The parity FIFOs 544 are each configured in their

.1\daptec 6250 mode. Referring to the Appendix C ,-.the

.· FIFOs 544 are programmed with the following bit

settings in the Data Transfer Configuration Register:

20 JU..t Definition Setting

0 WD Mode (0)

Parity Chip (l)

2 Parity Correct Mode .<o>
3 8/16 bits CPU & PortA interface. (0)

:zs 4 Invert Port A address 0 (1)

5 Invert Port A address (1)

Attorney Uocket No.:I\USP7209
WPl/WSW/.1\USP/7209.001 8/24/89-7i

i
i
r

Oracle Ex. 1002, pg. 390

•

•
5

10

6

7

-64-

Checksum Carry Wrap

Reset

(0)

(0)

The Data Transfer Control Register is programmed

as follows:

1iit. Definition Setting
'

0 Enable PortA Req/Ack (1)

1 Enable'PortB ReqfAck (1)

2 Data.Transfer Direction as desired

3 CPU parity enable (0)

4 PortA·parity enable (1)

5 PortB parity enable (1) .
6 Checksum Enable (0)

7 PortA Master (O)

In addition, bit 4 of the RAM Access Control

15 Register (Long Burst) is programmed for 6-byte bursts.

SCSI adaptors 542 each generate a respective

interrupt signal, the status of which are provided to

microprocessor 510 as 10 bits of a 16-bit SCSI

in~errupt register 556. The SCSI interrupt register

20 556 is connected to the control bus 516.

25

Additionally, a composite SCSI interrupt is provided

through the MFP 524 whenever any one of the SCSI

adaptors 542 needs servicing.

An additional parity FIFO 554 is also provided in

the SP 114a, for message passing.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

Again referring to

8/24/89-7

Oracle Ex. 1002, pg. 391

••

~· i

5

10

15

20

25

!
j

!

\ .

-65- 095447/2

the Appendix ,C .·the parity FIFO 554 is programmed with

the following bit settings in the Data Transfer

Configuration Register:

JlJ...t l>...!U..I..oll..i..PJl . ~Sitting

0 WD Mode (0)

Parity Chip (l)

2 Parity Correct Mode (0)

3 0/16 bits CPU & PortA interface (1)

4 Invert Port A address 0 (1) ..

5 Invert Port A address l . (1)

6 Checksum Carry Wrap (0)

7 Reset (0)

The Da.ta Transfer
•.

Control P.egister is programmed

as follows:

JU..t Definition Setting

0 Euable PortA Req/Ack (0)

Enable PortB Req/Ack o·J

2 Data Transfer Direction as desired

3 CPU parity enable

4 PortA parity enable

5 PortB parity enable

6 Checksum Enable

7 PortA Mastel:'

In addition, bit 4 of the RAM

Register (Lonq Burst) is programmed for

Attorney Uoc:ket No. :AUSP7209
WPL/WSW/AUSP/7209.001

(0)

(0)

(1)

(0)

(OJ

Ac:cess Control

8-byte bursts.

8/24/89-7

p·
l

Oracle Ex. 1002, pg. 392

•

((

-66-

Port A of FIFO 554 is connected to the 16-bit

control bus 516, and port B is connected to the common

data bus 550. FIFO 554 provides one means by which the

microprocessor 510 · can communicate directly with the

5 VME bus 120, as is described in mor·e detail below.

The microprocessor 510 manages data movement

using a set of 15 channels, each of which has an unique
;·

status which indicates its current state. Channels are

implemented using a channel enable register 560 and a

10 channel status register 562, both connected to the

15

control bus 516. The channel enable r~gister 560 ~s a

16-bit write-only register, whereas the channel status

register 562 is a 16-bit read-only register. The two

registers reside at the same address to microprocessor

510. The microprocessor 510 enables a particular

channel by setting its respective bit in channel enable

register 560, and recognizes completion of the

specified operation by testing for a ·qdone" bit in the

channel status· register 562. The · microprocessor 510

20 then resets the enable bit, which causes the respective

Adonea bit in the channel status register 562 to ·be

cleared.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 393

•
5

10

15

20

25

30

35

((

-67-

The channels are defined as follows:

CHANNE~

0:9

11:10

12

13

14

15

FUNCTION

These channels control data movement to and
from the respective FIFOs 544 ·via the common
data bus 550. When a FIFO is enabled and a
request is received from it, the channel
becomes ready. Once the channel has been
serviced a status of done is generated.

These channels control da~a movement between
a local data bu,ffer 564, described below,
and the VME bus 120 . When enabled the
channel becomes ready. Once the channel has
been serviced a status of done is generated.

When enabled; this channel causes ·the DRAM in
local data buffer 564 to be· refreshed based
on a clock which is generated by the MFP 524.
The refresh consists of a burst of 16 rows.
This channel does not generate a status of
done.

The microprocessor's communication FIFO 554
is serviced by this channel. When enable is
set and the FIFO 554 asserts a request then
the· channel becomes· ready. This channel
_generates a status of done.

Low latency writes from microprocessor 510
onto the VME bus 120 are controlled by this
channel. When this channel is enabled data is
moved from a special 32 bit register,
described below, onto the VME bus 120. This
channel generates a done status.

This is a null channel for which neither a
ready ·status nor done status is generated.

Channels are prioritized to allow servicing of the

40 more critical .reques·ts .first. Channel priority is

assigned in a descending order starting at channel 14.

That is, in the event that all channels are requesting

service, channel 14 will be the first one served.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 394

••

! ___,__
i

......

-60- 09~447/2

The common data bus 550 is coupled via a

bidirectional register 570 to a 36-IHt junction bus

572. A second bidirectional register 574 connects the

junction bus 572 with the local dota bus 532. Local

5 data buffer 564, which comprises 1MB of Dlti\H, with

parity, is coupled bidirectionally to the junction bus

572. It is organized to provide 256K .Jl-bit words with

byte parity. The SP 114a oper:ates the DRA~s in paqe

mode to support a very high data rate, which requires

10 bursting ·of data instead of random single-word

accesses. It will be seen that the local data buffer

564 is use!i to implement a RAID (redundant array of

inexpensive disks) algorithm, and is not used for

direct rea~~ng and writing between the VME bus 120 and

15 a peripheral on one of the SCSI buses 540.

A read-only register 576, containing all zeros, is

also connected to the junction bus 572. Thi·s register

.· is used mostly for diagnostics, initialization, ·and

clearing of·large blocks of data in system memory 116.

20 The movement of data between the FIFOs 544 and

554, the local data buffer 564, and a remote entity

such as the system 111emory 116 on the VME bus 120, is

all controlled by a VHE/FIFO DMA controller 580. The

VME/FIFO DMA controller 580 is similar to the VMB/FIFO

25 DMA controller 272 on network controller llOa (.Flq. 3),.

and is described in the Appendix.A.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

Briefly, it

8/24/89-7 i
I

L

Oracle Ex. 1002, pg. 395

/-

•

C. -

-69-

includes a bit slice engine 582 and a dual-port static

RAM 584 . One port of the dual-port static RAM 584

communicates over the 32-bit microprocessor data bus

512 with microprocessor 510, and the other port

5 communicates over a separate 16-bit bus with the bit

slice engine 582. The microprocessor 510 places

command parameters in the dual-port RAM 564, and uses

the channel enables 560 to signal the VME/FIFO DMA

controller 580 to proceed with the command. The

10 VME/FIFO DMA controller is responsible for s·can~inq the

channel status and servicinq requests,' and returning

ending status in the dual-port RAM 584. The dual-port

RAM 584 is organized as 1K x 32 bits at the 32-bit.port

and as 2K x 16 bits at the 16-bit port. An example

15 showing the method by which the microprocessor 510

controls the VME/FIFO DMA controller 580 is as ~ollows.

First, the microprocessor 510 writes into the dual-port

RAM 584 the desired command and associated parameters

for the desired channel. For example, the command

20 might be, •copy· a block of data from FIFO 544h out into

25

a block of system memory 116 beginning at a specified

VME address. a Second, the microprocessor sets the

channel enable bit in channel enable register 560 for

the desired channel.

At the time the channel enable bit is set, the

appropriate FIFO may . not yet be ready to send data.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

';

8/24/89-7

Oracle Ex. 1002, pg. 396

·'·
!

•
-70-

Only when the VME/FIFO DMA controller 580 does receive

a. •ready• status from the channel, will the controller

580 execute the command. In the meantime 1 the DMA

controller sao is free to execute commands and move

5 data to or from other channels.

When the DMA controller 580 does receive a status

of •ready• from the specified channel, the controller

fetches the channel command and parameters from the

dual-ported RAM 584 and executes. When the command is

10 complete, for example all the requested data has been

copied, the DMA controller writes status back into the

dual-port RAM 584 and asserts •donea for the charinel in

channel status register 562. The microprocessor 510 is

then interrupted, at which time it reads channel status

15 register 562 to determine which channel interrupted.

20

The microprocessor 510 then clears the channel .enable

for the appropr.iate channel and checks the ending

channel status in the dual-port RAM 564.

""'n this way a high-speed data transfer can take

place under the control of DMA controller 580, fully in

parallel with other activities being performed by

microprocessor 510. The data transfer takes place over

busses different from microprocessor data bus 512,

t~ereby avoiding any interference with microprocessor

25 instruction fetches.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 397

:.

•
5

10

(C.

-71-

The SP 114a also includes a high-speed register

590, which is coupled between the microprocessor data

bus 512 and the local data bus 532. The high-speed

register 590 is used to write a single 32-bit word to

an VME bus target with a minimum of overhead~ The

register is write only as viewed from the

microprocessor 510. In order to write a word onto the
:.

VME bus 120, the microprocessor 510 first writes the

word into the register 590, and the desired VME target

address into dual-port RAM 584. When the

microprocessor 510 enables the appropriate channel. in

channel enable register 560, the DMA controller 580

transfers the data from the register 590 into the VME

bus address specified in the dual-port RAM 584. . The

15 DMA controller 580 then writes the ending status to the

dual-port RAM and sets the channel •donen bit in

chann.el· status register 5"62.

This procedure is very efficient for transfer of a

sing~e word of data, but becomes inefficient.for large

20 blocks of data. Transfers of greater than one word of

data, typically for message passing, are usually

performed using the FIFO 554.

The SP 114a also includes a series of registers

592, similar to the registers 282 on NC 110a (Fig. 3)

25 and the registers 382 on FC 112a (Fig. 4). The details

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 398

I·

•

(

-72-

of these registers are not important for an

understanding of the present invention.

STQRAGE PRQCESSOR OPEBATION

The 30 SCSI disk drives supported by each of th·e

5 SPs 114 are visible to a client processor, for example

one of. the.file controllers 112, either as three large,

Jogical disks or as 30 independent SCSI drives,

depending on configuration. . When the drives are

visible as three lo.gical disks, the SP uses RAID 5

10 design algorithms to distribute data for each logical

drive on nine physical drives to minimize disk arm

contention. The tenth drive is left as a spare. The

RAID 5 algorithm (redundant array of inexpensive

drives, revision .5) is described in •A Case For a

15 Redundant Arrays of Inexpensive Disks (RAID)•, by

Patterson et al., published at ACM SIGMOD Conference,

Chicago, Ill., June 1-3, 1988, incorporated herein by
..

reference.

In the RAID 5 design, ~isk data are divided into

20 stripes. Data stripes are recorded sequentially on

eight different disk drives. A ninth parity stripe, the

exclusive-or of eight data stripes, is recorded on a

ninth drive. If a stripe size is set to 8K bytes, a

read of 8K of data involves only one drive. A write of

25 8K of data involves 'two drives: a data drive and a

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 399

••

.·

c
-73-

parity drive. Since a write requires the readinq back

of old data to qenerate a new parity stripe, writes are

also referred to as modify writes. The SP 114a

supports nine small reads to nine SCSI drives

5 concurrently. ·When stripe size is set to 8K, a read of

64K of data starts all eiqht SCSI drives, with each

drive readinq one 8K stripe .worth of data. The parallel

operation is transparent to the caller client.

The parity stripes are rotated amonq the nine

10 drives in order to avoid drive contention durinq write

~perations .. The parity stripe is used to improve

availability of data. When one drive is down, the. SP

114a can reconstruct the missinq data from a parity

stripe. In such case, the SP 114a is runninq in error

15 recovery mode. When a bad drive is repaired, the SP

114a can be instructed to restore data on the repaired

drive while the system is on-line.

When the SP 114a is used to attach thirty
..

independent SCSI drives, no ·parity· stripe is created

20 and the client addresses each drive directly.

The SP 114a processes multiple messaqes

(transactions, ~ommands) at one time, up to 200

messaqes per second. The SP 114a does not initiate any

messaqes after initial system confiquration. The

25 followinq SP 114a operations are defined:

Attorney Docket No.:AUSP7209·
WP1/WSW/AUSP/7209.00l 8/24/89-7

Oracle Ex. 1002, pg. 400

i

i
....J..._

!

. . .

••

5

10

-74-

01 No Op

02 Send Configuration Data

OJ Receive Configuration Data

05 Read and Write Sectors

06 Read and Write Cache Pages.

01 IOCTL Operation

08 Dump SP 114a Local Data Buffer

09 Start/Stop A SCSI Drive

be Inquiry

OE Read Message Log Buffer

OF Set SP 114a Inte~~pt

095447/2

•

The above transactions are described in detail in

the abov~-identified application entitled .MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE . For an,

15 understanding of the invention, it will be useful ·to

describe the function and operation of only two of

20

25

. these commands: read and write sector"!, and read and

write cache pages.

Read and Write Sectors

This command, issued usually by an FC 112, causes

the SP 114a to transfer data between a· specified block

of system memory and a specified series of contiguous

sectors on the SCSI disks. As previously described in

connection with the file controller 112, the particular

sectors are identified in physical terms. In

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-?

!
1 , ••

!"
;

: ;··:·.
. '.
;.· -:

Oracle Ex. 1002, pg. 401

•
-75-

particular, the particular disk sectors are identi·fied

by SCSI channel number .(0-9), SCSI ID on that channel

number (0-2). starting sector address on the specified

drive, and a count of the number of sectors to read or

5 write. The SCSI channel number is zero if the SP i 14.a

is operating under RAID·5.

The SP 114a can execute up to 30 messages on the
=·
30 SCSI drives simultaneously. Unlike most of the

commands to an SP 114, which are processed by

10 microprocessor 510 as soon as ·they appear on the

15

command FIFO 534, read and write sectors commands (as

well as read and write cache memory commands) are first

.sorted and queued.

order of arr.ival.

