
...

PCf WORLD INI'ELLECIUAL PROPER1Y ORGANIZATION
In!emational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER TilE PATENT COOPERATION TREAlY (PC1).

(51) lntemational Patent Uassification 5 : (11) International Pobllcation Number: WO 91/03788

G06F15/16 Al (43)1ntemational Publication Date: 21 March 1991 (21.03.91)

(21) Intemational Applicatlon Number: PCT/US90/04711 (74) Agents: FLIESLER, Martin, C. et al; Aiesler, Dubb,
Meyer & Lovejoy, 4 Embarcadero Center, Suite 400, San

(22) International Filing Date: 20 August 1990 (20.08.90) Francisco, CA 94111 (US).

(30) Priority data:
404,959 8 SeptemberU89 (08.09.89) US

(7l)Applicant: AUSPEX SYSTEMS, INC. [US/US]; 2952
Bunker Hill Lane, Santa Clara, CA 95054 (US).

(72) Inventors: ROW, Edward, lohn ; 468 Mountain Laurel
Court, Moutain View, CA 94064 (US). BOUCHER,
Laurence, B. ; 20605 Montalvo Heights Drive, Saratoga,
CA 95070 (US). PITIS, William, M. ; 780 Mom Drive,
Los Altos, CA 94022 (US). BLIGHTMAN, Stephen, E. ;
115 Salt Lake Drive, San Jose, CA 95133 (US}.

(81) Designated States: AT (European patent), AU, BE (Euro­
pean patent), CA, CH (European patent), DE (Euro­
pean patent)*, DK (European patent), ES (European pa­
tent), FR (European patent), GB (European patent), IT
(European patent), JP, KR, LU (European patent), NL
(European patent), SE (European patent).

Published
With international search report.
Btifore the expiration of the time limit for amending the
claims and to be republished in the event of the rea!ipt of
amendments.

(54) Title: PARALLEL 1/0 NETWORK FILE SERVER ARCHITEC1URE

uDbuOo.,
UOc \

llOd"'; ,J.

U6ca--.,.
U6b"'\,..-l-\ __ -.

U6c-.. ~

...----100

NET\illRK U6d"). SYSlEH

(

I

I

W!b _, /
112o.-

(57) Abstract

HEMIJRY

I 11<41:1
,.....__..___.c...,vu•ca

I r'~
I

STDRAGE it--t(J::J::P+!:::O::J:::r:J,
PRllC:tSStiR _j _l_

I I
I
I

A me server an:hi.ted;ure is disclosed, comprising as separate processors, a network controller unit (110), a fde controller
unit (112) and a storage processor unit (114). These units incorporate their own processors, and operate in parallel with a local
Unix host processor (118). All networks are conuected to the network controller unit (110), which performs all protocol process­
ing up through the NFS layer. The virtual me system is implemented in the me controller unit (112) and the storage processor
(114) provides bigh.speed multiplexed access to an array of mass storage devices. The file controller unit (112) controls file infor­
mation caching through its own local cache buffer, and controls disk data caching through a large system memory which is acces-
sible oo a bus by any of the proa=ssors. ·

* See back of page

Oracle Ex. 1002, pg. 960

I
DESIGNATIONS OF "DE"

Until further · notice, any designation of "DE" in any international application
whose int.erna:tional firing date is prior to October 3, 1990, shall have effect in the

· territory of the Federal Republic of Gennany with the exception of the territory of the
former Gennan Democratic Republic.

FOR THE PUBPOSBS OF INFOilMATION ONLY

Codes used to identify States party to the Per on the front pages of pamphlets publishing international
applications under the Per. · ·

A.T Austria I!S Spain MC Monac:o
AU Australia 1'1 F"mlaud MC Madagasl;at
BB BBJbQda:s F'll FI'IIJlCC ML MaU
II£ Bclgium. CA Oaboll MJt Maurhania
BP' Burlr.lnaFIWO CB Unll&:d Kfn&dom MW Malawi
BC Bulpria, ca Or=c NL Netherlands
8J BcrUn HU Hunpry NO NOt'Wlly
BR Brazil rr Italy PL l'olaud
CA. Oulada JP Japan RO Romania
CF Central African Republic: Kl' Dcmoc:nuk: l'llloplc:'l Republic so Sud&D '
00 'eoa,o of Kan:li S£ Sweden
at Swilzcrland KR Rcpubllc of kmca SN Seacpl
CM Ounerooa u LiechiCDslaln su Sovlcl Union
DB Ocnnaay LK Sri l..anU TO Chad

'"' Dcamarlr. LU l..u>ualbour& TC Taeo
us Unll&:d SWcs of America

l

'

~

'!

.. I

l

· ..
,'.4:.

I

·.·

Oracle Ex. 1002, pg. 961

W091/03788 PCf/US90/04711

-1-

PARhLLEL I/0 NETWORK FILE SERVER ARCHITECTURE

5

10 The present application is related to the following

15

u.s. Patent Applications, all filed concurrently

herewith:

1. MULTIPLE FACILITY OPERATING SYSTEM

ARCHITECTUPE, invented by David Hitz, Allan Schwartz,

James Lau . ld Guy Harris;

2 . ENHANCED VMEBOS PROTOCOL UTILIZING

PSEUDOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA

TRANSFER, invented by Daryl Starr; and

3. BUS LOCKING FIFO MULTI-PROCESSOR COMMUNICATIONS

20 S7STEM UTILIZING PSEODOSYNCHRONOOS . HANDSHAKING AND

BLOCK MODE DATA TRANSFER invented by Daryl D. Starr,

William Pitts and Stephen Blightman.

The above applications are all assigned to the

assignee of the present invention and are all

25 expressly incorporated herein by reference.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 962

W091/03788

-2-

BACKGROUNQ OF THE tNyENTION
Field of the Inyention

PCr/US90/04711

The invention relates to computer data networks,

and more particularly, to network file server

5 architectures for computer networks.

Description of the Related Art

Over the past ten years, remarkable increases in

hardware price/performance ratios have caused a

10 startling shift in both technical and office computing

environments. Distributedworkstation-servernetworks

are displacing the once pervasive dumb terminal

attached to mainframe or minicomputer. To date,

however, network I/0 limitations have constrained the

15 potential performance ava~lable to workstation users.

This situation has developed in part because dramatic

jumps in microprocessor performance have exceeded

increases in network I/0 performance.

In a computer network, individual user workstations

20 are referred to as clients, and shared resources for

filing, printing, data storage and wide-area

communications are referred to as servers. Clients

and servers are all considered nodes of a network.

Client nodes use standard communications protocols to

25 exchange service requests and responses with server

nodes.

Present-day network clients and servers usually run

the DOS, Macintosh OS, OS/2, or Unix operating

systems. Local networks are usually Ethernet or Token

30 Ring at the high end, Arcnet in the midrange, or

LocalTalk or StarLAN at the low end. The client­

server communication protocols are fairly strictly

dictated by the operating system environment

usually one of several proprietary schemes for PCs

35 (NetWare, 3Plus, Vines, LANManager, LANServer);

AppleTalk for Macintoshes; and TCP/IP with NFS or RFS

SUBSmUTE SHEET ----· .

l

·.:

Oracle Ex. 1002, pg. 963

...

W091/03788 PCf/US90/04711

-3-

for Unix. These protocols are all well-known in the

industry.

Unix client nodes typically feature a 16- or 32~

bit microprocessor with 1-8 MB of primary memory, a

5 640 x 1024 pixel display, and a built-in network

interface. A 40-100 MB local disk is often optional.

Low-end examples are 80286-based PCs or 68000-based

Macintosh I's; mid-range machines include 80386 PCs,

Macintosh II's, and 680XO-based Unix workstations;

10 high-end machines include RISC-based DEC, HP, and Sun

Unix workstations. Servers are typically nothing more

than repackaged client nodes, configured in 19-inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

15 disk or tape drives, and power supplies.

Driven by RISC and CISC microprocessor

developments, client workstation performance has

increased by more than a factor of ten in the last few

years. Concurrently, these extremely fast clients

20 have also gained an appetite for data that remote

servers are unable to satisfy. Because the I/0

shortfall is most dramatic in the Unix environment,

the description of the preferred embodiment of the

present invention will focus on Unix file servers.

25 The architectural principles that solve the Unix

server I/0 problem, however, extend easily to server

performance bottlenecks in other operating system

environments as well. Similarly, the description of

the preferred embodiment will focus on Ethernet

30 implementations, though the principles extend easily

to other types of networks.

In most Unix environments, clients and server!=~

exchange file data using the Network File System

("NFS"), a standard promulgated by Sun Microsystems

35 and now widely adopted by the Unix community. NFS is

defined in a document entitled, "NFS: Network File

~P~S_TfTUTE SHEET

Oracle Ex. 1002, pg. 964

W091/03788

5

PCf/US90/04711

-:-4-

System Protocol Specification,u Request For Comments

(RFC) 1094, by Sun Microsystems, Inc. (March 1989).

This document is incorporated herein by reference in

its entirety.

While simple and reliable, NFS is not optimal.

Clients using NFS place considerable demands upon both

networks and NFS servers supplying clients with NFS

data. This demand is particularly acute for so­

called diskless clients that have no local disks and

10 therefore depend on a file server for application

binaries and virtual memory paging as well as data.

For these Unix client-server configurations, the ten­

to-one increase in client power has not been matched

by a ten-to-one increase in Ethernet capacity, in disk

15 speed, or server disk-to-network I/O throughput.

The result is that the number of diskless clients

that a single modern high-end server can adequately

support· has dropped to between 5-10, depending on

client power and application workload. For clients

20 containing small local di~ks for applications and

paging, referred to as dataless clients, the client­

to-server ratio is about twice this, or between 10-

20.

Such low client/server ratios cause piecewise

25 network configurations in which each local Ethernet

contains isolated traffic for its own 5-10 (diskless)

clients and dedicated server. For overall

connectivity, these local networks are usually joined

together with an Ethernet backbone or, in the future,

30 with an FDDI backbone. These backbones are typically

connected to the local networks either by IP routers

or MAC-level bridges, coupling the local networks

together directly, or by a Qecond server functioning

as a network interface, coupling servers for all the

35 local networks together.

SU~SJITUTE SHEET

1

t .

Oracle Ex. 1002, pg. 965

W091/03788 PCf/US90/04711

-5-

In addition to performance considerations, the low
client-to-server ratio creates computing problems in
several additional ways:

1. Sharing. Development groups of more than 5-

5 10 people cannot share the same server, and thus

cannot easily share files without file replication and
manual, multi-server updates. Bridges or routers are
a partial solution but inflict a performance penalty
due to more network hops.

10 2. Administration. System administrators must

maintain many limited-capacity servers rather than a

few more substantial servers. This burden includes
network administration, hardware maintenance, and user
account administration.

15 3. File System BackuP· System administrators or
operators must conduct multiple file system backups,
which can be onerously time consuming tasks. It is
also expensive to duplicate backup peripherals on each

\

server (or every few servers if slower network backup
20 is used).

4. Price Per Seat. With only 5-10 clients per
server, the cost of the server must be shared by only
a small number of users. The real cost of an entry­
l.evel Unix workstation ~ s therefore significantly

25 qreater, often as much a: .40% greater, than the cost
of the workstation alone.

The widening I/O gap, as well as administrative and

economic considerations, demonstrates a need for
higher-performance, larger-capacity Unix file servers.

30 Conversion of a display-less workstation into a server

may address disk capacity issues, but .does nothing to

address fundamental I/0 limitations. As an NFS

server, the one-time workstation must sustain 5~10 or

more times the network, disk, backplane, and file
35 system throughput than it was designed to support as

a client. Adding larger disks. more network adaptors,

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 966

W091/03788

5

PCf/US90/04711

-6-

extra primary memory, or·even a faster processor do
not resolve basic architectural I/0 constraintsi I/0
throuqhput does n~t increase suffic·iently.

Other prior art computer architectures, while not
specifically designed as file servers, may potentially
be used .as such. In one such well-known architecture,
a CPU, a memory unit, and two I/O processors are
connected to a single bus. One of the I/O processors
operates a set of disk drives, and if the architecture

10 is to be used as a server, the other I/O processor
would be connected to a network. This architecture is
not optimal as a file server, however, at least
because the two I/O processors cannot handle network
file requests without involving the CPU. All network

15 file requests that are received by the network I/O
processor are first transmitted to the CPU, which
makes appropriate requests to the disk-I/O processor
for satisfaction of the network request.

In another such computer architecture, a disk
20 controller CPU manaqes access to disk drives, and

several other CPUs, three for example, may be
clustered around the disk controller CPU. Each of the
other CPUs can be connected to its own network. The
network CPUs are each connected to the disk controller

25 CPU as well as to each other for interprocessor

communication. One of the disadvantaqes of this
computer architecture is that each CPU in the system
runs its own complete operatinq system. Thus, network
file server requests must be handled by an operating

30 system which is also heavily loaded with facilities
and processes for performing a large number of other,

non file-server tasks. Additionally., the

interprocessor communication is not optimized for file

server type requests.

35 In yet another computer architecture, a plurality

of CPUs .• each having its· own cache memory for data and

.·GUBSTITUTE SHEET

::

'\'

Oracle Ex. 1002, pg. 967

t.

W091/03788 PCr/US90/04711

-7-

instruction storage, are connected to a common bus

with a system memory and a disk controller. ~he disk

controller and each of the CPUs have direct memory

access to the system memory, and one or more of the

5 CPOs can be connected to a network. This architecture

is disadvantageous as a file server because, among

other things, both file data and the instructions for

the CPUs reside in the same system memory. ~here will

be instances, therefore, in which the CPUs must stop

10 running while they wait for large blocks of file data

to be transferred between system memory and the

network CPU. Additionally, as with both of the

previously described computer architectures·, the

entire operating system runs on each of the CPUs,

15 including the network CPU.

In yet another type of computer architecture, a

large number of CPUs are connected together in a

hypercube topology. One of more of these CPUs can be

connected to networks, while another can be connected

20 to disk drives. This architecture is also

disadvantageous as a file server because, among other

things, each processor runs the entire operating

system. Interprocessor communication is also not

optimal for file server applications.

25

30

SUMMAR¥ OF ~HE INYEN~IQN

The present invention involves a new, server­

specific I/0 architecture that is optimized for a Unix

file server's most common actions -- file operations.

Roughly stated, the invention involves a file server

architecture comprising one or more network

controllers, one or more file controllers, one or more

storage processors, and a system or buffer memory, all

connected over a message passing bus and operating in

parallel with the Unix host processor. The network

35 controllers each connect to one or more network, and

Oracle Ex. 1002, pg. 968

W091103788 PCI'/US90/047ll

-8-

provide all protocol processing between the network

layer data format and an internal file server format

for communicating client requests to other processors

in the server. Only those data packets which cannot

5 be interpreted by the network controllers, for example

client requests to run a client-defined program on the

server, are transmitted to the Unix host for

processing. Thus the network controllers, file

controllers and storage processors.contain only small

10 parts of an overall operating system, and each is

optimized for the particular type of work to which it

is dedicated.

Client requests for file operations are transmitted.

to one of the file controllers which, independently of

15 the Unix host, manages the virtual file system of a

mass storage device which is coupled to the storage

processors. The file controllers may also control

data buffering between the storage processors and the

network controllers, through the system memory. The

20 file controllers preferably. each include a local

buffer memory for caching file control information,

separate from the system memory for caching file data.

Additionally, the network controllers, file proc.essors

and storage processors are all designed to avoid any

25 instruction fetches from ·the system memory, instead

keeping all instruction memory separate and local.

This arrangement eliminates contention on the

backplane between microprocessor instruction fetches

and transmissions of message and file data.

30 BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to

particular embodiments thereof, and reference will be

made to the drawings, in.which:

Fig. 1. is a block diagram of a prior art file

35 server architecture;

StiBSTITUTE SHEET

'

.·.·.

:>

Oracle Ex. 1002, pg. 969

..

W09l/03788 PCriUS90/047ll

-9-

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network

controllers shown in.Fig. 2;

5 Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig. 5 is a block diagram of one of the storage

processors shown in Fig. 2;

Fig. 6 is a block dia~ram of one of the system

10 memory cards shown in Fig. 2;

Figs. 7A-C are a flowchart illustrating the

operation of a fast transfer protocol BLOCK WRITE

cycle; and

Figs. SA-C are a flowchart illustrating the

15 operation of a fast transfer protocol BLOCK READ

cycle.

DETAILED DESCRIPTION

For comparison purposes and background, an

20 illustrative prior-art filEJ server architecture will

first be described·with respect to Fig. 1. Fig. 1 is

an overall block diagram of a conventional prior-art

Unix-based file server for Ethernet networks. It

consists of a host CPU card 10 with a single

25 microprocessor .on board. The host CPU ·card 10

connects to an Ethernet #1 12, and it connects via a

memory management unit (MMU) 11 to a large memory

array 16. The host CPU card 10 also drives a

keyboard, a video display, and two RS232 ports (not

30 shown) . It also connects via the MMU 11 and a

standard

devices,

32-bit VME bus 20 to various peripheral

including an SMD disk ·controller 22

controlling one or two disk drives 24, a SCSI host

adaptor 26 connected to a SCSI bus 28, a tape

35 controller 30 connected to a quarter-inch tape drive

32, and possibly a network #2 controller 34 connected

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 970

W091103788

5

PCf/US90/04711

-10-

to a second Ethernet 36. The SMD disk controller 22

can communicate with memory array 16 by direct memory

access via bus io and MMU 11, with either the disk

controller or the MMU acting as a bus master. This

confiquration is illustrative; many variations are

available.

The system communicates over the Ethernets using

industry standard TCP/IP and NFS p+otocol stacks. A
description of protocol stacks in general can be found

10 in Tanenbaum, ••computer Networks"· (Second Edition,

Prentice Hall: 1988). File server protocol stacks are

described at pages 535-546. The Tanenbaum reference

is incorporated herein by reference.

Basically, the following protocol layers are

15 implemented in the apparatus of Fig. 1:

Network Layer. The network layer converts data

packets between a formal specific to Ethernets and a

format which is independent of the particular type of

network used. the Ethernet-specific format which is

20 used in the apparatus of Fig. 1 is described in

Hornig, 0 A Standard For The Transmission of IP

Datagrams Over Ethernet. Networks," R.FC 8 94 (April

1984), which is incorporated herein by reference.

Tbe Internet Protocol· CIPl Layer. This layer

25 provides the functions necessary to deliver a package

of bits (an internet datagram) from a source to a

destination over an interconnected system of networks.

For messages to be sent from the file server to a

client, a higher level in the server calls the IP

30 module, providing the internet address of the

destination client and the message to transmit. The

IP module performs any required fragmentation of the

message to accommodate packet size limitations of any

intervening gateway, adds internet headers to each

35 fragment, and calls on.the network layer to transmit

the resulting interne_t datagrams. The internet header

~U~$J1TUTE SHEET

··· ..

.... ·

. ·

l.

I
. ~

Oracle Ex. 1002, pg. 971

W091/03788

5

PCf/US90/04711

-11-

includes a local network destination address

(translated from the internet address) as well as

other parameters.

For messages received by the IP layer from the

network layer, the IP module determines from the

internet address whether the datagram is to be

forwarded to another host on another network, for

example on a second Ethernet such as 36 in Fig. 1, or

whether it is intended for the server itself. If it

10 is intended for another host on the second network,

the IP module determines a local net address for the

destination and calls on the local network layer for

that network to send the datagram. If the datagram is

intended for an application program within the server,

15 the IP layer strips off the header and passes the

remaining portion of the message to the appropriate

next higher layer. The internet protocol· standard

used in the illustrative apparatus of Fig. 1 is

specified in Information Sciences Institute, "Internet

20 Protocol, DARPA Internet Program Protocol

Specification,a RFC 791 (September 1981), which is

incorporated herein by reference.

TCP/UDP Layer. This layer is a datagram service

with more elaborate packaging and addressing options

25 than the IP layer. ·For example, whereas an IP

datagram can hold about 1,500 bytes and be addressed

to hosts, UDP datagrams can hold about 64KB and be

addressed to a particular port within a host. TCP and

UDP are alternative protocols at this layer;

30 applications requiring ordered reliable deli very of

_streams of data may use TCP, whereas applications

(such as NFS) which do not require ordered and

reliable delivery may use UDP.

The prior art file server of Fig. 1 uses both TCP

35 and UDP. .It uses UDP for file server-related

services, and uses TCP for certain other services

Oracle Ex. 1002, pg. 972

·:.:

W09l/03788

-~

PCf/US90/047ll

-12-

which the server provides to network clients. The UDP

is specified in Postel, "User Datagram Protocol, .. RFC

768 (August 28, 1980), which is incorporated herein by

reference. TCP is specified in Postel, 0 Transmission

5 Control Protocol,n RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein by

reference.

XDR/RPC Layer. This layer provides functions

callable from higher level programs to run a

10 designated procedure on a ·remote machine. It also

provides the decoding necessary to permit a client

machine to execute a procedure on the server. For

example, a caller process in a client node may send a

call message to the server of Fig. 1. The call

15 message includes a specification of the desired

procedure, and its parameters. The message is passed

up the stack to the RPC layer, which calls the

appropriate procedure within the server. When the

procedure is complete, a reply message is generated

20 and RPC passes it back down the stack and over the

network to the caller client. RPC is described in Sun

Microsystems, Inc., 0 RPC: Remote Procedure ca~l

Protocol Specification, Version 2," RFC 1057 (June

1988), which is incorpor~ted herein by reference.

25 RPC uses the XDR external data representation

30

standard to represent information passed to and from

the underlying UDP layer. XDR is merely a data

encoding standard, useful for transferring data

between different computer architectures. Thus, on

the network side of the XDR/RPC layer, information is

machine-independent; on the host application side, it

may not be. XDR is described in Sun Microsystems,

Inc., "XDR: External Data Representation Standard, ..

RFC 1014 (June 1987), which is incorporated herein by

35 reference.

SUBSffiUTE SHEET - ... --

. ·· ..

..
: ·:

Oracle Ex. 1002, pg. 973

•

W091/03788 PCf/US90/04711

-13-

NPS Layer. The NPS ("network file system•)

layer is one of the programs available on the server

which an RPC request can call. The combination of

host address, program number, and procedure number in

5 an RPC request can specify one remote NFS procedure to

be called.

Remote procedure calls to NFS on the file server of

Fig. 1 provide transparent, stateless, remote access

to shared files on the disks 24. NFS assumes a file

10. system that is hi~rarchical, with directories as all

but the bottom level of files. Client hosts can call

any of about 20 .NFS procedures including such

procedures as reading a specified number of bytes from

a specified file; writing a specified number of bytes

15 to a specified file; creating, renaming and removing

specified .files; parsing directory trees; creating and

removing directories; and reading and setting file

attributes. The location on disk to which and from

which data is stored and retrieved is always specified

20 in logical terms, such as by a file handle or !node

designation and a byte offset. The details of the

actual data storage are hidden from the client. The

NFS procedures, together with possible higher level

modules such as Unix VFS and UPS, perform all

25 conversion of logical data addresses to physical data

30

·addresses such as drive, head, track and sector

identification. NFS is specified in sun Microsystems,

Inc. , •NFs: Network File System Protocol

Specification,a RFC 1094 (March 1989), incorporated

herein by reference.

With the possible exception of the network layer,

all the protocol processing described above is done . in

software, by a single processor in the host CPU card

10. That is, when an Ethernet packet arrives on

35 Ethernet 12, the host CPU 10 performs all the protocol

processing in the NFS stack, as well as the protocol

SUSSTITUTE SHEET

Oracle Ex. 1002, pg. 974

W09l/03788 PCTIUS90/04711

-14-

processing for any other appl'ication which may be
running on the host 10. NFS procedures are run on the
host CPU 10, with access to memory 16 for both data
and program code being provided.via MMU 11. Logically

5 specified data addresses are converted to a much more
physically specified form and communicated to the SMD
disk controller 22 or the SCSI bus 28, via the VME bus
20, and all disk caching is done by the host CPU 10
through the memory 16. The host CPU card 10 also runs

10 procedures for performing yarious other functions of
the file server, communicating with tape controller 30
via the VME bus 20. Among these are client-defined
remote procedures requested by client workstations.

If the server serves a second Ethernet 36, packets
15 from that Ethernet are transmitted to the host CPU 10

over the same VME bus 20 in the form of IP dataqrams.

Again, all protocol processing except for the network
layer is performed by software processes running on
the host CPU 10. In addition, the protocol processing

20 for any message that is to ~e sent from the server out
on either of the Ethernets 12 or 36 is also done by
processes running on the host CPU 10.

It can be seen that the host CPU 10 performs an
enormous amount of processing of data, especially if

25 5-10 clients on each of the two Ethernets are making
file server requests and need to be sent responses on
a frequentbasis. The host CPU 10 l:¥ns a multitasking
Unix operating system, so each incoming request need
not wait for the previous request to be completely

30 processed and returned before being processed.
Multiple processes are activated on the host CPU 10

for performing different stages of. the processing of

different requests, so many requests may be in process
at the same time. But there is only one CPU on the

35 card 10, so the processing of these requests is not

accomplished in a truly parallel manner. The

SUBSTI11IfE SHEEI --·

Oracle Ex. 1002, pg. 975

W091103788 PCI'/US90/047ll

-15-

processes are instead merely time sliced. The CPU 10

therefore represents a major bottleneck in the

processinq of file server requests.

Another bottleneck occurs in MMU 11, which must

5 transmit both instructions and data between the CPU

card 10 and the memory 16. All data flowinq between

the disk drives and the network passes throuqh this

interface at least twice.

Yet another bottleneck can occur on the VME bus 20,

10 which must transmit data among the SMD disk controller

22, the SCSI host adaptor 26, the host CPU card 10,

and possibly the network 12 controller 24.

15

PBEFERBED EMBOPIMENT-QVEBALL HARQWARE ARCHITECTURE

In Fiq. 2 there is shown a block diaqram of a

network file server 100 according to the invention.

It can include multiple network controller (NC)

boards, one or more file controller (FC) boards, one

or more storaqe processor (SP) boards, multiple system

20 memory boards, and one or more host processors. The

particular embodiment shown in Fiq. 2 includes four

network controller boards 110a-110d, two file

controller boards 112a-112b, two storaqe processors

114a-114b, four system memory cards 116a-116d for a

25 total of 192MB of memory, and one local host processor

118. The boards 110, 112, 114, 116 and 118 are

connected toqether over a VME bus 120 on which an

enhanced block transfer mode as described in the

ENHANCED VMEBUS PROTOCOL application identified above

30 may be used. Each of the four network controllers 110

shown in Fiq. 2 can be connected to up to two

Ethernets 122, for a total capacity of 8 Ethernets

122a-122h. Each of the storaqe processors 114

operates ten parallel SCSI busses, nine of which can

35 each support up to three SCSI disk drives each. The

tenth SCSI channel on each of the storaqe processors

SUBSJITUTE ~HEEJ

Oracle Ex. 1002, pg. 976

- ._ .· -

,.

W091103788

·~

PCT/US90/04711

-16-

114 is used for tape drives and other SCSI

peripherals.

The host 118 is essen~ially a standard SunOs Unix

processor 1 providing all the standard Sun Open Network

5 Computing (ONC) services except NFS and IP routing.

Importantly 1 all network requests to run a user­

defined procedure are passed to the host for

execution. Each of the NC boards 110, the FC boards

112 and the SP boards 114 includes its own independent

10 32-bit microprocessor. These boards essentially off­

load from the host processor 118 virtually all of the

NFS and disk processing. Since the vast majority of

messages to and from clients over the Ethernets 122

involve NFS requests and responses, the processing of

15 these requests in parallel by the NC, FC and SP

processors, with minimal involvement by the local host

118, vastly improves file server performance. Unix

is explicitly eliminated from virtually all network,

file, and storage processing.

20 OYERALL SOFTWARE OBGANI ZATIQN AND DATA FLOW

Prior to a detailed discussion of the hardware

subsystems shown in Fig. 2, an overview of the

software structure will now be .undertaken. The

software orqanization is described in more detail in

25 the above-identified application entitled MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE.

Most of the elements of the software are well known

in the field and are found in most networked Unix

systems, but there are two components which are not:

30 Local NFS (11 LNFS 11) and the messaging kernel (nMK"")

operating system kernel. These two components will be

explained first.

Tbe Messaging Kernel. The various processors in

file server 100 communicate with each other through

35 the use of a messaging kernel running on each of the

SUBSTITUTE SHEET .

Oracle Ex. 1002, pg. 977

W091103788 PCf /US90/04711

-17-

processors 110, 112, 114 and 118. These processors do

not share any instruction memory, so task~level

communication cannot occur via straightforward

procedure calls as it does in conventional · Unix.

5 Instead, the messaging kernel passes messages over VME

bus 120 to accomplish all necessary inter-processor

communication. Message passing is preferred over

remote procedure calls for reasons of simplicity and

~peed.

10 Messages passed by the messaging kernel have a

fixed 128-byte length. Within a single processor,

messages are sent by reference; between processors,

they are copied by the messaging kernel and . then

delivered to the destination process by reference.

15 The processors of Fig. 2 have special hardware,

discussed below, that can expediently exchange and

buffer inter-processor messaging kernel messages.

The LNFS Local NFS interfage. The 22-function NFS

standard was specifically designed for stateless

20 operation using unreliable communication. This means

that neither clients nor server can be sure if they

hear each other when they talk (unreliability). In

practice, an in an Ethernet environment, this works

well.

25 Within the server 100, however, NFS level datagrams

are also used for communication between processors, in

particular between the network controllers 110 and the

file controller 112, and between the host processor

118 and the file controller 112. For this internal

30 communication to be both efficient and convenient, it

is undesirable and impractical to have complete

statelessness or unreliable communications.

Consequently, a modified form of NFS, namely LNFS, is

used for internal communication of NFS requests and

35 responses. LNFS is used only witbin the file server

100; the external network protocol supported by the

,SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 978

W091/03788 PCf/US90/04711

-18-

server is precisely stan~ard, ricensed NFS. LNFS is

described in more detail below.

The Network Controllers 110 each run an NFS server

which, after all protocol processing is done up to the

5 NFS layer, converts between external NFS requests and

responses and internal LNFS requests and responses.

For example, NFS requests arrive as RPC requests with

XDR and enclosed in a UDP datagram. After protocol

processing, the NFS server translates the NFS request

10 into LNFS form and uses the messaging kernel to send

the request to the file controller 112. ·

The file controller runs an LNFS server which

handles LNFS requests both from network controllers ·

and from the host 118 ~ The LNFS server translates

15 LNFS requests to a form appropriate for a file system

server, also running on · the file controller, which

manages the system memory file data cache through a

block I/O layer .

. An overview of the software in each of the

20 processors will now be set forth.

Network Controller 110.

The optimized dataflow of the server 100 begins

with the intelligent network controller 110. This

25 processor receives Ethernet packets from client

workstations. It quickly identifies NFS-destined

packets and then performs full protocol processing on

them to the NFS level, passing the resultinq LNFS

requests directly to the file controller 112. This

30 protocol processing includes IP · routinq and

reassembly, UDP demultiplexing, XDR decoding, and NFS

request dispatchinq. The reverse steps are used to

send an NFS reply back to a client. Importantly,

these time-consuminq activities are performed directly

35 in the Network Controller 110, not in the host 118·.

SUBSffiUTE SHEET
-- --- *

.:·:·:

Oracle Ex. 1002, pg. 979

W091/03788 PCf /U$90/04711

-19-

The server 100 uses conventional NFS ported from
Sun Microsystems, Inc., Mountain View, CA, and is NFS
protocol compatible.

Non-NFS network traffic is passed directly to its

5 destination host processor 118.

'l'he NCs 110 also perform their own IP routing.
Each network controller 110 supports two fully
parallel Ethernets. 'l'here are four network
controllers in the embodiment of the server 100. shown

10 in Fig. 2, so that server can support up to eight
Ethernets. For the two Ethernets on the same ~etwork
controller 110, IP routing occurs completely within

the network controller and generates no backplane
traffic. 'l'hus attaching two mutually active Ethernets_

15 to the same controller not only minimizes their inter­
net transit time, but also significantly reduces

backplane contention on the VME bus 120. Routing
table updates are distributed to the network
controllers from the host processor 118, which runs

20 either the gated or routed Unix demon.
While the network controller described here is

designed for Ethernet LANa, it will be understood that
the invention can be used just as readily with other
network types, including FDDI.

25 File Controller 112

In addition to dedicating a separate processor for
NFS protocol processing and IP routing, the server_lOO

also dedicates a separate processor, the intelligent
file controller 112, to be responsible for all file

30 system processing. It uses conventional Berkeley Unix

4.3 file system code and uses a binary-compatible data

representation on disk. 'l'hese two choices allow all
standard file system utilities (particularly block­

level tools) to run unchanged.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 980

W09J/03788

5

PCI'IUS90/04711

-20-

The file controller 112 runs the shared file system
used by a.ll NCs 110 and the host processor 118. Both
the NCs and the host processor communicate with the
file controller 112 using the LNFS interface. The NCs
110 use LNFS as described above, while the host
processor 118 uses LNFS as a plug-in module to SunOs's
standard Virtual File System (•VFsu) interface.

When an NC receives an NFS read request from a
client workstation, the resulting LNFS request passes

10 to the FC 112. The FC 112 first searches the system
memory 116 buffer cache for the requested data. If
found, a reference to the buffer is returned to the NC
110. If not found, the ·LRU (least recently used}
cache buffer in system memory 116 is freed and

15 reassigned for the requested block. The FC then
directs the SP 114 to read the block into the cache
buffer from a disk drive array. When complete, the SP
so notifies the FC, which in turn notifies the NC 100.
The NC 110 then sends an NFS reply, with the data from

20 the buffer, back to the NFS client workstation out on
the network. Note that the SP 114 transfers -the data

25

into system memory 116, if necessary, and the NC 110
transferred the data from system memory 116 to the
networks. The process takes place without any
involvement. of the host 118.

Storage Processor

The intelligent .storage processor 114 manages all
disk and tape storage operations. While autonomous,

30 storage processors are primarily directed by the file

controller 112 to move file data between system memory

...

"

116 and the disk subsystem. The exclusion of both the ~

host 118 and the FC 112 from the actual data path

helps to supply the.performance needed to service many
35 remote clients.

SUBSTITUTE. SHEET ---

Oracle Ex. 1002, pg. 981

W091/03788 PCf/US90/04711

-21-

Additionally, coordinated by a Server Manager in

the host 118, storage processor 114 can execute server

backup by moving data between the disk subsystem and

tape or other archival peripherals on the SCSI

5 channels. Further, if directly accessed by host

processor 118, SP 114 can provide a much higher

performance conventional disk interface for Unix·,

virtual memory, and databases. In Unix nomenclature,

the host processor 1.18 can mount boot, storage swap,

10 and raw partitions via the storage processors 114.

Each storage processor 114 operates ten parallel,

fully synchronous SCSI channels (busses)

simultaneously. Nine of these channels support three

arrays of nine SCSI disk drives each, each drive in an

·15 array beinq assiqned to a different SCSI channel. The

tenth SCSI channel hosts up to seven tape and other

SCSI peripherals. In addition to performing reads and

writes, SP 114 performs device-level optimizations

such as disk seek queue sorting, directs device error

20 recovery, . and controls DMA transfers between the

devices and system memory 116.

Host Processor 118

The local host 118 has three main purposes: to run

25 Unix, to provide standard ONC network services for

clients, and to run a Server Manager. Since Unix and

ONC are ported from the standard SunOs Release 4 and

ONC Services Release 2, the server 100 can provide

identically compatible high-level ONC services such as

30 the Yellow Paqes, Lock Manaqer, DES Key Authenticator,

Auto Mounter, and Port Mapper. sun/2 Network disk

bootinq and more general IP internet services such as

Telnet I FTP, SMTP, SNMP I and reverse ARP are also

supported. Finally, print spoolers and similar Unix

35 demons operate transparently.

SUBSTITUTE SUEET

Oracle Ex. 1002, pg. 982

W091/03788

5

PCf/US90/04711

-22-

The host processor 118 runs the following software
modules:

TCP and socket layers. ·The Transport Control
Protocol ("TCP"), which is us'ed for certain server
functions other than NFS, provides reliable byte stream
communication between two processors. Socket are used
to establish TCP connections.

VFS interface. The Virtual File System ("VFS")
interface· is a standard SunOs file system. interface.

10 It paints a uniform file-system picture for both users

15

and the non-file parts of the Unix operating system,

hiding the details of the specific file system. Thus
standard NFS, LNFS, and any local Unix file system can
coexist harmoniously.

UFS interface. The Unix File System ("UFS")
interface is the traditional and well-known Unix
interface for communication with local-to-the­
processor disk drives. In the server 100, it is used
to occasionally mount storage processor volumes

20 directly, without going t~ough the file controller
112. Normally, the host 118 uses LNFS and goes
through the file controller.

Device layer. The device layer is a standard
software interface between the Unix device model and

25 · different physical device implementations. In the

.30

35

server 100, disk devices are not attached to host
processors directly, so the disk driver in the host's
device layer uses the messaging kernel to communicate
with the storage processor 114.

Route and Port Mapper Demons . The Route and Port
Mapper demons are Unix user-level background processes

that maintain the Route and Port databases for packet
routing. They are mostly inactive and not in any

performa~ce path.
Yellow Pages and Authentication Demon. The Yellow

Pages and Authentication services are Sun-ONC standard

SUBSTITUTE SHEET

'

t

··:

Oracle Ex. 1002, pg. 983

W091/03788 PCf/US90/04711 ·

-23-

network services. Yellow Paqes is a widely used

multipurpose name-to-name directory lookup service.

The Authentication service uses ·cryptoqraphic keys to

authenticate, or validate, requests to insure that

5 requestors have the proper privileqes for any actions

or data they desire.

Seryer Manager. The Server Manaqer is an

administrati~e application suite that controls

confiquration, loqs error and performance reports, and

10 provides a monitorinq . and tuninq interface for the

system administrator. These functions can be

exercised from either system console connected to the

host 118, or from a system administrator's
workstation.

15

20

The host processor 118 is a conventional OEM Sun

central processor card, Model 3E/120. It incorporates

a Motorola 68020 microprocessor and 4MB of on-board

memory. Other processors, such as . a SPARC-based

processor, are also possible.

The structure and operation of each of the hardware

components of server 100 will now be described in

detail.

NETWORK CONTROLLER BARPWABE ABCHITECTPRE

25 Fiq. 3 is a block diaqram showinq the data path and

some control paths for an illustrative one of the

network controllers 110a. It comprises a 20 MHz 68020

microprocessor 210 connected to a 32-bit

microprocessor data bus 212. Also connected to the

30 microprocessor data bus 212 is a 256K byte CPO memory

214. The low order 8 bits of the microprocessor data

bus 212 are connected throuqh a bidirectional buffer

216 to an 8-bit slow-speed data bus 218. On the slow­

speed data bus 218 is a 128K byte EPROM 220, a 32 byte

35 PROM 222, and a multi-function peripheral (MFP) 224.

The EPROM 220 contains boot code for the netwo.rk

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 984

W091/03788

5

PCf/US!J0/04711

-24-

controller llOa, while the PROM 222 stores various
operating parameters such as the Ethernet addresses
assigned to each of the two Ethernet interfaces on the
board. Ethernet address information is read into the
corresponding interface control block in the CPU

memory 214 during initialization. The MFP 224 is a
Motorola 68901, and performs various local functions
such as timing, interrupts, and general purpose I/0.
The MFP 224 also inqludes a UART for interfacing to an

10 RS232 port 226. These functions are not critical to
the invention and will not be further described
herein.

The low order 16 bits of the microprocessor data
bus 212. are also coupled throuqh a bidirectional

15 buffer 230 to a 16-bit LAN data bus 232. A LAN

controller chip 234, such as the Am7990 LANCE Ethernet
controller manufactured by Advanced Micro Devices,
Inc. Sunnyvale, CA., interfaces the LAN data bus 232
with the first Ethernet 122a shown in Fig. 2. Control

20 and data for the LAN controller 234 are stored in a
512K byte LAN memory 236, which is also connected to
the LAN data bus 232. A specialized 16 to 32 bit FIFO
chip 240, referred to herein as a parity FIFO chip and
described below, is also connected to the LAN data bus

25 232. Also connected to the LAN data bus 232 is a LAN
DMA controller 242, which controls movements of
packets of data between the LAN memory 236 and the
FIFO chip 240. The LAN DMA controller 242 may be a
Motorola M68440 DMA controller using channel zero

30 only.
The second Ethernet 122b shown in Fig. 2 connects

to a second LAN data bus 252 on the network controller

card llOa sho~ in Fig. 3. The LAN data bus 252
connects to the low order 16 bits of the

35 microprocessor data bus 212 ~ia a bidirectional buffer
250, and has similar components to those appearing on

·sUBSTITUTE SHEET

:::;

;.

Oracle Ex. 1002, pg. 985

..

W091/03788

5

PCf/US90/04711

-25-

the LAN data bus 232. In particular, a LAN controller

254 interfaces the LAN data bus 252 with the Ethernet

122b, using LAN memory 256 for data and control, and

a LAN DMA controller 262 controis DMA transfer of data

between the LAN memory 256 and the 16-bit wide data

port A of the parity FIFO 260.

The low order 16 bits of microprocessor data bus

212 are also connected directly to another parity FIFO

270, and also to a control port of a VME/FIFO DMA

10 controller 272. The FIFO 270 is used for passing

messages between the CPU memory 214 and one of the

remote boards 110, 112, 114, 116 or 118 (Fig. 2) in a

manner described below. The VME/FIFO DMA controller

272, which supports three round-robin non-prioritized

15 channels for copying data, controls all data transfers

between one of the remote boards and any of the FIFOs

240, 260 or 270, as well as between the FIFOs 240 and

260.

32-bit data bus 274, which is connected to the 32-

20 bit port B of each of the FIFOs 240, 260 and 270, is

the data bus over which these transfers take place.

Data bus 274 communicates with a local 32-bit bus 276

via a bidirectional pipelining latch 278, which is

also controlled by VME/FIFO DMA controller 727, which

25 in turn communicates with the VME bus 120 via a

bidirectional buffer 280.

The local data bus 276 is also connected to a set

of control registers 282, which are directly

addressable across the VME bus 120. The registers 282

30 are used mostly for system initialization and

diagnostics.