Hence, they are not served in the

When a disk access command arrives, the

microprocessor 510 determines which disk drive is

targeted and inserts the message in a queue for that

disk drive sorted by the target s~ctor address. The

microprocessor 510 executes commands on all the queues

20 simultaneously, in the order present in the queue for

each disk drive. In order to minimize disk arm

movements, the.microprocessor 510 moves back and forth

among queue entries in an elevator fashion.

If no error conditions are detected from the SCSI

25 disk drives, the command is completed normally. When a

data check error condition occurs and the SP 114a is

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 402

,. ···-·-··-- (

•

.•

-76-

configured for RAID 5, recovery actions using

redundant data begin automatically. When a drive is

down while the SP 114a is configured for RAID 5,

recovery actions similar to data check recovery take

5 place.

Read/Write Cache Pages

This command is similar to read and write sectors,

except that multiple VME addresses are provided for

transferring disk data to and from system memory 116.

10 Each VME address points to a cache page in system

memory 116, the size of which is also specified in the

command. When transferring data from a disk to system

memory 116, data are scattered to different cache

pages; when writing data to a disk, data are gathered

15 from different cache pages in system memory 116.

Hence, this operation is referred to as a f3Catter-

gather function:

·The target sectors on the SCSI disks are specified

in the command in physical terms, in the ~ame manner

20 that they are specified for the read and write sec.tors

command. Termination of· the command with or without

error conditions is the same as for the read and write

sectors command.

The dual-port RAM 584 in the DMA controller 580

25 maintains a separate set of commands for each channel

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 403

•

c (

-77-

controlled by the bit slice engine 582. As each

channel completes its previous operation, the

microprocessor 510 writes a new DMA operation into the

dual-port RAM 584 for that channel in order to satisfy

5 the next operation on a disk elevator Q¥eue.

10

15

20

25

The commands wri'tten to the DMA controller 580

include an operation code and a code indicating

whether the operation is to ~e performed·in non-block

mode, in standard VME block mode, or in enhanced block

mode. The operation codes supported by DMA controller

580 are as follows:

OP CODE OPERATION

0 NO-OP

1 ZEROES -> BUFFER

2 ZEROES .:.> FIFO

3 .. ZEROES -> VMEbus

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001

Move zeros from zeros
register 576 to local
data buffer 564.

Move zeros from zeros
register 57~ to the
9urrently selected FIFO
on common data bus 550.

Move zeros from zeros
register 576 out onto the
VME bus 120. Used f'or
initializing cache
buffers in system memory
116.

8/24/89-7

Oracle Ex. 1002, pg. 404

i.

!

5

10

15

20

25

30

35

40

45

c c
-78-

4 VMEbus -> BUFFER

5 VMEbus -> FIFO

Move data from the VME
bus 120 to the local data
buffer 564. Thi~
operation is used during
a write. to· move tarqet
data intended for a down
drive into the buffer for
participation in
redundancy generation.
Used only for RAID 5
application.

New data to be written
from VME bus onto a
drive. Since RAID 5
requires redundancy data
to be ge~erated from data
that is buffered in local
data buffer 564, this
operatioh •; ·will be used
only if the SP 114a is
not configured for RAID
5.

6 VMEbus -> BUFFER & FIFO

7 BUFFER -> VMEbus

8 BUFFER -> FIFO

9 FIFO -> VMEbus

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001

. Target data is moved from
VME bus 120 to a SCSI
device and is also
captured in the local
4ata buffer 564 for
participation in
redundancy generation.
Used only if SP 114a is
configured for RAID ·5
operation.

This operation is not
used.

Participating data is
transferred to create
redundant data or
recovered data on a disk
drive. Used only in
RAID 5 applications.

This operation is used to
move target data directly
from a disk drive onto
the VME bus 120.

8/24/89-7

:...

Oracle Ex. 1002, pg. 405

• 5

10

c

A FIFO

B FIFO

SYSTEM MEMQRY

-79-

-> BUFFER

(

U s ·e d t o m o v e
participating data for
recovery and modify
operations. Used· -only in
RAID 5 applications.

-> VMEbus & BUFFER
This operation is used to
save · target data for
participation in data
recovery. Used only in
RAID 5 applications.

Fig. 6 provides a simplified block dia·gram of the

preferred architecture of one of the. system· memory

15 cards 116a. Each of the other system memory cards are

the same. Each memory card 116 operates as a slave on

20

25

the enhanced VME bus 12Q and therefore requires no on-

board CPU. Rather, a timing control block 610 is

sufficient to provide the necessary slave control

operations. In particular, the timing control block

610, in response to control signals from the control

port~pn of the enha~ced VME bus 120, enables a 32-bit

wide buffer 612 for an appropriate direction transfer

of 32-bit data between the enhanced VME bus 120 and a

multiplexer unit 614. The-multiplexer 614 provides a

multiplexing and demultiplexing function, depending on

data transfer direction, for a six megabit by seventy-

two bit word memory array 620. An error correction

code (ECC) qeneration and testing unit · 622 is also

30 connected to the multiplexer 614 to generate or verify,

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 406

••

i

I
.I
i

-L-

1

s

' \

095447/2
-eo-

again depending on transfer direction, eight bits of

ECC data. The status of ECC verification is provided

back to the timing control block 610.

ENHANCED VME BUS PRQTOCOL

VHE bus 120 is physically the ·same as an ordinary

VME bus, but each of the NC,::s and SPs include additional

circuit;ry and firmware for ·transmitting data using an

enhanced VHE block transfer protocol. The t!mhanced

protocol is described in detail in the above-identified

10 application entitled ENHANCED VHEBUS PROTOCOL UTILIZING

PSEUOOSYNCIIRONOUS 111\NDSIIARING AND BLOCK MODE DATA

TRANSFER, and summarized in the Appendix 8. hereto.

Typicall~ .·t.ransfers of LNFS file. data between NCs and

system· memory, or between SPs and system memory, and

15 transfers of packets being routed from one NC to

another through system memory, are the only types of

20

transfers that use the enhanced protocol in server 100.

All other data transfers on VHE bus 120 use either

conventional VHE block transfer protocols or ordinary

non-block transfer protocols.

MESSAGE PASSING

As is evident from the above description, the

different processors. in the server 100 communicate with

each other via certain types of messages.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/1209.001

In software,

8/24/89-7.

:.; i­
; j.'; . : i ..

Oracle Ex. 1002, pg. 407

••
5

10

15

c.···· c..

-81-

these messages a~e all handled by the messaging kernel,

described in detail in the MULTIPLE FACILITY OPERATING

SYSTEM ARCHITECTURE application cited above. In

hardware, they are implemented as follows.

Each of the NCs 110, each of the FCs 112, and each

of the SPs 114 includes a command or communication FIFO

such as 290 on NC 110a. The host 118 also includes a

command FIFO, but since the host is an unmodified

purchased processor board, the FIFO is emulated in

software. The write port of the command FIFO in each

of the processors is directly addressable from any. of

the other processors over VME bus 120.

Similarly, each of the processors except SPs 114

also includes shared memory such as CPU memory 214 on

NC 110a. This · shared memory is also directly

addressable. by any of the other processors in the

server 100.

If one processor, for example netwo~k controller

110a;~ is to send a message or command to a second

20 processor, for example file controller 112a~ then it

25

does so as follows. First, it forms the message in its

own shared memory (e.g., in CPU memory 214 on NC 110a).

Second, the microprocessor in the sending processor

directly writes a message descriptor into the command

FIFO in the receiving processor. For a command being

sent from network controller llOa to file controller

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 . 8/24/69-7

Oracle Ex. 1002, pg. 408

•

.·

-82-

112a, the microprocessor 210 would perform the write

via buffer 284 on NC 110a, VME bus 120, and buffer 384

on file controller 112a.

The command descriptor is a single 32-bit word

S containing in its high· order 30 bits a VME address

indicating the start of a quad-aligned message in the

10

sender's shared memory. The low order two bits

indicate the message type as follows:

0

1

2

3

Description

Pointer to a new message being sent

Pointer to a reply message

Pointer to message to be forwarded

Pointer to message to be freed;
also message acknowledgment

15 All messages are 128-bytes long.

When the receiving processor reaches the command

descriptor on its command FIFO, it directly accesses

the sender's shared memory and cop.ies it into the

rece~ver's.own local memory. For a command issued from

20 network controller 110a to file controller 112a, this

would be an ordinary VME block or non-block mode

transfer from NC CPU memory 214, via buffer 284, VME

bus 120 and buffer 384, into FC CPU memory 314. The FC

microprocessor 310 directly accesses NC CPU memory 214

25 for this purpose over the VME bus 120.

When the receiving processor has received the

command and has completed its work, it sends a reply

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 . 8/24/89-7

Oracle Ex. 1002, pg. 409

•

(

-83-

message back to the sending processor. The reply

message may be no more than the original command

message unaltered, or it may be a modified version of

that message or a completely new message·. If the reply

5 message is not identical to the original command

message, then the receiving processor directly accesses

the original sender's shared memory to modify the

original command message or overwrite it completely.

For replies from the FC 112a to the NC llOa, this

10 involves an ordinary VME block or non-block mode

15

transfer from the FC 112a, via buffer 384, VME bus 120,

buffer 284 and into NC CPU memory 214. Again, the FC

microprocessor 310 directly accesses NC CPU memory 214

for this purpose over the VME bus 120.

Whether or not the original command message has

been changed, the receiving processor then writes a

reply message descriptor directly into the original

sender' s command FIFO. The reply . ~essage descriptor

contains the same VME address as the original command

20 message descriptor, and the low order two bits of" the

word are modified to indicate that this is a reply

message. For replies from the FC ll2a to the NC 110a,

the message descriptor write is accomplished by

microprocessor 310 directly accessing command FIFO 290

25 via buffer 384, VME bus 120 and buffer 280 on the NC.

Once this is done, the· receiving processor can free the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 410

•

- (· -·

-84-

buffer in its local memory containing the copy of the

command message .

When the original sending processor reaches the

reply message descriptor on its command FIFO, it wakes

5 up the process that originally sent the message and

10

15

20

permits it to continue. After examining the reply

message, the original sending processor can free the

original command message buffer in its own local shared

memory.

As mentioned above; network controller 1'10a uses

the buffer 284 data path in order to write message

descriptors onto the VME bus 120, and uses VME/FIFO DMA

controller 272 toqether with parity FIFO 270 in order

to copy messages from the VME bus 120 into CPU memory

214. Other processors read from CPU memory 214 using

the buffer 284 data path.

File controller 112a writes message descriptors

onto the VME bus 120 using the buffer 384 data path,

and copies messages from other processors' shared

memory via the same data path. Both take place under

the control of microprocessor 310. Other processors

copy messages from CPU memory 314 also via the buffer

384 data path.

Storage processor 114a writes message descriptors·

25 onto the VME bus usinq high-speed register 590 in the

manner described above. and copies messages from other

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

_______ ...;_ ________ ··-·---

8/24/89-7

Oracle Ex. 1002, pg. 411

•

·'

(c-··

-as-
processors using OMA controller 580 and FIFO 554. The

SP 114a has no shared memory, however, so it uses a

buffer in system ·memory 116 to emulate that function.

That is, before it writes a message descriptor into

5 another processor's command FIFO, the SP 114a firs·t

copies the message into its own previously allocated

buffer in system memory 116 using OMA controller 580

and FIFO 554. The VME address included in the message

descriptor then reflects the VME address of the message

10 in system memory 116.

In the host 118 ,. the command FIFO and shared

memory are both emulated in software.

The invention has been described with respect. to

particular embodiments thereof, a~d it will be

is understood that numerous modifications and variations

are possible within the.sco~e of the invention.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 . 8/24/89-7

Oracle Ex. 1002, pg. 412

•

.e
-86-

APPENQTX A

VME/FIFO OMA Controller

In storage processor 114a, DMA controller 580

manages the data path under the direction of the

5 microprocessor 510. The DMA controller 580 is a

microcoded 16-bit bit-slice implementation executing

pipelined instructions at a rate of one each 6'2. Sns.
:·

It is responsible for scanning the channel status 562

and servicing request with parameters stored in the

10 dual-ported ram 584 by the microprocessor 510. Ending

status is returned in· the ram 584 and interrupts are

generated for the microprocessor 510.

Control Store. The control store contains the

microcoded instructions which control the DMA

15 controller 580. The control store consists of 6 lK x 8·

20

proms configured to yield a . lK x 48 .bit microword.

Locations within the control store are addressed by the

sequencer and data is presented at the input of the

pipeline registers.

sequencer. The sequencer controls program flow by

generating control store addresses based upon pipeline

·data and various status bits. The control store

address consists of 10 bits. Bits 8:0 of the control

store address derive from a multiplexer having as its

25 inputs either an ALO output or the output of an

incrementer. The incrementer can be preloaded with

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7 .

Oracle Ex. 1002, pg. 413

•
-87-

pipeline register bits 8:0, or it can be incremented as

a result of a test condition. The 1K address range is

divided into two pages by a latched flag such that the

microprogram can execute from either paqe. Branches,

5 however remain within the selected page. Conditional

sequencing is performed by having the test condition

increment the pipeline provided address. A false
:·

condition allows execution from the pipeline address-

while a true condition causes executio~. from the

10 address + 1. The alu output is selected as an address

source in order to directly vector to a routine or in

order to return to a calling routine. Note that when

calling a subroutine the calling routine must reside

within the same page as the subroutine or the wrong

15 page will be selected on the return.

ALQ. The alu comprise~ a single IDT49C402A

integrated circuit. It is 16 bits in width and most

closely resembles four 290ls with 64 registers. The alu
·-

is used primarily for incrementing, decrementing,

20 addition and bit manipulation. All necessary control

25

signals originate in the control store. The IOT HIGH

PERFORMANCE CMOS 1988 DATA BOOK, incorporated by

reference herein, contains additional information about

the alu.

Microword. The 48 bit microword comprises

several fields which ·control various functions of the

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 414

•

(

-88-

DMA controller 580. The format of the microword is

defined below along with mnemonics and a description of

each function.

AI<8:0> 47:39 (Alu Instruction bits 8:0) The AI bits
5 provide the instruction for the 49C402A

alu. Refer to the IDT data book for a
complete definition of the alu
instructions. Note that the I9 signal
input of the 49C402A is always low.

10 CIN 38 (Carry INput) This bit forces the carry
input to the alu.

RA<5:0> 37:32 (Register A address bits 5:0) These bits
select one of 64 registers ·as the "A"

15 operand for the alu. These bits also
provide literal bits 15: 10 for the alu
bus.

RB<5:0> 31:26 ·(Register B address bits 5:0) These bits
select one of 64 registers as the ns•

20 operand for the alu. These bits also
provide literal bits 9:4 for . the alu
bus.

25

LFD 25 (Latched Flag Data) When set this bit
causes the selected latched flag to be
set. When reset this bit causes the
selected latched flag to be cleared.
This bits also functions as literal bit
3 for the alu bus.

LFS<2:0> 24:22 (Latched Flag Select bits 2:0) The
30 meaning of these bits is dependent upon

the selected source for the alu bus. In
the event that the literal field is
selected as the bus source then
LFS<2:0> function as literal bits <2:0>

35 otherwise the bits are used to select
one of the latched flags.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 415

•

.·

c.

5

10

15

20

25

-89-

LFS<2·0> SELECTEQ FLAG

0

1

2

3

This value selects a null
flag.

When set this bit enables the
buffer clock. When reset this
bit disables the buffer
clock.

When this bit is cleared VME
bus transfers, buffer
operations and RAS are all
disabled.

NOT USED

4 When set this bit enables VME
bus transfers.

5

6

When set this bit enables
buffer operations.

When set this bit asserts the
row address strobe to the dram
buffer.

7 When set this bit selects page
0 of the control store.

30 SRC<1,0> 20,21 (alu bus SouRCe select bits 1,0) These

35

bits select 'the data source to be
enabled onto the alu bus.

SRC<l.O> Selected Source

0 alu
1 dual ported ram
2 literal
3 reserved-not defined

40 PF<2:0> 19:17 (Pulsed Flag select bits 2:0) These bits
select a flag/signal to be pulsed.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 416

5

10

15

20

25

30

DEST<3:0> 16:13

-90-

PF<2;0>

0

1

2

3

4

null

SGL_CLK
generates a single transition
of buffer clock.

SET VB
forces vme and buffer enable
to be set.

CL PERR
clears buffer parity error
status.

SET ON
set- channel done ·status for
the currently selected
channel.

5 INC ADR

6:7

increment dual ported ram
address.

RESERVED - NOT DEFINED

(DESTination select bits 3:0) These
bits select one of 10 destinations
to be loaded from the alu bus.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 417

5

10

15

20

25

30

35

40

45

3

4

(

-91-

WR VADL
loads . the data from the alu
bus into the ·least significant
2 bytes of the VME address
register.
0<15:2> -> VME addr<15:2>
01 -> ENB ENH
DO -> ENB:BLK

WR VADH
loads the most significant 2
bytes of the VME address
register.
D<15:0> -> VME addr<31:16>

5 WR RADD
loads the dual ported ram
address counters.
0<10:0> -> ram addr <10:0>

6 WR WCNT
loads the word counters.
015 -> count enable*
0<14:8> -> count <6:0>

7 WR CO
loads the co-channel select
register.
0<7:4> -> C0<3:0>

8 WR NXT
loads the next-channel select
register.
D<3:0> ~> NEXT<3:0>

9 WR CUR

10:14

15

loads the current-channel
select register.
0<3:0> -> CURR <3:0>

RESERVED - NOT DEFINED

JUMP
causes. the control store
sequencer to select the alu
data bus.
D<8:0> -> cs_A<B:O>

Attorney Docket No.:AOSP7209
WPl/WSW/AOSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 418

.

5

10

15

20

25

30

((

-92-

TEST<3:0> 12:9 (TEST condition select bits 3:0) Select
one of 16 inputs to the test
multiplexor to be used as the carry
input to the incrementer.

TEST<3:0> Condition

0 FALSE -always false

1 TRUE -always true

2 ALU_COUT -carry output of alu

3 ALU_EQ -equals output of
alu

4 ALU_OVR -alu ove;z::flow

5 ALU_NEG -alu neg-ative

6 XFR_DONE -transfer complete

1 PAR_ERR -buffer parity error

8 TIMOUT -bus operatio~
timeo~t

9 ANY. ERR -any error status

14:10 RESERVED -NOT DEFINED

15 CH_RDY ·-next channel ready

NEXT_A<8:0> 8:0 (NEXT Address bits 8:0)- Selects an
instructions from the current pag-e of
the control store for execution.

Dual Ported Ram. The dual ported· ram is the

35 medium by which command, parameters and status are

40

communicated between the DMA controller 580 and the

microprocessor 510. The ram is org-anized as lK x 32 at

the master port and as 2K x 16 at the DMA port. The ram

may be both written and read at either port.

The ram is addressed by the DMA controller 580 by

loading- an 11 bit address into the address counters.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 419

c
-93-

Data is then read into bidirectional registers and the

address counter is incremented to allow read of the

next location.

Writing the ram is accomplished by loading data

5 from the processor into the registers after loading the

ram address. Successive writes may be performed on

every other processor cycle.

The ram contains current block pointers, ending

status, high speed bus address and parameter blocks.

10 The following is the format of the ram:

Attorney Docket No.:AUSP7209
~1/WSW/AUSP/7209.001 8/24/69-7

Oracle Ex. 1002, pg. 420

5

10

15

20

25

30

c
-94-

OFFSET 31 0

0

4

58

sc

60

64

68

6C

70

ICURR POINTER 0 I STATUS 0

INITIAL POINTER 0

ICURR POINTER B t STATUS B

INITIAL POINTER B

not used not used

not used not used

ICURR POINT~R D I STATUS 0

INITIAL POINTER D

not used STATUS E

·I
I

74 tHIGH SPEED BUS ADDRESS 31:210101

78 PARAMETER BLOCK 0

?? PARAMETER BLOCK n

The Initial Pointer is a 32 bit ~alue which points

35 the first command block of a chain. The current pointer

is a sixteen bit value used by the DMA controller 580

. to point to the current command block. The current

command block pointer should.be initialized to OxOOOO

by the microprocessor 510 before enabling the channel.

40 Upon' detecting a value of OxOOOO in the current block

pointer the DMA controller 580 will copy the lower 16

bits from the initial pointer to the current pointer.

Once the DMA controller 580 has completed the specified

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7·

Oracle Ex. 1002, pg. 421

•
•

5

10

15

20

25

30

(.

-95-

operations for the parameter block the current pointer

will be updated to point to the next block. In the

event that no further parameter blocks are available

the pointer will be set to OxOOOO.

The status byte indicates the endinq status . for .

the last channel operation performed. The followinq

status bytes are defined: ,,
STATUS MEANING

0 NO ERRORS

1 ILLEGAL OP CODE

2 BUS OPERATION TIMEOUT

3 BUS OPERATION ERROR

4 DATA PATH PARITY ERROR

The format of the parameter block is:

OFFSET 31

0 FORWARD LINK

NOT USED WORD COUNT 4

8 VME'A~DRESS 31:2, ENH, BLK

c TERM 0 OP 0 BUF ADDR 0

C+(4XO) I TERM n OP n BUF ADDR n

0

FORWARD LINK - The forward link points to the

first word of the next parameter block for execution.

35 It allows several parameter blocks to be initialized

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 422

•

((

-96-

and chained to create a sequence of operations for

execution. The forward pointer has the following

format:

A31:A2,0,0

5 ·The format dictates that the parameter block must start

on a quad byte boundary. A pointer of OxOOOOOOOO is a

~pecial case which indicates no forward link exists.

WORD COUNT - The word count speci~ies the number

of quad byte words that are to be transferred to or

10 from each buffer address or to/from the VME address. A

word count of 64K words may be specified by

initializing the word count with the value of 0. The

15

word count has the following format:

ID151D141D131Dl21Dlli0101D91081D71D61DSID4JD31D21011DOI

The word count is updated by the DMA controller

580 at the completion of a transfer to/from the last

specified buffer address. Word count is not updated

after transferring to/from each buffer address and is
..

therefore not an accurate indicator of the total data

20 moved to/from the buffer. Word count represents the

amount of data transferred to the VME bus or one of the

FIFOs 544 or 554.

VME ADDRESS The VME address specifies the

starting address for data transfers. Thirty bits allows

25 the address to start at any quad byte boundary.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 423

•

c
-97-

ENH This bit when set selects the enhanced

block transfer protocol described in the above-cited

ENHANCED VMEBUS PROTOCOL UTILIZING PSEUDOSYNCHRONOUS

HANDSHAKING AND BLOCK MODE DATA TRANSFER application,

5 to be used during the VME bus transfer. Enhanced

protocol will be disabled automatically when

performing any transfer to or from 24 bit or 16 bit

address space, when the starting address is not 8 byte

aligned or when the word count is not even.

10

15

BLK - This bit when set selec.ts .the conventional

VME blo~k mode protocol to be used·during the VME bus

transfer. Block mode will be disabled automatically

when performing any transfer to or from 16 bit address

space.

BUF ADDR The buffer address specifies the

starting buffer address for the adjacent operation.

Only 16 bits are available for a 1M byte buffer and as

a result the starting·address always falls.on a 16 byte

boundary. The programmer. must ensure that the starting

20 address is on a modulo 128 byte boundary. The buffe:r

address is updated by the OMA controller 580 after

completion of each data burst.

IA19IA18IA17IA16IA15IA14IA131A12IAlliAlOIA9IA8IA7IA6IASIA4l

TERM The last buffer address and operation

25 within a parameter block is identified by the termi~al

bit. The DMA controller 580 continues to fetch buffer

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 424

•

c
-98-

addresses and operations to perform until this bit is .

encountered. Once the last operation within the

parameter block is executed the word counter is updated

and if not equal to ·zero the series of operations is

5 repeated. Once the word counter reaches zero the

forward link pointer is used to access the next

parameter block.

IOIOfOIOI~IOIOIOITI

OP - Operations are specified by the o~ code. The

10 op code byte has the followinq format:

IOIOIOIOIOP310P2IOP1IOPOI

The op codes are listed below (MFIFO• refers to any of

the FIFOs 544 or 554):

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 425

e

•
5

10

15

c.·

-99-

OP s;QDE Q~EM:J:lQH

0 NO-OP

1 ZEROES -> BUFFER

2 ZEROES -> FIFO

3 ZEROES -> VMEbus

4 VMEbus -> BUFFER

5 VMEbus -> FIFO

6 VMEbus -> BUFF~R

7 BUFFER -> VMEbus

8 BUFFER -> FIFO

9 FIFO -> VMEbus

A FIFO -> BUFFER

B FIFO -> VMEbus

c RESERVED

D RESERVED

E RESERVED

F RESERVED

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001

(

& FIFO

& BUFFER

8/24/89-7

Oracle Ex. 1002, pg. 426

••
-100-

APPENQIX B

Enhanced YME Block Transfer Protocol

The enhanced VME block· transfer protocol is a

VMEbus compatible pseudo-synchronous fast transfer

5 handshake protocol for use on a VME backplane bus

10

15

having a master functional module and a slave

functional module logically interconnected by a data

transfer bus. The data transfer bus includes a data

strobe signal line and a data transfer acknowledge

signal line. To accomplish the handshake, the master

transmits a data strobe s~g~al of a given duration on

the data strobe line. The master then awaits the

recep~ion of a data transfer acknowledge signal from

the slave module on the data transfer acknowledge

signal line. The slave then responds by transmitting

data transfer acknowledge·signal of a given duration on

the data transfer acknowledge.signal line.

Consistent with the pseudo-synchronous nature of

the nandshake protocol. the data to be transferred is

20 referenced to only one signal depending upon whether

the transfer operation is a READ or WRITE operation.

In transferring data from the master functional unit to

the slave, the master broadcasts the data to be

transferred. The master asserts a data strobe signal

25 and the slave, in response to the data strobe signal,

captures the data broadcast by the master. Similarly.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 427

.• • c: c .

-101-

in transferring data from the slave to the master, the

slave broadcasts the data to be transferred to the

master unit .. The slave then asserts a data transfer

acknowledge signal and the master, in response to the

5 data transfer acknowledge signal, captures the data

broadcast by the slave.

The fast transfer protocol, while not essential to
;.

the present invention, facilitates the rapid transfer

of large amounts of data across a VME backplane bus by

10 substantially increasing the data transfer rate. These

data rates are achieved. by using a handshake wherein

the data strobe and data transfer acknowledg~ signals

are functionally decoupled arid by specifying high

current drivers for all data and control lines.

15 The enhanced pseudo-synchronous method of data

transfer (hereinafter referred to as • fast transfer

mode•) is implemented so as to comply and be compatible

with the IEEE VME . backplane bus standard. The

protocol utilizes user-defined address modifiers,

20 defined in the VMEbus standard, to indicate use of the

fast transfer mode. Conventional VMEbus functional

units, capable only of implementing standard VMEbus

protocols, . will ignore transfers made usinq the fast·

transfer mode and, as a result, are fully compatible

25 with functional units capable of implementing the fast

transfer ·mode.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 . 8/24/89-7"

Oracle Ex. 1002, pg. 428

••

(· (

-102-

The fast transfer mode reduces the number of bus

propagations required to accomplish a . handshake from

four propagations, as required under conventional

VMEbus protocols, to only two bus propagations.

5 Likewise, the number of bus propagations requi-red to

effect a BLOCK READ or BLOCK WRITE data transfer is

reduced.· Consequently, by reducing the propagations
:-
across the VMEbus to accomplish handshaking and data

transfer functions, the transfer rate is materially

10 increased.

15

The enhanced protocol is described in de.tail in

the above-citeq ENHANCED VMEBUS PROTOc'OL application:,

and will only be summarized here. Familiarity with the

conventional VME bus standards is assumed.

In the fast transfer mode handshake protocol, only

two bus propagations are used to accomplish a.

handshake, ·rather than four as required by· the

conventional protocol. At the initiation of a data

transl:er crcle, the master will assert and de~ssert

20 DSO* in the form of a pulse of a given duration. The

25

deassertion of DSO* is accomplished without regard as

to whether a response has been received from the slave.

The master then waits for an acknowledgement from the

slave. Subsequent pulsing of DSO* cannot occur until a

responsive DTACK* signal is received from the slav.e.

Upon receiving the slave's assertion of DTACK*, the

·Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 429

•
5

(c
-103-

master can then immediately reassert data strobe, if so

desired. The fast transfer mode protocol does not

require the master to wait for the deassertion of

DTACK* by the slave as a condition precedent to

subsequent assertions of oso *. In the fast transfer

mode, only the leading edge (i.e., the assertion) of a

signal is significant. Thus, the deassertion of either

DSO* or DTACK* is completely irrelevant for completion

of a handshake. The fast transfer protocol does not

10 employ the DSl* l~ne for data strobe purposes at all.