The local data bus 276 is also coupled to the

microprocessor data bus 212 via a bidirectional buffer

284. When the NC 110a operates in slave mode, the CPU

35 memory 214 i-s directly addressable from VME bus 120.

One of the remote boards can copy data directly from

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 986

. wo 91103788

· ...
;

PCT/US90/04711

-26-

the CPO memory 214 via the bidirectional buffer 284.
LAN memories 236 and 256 are not directly addressed
over VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of
5 an ASIC, the functions and operation of which are

described in the Appendix. The FIFOs 240 and 260 are
configured for packet data transfer and the FIFO 270
is configured for massage passing. Referring to the
Appendix, the FIFOs 240 and 260 are programmed with

10 the following bit settings in the Data Transfer
Configuration Register:

15

20

25

30

.8.ll D~fin;btis:m. liil!itt:!.ng
0 WD Mode N/A

1 Parity Chip N/A

2 Parity Correct Mode N/A

3 8/16 bits CPU & PortA interface 16 bits (1)

4 Invert Port A address 0 no (0)

5 Invert Port A address 1 yes (1)

6 Checksum Carry Wrap yes (1)

7 Reset no (0)

The. Data Transfer Control Register is programmed as

follows:

ru.t. c~t::Lniti2n Setting
0 Enable PortA Req/Ack yes (1)
1 Enable PortB Req/Ack yes (1)

2 Data Transfer Direction (as desired)
3 CPU parity enable no (0)

4 PortA parity enable no (0)
5 PortB parity enable no (0)

6 Checksum Enable yes (1)

7 PortA Master yes (1)
Unlike the confiquration used on FIFOs 240 and

260, the microprocessor 210 is responsible for loading
and unloading Port A directly. The microprocessor 210

.35 reads an entire 32-bit·word from port A with a sinlJle
instruction using two port A access cycles. Port A

SUBSTITUTE SHEET.

. ~.~ .. it~;?;:~~~-::.'~::~~~-~:;
-:-'

.'t

Oracle Ex. 1002, pg. 987

W091103788 PCI'/US90/04711 :

-27-

data transfer is disabled by unsetting bits 0 (Enable

PortA· Req/Ack) and 7 (PortA Master) of the Data

Transfer Control Register.

The remainder of the controi settings in FIFO 270

5 are the same as those in FIFOs 240 and 260 described

above.

The NC llOa also includes a command FIFO 290. The

command FIFO 290 includes an input port coupled to the

local data bus 276, and which is directly addressable

10 across the VME bus 120, and includes an output port

connected to the microprocessor data bus 212. As

explained in more detail below, when one of the remote

boards issues a command or response to the NC llOa, it

does so by directly writing a 1-word (32-bit) message

15 descriptor into NC 110a's command FIFO 290. Command

FIFO 290 generates a °FIFO not empty 11 status to the

microprocessor 210, which then reads the message

descriptor off the top of FIFO 290 and processes it.

If the message is a command, then it includes a VME

. 20 address at which the message1 is located (presumably an

address in a shared memory similar to 214 on one of

the remote boards). The microprocessor 210 then

programs the FIFO 270 and the VME/FIFO DMA controller

272 to copy the message from the remote location into

25 the CPU memory 214.

Command FIFO 290 is a conventional two-port FIFO,

except that additional circuitry is included for

generating a Bus Error signal on VME bus 120 if an

attempt is made to write to the data input port while

30 the FIFO is full. command FIFO 290 has space for 256

entries.

A noteworthy feature of the architecture of NC 110a

is that the LAN buses 232 and 252 are independent of

the microprocessor data bus 212. Data packets being

35 routed to or from an Ethernet are stored in LAN memory

· 236 on the LAN data bus 232 (or 256 on the LAN data

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 988

W091103788 PCT/US90/04711 ·

-28-

bus 2 52) , and not in the CPU memory 214 . Data
transfer between the LAN memories 236 and 256 and the
Ethernets 122a and 122b, are controlled by LAN
controllers 234 and 254, respectively, while most data

5 transfer between LAN memory 236 or 256 and a remote
port on the VME bus 120 are controlled by LAN DMA
controllers 242 and 262, FIFOs 240 and 260, and
VME/FIFO DMA controller 272. An exception to this
rule occurs when the size of the data transfer is

10 small, e.g., less than 64 bytes, in which case
microprocessor 210 copies it directly without using

DMA. The microprocessor 210 is not involved in larger
transfers except in initiating them and in receiving
notification when they are complete.

15 The CPU memory 214 contains mostly instructions for
microprocessor 210, messages being transmitted to or
from a remote board .via FIFO 270, and various data
blocks for controlling the FIFOs, the DMA controllers
and the LAN controllers. The microprocessor 210

20 accesses the data packets in the LAN memories 236 and
256 by directly addressing them through the
bidirectional buffers 230 and 250, respectively, for
protocol processing. The local high-speed static RAM

in CPU memory 214 can therefore provide zero wait
25 state memory access for microprocessor 210 independent

of network traffic. This is in sharp contrast to the
prior art architecture shown in Fig. 1, in which all

data and data packets 1 as well as microprocessor .
instructions for host CPU card 10 1 reside in the

30 memory 16 and must communicate with the host. CPU card
10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as
separate buses in Fig. 3, it will be understood that
they may instead be implemented as a single combined

35 bus.

SUBSTITUTE SHEET

....

Oracle Ex. 1002, pg. 989

..

W091/03788 PCf/US90/047I 1

-29-

NETWORK CQNTRQLLER QPEBATION

In operation, when one of the LAN controllers (such

as 234) receives a packet of information over its

Ethernet 122a, it reads in the entire packet and

5 stores it in corresponding LAN memory 236. The LAN

controller 234 then issues an interrupt to

microprocessor 210 via MFP 224, and the microprocessor

210 examines the status register on LAN controller 234
(via bidirectional buffer 230) to determine that the

10 event causing the interrupt was a areceive packet

completed.a In order to avoid a potential lockout of

the second Ethernet 122b caused by the prioritized

interrupt handling characteristic of MFP 224, the

microprocessor 210 does not at this time immediately

15 process the received packet; instead, such processing
_is scheduled for a polling function.

When the polling function reaches the processing of

the received packet, control over the packet is passed

to a software link level receive module. The link
20 level receive module then decodes the packet according

to either of two different frame formats: standard

Ethernet format or SNAP (IEEE 802 LCC) format. An

entry in the header in the packet specifies which

frame format was used. The link level driver then

25 determines which of three types of messages is
contained in the received packet: (1) IP, (2) ARP

packets which can be handled by a local ARP module, or
(3) ARP packets and other packet types which must be

forwarded to the local host 118 (Fiq. 2) for

30 processing. If the packet is an ARP packet which can

be handled by the NC 110a, such as a request for the

address of server 100, then the microprocessor 210

assembles a response packet in LAN memory 236 and, in

a conventional manner, ca.uses LAN controller 234 to

35 transmit that packet back over Ethernet 122a. It is

noteworthy that the data manipulation for

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 990

W091103788

5

10

PCf/US90/o4711

-30-

accomplishing this task is performed almost completely

in LAN memory 236, directly addressed by

microprocessor 210 as controlled by instructions in

CPU memory 214. The function is accomplished also

without generating any traffic on the VME backplane

1.20 at all, and without disturbing the local host 118.

If the received paoke~ is either an ARP packet

which cannot be processed completely in the NC 110a,

or is another type of packet which requires delivery

to the local host 118 (such as a client request for

the server 100 to execute a client-defined procedure),

then the microprocessor 210 programs LAN DMA

controller 242 to load the packet from LAN memory 236

into FIFO 240, programs FIFO 240 with the direction of

15 data transfer, and programs DMA controller 272 to re.ad

the packet out of FIFO 240 and across the VME bus 120

into system memory 116. In particular, the

microprocessor 210 first programs the LAN DMA

controller 242 with the starting address and lenqth of

20 the packet in LAN memory 236, and programs the

controller to begin transferring data from the LAN

memory 236 to port A of parity FIFO 240 as soon as the

FIFO is ready to receive d~ta. Second, microprocessor

25

30

210 programs the VME/FIFO DMA controller 272 with the

destination address in system memory 116 and the

length of the data packet, and instructs the

controller to begin transferring data from port B of

the FIFO 260 onto VME bus 120. Finally, the

microprocessor 210 programs FIFO 240 with the

direction of the transfer to take place. The transfer

then proceeds entirely under the control of DMA

controllers 242 and 272, without any further

involvement by microprocessor·210.

The microprocessor 210 then sends a message to host

35 118 that a packet is available at a specified system

memory address. The microprocesso~ 210 sends such a
SUBSTITUTE SHEET

;

......

Oracle Ex. 1002, pg. 991

I. .

W091/03788 PCf/US90/04711

-31-

message by writing a message descriptor to a software­

emulated command FIFO on the host, which copies the

message from CPU memory 214 on the NC via buffer 284

and into the host 1 s local memory, in ordinary VME

5 block transfer mode. The host then copies the packet

from system memory 116 into the host 1 s o~ local

memory using ordinary VME transfers.

If the packet received by NC 110a from the network

is an IP packet, then the micropr9cessor 210

10 determines whether it is (1) an IP packet for the

server 100 which is not an NFS packet; (2) an IP

packet to be routed to a different network; or (3) an

NFS packet. If it is an IP packet for the server 100,

but not an NFS packet, then the microprocessor 210

15 causes the packet to be transmitted from the LAN

memory 236 to the host 118 in the same manner

described above with respect to certain ARP packets.

If the IP packet is not intended for the server

100, but rather is to be routed to a client on a

20 different network, then the packet is copied into the

LAN memory associated with the Ethernet to which the

destination client is connected. If the destination

client is on the Ethernet 122b, which is on the same

NC board as the source Ethernet 122a, then the

25 microprocessor 210 causes the packet to be copied from

LAN memory 236 into LAN 256 and then causes LAN

controller 254 to transmit it over Ethernet 122b. (Of

course, if the two LAN data buses 232 and 252 are

30

combined, then copying would be unnecessary;

microprocessor 210 would simply cause the

controller 254 to read the packet out of the

the

LAN

same.

locations in LAN memory to which the packet was

written by LAN controller 234.)

The copying of.a packet from LAN memory 236 to LAN

35 memory 256 takes place similarly to the copying

described above from LAN memory to system memory. For

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 992

W091/03788

5

PCf/US90/04711

-32-

transfer sizes of 64 bytes or more, the m~croprocessor

210 first programs the LAN DMA controller 242 with the

starting address and length of the packet in LAN

memory 236, and pr~grams the controller to begin

transferring data from the LAN memory 236 into port A

of parity FIFO 240 as soon as the FIFO is ready to

receive data. second, microprocessor 210 programs the

LAN DMA controller 262 with a destination address in

LAN memory 256 and the length of the data packet, and

10 instructs that controller to transfer data from parity

FIFO 260 into the LAN memory 256. '!'bird,·

microprocessor 210 programs the VME/FIFO OMA
controller 272 to clock words of data out of port B Qf

the FIFO 240, over the data bus 274, and into port B

15 of FIFO 260. Finally, the microprocessor 210 programs

the two FIFOs 240 and 260 with the direction of the

transfer to take place. The transfer then proceeds

entirely under the control of DMA controllers 242, 262

and 272, without any further involvement by the

20 microprocessor 210. Like tbe copying from LAN memory

to system memory, if the transfer size is smaller than

64 bytes, the microprocessor 210 performs the transfer

directly, without DMA.
When each of the LAN DMA controilers 242 and 262

25 complete their work, they so notify microprocessor 210.

by a respective interrupt provided through MFP 224.

When the microprocessor 210 has received both

interrupts, it programs LAN controller 254 to transmit

30

the . packet on the Ethernet 122b in a conventional

manner.

Thus, IP rout~ng between the two Ethernets in a

single network controller 110 takes place over data •

bus 274, generating no traffic over VME bus 120. Nor

is the host processor 118 disturbed for such routing,

35 in contrast to the prior art architecture of Fig. 1.

Moreover, all but the shortest copying work is

SUBSTITUTE SHEET

···:

Oracle Ex. 1002, pg. 993

W09l/03788 PCI'/US90/04711

-33- .

performed by controllers outside microprocessor 210,

requiring the involvement of the microprocessor 210,

and bus traffic on microprocessor data bus 212, only

for the supervisory functions of programming the DMA

5 controllers and the parity FIFOs and instructing them

to begin·. The WE/FIFO DMA controller 272 is

programmed by loading control registers via

microprocessor data bus 212; the LAN DMA controllers

242 and 262 are programmed by loading control

10 registers on the respective controllers via the

microprocessor data bus 212, respective bidirectional

buffers 230 and 250, and respective LAN data buses 232

and 252, and the parity FIFOs 240 and 260 are

programmed as set forth in the Appendix.

15 If the destination workstation of the IP packet to

be routed is on an Ethernet connected to a different

one of the network controllers 110, then the packet is

copied into the appropriate LAN memory on. the NC 110

to which that Ethernet is connected. Such copying is

20 accomplished by first copying the packet into system

memory 116, in the manner described above with respect

to certain ARP packets, and then notifying the

destination NC that a packet is available. When an NC

is so notified, it programs its own parity FIFO and

25 DMA controllers to copy the packet from system memory

116 into the appropriate LAN memory. It is noteworthy

that though this type of IP routing does create VME

bus traffic, it still does not involve the host CPU

118.

30 If the IP packet received over the Ethernet 122a

and now stored in LAN memory 236 is an NFS packet

intended for the server 100, then the microprocessor

210 performs all necessary protocol preprocessing to

extract the NFS message and convert it to the local

35 NFS (LNFS) format. This may well involve the logical

concatenation of data extracted from a large number of

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 994

W09ll03788

·~

PCf/US90/04711

-34-

individual IP packets stored' in LAN memory 236,

resulting in a linked list, in CPU memory 214,

pointing to the different blocks of data in LAN memory

236 in the correct sequence.

5 The exact details of the LNFS format are not

important for an understanding of the invention,

except to note that it includes commands to maintain

a directory of files which are stored on the disks

attached to the storage processors 114, commands for

10 reading and writing data to and from a file on the

disks, and various configuration management and

diagnostics control messages. The · directory

maintenance commands which are supported by LNFS

include the following messages based on conventional

15 NFS: get attributes of a file (GETATTR); set

attributes of a file (SETATTR); look up a file

(LOOKUP); created a file (CREATE); remove a file

(REMOVE); rename a file (RENAME); created a new linked

file (LINK); create a symlink . (SYMLINK); remove a

20 directory (RMDIR); and return file system statistics

(STATPS). The data transfer commands supported by

LNFS include read from a file (READ); write to a file

(WRITE); read from a directory (READDIR); and read a

link (READLINK). LNFS also supports a buffer release

25 command (RELEASE), for notifying the file controller

that an NC is finished using a specified buffer in

system memory. It also supports a VOP-derived access

command, for determining whether a given type access

is legal for specified credential on a specified file.

30 If the LNFS request includes the writing of file

data from the ·LAN. memory 236 to .disk, the NC llOa

::_:.· .·.

first requests a buffer in system memory 116 to be ,.

allocated by the appropriate FC 112. When a pointer

to the buffer is returned, microprocessor 210 programs

35 LAN DMA controller 242, parity FIFO 240 and VME/PIFO

DMA controller 272 to transmit the entire block of

SUBSJnn[TE SftEEJ - ~·"'

Oracle Ex. 1002, pg. 995

..

W091/03788

5

PCT/US90/04711

-35-

file data to system memory 116. The only difference

between this transfer and the transfer·described above

for transmittinq IP packets and ARP packets to system

memory 116 is that these data.blocks will typically

have portions scattered throughout LAN memory 236.

·The microprocessor 210 accommodates that situation by

programminq LAN DMA controller 242 successively for

each portion of the data, in accordance with the

linked list, after receivinq notification that the

10 previous portion is complete. The microprocessor 210

can program the parity FIFO 240 and the VME/FIFO DMA

controller 272 once for the entire message, as lonq as

the entire data block is to be placed contiguously in

system memory 116. If it is not, then the

15 microprocessor 210 can program the DMA controller 272

for successive blocks in the same manner LAN DMA

controller 242.

If the network controller 110a receives a message

from another processor in server 100, usually from

20 file controller 112, that file data is available in

system memory 116 for transmission on one of the

Ethernets, for example Ethernet 122a, then the network

controller 110a copies the file data into LAN memory

236 in a manner similar to the copying of file data in

25 the opposite direction. In particular, the

microprocessor 210 first programs VME/FIFO DMA

controller 272 with the starting address and length of

the data in system memory 116, and programs the

controller to begin transferring data over the VME bus

30 120 into port B of parity FIFO 240 as soon as the FIFO

is ready to receive data. The microprocessor 210 then

programs the LAN DMA controller 242 with a destination

address in LAN memory 236 and then length of the file

data, and instructs that controller to transfer data

35 from the parity FIFO 240 into the LAN memory 236.

Third, microprocessor 210 programs the parity FIFO 240

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 996

W091/03788

5

PCf/US90/04711 :

-36-

with the direction of the· transfer to take place. The

transfer then proceeds entirely under the control of

DMA controllers 242 and 272, without any further

involvement by the microprocessor 210. Again, if the

file data is scattered in multiple blocks in system

memory 116, the microprocessor 210 programs the

VME/FIFO DMA controller 272 with a linked list of the

blocks to transfer in the proper order.

When each of the DMA controllers 242 and 272

10 complete their work, they so notify microprocessor 210

through MFP 224. The microprocessor 210 then performs

15

all necessary protocol processing on the LNFS message

in LAN memory 236 in order to prepare the message for

transmission over the Ethernet 122a in the form of

Ethernet IP packets. As set forth above, this

protocol processing is performed entirely in network

controller 110a, without any involvement of the local

host 118.

It should be noted that the parity FIFOs are

20 designed to move multiples of 128~byte blocks most

efficiently. The data transfer size through port B is

always 32-bits wide, and the VME address corresponding

to the 32-bit data must be quad-byte aligned. The

data transfer size for port A can be either 8 or 16

25 bits. For bus .utilization reasons, it is set to 16

bits when the corresponding local start address is

double-byte aligned, and is set at 8 bits otherwise.

The TCP/IP checksum is always computed in the 16 bit

mode. Therefore, the checksum word requires byte

30 swapping if the local start address is not double­

byte aligned.

· .. · .

!':

Accordingly, for transfer from port B to port A of .· ·!'

any of the FIFOs 240, 260 or 270, the microprocessor

210 programs the VME/FIFO DMA controller to pad the

35 transfer count to the next 128-byte boundary. The

extra 32-bit word transfers do not involve the VME

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 997

W091/03788 PCT /US90/04711

-37-

bus, and only the desired number of 32-bit words will

be unloaded from port A.

For transfers from port A to port B of the parity

FIFO 270, the microprocessor 210 loads port A word-

5 by-word and forces a FIFO full indication when it is

finished. The FIFO full indication enables unloading

from port B. The same procedure also takes place for

transfers from port A to port B of either of the

parity FIFOs 240 or 260, since transfers of fewer than

10 128 bytes are performed under local microprocessor

control rather than under the control of LAN DMA

controller 242 or 262. For all of the FIFOs, the

VME/FIFO DMA controller is programmed to unload only

the desired number of 32-bit words.

15 FILE CONTROLLER HARDWARE ARQHITECTURE

The file controllers (FC) 112 may each be a

standard off-the-shelf microprocessor board, such as

one manufactured by Motorola Inc. Preferably,

however, a more specialize~ board is used such as that

20 shown in block.diagram form in Fig. 4.

Fig. 4 shows one of the FCs 112a, and it will be

understood that the other FC can be identical. In

many aspects it is simply a scaled-down version of the

NC 110a shown in Fiq. 3, and in some respects it is

25 scaled up. Like the NC 110a, FC 112a comprises a

20MHz 68020 microprocessor 310 connected to. a 32-bit

microprocessor data bus 312. Also connected to the

microprocessor data bus 312 is a 256K byte shared CPU

memory 314. The low order 8 bits of the

30 microprocessor data bus 312 are connected through a

bidirectional buffer 316 to an 8-bit slow-speed data

bus 318. On slow-speed data bus 318 are a 128K byte

PROM 320, and a multifunction peripheral (MFP) 324.

The functions of the PROM 320 and MFP 324 are the same

35 as those described above with respect to EPROM 220 and

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 998

W091/03788

5

PCf/US90/04711

-38-

MFP 224 on NC 110a. FC 112a 'does not include PROM
like the PROM 222 on NC llOa, but does include a
parallel port 392. The parallel port 392 is mainly
for testing and diagnostics.·

Like the NC 110a, the FC 112a is connected to the
VME bus 120 via a bidirectional buffer 380 and a 32-

bit local data bus 376. A set of control registers
382 are connected to the local data bus 376, and
directly addressable across the VME bus 120. The

10 local data bus 376 is also coupled to the
microprocessor data bus 312 via a bidirectional buffer

384. This permits the direct addressability of CPU
memory 314 from VME bus 120.

FC 112a also includes a command FIFO 390, which
.15 includes an input port coupled to the local. data bus

376 and which is directly addressable across the VME

bus 120. The command FIFO 390 also incl.udes an output
port connected to the microprocessor data bus 312.
The structure, operation and purpose of command FIFO

20 390 are the same as those described above with respect
to command FIFO 290 on NC 110a.

The FC 112a omits the LAN data buses 323 and 352

which are present in NC 110a, but instead includes a
4 megabyte 32-bit wide FC memory 396 coupl.ed to the

25 microprocessor data bus 312 via a bidirectional. buffer
394. As will be seen, FC memory 396 is used as a
cache memory for file control information, separate
from the file data information cached in system memory
116.

30 The file controller embodiment shown in Fig. 4 does
not include any DMA controllers, and hence cannot act

as a master for transmitting or receiving data in any·

block transfer mode, over the VME bus 120. Block
transfers do occur with the CPU memory 314 and the FC

35 memory 396, however, with the FC 112a acting as an VME

bus slave. In such ·transfers, the remote master

SUBSTITUTE SHEET

. ~

Oracle Ex. 1002, pg. 999

"

..

W09l/03788

-39-

addresses the CPU memory 314 or

directly over the VME bus

PCI'/US90/04711

the FC memory 396

120 through the

bidirectional buffers 384 and, if appropriate, 394.

5 FILE CONTROLLER OPERATION

The purpose of the FC 112a is basically to provide

virtual file system services in response to requests

provided in LNFS format by remote processors on the

VME bus 120. Most requests will come from a network

10 controller 110, but requests. may also come from the

local host 118.

The file related commands supported by LNFS are

identified above. They are all specified to the FC

112a in terms of logically identified disk data

15 blocks. For example, the LNFS command for reading

data from a file includes a specification of the file

from which to read (file system ID (FSID) and file ID

(inode)), a byte offset, and a count of the number of

bytes to read. The FC 112a converts that

20 identification into physical form, namely disk and

sector numbers, in order to satisfy the command.

The FC 112a runs a conventional Fast File System

(FFS or UFS), which is based on the Berkeley 4.3 VAX

release. This code performs the conversion and also.

25 performs all disk data caching and control data

caching. However, as previously mentioned, control

data caching is performed using the FC memory 396 on

FC 112a, whereas disk data caching is performed using

the system memory 116 (Fig. 2). Caching this file

30 control information within the FC 112a avoids the VME

bus congestion and speed degradation which would

result if file control information· was cached in

system memory 116. The memory on the FC 112a is

directly accessed over the VME bus 120 for three main

35 purposes. First, and by far the most frequent, are

accesses to FC memory 396 by an SP 114 to read or

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1000

.·:· .. ;' .. :.··. ·. ·:~,:·· :;·,:·~j.'.'-'1 .·· .. ,.·:· .
. . ·. . .. ~

PCf/US90/04711
.· ...

. . . . !

W091/03788

5

-40-

write cached file control information. These are

accesses requested· by FC 112a to write locally

modified file control structures through to disk, or

to read file control structures from disk. Second,

the FC's CPU memory 314 is accessed directly by other

processors for message transmissions from the FC 112a

to such other processors. For example, if a data

block in system memory is to be transferred to an SP

114 for writing to disk, the FC 112a first assembles

10 a message in its local memory 314 requesting such a

transfer. The FC 112a then notifies the SP 114, which

copies the message directly from the CPU memory 314

and executes the requested transfer.

A third type of direct access to the FC' s local

15 memory occurs when an LNFS client reads directory

entries. When Fe 112a receives an LNFS request to

read directory entries, the FC 112a formats the

requested directory entries in FC memory 396 and

notifies the requestor of their location. The

20 requestor then directly accesses FC memory 396 to read

the entries.

The version of the UFS code on FC 112a includes

some modifications in order to separate the two

caches. In particular, two sets of buffer headers are

25 maintained, one for the FC memory 396 and one for the

system memory 116. Additionally, a second set of the

system buffer routines (GETBLK(), BRELSE(), BREAD(),

BWRITE(.), and BREADA()) exist, one for buffer accesses

to FC Mem 3 96 and one for .buffer accesses to system ·

30 memory 116. The UFS code is further modified to.call

the appropriate buffer routines for FC memory 396 for

accesses to file control information, and to call the ~

appropriate buffer routines for the system memory 116

for. the caching of disk data. A description of UFS

35 may be found in chapters 2, 6, 7 and 8 of aKernel

Structure and Flow, n by Rieken and Webb of . sh

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1001

..

..

....

W091/03788

5

PCf/US90/04711

-41-

consulting (Santa Clara, California:

incorporated herein by reference.

1988),

When a read command · is sent to the FC by a

requestor such as a network controller, the FC first

converts the file, offset and count information into

disk and sector information. It then locks the system

memory buffers which contain that information,
instructinq the storaqe processor 114 to read them

from disk if necessary. When the buffer is ready, the

10 FC returns a message to the requestor containing both

the attributes of the designated file and an array of

buffer descriptors that identify the locations in

system memory 116 holding the data.

After the requestor has read the data out of the

15 buffers, it sends a release request back to the FC.

The release request is the same message that was

returned ·by the FC in response to the read request;

the FC 112a uses the information contained therein to

determine which buffers to free.

20 A write command is processed by FC 112a similarly

to the read command, but the caller is expected to

write to (instead of read from) the locations in

system memory 116 identified by the buffer descriptors

returned by the FC 112a. Since FC 112a employs write-

25 through caching, when it receives the release command

from the requestor, it instructs storage processor 114

to copy the data from system memory 116 onto the

appropriate disk sectors before freeing the system

memory buffers for possible reallocation.

30 The READDIR transaction is similar to read and

write, but the request is satisfied by the FC 112a

directly out of its own FC memory 396 after formatting

the requested directory information specifically for

this purpose. The FC 112a causes the storage

35 processor read the requested directory information

from disk if it is not already locally cached. Also,

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1002

W091103788

5

PCf/US90/04711

-42-

the specified offset is a "maqic cookie" instead of a

byte offset, identifying- directory entries instead of

an absolute byte offset into the file. No file

attributes are returned.
The READLINK transaction also returns no file

attributes, and since links are always read in their

entirety, it does not require any offset or count.

For all of the disk data caching- performed throug-h

system memory 116, the FC 112a acts as. a central

10 authority for dynamically allocating-, deallocatinq and

keeping- track of buffers. If there are two or more

15

FCs 112, each has exclusive control over its own

assiqned portion of system memory 116. In all of

these transactions, the requested buffers are locked .

durinq the period between the initial request and the

release request. This prevents corruption of the data

r" by other clients.

Also in the situation where there are two or more

FCs, each file system on the disks is assiqned to a

20 particular one of the FCs! FC iO runs a process

called FC_VICE_PRESIDENT, which maintains a list of

which file systems are assigned to which FC. When a

client processor (for example an NC 110) is about to

make an LNFS request desiqnatinq a particular file

25 system, it first sends the fsid in a messag-e to the

FC_VICE_PRESIDENT asking- which FC controls the

specified file system. The FC_VICE_PRESIDENT

responds, and the · client processor sends the LNFS

request to the desiqnated FC. The client processor

30 also maintains its own list of fsid/FC pairs as it

discovers them, so as to minimize the number of such

requests to the FC_VICE_PRESIDENT.

STORAGE PROCESSOR HARQWARE ARCHITECTURE

35 In the file server 100, each of the storag-e

processors 114 can interface the VME bus 120 with up

SUBSTITUTE SHEET

:" · .. '.

'. ,'

.• ~-

Oracle Ex. 1002, pg. 1003

W091/03788 PCf /US90/04711

-43-

to 10 different SCSI buses. Additionally, it can do

so . at the full usage rate of an enhanced block

transfer protocol of 55MB per second.

Fig. 5 is a block diagram of one of the SPs 114a.

5 SP 114b is identical. SP 114a comprises a

microprocessor 510, which may be a Motorola 68020

microprocessor operating at 20MHz. The microprocessor

510 is coupled over a 32-bit microprocessor data bus

512 with CPU memory 514, which may_include up to 1MB

10 of static RAM. The microprocessor 510 accesses

instructions, data and status on its own private bus

512, with no contention from any other source. The

microprocessor 510 is the only master of bus 512.

The low order 16 bits of the microprocessor data

15 bus 512 interface with a control bus 516 via a

bidirectional buffer 518. The low order 8 bits of the

control bus 516 interface with a slow speed bus 520

via another bidirectional buffer 522. The slow speed

bus 520 connects to an MFP 524, similar to the MFP 224

20 in NC 110a (Fig. 3), and with a PROM 526, similar to

PROM 220 on NC llOa. The PROM 526 comprises 128K

bytes of EPROM which contains the functional code for

SP 114a. Due to the width and speed of the EPROM 526,

the functional code is copied to CPU memory 514 upon

25 reset for faster execution.

MFP 524, like the MFP 224 on NC 110a, comprises a

Motorola 68901 multifunction peripheral device. It

provides the functions of a vectored interrupt

controller, individually programmable I/O pins, four

30 timers and a UART. The UART functions provide serial

communications across an RS 232 bus (not shown in Fig.

5) for debug monitors and diagnostics. Two of the

four timing functions may be used as general-purpose

timers by the microprocessor 510, either independently

35 or in cascaded fashion. A third timer function

provides the refresh clock for a DMA controller

Oracle Ex. 1002, pg. 1004

. wo 91/03788

5

10

15

20

25

30

35

40

-~

PCT/US90/04711

-44-

described below, and the fourth timer generates the
UART clock. Additional information on the MFP 524 can
be found in "MC 68901 Multi-Function Peripheral
Specification," by Motorola, Inc., which is
incorporated herein by reference. The e i g h t

general-purpose I/0 . bits provided by MFP 524 are
configured according to the following table:

Direction Definition

7 input

6 input

5 ·input

4 output

3 input

2 input

1 output

Power Failure is Imminent
functions as an early warning.

This

SCSI Attention- A composite of the SCSI.
Attentions from all 10 SCSI channels.

Channel Operation Done - A composite of
the channel done bits. from all 13
channels of the DMA controller, described
below.

DMA Controller Enable. Enables the DMA
Controller to .run.

VMEbus Interrupt Done - Indicates the
completion of a VMEbus Interrupt.

Command Available - Indicates that the
SP'S Command Fifo, described below,
contains one or more command pointers.

Exter.nal Interrupts Disable. Disables
externally generated interrupts to the
microprocessor 510.

0 output . Command Fifo Enable. Enables operation of
the SP' S Command Fifo. Clears the Command

Fifo when reset.
Commands are provided to the SP 114a from the VME

bus 120 via a bidirectional buffer 530, a local data

bus 532, and a command FIFO 534. The command FIFO 534

is simi~ar to the command FIFOs 290 and 390 on NC 110a
and FC 112a, respectively, ·and has a depth of 256 32-

bit entries. The command FIFO 534 is a write-only

register as seen on the VME bus 120, and as a read-
45 only register as seen by microprocessor 510. If the

SUBSTITUTE SHEET

::.·

,

··:

Oracle Ex. 1002, pg. 1005

•

W091/03788 PCf/US90/04711

-45-

FIFO is full at the beginning of a write from the VME

bus, a VME bus error is qenerated. Pointers are

removed from the command FIFO 534 in the order

received, and only by the microprocessor 510. Command

5 avai_able status is provided through I/O bit 4 of the
MFP 524, and as a long as one or more command pointers
are still within the command FIFO 534, the command
available status remains asserted.

As preyiously mentioned, the SP 114a supports up to

10 10 SCSI buses or channels 540a-540j. In the typical

configuration, buses 540a-540i support up to 3 SCSI

disk drives each, and channel 540j supports other SCSI

peripherals such as tape drives, optical disks, and so
on. Physically, the SP 114a connects to each of the

15 SCSI buses with an ultra-miniature D sub connector and
round shielded cables. Six 50-pin cables provide 300

conductors which carry 18 signals per bus and 12

grounds. The cables attach at the front panel of the

SP 114a and to a commutator board at the disk drive
20 array. Standard 50-pin cables connect each SCSI

device to the commutator board. Termination resistors

are installed on the SP 114a.
The SP 114a supports synchronous parallel data

transfers up to 5MB per second on each of the SCSI

25 buses 540, arbitration, and disconnect/reconnect

services. Each SCSI bus 540 is connected to a

respective SCSI adaptor 542, which in the present

embodiment is an AIC 6250 controller IC manufactured

by Adaptec Inc., Mi~pitas, California, operating in

30 the non-multiplexed address bus mode. The AIC 6250 is
described in detail in °AIC 5250 Functional·

Specification, u by Adaptec Inc., which is incorporated

herein by reference. The SCSI adaptors 542 each

provide the necessary hardware interface and low-

35 level electrical protocol to implement its respective

SCSI channel.

SPBiftTb1E SHEET

Oracle Ex. 1002, pg. 1006

W09l/03788

5

PCT/US90/04711

-46-

The 8-bit data port of each'of the SCSI adaptors

542 is connected to port A of a respective one of a
set of ten parity FIFOs 544a-544j. The FIFOs 544 are
the same as FIFOs 240, 260 and 270 on NC 110a, and are
connected and configured to provide parity covered
data transfers between the 8-bit data port of the
respective SCSI adaptors 542 and a 36-bit (32-bit plus
4 bits of parity) common data bus 550. The FIFOs 544
provide handshake, status, word assembly/disassembly.

10 and speed matching FIFO buffering for this purpose.

15

The FIFOs 544 also generate and check parity for the
32-bit bus, and for RAID 5 implementations they
accumulate and check redundant data and accumulate
reco'Vered data ..

All of the SCSI adaptors 542 reside at a single
location of the address space of the microprocessor
510, as do all of the parity FIFOs 544. The

microprocessor 510 selects individual controllers and
FIFOs for access in pairs, by first programming a pair

20 select register (not shown) to point to the desired
pair and then reading from or writing to the control
register address of the desired chip in the pair. The
microprocessor 510 communicates with the control
registers on the SCSI adaptors 542 via the control bus

25 516 and an additional bidirectional buffer 546, and
communicates with the control registers on FIFOs 544
via the control bus .516 and a bidirectional buffer
552. Both the SCSI adaptors 542 and FIFOs 544 employ
8-bit control registers, and register addressing of

30

35

the FIFOs 544 is arranged such that such registers
alias in consecutive byte locations. This allows the

microprocessor 510 to write to the registers as a

single 32-bit register, thereby reducing instruction
overhead.

'l'he parity FIFOs 544 are each configured in their

Adaptec 6250 mode. Referring to the Appendix, the.

!'
..

·.'

Oracle Ex. 1002, pg. 1007

W091/03788

5

10

15

20

PCf/US90/04711

-47-

FIFOs 544 are programmed with the following bit

settings in the Data Transfer Configuration Register:

lU.t.
0

1

2

3

4

5

6

7

Definition

WD Mode

Parity Chip

Parity Correct Mode

8/16 bits CPU ~ PortA interface

Invert Port A address 0

Invert Port A address 1

Checksum Carry Wrap

Reset

Setting

(O)

(1)

(0)

(0)

(1)

(1)

(0)

(O)

The Data Transfer Control Register is programmed as

follows:

Ri:t
0

1

2

3

4

5

Definition

Enable PortA Req/Ack

Enable PortB Req/Ack

Data Transfer Direction

CPU parity enable

PortA parity enable

PortB parity enable

Setting

(1)

(1)

as desired

(0)

(1)

(1)

6 Checksum Enable (0)

7 PortA Master (O)

In addition, bit 4 of the RAM Access Control

25 Register (Long Burst) is programmed for 8-byte bursts.

SCSI adaptors 542 each generate a respective

interrupt signal, the status of which are provided to

microprocessor 510 as 10 bits of a 16-bit SCSI

interrupt reqister 556. The SCSI· interrupt reqister

30 556 is connected to the control bus 516.

Additionally, a composite SCSI inte-rupt is provided

throuqh the MFP S24 whenever any one of the SCSI

adaptors 542 needs servicinq.

An additional parity FIFO 554 is also provided in

35 the SP. 114a, for messaqe passinq. Aqain referrinq to

the Appendix, the parity FIFO 554 is proqrammed with

S~BSTITUTE SHEET

Oracle Ex. 1002, pg. 1008

. wo 91103788

5

10

15

20

PCT/US90/04711

-48-

the followinq bit settinqs in the Data Transfer
Confiquration Register:

1U:t.
0

1

2

3

4

5

6

7

pefinition

WD Mode
Parity Chip

Parity Correct Mode
8/16 bits CPU & PortA interface
Invert· Port A address 0
Invert Port A address 1

·checksum Carry Wrap

Reset

Setting
(0)

(1)

(0)
(1)

(1_)

(1}

(0)

(0)

The Data Transfer Control Register is programmed as
follows:

JUt.
0

1

2

3

4

5

6

7

Definition

Enable PortA Req/Ack
Enable PortB Req/Ack
Data Transfer Direction
CPU parity enable
PortA parity enable
PortB parity enable
Checksum Enable
PortA Master

Setting
(0)

(1)

as desired
(0)

(0)

(1)

(0)

(0)

In addition, bit 4 of the RAM Access Control
Register (Long Burst) is programmed for 8-byte bursts.

25 Port A of FIFO 554 is connected to the 16-bit

30

control bus 516, and port B is connected to the common
data bus 550~ FIFO 554 provides one means by which
the microprocessor 510 can communicate directly with
the VME bus 120, as is described in more detail below.

The microprocessor 510 manages data movement using
a set of 15 channels, each of which has an unique

status which indicates its current state. Channels
are implemented using a channel enable register 560

and a channel status register 562, both connected to

35 ~e control bus 516. The channel enable reqister 560

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1009

W091103788 PCI'/US90/04711

-49-

is a 16-bit write-only register, whereas the channel

status register 562 is a 16-bit read-only register.

The two registers reside at the same address to

microprocessor 510. The microprocessor 510 enables a

5 particular channel by setting its respective bit in

channel enable register 560, and recognizes completion
of the specified operation by testing for a udonen bit
in the channel status register 562. The
microprocessor 510 then resets the enable bit, which

10· causes the respective adone" bit in the channel status

register 562 to be cleared.

15

20

25

30

35

40

45

The channels are defined as follows:
CHANNEL FUNCTIQN

0:9

11:10

12

13

14

These channels control data movement to
and from the respective FIFOs 544 via the
comm :l data bus 550. When a FIFO is
enabled and a request is received from
it, the channel becomes ready. Once the
channel has been serviced a status of
done is generated.

These channels control data movement between
a local data buffer 564, described below, and
the VME bus 120. When enabled the channel
becomes ready. Once the channel has been
serviced a status of done is generated.

When enabled, this channel causes the DRAM in
local data buffer 564 to be refreshed based on
a clock which is generated by the MFP 524.
The refresh consists .of a burst of 16 rows.
This channel does not generate. a status of
done.

The microprocessor's communication FIFO 554 is
serviced by this channel. When enable is set
and the FIFO 554 asserts a request then the
channel becomes ready. This channel generates
a status of done.

Low latency writes from microprocessor 510
onto the VME bus 120 are controlled by this
channel. When this channel is enabled data is
moved from a special 32 bit register,
described below, onto the VME bus 120. This
channel generates a done status.

SUBSTITUJE ~~T ...

Oracle Ex. 1002, pg. 1010

W091/03788

5

10

PCf/US90/04711

·-so-

15 This is a null · channei for which neither a
ready status nor done status is generated.

Channels are prioritized to allow servicing of the
more critical requests first~ Channel priority is
assigned in a descending order starting at channel 14.
That is, in the event that all channels are requesting

service, channel 14 will be the first one served.
The common data bus 550 is coupled via a

bidirectional register 570 to a 36-bit junction bus
572. A second bidirectional register 574 connects the

junction bus 572 with the local data bus 532. Local
data buffer 564, which comprises 1MB of DRAM, with
parity, is coupled bidirectionally to the junction bus

15 572. It is organized to provide 256K 32-bit words

with byte parity. The SP 114a operates the DRAMs in
page mode to support a very high data rate, which

requires bursting of data instead of random single­

word accesses. It will be seen that the local data

20 buffer 564 is used to implement a RAID (redundant
array of inexpensive disks) algorithm, and is not used
for direct reading and writing between the VME bus 120
and a peripheral on one of the SCSI buses 540.

A read-only register 576, containing all zeros, is

25 also connected to the junction bus 572. This register
is used mostly for diagnostics, initialization, and

clearing of large blocks of data in system memory 116.

30

The movement of data between the FIFOs 544 and 554,
the local data buffer 564, and a remote entity such as

the system memory 116 on the VME bus 120, is all

controlled by a VME/FIFO DMA controller 580. The

VME/FIFO DMA controller 580 is similar to the VME/FIFO

~ . ·.

!' .·

DMA controller 272 on network controller 110a (Fig. •

~), and is described in the Appendix. Briefly, it

35 includes a bit slice engine 582 and a dual-port static

RAM 584. One port of the dual-port static RAM S84

communicates over the 32-bit microprocessor data bus

Oracle Ex. 1002, pg. 1011

W091/03788 PCf /US90/84711

-51-

512 with microprocessor 510, and the other port

communicates over a separate 16-bit bus with the bit

slice engine 582. The microprocessor 510 places

command parameters in the dual-·port RAM 584, and uses

5 the channel enables 560 to signal the VME/FIFO DMA

controller 580 to proceed with the command. The

VME/FIFO DMA controller is responsible for scanning

the channel status and servicing requests, and

returning ending status in the dual-port RAM 584. The

10 dual-port RAM 584 is organized as 1K x 32 bits at the

32-bit port and as 2K x 16 bits at the 16-bit port. A

example showing the method by which the microprocessor

510 controls the VME/FIFO DMA controller 580 is as

follows. First, the microprocessor 510 writes into

15 the dual-port RAM 584 the desired command and

associated parameters for the desired channel. For

example, the command might be, 11 COPY a block of data

from FIFO 544h out into a block of system memory 116

beginning at a specified VME address." Second, the

20 microprocessor sets the channel enable bit in channel

enable register 560 for the desired channel.