The fast transfer mode protocol may be

characterized as pseudo-synchronous as it includes both

synchronous and asynchronous aspects. The fast

transfer mode protocol is synchronous in char~cter due

15 to the fact that DSO* is asserted and deasserted

20

without regard to a response from the slave. The

asynchronous aspect of the fast transfer mode protocol

is attributable to the fact that the master may not

subs~quently assert DSO* until a response to the prior

strobe is received from the slave. Consequently,

because the protocol includes both synchronous and

asynchronous components, it is most accurately

classified as •pseudo-synchronous.a

The transfer of data during a BLOCK WRITE cycle in

25 the fast transfer protocol is referenced only to OSO*.

The master first broadcasts valid data to the slave,

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 430

•
•

(c
-104-

and then asserts oso to the slave. The slave is qiven

a predetermined period of time after the assertion of

OSO* in which to capture the data. Hence, slave

modules must be prepared to capture data at any time,

s as OTACK* is not referenced durinq the transfer cycle.·

10

15

20

Similarly, the transfer of data during- a BLOCK

READ cycle in the fast transfer protocol is referenced
:·

only to OTACK* .• The master first asserts DSO*. ~he

slave then broadcasts data to the master and then

asserts DTACK*. The master is qiven a predetermined

period of time after the assertion of DTACK in which

to capture the data. Hence, master modules must be

prepared to capture data at any time as DSO is not

referenced durinq the transfer cycle.

Fiq. 7, parts A throuqh C, is a flowchart

illustrating the operations involved in acc·omplishinq

the fast transfer protocol BLOCK WRITE cycle. To

initiate a BLOCK WRITE cycle, the master broadcasts

the memory address of the data to·. be transferred and

the address modifier across the DTB bus. The master

also drives interrupt acknowledg-e signal (IACK*) hiqh

and the LWORD* siqnal low 701. A special address

modifier, for example a lF I a broadcast by the master

indic'ates to the slave module that the fast transfer

25 protocol will be used to accomplish the BLOCK WRITE.

The starting memory address of the data. to be

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 431

•
-105-

transferred should reside on a 64-bit boundary and the

size of block of data to be transferred should be a

multiple of 64 bits. In order to remain in compliance

with the VMEbus standard, the block must not cross a

5 256 byte boundary without performing a new address

cycle.

The slave modules connected to the DTB receive the
;.

address and the address modifier broadcast by the

master across the bus and receive LWORD* low and IACK*

10 high 703. Shortly after broadcasting the address and

address modifier 701, the'master drives the AS* signal

low 705. The slave modules receive the AS* low signal

707. Each slave individually determines whether it

will participate in the data transfer by determining

15 whether the broadcasted address is valid for the slave

in question 709. If the address is not valid, the data

transfer does not involve that particular slave and it

iqnores the remainder of the data transfer cycle.

The master drives WRITE* low to indicate that the

20 transfer cycle about to occur is a WRITE operation 711~

The slave receives the WRITE* low signal 713 and,

knowing that the data transfer operation . is a WRITE

operation, awaits receipt of a high to low transition

on the DSO* siqnal line 715. The master will wait

25 until both DTACK* and BERR* are high 718, which

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 432

•
•

5

((

-106-

indicates that the previous slave is no longer driving

the OTB.

The master proceeds to place the first segment of

the data to be transferred on data lines 000 through

031, 719. After placing data on 000 through 031, the

master drives oso• low 721 and, after a predetermined

interval, drives DSO* high 723.

In response to the transition of DSO* from high to

low, respectively 721 and 723,· the slave latches the

10 data being tran~mitted by the· master over data lines

ooo through 031, 725. The master places the next

segment of the data to be transferred on data lines 000

through ... D31, 727, and awaits receipt of a OTACK* signal

in the form of ~ high to low transition signal, 729 in

15 r'ig. 7B.

.•

20

Refe~ring to Fig. 7B, the slave then drives DTACK*

low, 731, and, after a predetermined period of time,

drives OTACK high, 733. The data latched by the slave,

725, ~s written to a device, which has been selected to·

store the data 735. The slave also increments the

device address 735. The slave then waits for another

transition of oso• from high to low 737.

To commence the transfer of the next segment of

the block of data to be transferred, the master drives

25 DSO* low 739 and, after a predetermined period of

time, drives DSO* high 741.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001

In response to the

8/24/89-7

Oracle Ex. 1002, pg. 433

•
•

((.

-107-

transition of DSO* from hiqh to low, respectively 739

and 741, the slave latches the data beinq broadcast by

the master over data lines DOO throuqh 031, 743. The

master places the next segment of the data to be

5 transferred on data lines DOO throuqh D31, 745, and

awaits receipt of a DTACK* siqnal in the form of a hiqh

to low transition, 747.

The slave then drives DTACK* low, 749, and, after

a predetermined period of time, ·drives DTACK* hiqh,

10. 751. The·data latched by the slave, 743, is ·written to

the device selected to store the data and the device

address is incremented 753. The slave waits for

another transition of DSO* from hiqh to low 737.

The transfer of data will continue in the above-

15 described manner until all of the data. has been

transferred.from the master to the slave. After all of

the data has been transferred, the master will release

the address lines, address modifier lines, data lines,

lACK*" line, LWORD* line and DSO* line, 755. "The

20 master will then wait for receipt of a DTACK* hiqh -to

low transition 757. The slave will drive DTACK* low,

759 and, after a predetermined period of time, drive

DTACK* hiqh 7 61 • In response to the receipt of the

DTACK* hiqh to low transition, the master will drive

25 AS* hiqh 763 and then release the AS* line 765.

Attorney Docket No.:AUSP7209
WPl/WSW/AOSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 434

•

C. (

•
-108-

Fig. 8, parts A through C, is a flowchart

illustrating tht;l operations involved in accomplishing

the fast transfer protocol BLOCK READ cycle. .To

initiate a BLOCK READ cycle, the master broadcasts the

5 memory address of the data to be transferred and the

address modifier across the DTB bus 801. ~he master

drives the LWORO* signal low and the IACK* signal high
;.

801. As noted previously, a special address modifier .

indicates to the slave module that the fast transfer

10 protocol will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the

address and the address modifier broadcast by the

master across the bus and receive LWORD* low and IACK*

high 803. Shortly after broadcasting the address and

15 address modifier 801, the master drives the AS* signal

low 805. The slave modules receive the AS* low signal

807. Each slave individually determines whether it

will participate in the data transfer by determining

wheth~r the broadcasted address is valid for the slave

20 in question 809. If the address is not valid, the data

transfer does not involve· that particular slave and it

ignores the remainder of the data transfer cycle.

The master drives WRITE* high to indicate that the

transfer cycle about to occur is a READ operation 811.

25 The slave receives the WRITE* high signal 813 and,

knowing that the data transfer operation is a READ

Attorney Docket No.:AUSP7209
WPl/WSW/AOSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 435

'
. i

I

' I
I

•

+ !

•• 095447/2
-109-

operation, places the first segment of the data to be

transferred on data lines 000 through 031 819. The

master will wait until both DTACK* and BERR* are high

018, which indicates that the previous sl~ve is no

5 longer driving the OTB.

The master then drives OSO* low 821 and, after a

predetermined interval, drives -DSO" high 823. The

master _then awaits a . high to low transition on the

OTACK* signal line 824. As shown in Fig. 88, th~ slave

10 then drives the OTACK' signal low 825 and, after a

predetermined period of time, drives the DTACK* sign~l

high .827.

In reilponse to the transition of DTACR* from high

to low, re.spectively 825 .and 827, the master iatches

15 the data being transmitted by the slave over data lines

000 through 031, 831. 'l'he deta !etched by the_ master,

831, is written to a device, which has been selected to

store the data the device address is incremented 833. •

The slave places the next segment of ~be data to

20. be transferred on data lines DOO through 031, 829, and

then waits for another transition of OSO* from high to

low 835 ..

To commence the transfer of the next segment of

the block of data to be transferred, the master drives

25 .oso• low 839 and, after a predetermined period of

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

. I

i
. ~ ..
. j

!

Oracle Ex. 1002, pg. 436

•

I . -

•• ·------- -·-··- -· ---·· c (

-110-

time, drives DSO* high 841. The master then waits for

the DTACK* line to transition from high to low, 843 .

The slave drives DTACK* low, 845, and, after a

predetermined period of time, drives DTACK* high, 847.

5 In response to the transition of DTACK* from high to

low, respectively 839 and 841, the master latches the

data being transmitted by the slave over data lines DOO

through 031, 845. The data latched by the master, 845,

is written to the device selected to store the data,

10 851. in Fig. 8C, and the device address is incremented.

15

The slave places 'the next segment of the data to be

transferred on data lines 000 through 031, 849.

The transfer of data will continue in the above-

described manner until all of the data to be

transferred from the slave to the master has been

written into. the device selected to store the data.

After all of the data to be transferred has been

written into the storage device, the master will

release the address lines, address modifier lines, data

. 20 lines, the lACK* line, the LWORD line and DSO* line

852. The master will then wait. for receipt of a DTACK*

high to low transition 853. The slave will drive

DTACK* low 655 and, after a predetermined period of

time, drive DTACK* high 857. In response to the

25 receipt of the DTACK* high to low transition, the

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 437

•• c (

-111-

master will drive AS* hiqh 859 and release the AS* line

861.

To implement the fast transfer protocol, a

conventional 64 mA tri-state driver is substituted for

5 the 48 mA open collector drive~ conventionally used in

VME slave modules to drive DTACK*. Similarly, the

conventional VMEbus data drivers are replaced with 64

mA tri-state drivers in SO-type packaqes. The latter

modification reduces the qround lead inductance of the

10 actual driver packaqe itself and, thus, reduces •qround

bounce• effects which contribute to skew between data,

OSO* and DTACK*. In addition, siqnal return inductance

alonq the bus backplane is reduced by usinq a connector

system havinq a qreater number of qround pins so as to

15 minimize siqnal return and mated-pair pin inductance.

One such connector system is the "Hiqh Density Plus"

connector, Model No. 420-8015-000, manufactured by

Teradyne Corporation.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 438

• c G' . ·-

-112-

APPENQIX C

Parity FIFO

The parity FIFOs 240, 260 and 270 (on the network

controllers. 110), and 544 and 554 (on storage

5 processors 114) are each implemented as an ASIC. A~l

the parity FIFOs are identical, and are configured on

power-up or during normal operation for the pa!:ticular

function desired. The parity FIFO is designed to allow

speed matching between buses of different speed, and

10 to perform the parity generation and correction for

the. pa.rallel SCSI drives.

15

20

The FIFO comprises two bidirectional data por.ts,

Port A and Port B, with 36 x 64 bits of RAM buffer

between them. Port A is 8 bits wide and Port s· is 32

bits wide. The RAM. buffer is divided into two parts,

each 36 x 32 bits, designated RAM X and RAM Y. The two

ports access different halves of the buffer alternating

to tlie other half when available. When .the chip is

configured as a parallel parity chip (e.g. one of the

FIFOs 544 on SP 114a), all accesses on Port B are

monitored and parity is accumulated in RAM X and RAM Y

alternately.

The chip also has a CPU interface, which may be 8

or 16 bits wide. In 16 bit mode the Port A pins are

25 used as the most significant data bits of the CPU

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 . 8/24/89-7

Oracle Ex. 1002, pg. 439

• ((

-113-

interface and are only actually used when reading or

writing to the Fifo Data Register inside the chip.

A REQ, ACK handshake is used for data transfer on

both Po.rts A and B. The chip may be configured as

5 either a master or a slave on Port A in the sense that,

in master mode the Port A ACK I RDY output siq"nifies

that the chip is ready to transfer data on Port· A, and

th~ Port A REQ input specifies that the slave is

responding. In slave mode,. however, the Port A REQ

10 input specifies that the master requires a data

transf~r, and the chip responds with Port A ACK 1 RDY

when data is available. The chip is a master on Port B

since it raises Port B REQ and. waits for Port B ACK to

indica·te completion of the data transfer.

15 SIGNAL DESCRIPTIONS

Port A 0-7, P

20

Port A is the 8 bit data port. Port A P, if used,

is tne odd parity bit for this port.

A Req, A AckiRdY

These two signals are used in the data transfer

mode to control the handshake of data on Port A.

Attorney Docket No.:AUSP7209
WPl/WSWIAUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 440

•

• (

-114-

uP Data 0-7, uP Data P, uPAdd 0-2, CS

These signals are used by a microprocessor to

addr~ss the programmable registers within the chip.

'l'he odd parity signal uP Data P is only checked when

5 data is written to the Fifo Data or Checksum Registers

and microprocessor parity is enabled.

Clk

'l'he clock input is used to generate some of the

chip timing. It is expected to be in the 10-20 Khz

10 range.

Read En, Write En

During microprocessor accesses, while CS is true,

these signals determine the direction of the

microprocessor accesses. During data transeers in the

15 WD mode these signals are data strobes used in

conjunction with Port A Ack.

Port B 00-07, 10-17, 20-27, 30-37, OP-JP

Port B is a 32 bit data port. There is one odd

parity bit for each byte. Port B OP is the parity of

20 bits 00-07, PortS lP is the parity of bits 10-17, Port

B 2P is the parity of bits 20-27, and Port B JP is the

parity of bits 30-37.

Attorney Docket No.:AUSP7209.
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 441

•

((

-115-

B Select 4 B Req, B Ack, Parity Sync, B Output Enable

These signals are used in the data transfer mode

to control the handshake of data on Port B. Port B Req

and Port B Ack are both gated with Port B Select.

5 "The Port B Ack signal is used to strobe the data on the

Port B data lines. The parity sync signal is used to

indicate to a chip configured as the parity chip to

indicate that the last· words of data involved in the

parity accumulation are on Port B. The Port B data

10 lines will only be driven by the Fifo chip if all· of

the following conditions are met:

a. "the data transfer is from Port A to Port B;

b. the Port B select signal is truei

c. the Port B output enable signal is true; and

15 d. the chip is not configured as the parity chip
or it is in parity correct mode and ·the
Parity Sync s·ignal is true.

Reset

This signal resets all the registers within the

20 chip·and causes all bidirectional pins to be in a high

impedance state.

QESCRIPTION OF OPERATION

Normal Operation. Normally the chip acts as a

simple FIFO chip. A FIFO is simulated by using two RAM

25 buffers in a -simple ping-pong mode. It is intended,

but not mandatory, that data is burst into or out of

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 442

•

- (c
-116-

the FIFO on Port B. This is done by holding Port 8 Sel

signal low and pulsing the Port B Ack ·signal . When

transferring data from Port B to Port A, data is first

wri t.ten into RAM X and when this is full, the data

5 paths will be switched such ·that Port 8 may star·t

10

writing to RAM Y. Meanwhile the chip will• begin

emptying RAM X to Port A. When RAM Y is full and RAM

X empty the data paths will be switched again such that

Port B may reload RAM X and Port A may empty RAM Y.

Port A Slaye Mode. This is the default mode and

the chip is reset to this condition. In this mode the

chip waits for a master such as one of the SCSI adapter

chips 542 to raise Port A Request for data transfer.

If data is available the Fifo chip will respond with

15 Port A Ack/Rdy.

Port A WD Mode. The chip may be configured to

run in the WD or Western Digital mode. In this mode

the chip must be configured as a slave on Port A. It

diffe"rs from the default slave mode in that the·· chip

20 responds with Read Enable or Write Enable as

25

appropriate together with Port A Ack/Rdy. This mode is

intended to allow the chip to be interfaced to the

Western Digital 33C93A SCSI chip or the NCR 53C90 SCSI

chip.

Port A Master Mode. When the chip is configured

as a master, it will ·raise Port A Ack/Rdy whe.n it is

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

·---- ·----------

Oracle Ex. 1002, pg. 443

•

c······ -·-------------- . --.---

-117-

ready for data transfer. This signal is expected to be

tied to the Request input of a DMA controller which

will respond with Port A Req when data is available.

In order to. allow the DMA controller to burst, the Port

5 A Ack/Rdy signal will only be negated after every 8 or

16 bytes transferred.

Port B Parallel Write Mode. In parallel write
..
mode, the chip is configured to be the parity chip for

a parallel transfer f;x::om Port B to Port A. In this

10 mode, when Port B Select and Port B Request are

15

asserted, data is written into RAM X or RAM · Y each

time the Port B Ack signal is received. For the first

block of 128 bytes data is simply copied into the

selected RAM. The next 128 bytes driven on Port B will

be exclusive-ORed with the first 128 bytes. This

procedure will be repeated for all drives such that the

parity is accumulated in this chip. The Parity Sync

signal should be ~sserted to the parallel chip together

with "l:.he last block of 128 bytes. Tbis'enables the

20 chip to switch access to the other RAM and start

accumulating a new 128 bytes of parity.

Port B Parallel Read Mode - Check Data. This

mode is set if all drives are being read and parity is

to be checked. In this case the Parity Correct bit in

25 the Data Transfer Configuration Register is not set.

The parity chip will first read 128 bytes on Port A as

Attorney Dockat No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 444

•

(_ ·C

-118-

in a· normal read mode and then raise Port B Request.

While it has this signal asserted the chip will monitor

the Port B Ack signals and exclusive-or the data on

Port B with the data in its selected RAM. The Parity

5 Sync should again be asserted with the last block Qf

10

128 bytes. In this mode the chip will not drive the

Port B data lines but will check the output of its

exclusive-or logic for zero. If any bits are set at

this time a parallel parity error will be flagged.

Port B Parallel Read Mode - Correct Data. This

mode is set by setting the Parity Correct bit in the

Data Transfer Configuration Register. In this case the

chip will ~ork exactly as in the check mode except that

when Port B Output Enable, Port B Select and Parity

15 Sync are true the data is driven onto the Port B data

lines and a parallel parity check for zero is not

. performed.

Byte Swap. In the normal mode it is expected

that·Port B bits 00-07 are the first byte, bits 10-17

20 the second byte, bits 20-27 the third byte, and bits

30-37 the last byte of each word. The order of these

bytes may be changed by writing to the byte swap bits

in the configuration register such that the byte

address bits are inverted. The . way the bytes are

25 written and read also depend on whether the CPU

interface is configured as 16 or 8 bits. The following

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 445

•

·--..... (. c -.

-119-

table shows the byte alignments for the different

possibilities for data transfer using the Port A

Request I Acknowledge handshake:

CPU Invert Invert Port B · Po~:t B Pol:t B Pol:t B
s 1/F Add~: 1 Addr 0 00-07 10-17 20-27 30-37

---~---------------------
8 False False Po~:t A Pol:t A Pore A Po~:t A

byte 0 byte 1 byte 2 byte 1

8 False True Po~:t A Pore A Pore A POI:C A
10 .• byte 1 byte 0 byte 3 byte 2

8 TI:"Ue False Pore' A Port A Pol:t: A Po~:t A
byte 2 byte 3 byte 0 byte l

8 True True Port A Po~:t A Port A Port·A
byte 3 byte 2 byte 1 byte 0

15 16 False False Port A uProc Port A uP roc
byte 0 byte 0 byte 1 byte 1

16 False True uProc Port A uP roc Port A
byte 0 byte 0 ·byte 1 byte 1

16 True False Por'C A uProc Por·t A uP roc
20 byte 1 by'Ce 1 byt:e 0 by'Ce 0

16 True True uProc Port: A uProc Port A
byte 1 byte 1 byte 0 byte 0

When the Fifo is accessed by reading or writing

the Fifo Data Register through the microprocessor port

25 in 8 bit mode, the bytes are in the same order as the

table above but the uProc data port is used instead of

Port A. In 16 bit mode the table above applies.

Odd Length Transfers. If the data transfer is

not a multiple of 32 words, or 128 bytes, the

30 microprocessor must manipulate the internal registers

of the chip to ensure all data is transferred. Port A

Ack and Port 8 Req a~e normally not asserted until ali

Attorney Docket No.:AUSP7209
W~l/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 446

C·· c
-120-

32 words of the selected RAM are available. These

signals may be forced by writing to the appropriate RAM

status bits of the Data Transfer Status Register.

When an odd length transfer has taken place the

5 microprocessor must wait until both ports are quiescent

before manipulating any registers. It should then

reset both of the Enable Data Transfer bits for Port A

and Port B in the Data Transfer Control Register. It

must then determine by reading their Address Registers

10 and the RAM Access Control Register whether RAM X or

RAM Y holds the odd length data. It should then set

the corresponding Address Register to a value of 20

hexadectmall forcing the RAM full bit and setting the

address .to the first word. Finally the microprocessor

15 should set the Enable Data Transfer bits to allow the

chip to complete the transfer.

At this point the Fifo chip will think "that there

are now a full 128 bytes of data in the RAM and will

transxer 128 bytes if allowed to do so. The fact that

20 some of these 128 bytes are not valid must be

recognized externally to the FIFO chip.

Attorney Docket No.:AUSP1209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 447

•
5

10

15

20

25

30

35

c .

-121-

PROGRAMMABLE REGISTERS

pata Transfer Configuration Register (Read/Write)

Register Address 0. This register is cleared by

the reset signal.

Bit 0

Bit 1

Bit 2

Bit 3·

Bit 4

Bit 5

Bit 6

Bit 7

WD Mode. Set if data transfers are to
use the Western Digital WD33C93A
protocol, otherwise the Adaptec 6250
protocol will be used.

Parity Chip. Set if this chip is to
accumulate Port B parities.

Parity Correct Mode. Set
parity chip is to correct
parity on Po~t B.

if the
parall.el

CPU Interface 16 bits wide. If. set,
the microprocessor data bits are
combined with the Port A data bits to
effectively produce a 16 bit Port. All
accesses by the microprocessor as well
as all data transferred using the Port A
Request and Acknowledge handshake will
transfer 16 bits.

Invert Port A byte address 0. Set to
invert the least significant bit of
Port A byte address.

Invert Port A byte address 1. Set to
invert the most significant bit of Port
A byte address.

Checksum Carry Wrap. Set to enable the
carry out of the 16 bit checksum adder
to carry back into the least significant
bit of the adder.

Reset. Writing a 1 to this bit will
reset the other registers. This bit
resets itself after a maximum of 2
clock cycles and will therefore normally
be read as a 0. No other register
should be written for a m1.n1.mum of 4
clock cycles after writing to this bit.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 448

•
5

10

15

20

25

30

35

40

c
-122-

Data Transfer Control Register (Read/Write)

Register Address 1. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0

. Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Enable pata Transfer on Port A. Set to
enable the Port A Req/Ack handshake.

Enable Data Transfer on Port B. Set to
enable the Port 8 Req/Ack handshake.

Port A to Port B. If set, data
transfer is from Port A to Port B. If
reset, data transfer is from Port 8 to
Port A. In order to avoid any glitches
on the request lines, the state of this
bit should not be altered a·t ·the same
time as the enable data ·transfer bits 0
or 1 abOve.

uProcessor Parity Enable. Set if parity
is to be checked on the microprocessor
interface. It will only be"checked when
writing to the Fifo Data Register or
reading from the Fifo Data or Checksum
Registers, or during a Port A
Request/Acknowledge_ transfer in 16 bit
mode. The chip will, however, always
re-generate parity ensuring that
correct parity is written to the RAM or
read on the microprocessor interface.

Port A Parity Enable.. Set if parity is
to be checked on Port A. It is checked
when accessing the Fifo Data Register in
16 bit mode, or during a Port -A·
Request/Acknowledge transfer. The chip
will, however, always re-generate parity
ensuring that correct parity is written
to the RAM or read on the Port A
interface.

Port B Parity Enable. Set if Port B
data has valid "byte parities. If it is
not set, byte parity is generated
internally to the chip when writing to
the RAMs. Byte parity is not chepked
when writing from Port B, but always
checked when reading to Port B.

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 449

• 5

10

15

20

25

30

35

40

c

Bit 6

Bit 7

·.(

-123-

Checksum Enable. Set to enable writinq
to the 16 bit checksum reqister. This
register accumulates a 16 bit check.sum
for all RAM accesses, including
accesses to the Fifo Data Register, as
well as all writes to the checksum
register. This bit must be reset before
reading from the Checksum Register.

Port A Master. Set if Port A is to
operate in the master mode on Port A
durinq the data transfer.

Data Transfer Status Register (Read Only>

Register Address 2. This reqister is cleared by

· the reset signal or by writing to the reset bit.

Bit 0

Bit 1

Bit 2

'Bit 3

Data in RAM X or RAM Y. Set if any bits
are true in the RAM X, RAM.Y, or Port A
byte address registers.

uProg Port Parity Error. Set if the
uProc Parity ·Enable bit is set and a
parity error. is detected on the
microprocessor interface during any RAM
access or write to the Checksum Register
in 16 bit mode.

Port A Parity Error. Set if the Port A
Parity Enable bit is set and a parity
error is detected on the Port A
interface during any RAM access or write
to the Checksum Register.

Port B Parallel Parity Ei;ror • Set if
the chip is configured as the parity
chip, is not in parity correct mode, and
a non zero result is detected when the
Parity Sync signal is true. It is also
set whenever data is read out onto Port
B and the data being read back through
the bidirectional buffer does not
compare.

Bits 4-7 Port B Bytes 0-3 Parity Error. Set
whenever the data being read out of the
RAMs on th~ Port B side ~as bad parity.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 450

•

c. (

-124-

Ram Access Control Register (Read/Write)

Register Address 3. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

5 Register must be reset before attempting to write to

10

15

20

~.5

30

this register, else the write will be ignored.

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Port A byte address 0. This bit is the
least significant byte address bit. It
is read directly bypassing any inversion
done by the 'invert bit in the Data
Transfer Configuration Re~ister.

Port A byte address 1. .:. Tl:lis .. bit is the
most significant byte address bit. It
is read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration. Register.

Port A to RAM Y. Set if Port A is
accessing RAM Y, and reset if it is
accessing RAM X .
PQtl B to RAM Y. set if Port B is
accessing RAM Y, and res.et if it is
accessing RAM X .
Long Burst. If the chip is· configured
to transfer data on Port A as a master,
and this bit is reset, the. chip will
only negate Port A Ack/Rdy after every 8 .
bytes, or 4 words in 16 bit mode, have·
been transferred. If this bit is set,
Port A Ack/Rdy will be negated every 16
bytes, or 8 words in 16 bit mode.

Bits 5-7 Not used.

RAM X Address Register (Read/Write>

·Register Address 4. This register is cleared by

the reset signal or by writing to the reset bit. The

35 Enable Data Transfer .bits in the Data Transfer ·control

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 451

•

----· -

(C··

-125-

Register must be reset before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM X word address

Bit 5 RAM X full

5 Bits 6-7 Not Used

BAM Y Address Register CRead/Writel

Register Address 5. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

10 Register must be reset before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM Y word address

Bit 5 RAM Y full

Bits 6-7 Not Used

15 Fifo Qata Register (Read/Write)

Register Address 6. The Enable Data Transfer bits·

in tlre Data Transfer. Control Register must be reset

before attempting to write to this register, else the

write will be ignored. The Port A to Port B bit in the

20 Data Transfer Control register must also be set before

writing this register. If it is not, the RAM controls

will be incremented but no data will be written to the

RAM. For .consistency. the Port A to PortS should be

reset prior to reading· this register.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 452

•

c

-126-

Bits 0-7 are Fifo Data. 'l'he microprocessor may

access the FIFO by reading or writing this register .

The RA~ control registers are updated as if the access

was using Port A. If the chip is configured with a 16

5 bit CPU Interface the most significant byte will us.e

the. Port A 0-7 data lines, and each Port A access will

increment the Port A byte address by 2.

Port A Checksum Register (Read/Write)

Register Address 7. This register is cleared by

10 the reset signal or by writing to the reset bit.

15

Bits 0-7 are Checksum Data. The chip will

accumulate a 16 bit checksum for all Port A accesses.

If the chip is· configured with a 16 bit CPU interface,

the most significant byte is read on the Port A 0-7

data lines. If data is written directly to this

register it is added to the current contents rather

than overwriting them. It is important to . note that

the Checks\lm Enable bit in the Data Transfer Control

Register must be set to write this register and reset

20 to read it.

PROGRAMMING THE FIFO CHIP

In general the fifo chip is programmed by writing

to the data transfer configuration and control

registers to enable a data transfer, and by reading

Attorney Docket No.:AUSP7209
WP1/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 453

•
-127-

the data transfer status register at the end of the

transfer to check the completion status. Usually the

data transfer itself will take place with both the Port

A and the Port B handshakes enabled, and in this case

5 the data transfer itself should be done without a~y

other microprocessor interaction. In some

applications, however, the Port A handshake may not be

enabled, and it will be necessary for the

microprocessor to fill or empty the fifo by repeatedly

10 writing or reading the Fifo Data Register.