At the time the channel enable bit is set, the

appropriate FIFO may not yet be ready to send data.

Only when the VME/FIFO DMA controller 580 does receive

25 a 11 ready a status from the channel, will the controller

580 execute the command. In the meantime, the DMA

controller 580 is free to execute commands and move

data to or from other channels.

When the DMA controller 580 does receive a status

30 of •readyu from the specified channel, the controller

fetches the channel command and parameters from the

dual-ported RAM 584 and executes. When the command is

complete, for example all the requested data has been

copied, the DMA controller writes status back into the

35 dual-port RAM 584 and asserts "done" for the channel

in channel status register 562. The microprocessor

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1012

.. wo 91/03788

5

Per /US90/04711

-52-

510 is then interrupted, at which time it reads
channel status register 562 to determine which channel·

interrupted. The microprocessor 510 then clears the

channel enable for the appropriate channel and checks
the ending channel status in the dual-port RAM 584.

In this way a high-speed data transfer can take

place under the control of DMA controller 580, fully

in parallel with other activities being performed by

microprocessor 510. The data transfer takes place

10 over busses different from microprocessor data bus
512, thereby avoiding any interference with

microprocessor instruction fetches.
The SP 114a also includes a high-speed register

590, which is coupled between the microprocessor data

15 bus 512 and the local data bus 532. The high-speed

register 590 is used to write a single 32-bit word to
an VME bus target with a minimum of overhead. The

register is write only as viewed from the

microprocessor 510. In order to write a word onto the
20 VME bus ·120, the microprocessor 510 first writes the

word into the register 590, and the desired VME target

address into · dual-port RAM 584. When the
microprocessor 510 enables the appropriate channel in
channel enable register 560, the DMA controller 580

25 transfers the data from the register 590 into the VME

bus address specified in the dual-port RAM 584. The

DMA controller 580 then writes the ending status to
the dual-port RAM and sets the channel adonen bit 'in

channel .status register 562.
30

35

This procedure is very efficient for transfer of a

single word of data, but becomes inefficient for large

blocks of data. Transfers of greater than one word of

data, typically for message passing, are usually

performed using the FIFO 554.

The SP 114a also includes a series of registers

592, similar to the registers 282 on NC 110a (Pig. 3)

· SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1013

W091/03788 PCr/US90/0471 1

-53-

and the registers 382 on FC 112a (Fig. 4). The
details of these registers are not important for an

understanding of the present invention.

5 STORAGE PROCESSOR OPERATION

The 30 SCSI disk drives supported by each of the

SPs 114 are visible to a client processor, for example
one of the file controllers 112, either as three
large, logical disks or as 30 independent SCSI drives,

10 depending on configuration. When the drives are

visible as three logical disks, the SP uses RAID 5

design algorithms to distribute data for each logical

drive on nine physical drives to minimize disk arm

contention. The tenth drive is left as a spare. The
15 RAID 5 algorithm (redundant array of inexpensive

drives, revision 5) is described in "A Case For a
Redundant Arrays .of Inexpensive Disks (RAID)", by

Patterson et al., published at ACM SIGMOD Conference,
Chicago, Ill., June 1-3, 1988, incorporated herein by

20 reference.
In the RAID 5 design, disk data are divided into

stripes. Data stripes are recorded sequentially on

eight different disk drives. A ninth parity stripe,

the exclusive-or of eight data stripes, is recorded on

25 a ninth drive. If a stripe size is set to 8K bytes, a
read of 8K of data involves only one drive. A write of

8K of data involves two drives: a data drive and a

parity drive. Since a write requires the reading back

of old data to generate a new parity stripe, writes

30 are also referred to as modify writes. The SP 114a

supports nine small reads to nine SCSI drives

concurrently. When stripe size is set to 8K, a read of

64K of data starts all eight SCSI drives, with each

drive reading one 8K stripe worth of data. The

35 parallel operation is transparent to the caller

client.
SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1014

W091103788

5

PCf /US90l04711

-54-

The parity stripes are rotated among the nine

drives in order to avoid drive contention during write

operations. The parity stripe is used to improve

availability of data. When one· drive is down, the SP

114a can reconstruct the missing data from a parity

stripe. In such case, the SP 114a is running in error

recovery mode. When a bad drive is repaired, the SP

114a can be instructed to restore data on the repaired

drive while the system is on-line.

10 When the SP 114a is used to attach thirty

independent SCSI drives, no parity stripe is created

and the ciient addresses each drive directly.

The SP 114a processes multiple messages

{transactions 1 commands) at one time 1 up to 200

15 messages per second. The SP 114a does not initiate any

messages after initial system configuration. The

following SP 114a operations are defined:

01 No Op

02 Send Configuration Data

20 03 Receive Configuration Data

25

30

. 05 Read and Write Sectors

06 Read and Write Cache Pages

07 IOCTL Operation

08 Dump SP 114a Local Data Buffer

09 Start/Stop A SCSI Drive

OC Inquiry

OE Read Message Log Buffer

OF Set SP 114a Interrupt

The above transactions are described in detail in

the above-identified application entitled MULTIPLE·

FACILITY OPERATING SYSTEM ARCHITECTURE. For and

understanding of the invention, it will be useful to

describe the function and operation of only two of

these commands: read and write sectors, and read and

35 write cache pages.

SUBSTITUTE SHEET

'; ·:.;.~.: ~' . '

"

:.·'

:-.. ·.

Oracle Ex. 1002, pg. 1015

W091/03788 PCf/US90/04711

-55-

Read and Write Segtors

This command, issued usually by an FC 112, causes

the SP 114a to transfer data between a specified block

of system memory and ~ specified series of contiguous

5 sectors on the SCSI disks. As previously described in

connection with the file controller 112, the

particular sectors are identified in physical terms.

In particular, the particular disk sectors are

identified by SCSI channel n~mber (0-9), SCSI ID on

10 that channel number (0-2), starting sector address on

the specified drive, and a count of the number of

sectors to read or write. The SCSI channel number is

zero if the SP 114a is operating under RAID 5.

The SP 114a can execute up to 30 messages on the 30

15 SCSI drives simultaneously. Unlike most of the

commands to an SP 114, which are processed by

microprocessor 510 as soon as they appear on the

command FIFO 534, read and write sectors commands (as

well as read and write cache memory commands) are

20 first sorted and queued. Hence, they are not served

in the order of arrival.

When a disk access command arrives, the

microprocessor 510 determines which disk drive is

targeted and inserts the message in a queue for that

25 disk drive sorted by the target sector address. The

microprocessor 510 executes commands on all the queues

simultaneously, in the order present in the queue for

each disk drive. In order to minimize disk arm

movements, the microprocessor 510 moves back and forth

30 among queue entries in an elevator fashion.

If no error conditions are detected from the SCSI

disk drives, the command is completed normally. When

a data check error condition occurs and the SP 114a is

configured for RAID 5, recovery actions using

35 redundant data begin automatically. When a drive is

down while the SP 114a is configured for RAID 5,

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1016

W091/03788

5

PCf/US90/04711

-56-

.recovery actions similar to data check recovery take
place.

Read/write Cache Pages

This command is similar to read and write sectors,
except that multiple VME addresses are provided for
transferring disk data to and from system memory 116.
Each VME address points 1;:o a cache page in system
memory 116, the size of which is also specified in the

10 command. When transferring data from a disk to system
memory 116, data are scattered to different cache

pages; when writing data to a disk, data.are gathered
from different cache pages in system memory 116.

Hence, this operation is referred to as a scatter-
15 gather function.

The target sectors on the SCSI disks are specified
in the command in physical terms, in the same manner
that they are specified for the read and write sectors
command. Termination of the command with or without

20 error conditions is the same as for the read and write
sectors command.

The dual-port RAM 584 in the DMA controller 580

maintains a separate set of commands for each channel
controlled by the bit slice engine 582. As each

25 channel completes its previous operation, the
microprocessor 510 writes a new DMA operation into the

dual-port RAM 584 for that channel in order to satisfy
the next operation on a disk elevator queue.

30

The commands written to the DMA controller 580
include. an operation code and a code indicating
whether the operation is to be performed in.non-block
mode, in standard VME block mode, or in enhanced block !

· mode. The operation codes supported by DMA controller.
580 are as follows:

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1017

W09l/03788

5

10

15

20

25

30

35

40

45

50

PCI'/US90/04711

-57-

OP CODE OPERATION

0

1

2

3

4

5

6

NO-OP

ZEROES -> BUFFER

ZEROES -> FIFO

ZEROES -> VMEbus

VMEbus -> BUFFER

VMEbus -> FIFO

Move zeros from zeros
register 576 to local
data buffer 564.

Move zeros f.. -::eros
register 57t ~ the
currently selected
FIFO on common data
bus 550.

Move zeros from zeros
register S 7 6 out onto
the VME bus 120.
Used for 'initializing
cache buffers in
system memory 116.

Move data from the
VME bus 120 to the
local data buffer
564. This operation
is used during a
write, to move target
data intended for a
down drive into the
b u f f e r f o r
participation in
r e d u n d a n c y
gene~ation. Used
only for RAID 5
application.

New data to be
written from VME bus
onto a drive. Since
RAID 5 requires
redundancy data to be
generated from data
that is buffered in
local data buffer
564, this operation
will be used only if
the SP 114a is not
configured for RAID
5.

VMEbus -> BUFFER & FIFO
Target data is moved from
VME bus 120 to a SCSI

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1018

W091103788

5

10 7

a

15

20 9

25 A

30

B

35

SYSTEM MEMORY

-~

Per IUS90/04711

-58-

device and is also
captured in the local data
buffer 564 for
participation in
redundancy generation.
Used only if SP 114a is
configured for RAID 5
operation.

BUFFER -> VMEbus This operation is not
used.

BUFFER -> FIFO Participating data is
transferred to create
redundant data or
recovered data on a

FIFO

FIFO

FIFO

-> VMEbus

-> BUFFER

disk drive. Used·
only in RAID 5
applications.

This operation is
used to move target
data directly from a
disk drive onto the
VME bus 120.

Used to move
participating data
for recovery and
modify operations.
Used only in RAID 5
applications.

-> VMEbus & BUFFER
'This operation is used to
save target data for
participation in data
recovery. Used only in
RAID 5 applications.

40 Fig. 6 provides a simplified block diagram of the

,.:.·.·

preferred architecture of one of the system memory "'

cards 116a. Each of the other system memory cards are·

the same. Each memory card 116 operates as a slave on ~

the enhanced VME bus 120 and therefore requires no on-

45 board CPU. Rather, a timing control block 610 is

sufficient to provide· the necessary slave control

operations. In particular, the timinq control block

BUSSTITUTE.SHEET

Oracle Ex. 1002, pg. 1019

W091/03788 PCI' /US90/04711

-59-

610, in response to control signals from the control

portion of the enhanced VME bus 120, enables a 32-bit

wide buffer 612 for an appropriate direction transfer

of 32-bit data between the enhanced VME bus 120 and a

5 multiplexer unit 614. The multiple.-:er 614 provides a

multiplexing and demultiplexing function, depending on

data transfer direction, for a six megabit by seventy­

two bit word memory array 620. An error correction

code (ECC) generation and testing uriit 622 is also

10 connected to the multiplexer 614 to generate or

verify, again depending on transfer direction, eight

bits of ECC data. The status of ECC verification is

provided back to the timing control block 610.

15 EHHANCED VME BUS PRQTOCOL

VME bus 120 is physically the same as an ordinary

VME bus, but each of the NCs and SPs include

additional circuitry and firmware for transmitting

data using an enhanced VME block transfer protocol.

20 The enhanced protocol is described in detail in the

above-identified application entitled ENHANCED VMEBUS

PROTOCOL UTILIZING PSEUDOSYNCHRONOOS HANDSHAKING AND

BLOCK MODE DATA TRANSFER, and summarized in the

Appendix hereto. Typically transfers of LNFS file

25 data between NCs and system memory, or between SPs and

system memory, and transfers of packets being routed

from one NC to another through system memory, are the

only types of transfers that use the enhanced protocol

in server 100. All other data transfers on VME bus

30 120 use either conventional VME block transfer

protocols or ordinary non-block transfer protocols.

MESSAGE PASSING

As is .evident from the above description, the

35 different processors in the server 100 communicate

with each other via certain types of messages. In

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1020

wo 91103'188 PCr/US90/04711

-60-

software, these messages are all handled by the

messaging kernel, described in detail in the MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE application

cited above. In hardware, th.ey are implemented as

5 follows.

Each of the NCs 110, each of the FCs 112, and each

of the SPs 1l4 includes a command or communication

FIFO such as 290 on NC 110a. The host 118 also

incl.udes a command FIFO, but since the host is an

10 unmodified purchased processor board, the FIFO is

emulated in software. The write port of the command

FIFO in each of the processors is directly addressable

from any of the other processors over VME bus 120.

Similarly, each of the processors except SPs 114

15 also includes shared memory such as CPU memory 214 on

NC 110a. This shared memory is al.so directly

addressable by any of the other processors in the

server 100.

If one processor, for example network controller

20 110a, is to send a message or command to a second

processor, for example file controller .112a, then it

does so as follows. First, it forms the message in

its own shared memory (e.g., in CPU memory 214 on NC

110a) • Second, the microprocessor in the sending

25 processor directly writes a message descriptor into

the command FIFO in the receiving processor. For a

command being sent from network controller 110a to .

file controller· 112a, the microprocessor 210 would

perform the write via buffer 284 on NC 110a, VME bus

30 120, and buffer 384 on file controller 112a.

The command descriptor is a single 32-bit word

containing in its high order 30 bits a VME address

indicating the start of a quad-aligned message in the

sender' s shared memory. The low order two bits

35 indicate the message type as follows:

. $UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1021

W09l/03788

5

~·
0

1

2

3

All messages are

PCf/US90/04711

-61-

Pesgription

Pointer to a new message being sent

Pointer to a reply message

Pointer to mes.sage to be forwarded

Pointer to message to be freed; also
message acknowledgment

126-bytes long.

When the receiving processor reaches the command

descriptor on its command FIFO, it directly accesses

10 the sender's shared memory and copies it into the

receiver's own local memory. For a command issued

from network controller 110a to file controller 112a,

this would be an ordinary VME block or non-block mode

transfer from NC CPU memory 214, via buffer 264, VME

15 bus 120 and buffer 384, into FC CPU memory 314. The

FC microprocessor 310 directly accesses NC CPU memory

214 for this purpose over the VME bus 120.

When the receiving processor has received the

command and has completed its work, it sends a reply

20 message back to the sending processor. The reply

message may be no more than the original command

message unaltered, or it may be a modified version of

that message or a completely new message. If the

reply message is not identical to the original command

25 message, then the receiving processor directly

accesses the original sender's shared memory to modify

the orig.inal command message or overwrite it

·completely. For replies from the FC 112a to the NC

110a, this involves an ordinary VME block or non-

30 block mode transfer from the FC 112a, via buffer 384,

VME bus 120, buffer 284 and into NC CPU memory 214.

Again, the FC microprocessor 310 directly accesses NC

CPU memory 214 for this purpose over the VME bus 120.

Whether or not the or.iginal command message has

35 been changed, the receiving processor then writes a

reply message descriptor directly into the original

sender's command FIFO. The reply message descriptor

SUBSl\TUlt. SREEl

Oracle Ex. 1002, pg. 1022

W091/03788

5

. ~

PCT/US90/04711

-62-

contains the same VME address as"the original command
message descriptor, and the low order two bits of the
word are modified to indicate that this is a reply
message. For replies from the FC 112a to the NC 110a,
the message descriptor write is accomplished by

microprocessor 310 directly accessing command FIFO 290

via buffer 384, VME bus 120 and buffer 280 on the NC.
Once this is done, the receiving processor can free
the buffer in its local memory containing the copy of

10 the command message.
When the original sending processor reaches the

reply message descriptor on its command FIFO, it wakes
up the process that originally sent the message and
permits it to continue. After examining the reply

15 message, the original sending processor can free the
original command message buffer in its own local
shared memory.

As mentioned above, network controller llOa uses
the buffer 284 data path in order to write message

20 descriptors onto the VME bus 120, and uses VME/FIFO
DMA controller 272 together with parity FIFO _270 in
order to copy messages from the VME bus 120 into CPU
memory 214. Other processors read from CPU memory 214
using the buffer 284 data path.

25 File controller 112a writes message descriptors

30

onto the VME bus 120 using the buffer 384 data path,
and copies messages from other processors' shared
memory via the same data path. Both take place under
the control of microprocessor 310. Other processors
copy messages from CPU memory 314 also via the buffer

384 data path.
Storage processor 114a writes message descriptors

onto the VME bus using high-speed register 590 in the

manner described above, and copies messages from other
35 processors using DMA controller 580 and FIFO 554. The

SP 114a has no shared memory, however, so it uses a

..

: .. .

Oracle Ex. 1002, pg. 1023

..

W091/03788 PCT/US90/04711

-63-

buffer in system memory 116 to emulate that function.

That is, before it writes a message descriptor into

another process.or' s command FIFO, the SP 114a first

copies the message into its own previously allocated

5 buffer in system memory 116 using DMA controller 580

and FIFO 554. The VME address included in the·message

descriptor then reflects the VME address of the

message in system memory 116.

In.the host 118, the command FIFO and shared memory

10 are both emulated in software.

The invention has been described with respect to

particular embodiments thereof, and it will be

understood that numerous modifications and variations

are possible within the scope of the invention.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1024

W09l/03788

5

-64-

APPENQIX A

VME/FIFO riMA Controller

PCf/US90/04711

In storage processor 114a, DMA controller 580

manages the data path under the direction of the

microprocessor 510. The DMA controller 580 is a

microcoded 16-bit bit-slice implementation executing

pipelined instructions at a rate of one each 62.5ns.

It is responsible for scanning the channel status 562

10 and servicing request with parameters stored in the

dual-ported ram 584 by the microprocessor 510. Ending

status is returned in the ram 584 and interrupts are

generated for the microprocessor 510.

Control store. The control store contains the

15 microcoded instructions which control the DMA

controller 580. The control store consists of 6 1K x

8 proms configured to yield a lK x 48 bit microword.

Locations within the control store are addressed by

the sequencer and data is presented at the input of

20 the pipeline registers.

Sequencer~ The sequencer controls program flow by

generating control store addresses based upon pipeline

data and various status bits. The control store

address consists of 10 bits. Bits 8:0 of the control

25 store address derive from a multiplexer having as its

inputs either an ALU output or the output of an

incrementer. The incrementer can be preloaded with

pipeline register bits 8:0, or it can be incremented

as a result of a test condition. The 1K address range

30 is divided into two pages by a latched flag such that

the microprogram can execute from either page.

Branches, however remain within the selected page.

Conditional sequencing is performed by having the test

condition increment the pipeline provided address. A

35 false condition allows execution from the pipeline

address while a true condition causes execution from

SUBSTITUTE SHEET ·---·

•

Oracle Ex. 1002, pg. 1025

.,

W091/03788 PCf/US90/04711

-65-

the address + 1. The alu ·output is selected . as an

address source in order to directly vector to a

routine or in order to return to a calling routine.

Note that when cal~ing a subroutine the calling

5 routine must reside within the same page as the

subroutine or the wrong page will be selected on the

return.

AIJ,l. The alu comprises a single ID'1'49C402A

integrated circuit. It is 16 bits in width and most

10 closely resembles four 2901s with 64 registers. The

alu is used primarily for incrementing, decrementing,

addition and bit manipulation. All necessary control

signals originate in the control store. The IDT HIGH

PERFORMANCE CMOS 1988. DATA BOOK, incorporated by

15 reference herein, contains additional information

about the alu.

Microword. The 48 bit microword comprises several

fields which control various functions of the DMA

controller 580. 'l'he format of the microword is defined

20 below along with mnemonics ~nd a description of each

function.

AI<B:O> 47:39

25

30 CIN 38

RA<S:O> 37:32

35

RB<S:O> 31:26
40

(Alu Instruction bits 8: 0) The AI
bits provide the instruction for the
49C402A alu. Refer to the ID'l' data
book for a complete definition of
the alu instructions. Note that the
!9 signal input of the 49C402A is
always low.

(Carry INput) This bit forces the
carry input to the alu.

(Register A address bits 5:0) These
bits select one of 64 registers as
the aAa operand for the alu. These
bits also provide literal bits 15: 10
for the alubus.

(Register B address bits 5:0) These
bits select one of 64 registers as
the usa operand for the alu. These
bits also provide literal bits 9:4
for the alu bus.

SUBSTiTUTE SKEET ...- __ ..

Oracle Ex. 1002, pg. 1026

W091/03788

5

10

15

20

25

30

35

40

45

50

LFD 25

PCT/US90/04711

-66-

(Latched Flag Data) When set this bit
causes the selected latched flag to be
set. When reset this bit causes the
selected latched flag to be cleared. This
bits also functions as literal bit 3 for
the alu bus.

LFS<2:0> 24:22 (Latched Flag Select bits 2:0) The
meani~q of these bits is dependent
upon the selected source for the alu
bus. In the event that the literal
field is selected ·as the bus source
then LFS < 2 : 0 > function as literal
bits <2: 0> otherwise the bits are
used to select one of the latched
flags.

LFS<2•0> SELECTED FLAG

SRC<l,O> 20,21

0

1

2

This value selects a null flag.

When set this bit enables the
buffer clock. When reset this
bit disables the buffer clock.

When this bit is cleared VME
bus transfers, buffer
operations and RAS are all
disabled.

3 NOT USED

4 When set this bit enables VME
bus transfers.

5 When set this bit enables
buffer operations.

6

7

When set this bit asserts the
row address strobe to the dram

·buffer.

When set this bit selects page
0 of the control store.

(alu bus SouRCe select bits 1,0)
These bits select the data source to
be enabled onto· the alu bus.

SUBSTITUTE SHEET . . .
:.

•

•

Oracle Ex. 1002, pg. 1027

W091103788 PCf /US90/0471 J

-67-

SBC<l.O> Selected Source

0 alu
1 dual ported ram

5 2 literal
3 reserved-not defined

PF<2:0> 19:17 (Pulsed Flag select bits 2:0) These
bits select a flag/signal to be

10 pulsed.

15

20

25

30

35

40

45

50

PF<2·0>

DEST<3:0> 16:13

0 null

1 SGL CLK

2

3

4

generates a single transition
of buffer clock.

SET VB
forces vme and buffer enable to
be set.

CL PERR
clears buffer parity error
status.

SET DN
set -channel done status for the
currently selected channel .

. 5 INC ADR
increment dual ported ram
address.

6:7 RESERVED - NOT DEFINED

(DESTination select bits 3:0) These
bits select one of 10 destinations
to be loaded from the alu bus.

DEST<3:0> Destination

0 null

1 WR RAM
causes the data on the alu bus
to be written to the dual
ported ram.
0<15:0> -> ram<15:0>

2 WR_BADD

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1028

W091/03788

5

10

15

20

25

30

35

40

45

50

3

4

5

6

7

8

9

10:14

15

., . :''

PCf/US90/04711

-68-

loads the data from the alu bus
into the dram address counters.

D<14:7> -> mux addr<B:O>
WR VADL
loads the data from the alu bus
into the least significant 2
bytes of the VME address
register.
D<15:2> -> VME addrc15:2>
Dl -> ENB_tional registers
D<15:2> -> VME addr<15:2>
Dl -> ENB ENH
DO -> ENB=BLK

WR VADH
loads the
bytes of
register.
0<15:0> ->

WR RADD

most significant 2
the . VME address

VME addr<31:16>

loads the dual ported ram
address counters.
D<10:0> -> ram addr <10:0>

WR WCNT
loads the word counters.
D15 -> count enable*
D<14:8> -> count <6:0>

WR CO
loads the co-channel select
register.
0<7:4> -> C0<3:0>

WR NXT
loads the next-channel select
register.
0<3:0> -> NEXT<3:0>

WR CUR
loads the current-channel
select register.
D<3:0> -> CURR <3:0>

RESERVED - NOT DEFINED

JUMP
causes the control store
sequencer to select the alu
data bus.
D<S:O> -> cs_A<B:O>

SUB$JITUTE SHEET

...

Oracle Ex. 1002, pg. 1029

W091103788

5

10

15

20

25

30

TEST<3:0> 12:9

PCf/US90/04711

-69-

(TEST condition select bits 3:0)
Select one of 16 inputs to the test
multiplexor to be used as the carry
input to the incrementer.

TEST<3;0> Condition

0

1

2
3

4

5

6

7
8

g.

14: 10

15

FALSE

TRUE

ALU COOT
ALU:EQ

ALU_OVR

ALU_NEG

-always false

-always true

-carry output of alu
-equals output of alu

-alu overflow

-alu negative

XFR_DONE · -transfer complete

PAR ERR
TIMOUT

-buffer parity error
-bus operation
timeout

ANY_ERR -any error status

RESERVED -NOT DEFINED

CH_RDY -next channel ready

NEXT_A<8:0> 8:0 (NEXT Address bits 8:0) Selects an
instructions from the current page of the
control store for execution.

35 Qual Ported Ram. The dual ported ram is the

medium by which command, parameters and status are
communicated between the DMA controller 580 and the
microprocessor 510. The ram is organized as 1K x 32 at
the master port and as 2K x .16 at the DMA port. The

40 ram may be both written and read at either port.
The ram is addressed by the DMA controller 580 by

loading an 11 bit address into the address counters.

Data is then read into bidirectional registers and the

address counter is incremented to allow read of the
45 next location.

S~BSJITUTE SHEEI

Oracle Ex. 1002, pg. 1030

W091/03788 PCf/US90/04711

-70-

Writing the ram is accomplished by loading data

from the processor into the registers after loading

the ram address. Successive writes may be performed

on every other proces~or cycle.

5 The ram contains current block pointers, ending

10

15

20

25

30

35

40

status, high speed bus address and parameter blocks.

The following is the format of the ram:

OFFSET 31 0

0

4

58

sc

60

64

68

6C

70

74

78

??

lCURR POINTER 0 I STATUS 0

INITIAL POINTER 0

ICURR POINTER B I STATUS B

INITIAL POINTER B

not used not used

not used not used

ICURR POINTER D I STATUS D I
------------------~-----------~ .

I IN~TIAL POINTER D I

not used STATUS E I

!HIGH SPEED BUS ADDRESS 31:210101

PARAMETER BLOCK 0
'·

PARAMETER BLOCK n

The Initial Pointer is a 32 bit value which points

the first command block of a chain. The current

pointer is a sixteen bit value used by the DMA

controller 580 to point to the current command block.

The current command block pointer should be
. .

45 initialized to OxOOOO by the microprocessor 510 before

enabling the channel. Upon detecting a value of Ox0000·

SUBSTITUTE.SHEET .. - ... --

•

Oracle Ex. 1002, pg. 1031

W091103788 PCf/US90/04711

-71-

in the current block pointer the DMA controller 580
will copy the .lower 16 bits from the initial pointer
to the current pointer. Once the DMA controller 580
has completed the specified · operations for the

5 parameter block the current pointer will be updated to
point to the next biock. In the event that.no further
parameter blocks are available the pointer will be set
to OxOOOO.

The status byte indicates the ending status for the
10 last channel operation performed. The following status

bytes are defined:

15

20

25

30

35

STATUS MEANING

0 NO ERRORS
1 ILLEGAL OP CODE
2 BUS OPERATION TIMEOUT
3 BUS OPERATION ERROR
4 DATA PATH PARI~ ERROR

The format of the parameter block is:
OFFSET 31 0

0 FORWARD LINK

4 NOT USED WORD COUNT

8 VME ADDRESS 31:2, ENH, BLK

c TERM 0 OP 0 BUF ADDR 0

C+(4Xn) I TERM n OP n BOF ADDR nl

FORWARD LINK - The forward link points to the first
word of the next parameter block for execution. It

allows several parameter blocks to be initialized and
40 chained to create a sequence of operations for

execution. The forward pointer has the following

format:

SUB_$TITUTE SHEET

Oracle Ex. 1002, pg. 1032

·.:·

W091/03788

5

PCr/US90/047ll

-72-

A31:A2,0,0
The format dictates that the parameter block must
start on a quad byte boundary. A pointer of OxOOOOOOOO
is a special case which indicates no forward link
exists.

WORD COUNT - The word count specifies the number of
quad byte words that are to be transferred to or from
each buffer address or to/from the VME address. A word
count of 64K words may be specified by initializing

10 the word count with the value of 0. The word count has
the following format:

ID15ID14ID13ID12ID11ID10ID9IDBID7l06ID5ID4ID3ID2ID1IOOI
The word count is updated by the DMA controller 580

at the completion of a transfer to/from the last
15 specified buffer address. Word count is not updated

after transferring to/from each buffer address and is
therefore not an accurate indicator of the total data
moved to/from the buffer. Word count represents the
amount of data transferred to the VME bus or one of

20 the FIFOs 544 or 554.

25

30

VME ADDRESS The VME address specifies the
starting address for data transfers. Thirty bits
allows the address to start at any quad byte boundary.

ENH - This bit when set selects the enhanced block
transfer protocol described in the above-cited
ENHANCED VMEBUS PROTOCOL UTILIZING PSEUDOSYNCHRONOUS
HANDSHAKING AND BLOCK MODE DATA TRANSFER application,
to be used during the VME bus transfer. Enhanced
protocol will be disabled ·automatically when

performing any transfe~ to or from 24 bit or 16 bit
address space, when the starting address is not a byte

aligned or when the word count is not even.

BLK - This bit when set selects the conventional

35 VME block mode protocol to be used during the VME bus
transfer. Block mode will be disabled automatically

SUBSTITUTE SHEEJ

••

·:·

Oracle Ex. 1002, pg. 1033

W091103788 PCT/US90/04711

-73-

when performing any transfer to or from 16 bit address

space.

BUF ADDR ~he buffer address specifies the

starting buffer address for the adjacent operation.

5 Only 16 bits are available for a 1M byte buffer and as

a result the starting address always falls on a 16

byte boundary. The programmer must ensure that the

starting address is on a modulo 128 byte boundary. The

buffer address is updated by the DMA controller 580

10 after completion of each data burst.

IA19IA18IA17IA16IA15IA14IA13IA12IA11IA10IA9IABIA7IABIASIA41
TERM - The last buffer address and operation within

a parameter block is identified by the terminal bit.

The DMA controller 580 continues to fetch buffer

15 addresses and operations to perform until this bit is

encountered. Once the last operation within the

parameter block is executed the word counter is

updated and if not equal to zero the series of

operations is repeated. Once the word counter reaches

20 zero the forward link pointer is used to access the

next parameter block.

25

10101010101010101~1

OP - Operations are specified by the op code. The

op code byte has the following format:

IOIOIOJOIOP310P210Pli0POI
The op codes are listed below (aFtFoa refers to any of

the FIFOs 544 or 554):

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1034

'. ·. . :-~ ·:· .· : . .. ·-: .-·.

. :::: .· ..

W091/03788 PCf/US90/04711.

-74-

OP CQtllii Q~JliBA~IQ~

0 NO-OP

1 ZEROES -> BUFFER
~

2 ZEROES -> FIFO

5 3 ZEROES -> VMEbus
~·

4 VMEbus -> BUFFER

5 VMEbus -> FIFO

6 VMEbus -> BUFFER & FIFO

7 BUFFER -> VMEbus

10 8 BUFFER -> FIFO

9 FIFO -> VMEbus

A FIFO -> BUFFER

B FIFO -> VMEbus & BUFFER

c RESERVED

15 D RESERVED

E RESERVED

F RESERVED

•

~PBSTIJUTE SHEET

Oracle Ex. 1002, pg. 1035

..

W09l/03788 PCf/US90/04711

-75-

APPENDIX B
Enbanced YME Block Transfer Protocol

The enhanced VME block transfer protocol is a

VMEbus compatible pseudo-synchronous fast transfer

5 handshake protocol for use on a VME backplane bus
having a master functional module and a slave

functi.onal module logicaj.ly interconnected by a data
transfer bus. The data transfer bus includes a data
strobe signal line and _a data transfer acknowledge

10 signal line. To accomplish the handshake, the master

transmits a data strobe signal of a given duration on

the data strobe line. The master then awaits the

reception of a data transfer acknowledge signal from

the slave module on the data transfer acknowledge
15 signal line. The slave then responds by transmitting

data transfer acknowledge signal of a given duration

on the data transfer acknowledge signal line.

Consistent with the pseudo-synchronous nature of

the handshake protocol, the data to be transferred is

20 referenced to only one signal depending upon whether

the transfer operation is a READ or WRITE operation.

In transferring data from the master functional
unit to the slave, the master broadcasts the data to

be transferred. The ·master asserts a. data strobe

25 signal and the slave, in response to the data strobe

·signal, captures the data broadcast by the master.
Similarly, in transferring data from the slave to the

master, the slave broadcasts the data to be

transferred to the master unit. The slave then·

30 asserts a data transfer acknowledge signal and the
master, in response ~o the data transfer acknowledge

signal, captures the data broadcast by the slave .

The fast transfer protocol, while not essential to

the present invention, facilitates the rapid transfer

35 of large amounts of data across a VME backplane bus by

substantially increasing the data transfer rate.

SUBSl\JUli ~~~I .. ·-.

Oracle Ex. 1002, pg. 1036

. wo 91/03788

5

.;

PCf/US90/04711·

-76-

These data rates are achieved by using a handshake

wherein the data strobe and data transfer acknowledge

signals are functionally de~oupled and by specifying

high current drivers for all data and control lines.

The enhanced pseudo-synchronous method of data

transfer (hereinafter referred to as "fast transfer

mode") is implemented so as to comply and be

compatible with the IEEE VME backplane bus standard.

The protocol utilizes user-defined address modifiers,

10 defined in the VMEbus standard, to indicate use of the

fast transfer mode. Conventional VMEbus functional

units, capable only of implementing standard VMEbus

protocols, will ignore transfers made using the fast

transfer mode and, as a result, are fully compatible

15 with functional units capable of implementing the fast

transfer mode.

20

The fast transfer mode reduces the number of bus

propagations required to accomplish a handshake from

four propagations, as required under conventional

VMEbus protocols, to only two bus propagations.

Likewise, the.number of bus propagations required to

~ffect a BLOCK READ or BLOCK WRITE data transfer is

reduced. Consequently, by reducing the propagations

across the VMEbus to accomplish handshaking and data

25 transfer functions, the transfer rate is materially

increased.

30

The enhanced protocol is described in detail in the

above-cited ENHANCED VMEBOS PROTOCOL application, and

will only be summarized here. Familiarity with the

conventional VME bus standards is assumed.

In the fast transfer mode handshake protocol, only

two bus propagations are used to accomplish a

handshake, rather than four as required by the

conventional protocol. At the initiation of a data

35 transfer cycle, the master will assert and d~assert

DSO* in the form of a pulse of a given duration. The

SUBSmUTE SHEET ----- ·-:-: .

:.::

•

Oracle Ex. 1002, pg. 1037

W091103788 PCr/US90/0471J '

-77-

deassertion of DSO* is accomplished without regard as

to whether a. response has been received from the

slave. The master then waits for an acknowledgement

from ·the slave. Subsequent pulsing of DSO* cannot

5 occur until a responsive DTACK* siqnal is received

from the slave. Upon receiving- the slave's assertion

of DTACK*, the master can then immediately reassert

data strobe, if so desired. The fast transfer mode

protocol does not require the master to wait for the

10 deassertion of DTACK* by the slave as a condition

precedent to subsequent assertions of DSO*. In the

fast transfer mode, only the leading edqe (i.e., the

assertion) of a siqnal is sig-nificant. Thus, the

deassertion of either DSO* or DTACK* is completely

15 irrelevant for completion of a handshake. The fast

transfer protocol does.not employ the DS1* line for

data strobe purposes at all.

The fast transfer mode protocol may be

characterized as pseudo-synchronous as it includes

20 both synchronous and asynchronous aspects. The fast

transfer mode protocol is synchronous in character due

to the fact that DSO* is asserted and deasserted

without regard to a response from the slave. The

asynchronous aspect of the fast tran&fer mode protocol

25 is attributal;)le to the fact that the master may not

subsequently assert DSO* until a response to the prior

strobe is received from the slave. Consequently.

because the protocol includes both synchronous and

asynchronous components, it is most accurately

.30 classified as •pseudo-synchronous.•

The transfer of data durinq a BLOCK WRITE cycle in

the fast transfer protocol is referenced only to DSO*.

The master first broadcasts valid data to the slave,

and then asserts DSO to.the slave. The slave is qiven

35 a predetermined period of time after the assertion o~

DSO* in which to capture the data. Hence, slave

SUBSMUTE SHEET

Oracle Ex. 1002, pg. 1038

W091/03788

5

PCf/US90/04711

-78

modules must be prepared to capture data at any time,
as DTACK* is not referenced during the transfer cycle.

Similarly, the transfer of data during a BLOCK READ
cycle in the fast transfer protocol is referenced only
to DTACK*. The master first asserts DSO*. The slave

then broadcasts data to the master and then asserts
DTACK*. The master is given a predetermined period of
timeafter the assertion of DTACK in which to capture
the data. Hence, master modules must be prepared to

10 capture data at any time as DSO is not referenced

during the transfer cycle.
Fig. 7, parts A through C, is a flowchart

illustrating the operations involved in accomplishing
the fast transfer protocol· BLOCK WRITE cycle. To

15 initiate a BLOCK WRITE cycle, the master broadcasts
the memory address of the data to be transferred and
the address modifier across the DTB bus. The master
also.drives interrupt acknowledge signal (lACK*) high
and the LWORD* signal low 701. A special address

20 modifier, for example •tF," broadcast by the master
indica~es to the slave module that the fast transfer

protocol .will be used to accomplish the BLOCK WRITE.
The starting memory . address of. ·the data to be

transferred should reside on a 64-bit·boundary and the
25 size of block of data to be transferred should be a

multiple of 64 bits. In order to remain in compliance
with the VMEbus standard, the block must not cross a
256 byte boundary without performing a new address

cycle.

30 The slave modules connected to the DTB receive the

address and the address modifier .broadcast by the

master across the bus and receive LWORD* low and IACK*

high 703. Shortly after broadcasting the address and

address modifier 701, the·master drives the AS* signal

35 low 705. The slave modules receive the AS* low signlll
707. Each slave individually determines whether it

SUBSTITUTE SIIEET -- -. .

'·:.

"

•

Oracle Ex. 1002, pg. 1039

W091/03788 Pcr/US90/04711

-79-

will participate in the data transfer by determining

whether the broadcasted address is valid for the slave

in question 709. If the address is not valid, the

data transfer does not involve that particular slave

5 and it ignores the remainder of the data transfer

cycle.

The master drives WRITE* low to indicate that the

transfer cycle about to occur is a WRITE operation

711. The slave receives the WRITE* low signal 713

10 and, knowing that the data transfer operation is a

WRITE operation, awaits receipt of a hiqh to low

transition on the OSO* signal line 715. The master

will wait until both DTACK* and BERR* are hiqh 718,

which indicates that the previous slave is no longer

15 driving the DTB.

The master proceeds to place the first segment of

the data to be transferred on data lines 000 through

031, 719. After placing data on 000 through 031, the

master drives OSO* low 721 and, after a predetermined

20 interval, drives OSO* high 723.

In response to the transition of OSO* from high to

low, respectively 721 and 723, the slave latches the

data being transmitted by the master over data lines

000 through 031, 725. The master places . the next

25 segment of the data to be transferred on data lines

000 through 031, 727, and awaits receipt of a OTACK*

signal in the form of a high to low transition signal,

729 in Fig. 7B.

30

Referring to Fig. 7B, the slave then drives OTACK*

low, 731, and, after a predetermined period of time,

drives OTACK high, 733. The data latched by the

slave, 725, is written to a device, which has been

selected to store the data 735_. The slave also

increments the device address 735. The slave then

35 waits for another transition of OSO* from high to low

737.

SUBSTITUTE SHEET _ .. _ ...

Oracle Ex. 1002, pg. 1040

W091/03788

5

PCf/US90/04711

-so-

To commence the transfer of the next segment of the

block of data to b!3 transferred, the master drives

OSO* low 739 and, after a predetermined period of

time, drives OSO* high 741. In response to the

transition of OSO* from high to low, respectively 739

and 741, the slave latches the data being broadcast by

the master over data lines 000 through 03.1, 743. The

master places the next segment of the data to be

transferred on data lines 000 through 031, 745, ~nd

10 awaits receipt of a OTACK* signal in the form of a

high to low transition, 747.

The slave then drives OTACK* low, 749, and, after

a predetermined period of time, drives OTACK* high,

751. The data latched by the slave, 743, is written

15 to the device .selected to store the data and the

device address is incremented 753. The slave waits

for another transition of OSO* from high to low 737.

The transfer of data will continue in the above­

described manner until all of the data has been

20 transferred from the master to the slave. After all ·

of the data has been transferred, the· master will

release the address lines, address modifier lines,

data lines, IACK* line, LWORD* line and DSO* line,

755. ·The master will then wait for receipt of a

25 OTACK* high to low transition 757. The slave will

drive DTACK* low, 7 59 and, after a predetermined

period of time, drive OTACK* high 761. In response to

the receipt of the DTACK* high to low transition, the

master will drive AS* high 763 .and then release the

30 AS* line 765.

Fig. 8, parts A through C, is a flowchart

illustrating the operations involved in accomplishing

the fast transfer protocol BLOCK READ cycle. To

initiate a BLOCK READ cycle, the master broadcasts the

35 memory ad~ess of the data to be transferred and the

address modifier across the DTB bus 801. The master

SUBSTITUTE SHEET

•

·

Oracle Ex. 1002, pg. 1041

. wo 91103788 PCf/US90/04711

-81-

drives the LWORD* signal.low and the lACK* signal high

801. As noted previously, a special address modifier

indicates to the slave module that the fast transfer

·protocol will be used to accompiish the BLOCK READ.

5 The slave modules connected to the OTB receive the

address and the address modifier broadcast by the

master across the bus and receive LWORD* low and IACK*

high 803. Shortly after broadcasting the address and

address modifier 801, the master drives the AS* signal

10 low 805. The slave modules receive the AS* low signal

807. Each slave individually determines whether it

will participate in the data transfer by determining

whether the broadcasted address is valid for the slave

in question 809. If the address is not valid, the

15 data transfer does not involve that particular slave

and it ignores the remainder of the data transfer

cycle.

The master drives WRITE* high to indicate that the

transfer cycle about to occur is a READ operation 811.

20 The slave receives the WRITE* high signal 813 and,

knowing that the data transfer operation is a READ

operation, places the first segment of the data to be

transferred on data lines ooo through 031 819. The

master will wait until both DTACK* and BERR* are high

25 818, which indicates that the previous slave is no

longer driving the DTB.

30

The ~aster then drives DSO* low 821 and, after a

predate .:nined interval, drives DSO* high 823. The

master then awaits a high to low transition on the

DTACK* siqnal line 824. As shown in Fig. 8B, the

slave then drives the DTACK* signal low 825 and, after

a predetermined period of time, drives the DTACK*

sigr.al high 827.

In response to the transition of .DTACK* from high

35 to low, respectively 825 and 827, the master latches

the data being transmitted by the slave over data

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1042

5

·;

PCI'/US90/04711

-82-

lines 000 through 031, 831. The data latched by the

master, 831, is written to a device, which has been

selected to store. the data the device address is

incremented 833.

The slave places the next segment of the data to be

transferred on data lines 000 through 031,' 829, and

then waits for another transition of DSO* from high to

low 837.

To commence the transfer of the next·segment of the

10 block of data to be transferred, the master drives

DSO* low 839 and, a~ter a predetermined period of

time, drives DSO* high 841. The master then waits for

the OTACK* line to transition from high to low, 843.
\

The slave drives OTACK* low, 845, and, after a

15 predetermined period of time, drives DTACK* high, 847.

In response to the transition of OTACK* from high to

low, respectively 839 and 841, the master latches the

data being transmitted by the slave over data lines

000 through 031, 845. The data latched by the master,

20 845, is written to the device selected to store the

data, 851 in Fig. 8C, and the device address is

incremented. The slave places the next segment of the

data to be transferred on data lines DOO through 031,

849.

25 The transfer of data will continue in the above-

30

described manner until all of the data to be

transferred from the slave to the master has been

written into the device selected to store the data.

After all of the data to be transferred has been

written into the storage device, the master will

release the address lines, address modifier lines,

data lines, the IACK* line, the LWORD line and OSO*

line 852. The master will then wait for receipt of a

DTACK* hiqh to low transition 853. The . slave will

35 drive DTACK* low 855 and, after a predetermined peri~d

.of time, drive DTACK* hiqh 857. In.response to the

SUB_STITUTE SHEET

.. ,•·.:

•

I
...... ·I

Oracle Ex. 1002, pg. 1043

W091/03788 PCf/US90/04711

-83-

receipt of the DTACK* high to low transition, the

master will drive AS* high 859 and release the AS*

line 861.

To implement the fast transfer protocol, a

5 conventional 64 mA tri-state driver is substituted for

the 48 mA open collector driver conventionally used in

VME slave modules to drive DTACK*. Similarly, the

conventional VMEbus data drivers are replaced with 64

mA tri-state drivers in SO-type packages. The latter

10 modification reduces the ground lead inductance of the

actual driver package itself and, thus, reduces

"ground bounce" effects which contribute to skew

between data, DSO* and DTACK*.· In addition, signal

return inductance along the bus backplane is reduced

15 by using a connector system having a greater number of

ground pins so as to minimize signal return and mated-

pair pin inductance.

"High Density Plus"

000, manufactured by

One such connector system is the

connector, Model No. 420-8015-

Teradyne Corporation.

SUBSmUTE SHEET

Oracle Ex. 1002, pg. 1044

W091/03788

5

-84-

APPENDIX C

Parity FIFO

PCT/US90/0471l·

The parity FIFOs 240, 260 and 270 (on the network

. controllers 110), and 544 and 554 (on storage

processors 114) are each implemented as an ASIC. All

the parity FIFOs are identical, and are configured on

power-up or during normal operation for the particular

function desired. The parity FIFO is designed to

. 10 allow speed matching between buses of different speed,

and to perform the parity generation and correction

for the parallel SCSI drives.

The FIFO comprises two bidirectional data ports,

Port A and Port B, with 36 x 64 bits of RAM buffer

15 between them. Port A is 8 bits wide and Port B is 32

bits wide. The RAM buffer is divided into two parts,

each 36 x 32 bits, designated RAM X and RAM Y. The

two ports access different halves of the buffer

alternating to the other half when available. When

20 the chip is configured as a parallel parity chip (e.g.

one of the~IFOs 544 on SP 114a), all accesses on Port

B are monitored and parity is accumulated in RAM X

and RAM Y alternately.

The chip also has a CPU interface, which may be 8

25 or 16 bits wide. In 16 bit mode the Port A pins are

used as the most significant data bits of the CPU

interface and are only actually used when reading or

writing to the Fifo Data Register inside the chip.

30

A REQ, ACK handshake is used for data transfer on

both Ports A and. B. The chip may be configured as

either a master or a slave on Port A in the sense

that, in master . mode the Port A ACK 1 RDY output

signifies that the chip is ready to transfer data on

Port A, and the Port A REQ input specifies that the

35 slave is responding. In slave mode, however, the Port

A REQ input specifies that the master requires a data

S~BSTITUTE SHEET

'::

'

-,

Oracle Ex. 1002, pg. 1045

W091103788

5

PCT/US90/04711

-as-
transfer, and the chip responds with Port A ACK I RDY
when data is available. The chip is a master on Port
B since it raises Port B REQ and waits for Port s·ACK
to indicate completion of the data transfer.

SIGNAL PESCRIPTIONS

Port A 0-7, P
Port·A is the 8 bit data port. Port A P, if used,

is the odd parity bit for this port.

10 A Req, A Ack/Rdy

These two signals are used in the data transfer
mode to control the handshake of data on Port A.

uP Data 0-7, uP Data P, uPAdd 0-2, CS

15 These signals are used by a microprocessor to
address the programmable registers within the chip.
The odd parity signal uP Data P is only checked when

data is written to the Fifo Data or Checksum Registers
and microprocessor parity is enabled.

20 Clk

The clock input is used to generate some of the
chip timing. It is expected to be in the 10-20 Mhz
range.

2 5· Read En, Write En
During microprocessor accesses, while CS is true,

these signals determine the direction of the
microprocessor accesses.

WD mode these signals

During data transfers in the

are data ·strobes used in
30 conjunction with Port A Ack.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1046

W09l/03788

5

PCI'/US90/04711

-86-

Port B 00-07, 10-17, 20-27 1 30-37 1 OP-3P

Port B is a 32 bit data port. There is one odd

parity bit for each byte. Port B OP is the parity of
bits 00-07, PortB 1P is the parity of bits 10-17, Port­

B 2P is the parity of bits 20-27, and Port B 3P is the
parity of bits 30-37.

B Select, B Req, B Ack, Parity Sync, B Output Enable

These signals are used in the data transfer mode to

10 control the handshake of data on Port B. Port B Req

and Port B Ack are both gated with Port B Select.

The Port B Ack signal is used to strobe the data on
the Port B data lines. The parity sync signal is

used to indicate to a chip configured as the parity
15 chip to indicate that the last words of data involved

in the parity accumulation are on Port B. The Port B

data lines will only be driven by the Fifo chip if all

of the following conditions are met:

20
a.

b.

c.

the data transfer is from Port A to Port B;

the Port B select signal is true;

the· Port B output enable signal is true; and

d. the chip is not configured as the parity chip
or it is in parity correct mode and the Parity
.Sync signal is true.

25 Reset

30

This signal resets all the registers within the

chip and causes all bidirectional pins to be in a high

impedance state.

QESCRIPTIQN OF OPERATION

Ngrnial oneration. Normally the chip acts as a

simple FIFO chip. A FIFO is simulated by using two

RAM buffers in a simple ping-pong mode. It is

intended, but not mandatory, that data is burst into

35 or out of the FIFO on Port B. This is done by holding

Port B Sel signal low and pulsing the Port B Ack

siqnal. When transferring data from Port B to Port A,

SUBSTITUTE SHEET -. _ ...

..
•

. :'· :

Oracle Ex. 1002, pg. 1047

W09l/03788 PCf /US90/04711

-87-

data is first written into RAM X and when this is

full, the data paths will be switched such that Port

B may start writing to RAM Y. Meanwhile the chip will

begin emptying RAM X to Port A. When RAM Y is full

5 and RAM X empty the data paths will be switched again

such that Port B may reload RAM X and Port A may

empty RAM Y.

Port A Slaye Mode. This is the default mode and

the chip is reset to this condition. In this mode the

10 chip waits for a master such as one of the SCSI

adapter chips 542 to raise Port ·A Request for data

transfer. If data is available the Fifo chip will

respond wi.th Port A Ack/R.dy .

. Port A WP Mode. The chip may be configured to run

15 in the WD or Western Digital mode. In this mode the

chip must be configured as a slave on Port A. It

differs from the default slave mode in that the chip

responds with Read Enable or Write Enable as

appropriate together with Port A Ack/Rdy. This mode

20 is intended to allow the chip to be interfaced to the

Western Digital 33C93A SCSI chip or the NCR 53C90 SCSI

chip.

Port A Master Mode. When the chip is configured as

a master, it will raise Port A Ack/R.dy when it is

25 ready for data transfer. This signal is expected to

be tied to the Request input of a DMA controller which

will respond with Port A Req when data is available.

In order to allow the DMA controller to burst, the

Port A Ack/Rdy signal will only be negated after every

30 8 or 16 bytes transferred.

Port B Parallel Write Mode. In parallel write

mode, the chip is configured to be the parity chip for

a parallel transfer from Port B to Port A. In this

mode, when Port B Select and Port B Request are

35 asserted, data is written into RAM X or RAM Y each

time the Port B Ack signal is received. For the first

~_UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1048

W091103788

5

PCT/US90/04711

-88-

block of 128 bytes data is simply copied into the

selected RAM. The next 128 bytes driven on ~art B will

be exclusive-ORad with the first 128 bytes. This

procedure will be rep_eated for· all drives such. that

the parity is accumulated in this chip. The ~arity

Sync signal should be asserted to the parallel-chip

together with the last block of 128 bytes. This

enables the chip to switch access to the other RAM and

start accumulating a new 128 bytes of parity.

10 Port B Parallel Read Mode - Chegk Data. This mode

is set if all drives are being read and parity is to

be checked. In this case the Parity Correct bit in

the Data Transfer Confiquration Register is not set.

The parity chip will first read 128 bytes on Port A as

15 in a normal read mode and then raise Port B Request.

While it has this signal . asserted the chip will

monitor the ~art B Ack signals and exclusive-or the

data on ~ort B with the data in its selected RAM. The

Parity Sync should again be asserted with the last

20 block of 128 bytes. In this mode the chip will not

drive the Port B data lines but will check the output

of its exclusive-or logic .. for zero. If any bits are

set at this time a parallel parity error will be

flagged.

25 ~art B Parallel Read Mode - Correct Data. This

30

mode is set by setting the ~arity Correct bit in the

Data Transfer Configuration Register. In this case

the chip will work exactly as in the check mode except

that when Port B Output Enable, ~art B Select and

. Parity Sync are true the data is driven onto the Port

B data lines and a parallel parity check for zero is

not performed.

Byte Swap. In the normal mode it is expected that

Port B bits 00-07 are the first byte, bits 10-17 the

35 second bYte, bits 20-27 the third byte, and bits 30-37

the last byte of each word. The order of these bytes

~YPSTJJUTE- SHEET

"

. .

'·
-:

Oracle Ex. 1002, pg. 1049

W091/03788 PCT/US90/04711

-89-

may be changed by writing to the byte swap bits in the
configuration register such that the byte address bits
are inverted. The way the bytes are written and read
also depend on whether the CPU i~terface is configured

5 as 16 or 8 bits. The following table shows the byte
alignments for the different possibilities for data
transfer using the Port A Request 1 Acknowledge
handshake:

10

15

20

25

30

CPU Invert
1/F Addr 1

8 False

8 False

8 True

8 True

16 False

16 False

16 True

16 True

Invert Port B
Addr 0 OO-Q7

False

True

False

True

False

True

False

True

Port A
byteo

PortA
byte 1

PortA
byte 2

PortA
byte 3

PortA
byte 0

uProc
byteO

PortA
byte1

uProc
byte 1

Port B
10-17

PortA
byte 1

Port A
byteO

Port A
byte 3

Port A
byte2

uProc
byteO

PortA
byteO

uProc
byte 1

PortA
byte 1

Port B
20-27

PortA
byte 2

PortA
byte 3

PortA
byte 0

PortA
byte 1

PortA
byte 1

uProc
byte 1

PortA
byteO

uProc
byteO

Port B
30-37

PortA
byte1

PortA
byte 2

Port A
byte 1

PortA
byte 0

uProc
byte 1

PortA
byte 1

uProc
byteO

PortA
byteO

When the Fifo is accessed by reading or writing the
Fifo Data Register through the microprocessor port in

35 8 bit mode, the bytes are in the same order as the

table above but the uProc data port is used instead of

Port A. In 16 bit mode the table above applies.
Qdd Length Transfers. If the data transfer is not

a multiple of 32 words, or 128 bytes, the

40 microprocessor must manipulate the internal registers

of the chip to ensure ~ll data is transferred. Port
A Ack and Port B Req are normally not asserted until

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1050

W091103788

5

PCf /US90/04711

-90-

all 32 words of the selected RAM are available. These

signals may be forced by writing to the appropriate

RAM status bits of the Data Transfer Status Register.

When an odd length transfer has taken place the
microprocessor must wait until both ports are

quiescent before manipulating any registers. It

should then reset both of the Enable Data Transfer

bits for Port A and Port B in the Data Transfer

Control Register. It must then determine by reading

10 their Address Registers and the RAM Access Control

Register whether RAM X or RAM Y holds the odd length

data. It should then set the corresponding Address

Register to a value of 20 hexadecimal, forcing the RAM

full bit and setting the address to the first word.

15 Finally the microprocessor should set the Enable Data.

Transfer bits to allow the chip to complete the

transfer.

At this point the Fifo chip will think that there

are now a full 128 bytes of data in the RAM and will

20 transfer 128 bytes if allowed to do so. The fact that

some of these 128 bytes are not valid must be

recognized externally to the FIFO chip.

PROGRAMMABLE REGISTERS

25 pata Transfer Configuration Register (Read/Write)

30

35

Register Address 0. This register is cleared by

the reset signal.

Bit 0

Bit 1

Bit 2

wn Mode. Set if data transfers are to
use the Western Digital WD33C93A
protocol, otherwise the Adaptec 6250
protocol will be used.

Parity Chip. Set if this chip is to
accumulate Port B parities.

Parity Correct Mode.
chip is to correct
Port B.

SUBSlllUTE SKEEl

Set if the parity
parallel parity on

•

Oracle Ex. 1002, pg. 1051

W091/03788

Bit 3

5

10 Bit 4

Bit 5
15

Bit 6

20

Bit 7

25

PCT/US90/04711 ·

-91-

CPU Interface 16 bits wide. If set, the
microprocessor data bits are combined
with the Port A data bits to effectively
produce a 16 bit Port. All accesses by
the microprocessor· as well as all data
transferred using the Port A Request and
Acknowledge handshake will transfer 16
bits.

J:mze•:t Ji!Q:Z:::t A 1:2:~~:te ii\Q.!i~fUHI o. Set to
invert the least significant bit of Port
A byte address.

Inve.:t Ji!s:u::t A l2:~~:te f!,gg;r;:elUi 1. Set to
invert the most significant bit of Port
A byte address.

Checksum Carr:~~: Wrap. Set to enable the
carry out of the 16 bit checksum adder to
carry back into the least significant bit
of the adder.

Reset. Writing a 1 to this :bit will
reset the other registers. This bit
resets itself after a maximum of 2 clock
cycles and will therefore normally be
read as a 0. No other register should be
written for a minimum of 4 clock cycles
after writing to this bit.

30 Data Transfer Cgntrgl Register (Read/Write>

35

40

45

Register Address 1. This register is cleared by
the reset signal or by writing to the reset bit.

Bit 0 Enable Data Trmnsfer gn Port A. Set to
enable the Port A Req/Ack handshake.

Bit 1

Bit 2

Enable Dmta Transfer on Pgrt B. Set to
enable the Port B Req/Ack handshake.

Pgrt A tg Pgrt B . If set, data transfer.
is from Port A to Port B. If reset, data ·
transfer is from Port B to Port A. In
order to avoid any glitches on the
request lines, the state of this bit
should not be altered at the same time as
the enable data transfer bits 0 or 1
above.

$~BSTITUTE SHEET

Oracle Ex. 1002, pg. 1052

W091/03788

5

10

15

20

25

30

35

40

45

Bit 3

Bit 4

. Bit 5

Bit 6

Bit 7

PCI/US90/04711

-92-

uProcessor Parity Enaple. Set if parity
is to be checked on the microprocessor
interface. It will only be checked when
writing to the Fifo Data Register or
reading from the Fifo Data or Checksum
Registers, or during a Port A
Request/Acknowledge transfer in 16 bit
mode. The chip will, however, always
re-generate parity ensuring that correct
parity is written to the RAM or read on
the microprocessor interface.

Port A Parity Enable. Set if parity is
to be checked on Port A. It is checked
when accessing the Fifo Data. Register in
16 bit mode, or during a Port A
Request/Acknowledge transfer. The chip
will, however, always re-generate parity
ensuring that correct parity is written
to the RAM or read on. the Port A
interface .

Port B Parity Enable. Set if Port B
data has valid byte parities. If it is
not set, byte parity is generated
internally to the chip when writing to
the RAMs. Byte parity is not checked
when writing from Port B, but always
checked when reading to Port B.

Checksum Enable. Set to enable writing
to the 16 bit checksum register. This
register accumulates a 16 bit checksum
for all RAM accesses, including accesses
to the Fifo Data Register, as well as all
writes to the checksum register. This
bit must be reset before reading from the
Checksum Register.

Port A Master. Set if Port A is to
operate in the master mode on Port A
during the data transfer.

Data Transfer Status Register (Read Onlyl

Register Address 2. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0 Data in BAM X or RAM Y. Set if any bits
are true in the RAM X, RAM Y, or Port A
byte address registers.

SUBSTITUTE ·SHEET

·•

,

Oracle Ex. 1002, pg. 1053

W091/03788

.s

10

15

20

25

Bit 1

Bit 2

Bit 3

PCf/US90/047t 1

-93-

uProq Port Parity Error. Set if the
uP roc Parity Enable bit is set and a
parity error is detected on the
microprocessor interface during any RAM
access or write to the Checksum Register
in 16 bit mode.

Po6t A Parity Error. Set if the Port A
Parity Enable bit is set and a parity
error is detected on the Port A interface
during any RAM access or write to the
Checksum Register.

Port B Parallel Parity Error . Set if
the chip is configured as the· parity
chip, is not in parity correct mode, and
a non zero result is detected when the
Parity Sync signal is true. It is also
set whenever data is read out onto Port
B and the data being read back through
the bidirectional buffer does not
compare.

Bits 4-7 Port B Bytes 0-3 Parity Error. Set
whenever the data being read out of the
RAMs on the Port B side has bad parity.

Ram Access Control Register CRead/Writel

Register Address 3. Thi~ register is cleared by

30 the reset signal or·by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to write to

this register, else the write will be ignored.

Bit 0 Port A byte address 0. This bit is the
35 least significant byte address bit. It

is read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register.

40 Bit 1

45 Bit 2

Port A byte address 1. This bit is the
most significant byte address bit. It is
read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register.

Port A to RAM Y.
accessing RAM Y,
accessing RAM X .

Set if Port A is
and reset if it is

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1054

W091103788

5

10

Bit 3

Bit ' 4

-94-

Port B to BAM Y.
accessing RAM Y,
accessing RAM X .

Per /US90/047ll

Set if Port B is
and reset if it is

Long Burst. If the chip is configured to
transfer data on Port A as a master, and
this bit is. reset, the chip will only
negate Port A Ack/Rdy after every 8
bytes, or 4 words in 16 bit mode, have
been transferred. If this bit is set,
Port A Ack/Rdy will be negated every 16
bytes, or 8 words in 16 bit mode. ·

Bits 5-7 Not Used.

15 RAM X Addtess Register (Read/Write)

· Register Address 4. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to write to

20 this register, else the write will be ignored.

Bits 0-4 RAM X word address

Bit 5 RAM X full

Bits 6-7 Not Used

25 RAM Y Address Register (Read/Write) .

30

35

Register Address 5. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must.be reset before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM Y word address

Bit 5 RAM Y full

Bits 6-7 Not Used

Fifo pata Register (Read/Write)

Register Address 6. The Enable Data Transfer bits

in the Data Transfer Co~trol Register must be reset

before attempting to wr_ite to this register, else the

write will be ignored. ~e ~ort A to Port B bit in

$UBSTITUTE SHEET

•

•
,

Oracle Ex. 1002, pg. 1055

..

W091/03788 PCI' /US90/04711

-95-

the Data Transfer Control register must also be set
before writing this register. If it is not, the RAM
controls will be incremented but no data will be
written to the RAM. For consistency, the Port A to

5 PortS should be reset prior to reading this register .
Bits 0-7 are Fifo Data. The microprocessor may

access the FIFO by reading or writing this register.
The RAM control registers are updated as if the access
was using Port A. If the chip is configured with a 16

10 bit CPU Interface the most significant byte will use
the Port A 0-7 data lines, and each Port A access will
increment the Port A byte address by 2.

Port A Checksum Register (Read/Write)
15 Register Address 7. This register is cleared by

the reset signal or by writing to the reset bit.
Bits 0-7 are Checksum Data. The chip will

accumulate a 16 bit checksum for all Port A accesses.
If the chip is configured with a 16 bit CPU interface,

20 the most significant byte is read on the Port A 0-7

data lines. If data is written directly to this
register it is added to the current contents rather
than overwriting them. It is important to note that
the Checksum Enable bit in the Data.Transfer Control

25 Register must be set to write this register and reset
to read it.

PRQGRAMMING THE FIFO CHIP

In general the fifo chip is programmed by writing
30 to the data transfer configuration and control

registers to enable a data transfer, and by reading

the data transfer status register at the end of the

transfer to check the completion status. Usually the
data transfer itself will take place with both the

35 Port A and the Port B handshakes enabled, and in this

case the data transfer itself should be done without

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1056

.. :

W09l/03788 PCf/US90/047ll.

5

-96-

any other microprocessor. interaction. In som~

applications., however, t,be Port A handshake may not be

enabled, and it will be necessary for the

microprocessor to fill or empty the fifo by repeatedly

writing or reading the Fifo Data Register.

Since the fifo chip has no knowledge of any byte

counts, there is no way of telling when any data

transfer is complete by reading any register within

this chip itself. Determination of whether the data

10 transfer has been completed must therefore be done by

some other circuitry outside this chip.

The following C language routines illustrate how

the parity FIFO chip may be programmed. The routines

assume that both Port A and the microprocessor port

15 are connected to the system microprocessor, and return

a size code of 16 bits, but that the hardware

addresses the Fifo chip as long 32 bit registers.

struct FIFO _regs {
unsigned char config,a1 ,a2,a3 ;

20 unsigned char control,b1 ,b2,b3;
unsigned char status,c1,c2,c3;
unsigned char ram' access control,d1,d2,d3;
unsigned char ram><: addr';'e1,e2,e3;
unsigned char ram -y-addr,f1,f2,f3;

2 s unsigned long data; -
unsigned lnt checksum,h1;

30

35

}; .

#define FIF01 ((struct AFO_regs*) FIFO_BASE_ADDREss}

#define FIFO RESET OxBO
#define FIF0-16 BITS OxOS
#define FIFO-CAJ:lRY WRAP Ox40
#define FIFO-PORT A ENABLE OX01
#define FIFO-PORIB-ENABLE OX02
#define FIFO-PORT-ENABLES OX03
#define FIFO-PORT-A TO B Ox04
#define FIFO-CHECT<SLIMENABLE Ox40
#define FIFO-DATA IN RAM Ox01
#define FIFO-FORcE RAM FULL Ox20

. - - - .

40 #define PORT A TO PORT B(fifo) ((fifcr> control) & 0x04)
#define PORIAt3YiE ADCRESS(fifo)· ((fifcr>ram access controO &
OX03) . - - - - -
#define PORT A TO RAM Y(fifo) ((fifo-> ram access control) & 0x04)
#define POR,-:e:To:RAM:V(fifo) ((fifo-> rarn_accesS"_control) & OxOS}

SUB_~liTUTE SHEET

. .. :

,

·•

Oracle Ex. 1002, pg. 1057

W091/03788

5

10

15

20

25

30

35

40.

45

50

PCf /US90/04711

-97-

I***************************~·······•******************
The following routine Initiates a Fifo data transfer using two

values passed to it.

config_ data This is the data to be written to the configuration register.

control_ data This is the data to be written to the Data Transfer Control
Register. If the data transfer is to take place
automatically using both the Port Aand Port B
handshakes, both data transfer enables bits should be
set in this parameter.

***I

FIF<? _initiate_ data_ transfer(config_ data, control_ data)
unstgned char config data, control data; ·
{ - -

FIF01->config = config_data 1 AFO_RESET; I* Set
Configuration value & Reset *I

FIF01->control =control data & (-FIFO PORT ENABLES); I* Set
everything but enables *I - -

FIF01->control = control_ data; I* Set data transfer
enables *I
}

I***
The following routine forces the transfer of any odd bytes that

have been left in the Fifo at the end of a data transfer.
It first disables both ports, then forces the Ram Full bits, and then
re-enables the appropriate Port. ·
***I

FIFO force odd length transferO
{ - - - -

FIF01->control &= -FIFO_PORT_ENABLES; I* Disable Ports A & 8
*I

If (PORT A TO PORT B(FIF01)) {
iflPORI A TO-RAM Y(FIF01)) {

FI'F01·>ram Y addr =FIFO FORCE RAM FUU; /*
SetRAMYfull*l -- - - -

}
else FIF01->ram X addr =FIFO FORCE RAM FULL; I* Set

RAM X full *I - - - - -
FIF01->control I"" FIFO_PORT_B_ENABLE; I*

Re-Enable Port B *I
}
else {

If (PORT 8 TO RAM Y(AF01)) {
FTF01->ram Y addr = FIFO FORCE RAM FULL ; I*

SetRAMYfull*l -- - - -
}
else FIF01->ram X addr =FIFO FORCE RAM FULL; I* Set

RAM X full *I - - - - -

~UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1058

W091103788

5

1.0

15

20

25

30

.;

PCf /US90/04711

-98-

AF01->control I= FIFO_PORT_A_ENABLE;
Re·Enable Port A *I

}
}

1*********************** ********************************

I*

The following routine returns how many odd bytes have been
left in the Fifo at the end of a data transfer.
***I

int FIFO count odd bytesO
{ - - -

int number_ odd_ bytes;
number odd bytes=O;
if (FIFOf->stitus & FIFO DATA IN RAM) {

If (PORT A TO PORT B\FIF"01)) {
number -odd t)ytes =

(PORT A BYTE ADDRESS"(AF01));
- - - if (PORT A TO RAM Y(FIF01))

4;
number .:odd_ bytes + = (FIF01· >ram_ Y _ addr) *

}
else number_odd_bytes +:: (FIF01->ram_x_addr) * 4;

else {
if (PORT B TO RAM Y(FIF01))

num"'ber-odd bytes= (AF01·>ram Y addr) * 4;
else number oad bYtes = (AF01· >ram X-addr) * 4 ; - - --}

}

}
return (number_ odd_ b~es);

!********************************'***********'**************
The following routine tests the microprocessor interface of the

chip. It first writes and reads the first 6 registers. It then writes 1 s, Os, and
3 5 an address pattern to the RAM, reading the data back and checking ll

40

45

so

The test returns a bit significant error code where each bit
represents the address of the registers that failed.

Bit 0 = config register failed
Bit 1 = control register failed
Bit 2 = status register failed
Bit 3 = ram access control register failed
Bit 4 = ram X address register failed
Bit 5 = ram Y address register failed
Bit 6 = data register failed
Bit 7 = checksum register failed

***I

#define RAM_ DEPTH 64 I* number of long words in Fifo Ram' * l

reg_expected_data[6] = { Ox7F, OXFF, OXOO, Ox1F, Ox3F, Ox3F };

S~BSJJTUTE SHEET

··.:

• . i

.... '

•

Oracle Ex. 1002, pg. 1059

W091/03788

5·

10

15

20

25

30

35

PCf /US90/047ll

-99-

char FIFO uprocessor interface testO
{ - - -

unsigned long test data;
char *register_ add7;
lnt I;
char j,error,
AF01->conflg = FIFO RESET;
error=O: -

I* reset the chip *I

register_addr =(char*) FIF01;
j=1;

I* first test registers 0 thru 5 * 1

for 0=0; i<6; i++) {

}

register addr = OxFF; / write test data *I
If (*reglsfer addr I= reg expected data[l]) error.! = j;
register addr = 0; - I write os to register * 1
if (*register_ addr) error I = j; ·
register_ addr "" OxFF; I write test data again *I
If (*register_ addr I= reg_ expected_ datap]) error 1 = j;
FIF01->config =FIFO RESET; /*reset the chip *I
if (*register_ addr) error l = j; /* register should be 0 *I
register_ addr + +; I* go to next register *I
J <<=1;

I* now test Ram data & checksum registers
test 1 s throughout Ram & then test Os *I

for (test data = -1 ; test data I = 1; test data+ +) {
&os *I - - -

I* test for 1 s

*I

AF01·>config = FIFO. RESET I FIFO 16 BITS ;
AF01·>control = FJRJ PORT A TO 'B; -
for Q=O;i<RAM_DEPTt{;i++) - - - /*write data to RAM

AF01·>data = test data;
FIF01->control = 0; -
for Q=O;i<RAM DEPTH;i++)

If (RF01-:>data I= test data) error I= j; I* read &
40 check data *I -

if (FIF01->checksum) error 1 = 0x80; I* checksum
should = 0 *I .

}

4 5 /* now test Ram data with address pattern
uses a different pattern for every byte *I

test data=Ox00010203; /*address pattern start*/
FIF01·>config = FIFO RESET I FIFO 16 BITS I

50 FIFO CARRY WRAP; - - -
FIF01->control = FIFO PORT A TO B I

FIFO CHECKSUM ENABl£; - - -
tor O=O;i<RMf_DEPTH;i+ +) {

RF01->data =test_ data; /*write address pattern *I

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1060

W091103788

5

10

15

20

PCTIUS90/0471 1

-100-

}
test_ data + = OX04040404;

test data=Ox00010203; /*address pattern start *I
FlF01->control =FIFO CHECKSUM ENABLE;
for Q=O;i<RAM DEPTI-f;l+ +) { - ·

if (FIFOf.::>status I= FIFO DATA IN RAM)
error I = OX04; - - 7* should be data In ram *I

. if (FIF01->data I= test_ data) error 1 = j; /*read & check
address pattem *I

}
test_data + = OX04040404;

if (FIF01->checksum l= OX0102) error 1 = oxao; I* test checks~m of
address pattem *I

*I

*I

}

FIF01->config = FIFO_RESET I FIF0_16_BtTS; l*inhibitcarrywrap

FIF01->checksum = OxFEFE; ·I* writing adds to checksum *I
if (FIF01·>checksum) error I =OXBO; I* checksum should be 0

if (FIF01->status) error I = OX04;
return (en-or);

/* status should be 0 *I

S~~STJTUif SHEET

,.

so· .

" . .

Oracle Ex. 1002, pg. 1061

W091103788

...

PCI'/US90/04711

-101-

CLAIMS

What is claimed is:
1. Network server apparatus for use with a data

network and a mass storage device, comprising:

an interface processor unit coupleable to said
network and to said mass storage device;

a host processor unit capable of running remote
procedures defined by a client node on said network;

and
means in said interface processor unit for

satisfying requests from said network to store data
from said network on said mass storage device, for
satisfying requests from said network to retrieve data
from said mass storage device to said network, and for
transmitting predefined categories of messages from

said network to said host processor unit for
processing in said host processor unit, said

transmitted messages including all requests by a
network client to run client-defined procedures on
said network server apparatus.

2. Apparatus according to claim 1, wherein said
interface processor unit comprises:

a network control unit coupleable to said network;
a data control unit coupleable to said mass storage

device;
a buffer memory; and

means:
for transmitting to said data control unit

requests from said network to store specified storage
data from said network on said mass storage device,

for transmitting said specified storage data

from said network to said buffer memory and from said

buffer memory to said data control unit,

for transmitting to said. data control unit

requests from said network to retrieve specified

~UBSTlTUTE SHEET

Oracle Ex. 1002, pg. 1062

W09l/03788 PCf/US90/047ll

-102-

retrieval data from said mass s~orage device to said
network,

for transmitting said specified retrieval data

from said data control unit to said buffer memory and
from said buffer memory to said network,

and for transmitting said predefined

c·ategories of messages from said network to said host

processing unit for processing by said host processing
unit.

3. Apparatus according to claim 2, wherein said
data control unit comprises:

a storage processor unit coupleable to said mass
storage device;

a file processor unit;
means on said file processor unit:

for translating said file system level storage
requests from said network into requests to store data
at specified physical storage locations in said mass
storage device,

for instructing said storage processor unit to
write data from said.buffer memory into said specified
physical. storage locations in said mass storage
device,

for translating file system level retrieval

requests from said network into requests to retrieve
data from specified physical retrieval locations in
said mass storage device,

and for instructing said storage processor

unit to retrieve data from said specified physical

retrieval locations in said mass storage device to
said buffer memory if said data from· said specified

physical locations is not already in said buffer

memory; and

means in said storage processor unit for

transmitting data between said buffer memory and said
mass storage device.

SUBSmUTE SHEET

.··.

,.

. ·.-:::

Oracle Ex. 1002, pg. 1063

W091/03788

)

PCT/US90/04711

-103-

4. Network server app~ratus for use with a data
network and a mass storage device, comprising:

a network control unit coupleable to said network;
a data control unit coupleable to said mass storage

device;
a buffer memory; and
means:

for transmitting from said network control
unit to said data control unit requests from said
network to store specified storage data from said
network on said mass storage device,

for transmitting said specified storage data
by DMA from said network control unit to said buffer
memory and by DMA from said buffer memory to said data
control unit,

for transmitting from said network control
unit to said data control unit requests from said
network to retrieve specified retrieval data from said
mass storage device to said network,

and for transmitting said specified retrieval
data by DMA from said data control unit to said buffer
memory and by DMA from said buffer memory to said
network control unit.

5. A data control unit for use with a data
network, a mass storage device and a buffer memory,
and in response to file system level storage and
retrieval requests from said data network, comprising:

·a storage processor unit coupleable to said mass
storage device;

a file processor unit;

means on said file processor unit:

for translating said file system level storage ·

requests into requests to store data at specified
physical storage locations in said mass storage

device,

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1064

W091/03788 PCf/US90/04711

-104-

for instructing said storage processor unit to
write data from said buffer memory into said specified
physical storage locations in said mass storage
device,

for translating said file system level
retrieval requests into requests to retrieve data from
specified physical retrieval locations in said mass
storage device,

and for ·instructing said storage proc·essor
unit to retrieve data from said specified physical
retrieval locations in said mass storage device to
said buffer memory if said data from said specified
physical locations is not already in said buffer
memory; and

means in said storage processor unit for
transmitting data between said buffer memory and said
mass storage device.

6. A data control unit for use with a data
network and a mass storage device, and in response to
file system level storage and retrieval requests from
said data network, comprising:

a data bus;
a buffer memory bank coupled to said bus;

storage processor apparatus coupled to said bus and
coupleable to said mass storage device;

file processor apparatus coupled to said bus, said
file processor apparatus including a local memory

bank;

means on said file processor unit for translating

,..

said file system level storage requests into requests . ~

to store data at specified physical storage locations
in said mass storage device and for translating said •

file system level retrieval requests into requests to
retrieve data from specified physical retrieval
locations in said mass storage device, said means
including means for caching file control information

SUBS~ SHEET
. ' .. ~

Oracle Ex. 1002, pg. 1065

W091/03788 PCT /US90/04711

-105-

through said local memory bank in said file processor
unit; and

means for caching the file data, to be stored or
retrieved according to said storage and retrieval

requests, through said buffer memory bank.
7. A network node for use with a data network and

a mass storage device, comprising:
a system buffer memory;
a host processor unit having direc~ memory access

to said system buffer memory;
a network control unit coupleable to said network

and having direct memory access to said system buffer
memory;

a data control unit coupleable to said mass storage
device and having direct memory access to said system
buffer memory;

means for satisfying requests from said network to

store data from said network on said mass storage

device, for satisfying requests from said network to
retrieve data from said mass storage device to said
network, and for transmitting predefined categories of
messages from said network to said host proQessor unit
for processing in said host processor unit, said means
comprising means

for transmitting from said network control
unit to said system memory bank by direct memory
access file data from said network for storage on said
mass storage device,

for transmitting from said system memory bank
to said data control unit by direct memory access said
file data from said network for storage on said mass
storage device,

for transmitting from said data control unit

to said system memory bank by direct memory access

file data for retrieval from said mass storage device
to said network,

_SUBSTITUTE SHEET .

Oracle Ex. 1002, pg. 1066

W09l/03788 PCf/US90/047ll

-106-

and for transmitting from said system memory

bank to said network control unit said file data for

retrieval from said mass storage device to said

network;

at least said network control unit ·including a

microprocessor and local instruction storage. means

distinct from said system buffer memory, all

instructions for said microprocessor residing in said

local instruction storage means.

8. A network file server for use with a data

network a.nd a mass storage device, comprising:

a host processor unit running a Unix operating

system;

an interface processor unit coupleable to said

network and to said mass storage device, said

interface processor unit including means for decoding

all NFS requests from said network, for performing all

procedures for satisfying said NFS requests, for

encoding any NFS reply messages for return

transmission on said network, and for transmitting

predefined non-NFS categories of messages from said

network to said host processor unit for processing in

said host processor unit.

SUBSTITUTE SHEET . .

. ir<·

Oracle Ex. 1002, pg. 1067

(J)
c:
Ol
en

·=:~
-t c:
-t m
(J)
:z:
m
~

ETHERNE:r ttl

~
''l

...

MMU

ll.

128 MB
MEMORY

12.

20

SMD DISK
CONTROLLER

22

24

~ y I ' / I I' I ~ 32-BIT VME BUS

ETHERNET *2 !NETWORK •2
1 CONTROLLER

36 34

TAPE
CONTROLLER

FIG.-1

28
SCSI
HOST
ADAPTER ·~ I ~SCSI BUS

26

<PRIOR ART>

,_. -,_.
N

~
10 ...
I

a
I

Oracle Ex. 1002, pg. 1068

en c m

~
~ m
CIJ
:t:
m
!!J

~2Cl
c

1
12

122e
122g --~2b

cl
1

12
122f'

122h --....

(
J

... •

110 116
........... "' \ 116b

110c:J
110 cl ""\.. /- 116c

\ r-l- NET\v'DRK 116cl~
r-1-

CONTROLLER

~ I
• I

~ I
4

J , , I

• ~

,.
• I

fiLE

CONTROLLER

112b
'r

FIG.-2

\
;L

l-
SYSTEM

MEMORY

~ I
~ I

J
•

' , ' . I

·~ 4

,,
'

r---11 STORAGE

PROCESSOR

--
-

-

LOCAL

HOST

4~

,
I

114b

vl14Cl

- p

...

~
........

vua

rl:O
}

L__ -

N -...... N

~
\C -I

~
~

i --

Oracle Ex. 1002, pg. 1069

(/)
c
CD
(/)
-t
=i c:
-1
m
fl)
:r: ,
!!l

... ..

.c:: 210 220~ 22~

....

RS232
_1:::-226

.... .

~

I c: 214

CPU
I I MEM I c 216 I I I I L 'EPROM PROM MFP l---224

..... ~-2 132 a, ~I-DI't a, f 1 _+
132

7 l BUF I 7
218 J / 212

FIG.-3 (NETwORK CONTROLLER>

r110a

...., -...... N

~
IC

I

~ g
i
~ ... -

Oracle Ex. 1002, pg. 1070

C/)
c
aJ

~ s
m
C/)
:I:

ffi

310

J.IP. I

.. ... ~

--314 320, 392-- RS232
A 326 r112o.

I CP~ I P~DM I rrLLEL' .
MEM (·316 DRT I I nr r 1---32 4

32 8

FC
MEM--- '-396

.-
32

390 ~ FIFD~ . /
c;J 32

384 "'\ I 8
32

312-J I ...,..,, I

FIG.-4

382

32

376

<FILE CONTROLLER>

VME
M >tt.,_BUS

J:­-~ N

~
\0

i

.,
~
I

Oracle Ex. 1002, pg. 1071

CJ)
c
m
~
~
-t. m

m

• •

510

FIG.-·5

It"

V1
.......
~
N

~
IC ...
I

"a g

I ... -

Oracle Ex. 1002, pg. 1072

(/)
c
llJ

·(JJ

::\
~
m
(/)
:r:
m
.~

VME
BUS
120

~ ...

t- ~2 .
T ,

I~

r .

116o.\
614 620

v r

~2 64
BUF" - MUX , ~ , .

MEMORY
j

...:. 8 ARRAY
ECC r- , - ..

I
622

TIMING v--610
CONTROL

(SYSTEM MEMORY>

FIG.-6

It'

..