Since the fifo chip has no knowledge of any byte

counts, there is no way of telling when any data

transfer is complet~ by reading any register within

this chip itself. Detertnination of whether the data

15 transfer has been completed must therefore be done by

some other circuitry outside thi's chip.

The following C language routines illustrate how

the parity FIFO chip may be programmed. The routines

assume that both Port A and the microprocessor port are

20 connected to the system microprocessor, and return· a

size code of 16 bits, 'but that the· hardware addresses

the Fifo chip as long 32 bit registers.

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

Oracle Ex. 1002, pg. 454

...

5

10

-128-

struct FIFO_regs {
unsigned char config,al,a2,a3 ;
unsigned char control,bl,b2,b3;
unsigned char status,cl,c2,c3;
unsigned char ram_access_control, d 1, d2 ,.dl;
unsigned char ram_X_addr,el;e2,e3;
unsigned char ram_Y_addr,fl.f2,f3;
unsigned long data;
unsigned int checksum,hl;
} ;

c

fldefine FIFOl ·((struct FIFO_regs*) FIFO_BASE_ADDRESS)

fldefine FIFO_RESET Ox80
fldefine FIF0_16_BITS Ox08
fldefine FIFO_CARRY_WRAP Ox40

15 fldefine FIFO_PORT_A_ENABLE Ox01
gdefine FIFO_PORT_B_ENABLE Ox02
fldefine FIFO_PORT_ENABLES Ox03
fldefine FIFO_PORT_A_TO_B Ox04
fldefine FIFO_CHECKSUM_ENABLE Ox40

20 fldefine FIFO DATA IN RAM OxOl
fldefine FIFO=FORCE_RAM_FULL Ox20

/}define PORT A TO PORT B(fifo) ((fifo-) cont:rol) & Ox04)
Ddefine PORT=A=BYTE_ADDRESS(fifo) ((fifo->ram_aecess_control) &

Ox03)
25 Ddefine PORT_A_TO_RAM_Y(fifo) ((fifo->ram_access_cont:rol) &

·Ox04)
Ddefine PORT_B_TO_RAH_Y(fifo) ((fifo-> ram_access_control) &

Ox08)

/***~*****
30 The following routine initiates a Fifo data transfer using

JS

two values passed to it.

conflg_dat:a

control_data

This is the data to be written to the
configuration register.

This is the data to be written to the Data
Transfer Control Register. If the data·transfer
is to take place automatically using both the
Port Aand Port B handshakes, both data transfer
enables bits should be set in this parameter.

40 FIFO_initiate_data_transfer(config_data, control_data)
unsigned char config_data, control_data;
{

FIFOl->config = config data I FIFO RESET; /* Set
Configuration val~e ·& Reset *f

Attorney Docket No.:AUSP7209
WPl/WSW/AUSP/7209.001 8/24/89-7

----·---·-· ..

Oracle Ex. 1002, pg. 455

s

(.

-129-

FIFOl-)conttol • control data & (-FIPO_PORT_ENABLES);
everything but enables */

FIFOl->control • control_data
enables *I

I* Set

I* Set data transfer

l

I***
The following routine forces the transfer of any odd bytes

that have been left in the Fifo at the end of a data transfer.
It first disables both ports, then forces the Ram Full bits, and

10 then te-enables the appropriate Port.
***/

15

F.IFO_force_odd_length_transfer()
(

FIFOl-)control &~ -FIFO PORT ENABLES; /* Disable Ports A & B */
if (PORT A TO PORT B(FIFOl))- { .

if (roRT-A TO-BAM Y(FIFOl)) { .t'-·

PIFOl=>r~m_Y:addr = FIFO_FORCE_RAM_FULL;. /* Set RAM Y
full *I

}
20 else FIFOl->ra~X_addr • FIFO_FORCE_RAM_FULL ; I* Set RAM

X full *I
FIFOl-)control Jc FIFO_PORT_B_ENABLE
*I

I* Re-Enable

{
if (PORT_B_TO_RAM_Y(FIFOl)) (

FIFOl->ram Y addr = FIFO_FORCE_RAM_FULL
full */ - -

I* Set

}

else FIFOl->ram X addr • FIFO FORCE RAM FULL ; I* Set RAM
*I -- - - -

FIFOl-)control I= FIFO_PORT_A_ENABLE /* Re-Enable
*I

I***
The following routine returns how many odd bytes have been

left in the Fifo at the end of a data transfer.
~****/

40 int FIFO_eount_odd_bytes()

45

{
inc number_odd_byces;
number_odd_bytes=O;
if (FIFOl->status & FIFO DATA IN RAM) (

if (PORT A TO PORT B(FIFOl)l {
numbe; odd bytes~ (PORT A BYTE ADDRESS(FIFOl)) ;
if (PORT A-TO RAM Y(FIFOl)l -

number_o4d_bytes += (FIFOl->ram_Y_addr.) = 4 ;

Attorney Docket No.:AUSP7209
WP1/WSWIAUSPI7209.001 8/24/89-7

Oracle Ex. 1002, pg. 456

•• 5

10

·l . t.'

-130-

else number_odd_bytes +a (FIFOl->ram_X_addr) * 4

else {
if (PORT 8 TO RAM Y(FIFOl))

numbe;_odd_bytes • (FIFOl->ram_Y_addr) * 4
else number_odd_bytes ~ (FIFOl->ram_X_addr) * 4