0'\ -..... N

~
10

"""'

I

"G g
~

I --

Oracle Ex. 1002, pg. 1073

7/12
W091/03788

MASTER 701

BROADCAST .ADDRESS AND
ADDRESS MDDlfiE~

DRIVE L \JDRD • LD'w'
AND lACK• HIGH

DRIVE AS • LD'w'

DRIVE \./RITE* LO'w'

'w'AIT UNTIL DTACK* AND
BERR • . ARE HIGH

DRIVE Dso• LD'w'

DRIVE Dso• HIGH

PLACE NEXT DATA ON
DOO-D31

TD FIG.-7B I

PCT/US90/04711

SLAVE

RECEIVE ADDRESS,
ADDRESS MODifiER,
L 'w'DRD • LD'w' AND

lACK• HIGH

RECEIVE AS• LD'w'

RECEIVE \JRITEllE LD'w'

\JAIT UNTIL DSD* GOES
HIGH TD LD\tl

LATCH DATA FROM DOO-D31

FIG.-7A
suesmure SHEET

Oracle Ex. 1002, pg. 1074

8/12
W091/03788 PCT/US90/04711

MASTER SLAVE

(FROM FIG-7A) I (FROM FIG-7A)

729 I 731~ • r DRIVE DTACK• LOW
'w'AIT UNTIL DTACK• I 733 "-'\ •

HIGH TO LO\o/ TRANSITION I DRIVE DT ACK •. HIGH

..
I 735"'- '

~7391 'WRITE DATA INTO
I SELECTED DEVICE AND

DRIVE DSO • LOW I INCREMENT DEVICE ADDRESS
~ c-741 737~ •.

DRIVE DSO • HIGH I \J All FOR DSO liE I HIGH TO LO\o/ TRANSITION

I

r745 1 743--.... -,,
•

P-LACE NEXT DATA ON I LATCH DATA FROM LINES
DOO-D31 I I

DOO-D31

. l 749 ~ '
~ r 7 4 7 I DRIVE DTAcK • Low

'w'AIT UNTIL DTACK* ?Sl-... _i_
HIGH TO LO\J TRANSITION I DRIVE DTACK• HIGH

I
I 75~ · t

I 'WRITE DATA INTO

I
SELECTED DEVICE. AND

INCREMENT DEVICE ADDRESS

lr I -• c TO FIG.-7C) (TO FIG.-7C)

FIG.-7B

SUBSTITUTE SHE~ ·

Oracle Ex. 1002, pg. 1075

W091/03788
9/12

PCT/US90/04711

(FROM. FIG.-7B) (FROM FIG.-7B)

~
If

COMPLETE NUMBER
OF CYCLES REQUIRED

TO TRANSFER ALL DATA ~
RELEASE ADDRESS LINES,~755
ADDRESS MODIFIER LINES,

DATA LINES, L W'ORD•,
Dso•, AND lACK•

If
r757

'WAIT FOR DT ACK *
HIGH TO LOW' TRANSITION

-
. , ,-763

DRIVE AS• HIGH

If r-765
RELEASE AS•

759\ I

I DRIVE DT ACK !IE LOW' I

761~ I

f DRIVE DTACK• HIGH I

FIG.-7C

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1076

10/12
W091/03788 PCT/US90/04711

DRIVE 'JRITE• HIGH

WAIT UNTIL DTACK11 AND
BERR11 ARE HIGH

RECEIVE 'JRITE !IE HIGH

r-----------...C.....,821
DRIVE DS011 LO'J

DRIVE DSO 11 HIGH

.------..__ __ ---~...;..,824 I 819
WAIT UNTIL DTACK• ,........l-------------,

HIGH TO L0\.1 TRANSITION I PLACE DATA ON LINES
DOO-D31

I
I

FIG.-8A

. SUBSmUTE SHEET

Oracle Ex. 1002, pg. 1077

wo 91103788 .
11/12

PCf/US90/04711

MASTER SLAVE

(fROM fiG.-BA) I (FROM FIG.-8A)

I 825' •
I DRIVE DTACK• L0\.1
827~ •

J

I DRIVE DT ACK liE HIGH

. - r-831 I •
LATCH DATA fROM LINES I DOO-D31

• 1829~
r- 833

\./RITE DATA INTO I PLACE NEXT DATA ON
SELECTED DEVICE AND LINES DOO-D31

INCREMENT DEVICE ADDRESS j835--. • • \./AIT fDR DSD liE r-839 I
DRIVE DSO • L0\.1 HIGH TD LD\.1 TRANSITION

• /""" 841 1
DRIVE DSO • HIGH

I
• , 843 I 845 ~ ••

\./All UNTIL DTACK• I DRIVE DTACK. LD\.1
HIGH TO LD\.1 TRANSITION 847~ • ·

I DRIVE DTACKIE HIGH .

-
•

r B45 I 949--... If

LATCH DATA fROM LINES I PLACE NEXT DATA ON
DOO-D31 LINES DOO-D31

• I 1
j

(TO fiG.-8C) (TO fiG.-8C)

FIG.--8B

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1078

W091/03788 PCf/US90/04711

12/12

(FROM FIG.-SB] (FROM FIG.-BB)

• ~851

\./RITE DATA INTO
SELECTED DEVICE AND

~NCREMENT DEVICE ADDRESS

s CONTINUE DATA TRANSFER
CYCLES UNTIL DATA

HAS BEEN TRANSFERRED

•
RELEASE ADDRESS LINES, [../'852 • ADJ)RESS MODIFIER LINES, I TRANSFER COMPLETE I

DATA LINES, L WORD•,
DSO liE AND IACH • LINES

lr
rss3

\.1 AIT FOR DT ACK 11 ass,
• HIGH TO LO\J TRANSITION

I DRIVE DT ACK liE LOW' l

857~

I DRIVE DTACK• HIGH l

r ,.- 859
DRIVE AS* HIGH

1 /""'" 861
RELEASE AS•

FIG.-SC

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1079

~-

•I

INTERNATIONAL SEARCH REPORT 11
lntiii'Milonal Application No • 1 n""' h

I. CLASSIFICATION OF SUBJECT MATTER (If several c:lasslflcallon symbols apply, Indicate aiO 1

According to lntemallonal Patent Classlflcatlon (IPC) or to both National ClallslflcaUon and IPC

!PC (5) : G06F 15/16 .
u.s. Cl . 364/200 .

II. FIELDS SEARCHED

Minimum Documentation Searched •

ClasslflcaUon System I Clasaiflcallon Symbols

I

I
u.s. I 364/200,900 i

I

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are lnc:luded In the Fields Searched a

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT U

"""" L711

Category •1 Cltlltlon of Document, 11 with Indication, where appropriate, of the relevant passages" Relevant to Claim No. n

YP US,A 4,897,781 (ClJANG)
See the entire document.

30 January 1990 1-8

YP US,A 4,887,204 (JOHNSON) 12 December 1989 1-8
See the entire document.

y US,A 4,819,159 (SHIPLEY) 04 Apri11989 1-8
See the entjxe document.

y US,A 4,710,868 (COO<E) 01 December 1987 1-8
See the entire document.

I
• Special categories of cited documents: " ""T"' later document published aftsr the lntematlonat flllng data
•A• document deflning the general &tale of the art which Is not or priority date and not In conflict with the application but

cited to understsnd the principle or . theory. underlying the considered to be of particular relevance Invention
•£- earlier document but published on -or after the International uxu document of particular relevanca: the claimed lnvantlon flllng date cannot be conaidered nonl or·cannot ba considered to
"L • document which may throw double on priority claim(s) or Involve an Inventive atep

which I• cited to estsbUsh the publication date of another "Y" dacumant of particular relevance: the claimed Invention citation or other apec:lal reason (as specified) cannot be considered to Involve an Inventive step when the
•()" document referring to an oral dii$Ciosure, uae, exhibition or document Ia combined with one or more other such docu-

other means mente, such combination being obvious to a person sldlled
up- document published prior to the International filing date but In the art.

later than the priority data claimed ·&· document member of the same patent family

IV, CERTIFICATION

Date of the Actual Completion of the International Search s Date of Mailing of thla International Search Report 1

30 oovr-tmm 1990 v I 24JAN 1991
•

International Searching Authority I

7.~.Q1ft~~i'
ISAIUS

Form PCTIISAIZ10 1-.d lhell'll CM-v 19881

Oracle Ex. 1002, pg. 1080

W01997033227 Al

Bibliographic Fields

Document Identity

(19)[§@fi00]

8 :<$:00~~lf/T (JP)

[1}f&{i}}lj]

ili~~f~~lf (A 1)

(11)[00~1}fmfi~l

W097/33227

[§@fi8]

lJI~1 0~(1998)8.Fl48

International Filing

(11)[00~1}fmfi~ l

W097/33227

(21)[00~ti::J.itfi~ l

PCT / JP97 /00655

(22)[00~tl::fjj 8]

lJI~9~(1997)3.Fl48

(43)[00~1}fm 8]

lJI~9~ (1997)9.Fl12 8

(8I)Cm5Eool

JP us
Technical

(54) [§@ BJ) 0) :g ffJ;]

Fciiii-~771' JL-·ii~n:ti:&tt~ifH:fltJI=fii
~n$~~ffTQ~~C1.>~C~7k~~~~~
~tlU.¥1*

(51)[00~~~lf~!liii 6 Jlil
G06F 13/00

[~Jif&]

67

Filing

CiiJHi*l

m
[7fimii:l:iii*l

iii

(19) [Publication Office]

Japan Patent Office (JP)

[Kind of Document]

Japanese Republished Patent Publication (Al)

(II) [International Publication Number]

wo 97/33227

[Publication Date]

1998 (1998) August 4*

(11) [International Publication Number]

wo 97/33227

(21) [International Application Number]

PCT /JP97/00655

(22) [International Application Date]

1997 (1997) March 4 *

(43) [International Publication Date]

1997 (1997) September 12*

(81) [Designated States]

JPUS

(54) [Title oflnvention]

1998-8-4

STORAGE MEDIA WHICH HIGH SPEED
COLLECTIVE FILE TRANSFER METHOD AND THE
PROGRAM IN ORDER TO EXECUTE DEVICE AND
TRANSFER METHOD STORAGE IS DONE

(51) [International Patent Classification, 6th Edition]

G06F13/00

[Number of Pages in Document]

67

[Request for Examination]

Unrequested

[Provisional Request for Examination]

Unrequested

Page 1 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1081

W01997033227 Al

[1:!11Hi~ l

~U!f¥9-531 658

(22)[00i!mtl11li B]

!J!Iil(;9if. (1997) 3,Fj 4 B

Foreign Priority

(31)[iBtc:m~ ~fHI~ l
~~JlilJLB- 50510

(32)[ii:S'c B]

lJLB(1996)3,Fj7B

(33)[mS~tm;E ~~~l

B*(JP)

(31 >[mS~tm;E ~If~ 1
4~1fllJL8....:50511

(32)[ii:S'c B l
!J!B (1996) 3J'J 7 B

(33)[mS~tm±~~l

B*(JP)

(31)[ffftS~tm;E5ilf~ 1
~JlilJLB -164883

(32)[iiS'c B l
!Jl:8 (1996) 6,Fj 25 B

(33)[mS~tm± ~~l

B*(JP)

Parties

Applicants

(71)[1:!1J.iAl

DxA!i 3t rc~::g ~ 1

s *•~•ali~~~u

[fi:PJT)t lei: liS jiJT l

JRJitWfJiffi'I&E!itJfffi'3T 13 191f2~

Inventors

(72)[§'tB)j~]

[.l£:g l

'l'!FEB Wi±!

[Domestic Application Number]

Japan Patent Application Hei 9- 531658

(22) [International Application Date]

1997 (1997) March 4 *

(31) [Priority Application Number]

Japan Patent Application Hei 8- 50510

(32) [Priority Date]

1996 (1996) March 7*

(33) [Priority Country]

Japan (JP)

(31) [Priority Application Number]

Japan Patent Application Hei 8- 50511

(32) [Priority Date]

1996 (1996) March 7*

(33) [Priority Country]

Japan (JP)

(31) [Priority Application Number]

Japan Patent Application Hei 8- 164883

(32) [Priority Date]

1996 (1996) June 25*

(33) [Priority Country]

Japan (JP)

(71) [Applicant]

[Name]

1998-8-4

NIPPON TELEGRAPH & TELEPHONE CORP.
(NTT) (DB 69..{)62--6718)

[Address]

Tokyo Shinjuku-ku Nishishinjuku 3-Chome 19*2*

(72) [Inventor]

[Name]

Onoda Tetsuya

Page 2 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1082

W01997033227 Al

[iifiJT ~ I~JiS PJT]

~~JI1!11ltfUJtim?"•J-::.nv(';J2-5-402

(72)[~BJI:j!]

[.6A~l

a 111 ::tf!B
[iiiiJT~I~JiSfiJT]

~~JJI!11lDH~i'll~T-I&*tEB9-2-4-202

(72)[~BJI:j!]

[a;;:g]

1J~EB~ ffi±
[iifiJT ~ I~JiS PJT]

~~J11!11lti~i'll~T-I&*tEB9-2-12-C-
412

Agents

(74)[i"ti1l!.A.]

[#i11!±]

[J£:g~r~:g~l

~!\ lEiit

Abstract

(57)[JU~l

;f>:~BJH=J:{)i!i:im-ti5774 Jvfn~1.i~l~. "T
-1Z~~~fi?t:=~l=, ~ I 0)~1iU.¥i*.&U:-f
0)1fi I O)~ctlU.¥i*J:~J.Aili7.Ji'J<:imL'm 2 0)~
tlU.¥i*~fflL'"t'. 774Jv~~7C't*iim•J~?~
~~9{)lltrt=~ I O)~fllti*~0)774 JL-"T-
1lt=~L "C, ff.~~O)~l!~fiL 'fJ.b<b, -f0)7
74 Jv"T-1Z~1fi 2 o:>~tllti*""-~~L. 774
JL-"T-1lr=~9{)~f11!0)7'&7ft. iim•J~?~
~~L. 1fi 2 O)~fl9.¥i*~0)774 Jv"T-1%~,
"T-1lr=~L "C~l!~1it!i~-rt=.:t--·:~t-?-?:h­
t:"'-m~~"t{).:f.JJ!iit:, 774 JL-~~7t't*.:t--·:~
t-FJ-?n-t:t=ffi~~nt::774 Jv"T-1Z~"T
-1li=~L "C~i11!~1it§~1'1=1fi 2 O)~flYii*""-
-t:afii~L. ft¥;l!~O)~J11!~fiL 'fJ.tJ<bm I 0)
~tmlti*""-fii~"t {).:f.f§tt:;fifL "CL '.Qo

1998-8-4

[Address]

Kanagawa Prefecture Yokosuka City Green Heights 2* 5- 402

(72) [Inventor]

[Name]

Yoshikawa Taro

[Address)

Kanagawa Prefecture Yokohama City Isogo-ku Sugita 9- 2-
4-202

(72) [Inventor]

[Name]

Oda *Satoru *

[Address]

Kanagawa Prefecture Yokohama City Isogo*ku Sugita 9- 2-
12- C- 412

(74) [Attomey(s) Representing All Applicants]

[Patent Attorney]

[Name]

Shiga Masatake

(57) [Abstract]

high speed collective file transfer method before setting
communication link in file transfer origin making use of
second storage media where input *Output isfaster than first
storage media and its first storage media , doing compression
or other treatrnentvis-a-vis file data inside first storage media ,
while in order to do data transfer ,to transfer file data to
second storage media with this invention , after
completingtreatrnent for file data , It sets communication
link , without administering treatment file data inside second
storage media , vis-a-vis data , without administering
treatment, with protocol and file forwarding destination which
it lumps together transfers to network card file data which
transmission is done vis-a-vis data in network card while
lumping together transferring to second storage media ,
treating thawing or other ithas possessed means which it
transfers to first storage media .

Page 3 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1083

W01997033227A1 1998-8-4

Cl

C2

C3 13

C4

cs

N

C6

N
* ,., r ;e .:e 1J

~~ft=~~ ClO

-tftiilt

C9

cs

Page 4 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I 0/367 ,296)

Oracle Ex. 1002, pg. 1084

W01997033227 Al 1998-8-4

Claims

[Claim (s)]

1. 7Y ;(J[.;O') fiiiZ.:n: .&:CJ7Y ;(J[.;O') fiiiZ. 9i:: 1:-t *t. -f tl.. -T --$! fiiiZ.1H1? t::

Respectively, data transfer is done with transfer origin of !.file and forwarding destination of file , it is

l'h(J) ;Rm-T-1tl '-A. m 1 o:>l32tl~li* • .&: u~m, o:>~2tlll¥i*J:LJ .Ate 1.liiJitJ<iit. 'm2o:>~2tlll¥i*t.J',;nt?;~;R
mtt~U~t7-~.:r?:r"""~mt.'-c. 7Y..f J!;O')fiiJZ.]t;~. ~ia 1J/?~~~-t ~Wif::. m 1 o:>~2tlll¥i*~o:>7y..f J[;
-T-1tr::ML.. -c. 1>tJ<.!:::-tffti. :1c t--::::~ J[;~~ • .&: L'7v-E/-1' o:> cp o:>t. '1'nt.J' 1 -::>o:>mll~fft. 'f.i.t.J<,;. ~7Y
-1' J[;-T-1t~;Rm-T-1tl \.A~1l-L.. -cm2o:>R2tl~li* JI!rt~fiiJZ.-t ~-'f'.JI!rt.!:::. WJR27Y-1' J[;O')fiiJZ.:n:~. Mii27Y
.'f'J!;-T-1tr::~-t~mJto:>jt;7~. ~m•J/?~~~L... M~2m2o:>~2tlll¥i*f1;lo:>7Y-< J[;-T-1t~. -tnr::~L.. -c
mim~111E~9r::. Miic;Rm-T-1t,,-A~1l-L.. -cm:tt. ~;Rm-T-1'1\.Af::tt*ft~n -ct.,~Rt~U~t~mmo:>.::t-·~t--?
-?7'i':11t:h-j-t .-...-fflfiilZ.L... ~.::t-·~1--'J -?7'i':1 $t:h-j-tt.J,,;.::t-·~ 1--? -?.-...ffilZ.-t ~-'J'.lllrtc!:::. 77..f Jl;O')fii
~$t~. MRC.::t-·~t--? -?tJ',;~fiiJZ.9Co:>mm-r-1t, \.Ar::tt*"C~n -ct. ,~;t-·~t--?-?7'i':11t:h-j-t.-...ffiJZ.~n
t::lltr~27Y-1' J[.;-T-$1~. -T-1to:>M;.t. :1ct--::::~J[;~~- &L'7v-E/?"~~t.·t. '1'no:>mJt-t111E~"fl::

*Making use of general purpose computer architecture which consists of second storage media where input-output
speed is faster than general purpose data bus , first storage media, and said first storage media, while in transfer origin
of file , before setting communication link , at least treating any one inmidst of compression, protocol terminal , and
flaming vis-a-vis file data inside first storage media , protocol which through general purpose data bus , sequential
transfers said file data to second storage media and, With forwarding destination of protocol and file where in transfer
origin ofaforementioned file , after completing treatment for theaforementioned file data , it sets communication link ,
without administeringtreatment vis-a-vis that, through aforementioned general purpose data bus , to the network
adapter card for computer communication which directly, is connected to said general purpose data bus it
lumpstogether transfer file data inside aforementioned second storage media , from the said network adapter card to
network transmission they do, Aforementioned file data which transmission is done, withoutadministering thawing ,
protocol terminal , of data or each treatment whic~ includes flaming to network adapter card which from
aforementioned network isconnected to general purpose data bus of said forwarding destination

• ~;Rm-T-1t,,-A~1l-L.. -cm2o:>~am~Ji*.-...-fflfiiJZ.L... M~a~m•J/?~M1&-t~-¥111rt.!:::. MR277-1' Jl;o:>fii
~$t~.MR2~m~~?~M1&L..~~.MR2m2o:>R2tlll¥i*

Through said general purpose data bus ' with forwarding destination of protocol and aforementioned file which it lumps
together transfers to second storage media , release theaforementioned communication link , after releasing
aforementioned communication link , theaforementioned second storage media

~(J)-T-1tr::~L.. -c. 1>tJ<.!:::-tM;.tmJt. l!mmJto:> cpo:>t. '"fnt.J' 1 -::>o:>mJt~fft. 'tJtJ<,;. n~rt~ml!l!~nt::M
Ri:!M2o:>ii2tlll¥i*~ o:>-T-1t~M~2;Rm-T-1tl \.A ~1)-L.. -em 1 o:>~2tlll¥i*"'fiiJZ.-t ~-'f'.JIIrtc!::: ~;fif-t ~~.!:::~~
~.!:::1" ~ 77-< Jl;fiiJZ.1J5t 0 2. ~*IIi 1 R2illo:>7y;(J!;fiiJZ.:1J5tf::~t. \"(. lliJll2fiilZ.:7i:~. lliJii27Y-1' J!;-T-1t~
l!iJRC.::t-·~t--?-?7'i'-:f1t:h-j-ttJ,,;WJRC.::t-·:~t--?-?.-...ffilZ.-t~t;'€if::.

Vis-a-vis data inside, while treating any one in midst of thawing treatment and communication treatment at least,
sequential data inside aforementioned second storage media which was treated through theaforementioned general
purpose data bus , regarding to file transfer method which itstates in file transfer method . 2.Claim l which designates
that it possesses protocol which it transfers to first storage media as feature, inaforementioned transfer origin, When
aforementioned file data from aforementioned network adapter card transmission it does to aforementioned network,

~77-'f' J[;-T-$1~1 @3?:f::f;t-~@O')I ~7'·~!--.ijl{!i~fiiJZ.L.,, f.J\?

Page 5 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1085

W01997033227 Al 1998-8-4

To transfer said file data with packet unit of one or a plurality, at same time

~1<7·:.d-(1)fiij!;l[;~f8~"9.Q;;t.·:~J-.'J-?7t-!'
v.Ac!::L ·c liii~cfimn(1)m 2 (1)ictfUli*rJ;!-c:
~~ <7·:~1-1:.~/;f;T .Q"f-:)! tJ~t&~~h "'CL \.Q
~PJTI:.~/;f;T .Q;C-=E 1J7t-!'v.A~ ffl L 'Q .:.c!::~
~~c!::T .Q -:J71 Jvfiim1i5!o

file transfer method . which designates that it uses memory
address whichcorresponds to site where data which
corresponds to the said packet inside aforementioned transfer
original second storage media as network address appointing
forwarding destination of said packet , is housed as feature

3. 3.

~jf*x.ft2~c~C7)fiii!:1.l5!1-;t;)L '"'C.

Regarding to transfer method which is stated in Claim 2,

;;t.·:~t-'J-?Jif(1)-::fct-:::vvc!::L -r 4~1t-;;t.·:~t-:1ct-::~Jv(IP) ~m

As protocol of network layer Internet protocol (IP) business

L'

It is

lP"-•:~:)!"O);t-:;f.Y3~~~1:., liiJ~[!;C.,;:IJ7 t-!'v.A~ft-9-"9 .Q.:.c!::

In option region ofiP header< description above [memoria] Grant dress

~~~c!::T .Q -:J71 Jvfiii!:1.l5!o 

file transfer method . which is made feature 

4. ~~*li, ~cii£(1)-:J74 Jvfiii!:1.l5!1-;t;)L '"'C. liii~cfiii!;n:;"t:. liiiic-:J74 Jv-T-1Z~liii~;t-·:~t-'J-?711':11Zn 
-t:tJ'J; liii~c;;t.·:~t-'J -? ....... ffi:i!"t .Q~~r:.. ~-:J71 Jv-T'-:$!~1 @Jif;t::li*llt@JO)I(7·:~t-$ti"t:fiii!L. tJv:> 
~d7·:~t-(1)fii!st~m~-t .Q;;t.·:~t-'J-?71-!'v.Ac!:::L -r. ;;t.·:~t-'J-?Ri 

Regarding to file transfer method which is stated in 4.Claim I, whenin aforementioned transfer origin, aforementioned 
file data from theaforementioned network adapter· card transmission it does to aforementioned network , as network 
address which transfers said file data with packet unit of one or a plurality , atsame time appoints forwarding 
destination of said packet , network layer 

(1) ralillltf.l7 1-!'vA.. liiJgcfiii!;n:;C7) m 2 (1) ictMli*rJ;I 1:~1 <7·:~ H:.~/;f;T .Q"f-

D which corresponds to said packet inside logical address , aforementioned transfer original second storage media 

1ttJ{t&~~n -rL '.Q~mr:.~Jt;-t .Q;e.,;:'J7t:v.A. :&Uliiiicfii!st(1)fiJi~C7)1' 

predetermined of memory address, and aforementioned forwarding destination which correspondto site where [ta] is 
housed [ha] 

-t:?:r.7~~~1J"t .Qt:.II>C1)1 \-t-!'?:r.77t-!'vA.~Hf~L -r~'-i~ht:.'J-Jv 

Page 6 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I 0/367,296) 

Oracle Ex. 1002, pg. 1086



W01997033227 Al 1998-8-4 

Integrating hardware address in order to identifY [douea ], it was defined [waaru] 

t:?1't:l::.:t--?t.t-~:n::(7)7J-!'t...-.A~.Ifll. 'i> ._c!::~~llc!::-ti>771' Jt..~i!n~~. 

file transfer method . which designates that unique one-dimensional address is used for 
[ dowaido ] as feature 

5. ~~*:IJt, ~2ti(7)'771' Jt-~i!:n;~l:.i>L ,-c. iitr~2~i!:n::-c:' iitrii2'771' JL--T-1l~iitr~2*•;1f-.'J -?71f:111;1J 
-t:fJ\i; iitr 

Regarding to file transfer method which is stated in 5.Claim I, inaforementioned transfer origin, aforementioned file 
data from theaforementioned network adapter card before 

~2:?-·.:~t--'J-? ...... ~i!-t i>ii!.g-1::, M~2-T-1!771' Jt..tJ<1 @lif;t.::lcttl~iiO)' <7·.:~1--.!JUI.-c:~i!~:tt.. ~.;1::, iitr 
~277-1' Jt..O)~;!;;c-c:, AA~2771' Jt..-T-11~~;t-·.:~f-.'J-?71f:111:1J-

When transmission it does to description network , aforementioned data file to be transferred with packet unit of one or. 
a plurality , furthermore, in transfer origin of aforementioned file , aforementioned file data said network adapter car 

t:fJ\i; iitr~2;f'-·.:~f-.'J -? ...... ~i!-9 i>.:f'.llifttJ<, 

From [do] to aforementioned network transmission protocol which isdone, 

- . - -· - -m:m-1 \?-·.:~H-iitr~2flii!:n::(7)~ 2 (7)ii2i1UlH$:1-
;Jslt i>~' <?"·.:~H::Mr.t;-9 i>7-9(7)$t:rui7t:v· 
7-.b <7·.:~1--~~it ~L. -c, AA~2~i!$t:fJ'i;O)fi!t 
J:Eit~~~t.:-91::~/ <7·.:~1--~JI!Jt~i!ffi-t i>.:f. 
Jill c. M~2~i!$t:tJ'.;' <7·.:~f-.(7)¥ii!~*~:¥l: 
rtt.::c~l::lct, ~¥ii!~*~:¥l:rtt.::,<7·.:~t--O) 
h~iURIY-JI::~~i!nO)~ 2 O)~f1Uli*tJ'.; 
~lj.tfj L. "C¥ii!T i>.:f'.JIIft~~JJ.. iitr~2771' JL-
0)~;!~-c:.M~~ffi~~?~Ma-t~.:J=.~ 
tJ<, :¥l:ffil..t.:J <7·;~f-.(7).I:7-7-:r.•;l?~ftl. \' 
~*-c:-T-90)~~-u~~~~~L.t.t~~~ 
:Yl:~I<-'T·.:~f-.~, iitr~2~i!7C" fi!tJ:EJiC;~~il&T 
;:c~<. ~tii!~O)~ 2 (7)~2t.ll!¥i*"'-JI!Jt~l' 
filtL -c~P<.:f.JQJtc!::, 7-9(7)~~&U7-1!0) 
~~JO) cp O)~t.J:<ct-:ntJ<~w ~:tt.t.:1 <?-·.:~t--
1::-=>L'-clct, iit:>l::;:;h.~Jft~l.., ~l<?"·;~f-.0) 
lffilt~:hi>~~~ t.l~ilit~~' <7·:~1--~:!IHtt:: 
~~~-ci>~.~~~ffi"ti>~~&U~~O)f.J: 
L''<?-·:~f-.~lilft~fHIL. -c!P<c!::c!::tl::. AA~~
1±1 ~:ht.:' <?"·.:~ t-(7) $t:im7 t!'v?..c!::l <?"·.:~ t-~~
liil~2~;!;;c ~~L. "CiJii!~~*-9 i>.:f'.lllftc!::,
:pjjzd?-·.:~ t-~:¥l: ltltl~t=~- ~I <7·.:~ t-~liiJ
g2~1t"Ci>L 'f.:t2t.l~i\itt:.I'M"t ~.:J=.lllft~~
t.· ;:c~~llc-t ~ '771' Jt..~i!ni~.

Grantmg start address and packet length of data whtch
corresponds to the said packet in aforementioned transfer
original second storage media in transmission packet ,without
waiting for affirmative response from aforementioned
forwarding destination ,when receiving retransmission
demand for packet from protocol and aforementioned
forwarding destination which sequential it transmits said
packet , Only packet which receives said retransmission
request reading * is resent including protocol which from
selectively said transfer original second storage media ,
protocol where with forwarding destination of aforementioned
file , protocol which releases aforementioned communication
link , does error check of packet which is received, midway
omission of data or reception packet where error does not
occur, without returning affirmative response
toaforementioned transfer origin, to second storage media of
said forwarding destination sequential compilation does and,
It abolishes this at once concerning omission of data and the
packet where at least one in error of data is detected,
compilation of said packet memory region which it should
you do, as is less crowded just said packet capacity fraction ,
later sequential compilation it does packet which does not
have the omission or error which are received, Description
above notifying start address and packet length of packet
whichis detected to aforementioned transfer origin, after
receiving the protocol and retransmission packet which
require retransmission, the said packet description above in
memory region which is less crowded compilation file
transfer method . which designates that protocol which is

Page 7 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1087

W01997033227 At

6.

~-~ttJi 1 ~C.tiQ)-:771' Jv$ii~1.l5:td:::;f.)l. '-c.
iiiJ~C.-:771' JL-O)$ii~$tr:::. *·~f-.'J-~1'::,11:7
z-A.:t.J-t-:~1)-L "Ctil~(})~*~tl~L, ~
til~0)~*(})~(})1~~m~•1(})~*~-iii1
~C.-:771' Jv(})$ii~;t;t.J,'=>-T-11:771' Jv~~~
l±l "911!'-1:::. iiiJgC.$ii~5ttJ<. iiiJ~C.tii~ ;r; r:::to: ~J
~nLJ.liiJ~c.• 1 O)~*c(/)rl'l,~• 1 Q)ilm•J.
::.,t?~lit.ll.L, iiiJ~ctii~$t;tJ<, liiJ~cM I (})•)::,
?~1l"L -ciiiJgC.M I O)~*f.J'i;~i;tL~iiiJgC.-:7
71'Jv"'-(})7::,~ .b.7?i!A.~)j(:~A.11·~?L.
iiiJgc~~$ttJ<. mr~c.• 1 (/)~*r:::to:LJ~t.>~J.
iiiJE$ii~;t;c(})M~M20)~::_.t?~ut.ll.L. iiiJ
~c.~~5tt.J<. n~c.• 2 O)•J:;.,?~m~.. '-ciiiJgc-T
-11:771' Jv~ili:r!c6~;t;f.J''=>~-7::,~"" Jv
r:::~~l±lL. ~~J1.1±lLt.:-T-11:771' Jv~~$ii
~$t:O)M2(})Em~~"-ffl~~L. iiiJgc&
~$tt.J<. iiiJE-ts~~~ 7~1:::iiiJ!C.M 2 ())•J:.­
?~MMI:L. iiiJ~C.~~5ttJ<. liiJ~cM 2 Q)Eil~
~P'JO)-T-111:::)l;fL -c. ~t.i:<c!::tM;-*518!1. i!
ia"~JI())~(})I, \"f';h_f.J\ 1 ~())~JI~fil, \f;j.fJ<
'=>.ll!rt~51nJI~nt.:iiiJEM 2 O)fcm~i*P'J())-T
-11~iiiJEifLI'fl-T-11,\A.~1l"L -c~6~5t(})
M1(})Em~~,..,$ii~L. iiiJE6~$t~.iiiJ
E7::_.t~.b.7?i!A.~)j(:~~~-fiL,iiiJEMl
O)IJ::_.t?~1l"L "CiiiJE-:771' Jv-T-11~~-ii~]t
O)Mt(})Em~i*~'=>iiiJEMI(})~*"7:.-~
.Lt. I: 6 ~ L. iiiJ ~c tii ~ $t; tJ<. iiiJ ~C. 7 >$(.b. tii
~~7~1:::iiiJjcM I (})'J::.,t?~A;;f&-9~ ;:c!:;~
~~c!::T~-:771' Jl.-~~n5*o

7.

aW~r:R6icti(})$ii~n5*':::;t;>l, '-c.

Regarding to transfer method which is stated in Claim 6,

1998-8-4

doneis included as feature

6.

Regarding to file transfer method which is stated in Claim
I ,through (nettowaakuintafeesukaado] to forwarding
destination of aforementioned file , you connect terminal of
plural , first terminal which is a one in terminal of the said
plural , occasion where data file is read out from transfer
originof aforementioned file , aforementioned forwarding
destination , becomesaforementioned transfer cause and
changes, establishes first communication link between
aforementioned first terminal , Aforementioned forwarding
destination , through aforementioned first link , demand
foraforementioned file which is sent from aforementioned
first terminal random access stack , aforementioned
forwarding destination , to become theaforementioned first
terminal and change, to establish second link
betweenaforementioned transfer origin, aforementioned
forwarding destination , Aforementioned data file from
aforementioned transfer origin reading , said reading it is in
sequential making use of aforementioned second link to
second storage media of said forwarding destination to lump
together transfer data file , while theaforementioned
forwarding destination , to release aforementioned second link
afterdescription above bundle transfer ending, aforementioned
forwarding destination ,treating any one in midst of thawing
treatment and communication treatmentat least vis-a-vis data
inside aforementioned second storage media , sequential
through aforementioned general purpose data bus , to transfer
data inside aforementioned second storage media which was
treated to first storage media of the said forwarding
destination , aforementioned forwarding destination ,
sequential to execute aforementioned random access request,
through aforementioned first link , from first storage media of
the said forwarding destination to transfer aforementioned file
data to random to theaforementioned first terminal ,
aforementioned forwarding destination , Description above
file transfer method . which designates that theaforementioned
first link is released after random transfer ending asfeature

7.

iiiJ~c$ii~:n:r:::)l;ft.. -cfliJ~r=*i~(})~*tJ''=>*i~O)=;,:.-~ 1... 7 ?-tzA.~)j(:tJ<m?

Vis-a-vis aforementioned transfer origin simultaneously from terminal of plural random access demand for plural oh

f.:~~ I::.

Page 8 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1088

W01997033227 Al 1998-8-4

It is when,

liiltclii~$'i:fJ<, liilf2fiillli!fl::~*~tl.t::*i~(f.)?~1f J.,. 7?-t!.A~*~~J!Il., '"(

Aforementioned forwarding destination , rearranging random access demand for plural which description above
simultaneously is required

, Jill~. ~~*fJ<?~1f .L.7?-t!.A~*L.t::-T-?771' JL-~liili2lii~:n;fJ'i;-t%L. -c.Y-"r~'Y"\"JL-I::~'tc11-I:B"t
;:c!::~~mc!::-t ~ 771' JL-•ii~ni~o s. ~11*li6~2it(f.)771' JL-lii~1.ii~l::i:)(, \"(' lliJf2.~~$'f;~ I ~"T·;J J-.(1))I,..-
?c!::L. "CU!!!m~tt' AAtalii~$'i:tJ<lliJta~2(f.) •J ~?~ mL '-cAAta-T-?771' '"'~AAtalii~ntJ'.;

sequential , each terminal random access Jumping together data file which isrequired regarding to file transfer method
which is stated in the file transfer method . 8.Claim 6 which designates that it reads out in sequential as feature from
aforementioned transfer origin, functioning with theaforementioned forwarding destination as router of packet ,
aforementioned forwarding destination making use of aforementioned second link aforementioned data file from
aforementioned transfer origin

'Y-"T~'Y"\" JL-1::~31-I:BL., ~lii~$'i:0)~2(f.)tcflUii*"'-t%lii~1" ~~1::, lliJ

When in sequential lumping together transferring to second storage media of the reading , said forwarding destination ,
before

tc•ii~:n:tJ<. AAta-T-?771' ,~,.~, ooa:t::l;t*l~il(f.)' ~7·:~t-¥iii~:. fJ'-::>~

Description transfer origin, aforementioned data file with packet unit of one or a plurality ,at same time said

'~7·:~H::Mtclii~:n:(f.)~2(f.)aamJ¥i*J1:1 ~:~' ~"T·:~t- 1::~1t-t ~-T-?tJ<mtfl.

In packet inside aforementioned transfer original second storage media said
data which corresponds houses

packet
.

~tl. '"CL '~~FJT~m"t ;£-=E:- 1J7t-= v .Ac!::-171' ;((f)
~~~~4L.-c~WL., lliJElii~$'i:~~&~ 
$'tO)~ 2 (f.)aatl~lf*J1:10)-T-?I::~L. -c. !PtJ 
<c!::tfW;:JI!:~!!I. im.W~J.!J!(f.)cp(f.)L'"fnfJ' 1 -:::> 
O)mJ.!J!~fiL 'i"JtJ<.;. nm~m!!l~nt::~~ 2 (f) 
tats~f*J1:J(f.)-T-?~lltrtciR.m7-?,,.A~:O­
L. -c~lii~$'i:(f)~ 1 (f.)fctl~i* ....... lii~-t ~~ 
r::. ~lii~$'i:tJ<.M!lalii~ni::J:-:>-ci-t4~n 
td-=E'J7t-:v .Ac!::-171' ;( 0)~~1:::7{;1::. ~~ 2 
O)i!ctl~f*(1:] 0) :¥l:W1 ~"T·!It-~~lii~$'i:(f)~ l 
0) !Ia m~ti*I::JiftlL., Mta&~$'i:fJ<lliJ!l27~ 
1f.L.7?-t!.A~*~)I(R~~fiL..litJtc~ I (f.)IJ 
~?~:0-L. -riWtc?71' JL--T-?~~lii~$'i:(f) 
~IO)Etl~f*~i;,WJE~I(f.)•*"'7~1f.L. 
1::&~"9~181::, M~alii~$'i:fJ<, Mtc-T-?7. 
71' ,~,.~ 1 ooa:t::r;t*l~il(f.)' ~?-·:~t-!l!iii~:, fJ' 
-:::>, iWta&~ni::J:-:>-ci-t4~nt::;£-=E•J7t-:v 
.Ac!::-171' ;(O)~~~Piti~I~?"·;~H::~ 4L. "C 
iWtc~ 1 (f.)~*"'lii~L.. ~.;1::, ME~ 1 (f) 
•*l::i:)l, \"(, iiiJic1 ~"r·!!H::i;f -9-~tl.f::;£-=f:IJ 

Grantmg data of memory address and Size which show stte 
which is done while transmitting, when aforementioned 
forwarding destination treating any one in midst of thawing 
treatment and communication treatmentat least vis-a-vis data 
inside second storage media of said forwarding destination to 
the first storage media of said forwarding destination , 
sequential data inside said second storage media which 
wastreated through aforementioned general purpose data bus , 
transferring, When said forwarding destination , in data of 
memory address and size which aregranted in aforementioned 
transfer origin in origin, compilation doesreception packet 
inside said second storage media in first storage media of said 
forwarding destination , theaforementioned forwarding 
destination sequential executes aforementioned random 
access request, through aforementioned first link , 
aforementioned file da.ta from the first storage media of said 
forwarding destination transferring to random to 
aforementioned first terminal , aforementioned forwarding 

· destination , Aforementioned data file with packet unit of one 
or a plurality, at sametime, granting data of memory address 

Page 9 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1089



W01997033227 Al 1998-8-4 

7!-:'v.A~-+t..f;('O)fWfaa::1t;r::~~ 1 0)~*0) 
PJf:iEO)gcm~~~~=-T-1ta:~tm-t .Q ::~a:~ 
fl~"t .Q"T-1t~~1.n~o 

and size which are grantedin aforementioned transfer origin to 
said packet again, on basis of data of memory address and 
size which it transfers to theaforementioned first terminal , are 
granted to aforementioned packet furthermore, in 
aforementioned first terminal , in predetermined memory 
region of said first terminal data transfer method . which 
designates that compilation it does data asfeature 

9. 9. 

gW*ll1 -~W*JIBg[!Jf!tO)L '"fhiJ' 1Jlg[!Jf!tO)"T-1t~~n>~a:~tr"9 .Q 

data transfer method which is stated in any one claim which is stated in Claim I -claim 8 isexecuted 

~~O)~D~7ka;EmL~Em~~o -

storage media . which program of for sake of storage is done 

10. "T-1t~~a:ft?t::6?0)~1 O);rLm"T-1t,~.Ac, 

first general purpose data bus in order to do 1 O.data transfer and, 

~1 O)Ncm9¥~c. 

first storage media and, 

iiiJgc~1 O)~cm~~~LJA.ili :t.JiiJltJ<iiL '~20)Em~¥~~-

second storage medium where input-output speed is faster than aforementioned first 
storage media and, 

iitrtc~1 O)mm.:r-11,~-Ar::tli't~n -cL '.Q~~tlil~m0)~1 O);t.·;~t-'7-

first for computer communication which is connected to aforementioned first general purpose data bus [nettowaa] 

'J7~~1ttJ-!-=~. 

[kuadaputakaado ] With, 

ii~·J~?a:~:~E-t .Qiitrr::, iitrtc~1 O)gcm~¥1*~0)?71' Jt.--T-1tr=~L -c 

Before setting communication link , in file data inside aforementioned first storage media confronting 

, ~tJ<cti.I.Ri, ~ct-::JJt.-~!ijfti, Jl(t~?v-~~~O)tflO)L'"fhfJ'1 ?0)~ 

At least place of any one in midst of compression, protocol terminal , and flaming 

l!a:trL 'fJ.iJ<I;,, ~'771' JL-"T-1ta:iitrE~1 O);rLm"T-1t,~A.a;1tL "CiitrE~20)gcm~1*"'-li!R~~~"t~f::~ 
0)~1 0)~~=¥-~~-

Page 10 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

-

Oracle Ex. 1002, pg. 1090



W01997033227 At 1998-8-4 

While doing reason, first forwarding means in order through aforementioned first general purpose data bus , sequential 
to transfer said file data to aforementioned second storage media and, 

ii1Jt277-1' JL--T-111::~-t.Q~LUlJ!0)1C7f&. iira•J:..-?~~~L ' ii1Jt2 ~20) 

After completing treatment for aforementioned file data , communication link is set Description above second 
- ~ 

~2iS~f*j:/q0)77-1' Jl-T-11f::~L ""C~J1~1J1ii 
~-rr::, ~77-1' JL--T-11~. ii1Jtc~ 1 O)iA.m-T 
-11,\.;;~:.~11-L "Liiifl, ii1Jii2~ 1 O);t..·vi--'"J-? 
711":111:f.J-t-:'""--f5tii!L, ~~ 1 O);t-..·:.~1--'"J 
-?711"":111:t.J-i-:'t.J'.;;:t.·vt-'"J -?""-ffii!T .Q 
t:::~ 0) ffiiZ. Ef-t& t:, ~ :f!i"T .Q 'iiiZ. ;t; tit WW t:, 
-T-11fiiiZ.~ft?t:::clf.>O)~ 2 0) iR.Jll-T-111 \.A 

t:, ~30)EiS~f*t:, ii1JE~30)EiS~i* 
J:LJ.AI±I:t.Jiifl{t.J{Jil.'~ 4 O)iiciS~f*t:, ii1I 
iic~ 2 O)iA.Jll-T-111\.AI::tt~~h ""Cl.'.QMW 
UtiiFaJllO)~ 2 O);t,.•_:,I--'"J-?71t'":111:t.J-t-:' 
t:, ii1J!c;t..·:.~t-'"J-?t.J,;ii1Jtc~ 2 O);t..·vt-'"J­
?711":111:t.J-t-:'""-ffii1i~ht:::ii1J!c77-1' JL--T-
11~. -T-110)M;J, :1ot-::::~JL-~ililii. 1iiL'7v 
-::::..-?"~~ct;l. '"9t\.O)~Jit1l1ii~"91::, ii1JE 
~ 2 O)iA.m-T-111\.A~:fl-L -rii1Jtc~ 4 O)!cm 
~i*""--f5fiiiZ.L, ii1J!2iiia1J :..-?~Mt&"t .Q 
~clt.>~Mt&Ef.t&t:, ii1JE~ra~:..-?~Mt&L~ 
f&. ii1J!c~ 4 O)!ciS~.¥f*P'!O)-T-11r::~L -r, 
~t.i:<t:tM;J~ll. iira~JI0)$0)1. '"9hiJ' 
1 -:JO)~~~~fil. 'tJ.tJ%, nm:~~1;!1!~nt:::ii1Jtc 
~40)Em~f*pq(J)-T-11~ii1JE~20)iA.Jll-T 
-111 \.A~:fl-L "Lii1J!2~ 3 O)!ciS~i*""-tiiZ.T 
.Q~~0)~20)fiiiZ.Ef-t&t:~:f!i"9.QfiiiZ.*M 
WWc ~~filiT .Q;:t;~~~cT .Q 77-1' JL-ti 
la~fio 

11. 

~w*Ili 10 Eit0)77-1' JL-tiia~m:r::iil. '"L, 
iiiJ!ctiiZ.;t;MWtJlt.J{, ii1JE77-1' JL--T-11~ii1J 
!c~ 1 O);t-·vi--'"J -?711"":111:t.J-i-:'t.J'; ii1J!c* 
·vi--'"J-?""-ffiia"t.QJ:B~I::, ~77-1' JL--T-11 
~ I ilif:t:::f;l::*-i:~iiO)J~7·vl--!i1in:-r?tiiZ.L, 
t.J'?, ~~ ~?-·:~t-(J)fiiiZ.*~m~-t .Q;t..·:.~I--'"J­
?71-:'v.At:L -c. iiii!c~ 2 O)!ciS~i*P'I-r:~' ~ 
7·vH::~ li&T .Q-T-11tJ{mM~h.QJ:BPJTI::M 
li&'t.Q;(-t:'J7!-:'v.A~m~.,.Q ;:t;~~~t:"t.Q 
77-1' Jl,filiZ.~tio 

12. 

.. 
Without adm1mstenng treatment VIs-a-vis file data ms1de 
storage media ,said file data , through aforementioned first 
general purpose data bus , transfer original computer and 
second general purpose data bus in order to do data transfer 
and storage media of the third which possess transmission 
means. in order directly, it lumps togethertransfers to 
aforementioned first network adapter card , from said first 
network adapter card to network the transmission to do and, 
From second network adapter card and aforementioned 
network for computer communication which isconnected to 
storage media and aforementioned second general purpose 
data bus of 4 th where input-output speed is faster than 
storage media of aforementioned third theaforementioned file 
data which transmission is done, without administering 
thawing , protocol terminal , of data or each treatment which 
includes flaming toaforementioned second network adapter 
card, through·aforementioned second general purpose data 
bus , it lumpstogether transfers to storage media of· 
aforementioned 4 th , While treating any one in midst of 
thawing treatment and communication treatment at least 
releasing means in order to release aforementioned 
communication link and, after releasing aforementioned 
communication link , vis-a-vis the data inside storage media 
of aforementioned 4 th , sequential file transfer device . which 
designates that forwarding destination computer which 
possesses second forwarding means in order through 
aforementioned second general purpose data bus ,to transfer 
data inside storage media of aforementioned 4 th which were 
treated to storage media of aforementioned third ispossessed 
as feature 

11. 

When aforementioned transfer original computer , 
aforementioned file data from aforementioned first network 
adapter card transmission it does to theaforementioned 
network in file transfer device which is stated in Claim 10, as 
network address which transfers said file data with packet unit 
of one or a plurality , at same time, appoints forwarding 
destination of said packet , file transfer device . which 
designates that memory address whichcorresponds to site 
where data which corresponds to the said packet inside 
aforementioned second storage media is housed is used as 
feature 

12. 

Page 11 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1091



W01997033227 Al 

~*ti II a2tiO)~)a~~l:.;t;)L '""C, -*•;~1--'J 
-?JmO):fCJt--::lJL-t:l.. -c 4:'/11--*•;J!--:fCJ!--:::J 
JL-(IP)a:l'fJL '· IP "'-•;_~1(0)*:1~3:'/~.i;tl:., i1iJ 
a2;(-t'J7t:v.A.a:N ~ 9 .Q~t: a:4t=t~t:9 .Q7 
74 JL-~ia~fi. 
13. 

~~*ti w a2ti0)77-1' ,~,..,iim~t~r=t:>'- '-c, 
M~·iiia~H+WtltJ<, Ma2774 Jt..-T-11a:M 
t2i; I O)-*•;~I--'J-?71f:1111J-t:tJ,i;Mt2-* 
•;JI--'J-? ...... ffiia9.Q~'i!?il:., ~77-1' JL-7-11 
a: I ii*f::li*l~il§JO)I~?"·;J!--.IJ{iL"'C:tiial.., · 
fJ\'?, ~I ~Jr·;_~!--O)~)a$'f;a:ftiJ:iE9 .Q-*•;Jj-.'J­
?7t-:v.A.t:l.., -c, .::t-·;~I--'J-?fiO)~JI~7t:v 
.A, Macm 2 O)tcii~lttq1;J-c:~' ~?-·;~H:.~~t 
"t .Q-T-11tJ<t§M2=tt. ""CL '.Q~fiJTI:.~r.t;9 .Q;.t 
.:c•J7t:v.A., 2iHJMtc~ia$tttlftlf1;JO)PJT~ 
O)J \-t:?.r.7a:~5.:1J9 .Qf::l/)0)1 \-t:?.r.77 
t:v.A.a:*!f'i!?i L.. -c~•2=tt.t:: 'J-Jt.-t-:'J -1'!-!r:..:~. 
=--?t~-~:it;0)7t-:v.A.a:mL'.Q ~t:a:~11: 
t:"t .Q 77-1' JL-~ia~ii. 

14. 

~~*ti 10 acti0)774 '"'~;a~~r:.t:>L '""C, 
M~~ia:it;ttW«~ttJ<, Mft277-1' Jt.-7-11a:M 
tci; t O);t..·;~t--'J-?71f7'11n-t:tJ,.;Mtc.::t.. 
·;~t--'J-?"f~ia9 .Q~'i!?il:., Mt2-T-1177-1' 
Jl& I il*t::li*l~il§JO)I~?"·;~Hjt{iL"'C:~ia 
L... 2:.;1:., Mtcffiia=F~tJ<, ;arn,~?-·;~t-­
r:.Mt"cm 2 O)fl'2ii~f*r:.t:>rt.Q~d?-·;~H::~ 
Itt' .Q7-110)$tiil7t:v.A.b~?-·;~t--:fla:N ~ 
L..-c,ME~m$'CH+Wtl~.;O)•~zwa:M~ 
'if' I:.~' ~7·;~1--a:JI!i~m~9 .Q"F~t:, iitrt'C~ 
m9c n•t~tJ' .;, ~ ?-·;~ 1-- 0) Nm ~* a::!il: rtt::t: 
~r::ri. ~Nm~*a::Ytrtt.::,~?-·;~t--O)cifj.a:~ 
tR(ItJI:.iitrt2~ 2 O)Etfa~lf*tJ'i;~c?j.l±ll. ""Cifi 
m"t.Q=F~a:wL... ntrEM~=F~~- :YtrnL.. 
t::J~?"·;~i--O).I.7-'T.r.·;~?a:ftL '· itl!tP"'C:-T-
110) ~j'i;& {J~LJ fJ(~~ l..,f~fJ\?f::§!l:~ I ~Jr·;J 
1--a:. iitrt2~ia~H+Wtl"·~JtWa:~9~t: 
t~<- Mt2m 4 O)t'Ctfa~f* ...... Jill~liti~L.. -ct1>< 
=F~t:, -T-110)~$'i.&t'7-110)~~0)cp 
O)~t~<bt-ntJ<~t±12=tt.t::l ~?-·;~H:.?L '""C 
liiit.:> r::~tt.a:B!•L... ~' ~?"·;~!--O)\IHI2=tt..Q 
""-~i2ii~~a:~/~?"·;JI--~il~t.:tt~tt-ct:> 
~, W,~§!l:~9.Q~ji;&{J~L)O)f~l, \dJr•;Jj-. 
a:nl~litiilL.. -ct;><t:t:tr::, ntrt2~1±12=tt.t::'~ 
?-·;~t--O)stJU17!-!v.A.b ~?"·;~ H~a:ntrt2~ia~ 
t+Wtl"~~L..""Cifima:~*T.Q"F~t:, iii 
;a, <?-·;~t--a::YtrtllJl-:>t::i&, ~~ <7·;~1--a:ntrtc~ 
lt""Ci:>L 'f::t2tfa~i;tl::lfii(9 .Q.:f~a:W9 .Q 
~t:a:~t=llt:9 .Q 77-1' JL-,iiia!tli:. 

1998-8-4 

file transfer device . which designates that aforementioned 
memory address is granted to option region of IP header , 
making use of Internet protocol (IP )in transfer device which 
is stated in Claim II, as protocol of network layer , as feature 

13. 

When aforementioned transfer original computer , 
aforementioned file data from aforementioned first network 
adapter card transmission it does to theaforementioned 
network in file transfer device which is stated in Claim I 0, as 
network address which transfers said file data with packet unit 
of one or a plurality , at same time, appoints forwarding 
destination of said packet , Integrating hardware address in 
order to identifY predetermined hardware inside memory 
address , and aforementioned forwarding destination 
computer which correspond to site where the data which 
corresponds to said packet inside logical address , 
aforementioned second storage media of network layer is 
housed, file transfer device . whichdesignates that it uses 
unique one-dimensional address for world wide which is 
defined asfeature 

14. 

When aforementioned transfer original computer , 
aforementioned file data from aforementioned first network 
adapter card transmission it does to theaforementioned 
network in file transfer device which is stated in Claim 10, 
granting start address and packet length of data 
whichcorresponds to said packet which transfers 
aforementioned data file with packet unit of one or a 
plurality , furthermore, aforementioned transmission means , 
in theaforementioned second storage media in transmission 
packet , Without waiting for affirmative response from 
aforementioned forwarding destination computer ,when 
receiving retransmission demand for packet from means. 
aforementioned forwarding destination computer which said 
packet sequential is transmitted, the error check of packet 
where only packet which receives said retransmission request 
reading • is resent has means which from selectively 
aforementioned second storage media , aforementioned 
release protocol ,receives action, Is done concerning omission 
of means. data which and packet where at least one in error of 
data is detected to storage media of theaforementioned 4 th 
midway omission of data and reception packet where error 
does not occur, to aforementioned transferoriginal computer 
without returning affirmative response, sequential compilation 
this isabolished at once, compilation of said packet memory 
region which it should you do as it is lesscrowded just said 
packet capacity fraction , later sequential compilation it does 
packet which doesnot have omission or error which are 
received, description abovenoticying start address and packet 
length of packet which is detected toaforementioned transfer 

Page 12 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1092



W01997033227 Al 

15. 

att>t<:li 10 ~cif&C1)77..f JL-~i!~t~tr:.;tsL '-c. 
2:;1:., iitr~~i!;t!tWmtr:..:t-·:~t-'J-?..f:...-9 
7:r.-.7.:t.J-t:~'fl'L -cUU;t2:nt::ii~C1)~*~ 
A~L. ~~:3$\:tiWU!t~. ~ii~Cl)~* 
m*Cl)t~~~~mt(])~*~M~&i!~ti 
~~1!b'J';-T,-977..f JL-~~ciJ.J.I±I't~r:., M~a 
~j!~!tWtll:.fJLJilU?L), iitr~m I (])~*.!:: 
mr~~,~m 1 Cl)iim•J:...-?~fit.II.L. -M~am 1 C1) 

•J:...-?~'fl'L -cM~am 1 Cl)~*tJ";i!.;n~iitr 
!c77..f JL-~m7:...-1' k. r?-t:?.A~*~A-9·:~? 
L. M~m t Cl)~*r:.to:LJ~tJLJ, Mii'ctiii!~ 
!t~flc(])r~~,~m 2 Cl)'J:...-?~iit.II.L. M!Cm 
2 m•J:...-?~m~. '"Ciitr~a-T-1177-f JL-~iitr~& 
i!)l;!+WtltJ,.;.Y-7:...-.Y-v Jvl:.~ciJ.J.I±I L, ~ 
~.iJ.J.I:f:ILt::-T-977-f JL-~iitr~m 4 Cl)ii'ctlUl 
i*-"-~&i!L, iitrii'c-~&:3~ 7 ~r:.Mii'c 
m 2 Cl)•J:...-?~M1BI:L. Mii'am 4 Cl)ii'c~~~i*f1'1 
Cl)"f-9r:.~L -c.!Pto:<ctM;.t~I!l!. 1mm-~ 
J!l!Cl) * (])(, \"f'hfJ' l ~Cl)~J!l!~ftl, \f,itJ<i;.Ji!rt 
~~I!l!2:n~M~m4Cl)~~~i*f1'1C1)-T-9~ 
M!am 2 Cl)iJU~-T-9,\.A~'ftL -ciitr!lam 3 C1) 

~m~i*~&i!L. M~7:...-1'k.r?-t:?A.~ 
>f<:~JI!ri~~ftL. iitr!cm I Cl)'J:...-?~'ftL "CWJ!c 
77-f JL--T-11~M!am 3 Cl)!c~~i*t.J,.;ntr!a 
m l 0~*~7:...-1' k.l:.~i!L. M~-:;;..,1( k. 
~j!ft 7~1:.M!am l C1) 1J:...-?~14¥1Bi:T ~"¥-~ 
~:fi9~ .:.c~~U&t:9~77..f JL-~i!~ilo 

16. 

In transfer device which is stated in Claim 15, 

1998-8-4 

original computer , after receiving means. retransmission 
packet which requires retransmission, said packet description 
above in memory region which is less crowded the 
compilation file transfer device . which designates that it 
possesses the means which is done as feature 

15. 

Furthermore, through (pettowaakuintafeesukaado ] to 
aforementioned forwarding destination computer , in file 
transfer device which is stated in Claim I 0, terminal of plural 
which is connected is possessed, said forwarding destination 
computer , occasion where the first terminal which is a one in 
terminal of said plural reads out data file from aforementioned 
transfer original computer , becomes theaforementioned 
transfer original computer , change, You establish first 
communication link between aforementioned first terminal , 
through theaforementioned first link , demand for 
aforementioned file which issent from aforementioned first 
terminal random access stack , becomes theaforementioned 
first terminal and changes, establishes second link between 
theaforementioned transfer original computer , 
Aforementioned data file from aforementioned transfer 
original computer reading , said reading it is in sequential 
making use of aforementioned second link to storage media of 
aforementioned 4 th to lump togethertransfer data file , while 
releasing aforementioned second link afterdescription above 
bundle transfer ending, treating any one in themidst of 
thawing treatment and communication treatment at least 
vis-a-vis the data inside storage media of aforementioned 4 
th , sequential , data inside storage media of aforementioned 4 
th which were treated through aforementioned second general 
purpose data bus , is transferred to storage media of 
aforementioned third , aforemen~ioned random access request 
sequential is executed, through aforementioned first link , 
theaforementioned file data from storage media of 
aforementioned third istransferred to random to 
aforementioned first terminal , Description above file transfer 
device . which designates that itpossesses means which 
releases aforementioned first link after random transfer 
ending as feature 

16. 

Aforementioned forwarding destination computer , vis-a-vis aforementioned transferoriginal computer simultaneously 
from terminal of plural plural 

Page 13 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1093



W01997033227 Al 1998-8-4 

'5';.1~ .L.. 7?i!A.~*tJ<~-:>f::::il~l::. ~liilfl:tfl::~*~*"-f::::-tllli:o:>?/~ .L.. 7? 

When there is random access request, said plural which is requiredsimultaneously [randamuaku ] 

i!.A~*r£-~111.., -c, nm~. :§~*tJ<7';./~ .L..7?i!A.~*l.,t::::-T-11771 11..-

Rearranging [sesu] request, sequential, each terminal random access data file whichis required 

rrM~r.•iii!:rcnlJt~~tJ,~-m~.., -c~-7>Y"\" JL-r::~~ifm '9"¥-~rrlij'-t ~ 

Lumping together from aforementioned transfer original computer , the means which it reads out in sequential it 
possesses 

.... ~r£-~iHl~T~771 JL-~i!l':~o 

file transfer device . which designates thing as feature 

17. ~R*!i 15 N2lJ40)771 JL-~i!l':~l::~~ '""C. 

In file transfer device which is stated in 17.Ciaim 15, 

Mre~i!;tnlJt~~tJ<, <7·.:~t-o:> JL--1Icl., -ct~~JmL,. 

Aforementioned forwarding destination computer it functions as router of packet , 

li1J~2~i!:rc~tlJWtJ<, 1i1J~2-T-11771" JL-rf, 1 ®a;t::::lit-tl:lli:®o:>' '\7·.:~t-ll! 

Aforementioned transfer original computer , aforementioned data file , packet of one or a plurality single 

tii"t:, fJ'-=>~' <7·.:~H::Ji1J~2~i!:rco:>~2o:>~21i~f*r;t;J"t:~' '\7·.:~H::~JtT ~ 

At rank, at same time in said packet it corresponds to said packet inside aforementioned transfer original second storage 
media 

-T-1!tJ<tfHf!~tl. -ct. '~ilfiJTrr;r-'9 ;t"E: 1J7t:vA.~-tf-{;(O)fRtlirfM -9-L, '"Ci!~'9 ~Ef~t:lij'L,, WJtr.~i!;tM 
lJt:J!tJ<. Mtr.m40)N21i~f*r;t;Jo:>-T-1Zr::~l., -c. !Pt~<~tM;t~ll. ~m~llo:>cpo:>t. '"t'*"-tJ' 1-=>0)~llrrrr 
t. ,t~tJ''b. nm~~ll~nt::::~m40)tcii~f*r;t;Jo:>-T-

Granting data of memory address and size which show site where data is housed while to possess means which 
ittransmits, aforementioned forwarding destination computer , treating any one in midstof thawing treatment and 
communication treatment at least vis-a-vis data inside storage media of aforementioned 4 th , sequential D inside 
storage media of said 4th which was treated 

1rrrMrem20)il\m .:r-11, (A.r£-itl., -cAAN2~30)tam~f*"'~i!-t ~~r::. M 

When [ta] through aforementioned second general purpose data bus, transferring to the storage media of 
aforementioned third , before 

tr.~i!:rclitlJt~~r::J:? -cit -9-~nt::::;t"E'J 7 t:v A.~-tt-1 ;;< O)tRfar :::rcr ::. ~m 40) tr.m~f* r;t;J 0) SY:m' <7·.:~ t--t: ~ 

Page 14 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1094



W01997033227 AI 1998-8-4 

In data of memory address and size which are granted with thedescription transfer original computer in origin, 
reception packet inside storage media of said 4th in storage media of said third compilation the means. which is done 

M~7~~k7~~~~-~~-~hL.R~~,ro~~~~*L~M~77 

sequential to execute aforementioned random access request, through theaforementioned first link , description above 
[fa] · 

1 Jt-"f-11~Mifc~ 3 ro~tiUli*tJ,.;n~~ ' 
0)~*"7~~ kl::ti~t".Q~I::. Mic-T-11 
771 Jvf 1 ~-a;t.::r;U~f&~ro' ~?"·:~t--.!Jftrt:. 
fJ'?. Micti~$\:!t~«!ti::J::-:>"CN -9-~tl.t::;t 
~~J7t:v ~c-tt1 ;(rotl'fm~MU:~' ~?"·:~H:: 
i-t~L ~Mite~ 1 CT)~*"'ti~t".Q=f~~:fi 
L. Ric~ 1 ro~*tJ<, Mac,~?"·:~H::it~~ 
nt::;t.=t 1J7t:v.Ac-tt1;:(rot'lfm~~~=~~ 1 
O)~*CT)PJT~roicii~~~r=-T-11~1inlt".Q 
=F¥9:~:fit" .Q :.t:~~•t:t" .Q-T-114iii~~ 
iio 

Specification 

[~BJlro~*HJf.I:~Bjj] 

~ii-f6771 Jt-ti~1r~i&U:~ilt:Mi:U:I::$i 
~~~~~fi9.Q~~CT)~C~'5k~~mL~ 
ictl~i* ttft.j~!f *§@BJli;I;*•;JI--'J-~I::tl
~~tl.t::J~-'JTJv:::J~t:::".:J.-11, 'J-~A-7_;.
"Y3/. ~Hiil~~*~rot~tlirora,roii~r::m
~\~~T-ilf.l:~ii-f6771 JL-ti~:t:ni&U:~
. fl!f!U:1::6~1J~i~~fi9 .Qt::~CT):fC~=jk
fi2iiL.t::itcii~i*I::009 .Q"

~:llil:ttft.j

7? Jt-7' ;t"f...-7~ttro*~~Htcbtr::. iiiil~ro
];:~:1:1 \Jt-~-T-11~-t;t-J \;fJ\1;~-if~*'::
BC~9.Q-tt-t::~tJ<3;93;91!~cf.I:.Qo

i!,~CT) VOD(t:.:' "f:it:it/"f7?~t-:')l::;f.)l, '"CI;I;, .
771' Jt-roti~MMtlfti~t::rt-r:f.l:<~m!iCT)-~
~.lt~~~~LfJl:"ro$1Jiftt]$~t. ~L<~tJtl
L. :.tt.tJ<-tt-' \:fc~·:~-ttroft ffl t:tJ.Qt::~.
;f'o•:Ji'-'J -~CT) ~ill itf::J:;.Q;(IJ ';/ ~--~+~(::$_
fJ\'t;:c;IJ<"{'!~f.l:~ \o

. ;:tl,(::)ttl.. "C, CD-ROM! fX~~i!ID I *1::~~
't .Qj;:~JI:C1) 1 \Jt.-?-T-11~f&t.PfJI. 'Lf& 1 o
tJ>1?~-ifroWiflV"f1'71::6~L. filllml::*
·:~t-'J -~fMt.&t" .Q:.t:r::J: LJ~-ifrof!Jilfi
/ftiJffitJ<~;t.Otl..Qo

When yl data from storage media of aforementioned third
transferringto random to aforementioned first terminal ,
aforementioned data file with packet unit of one or a
plurality , at same time, granting data of memory address and
size which are granted with aforementioned forwarding
destination computer to said packet again, to possess means
which it transfers toaforementioned first terminal ,
aforementioned first terminal , On basis of data of memory
address and size which are grantedto aforementioned packet
in predetermined memory region of said first terminal data
transfer device. whichdesignates that it possesses means
which data compilation isdone as feature

[Description of the Invention]

storage media technical field this invention which high speed
collective file transfer method and the program in order to
execute device and transfer method storage is done it was
connected to network [paasonarukonpyuuta], using for
communication between workstation , various communication
terminal or other equipment , regards storage media which
preferred high speed collective file transfer method and
program in order to execute device andtransfer method
storage is done.

background technology

With materialization of multimedia age , image or other large
capacity bulk data service which from the server is delivered
in user terminal more and more becomes important.

Regarding VOD (video-on-demand) of present state, also
halt and rewinding or other control command of the motion
picture , increase considerably riot only a transfer start
command of file ,because this becomes load of server
processor , .they are not possible toutllize merit to fully with
acceleration of network .

Vis-a-vis this, bulk data of large capacity which is suitable to
CD ROM one layer and motion picture I is transferred to
compilation media 9fuser with several seconds or severaliO
second, convenience /economy of user is thought by
releasing network instantaneously.