return (number_odd_bytes);

~~~~==~~***~~~**~~****=~=~~=:**==~**~~=*~~**~*~************* 

The following routine tests the microprocessor interface of 
the chip. It first writes and reads the first 6 registers. It 
then writes ls, Os. and an address pattern to the RAM, reading the 

15 data back and checking it. 

20 

25 

The test returns a bit significant error code where each 
bit repres~nts the address of the registers that failed. 

Bit 0 ·= config register failed 
Bit 1 = control register failed 
Bit 2 status register failed 
Bit 3 ram access control register failed 
Bit 4 = ram X address register failed 
Bit 5 ram Y address register failed 
Bit 6 = data register failed 
Bit 7 checksum register failed 

********1:*****1t>t1:1:'tt****************************************l 

gdefine RAM_DEPTH 64 I* number of long words in Fifo Ram */ 

reg_expected_data(6] Q { Ox7F, OxFF, OxOO, OxlF, OxJF, OxJF }; 

char FIFO_uprocessor_interface_test() 
30 ( 

35 

40 

45 

unsigned long test_data; 
char *register_addr; 
int i; 
char j,error; 
FIFOl-)config·= FIFO_RESET; 
error=O; 
register_addr =(char *) FIFOl; 
j=l; 

I* first test registers 0 thru 5 */ 

for (i•O; i<6; i++) ( 

I* reset the chip *I 

*register_addr = OxFF; I* write test data */ 
if (~register addr !c reg expected daca[i]) error I= j; 
*register add; • 0; f* wrice Os co register *I 
if (t.:regi;ter_addr), error l= j; 

Accorney Docket No.:AUSP7209 
WPl/WSW/AUSP/7209.001 8124189-1 

------- -·---~-· 

Oracle Ex. 1002, pg. 457



• 
.·, 

5 

( -
··· 

-131-

*register addr • OxFF; I* write test data again *I 
if (*regi;ter_addr 1~ reg_expected_data(i)) error Ia j; 
FIFOl->config ~ FIFO_RESET; I* reset the chip *I 
if (*register.addr) error I= j; I* register should be 0 *I 
register addr;+; · I* go to next register *I 
j «~1; -

I* now test Ram data & checksum registers 
10 test ls throughout Ram & then test Os *I 

for (test_data = -1; test_data I= 1; test_data++) /* test 
for ls & Os *I 
.. FIFOl->config .. FIFO_RESET I FIFO_l6_BITS ; 

15 FIFOl->control = FIFO_PORT_A_TO_B; 
for (i=O; i<RAM_DEPTH;i'++) I* write dat:a to RAM */ 

FIFOl-)data = test:_data; 
FIFOl->cont:rol .. 0; 
for (iaO;i<RAM DEPTH;i++) 

20 . if (FIFOl=)data I= test_data) error I= j; I* read 

25 

30 

35 

40 

& check dat:a */ 
if (FI.FOl->checksum) error I= Ox80; I* checksum 

should = 0 *I 
} 

I* now test: Ram data wit:h address pat:tern 
uses a different: pattern for.every byte*/ 

test_data=Ox00010203; I* address pattern start *I 
FIF01->config = FIFO RESET I FIFO 16 BITS I FIFO CARRY WRAP; 
FIF01->control = FIFO PORT A TO B-1· FIFO CHECKSUM ENABLE; 
for (i=O;i<BAM_DEPTH;i++) {- - - -

FIF01->dat:a = test: data; I* writ:e address pat:tern *I 
test_data += Ox04040404; 

test data=Ox00010203; I* address pattern start */ 
FI~l-)control = FIFO CHECKSUM ENABLE; 
for (i=O;i<RAM DEPTH;i++) { -

if (FIFOl=)status I= FIFO_DATA_IN_RAM) 
error I= Ox04; I* should be data in ram */ 

if (FIFOl-}data I= test_data) error l= j; I* read & 
check address pattern */ 

test_data +a Ox04040404; 

if (FIF01-}checksum I= Ox0102) error l• Ox80; I* test 
45 checksum of address pattern */ 

FIFOl-)config a FIFO_RESET FIFO_l6_8ITS ; /~ inhibit carry 
wrap */ 

FIFOl->checksum • OxFEFE; /* writing adds to checksum */ 

Attorney Docket No.:AUSP7209 
WPl/WSW/AUSP/7209.001 8124189-7 

Oracle Ex. 1002, pg. 458



·--

• 

!· 

-132-

if (FIFOl-)checksum) error laOx80; 
if (FIFOl-)status) error I• Ox04; 
return (error); 

) 

Attorney Docket No.:AUSP7209 
WPl/WSW/AUSP/7209.001 

c. .. 

I* checksum should be 0 *I 
I* status should be 0 *I 

8/24/8~-7 

Oracle Ex. 1002, pg. 459



'6) 

• 
095447/2 

CLAIMS 

1. Network server apparatus for use with a data 

network and a mass storage device, comprising: 

an interface processor unit coupleable to said 

network and to said mass storage device; 

a host processor unit capable of running remote 

procedures defined by a client node on said network; 

means in said interface processor unit for 

satisfying requests from said network to store data 

from said network on said mass storage device; 

means in said interface processor unit for 

satisfying requests from said network to retrieve data 

from said mass storage device to said network; and 

means in said interface processor unit for 

transmitting predefined categories of messages from 

said network to said host processor unit for processing 

in said host processor unit, sa:i,.d transmitted messages 

including all requests by a network client to run 
. . . . ~. 

client-defined procedures on sa~d network server 

apparatus. 

2. Apparatus according to claim 1, ~herein said 

interface processor unit comprises: 

a network control unit coupleable to said network; 

a data control unit coupleable to said mas~ .. 

storage device; 

a buffer memory; 

Attorney Ooc:ket No.: AUSP7209MCF/GBR{YSW 
wsw/ausp/7209.c:laims' 

- 133 -

I 
( 

Oracle Ex. 1002, pg. 460



.,. 

• 
095447/2 

means in said network control unit for 

transmitting to said data control unit requests from 

said network to store specified storage data from said 

network on said mass storage device; 

means in · said network control unit; for 

transmitting said specified storage data from said 

network to said buffer memory and from said buffer 

memory to said data.control unit; 

means in said network control unit for 

transmitting to said data control unit r~quests from 

said network to retrieve specified retrieval data from 

said mass storage device to said network; 

means in said network control unit for 

transmitting sa·id specified retrieval data from said 

data c9ntrol unit to said buffer memory and from said 

buffer memory to said network; and 

means in said network control unit for 

transmitting said predefined categories of messages 

from said n·etwork to said host processing unit for . 

processing by said host processingunit. 

3. Apparatus according to claim 2, wherein said 

data control unit comprises: 

a storage processor unit coupleable to said mass 

storage device; 

a file pro!=essor unit; 

means on said file processor unit; for translating 

said file system level storage requests from said 

Attomey Docket No.: AUS97209MCF/GBRI\ISII 
WSW/ausp/7209.claims 

- 134 -

( 

Oracle Ex. 1002, pg. 461



• 
095447/3 

network into requests to store data at spe~ified 

physical storage locations in said mass storage device; 

means on said file processor unit for instructing 

said storage processor unit to write data from said 

buffer memory into said specified physical storage 

locations in said mass storage device; 

means on said file processor unit for translating 

file system level retrieval requests from said network 

into requests to retrieve data from specified physical 

retrieval locations in said mass storage device; 

means on said file processor unit for instructing 

said storage processor unit to retrieve data from said 

specified physical retrieval locations in said mass 

storage device to said buffer memory if said data from 

said specified physical locations is not already in 

said buffer memory; and 

means in said storage processor unit for 

transmitting data between said buffer memory and said 

mass storage device. 

~~ ·Network server apparatus for use with a data 

network and a mass storage device, comprising: 

a network control unit coupleable to said network; 

a data control unit coupleable to said mass 

storage device; 

a buffer memory; 

means for transmitting from said network control 

unit to said data control unit requests from said 

Attorney Ooc:ket No.: AUSP7Z09MCF/GBR/WSV 
wsw/ausp/7209.claims 

- 135 -

Oracle Ex. 1002, pg. 462



• 
095447/2 

network to. store specified storage data from said 

network on said mass storage device; 

means for transmitting said specified storage data 

by DMA from said network control unit to said buffer 

memory and by DMA from said buffer memory to said data 

control unit; 

~eans for transmitting from said network control 

unit to said data control unit requests from said 

network to retrieve specified retrieval data from said 

mass storage device to said network; and 

means for transmitting said specified retrieval 

data by DMA from said data control unit t.o said buffer 

memqry and by DMA from said buffer memory to said 

network control unit. 

5. Apparatus according to claim 1, for use 

further with a buffer memory, and wherein said requests 

from said network to store and retrieve data include 

file system level storage and retrieval requests 

respectively, and wherein said interface processor unit 

comprises: 

a storage processor unit coupleable. to said mass 

storage device; 

a file processor unit; 

means on said file processor unit for translating 

said file system level storage requests into requests 

to store data at specified physical ~torage locations 

in said ma~s storage device; 

Attorney Docket No.: AUSP7209MCF/GBR,I\IS\I 
wsw/ausp/7209.claims 

- 136 -

Oracle Ex. 1002, pg. 463



-·· 

095447/4 

means on said file processor unit for instructing 

said storage processor unit to write data from said. 

buffer memory into said specified physical storage 

locations in said mass storage device; 

means on said file processor unit for translating 

said file system level retrie~erequests into requests 

to retriev·e data from specified physical retrievable 

locations in said mass storage device; 

means on said file processor unit for instructing 

said storage processor unit to retrieve data from said 

specified physical retrievable locations in said mass 

storage device to said buffer memory if said data from 

said specified physical locations is not already in 

said buffer memory; and 

means in said storage pro.cessor. unit for 

transmitting data between said buffer memory and said 

mass storage device. 

~ 137-

\ 

Oracle Ex. 1002, pg. 464



e.. 

• 

. :. :. :: .. 

095447/ ~ . 

.6. Network.server apparatus for use with a data 

network, comprising: 

a network controller coupleable to sa!d network to 

receive incoming information packets over said network, 

said incoming information packets "including certain 

packets which contain part or all of ~ request to said 

server apparatus, said re~est being in either a first 

or a second class of requests to said server apparatus; 

a first additional processor; 

an interchange bus different from said network and 

coupled between said network controller and said first 

additional processor; 

means in said network controller for detecting and 

satisfying requests in said first class of requests 

contained in said certain incoming information packets, 

said network controller lacking means in said network 

controller for satisfying requests in said second class 

of requests; 

means in said network controller for detecting and 

assembling. into assembled requests, requests in said 

second class of requests contained in said certain 

incoming information packets; 

means for delivering said assembled requests from 

said network controller to said first additional 

processor over said interchange pus; and 

means in said first additional processor for 

further processing said assembled requests in said 

second class of requests. 

- 13"8-

Oracle Ex. 1002, pg. 465



• 

.:·· 

' . 
·.: . : . ·· ... · 

.09544?/2 

7 . Apparatus. according to claim 6 wherein said 

packets · each include a network node destination 

· add..ress, and wherein said means in ·said network 

cont=oller for detecting and assembling into assembled 

requests, assE:!mbles said assem]::)led requests in a fo:onat 

which omit~ said network node destination addresses. 

8. Apparatus according to claim 6· where!:~. said 

mea.IlS in said network controller for detect~ ..,5" and 

sat!.sfying requests in said first class of re;:-..1ests, 

assembles said requests in said first class of r~ests 

into assembled requests before satisfying said requests 

in said first ·class of requests. 

. 9. Apparatus ·according to claim · ·s, wherei:t said 

pac.'lcets each include a network node · dest.:.,ation 

add=ess, wherein said means in said network cone--oller 

for detecting and assembling into assembled requests, 

assembles said assembled requests in a. format which 

omits said network node destination addresses, and 

wherein said means in said network controlle= for 

detecting and satisfying requests in said first class 

of · requests, assembles said requests in said first 

class of requests, in a fo:rmat which omits said network 

node destination addresses, before satisfyin5" said 

requests in said first class of requests. 

- 139 -

· .. 

Oracle Ex. 1002, pg. 466



•;...::::.!....;.. 

• 

· ...... ·. 

095447/2 
10. Appa.:_-a.tus according to claim 6, wherein said 

means in said network controller for detecting and 

satisfying requests in said first class includes means 

for preparing an outgoing message in response to O'lle of 

said first class of requests, means for ·packaging said 

outgoing message in outgoing info:tm.a.tion packets 

suitable for transmission over said network, and means 

for t:ransmitti:::Lg said outgoing information packets over 

said network. 

11.. Apparatus according to claim 6, f"J.:rther 

comprising. a buffer memory coupled to said interclJ.a:nge 

bus, and· ~herein said· means for delivering said 

assembled requests comprises: 

means for transferring the contents of said 

assembled requests over said interch;ange bus into said 

buffer memory; and 

means for notifying said first additional 

processor of the p~esence of said contents in said 

buf!er memory. 

12. Apparatus a~cording to claim 6, wherein said 

meallS in said first additio~ processor for fu..""1:her 

processing said assembled requests includes means for 

preparing an outgoing message in response to one of 

said second class of requests, said apparatus further 

c~rising means for delivering said outgoing message 

from said fi~t· additional processor to said network 

controller over said interchange bus, said network 

controller further comprising means in said network 

cont=oller for packaging· said outgoing message in 

out~oing info~tion packets suitable for transmission 

ove= said network, and means in said network controller 

for transmitting said outgoing information pac.1ca.ges 

ove= said network. 
- 140-

Oracle Ex. 1002, pg. 467



. ..::_ "·: 

• 
09544.7/2 

13 . Appa-""atus according to claim 6 , wherein said 

firs.: class of requests comprises requests for an 

add=ess of · said server apparatus, and whereit!. said 

means in said network controller for detecti:g and 

satisfying requests in said first class comprises means 

for preparing .a response packet to such an a.c.dress 

request and means for transmitting said response packet 

over said network. 

14. Apparatus according to claim 6 for use 

fur--her with a second data network, said network 

controller being couplea.ble further to said second 

network, wherein said first class of requests comprises 

requests to route a message to a destination reachable 

over said second network, and wherein said means in 

said network controller for ~etecting and satisfying 

requests in said first class comprises mea:n.s for 

detecting that one of said certain packets comprises a 

request to route a message contained in said On.e of 

said certain packets to a destination reachable over 

said ~econd network, and means for transmitting said 

message over said second network. 

· 15 · Apparatus according to claim 14 for use 

fur-...her with a third data network, said network 

controller further comprising means. in said network 

controller for detecting particular requests ~ said 

incoming infoma.tion packets to route a message 

concained in said particular requests, to a desti~ation 

reac!la.ble over said third network, said appa=atus 

fur-~er comprising: 

- 141 -
l 

•:., .... ';,;.*: • .:..:;. 

Oracle Ex. 1002, pg. 468



.: .. ,;:-· ... -.:~------·--: .. ~ • J. ·-- •• 

• 

, ....... 

095447/2 

a second network controller coupled to said 

interchange bus and coupleable to said third data 

network; 

means for delivering said message contained in 

said particular requests to said second network 

controller over said interchange bus; and 

means in said second network controller for 

transmitting said message contained in said particular 

requests over said third network. 

16. ,Apparatus according to claim ~· for use 

further with a third data network, said network 

contrcller further comprising means in said network 

controller for detecting particular requests in said 

incoming information packets to route a message 

contained in said particular requests, to a destination . 
reachable over · said third network, said apparatus 

'further comprising: 

a second network controller coupled to said 

interchange bus and coupleable to said. third data 

network; 

means for delivering said message contained in 

said particular requests to said second network 

controller over said interchange bus; and 

means in said second network controller for 

trans~tting said message contained in said particular 

requests over said third network. 

Attorney Docket llo.: AUSP7209MCF/G8R/\ISII 
W5w/ausp/7209.claims 

- 142 -

Oracle Ex. 1002, pg. 469



• 

." .... 

095447/2 

. .17. Apparatus according to claim 6 for use 

further with a mass storage device, wherein said first 

additional processor comprises a data control unit 

coupleable to said mass storage device, whereln said 

second class of requests comprises remote calls to 

procedures for managing a. file system in said mass 

storage device, and wherein said means in said first 

additional processor for further processing said 

assembled requests· in said second class of requests 

comprises ~eans for executing file system procedures on 

said mass storag~ device in responSe to said assembled 

requests. 

18. Apparatus according to claim F wherein said 

file system procedures include a read procedure for 

reading data from said mass storage device, 

said means in said first additional processor for 

further processing said assembled requests including 

means for reading data from a specified location in 

said mass storage device in response to a remote call 

to said read procedure, 

said apparatus further including means for 

delivering said data to said network controller, 

said network controller further comprising means 

on said network controller for packaging said data in 

outgoing information packets suitable for transmission 

over said network, and means for transmitting said 

outgoing information packets over said network. 

Attorney Ooclcet No.: AUSPn09MCf/GBR/IoiSW 
IIISW/ ausp/7209 .claims 

- 143 -

.. ·--·-·----·-·· 

..... ;.:.::::::~---

Oracle Ex. 1002, pg. 470



• 

. __ ._.:· 

·:- . 

-:-.· . ::: - - -· ....... --· ~· ....... -· .. 

095447/2 

19. Apparatus according to claim l8:-: wherein said 

means for delivering comprises: 

a system buffer memory coupled to said interchange 

bus; 

means in said data control unit for transferring 

said data over said interchange bus into said buffer 

memory; and 

means in said network controller for transferring 

said data over said interchange bus from said system 

buffer m~ory to said network controller . 

zo·.. Apparatus according to claim 1~ ~ wherein said 

file system procedures include a read procedure for 

reading a specified number-of bytes of data from said 

mass storage device beginning at an address specified 

in logical terms including a file system ID and a file 

m, said means for executing file system procedures 

campris ing: · 

means for converting the logical address specified 

in a remote call to said read procedure to a physical 

address; and 

means for reading data from said physical address 

in said mass storage device. 

21. Apparatus according to claim· 20, wherein said 

mass storage device ComPrises a di:sk drive having a 

numbered tracks and sectors, wherein said logical 

·address specifies said file system ID, said file ID, 

Attorney Dodcet llo.: AUSP7209MCF /GBR/\lSW 
WSW/ausp/1209.claims 

- 144-

---~~ 

Oracle Ex. 1002, pg. 471



, .. 

• 

• •• ·:· • ...... "~. •• * . . ~ ·: .. 

095447/2 

and a byte offset, and wherein said physical address 

specifies a corresponding track and sector number . 

· 22. Apparatus according to clailri ·17, wherein said 

file system procedures include a read procedure for 

reading a specified number of bytes of data from said 

mass storage device beginning a.t an address specified 

in logical terms including a file system ID and a file 

m, 

said data control unit comprising a file processor 

coupl~ t~ said interchange bus and a storage_ processor 

coupled to said interchange bus and coupleable to said 

mass storage device, 

said file processor comprising means for 

converting the logical address specified in a remote 

call to said read procedure to a physical address, 

said apparatus further comprising means for 

delivering said physical address to said- storage 

processor, 

said storage processor comprising means for 

reading data from said physical-address in said mass 

storage device and f·or transferring said data over said 

interchange bus into .said buffer memory; and 

means in said network controller for transferring 

said data over said interchange bus from said system 

buffer memory to said network controller. 

-~3-. Apparatus according to claim .1?, wherein said 

file system procedures include a write procedure for 

Attorney Docket No.: AUSP7211911CF /G8R/VSII 
wsw/ausp/7209.claims 

- 145-

·- ·- ·-· -·-·----

Oracle Ex. 1002, pg. 472



I 

I· I 

...... 

095447/2 

writing data contained in an assembled request, to said 

mass storage device, 

said means in said first additional proces~or for 

further processing said assembled requests including 

me~ for ~iting said data to a specified location in 

said mass storage device in response to a remote call 

to said read procedure. 

24.. Apparatus according to claim 6 . .: wherein said 

first additional processor comprises a host computer 

coupled t~ said interchange bus, wherein said second 

class of requests comprises remote calls to procedures 

other than procedures for managing a file system, and 

wherein said means in said first additional processor . . 
for further processing said assembled requests in said 

second class of requests comprises means for executing 

remote procedure calls in response to said assembled 

requests. 

25-. Apparatus according to claim 24, for use 

further with a mass storage .device and a data control 

unit coupleable to said mass storage device and coupled 

to said interchange bus, wherein said network 

con:roller further . comprises means in said network 

controller for detecting and assembling remote calls, 

received over said network, to procedures for managing 

a file system in sa~d mass storage device, and wherein 

said data control unit coMprises means for executing 

file system procedures on said mass storage device in 

Attorney Docket No.: AUSPn09HCF/GBR/WS\I 
wsw/ausp/7209.claims 

- 146 -

Oracle Ex. 1002, pg. 473



• 

-~------. --------:---:-------~-:-. ... . ' ·.~· :.. 

095447/2 

response to said remote calls to procedures for 

managing a file system in said mass storage device . 

26. Apparatus according to claim 24, further 

comprising means for delivering all of said incoming 

information packets not recognized by said network 

controller to said host computer over said interchange 

bus . 

. 27~ Apparatus according to claim.;:6, wherein said 

network controller comprises: 

a mi~roprocessor; 

a local instruction memory containing local 

instruct~on code; 

a local bus coupled between said microprocessor 

and said local instruction memory; 

bus interface means for interfacing said 

microprocessor with said interchange bus at times 

determdned by said microprocessor in response to said 

local instruction code; "and 

network interface means for interfacing said 

microprocessor with said data network, 

said local instruction memory including all 

instruction code necessary for said microprocessor to 

perform said function of detecting and satisfying 

requests in said first · class of requests, and all 

instruction code necessary for said microprocessor to 

perform said function of detecting and assembling into 

Attorney Docket No.: AUSPn09MCF /GBR/'IISW 
wsW/~.clalms 

- 147 -

Oracle Ex. 1002, pg. 474



., ___ ·-:-· 

.•.·.··. 

095447/2 

assembled requests, requests in said second class of 

requests. 

'28. Network server apparatus for use with a data 

network, comprising: 

a network controller coupleable to said network to 

receive incoming information packets over said network, 

said incoming information packets including certain 

packets which contain part or all of a message to said 

server apparatus, said message being in ei~her a first 

or a secon~ class of messages to said server apparatus, 

said messages in said first class of messages including 

certain messages containing requests; 

a host computer; 

an interchang.e bus different from said network and 

coupled between said. network controller and said host 

computer; 

means in said network controller for ~etecting and 

satisfying said requests in said ~irst class of 

messages ; 

means for delivering messages in said second class 

of ·messages from said network cont~oller to said host 

computer over said interchange bus; and · 

means in said host computer for further processing 

said messages in said second class of messages. 

29. Apparatus according to claim 28, wherein said 

packets each include a network node destination 

address, and wherein said means for delivering messages 

Attorney Dodtet No.: AUSP7Z09MCF/GBRJWSV 
ltlSW/IWSp/7209 .claims 

- 1~8 -
•. 

Oracle Ex. 1002, pg. 475



··•.·· 

•••• .••· ! > 

·, 095447/2 

in said second class of messages comprises means in 

said network controller for detecting said.messages in 

said second class of messages and assembling them into 

assembled messages in a format which omits said network 

node destination addresses. 

'30. Apparatus according to claim 28, wherein said 

means in said network controller. for detecting and 

satisfying requests in said first class includes means 

for preparing an outgoing message in response to one of 

said requ~sts in said first class of messages, means 

for packaging said outgoing message in outgoing 

information packets suitable for transmission over said 

network, and means for transmitting said outgoing 

information packets over said network . 

. 31. Apparatus according to claim 28~. for use 

further with a se·cond data network, said network 

controller being coupleable further to said second 

network, wherein said first class of messages comprises 

messages to be routed to a destination reachable over 

said second network, and wherein said means in said 

network controller for detecting and satisfying 

requests in said first class comprises means for 

detecting that one of said certain packets includes a 

request to route a message contained in said one of 

said certain packets to a.destination reachable over. 

said second network, and means for transmitting said 

message over said second network. 

- 1'49 ._ 

A ttomey Docket No. : AUSP7Z0911CF /GBRI\ISW 
wsw/ausp/7ZD9.claims 

Oracle Ex. 1002, pg. 476



... -' . 

.. 
·:••., 

. 32. Apparatus according to claim 28~.. for use 

fu~her with a third data network, "'said net~ork 

· com:roller further comprising means in said net~ork 

controller for detecting particular messages ·in said 

incoming information packets to be routed to a 

destination reachable over said third network, said 

apparatus further comprising: 

a second network controller coupled to said 

interchange bus and coupleable to said third data 

network; 

m~ans ~or delivering said particular messages to 

said sec::ond network controller over said interchange 

bus, substantially without involving said host 

computer; and 

means in said second net~ork controller for 

transmitting said message contained in said particular 

requests over said third network, substantially without 

involving said host computer . 

. 33. Apparatus according to . claim 28 ~ .. for use 

further ~ith a mass storage device, further comprising 

a data control unit coupleable to said mass storage 

device, 

said netwo~k controller further comprising means 

in said network controller for detecting ones of said 

incoming infor-mation packets containing remote calls to 

procedures for managing a file system in said mass 

storage device, and means in said network controller 

Attorney Dac::ket No.: AUSPn09KCF/GBR/WSW 
WSW/ ausp/7209 .claims 

- rso -· 

Oracle Ex. 1002, pg. 477



----·' --~-------·- . ..:..·..; 

.·•· .... 

·····. 

095447/2 

fo= assembling said r~ote calls from said incoming 

pac.1tets into assembled calls, substantially without 

involving said host 'computer, 

said apparatus further comprising means for 

delivering said assembled file system calls to said 

data contro:). unit over said interchange bus 

substantially without involving said host computer, and, 

said data control unit comprising means in said data 

control unit for executing file system proce~ures on 

said mass .storage device in ~esponse to said assembled 

file system calls, substantially without involving said 

host computer. 

34. Apparatus according to claim 2~·-.- further 

comprising means for delivering all of said incoming 

information packets not recognized by· said network 

controller to said host computer over said interchange 

bus. 

35. Apparatus according to claim 2~, wherein said 

network control~er.comprises: 

a microprocessor; 

a local instruction memory containing local· 

instruction code; 

a·local bus coupled between said microprocessor 

and said local instruction memory; 

bus interface means for interfacing said 

microprocessor wi tb said interchange bus at times 

Attorney Doctet No.: AUSP7209MCF /GBRJ\1$\1 
wsll/ausp/720P. c: la i IllS 

- 151-

Oracle Ex. 1002, pg. 478



• 

~ .. ' ... :. ___ '!...-----'---·~- .. "" . . :.. 

"095447/2 

determined by said microprocessor in response to said 

local instruction code; and 

network interface means . for interfacing said 

microprocessor with said data network, 

said local instruction memory including a11· 

instruction code necessary for said micro~rocessor to 

perform said function of detecting and satisfying 

requests in said first class of requests. 

. ... _. 

Sanford T. 

- 152 -

Oracle Ex. 1002, pg. 479



•: 

ETHERNET #1 

12 

·-

HOST 
CPU 

CARD 
.m. 

MMU 

11 

128 MB 
MEMORY 

.1Q. 

20 

SMD DISK 
CONTROLLER 

22 

24 

~ Y a ' / a Y :a: .. 32-BIT VME BUS 

ETHERNET #2 jNETWORK #2 
' CONTROLLER 

36 ~ 

TAPE. 
CONTROLLER 

~ 

FIG.-.1·:. 

SCSI 
HOST 
ADAPTER 

26 

<PRIOR ART> 

28 

... I .. SCSI BUS 

!' 

~ 
~" , 
I'll 
>< 
(/) 

-< 
~ 
~ 
(/) 

-:z 
n 

~~ 
I'll(!"' 

~~ 
(1"1 

:z 
0(1) 
•X 

I'll 
01'11 
:Z-i 
I'll (/) 

Oracle Ex. 1002, pg. 480



Best Available Copy 

AO.sPEi :sv·~hEMs. ·iNc .• 
'" . .. · .. ' tw~lVE s·HEEt~:i 

:.SHfiEl';:'tio;· two 
····: 

Oracle Ex. 1002, pg. 481



r--210 214 

.MP. I 1 CPU 
MEM · 

32 8 

2 

234 236 
ETHERNET A LAN 

212-...! · CTLR 
1220.~30 
16 BI-DI . 16 16 

i 

~"'" 7 -., BUF r-;;4-
256 

ETHERNET B LAN 
CTLR 

t22b c2so 
16 16 t-!~~BI-DI1~ "' 

242 
LAN LAN DMA MEM CTLR 

16 . 16 

262 

LAN LAN 
DMA 

MEM CTLR 
16 16 

RS232 220 222 
r.11.0a. 

EPROM PROM 224 
.:. 

j 

270 

2401 )16 

t;;.~t;. 

A.__ ........ __ 

260 I 
252 I 

I 
I r- '· ~ BUF 

I I A 278 : 

32 
-r-

290 REG ____ _. 
· 282 1 

32 VME• 
212-_/ 

BUS 

FIG.-3 CNET'JORK CONTROLLER) 

.. ~ il 
Vl . 
"'0 
ITI 
X 

Vl 
-< 
Vl 
-f 

~ 
Vl .. 
..... 
:z 
0. 

Vl-f 
:x::c 
1"1'1 1"1'1 
ITI r­
-f< 

ITI :z . 
OVI 
• :X: 

1"1'1 
-fi'TI 
:X:-f 
;o VI 
1"1'1 
1"1'1 

li' 

Oracle Ex. 1002, pg. 482



_ ....... ___ 

JAP 

32 

310 ·-- 314 

CPU 
MEM. 
.....--

32 

390 

312· 

8 

CMD 
fifO 

320. 392 RS232 

fC 
MEM 
-r 

32 

32 

396 

REG 

32 

FIG.-4 

PROM 

382 

32 

PARALLEL 
PORT 

376 

. <fiLE. CONTROLLER> 

-· --··----------

324 

r.·~12~ 

VME. 
.. A .. BUS 

·-Vt 
"0 , 
>< 
Vt 
-< 
VI 
-f. 

~: 
VI' .. , 
...... 
z 
n 

~;! 
fT1 fT1 
fT1 r­
-i< , 
z 
OVI • ::c 

fT1 
'"Tl fT1 
0-i 
C: VI 
;;og 

Oracle Ex. 1002, pg. 483



510 

584 

32 

FIG.-5 

-~--g ..... 
>< 
V1 
-< 
~ ..... 
~ 
V1 .. 
.... 
:z 
("') 

~~ .......... ..... ,.... 
-t< ..... 
::z: 
OV1 • ::z: ..... ., ..... 
............ 
<V1 ..... 

Oracle Ex. 1002, pg. 484



VME 
BUS 
120 

l. 
r 

t... 
r 

32 
L .... , 

.... 

116o.\ 
614 620 

v ---

32 64 
L .... ... MUX . BUt L 

r- , r . . 
MEMORY 

aL 
ARRAY .... • 

ECC r- , .. 

I 
f. '-622 

TIMING v610 
CONTROL 

(SYSTEM MEMORY> 

FIG.-6 

... 

fti ,., 
X 

l.n 
-< 
l.n 
...... ,., 
3 
l.n 

..... 
:z 
n 

.., ...... 
X::E: ,.,,., ,., .­
...... < ,., 
:z 
0 l.n 
• X ,., 
{J')f'TI .......... 
X {.I) 

i 

Oracle Ex. 1002, pg. 485



; : ... :..:: ... -------- . -· ~ ...... _,_....;..;:..~==='-'----

·~SPEX SYSTEI'IS, INC. · 

.-----_:H~A~S~l::E~R_..:__~~701 

.· 

BROADCAST ADDRESS AND 
ADDRESS MODIFIER, 

URIVE L\IORD• L0\1 
AND lACK• HIGH 

DRIVE AS • L0\1 

DRIVE 

DRIVE 

DRIVE 

PLACE NEXT DATA ON 
DOO.-D31 

niEL VE SHEETS 
. SHEET HO •. SEVER 

SLAVE 

RECEIVE ADDRESS, 
ADDRESS MODIF"JER, 
L'JORD• LO'J AND 

lACK• IGH 

LOW 

WAIT UNTIL nso• GOES 
HIGH TO L0\1 

I TO riG.-7B 

FIG.-7A 

--· 

Oracle Ex. 1002, pg. 486



1. 

I . 

-f.USPEX SYSTEMS, INC. TWELVE SHEETS 
SHEET NO. EIGHT 

I 

I· 
MASTER I SLAVE 

(fROM fiG-7A) I (fROM flG-7A) 
729. I 731 ::'\ • 

f_ DRIVE DTACK • LOW' 
\JAIT UNTIL DTACK• I 733 ~ • 

I~UGH TO LOW' TRANSITION . I DRIVE DT ACK. HIGH 

- I 735~ ,, 
_,-739 I 'WRITE DATA INTO , 

SELECTED DEVICE AND 
DRIVE DSD • LOW' I INCREMENT DEVICE ADDRESS • ,..-741 I 737-... • DRIVE DSO • HIGH 

\J All FOR DSO IE 

I HIGH TO LO\J TRANSITION 

I -"""' , r-745 I 743-.... r 

PLACE NEXT DATA ON I LATCH DATA FROM LINES 
DOO-D31· 

I 
DOO-D3t 

.. 
· I 749 "-\ , 

, r 747 I .· DRIVE DTAcK• LoW' 
\JAIT UNTIL DTACK• _ 751·~ • 

HIGH TO LOW' TRANSITION I DRIVE DTACK. HIGH 

- . I 

I 75~ 

I 'w'RITE DATA INTO 

I 
SELECTED DEVICE AND 

INCREMENT DEVICE ADDRESS 

' 
I • ( TO FIG.-7C ) ( TO fiG.-7C ) 

FIG.-7B 

Oracle Ex. 1002, pg. 487



• 
AUSPEX SYSTEMS! INC. TWELVE SHEETS 

SHEET NO. NINE ,, 

.: (fROM FIG.-7:8) ( fROM FIG.-7B) 

COMPLETE NUMBER s 
Df CYCLES REQUIRED . . 

TO TRANSFER ALL DATA . 

RELEASE ADDRESS LINES,~755 
ADDRESS .MODIFIER LINES, 

DATA LINES, L \JORD•, 
nso•, AND lACK• 

. ' 
\JAIT FOR DTACK• 

HIGH TO · LD\J TRANSITION 

r r7~3 
DRIVE ·AS • HIGH 

, ,_-765 

RELEASE AS• 

759:'"\ , 

I "DRIVE DTACK• LD\J I 

761~ • 
I DRIVE DT ACK. HIGH I 

FIG.-7C 

Oracle Ex. 1002, pg. 488



'("~.·... -·-~.:.;;... .. ·~.:.::..."":..:....;. ... ~·. ,--· 
I •. Al!SPEX SYSTEi'.S, INC. 

I i • 

.-~-~MA~s~T=ER::.__..c.•aot 1 

I 
I 

I 

BROADCAST ADDRES~ 
ADDRESS MODIFIER AND 

DRIVE LIJORD• LO\J. 
AND lACK* HIGH 

DRIVE AS II LD\J 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

~----~~~--~8231 
DRIVE 

\1 All UNTIL Dl ACK • 
HJGH TO UJ\1 TRANSJTHJN 

I 
I 
I 
I 

SLAVE 

PLACE DATA ON LINES 
DOO-D31 

FIG.-8A i 
_L 

i 

Oracle Ex. 1002, pg. 489



; 

.......... ----· . 

~-EX SYSTEi~S. INC. Tl'iEL VE SHEETS 
SHEET NO. ELEVEN 

·! 

MASTER SLAVE 

( fROM fiG.-8A) I (fROM fiG.-8A 
I 825' · . ~ 

I 
DRIVE DT ~CK IE L0\1 

827~·~~----------*L---------~ I DRIVE DTACK• HIGH 

-
~ ,-831 I 

LATCH.DATA fROM LINES I 
DOO-D31 

t r- 833 1 829 ~ 1r · . 
\./RITE DATA INTO I PLACE NEXT DATA ON 

SELECTED DEVICE AND , LINES DOO-D31 
INCREMENT DEVICE ADDRESS I 835 ~ ~ 

* .,.-83~ . \./AIT fOR nso• 
DRIVE DSO JE L0\.1 I HIGH TO LD\J TRANSITION 

. ~ · .,.- a41 1 
DRIVE . DSO. HIGH I 

1 r 843 J 845 ·"""\ ·.~ · 
\JAil UNTIL DTACK• I DRIVE ·DTACK. LD\J 

HIGH TO L0\.1 TRANS~ liON 84 7 -x . ~ · 

I DRIVE DTACK. HIGH 

r---------~·------~r-845 1849 __ ~~-----~-~--------
LATCH DATA fROM LINES 

DOO-D31 

( TO .FIG.-8C J 

1 

I 
PLACE NEXT DATA ON 

LINES DOO-D31 

( . TO FIG.-8C J 

FIG.-8B 

Oracle Ex. 1002, pg. 490



' . . 
: 

.IIYSPEX SYSTEXS, lt1C. · T><LVE SHEETS . . __.l})· 
SHEET NO. TWELVE tl-

\/RITE DATA INT[J 
SELECTED DEVICE AND 

INCREMENT DEVICE ADDRESS 

951 
fROM FIG.-8B 

CONTINUE DATA TRANSfER 
CYCLES UNTlL DATA 

HAS BEEN TRANSfERRED 

RELEASE ADDRESS LINES, 
ADDRESS MODifiER LINES, 

DATA LINES, L\JORDII, 
DSD 11 AND lACK; 11 LINES 

'JAJT fOR DTACI<IIf 
IGH TO LO\J TRANSITION 

DRIVE 

RELEASE AS• 

853 

861 

.. 

952 ,...---=~::-:-:-::-:-:::-:::-::-'""1 
TRANSfER COMPLETE 

855 

DRIVE · DTACK 11 LO'\J 

FIG.-8C 
• J ..._._::... 

Oracle Ex. 1002, pg. 491