Page 15 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1095

W01997033227 Al

~~~-~"~•m~~~~~~•&u~~
~m•~~t~~~~~-*~~m••a~~
~~~JU~a~I.:-:>L '"C J;l.l'. @iiii~~~L "( 
~~~.:~BJl~ ~o 

@ 20A 1;1:: ATM ::t••:Jt-'7-?7~:11Z:h-t.!'~~
~Lk~m~WW7-~7?7~~ff-~~~~
~J. ~ 20s 1;1::771' JL-fiiiZ. ::tc t-:J ,~,~ m L ''t".
*~:1:771' ,~,~~m~~llfil(})-T-1ZO)l1itn~
ff-TmthiiJ~~~o

771' JL-fiiiZ.::tc t-:J JL-(ftp)1;1::1':/11-::t-·;.~t-:tc
t-:JJI-(TCP/IP)...tl.:tt~ 7:11) 7-~3:/"'C!~~J,
TCP/IP ~~~. ~WW(});f\At- CPU(tP9:!:riW
~ii)~'J7t-'?I7 ~L "(~J12:h~o

*t::..!II2I I;I::ATM(Asynchronous Transfer Mo
dd~liilWlfiiiZ.-t-t.!')'J ::,.,?~ mL 't:.ifllf!i~77
1' JL-fiiiZ.::fO 1--:JJI.-(ftp:file transfer protcol)~ -­
::tc t-:JJI-A-$1•;.~?~~~), ·fj~ ~/\-t.!'rJI7
~i1U'GL 't"ff-L "CL '~0

TCP, IP &U SNAPILLC 1;1::. t-n-fhfiiiZ.fliiJtlill
::to t-:JJI-(Transmission Control Protocol), 1'
>$1-;:t-·;.~t-::to t-:JJI-(Internet Protocol)&U-+.t
::f*~t-'7-?7?~A~1'::,.,N~JIV:/?~tlill
(Subnetwork Access Point/Logical Link Contr
ol)(})il§~g~~~o

*t:., -fh-fn, AAL 1;1:: ATM 7~7'=;--~3::,.,
v1'-'V(ATM Adaptation Layer), SARici:~Jl-~
i!lJHI.:lt -+.t::t v1' ~(Segmentation And Reassem
bly Sub layer), PHY I;I::~JI:;:fc t-:J Jl-(Physical
Protocal), S/P ~~~;I::~'J7 Jl-/1~7vJl-~~~
ff-Ti!§~"'C!~~o

1998-8-4

this invention, it is a method in order to actualize this and
somethingwhich offers device , but below, referring to
drawing concerningeach element technology which becomes
background technology of this invention , you explain
indetail.

As for Figure 20 A in figure which shows general purpose
computer architecture which equips the A TM network adapter
card, Figure 20 B when receiving large capacity file making
use of file transfer protocol , is flowchart which shows flow of
data.

file transfer protocol (ftp) with application which is recorded
on Internet protocol (TCP/IP),includes TCP/IP , is treated
with host CPU (central processing unit) of computer as the
software.

In addition, inscribing hardware which with protocol stack of
file transfer protocol (ftp:filetransfer protcol)when ATM
(Asynchronoustransfer mode :asynchronous transfer mode)
link is used, is executed it has shown Figure 21 .

TCP, IP and SNAPILLC, respective forwarding control
protocol (Transmissioncontrol protocol), Internet protocol
(internet protocol) and are abbreviation of sub network
access point /logic link control (Subnetworkaccess
Point/LogicalLinkcontrol).

In addition, respectively, as for AAL A TM
[adaputeeshonreiya] (A TMA daptationLayer), as for SAR
cell portion percentage assembly sub layer
(SegmentationAndReassemblySublayer), as for PHY the
logic protocol (physical Protocal), as for SIP conversion it is
a abbreviation whiCh shows serial /parallel conversion .

.__._ ~771' Jl-~iZ.::fCt-:JJI.-~If)L '"C. ~~fi771' JL-~:i:m~~llfil~li.JfF

When receiving large capacity file here making use of file transfer protocol , operation

~~BJl~ ~o ~ciS. iZ.iaiH.IJI.:-:>L '"CI;I::fii'.ltlt~li.JfF0ll!rtittJ<]9!1.:~~t::rtt~~"'C!.
r·

You explain. Furthermore, because sequence of similar operation just becomesopposite is concerning transmitting
side,

~BJl~1lii'IJI:&~~o ATM-LAN(C-j)Jf,.,I.IJ7;?-•;~t-'7-?:Local Area N

<seq>local area network work :local AreaN Explanation is abbreviated. ATM - LAN

etwork) ~(})iitWW::t-·;.~t-'7-?E 1 OtJ,i;iZ.i;h 't":e-t:.-T--$11;1::. *1". AT

data which is sent from etwork) or other computer network ElO first, AT

Page 16 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1096

(.....

W01997033227 Al 1998-8-4

M7~7' 9:t.J-t-:'E51:~~~n. :IC~.Y .:L-JL-~S/Pr&£ti7-·.:~:1. i! JL-fiilWI7-•.:J7'1::J::?"'C". !lo/JI.ll!v1' "\"~M-ilim~
n, 53J\1'1-0H!JL-"f-9.!::L "'(, ATMv1'"\"7-•.:J:11::;J!~n. ATMv1'"\"~M-iliffl~h.Qo ATMv1'"\"""C:f;f:VCI/V
PI ({!ilJ!!J ~Am5JIJ-T: Virtual Path ldentifier/i&~"'T""'.::t-JL-m~IJ-7-: Virtual Channel Identifier) (::J::.Q~IIIt. ~ :£1:
~!!

It is received with Madapter card E5, with optical module and S/P conversion chip , cell synchronization chip , terminal
is done physical layer, it is transferred by ATM layer chip as cell data of 53 byte, terminal is done ATM layer. With
ATM layer to separate with VCI NPI (virtual path identifier :virtual path identifier hldentifier/virtual channel
identifier :virtual channel identifier nnelldentifier), multiple treatment

fJ<fT;f?h.Qo AALv1'"\" (i{!~91'7'5) -c:'f;f:~AR7-•.:J7'1::J::LJ, i!JL-O)"'·.:J~~~L 'f::. 48 J\1'1-(SAR- PDU (:11J
f-.:::::JJL-"T-9..:J..=.•.:,~I--:Protocol Data Uint))O)i11'*!i~ 1J:..-?L, CRC"'Tr.:J?(ilii@]Ji::fli:~i!t:Cyclic Redundancy Ch
eck) ~"f-9:fli:7-:t:•.:J?~fTL '· CPCS (:::::J:.,J\-,Y:~::.,A -+t-:1

<seq> [konbaajensusabu] </seq>link to do data ofSAR- PDU (protocol data unit :protocol data Uint), CRC check
(Round redundant inspection:CyclicRedundancyCheck) and to do the data length check , CPCS Is done. With
AALlayer (Usually type 5) 48 byte which exclude header of cell due to SARchip

v1' "\"':It it!~: Convergence Sub layer Common Part) - PDU0)~1' 1J -t-:~m

payload of layer common section:ConvergenceSublayercommon Part) - PDU shape

IOC9 .Q(!SJ 20B:f$:!«U o CPCS-PDU~1'1J-t-:'f;J:..:J.--I:f"T-9.!::L "t"f.{JiO)iR.mi\A(;:._ ""C:I;f:PCII\A(Periphera
l Component Interconnect Bus)) E3 &. "lJPCI-:11) ·.:~'YE4~"1)-L "'(. *A I--CPU· E 1 I ::fi.i~~n.Q o

<seq>Here through PCI bus (Peripheralcomponent InterconnectBus) E3 and PCI bridge E4, it is transferred to host
CPU *E I. It forms, • (Figure 20 B reference).As for CPCS- PDU payload as user data general purpose bus of high
speed

*AI--CPU•E1 (::~i;:ht::."f-9IP"f-9~7.kit;L "'(;t,)LJ, CPUf;J:

To data IP data gram which is sent to host CPU *El we to have converted, as for CPU
....

IP v1'"\"~JIIrt~M-ilimL "'C", :t.J7'i!JL-it~nt::.?7
1' Jl,..fi.i~"f-90)tf:l !ij-~JI)lLJ lilT o

i-L "'(,*AI- CPU·EI f;J:, Jl)lLJ!:I:lLt::.:fi.i~T-
9-0.>tf:l!ij-~ PCI 1\A E3 ~-1)-L "'(, 1\-t-:'"T-<A
? E6 1::~~"9 .Qo

sequential termmal domg IP layer, 1t removes contents of file
transfer data which encapsulation is done.

And, host CPU *El, through PCI bus E3, houses contents of
transfer data which is removed in hard disk E6.

t.;:;!S, [gj 20AI:it;)L'"'C". E30I;f:CRT("f-<A:1v1':Cathod-Ray Tube)

Furthermore, in Figure 20 A, as for E30 CRT (display :Cathod-RayTube)

As for E31 as for graphic board , E32 as for keyboard , E33 keyboard Kong

Page 17 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1097

W01997033227 AI 1998-8-4

Withjp7 roller, through PCI bus E3 and PC! bridge E4, host CPU

• E 1 t!::tl*>'C~n ·n ,~0

"'EI it is connected .

..t~cO)J::?tJ771' ,~,~~:11J t-::::JJL-t;t: ~<0):11J t-::::JJL-A.'J.·:~'J ..t -c:~~~

As description above as for file transfer protocol on many protocol stack actualization

h~ 7:11) 7-:.r3~1:di)LJ, -t"O)""f"UL0):11J f-::::JJI.-0) ~<tht-A.I-CPU"C:~lUI~h "Ct. '~o ~I::.TCPL-1'-\fl;f:T'-'J.
O)~{gf,f;~~fi?t::.ll>, *A.I-CPUI::t;f:::*:~fJ~ f,ijtJ<fJ'iJ'? "Ct. 'f::.o ;::O)t::.lh, ATM- LANO)J::?I::~iit.i:M~
tli:t••:JI-'7-'JiJ'i;~ii"C::t-·:~I-'7-'J7~:1'J.:t.J-I-!'I::.T'-'J.tJ<{ii~~h, 7~:1'J.:t.J-i-!'tJ'i;PCIO)J::?fJ~iifii~
iiJ!mt.i:ill.Ef:l' \A. ~11-L. -c*A. t-cPuill~ r::T'-'J.tJ<fii~~n~tfi.g-r::;f.)t.' -c -t, :11J t--::::J JL-0) ~<tJ<cPu-c:~lUI~n
~t::.lh, 771' }J.,~~O)A.JJ.,-

"'"'With application , are treated many of protocol of lower position with host CPU . As for especially TCP layer in
order to respond data receive , thelarge load dependeq'On host CPU . Because of this , like A TM - LAN from high
speed computer network with high speed the data transmission is done in network adapter card , through high speed
transmission possible general purpose bus like PCI from adapter card when data is transferred to host CPU side,
putting, because are treated many of protocol with CPU ,slew of file transfer

:1·:~1-iJ<CPUO)~J!Illm.:t.J t::$1Jili~:h. "CL *I.'· ~ iifJat~tl!:t-•:J 1-'7 -'JO)'fm.:t.J tJ<+~fflfJ'itfJl. 't!::l. '?raU~f.afJ<
"/h?f::.o ~I::, A TM:t-•:JI- '7 ~'J ~ 1:)1 iaiiJitJ<~t.;:~T'-'J.'ii~tJ<1)-.r£T ~tfi.g-1::.

There was a problem that [putto] is restricted by throughput of CPU ,fully cannot utilize capacity of high speed
computer network . When next, communication speed different data transfer lies between inside ATM network

?l.'"(~B.ij"f~o (g) 221;f:, ~*O)ATM 1)~'J~mt.'t::.tfi.g-O)T'-'J.~~O).:J=.Jill

Being attached, you explain. As for Figure 22 , protocol of data transfer when conventional A TM link is used

t!::, -th~~~"t~t::.lf>O)~tfl~JOCO)If~~:ftl.. "Ct. \~0 771' JL-T'-'J.~:mf41i

With, outline of equipment configuration in order to actualize that is displayed. It houses file data

l.. "(l,\~::::J~T~'Y-tf-1\81 01 t!::::::J~.,-~·Y-+.t-1\81 01 ~O)T'-'J.~~cf1.1fj"f~*81 021J<1 -EtO)ATMA.1'•:J
7-81 03t::tli;'C~h ""(;f.)LJ, -th-f:h.0)1'~'J.7.:r.-A.iiJiiJ<.W,f.i:~-tO)t!::T ~o "tt.i:t.>i:>, ::::J~"'T~'Y-+f-1 \81 01
t!::ATMA.1'•:J7-81 03t!::0)1'~'J.7.:r.-A.iiJil;f:1 55Mbps(Megabits per second)"C:N.lLJ, ATMA.1'•:J7-8 1 03t!::~
*B 1 02t!::0)1'~'J.7.:r.-A.)iJil;f:25Mbps1:di:>~t!::"t ~o ~*8 1 021J<::::J~T~'Y-tf-l \81 01 ~0)771' JL-T'
-'J.I::7'Ji!A.L "CT'-'J.~~J'j.lfj"f(::(;f:, *"9", ~*81 02tJ<:.r?"t-•J>,.I::J::L)::::J~7~'Y-+t

\

terminal Bl02 which reads out data inside contents server BIOI and contents server BIOI which it has done is
connected by ATM switch B 103 of I, respective interface speed makes different ones. As for interface speed of
namely, contents server BIOI and ATM switch Bl03 with 155 Mbps (Megabitspersecond), as for interface speed of
A TM switch B I 03 and terminal B 102 we assume that they are 25 Mbps . terminal B 102 access doing in file data inside
contents server B 10 I, to read out data , first, terminal B 102 with Signa ring [kontentsusa]

-1\8101 t!::O)ATM'J~'J~~~J~)~L, ATMA.1'•:J7-B1 03-IJ<::::J~.,-

Page 18 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1098

W01997033227 Al 1998-8-4

setting request to do A TM link of [ba] B I 0 I, A TM switch B I 03 [konte]

:.,•';1+)--J{ BIOI ciijfti* BI02 ra,O) ATM •):.,')
~[i~T.r,o

~O)~~~~*O)c7~-~~~mm~&~
:1~-:.,)~ffll. '"C~~n.r,o

~1.'1:. ATM 1J;,')?if.ll.~. :::J:.,.:;:-:.,•;J+)--1\B
101 tJ'i;iijfti* Bl02 ,.,_ ATM 1:!Jl-il::~;h.t::7Y-1'
Jt--T-$1tJ<&~~n. ~nlcl:~*O) u :1~-:.,
{.:L-iff\H&&~7~-:_,)~ffl(, \"(~~;h..r,o

c~F:>tJ<, ~O)c~ ATM.A.{•;~'TBI03Icl:AAL(A
TM 711':17"-~3:.,· ~.{~)J.: .. Ll:.O)J:.{li~-1'~
~~lcl:ft;f?"f', -I:!JL-0),.,_•,:~1f'l1f~O)O'f(VCI,VP
I)~#!HlL.. -c.-I:!Jt-~-nO)if--t-tJ,r;fl:!!:nO)if­
-t-..... ;;o::.-1'·;~.:r:.,'J"-t .r,t::lt\!NJ.r,o

*t::. ATM .A.{•;~'T BI03 O)PiJ~I::Icl:. ~fi:J£
t:t1:: ~·~c~n.r,;*;::m,mt.t~c ti9.¥i* tJ<fl!1:£ 1.. -c
(, \~(, \o

~O)t::d>, ATM .A.{•;~'T BI03 O)-t;h.-'f;h.O);f­
-I-0).{:.,$17:r:-A.~fitJ<, J:.l!I!L..t::91l(155M
bps c 25Mbps cl. '5J:?I::Jt~.r,~ftl::lcl:, .A-1'
·,:~'TO)&~~IftJ<f.!'f~ilmi::O)~ftlcl: 25Mbps)
I::~JI.IJ2:n. jljilj~.{:.,$17:r:-;;o::.(:::J>7:.,•y+J-­

'' BIOI-ATM .A.{•;~'T BI03 ra,)tJ<~~"Jffl1:~
~(,\o

~i;l::, :::J>'T:.,•;J+)--1\ BIOI p;j0)7Y-1'll-T
-$11::~1... "C.~-?-:.,~""" Jt-7'J-I:!.A t" .r,0)1:
lei:~<. ~ftr-$10):jij~~O)J:?I::~~~~...
.!ij!~LJ,-~~.lt.CL '?f::7:.,1f .L..7'J-I:!A~f7
?~'€tiel:. :::J:.,.:;:-:.,•y+)--1 \ BIOII::i{Q;*;::~jil f.j

. tJ<fJ'fJ'.r,J:., ~i;l::ti~O)iijftl*fJ'i;15:1~1::7:.,
-11' 1.. 7'J1:!-A~nt::~'€tt.tclcl:. L '?-t?fi~~
lftJ({.!'f""f'L.. "CL..*?o

).:.lJ:~BJ:IL..t::J:?I::, ~ 22 l:::ir-"9 J:?t.ttt*=O)
ATM IJ:_,')(;:J:.r,7y.{ Jl-O)r-$1&~1:1;:1:, A
TM ;;o::..{•;~'T BI03 tJ<, ~t,t.r,.{:.,$17:r:-.A~Ii
O)if--Ha,O);*;::fim7Y-1' JL-O)r-$1&~~~=
~~c2:n.r,~m:J£t:tO)~d>O);*;::fimEti9.¥
i*~:ft:?"CI. 'fJL 'o

L..t::tJ<?-c' &~~lftJ<fft~.{:.,$17:r:-.A~If
r::~JIIJ2:n. jljilj~.{:.,$17:r:-;;o::.tJ<~~~="Jm
1:~~1. 'cL '.:;r"~lm#.\tJ<6tJ?f::o

~; r::. -1' :.,$1? :r:-;;o::.~ff tJ<«t~t=*'lllR~n.r,
~ct::1JD:t. ~ft.ffj!!i-T-9'7Y-1' Jt-0)7'J-I:!.A
O)J:?I::?y.{ Jl-,.,.0)7:_,-1(.L..7'J1:!.A~I::it:ll.'
"(:::J:.,.:;:-:.,•;J+)--1\ BIOI f;:i{Qj;::~jilf.jtJ<tN'J'

LJ. ~r;l::lcl:?Y-1' Jt-r-$10)&~~fi~«t'"F2:
1t.r,~~C~?"CI. \f::o

[ntsusaaba] BIOI and ATM link between terminal Bl02 are
set.

You can do this treatment making use ofCplane (Call control
signal transfer plane) of in the diagram .

Next, after ATM link establishing, from contents server B I 0 I
to ATM-cell isconverted file data which is transferred to
terminal B102, can do thismaking use ofUplane (user data
transfer plane) of in the diagram .

However, at time of this A TM switch B 103 upper position
layer not to treat above AAL (A TM [adaputeeshon] * layer),
only header information of cell referring to (VCI , VPI), the
cell from port of one side switching just is done to port of
other.

In addition, large scale storage media which is needed for rate
conversion does not exist in interior of ATM switch B 103 .

Because of this, as though interface speed of respective port
of ATM switch B103 did, description above, way, 155 Mbps
and 25 Mbps ' incase of different' when forwarding rate of
switch is on low speed side, the governing it is done in 25
Mbps) , high speed interface (Between contents server
B I 0 I-A TM switch B I 03) effective use is not possible.

Furthermore, it is not [shiikensharuakusesu] vis-a-vis file
data inside contents server BIOI, liketime of regeneration of
image data when random access such as rewinding , rapid
feed , haltis done, in addition to fact that excessive load
depends on contents server BIOI,when furthermore
simultaneously random access it is done from terminal of
plural etc, forwarding rate decreases more.

As above explained, with data transfer of file, ATM switch
B I 03 , does nothave large capacity storage media for rate
conversion which is needed at time of data transfer oflarge
capacity file between port of different interface speed with
kind of conventional ATM link which is shown in Figure 22 .

Therefore, there was a problem that forwarding rate
governing is done in the low speed interface speed , cannot
utilize high speed interface effectively. ·

Furthermore, in addition to interface speed being restricted to
low speed ,like access of image , voice data file excessive
load depended on contents server B 10 I in thetime of random
access to file , furthermore forwarding rate of file data
hadbecome factor which decreases.

Page 19 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1099

W01997033227 Al

~1:. 774 J(...-T-~~~o:>:tc t--:::~J(...o:>1tfHt
f*ji:-:>L '"C~B.Wt .Q.

TCP(Transmission Control ProtocoUii~i!lfl~
'1c t--:::~J(...)Ict. atw:~ra,iim-c:mrzl1.\<mL '.;
*t. "CL '.QI--7:/A.if.-t--JI:1CI--:::JJ(...1:~-Q.

TCP lctFaiitto:>~l.'iifi.{g~~m9-Qt::d.>. J.:,J.
rO>J::?r:~;:W:rarl3,-c:";:,.,t:~:r.4?~fi" '·..:;:::
-1ti:I7-~X~o:>~-:>t::ilft~~~fi?"C
L \.Qo

fJtJ~ "'F"C:mL '.Qt??' ;':/h=lct TCP 1:0)~~
¥Ui~~L. it!!o:>:1c 1--:::JJ(...I:tJrt.Q, ~7·,:~1--~
.QL 'let7v-ki:~Jt"t .Q.

~~ill.Hct. ;:;tt,tJ'I?~Fa"t .Qt??" ;t;:,.,t--o:>~-7
:/A.ili.}(SEQ:Sequence Number)~ TCP "'-'.!/~
1:-x·,:~t:::;:,.,?"L -c~Fa9 .Q.

.Y-7:/.A.fii.}l;t. ~-T-~A.I-- 1J-.4!:p(:i;)lt

.Q-fo:>t?-7" ;(:/1--0):ii:*JJo:>-T-~iU:Ui~J (41--¥
Ui-c:~Lt::=ta:>-c:. iimil:i'l.llifl:fJ.JWI it~n.
J.:J.Ilil:~~~nt::-T-~a:>,\41--~~1JOJJL "Ct1l
<.
:'f{gill.IJI;tl:Hat??" ;L:/1--~ :iEL(~{g"t .Q~, It
~lilU!fi~~ TCP "'-'.!l~l:x•,:~t:':/?"L 1.:', ;:;tt,
~ ACK(Acknowledgement:~~lt~)~L "C~
{g ffiiJI: i!&. 9 o

lt*flmfi{.}ret. ~raill.rJtJ<~r:~m-t-<1!~
-7:/A.fii.}~~L. -T-~~X~~(:iELL'Iiirt
'*-c::W:m-c:i!t::;:~~~mill.rJI:ii~"t .Q §!Y-1-c:
flh;ft,.Q.

~{gill.rJ(et;:O) ACK ~~1:1. ACK ~~FaLt::~
fJ.Jd)-c~o:>t?-7" ;t;:,.,t--~~Fa"t .Q.

-~(7)~4 k7'7H~~f':il: ACK ~~FaLfJit
*t-li. ofo:>t??" ;t;:,.,Het~~9 .Q.

TCP o:>:l;ft, l:tco:> ACK 0)~4 k7'7H~~
f':l O)*~Fai:J::.Q=to:> tJ{. ~~t::d.> o:>Dt-o:>
UIH"f4-c: ~ .Q.

1!1 23 1: TCP I::J::.Q~~~Jlil!~iii:T o

1!1 23 let. ~Faill.rJ.&.'C.Pi:Faill.rJUJJ~r.m:i:ilt.Q
TCP o:>7C-:::J:/f-.C-J(...~;ji:T~41..7-""-f-.
't"N.l.Q.

@ 23 let, ~{gill.iJtJ'i:,:'f{gill.IJ"'- 10 J\4 f-. X 5 1!
?" ;t;:,.,t--o:>-T-1'1~~~9.Q01J~iii:L TL '.Q.

'fd:.. jg) 23 let. I @] 13 O)~~lli;:l:i:)lt.Q~-7
/A. iii.} SEQ=40 0)1!'/ ;':/f-.tJ<, ~Faill.IJ't":iEL
<:W:Fa~;fJ,fJL 'ilft~iii:L "CL '.Q.

~~ill.rJiet. 5 @lo:>t??" ;t;:_,f-.0) TCP "'-'.!1~1:::-f;ft,

1998-8-4

Next, you explain concerning background technology of
protocol of file data transfer .

TCP (Transmissioncontrol protocol :forwarding control
protocol) is transport layer protocol which presently is widely
usedwith communication between computer .

TCP in order to actualize communication where reliability is
high, like below does [handosheiku] between sending I
reception, when there isa error and a omission in data ,
resends.

Furthermore segment which is used at below you display
transfer unit with TCP , you correspond to packet or frame in
theother protocol .

mapping doing sequence number (SEQ:SequenceNumber) of
segment which is transmitted frornnow on in TCP header it
transmits transmitting side .

As for sequence number , being something which displays
initial data position of the segment in in all data stream with
byte unit , at time of communication establishment
initialization it is done, later it adds number ofbytes of the
data which was transferred.

When above-mentioned segment is received correctly,
mapping doingresponse verification number in TCP header ,
it returns called side to transmitting side ACK
(Acknowledgement:affirmative response) as this.

Response verification number displays sequence number
which transmitting side should transmit next, without
omission is used data with the objective which notifies fact
that with correct order it canreceive to transmitting side .

transmitting side waits for this ACK, after receiving ACK,
transmitsfollowing segment for first time.

If ACK is not received within fixed timeout value, it resends
the segment .

In case of TCP , thing, is mechanism of only one because
ofretransmission with not yet reception which is within
timeout valueof above-mentioned ACK.

In Figure 23 retransmission treatment is shown with TCP .

As for Figure 23 , it is a time chart which shows flow control
of the TCP in between transmitting side and called side
computer.

Figure 23 has shown example which from transmitting side
transfers the data of I 0 byte X 5segment to called side .

In addition, as for Figure 23 , segment of sequence number
SEQ=40 at time oftransfer of first , has shown case where it is
not correctlyreceived with called side .

mapping doing sequence number of respective SEQ=lO, 20,
.............. ---.. .. - . .

Page 20 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1100

W01997033227 Al

-f;h SEQ=l0,20,30,40,50 <7.>.Y-?-;..,.A1ft:~~'7?
·:~t:">1L. 't"i!~9 .Q.

:!i:~iliJI;I:, SEQ=l0,20,30 <7.>*1:!-1 ;C;..,t--~IEL.
(:!i¥:~1..., -f<7.>ffl\Jl, ACK=20,30,40 ~ TCP "-':1
$((:.'7?•:Jt:";..,-1t... 't"i!~9 .Q.

i!~mqr;~:, *1:!-1 ;e;..,t--O)ilJT~<7.>111' .L. 7?H~
1;).~1: ACK=20,30,40 ~:i:~9 .Q.

.::O)i\11:1;1: 1 @113 O).iii!~l:. SEQ=40 <7.>1:!-1 1-
;..,t--tJ<:i:~iliJ"C:IEl..(:i:~~;h_f.j:(; '<7.>1:, i!miJ!IJ
1:1;1: SEQ=40 <7.>-t:!~;C;..,t--~i!mt... 't"fJ'i;FJT~
0)111' k7'7H~W.~1: ACK=50 ~:i:m9 .Q.::
ctJ<-c:~tJ:t- '·

i!miliJI;I:, 11-1' .L.7?H~ftifb\~f.a1: SEQ=40
0)1:!~ ;C;..,H:.I7-fJ<~~l..f.:=t<7.>c!f!1Jf¥Jil.., S
EQ=40 0)1:!~ ;C;..,t--~Ni!9 .Q.

*-f.:, SEQ=50 <7.>1:!~ ;C;..,H:.~9 .Q ACK =til.IT
~0)111' .L... 7'7 H~W.~"t'i!i;n -r:.:.t&:t- '.::cr:.
t&:.Q<7.>1:, i!mil!IH;J: sEQ=so i!m~n,.;11-< .L.
7'7 H~fJ<ftifb\L.f.:~ f.a 1: SEQ= 50 <7.>1:!-1 ;C;..,t-­
~Ni!9.Q.

J:.g[! TCP <7.>-J:?I:. ACK <7.>~1:/it~fit~~fi?
1.n!1:1;1:, Ni!~ :W:rt .Qf.:d.> r:.r;~:~r:.i!miJ!q
0)111''7?*! 7~ffl:f.:t&:rtnrit&:.;t&:t- '·

*-f.:. I7-<7.>~t.:.f.:-t:!~ ;e;..,t--n< 1 ilf::rtf::!-:>
f.:tl~1:=t, -f;h W.~<7.>1:!'1 ;e;.., 1--~9 .-.t 't"N
i!L.fJit;hJ;(fJi;fJ(; '·

.::O)~d,)-gi.7-~~~9.Qc,Ni!-t:!-1;e

;.., t--tJ<!«ftHI~ 1:.~ 1Jll L. 't"L. *? cl- '?rs:oUBfJ<if.>
.Q •

.:;hi;(;!:, ~~1:.::;*::~:1:<7.>1 ~Jt-?T'-11~ ~ < 0)

1:!~ f.;_,H:.*lftill.. 't"~i!9 .QJ:?t.i:7:11J?-­
.Y3;..,0)~.g-, ~J5tlt, :¥tmill'lfJ'i; NAK(Negati
ve Acknowledgement:S~Iit~)~ili.L. "C~~
1:!~ 7-;..,t--<7.>~mtJ~tJNi!~fi?:tn!r:.~t... -c,
~-~~n<:fit...< itt ""Ft... -r:t...*-?Jjj{~ct.i:.Q.

~.;r:. TCP ~0)/it~{it~(;l:, IP(Internet Protoc
ol:-{;..,11:::t··YI--/C 1--:::1)1,)v1' ~*1:0) l'mv1'
"\'*!~~*! 5t 't"fJ'i;fi?'J7 Hll!:JB!"C:if.>.Qf.:d.>.
~)i~JB!fJ<EEjft"(iif.>.Q.

*~aJlr;J:J:. ta<7.> F.a r:.ei~ -r:t&:~nf.:=t<7.>-c:N.>
~J, *~IIJll;l:, t'HIH:tf;liir:.;Jst- ''"C, ~(<7.>:1c 1-­
::JJt-, i!~~J!I!~ cPu n<~J!i!t... -r:t- 'f.:.::cr:.J:
.Q77-1' JL-~-~O).AJL--:1•yl--fttl't-ak5L.,
~iit.i:ttJJ~:::t-·:~I--'J-?~+*I:.ffifJ'9~.A
Jt..-:1•;,t!--f.i:~ii-t5771')1,~-/i~&U:~
ti:MLU:r:.~i!/i~~~fi9 .Qf.:d.><7.>:1c-17.L.

1998-8-4

30, 40, 50 in TCP header of 5 segment, it transmits
· transmitting side .

called side receives each segment ofSEQ=IO, 20, 30
correctly, every time, the mapping does ACK=20, 30,40 in
TCP header and transmits.

transmitting side receives ACK=20, 30,40 within
predetermined timeout value of each segment .

With this example segment ofSEQ=40 being called side
whentransferring first , because it is not received correctly,
afterwith transmitting side transmitting segment of SEQ=40,
it is not possibleto receive ACK=50 within predetermined
timeout value.

As for transmitting side , it judges as thing where with
timeout value passage time point error occurs in segment of
SEQ=40, resends segment ofSEQ=40.

In addition, because it means that either ACK for segment of
SEQ=50 is not sent within predetermined timeout value,
transmitting side from at timeof SEQ=50 transmission
timeout value resends segment of SEQ= 50 with time point
which passage is done.

Like above-mentioned .TCP with method where does
responseverification with only ACK, in order to.receive
retransmission,you must wait for timer end of normally
transmitting side .

In addition, segment after that must be resent entirely even
withwhen segment which error occurs is just 1.

Because of this when error occurs once, there is a problem
thatretransmission segment increases in cumulative .

These, dividing bulk data of especially large capacity into
many segment ,in case of application which it transfers,
returning NAK (NegativeAcknowledgement:negative
response) from for example called side, become cause where
transport efficiency decreases considerablyvis-a-vis method
which resends specific segment forcible .

Furthermore after as for TCP or other response verification,
finishing the lower position layer terminal to IP (internet
protocol :Internet protocol) layer, because it is a software
treatment which itdoes, fast processing is difficult.

As for this invention considering to above-mentioned point,
beingsomething which it is possible, this invention improves
throughput decreaseat time of file transfer by fact that CPU
treated many protocol , communication treatments in Prior
Art , It designates that storage media which high
[suruuputsuto] high speed collective file transfer method and
program utilizes high speed computer network to fully in

Page 21 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1101

W01997033227 Al

~EtiL~Rm~~~mm~~~~~~~~~
~.

*-t::., :$:~BJj(])ft!!.O) ~ ~l;t, 1'/11'7.:r.-A.)iJl
(])~/J~ ATM 1)/?(]))iJlr.l:mtJ<iiJfn(t:&i'JLJ,
LtJ't. *~m-771' '"'(])'5/".. k. 7?tz.A.tJc
-+t-J \l::tJ':IJ'~:k~fJf!l. fiif~t~M:L "C~L '~
i!.AJJ...-:t·;;t--~~~~~~~1::&;)~.

'*-t::., :$:~BJjO)ft!!.O) ~ I¥JI;t, :§-1~?"·;;1--fijO)')
'71--~111 ::J;:~Jil;*?it~I::~~Zi)~ ~~i!WJ.i¥0)
f!tl'~[§]~L. -T-11~~1lu~?"·;;H::~1§:JJL "C
~i!"t ~~.g.-et~L 'A.Ji,-:1·:~ t--tJ<1~.;n~
-T-11~i!1.J:!~t£-~ ~~~1::&;)~ 0

~13Jj(])fmffl

~E~~~~-~~~~-*~13Jl0)~10)~~
l;t, '771' JJ...O)~i!;IT;<'771' JI,O).fiii!$t;"C:
~n~n.-T-1I~i!~ff?~~O)~m-r-11
,u.~t(])Rti~~.au•~~O)Rm~~
J;:LJ.Atl:l ::t.J)iJltJ<;iL '~ 2 O)Rti~~tJ,i;fit~
iR.EI'Ut•tlt7-.:f.-T?'T~~mL '"C, (aP71'
'"'(])~i!n-c:. iiFa•J::,...?~~5E~~iliJI::, ~ 1
(])~cti~~~0)'771' Ji,-T-111::~L "C. ~t.i:<
~tl±$1§, :tct--:::JJi,~~- &U7t..--s::,....,-(])
q:.(])L'9*'-tJ' 1 -:J(])~~~~fi"L'tJtJ<.;, M77
1' Jt..-T-11~mm-r-11,,.A~ii'L "(~ 2 O)~c
it~i*"llll~.fiii!~ ~.:f'.JIIl~. (b)li1JR771' '"'
(])~i!n-e, li1I~c771' '"'-T-111=~~ ~~~~
(]):11;7~, iiia 1J/?~~5EL. liiiltc~ 2 O)E
m~f*~(])771' '"'-r-11~. ~nr::~L "(~
~~~1J1ii~91::, liiiEiR.ffl-T-111\A.~ii'L "Ci!i 
tt. •mm-T-111\.Ar::ti*ft~n "CL'.Q~t•t~t 
i1Fal'fl(]):t-·;;t--?-?7Jf:t11:t.J-t: ..... -t%~i! 
L, •:t··:~t--?-?7Jf:t11:t.J-t::IJ'i;*-·:~t--?­
?"ffi:i!~ ~-¥Jill~. (c)'771' JI,O)~i!$t;"C:, 
li1I~c.:t-·:~r?-?tJ,.;M~i!$tO)iRI'fl-T-111' 
A.l::tu~~*" "CL '.Q.:t-·:~t--?-?7".1:t11:t.J-t: 
"ffii!~nt::.ilir~c771' '"'-r-11~. -T-110)~ 
;J, :tct--:::JJL-~itW. &U7t..--s::,....,-~-a-ct'L' 
9n(])~Jmtn1!!~9'r::, •~m-T-111\A.~il' 
L "C~ 2 O)~cti~i*"-t%~i!L, li1IK2iM.Fa 1J 
/?~~1&:~ .Q.:f'.Jill~(d), li1J~'771' JL-O)~i! 
$t1: .li1JK2i!Fa 1J/?~~1&:Lt::.tt, li1I~2~ 2 0'.> 
~tiw;i:$;~0)-T-111::~L "C, ~tJ(~t~;j 
~~~- i!Fa~JJO)q:. (])L '9'htJ' 1 -:JO'.>~JI~ 
ffL 'tJtJ<.;, llll~~JI~ht::.li1Jg2~ 2 o:>i2UUl
f*f1'1<1.>-T-11~li1Jii2iRI'fl-T-111\.A~ii'L "(~
I <T.>t2tiUli*"~i!""t ~.:f'.RI~~iif""t ~~~~
~ta~~ ~771' '"'-'iii!:m!-e&i'J~.

1998-8-4

orderwhich to execute device and transfer method storage is
done isoffered as objective .

In addition, as for other objective of this invention, rate
conversion of the different A TM link of interface speed being
possible, dispersing also large load where furthermore, it
depends on server such as random access oflarge capacity
file , itis to actualize high transfer throughput .

In addition, it is to offer data transfer method where high
throughput is acquiredeven with when other objective of this
invention evades decrease of the transport efficiency which
originates in response verification in software treatment
ofeach every packet , divides data into plural packet and
transfers.

Disclosure of Invention

In order to solve above-mentioned problem , as for first
embodiment of the this invention, respectively, making use
of general purpose computer architecture which consists of
the second storage media where input-output speed is faster
than general purpose data bus , first storage media , and said
first storage media in orderto do data transfer with transfer
origin of file and forwarding destination of the file, in
transfer origin of (a) file , before setting communication
link ,vis-a-vis file data inside first storage media, At least,
while treating any one in midst of compression, the protocol
terminal , and flaming , in transfer origin of protocol and
(b)aforementioned file which through general purpose data
bus , sequential transfer the said file data to second
description 100,000,000 media , after completing thetreatrnent
for aforementioned file data , to set communication link , file
data inside aforementioned second storage media , Without
administering treatment vis-a-vis that, through
theaforementioned general purpose data bus , with forwarding
destination of protocol and (c) file which it lumps together
transfers to network adapter card for computer
communication ,directly, is connected to said general purpose
data bus from said network adapter card to network the
transmission it does, to network adapter card which from
aforementioned network isconnected to general purpose data
bus of said forwarding destination transmission
aforementioned file data which is done, Without
administering thawing , protocol terminal , of data or each
treatment whichincludes flaming , through said general
ptirpose data bus , protocol which it lumpstogether transfers to
second storage media , releases aforementioned
communication link (d),with forwarding destination of
aforementioned file , after releasing theaforementioned
communication link , at least vis-a-vis data inside
theaforementioned second storage media , thawing treatment,
While treating any one in midst of communication treatment,
sequential itis a file transfer method which designates that it
possesses protocol which through aforementioned general

Page 22 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1102

W01997033227 Al

k·~~m~-~&~~*i•ft~~k~
0)/c-t.::;.L.r;t. trctl9ti*r:::~mc;1t-rmu~
la~~~;:ctJ<~~~o

*t::, *~BJl(l)fl!!mU~I;t, (a)~-1t&~iff
?t::ibm~ 1 (1)5JU'I'l~-~' \;%.c. ~ 1 O)!ctl
~i*c, Wille~ 1 (1)~ctl~i*J::~JJ...I±1t.Jlil.itJ<
llL'~ 2 O)~ctl~i*c. WI~~ 1 O)if'lm~-~
J\;%.f:::tl~~.tt, "CL'.t,af.tliiia'Jfl(l)~ I O):f:.
·;~t-?-~Y1i':t1t:t.J-t:c, iirn•J:,~fa5t~~
.t,ii1Jr:::. Dtr~c~ 1 m~ctl9lf*~(1)77-1' Jt-~-
1tr:::~L. -c. 1;-to:<cttt$li!i, :tc 1--::JJL-*!itiftl, &
tt7v-~:,?"mcj:lmL '1'ntJ' 1 -::>O)~Jiiff
L 'f.J:tJ%. m77-1' Jt-~-~iWI~~ 1 (1)5.R.m~
-$t1Uiftl.."CWJ~~2(1)~fl~i*~~-&
j!:t 1a>t::ibm~ 1 (1)6~-=F~c. Dtr!c77-1' Jv
7-~r:::~9~~IIm3i;7~. ~m•J:,~ia5t
~L. Dtrtc~ 2 (1)~fl~i*~m77-1' Jv~-~
r:~L. -r~IIiD'til~9'r::. m77-1' Jv~-~i.
iilriic~ 1 O)if'lm~-~' \;%.,fftL. -ri!ltl. Wille
~ l (1):f:.•;~I--?-~Y1t":1~:t.J-t:~-ffi&~
L, m~ 1 (1):f:.·;~I--?-~Y1t":1~:t.J-t:tJ,.;:t-·;~
1--?-~~ffi~~~k~O)ffi~.:f:.~c!::iW~.t,
&m~at•t~c.w~-~&~iff?~~O)~
2 O);.R.Jfl~-~''Ac, ~ 3 (1)~ctl9li*c. Wille
~ 3 mllctl~f*J::LJJ...I±1.tllil.itJ<lit.'~ 4 m
·WI~i*c!::, WI~~ 2 O)if'lm~-~'\.AI:::tl~
2::11. -ct. '.t,at•t~aiam(l)~ 2 O).::t-·;~1--?-~
7'1:t~:t.J-t-:c, Dtr!c:t-·;~1--?-~tJ,.;OiJtc~ 2
O):f:.·;~l--?-~71t":t~:t.J-t-:~ffi~~.nt::WI~c
77-1' Jv~-~i, ~-~O)M;i, :tc 1--::Jlt-*!
~. &U7v-~:,?"f~UL'9'.ti.(1)~Jit1itll
2:-rr:::, WI~~ 2 O)if'lm~-~'';%.fftL. -rDtr
~a~ 4 O)!ctl~f*~-ffi&~L.. Dtr!ciirn•J:,
~tfM1&~.t,t::cV.>mM1&-=F~c. Dtr~c~m•J:,
~tfMl&L..t::~. mr~~ 4 O)~fl~f*P-~(1)~­
~~:::Sf.tL.. "C, 11-t.J:<c!::tM;J~II. ilia'~JIO)cj:l
O)L,9'.tl.t.l' l -::>O)~Jiifi'L'f.J:tJ<.;, lllft-~l'!ll
~tt.t::Dtr~a~ 4 (1)!ctl~f*~(1)~-~iDtr~a~
2 O);}tjfj~-~/\;%.,fftL. "CWJ~~ 3 O)~fl~l
~~&~~.t,k~(1)m2(1)&~-=F~ciW~.t,
&a~at•t~ci~~~~;:cf~~c~~7
71 lv&~1tfi"t:if>~o

- ---- ··-_...;, -· ... ~-· .. ,. --

1998-8-4

purpose data bus , transfers data inside theaforementioned
second storage media which was treated to first storage media
as feature.

In addition, program in order to execute data transfer method
of this invention , the storage doing in storage media ,
distribution fabric is possible with the form .

In addition, other embodiment of this invention first network
adapter card for computer communication which is connected
to second storage media and aforementioned first general
purpose data bus where the input-output speed is faster than
first general purpose data bus and first storage media and
aforementioned first storage media in order to do (a) data
transfer and, before setting communication link , atleast
vis-a-vis file data inside aforementioned frrst storage
media ,compression, While treating any one in protocol
terminal , and flaming , first forwarding means inorder
through aforementioned first general purpose data bus ,
sequential to transfer the said file data to aforementioned
second storage media and after completing treatmentfor
aforementioned file data , it sets communication link , without
adrninisteringtreatrnent vis-a-vis file data inside
aforementioned second storage media , the said file data ,
through aforementioned first general purpose .data bus , direct,
second network adapter card for computer communication
which is connected to storage media and theaforementioned
second general purpose data bus of 4 th where input-output
speed is faster than thetransfer original computer and second
general purpose data bus in order to do (b) data transfer and
storage media of third and storage media of aforementioned
third whichpossess transmission means in order it lumps
together transfers to theaforementioned first network adapter
card , from said first network adapter card to network
transmission to do and, From aforementioned network
aforementioned file data which transmission is done, without
administering thawing , protocol terminal , of data or
eachtreatment which includes flaming to aforementioned
second network adapter card ,through aforementioned second
general purpose data bus , releasing means in order it lumps
togethertransfers to storage media of aforementioned 4 th , to
release theaforementioned communication link and, after
releasing aforementioned communication link ,vis-a-vis data
inside storage media of aforementioned 4 th , At least while
treating any one in midst of thawing treatment and
communication treatment, sequential it is a file transfer device
whichdesignates that forwarding destination computer which
possesses second forwarding means in order
throughaforementioned second general purpose .data bus , to
transfer data inside storage media ofaforementioned 4 th
which were treated to storage media of theaforementioned
third is possessed as feature.

file transfer method of this invention designates that protocol . .

Page 23 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1103

W01997033227 Al

"'C CPU t.MlU!L "'C~'f.:::11JI--::JJvft~~cO):f.
<a:>m!!~"f-?ffi~a;Tr::r;j:trt.>t.t~';:e:~~
t!lC:T ~0

77'4 Jv"f-?f;j:*A.~"-;(.:r:•JtJ:ca:>ili11ili.A.I:I:l:tJ
iiTfmtJ:;(.:r:•J e:.:t-·:;~ t--? -?7'1-::t ?tJ-t: e:O)rp,
"t:-t5L -c A.l±l :tJ ~n~t.::t.>, 77'4 ,~,..,~~a:>
A.Jv-:f•;~f-.tJ<J:.tJ<.~o

::.nr::J:~J, :t-·:;~t--?-?f;J::~~ ,a;yr111,"t'Mt:&~n
~t.::d>, f.11jJifJ~tj:Jtl.:t-·:;~f-."J-?~~~~Jifl
1.'~~0

*-f.::,- .E!.., ;(.:r:•J r::a:;t.;;tt~77'4 Jv"T-?
~~-~"t:~.:t-~f-."J-?0)~-~~?·~-
1::, J\-t:"f-1' A. ?a:>J:?fJ:i!:tlia:>::l\:~ii:fCfi
~i*b' i;JIIfi~li'Ui~;t'L, 77'4 JvO) :Yl:MiRIJ"t'
f;j:, :t-·:;~1--?-?a:Mt:&Lt.::tl, 7-1'A.?f::Jilfi~
r::a:m~n~o

;:0);(-=E'J, /\-t:"f-1'A.?r111,0)T-?a:>~~B;}
r::, mmf!-?1'\A.a:>*i~lilif::lt~. 1\-t:
T-1' A ?0) A. t:tLt.J n<+~i!:tii"t:N.I~t.::at.>, ::a:>
~a:t~JiflL -c. :tot--::~Jvm!!~a:>m!!n<iiTtm
C:fJ~o

*~BJla:>774 ,~,..,i~n5!"t:f;j:, ili11iii:t-·:;~f-.?
-?a:~~~Jifl"'tf.::af.>, .:t-·;~t--"J-?7'1-::t?tJ
-t:O)~~iill~ftiiJIWLfJ~ 'J::?, 77'-1 Jv-T-
?~~~x~m3a:>fetl~f*J:~ili11iiia:>m2X
f;J::1fi 4 O)~cm~tf*e:a:>r111,"t:-f%~~L, ::a:>
r111,' tP:!R:~-~iftf::J::~m!!a:trt.>tJ~ 'o

1fi2X~1fi4a:>fCtl~f*C:1fiiX~1fi3a:>fC
tfUlf*rp,O)"f-?~~f;J::.:t-·:~1--?-?a:Mt:&L
-c~ ,~r111,, -ttJ:t.>'1:!, 77'-1 Jva:>~~:n;-c:r;J::71'
-< JvO)ffi~M, 77'-1 Jva:>~~9c"t"f;J::77'-1 Jv
O)ffi~{lf::fi?o

::.a:>C:~.MIX~M3a:>fetl~f*a:>·~~h
iiliC:iRifl-T-?1 ~A.C:a:>iili~a:~JI'fl L -cf!
-?O)fERi·M;!, :tof-.::~Jv~~~O)mJ!a:tr
~'t.tn<.;, m 2 xr;J::1fi 4 a:>~ctl~f*C:1fi 1 xr;J::
1fi30)fetfa~f*O)M"t"~~"f-?a:~~T~o

::.nr:J:~J. 77'-1 Jv~~a:>~, .:t-·:;~f-.':1-?a:>
f.11iA.Jv-:f·:~t--a:~~"t:~, j;;:~:l:a:>77-1 Jv~
~O)II§U::t.!if.Wlf:::t-·:;~1--"J-?~Mt:&-t ~;:C:tJ<
1:~~0

lg)ifiiO)fm.ijtfJ:mBJl !g) 1 f;J::, ;:O)~BJjO)-~~
mtmf::J;:~ ATM .:t-·:;~f-."J-?I::flfft~n~MW
t~a:>mn!C;~JC:77'-1 Jv"T-?a:>ii'!tn~ff--t:to
•:;~?jg]"('N.,~o

[g) 2 f;j:, ;:O)~BJjO)ft!!O)-~D't§mfmf::J:~ AT
M :1'-·:;~f-."J -?f::tlfft~n~afjftiO)Mn!i;g~JC:

1998-8-4

terminal or other manytreatment where CPU treated in Prior
Art is not done at timeof data transmission as feature.

As for file data lumping together host memory or other high
speed input-output possible memory , andbetween network
adapter card because input-output it is done, throughput of file
transfer rises.

Because of this, network because in a short time it is released,
the effective use can do high speed computer network .

In addition, file data which once, is stored in memory with the
transmitting side before communication link setting of
network , sequential compilation is done from the large
capacity storage media oflow speed, like hard disk with
called side of file , afterreleasing network , in disk
compilation is done in sequential .

Because when transferring data between this memory , hard
disk, input-output of hard disk is fully low speed in
comparison with forwarding rate of general purpose data
bus ,making use of this difference, protocol treatment or other
treatmentbecomes possible.

With file transfer method of this invention, in order effective
use to do high speed network , in order not to restrict
forwarding rate of network adapter card , from the storage
media of first or third it lumps together transfers file data
second of high speed, or between storage media of 4th at this
time,does not treat with central processing unit .

second or storage media and first or third of 4 th data transfer
between storage media while releasing network , in transfer
origin of the namely, file before transmission of file, with
forwarding destination of file doesafter transmission of file .

Compressing at time of this , making use of speed difference
of the writing speed and general purpose data bus of storage
media of first or third while &treating data thawing, protocol
terminal or other , second or storage media and it transfers
thesequential data first or third of 4 th between storage
media.

Because of this, at time of file transfer, be able to
actualizehigh throughput of network , network can be released
to early stage even case of file transfer of large capacity .

simple explanation Figure I of drawing is configuration
example of computer which is connected to A TM network
with one embodiment of this invention and block diagram
which showsflow of file data .

Figure 2 is configuration example of computer which is
connected to A TM network with other one embodiment of

Page 24 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1104

W01997033227 Al

lgj 3 f;:J:, ;:O)~EI,Ji(1)ffl!0)-~1Jffiff~~f:::J;~ AT
M :1'-·;~f-.'J-?I::tl*"C~ti.~~Wtt!O)m/it~~
?7-'f Jj,-7-9(1)mtt\.!-if-9:10•;J?I8J1:if>~.

lgj 41;:1:, I8J lr::;r-9mntr::;Jsrt~?7-'f Jt-¥-9
O)E~~-c:O)m~O)·~!-if-9mtt\.~gj"t:if.>
~.

lgj 51;:1:, I8J lr:::;r-9mntr::f.irt~?7-'f Jt-¥-9
O)E~~-c:O)m~O)•~~;r-9•ni8J-c:N.>
~.

@ 61;:1:. I8J tl::;r-9mntr:::f.irt~?7-'f Jt-¥-9
O)~m~;~m*-c:O)m$0)•~~;r-9mtn
@"C:if.>~.

@ 7 (;:1:, *~EI,Ji(1)-~1Jffiff~~I:::J;~ ATM ?7
-'(Jt-&~1Jj!O).JIIfi!-~BAI...t:::!gj"t:if.>~.

@ 8 1;:1:, (g) 7 l::;:f-9 ATM ?7-'f Jt-&~1Jj~~
•~9~~~(1)~~(1)mnta-;r-9:1o~?~-c:
if>{).

@ 9 1;:1:, ATM A.-{·;~7-&2 ;.X-fj--1\ mOO,.:I.­
-+filffi* 0200,:J~7"~';/-fj--/\ D300,ATM :A-{
';IT 0400 ~ ATM "t:tl*"Cl..t:::J:B$'0)./itiJJ!-if-
9@1:if>~.

lgj 10 I ;:I:, ::J~-T~';J-ff-1 \0300 tJ'; A TM 'A"'''
·;~7-&2 ;.X-ff-1\ moo 1:::::*:~.&.77-1' Jt-¥-9
~-ffi&~9 ~~0):10 f-.:JJ!,'A9·;~? ~¥-9
O)mtt\.~if-9@1:if>{).

@ II 1;:1:, .:J..-if~* 0200 tJ'; ATM A.-{•;_~"f­
&2 ;.X.ff-1\ moo r::Mt... "C7~1f k7?-i!'A 9
~~(1):10f-.:JJI-'A9·;~?~¥-90)·t\.~if-9
@"C:if.>~.

@ 12 l;t, *~aA~-"-t:-7...-A.?t::\!!fil~n
t:::;A;;~ii77-1' Jt-l:::fii]~l::7?-i!'A 9 ~i:B$'1::
i!Jfll..t:::;@1Jffi~~~~BA9~t:::~<1.>jgj1:if.>~.

@ 131;:1:, *~EI.Ji(1)-7-9&~1J:if:::J;~-7-9
O)E~·~~~~9{)~~a:>~-c:N.>~.

@ 141;:1:, UDP I ~?"~f-.0)7.-t--~·;~f-.~if-91811:
if>{).

@ 15 (;:1:, ATM/AAL-5 CPCS-POU 0)7.-t-~
•;~f-.!-ff-9~-c:N.>~.

@ 16 1;:1:, *~EI,Jii::J;~-7-9&i!~-7~'A~
ff-9@-c:N.>~.

181 11 1;:1:, *~BAr:::;Jsrt~¥-9&~~~a:>m

1998-8-4

this invention and block diagram which shows theflow of file
data.

Figure 3 is configuration example of computer which is
connected to A TM network with other one embodiment of
this invention and block diagram which shows theflow of file
data.

As for Figure 4 , it is a flowchart which shows protocol of
treatmentwith forwarding destination of file data in
configuration which is shown in Figure I .

As for Figure 5 , it is a flowchart which shows protocol of
treatment in transfer origin of file data in configuration which
is shown in Figure I .

As for Figure 6 , it is a flowchart which shows protocol of
treatment toreception from transmission of file data in
configuration which is shownin Figure 1 .

Figure 7 is figure which explains protocol of A TM file
transfer method with one embodiment of this invention.

Figure 8 is block diagram which shows configuration of
device in order toactualize ATM file transfer method which is
shown in Figure 7 .

Figure 9 is figure which shows configuration example when
A TM switch &secondary server 0 I 00, user terminal 0200,
contents server 0300, A TM switch 0400 isconnected with
ATM.

Figure 10 , when from contents server 0300 lumping together
transferring large capacity file data in ATM switch
&secondary server 0 I 00 is figure which shows flow of
protocol stack and the data . ·

·Figure II when random access doing from user terminal
0200 vis-a-vis ATM switch &secondary server 0 I 00,
isfigure which shows flow of protocol stack and data .

Figure 12, when this invention, simultaneously to large
capacity file which compilation is done access it does in hard
disk , is figure in order toexplain embodiment which is
applied.

Figure 13 is figure in order to explain transfer protocol of the
data with data transfer method of this invention.

Figure 14 is figure which shows format ofUOP packet.

Figure 15 is figure which shows format of ATM
/AAL-5CPCS*POU.

Figure 16 is figure which shows data transfer sequence with
this invention .

As for Figure 17 , it is a figure which shows configuration
"

Page 25 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1105

W01997033227 Al

li2 011 ~ ff-9 [g) 1: jf,~ 0

jg) 18l;t, ;$:~Bjjt::J::~7t:L-.A~~0)-0JJ~ff-
9jg~""Cjf,~o

181191;t, ;$:~B}li::J::~7t:L-.A~~0)-0JJ~jf-
91811:jf,~o

181 20A (;j: ATM ;f:.•;~t-?-?71f:111:h-t:~~
~L~ftmti••7-~~?~~~~97o~
?jg!""Cjf,LJ, @ 208 (;j:tlf*0)?7-f' Jl.-6)!:10 t­
:l}(.,~l'fll.. \"'(;k~:il:?71)l.-~:i:ffi"9 ~llfilO).:f
-11 0) ;m:n.~ ff- 9 mUt181-c jf, ~ o

18121 (;j:, ATM 1)::...-?~ffll.. 'f.:?7-f' JL-6)!:10
t-:J JL-O):fo t-:JJL-.A 11·;~? c!:::-t:h.~~fi9 ~"
-t:?I.7~*c!:::d.)f.:1811:jf,~o

1998-8-4

example of data transfer device in this invention .

Figure 18 is figure which shows one example of address form
with the this invention .

Figure 19 is figure which shows one example of address form
with the this invention .

As for Figure 20 A with block diagram which shows general
purpose computer architecture which equips the A TM
network adapter card , Figure 20 8 when receiving large
capacity file making use of conventional file transfer
protocol , is flowchart which shows flow of data .

Figure 21 protocol stack of file transfer protocol which uses
A TM link is figurewhich collected hardware which executes
that.

18122 l;t, tit*O)ATM 1J::...-?~ffll.. 'f.:il.g.O).:f-11,iii!O).:f.)i1Jic!:::, -t:tl.~~i!

Figure 22 , actualizes protocol of data transfer when conventional A TM link is usedand, that

9~~d.>O)~~m/i20)~~1811:jf,~o

It is a conceptual diagram of equipment configuration in order to do.

18123 (;t, tit*O)i!ffi"ili.~&U:S\!:ffi"ili.IJfi••ra,t::t::)lt~TCPO)?O-:J::...-t-o-

As for Figure 23 , conventional transmitting side and TCP in between called side computer [furookontoroo]

J(.,~'T'T111.l..~-\"-I'-~'T'T1811:S~o

It is a figure which i>hows time chart which shows jp II .

~Bjj~~M!i"t ~f.:d.>O):fil.5[0)~~

preferred embodiment in order to execute invention

1811t;t. m, J{t;tm30>aam~i*c!:::L "'(0)1\-t-:-T-<.A?. m2J{t;tm40)fc

As for Figure I , hard disk , second as storage media of first or third ordescription of 4 th

fl:~i*c!:::L "'CO).!¥~U;;t-=t:') (DRAM: 1f -(-j-S.•;~?7::...-1f 1..7?-t!.APE'J

<seq> DRAM :dynamic random access memory semiconductor memory as * media

;Dynamic Random Access Memory) t.l'i;ii2~*A.t-;C.::r 1J~ffll..'f.:~titmii2~:fiL. :$:~BJlt::J:~?7-f' JL-6i!n
~~~M!i"t ~A TM;f:.•;,~t-? -?t::fl*"&~:tl.~~t••O)m/i201Jc!:::?7-( Jl.-.:f-110) iti:h.~ff-"t@l:jf,~ o jg)1(::~"t 

~m/i2t;t, *.At-CPU·F1. DRAM~""Cm/i2~:tl.~*A.t-;(-=t:'JF2, ~~0)5fl.fflr\A.1:jf,~PCII~A.F3, CPUc!:::P 
CI1\.A~*S,5~*A.t--PCI:1 1J•;,~'YF4, ~J;t.--(~t.l,i;AALL-1~*1:~~~"t~ATM;f:.•;,~t-?-?71f:f11:h-t: 
(jf,~l,. '(;j:,;f:.•;,~t-?-?-(::...-11-?:r.-.A:h-t:)F5, /\-t:-7-<A.?F6, &U:ATM.:t-..·;~t-?-?F1 Ol:S~o ~t::J:. 
fcO)m/i2t::t::it..'"'C. ATM-LAN~O)ATM.1'••;~t-?-?F1 OiJ'i; 

Page 26 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1106



W01997033227 Al 1998-8-4 

It is a configuration example of computer which is connected to A TM network which;possesses equipment 
configuration which uses host memory which consists ofDynamicrandom access memory) executes file transfer 
method with this invention and a figure whichshows flow of file data . Each configuration which is shown in Figure I 
is A TM network adapter card (Or network interface face card) F5, hard disk F6, and ATM network Fl 0 which to 
AALlayer terminal are done with such as host CPU *Fl, DRAM from the host- PCI bridge F4, physical layer which 
ties PCI bus F3, CPU and PCI bus which are a general purpose bus of the host memory F2, high speed which 
configuration is done. Next in above-mentioned configuration, from ATM- LAN or other ATM network FlO 

:;A;:D:li:?J"-1' Jt...tJ<-ffi~~:h.Qil.g.O):i:-mfliJO)=J=.fi[JU::-::>~ '"t', 1811.bHJI814~~ml 

You refer to Figure I and Figure 4 large capacity file concerning protocol of called side when transmission it is done 

L.. -rrutaJl-t -l>. t.;t:>, 18141i, jg) 11::m"t?J"-1' Jt...O):i:®=Fii!Jt~il?t:h~:;r-"til?t:hjg)'t!'~-l>. if:'t'lii~~:h -r*-:t=.?J" 
-1' Jt...l;f:, ATM*•!JI--'J-?F1 0fJ'bATM*•!JI--'J-?71f:1111.J-,_:F51::-ffi~~;h..Q(18]40)A.7'•!i:fB1 -82) oAT 
M;f',•!JI--'J-?7~:1111.J-,_:F5~'t!'l;f:a;'J';t;®-ll}O)~~~S/P~fi, i!JL-!iil 

Doing, you explain. Furthermore, Figure 4 reception protocol of file which is shownin Figure I is flowchart which 
shows flow. First file which is transferred from ATM network FlO transmission is donein ATM network adapter card 
F5, (step 81-82 of Figure 4 ).Inside ATM network adapter card F5 first terminal and SIP conversion and cell of light 
signal same 

Wlc!::~ '?f=.~Jmv-1'-\1 (PHY) O)~~~rr~ '• ATMv-1'-\', AAL"'-cll[ii~I::J:.{itv-1'~fliJI;:f-1rtJ<li,i~~:h.Q. AT 
M v-1' ~'t!'l;f:.±:I::VCI/VPII::J;..Qi! Jl.-0) f. !t~NlfttJ<fT*':h, AALv-1' ~"C!'I;f:i!Jt..-0)481 \ -1' j-.0)1'{-{J:J -,.:~*lj.g. 
L.. "t'CPCS-PDUa:~fil(;L.., CRC~-;&~0)7-r!l?~rr?"t'fJ'bC 

terminal of physical layer (PHY ) such as period is done, to A TM layer , AAL the data is transferred to upper position 
layer side in sequential . With A TM layer demultiplexing of cell to be done mainly with the VCI NPI , with AALlayer 
connecting payload of 48 byte of cell ,configuration to do CPCS- PDU , after doing check of CRC and the length , C 

PCS- PDUO)I'{-{J:J-,_:a:~--t:f-T-1rc!::L.. "'(JijlLJ*"t o 

You remove payload ofPCS- PDU as user data . 
... 

ATM, AAL v"''~~~~L.. "'(JijlLJ!:f:l~:ht=.?J" 
-{ Jt...O)"f-1rl;f: PCI I \A.O)I \.A 1/F 7-•!J:f(8us 
1/F)fJ'b PCI /\.A F3 "'-fii~~:h.Q. 

::O)c't!, ATM 7~:11rn-,_: F5 0)1\A. 1/F T'!l 
:11;f:?J"-1' Jt...-T-1rO)li,i~~cL.. "'(;t-.At-- PCI -:J 
1J •!J-:/ F4 a:i!tR"t .lJo 

;f',•!JI--?-?7~:f1r1.J-,_: F5 fJ'blii~~;h.t=.-T 
-1ZI;f:;t-.At---PCI :11)•!1-:./ F4 f:ftl.. "(;t-.At--f-l:: 
IJ F2 "'-]i1lii!l::li.i~~;h..Q(.A7'•!J:f 82-83)0 

;t-.A!--f-l:.-1) F2 l::-t'iS't!'Jr;ti;;h.t=.-T-111;f: CP 
CS-PDU 1'{-{J:J-,.:O)a;a;"(!'~.Q. 

CPCS a;'t!'l;f:7~:f111.l-J-!' F5 ~0)/\-,_:rj.I. 
"Y't!'K~~:n..-llt.:d:>, ~ilmimtJ<iiJtrn't!'~"J. P 
Cl 1\.A F3, ;t-.Af-.-PCI :11)•!1-:./ F4, DRAM-F2 
O)"f-1rli.i~l;f:"t ~"(/\-!-='?.I. "Y't!' ~.Qt.: 

termmal domg A TM , AALlayer , data of file which IS 

removed istransferred from bus 1/Fchip (8usi/F) ofPCI bus 
to PCI bus F3. 

At time of this, bus 1/Fchip of ATM adapter card F5 selects 
host PCI bridge F4 as forwarding destination of file data . 

data which was transferred from network adapter card F5 
through host -PCI bridge F4, istransferred to high speed to 
host memory F2 (step 82-83 ). 

data which in host memory F2 is stored with bundle it 
continues to bea CPCS-PDU payload . 

Because to CPCS terminal it is done with hardware inside the 
adapter card F5, fast processing being possible, as for data 
transfer ofPCI bus F3, host -PCI bridge F4, DRAM -F2 
becauseit is a hardware entirely, there is not restriction of 

Page 27 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1107



W01997033227 Al 

~, 'J7t--?.:r. 7 ~!!I:::J::~~i!iilf (])ft!JilatJ~ 
t.;:~ '· 
771 JL-'T-~(J)~)!fJ~~ 7 l..t::~, ATM (;t A 
™ 'J>7~~7L. • .:t-·.:Jt--?-? Flo ~mt&-t 
~. 

*7-I--;I=E1J F2 (::-ffl"t"lili;'V;tt.t::-T-~I;t CP 
CS-PDU .-.{-{IJ-i.!'O)tf.:!m"t"cf.>~J, EH!i771 JL­
"t"ib.Q~~O)m;J~II~I;t1it!i~tt. "Cl. 't.;:t, '• 

:.ni;O)~JII;t CPU I::J::~'J7t--?.:r.7~II"t" 
&> .Q f:: i1J , ~}U~ 0> 1.1 it I:: J:: ·:)'( -T -~ fiii! If! I:: 
fiilll\fi::~I!T ~c771 JL-fiii!O>.AJL--:1·~.+~ 
:fL.< ii"F~it"t"L.a;?. 
-f;:"t", *~B,ij"t"(;t,-.§.~Ji"t"*.A!--;(=EIJ F2 
r::ff~~tt.t::tf.:!m0)**771 JL-fiii!L. "t"L.* 
~', .:t-•.:JI--'J-? FlO ~mt&L..t::~"t" CPU•Fl fJ~ 
M;tt.;:cO>~Im~rr?. 

.:t-·!1!--'J-? FlO ~mt&L..t::~, CPU•Fl (;t, * 
7-1--;I=EIJ F21:::-ffl"t"lili3ti?:>tl.t:: CPCS-PDU,..:: 
11J-j-!'(1)tf.:!m-T-~I::~l, "CiM.Fa' 1J~?~fit.li:. 
't.Q(?-"T•.:J:f B4)o 

-fl.,"(, CPU· Fl (;t, CPCS-PDU .-.{-{IJ-1-!'0)tf.: 
fm-T-~I::~L. "C, 7v-:'::/~(.A"T•.:J:1 BS), :1 
O!--::JJL-~iliftl(.A"T·.:J:fB6), &tt~·JH::r.t;L.:.-c-T 
-~Mi.i:(.A"T•.:J:f B7)(1)~I!~ffl. '· ~i!T-" 
~7-~0)Ifl~~~~~L. .. ~~mL~-T-~~ 
1\-i.!'-T-(.7-Q F6 ""mflliT~(.A"T•.:J:1 B8)~ 

;:(1)J::?I::, fi~(t91::, i!i?:>tt. "t""l!"t::771 JL­
I;t, 1\-i.!'-T-(.7-?, :Yeat~-T-1'.7-?, at~.:r­
:f?J;O) j;;:~:iU2 ti~f*(;: (1)01J"t"l;t, \-!-!' -T -1' 
7-? F6)1:::1ilifit~tl.~fJ~, l\-i.!'-T-1'A.? F6 ~(1) 
il~~"l!"i6~ .. ~~~L(1)1Jl7\:iiJfr;tiR.m,( 
7- F3 (1)1Jlj;;:~)!iilfi::J:t-", +5tiiii"t"cf.> 
.Q. 

L.f::tJ<-:>"(, *.A!--;I=f:IJ F2 fJ'b/\-i-!'T-1'.7-? F 
6 "'(1)fii)!l;t, PCI I (.A F3 (1)1Jlj;;:fii)!JiJl~ 
il~L "t"OOJflLt::fiii!cl;tt.;:i;-9, /\-i-!'-T-1'.A 
?~O)Qt~Rti~f*""O)iiii(1)~"l!"~~iill 
r::~t>ttt.::, , \-i.!'-T-1'.7-?tJ<fillj ;t~, (7,-f::..-~ 
-7:r.-{ ,Ap;j (1)1 \•')77 ;(=f:IJ ""(1)1f}j~&e.JfJijij;)! 
cL -c~rr~tt.~:.c.r::t.;:~. 

*7-1--;I=EIJ F2 fJ'b/\-i-!'T-1' .A? F6 ""(1)-T-~ 
O):S:~i6.~(1)f*J.I::.Wlr!m:: CPU· Fl l;t*A.t--;t=E 
'J F2 p;j0)771 JL--T-~r=~-t ~~;J:t.;:c(1)~ 
!.ll!~rr.:;;:c.tJ<1:~~(1)1:, ;:tt,i;O)~I!r:::J::~ 
1\-i.!'-T-(.7-Q F6 O)tft"l!"~~iilfO)ii"'FI;t~ 

~L,f.j:~ '· 

1998-8-4 

forwarding rate in software treatment. 

After transfer of file data ends, A TM ends A TM link , 
releases network FlO. 

As for data which in host memory F2 is stored with bundle 
with the state of CPCS-PDU payload , as for thawing 
treatment etc when it is a compressed file it is not 
administered. 

These treatments decrease because it is a software treatment 
with the CPU , when it treats simultaneously in data transfer 
with conventional method , the throughput of file transfer 
considerably. 

Then, with this invention , while it is a state which once was 
compressed to host memory F2 with high speed file it 
transfers, after releasing the network FlO, CPU *FI treats 
thawing or other . 

After releasing network F l 0, as for CPU *F 1, communication 
link is established vis-a-vis state data of CPCS-PDU payload 
which in host memory F2 is stored withbundle (step B4 ). 

And, CPU *Fl, flaming (step BS ), protocol terminal (step 
B6 ), and treats according to need data thawing (step 
B7 )vis-a-vis state data ofCPCS-PDU payload, removes 
contents of data whichit should transfer, houses data which is 
removed to hard disk F6 (step B8 ). 

this way, finally, file which is sent compilation is done in 
hard disk , magneto-optical disk , magnetic tape or other large 
capacity storage media (With this example hard disk F6 ), but 
maximum speed of hard disk F6or other continuous writing, 
reading is fully low speed in comparisonwith maximum 
forwarding rate of general purpose bus F3 . 

Therefore, from host memory F2 as for transfer to hard disk 
F6, continuing the maximum forwarding rate ofPCI bus F3, it 
did not become with transfer which you use,adjusted to 
writing speed of low speed to magnetic memory media of 
hard disk F6, it meansto be executed as discontinuous transfer 
to buffer memory inside bus interface which hard disk has. 

Because to do thawing or other treatment for file data inside 
host memory F2 it ispossible CPU *Fl to respiratory pause of 
writing of data to hard disk F6 from host memory F2, 
decrease of writing speed of hard disk F6 does not occur 
inthese treatments. 

Page 28 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1108



W01997033227 Al 

~l::jg) 11::~-tm~r::~l. ''"C, *-A.t- CPU! fJ'b 
ATM :7-•!Jt-'J-? FlO -"::*:~:1:71'1' Jv~ffim 
T -6>ia'FaiRIJO)Ef.jllJi(::-:JI. \'"(jg) I &'CJjg) 5 ~~~ 
L '"C~BJJ"t -6>. 

fJ ~, ;! 'Fa iRIJ 0) Ef. Jill let, :i:'Fa iRIJ 0) Ef.jllJi .!:ill! rRJ ~ 
O'>lJ.Ut.!:tJ-6>ton:.:F.>LJ, .:.0'>~'8-, I@ 1 r::~-t 
*ffi~M~~:i:-Fa~O'>Ef.~.!:iil!IRJ~O)fth.!:~ 
-6>. 

*"f, ~:ai"t~~71'1' Jl.-~1\-t:T'-<.A? F61:: 
mtfl"t -6>(-AT'!I-:f A I )o 

CPU·Fllet, 1\-t:T'-<.A? F61::mtfl~h '"CI. '-6> 
T'-$1~~,1j.f:ljLfJtJ<i;, T'-$1J±$lil(.A7-•!J-:f A 
2), :tc t-:::~JL-~iGiii(.AT•!J-:f A3)&U7v-~:/ 
IJ'(.AT•!J-:f A4)~ft-::>'"C, CPCS-PDU ~.{c-t: 
O)~fm"t:T'-1r~*.At-;L-=t: 1J F2 (::g[!f:l"t -6>(-A 
T'/:1 A5). 

~(::, CPU·FI let ATM 1J:/?~6t.tl.L..(.AT•!J:1 
A6), ::f'.·!Jt-'J-?7$1":1$1:t.J-t: F5 I::~L '"C77 
1' JL-O),iim~~lii~"t -6>(-AT•!J-:f A 7). 

:7-•!Jf-.'J-?7$1"-:/$1:t.J-t: F51et, PCI I~.A F3 ~ 
11-L.. '"(*.At-;L-=t:1J F2 l::~[!f:l~h '"(I. '-6> CPCS-P 
DU ~1'C-t:O)~fmO)T'-$1~ilHl~,?j.f:ljL 
'"(, AAL v1'"V1: SAR-PDU l::st~JL,., ATM v 
1'~1: ATM -t!Jv.!:L '"(, ~J.!!v1'"VI::J:-::>'"C AT 
M :f'·•!Jt-'J-? FlO -"ffim"t-6>(-AT'!/:1 A8)o 

-fl. '"C, 71'1' JL-O)ffiiatJ<~ 7 Lt.=.!:;:~ "t: CP 
U•FI letii'Fa 1J:/?~~1i:~C9-6>o 

.:.O'>J:?I::7y1' JL-O)~ia~l::let, T'-1rff$lil, 
:tct-:::~Jr.-~iGiii&U7v-~:/?"O'>~J.!!~ft-::>t.= 
~0)7-1r~*.At-;L.':f:IJ F2 l::~cf:IL, *.At-;L 
.':f: 1J F2(::g[!f;l~ht.=T'-$1~:f'.·!Jt-'J-?7$1":1 
$1 F5 fJ'i::JMUl~O'j.f:ljL '"C, :7-•!Jt-'J-? FlO-" 
ffiia"t-6>J:?I::Lt.=0)1:, 1\-t:T'-<.A? F6 fJ'b 
O)~O'j.f:ljl.,.~J.!!{.:l*.At- CPU·Fl I::J:-6>7-$1 
~J.!!tJ<. ::t-·yt-'J-?71i":11r F5 O)ffim:i!llr~ 
«tl'~tt-6>.:..!:1etfJI, '· 

[g) 6 ret. @ 4 r::~"t*~BJI0'>7Y1' JL-~m1.Ht 
r::J:-6>~ia;t-c:O'>Ef.JI!l.!:. [g) 5 r::~"t*~eJJO) 
71'1' Jt.-~ian~tr::J:-6>~:ai:7&-c:<i.>EJ=.n!l~. -
~O)~J.!!.!:L'"Cft?~~O)~J.!!O)ftn~~L~ 
tO'>"t:iF.>-6>. 

@ 61::~1.''"(, AT'!!-:/CI-c81etjg) 51::~-t.A 
T'/:1 AI-A8 O)~J,!!(::, AT'/:t C8-cl5 let[g) 
4 r::~-t.A-T·:i·.J BI-Bs O)~J.!!r::. -t-h-fn~ 
)(; L '"CI. '-6>. 

1998-8-4 

Referring to Figure I and Figure 5 is done concerning 
protocol of transmitting side whichto A TM network F I 0 in 
configuration which is shown next in Figure I , from the host 
CPU I large capacity file transmission , you explain. 

Furthermore, protocol of transmitting side being something 
which becomes the protocol of called side and flow of reverse 
direction , in case of this ,becomes protocol of called side 
which attaches arrow which it shows in Figure I and flow of 
reverse direction . 

First, file which it should transfer is housed in hard disk F6 
(step AI). 

CPU *FI data which is housed in hard disk F6 reading, data 
compression (step A2 ), protocol terminal (step A3 ) and 
doing flaming (step A4 ), with state ofCPCS-PDU payload 
remembers data in host memory F2 (step A5 ). 

Next, CPU *Fl establishes A TM link and (step A6 ), transfers 
file vis-a-vis network adapter card F5 command, (step A7 ). 

network adapter card F5, through PCI bus F3, reading *, 
divides data of the state ofCPCS-PDU payload which is 
remembered in host memory F2 into SAR-PDU directly with 
AAL!ayer , with ATM layer with physical layer transmission 
doesto ATM network FlO as ATM-cell, (step A8 ). 

And, being at point where transmission of file ends, CPU *FI 
releases communication link . 

this way when transferring file , after treating data 
compression , protocol terminal and flaming , storage to do 
data in host memory F2, data whichis remembered in host 
memory F2 from network adapter F5 reading *, transmission 
isdone directly to network FlO, because it required, with 
reading treatmentand host CPU *Fl from hard disk F6 data 
processing, transmission speed of[nettowaakuadabuta] F5 
there are not times when it decreases. 

Figure 6 with file transfer method of this invention which is 
shown in Figure 4 in transfer origin is something which shows 
flow oftreatment when it does protocol , as consecutive 
treatment with the protocol with forwarding destination and 
file transfer method of this invention whichis shown in Figure 
5. 

In Figure 6 , as for step C J-c8 in treatment of step A l-A8 
which isshown in Figure 5 , step C8-c 15 corresponds to 
treatment of the step Bl-B8 which is shown in Figure 4, 
respectively. 

Page 29 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1109



W01997033227 Al 

181 6 r:::;r--t- J:?r:::7.,-1' Jvo:>ti~:7i:1i'(CJfii~:$t: 
O)jiij1.i'1:, *.AI-- CPU·FI ~il'~fJI.'*A.!--.,t-t 
IJ F2 c!:.:t-·y!--'J-?711':11t:b-J-!' F5 ra9(])7-1t 
O)fii!~fi?;:c!:"t':, 71'-1' Jv(J)fiii!(J)A.JJ.,-:1 
·:.11-~J:LJ ]i::~(T ~;:c!:t.J<"t':~~o . 

~1:, jg] 2 ~~m!L. "(,(g) I ~~m!L. "(~BJIL,f;: 
:;U'l!iJf~ 1m(]) m: mW~H: -::11. '-c~BJI T ~ o 

181 2l:::m't":<$;§fBJ1(])~1i'l!iJf~1l!il;i, ~I ~lei:~ 3 
O)gC!tiU.¥i*c!:L. "C/\-J-!'7-<A.?, ~ 2 ~~cl:~ 4 
O)~tfU.¥i*c!:L. "C*A.!--)t.:CIJ (])i"\:t>LJ 1:::.:1'-•yj-. 
'J -?711':1 1tn-t: c!:liil t.:m.m.:r-1t1 \A...tr::: 
~ii.Atl:l tJ '6]'fmfJ=FiA\i*)t-tiJ I:J:~.,t-t•J;f­
-t:~~iilfjl.,f:.~to:>"t':if.>~o 

181 2 l:::;f-'t"*~~lcl:, *.AI-- CPU·GI, DRAM 
~-r:~~~tl.~*A.I--)t.:CIJ G2, Fcliim(]);}tlfll\ 
A."C:if.>~ PCII\A. G3, CPU c!: PCll\A.~~-5~* 
A.!---PCI / 1h.Y G4, ~JJ!v-1'"\"f.l'i; AAL v-1' 
~*"t':~~T~ ATM ;f.·yi--'J-?711':11t:b­
t: G5, /\-J-!'7-<A.? G6, DRAM ~""t:~lilt~tl. 
~ PCI 1\A...t(]).,t-t1J;f--f-!' G7, ATM .:1'-•yi--'J 
-? GIO "t':if.>~o 

~t:>. l8l I l:::ff-'t"to:>c!:fr!il-(])f!j{:;:F~~T~~ 
-li}~~-::~~liltlcl:, (g) 1 l:::ff--t-~R;'t"~~~c!:liil 
~O)tO)""Cif.>~o 

~f:::jg) 2(:::;f-T~~(:::t,il. \"(, ATM-LAN ~0) 
ATM .:l'-•yi--'J-?f.J'i;]i::~:flt71'-1' Jvf.J<$iii!~ 
;h,~~ft(])EFlllJt~~BJIT ~o 

7Y1'JJ.,f;j:: ATM ;f.·yi--'J_;? GIO f.J'i; ATM .:t­
•yi--'J-?711':11t:b-J-!' G5 l:::ffi:~~tl.~o 

ATM .:l'-•yi--'J-?711':11t:b-J-!' G5 ~""C:Icl:!lo/.JJJ! 
v1'~, ATM v-1'"\", AAL "'c!:liiJi~l:::~~~ 
;h,, ..1: i!iv..f"\"{«IJI:::¥-1t~*ii~T ~o 

AAL v-1'"\"~~~l., "(JnlLJtl:l~tl.f:.71'-1' Jv(J) 
"T-1tf;J:: PCI 1\.:A(/)1\:?. 1/F 7-•y-:J(PCI 1\A.:::J 
/I-D-7)f.J'i; PCI 1\.:A G3 "'$ii~~tl.~o 

:::.O)c!::~, ATM71/':11t:b-f-!'G5 (/)1\A. 1/F-T•y 
/l;:l:jg] 1 O)~ftc!:l;l::~fJLJ,fii]-(]) PCI 1\.:A G 
3 J:.O).,t-t•J;f--f-!' G7 ~71'-1' JL-'T-1t(J)fii~ 
;t1t-Jf·y!--c!:L. -cref}E't" ~0 

.:t-•yi-'J-?711':11t:b-J-!' G5 c!:)t-t1Jif--J-!' G7 
lcl:f61-PCII\.AG3 (]).I-.Y::x:/1--"t':if.>LJ, ATM.:I'­
•yi-'J-? G 10 f.J'i;Fcliimffi:~~tl.f:.71'-1' JL-7-
1t~A.Jv-"1•yH1§:c!::~t'l:::.,t,;:;•J;f--f-!' G7 
~;b«t;:::.c!:f.J<"t':~~o 

*t:.. l8l I O)~~I::J±'"', *.Ai--)t-t1J G2 ~~Jm 

1998-8-4 

As shown in Figure·6, with transfer origin of file and both of 
forwarding destination , by fact that it transfers data between 
the host memory F2 and network adapter card FS which do 
not mind host CPU *F l, throughput of transferof file can be 
made larger. 

Next, referring to Figure 2 , referring to Figure l , you 
explainconceming modified example of embodiment which 
you explain. 

embodiment of this invention which is shown in Figure 2 as 
network adapter card isactual ones which on same general 
purpose data bus dispose memory board with high speed 
input-output possible semiconductor memory in place of host 
memory hard disk , second or as storage media of 4 th as 
storage media of first or third . 

Each configuration showing in Figure 2 is with such as host 
CPU *Gl, DRAM memory board G7,ATM network GlO on 
the PCI bus which configuration is done with such as PCI bus 
G3, CPU which is a general purpose bus of host memory G2, 
high speed which configuration is done and from host -PCI 
bridge G4, physical ll}yer which ties the PCI bus to AALlayer 
ATM network adapter card G5, hard disk G6, DRAM which 
terminal is done. 

Furthermore, it is something which is similar to configuration 
which asthose which are shown in Figure I shows 
configuration which has code which possesses same numeral , 
in Figure l and corresponds. 

protocol when large capacity file is transferred from ATM 
-LAN or other ATM network in configuration which is shown 
next in Figure 2 , is explained. 

file from ATM network G I 0 transmission is done in ATM 
network adapter card G5. 

Inside A TM network adapter card G5 to physical layer , ATM 
layer , AAL terminal it is done in sequential ,transfers data to 
upper position layer side. 

terminal doing AALlayer , data of file which is removed 
istransferred from bus 1/Fchip (PCI bus controller) ofPCI bus 
to PCI bus G3. 

Appoints memory board G7 on same PCI bus G3 at time of 
this , the bus 1/Fchip of ATM adapter card G5 unlike case of 
Figure I , as forwarding destination target of the file data. 

With same -PCI bus G3 agent, throughput without dropping 
file data which high speed transmission is done from A TM 
network G l 0, Cl}n network adapter card G5 and memory 
board G7 write to memory board G7. 

In addition, you can call configuration which faces to file - - . 

Page 30 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1110



W01997033227 At 

L..fJL ':Sf, :*:~:1:0'.>":77-1' JL-tii~I::IAJ I. 't.:m~ 
l!:a;t~. 

;:o:>m~r::i::>L '-c, :JY-1' JL--T-11o:>'ii~tJ<~ 
7L..t.:~. ATM l;l: ATM 1)~?~~71..,., ;t.•_:~t­
'J-?~~1&~~. 

PCI /\A. G3 J:.O');(.:C1J;f--t-=' G7 l::ji;ti;;h.t.: 
-T-111;l: CPCS-PDU ....::.{l::l-t-='O'.>~fm1'!~LJ. 
1±~-::Jy.{ JL-1'!~~ii];.g-O')~;.t~~~l;l:M!i~;h. 
"'(1,\f,J:l, '· 

!g) 1 O')ii];.g-,!::~~1::. ;:;tt.i;O'):Jy.{ JL--T-111:: 
~~ ~~~l;l:. 1\-I-='-T-r.A?"'O'.>~~:ibJJ.i.f 
llb\A.o:>'ii~i.fllf::~~~Jffll... -c, 1\-I-='-T 
-rA.?I::'ii~~~iliJI::~(X CPU·Gl 1'!~JI~fj 
?. 
!g) 3l;t, (gJ 2 o:>m.m-T-111\A..l:.r:::1•J·_:~-;;.::r·_:~ 
:t~~~t~;:l!:-r:. m.m-T-111\.A~Bt~liL.. -c;.R. 
m-T-11/\.A~t?-?~~L • .::t-·_:~t-'J-?7 
~-;/11:t.J-t-=',!:: ;(.:CIJ ;'f--t:~;: 0') ~~~;h.t.: j}l. 
m -T -111 \A. r::tl*"CL t.: ith 0'.> ~ME Jt~ 1m~ ff-~ 
lgj1'!~~. 

jg) 3 (::;F-~45-m~l;l:. *.AI- CPU·Hl, DRAM 
~'"C'm~~tt.~*A.t-;t.:c•; H2. ~i.f0)5flml' 
A. 1'!~~ PCI I \A, H3a,H3b, CPU ,!:: PCI I \A,~ 
*fi,S~*A-1--PCI :1 1J·_:~y H4, ~~v-1'-\"fJ'ib AA 
Lv-1'-\"*'"C'~iGiij~~ATM.::t-•_:~I-'J-?711':111 
:t.J-1-=' H5, 1\A.-(~11--::J.r..{A.~~ilil...t.:/\­
t-='-T-rA.? H6, DRAM ~'"C'm~~;h.{) PCI 1\A. 
J:.O');t.:C•J;f--t-='H7, 2 'JO') PCI I \A,~fl*"C~ ~ 
PCI-PCI :11)':1':/ H8, :1 1J•_:~yf::J:;:LJ~t.:I::Jlt~ 
~;h.t.: PCI r\A. H9, -fl... "'C ATM ~-·_:~1-'J-? H 
10 '"(!'~~. 

;xr::. (gJ 3 ~~~~..,. -c, ;:o:>liJr::-r--tm~r::i::l 
L'"'C ATM-LAN ~0') ATM .::t-·_:~1-'J-? HlO J'J' 
.; :*: ~ :1: :J 7 -1' J L- tJ<fii~ ~;h.~ 11 .g. 0) -=F lilA I:: 'J 
I. \"'(~BJj~ ~. 

:Jy.{ JL-I;l: ATM .::t-•_:~1-'J-? HIO fJ'ib ATM .::t­
•_:~t-'J-?7~:111:t.J-t-=' Hs r::ffi~~tt.{). 

ATM .::t-•_:~I-'J-?71f-:111:t.J-t-=' HS ~'"C'I;l:~~ 
v-1'-v, ATM v-1'-v, AAL "'I!:JI!A(XI::~iGiij~ 
;tt., J:. iftv-1'"'\"ill.'JI::-T-11~fii~~ ~. 

AAL v-1'-\"~~iGiijl..,. "'(JillLJI:l:l~;h.t.::JY-1' JL-0') 
-T-111;t PCI 1\A-0')1\A. IfF 7•_:~:1(PCI 1\A.:::J 
~1-l::l-7);/J'ib PCI 1\A. H3b ~fii~~;h.~. 

;:0'),!::~, ;:0') PCI 1\A. H3b (;l:lg) I, 2 O)!i.g-,!: 
f;l::W:f.i:LJ, *A.I-0'.> PCI :1 1J•_:~y'"(1' CPU ~*A.I­
;t.:C1) l::tl*"C~;h.~~J'J'ibfHfl... "'Cl. '~ PCI 1 \A. 
H3a '"C'I;l:fJ(, ;:O')Ii]I::~~J:;:?I:: PCI-PCI :1 1)·_:~ 

1998-8-4 

transferof amount and large capacity which do not utilize host 
memory G2 in comparisonwith configuration of Figure I . 

In this configuration , after transfer of file data ends, A TM 
ends the A TM link , releases network . 

As for data which is stored in memory board G7 on PCI bus 
G3 with the state of CPCS-PDU payload , as for thawing 
treatment etc when it is a compressed file it is not 
administered. 

In same way as case of Figure I , treatment for these file data 
in writing speed to hard disk and forwarding rate of bus 
making useof difference, before transferring to hard disk , 
treats with thesequential CPU •G I. 

By fact that bridge chip is provided on general purpose data 
bus of Figure 2 ,expanding general purpose data bus , general 
purpose data bus another new construction it does Figure 3 , it 
is afigure which shows other embodiment which is connected 
to general purpose data bus which network adapter card and 
memory board this new construction is done. 

Each configuration which is shown in Figure 3 is PCI bus H9, 
and ATM network HlO which are expanded anew by PCI 
-PCI bridge H8, bridge which memory board H7, 2 PCI bus 
on PCI bus which configuration is done with such as PCI bus 
H3a, H3b, CPU which is a general purpose bus of the host 
memory H2, high speed which configuration is done and from 
host -PCI bridge H4, physical layer which ties PCI bus to 
AALlayer hard disk H6, DRAM which builds in ATM 
network adapter card HS, bus interface which terminal isdone 
connects with such as host CPU •HI, DRAM. 

Next, referring to Figure 3 , you explain concerning protocol 
when large capacity file is transferred from ATM -LAN or 
other A TM network H 1 0 in configuration which it shows in 
this figure. 

file from A TM network H 1 0 transmission is done in A TM 
network adapter card HS. 

Inside A TM network adapter card HS to physica1layer , ATM 
layer , AAL terminal it is done in sequential ,transfers data to 
upper position layer side. 

terminal doing AALlayer , data of file which is removed the 
PCI bus H3b • is transferred from bus 1/Fchip (PCI bus 
controller) ofPCI bus . 

In order at time of this , this PCI bus H3b is not PCI bus H3a 
whichexists from cause of being connected to CPU and host 
memory with PCI bridge of host unlike case of Figure 1 , 2, 
for there tobe a this figure, anew it is a PCI bus H3b which 

Page 31 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1111



W01997033227 Al 

.Y H81:iJTt.::l::f·fOC~tl.t:: PCI I(;(. H3b '"Cif.l~. 

;:Cl)iJT~~nt:: PCI 1 \;A H3b li:7t;tJ,i;if.l~ PCI 
1'\A H3a cli~Ir'"Cif.l~. 

ifi~~nt.:: PCI 1'\A H3b l::li ATM 7~;/'J.jJ 
-t: Hs cjgl 2 r::~-t JL-=E•Jif--t: G7 cliil~f.I:;L 
-=E 1J;f--t: H7 tJ<fl*ft~tl.. 7'1-:1'J.tJ-t-=' H5 (J) 
I~A I/F 7-·;,~7'1iiSI2 (J)~~cliil~. FaJ-(J) PCI 
I ~A H3b J:.(J);L-=E 1J;f--t-!' H7 ?;:'77-1 J~=f-'J. 
(J)~~;t;'J.-Jf·;~t-cL -cm1E-t ~. 

.:f'··;Jt-'J-?7'J.":1'J.tJ-t: H5 .!::;L-=E•J;f--1-= H7 
liiJT~~tl.t.::liil-PCI I~A. H3b (J)I.-.Y:r.::...t-1: 
;!i)LJ, ATM -*•;Jt-'J-? H5 t.l'i;f.hii!ffi~~tl.t:: 
'771 ,~-T-'J.?: A}~-:1·;~ t-?::ic~-rr::JL-=E•J 
if--t: H7 r::tH~l6t;;:ctJ<-c~~. 

a::t::.. lil 2 (J)~~cl±""'~c7'J."-:1'J.tJ-t-= H3. 
;L-=E•J;f--1-= H7 tJ<mJI&~tl,~ PCI I ~A H3b l::l;t 
fl!!l:: PCI ;f--t-:'(I.-.Y:r.:,.tt-)tJ<fl*ft~ntJ~ 't:: 
tt>. ~~A?:~o-r:~~. 

ii',lj;', j{;Cl) PCI I \A H3a l::li?"7'71'•;J?A;f-­
t: '\':'.:f-;f--t:, 'f C1) itt! C1) ffll iZUI ~ (J) -1:,... 'J. '7 :r. 
-A;f--1-=~tJ<fl*ft~tt,~;:ctJ<if.,LJ, ATM * 
·;~t-? -?7 '1-:1 'J.tJ-t-= cJL-=E•J if--t-=tJ<, 'A?: 
7¥;i:r:: o1i-r:~tJL '~~tJ<if.>~(jgl 20A ~~). 

;:Cl)~~- fl!!(J) PCI I.-.Y:r./H::J;:~J\A 1J? 
IAH::J;:LJ, PCI 1\A(J)=f-'J.~ia(J)AJ~-:1 
·;~t-tJ<i.!f""F-t ~c~tJ<if.>~tJ<. lSI 3 (J)J;?r::7'1 
:1'J.n-t-= Hs cJL-=E•Jif--t: H7 t~<mti~n~'' 
A?!:ft!!(J) PCI I.-.Y:r.::...t-clij.ji](J)I \.::<:.1:::-t ~;: 
ci:J;:LJ. 7'1;/'J.tJ-!-= H5 c;L-t:tJ;f--1-!' H7 C 
C1) ra,Cl) f.hL 'AJ~-:1'/ t-?:f!f;~i£9 ~;:ctJ<-r:~ 
~. 

~1:1 \A?: o 1i"t ~;:ctJ<-c~~(J)"t:~~it? 
71 '~O>~~r=t.:i'-'-c=t~.::<:.,~-:1·;~t-tJ<~m 
1:~~. 

J:.3[!(J)~fil(;l:t.:iL ''"C. '771 J~=f-'J.(J)fi.;~tJ< 
~7Lt::f;t, ATM li ATM 1J/??;:~7L, -*•;_, 
t-?-??:A;1&"t ~. 

PCI J:.(J);L-=E 1J;f--t-!' H7 1::\l;ti;tl,t::=f-'J.Ii 
CPCS-PDU ~1C-t-!'(J)~®1:if.>LJ.I±Ki'771 
'~-c;v.,~~~(J)A;~mJt~r.tlitfi~n -cL 'tJL '· 

lil 1 (J)~~cliil~r::. ;:tt.&;0>'771 J~-T-'J.r:: 
~-t~mJtri. /\-t:-T..,A? ....... O>lf~i6J~.ii! 
lfcdACl)fi.i~ii!lfr:~?:~JmL -c. 1\-t:.::r 
1'A? H61::$iiiaT~liiJI::;!~ CPU•Hl -cmll 
?:fi?o 

;:(J)c~. JL-=E1J;f--t: H7 i1'JO)=f-'J.Ii PCI-PCI 
:1 1J•;,~.Y H8 ?!:frL '"C CPU·Hl tJ<mJI&~;h,~iJl.lj(J) 

1998-8-4 

configuration is done with the PCI -PCI bridge H8. 

As for PCI bus H3b which this new construction is done PCI 
bus H3a which is fromorigin is independence. 

memory board H7 which is similar to memory board G7 
which is shown in A TM adapter card H5 and Figure 2 is 
connected by PCI bus H3b which new construction is done, 
the bus 1/Fchip of adapter card H5 similarity to case where it 
is a Figure 2 ,appoints memory board H7 on same PCI bus 
H3b as forwarding destination target of file data . 

network adapter card H5 and memory board H7 with same 
-PCI bus H3b agent which new construction isdone, 
throughput without dropping, it can write file data which the 
high speed transmission is done to memory board H7 from 
ATM network H5. 

In addition, when you compare with case of Figure 2 , 
because the PCI bo<,\rd (agent) is not connected to other 
things in PCI bus H3b where adapter card H3, memory board 
H7 is installed, bus can be monopolized. 

Usually, there are times when graphics board and interface 
board etc of keyboard , other peripheral equipment are 
connected in original PCI bus H3a, there are times when 
A TM network adapter card and memory board cannot possess 
bus completely, (Figure 20 A reference). 

In case of this , when throughput of data transfer of PCI bus 
decreases with other PCI agent with bus request , it is, but like 
the Figure 3 adapter card H5 and throughput whose between 
of memory board H7 is high canbe guaranteed from adapter 
card H5 and bus where memory board H7 isinstalled other 
PCI agent by making another bus . 

Especially, because it is possible to possess bus , it 
canactualize high throughput at time of transferring large 
capacity file . 

In above-mentioned configuration , after transfer of file data 
ends, the ATM ends ATM link , releases network . 

As for data which is stored in memory board H7 on PCI with 
the state ofCPCS-PDU payload, as for thawing treatment etc 
when it is a compressed file it is not administered. 

In same way as case of Figure 1 , treatment for these file data 
in writing speed to hard disk and forwarding rate of bus 
making useof difference, before transferring to hard disk H6, 
treats with thesequential CPU *HI. 

At time of this , data inside memory board H7 through the 
PCI -PCI bridge H8, is transferred to PCI bus H3a side where 

Page 32 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1112



W01997033227 AI 

PC! 1\A. H3a f::~)!¢;h,~o 

PC! 1\A. H3a (::~)!¢;h,t::-T-111et CPU·HI 1:: 
i!l·::>'t'~I!I!¢;h,t::fi. CPU·HI n<mti¢;h,~i!\1J 
(f) PCI 1\A. H3a l::ft~¢;h,~/\-t:T-1'A.? H6 
r::\ftfl¢;h,~o 

;:O)J::?r::~SJ 1-3 (f)L '"f'*'-(f)mP.l(;r::;t;>L "t't~ 
Jiilfi.m(f) ATM .::f'-•:JI--'J-:-?71f:1111.J-j:t.l'i; 
O)~L '~:i!liJi~itll!liL..fJL 'J::?I::, CPU (::J:; 
~~1!~1i1!i.¢"f'l:: DRAM ~~mfit¢;h,~;(.':f:IJ 
r::tii:i!"t ~" 

;:tt,r::J:;LJ. =f'··:~t--'J-?~lf.MI::M1&~~. ~ 
]itJ ATM .:t-·:~1--'J-?~lf~fllm~~~. 

:U:~aq~firfft~"rfN.>~,,-t:-=f"f'A.?~O)fdl~ 
~ctsMtf*rt)l~~~i6t11-liJit.l<i!iL 't::lh. ~ 
JiO);}lm,,A.~tfi~aqr::it-=>-c~:i!tt~~~t3 
fJL'. 

-f;: ~I \-j: T -1' .A?"'(!) -=f-11~)! t.l<iaitTJ ;h, 
-cL '~~rrfl~flllfJL.. -cMi.l~O)~I!f!~fi?. 

~1:, ..t.~(f)jgj I-lSI 6 ~~Jl;lH ... -c~BJlL..t::;;$::~ 
B}l(:J:;~~~1i1!!.~0~. ATM .:t-•:,.1--'J-?J';J~ 
i!®lili~~~~-T-11~:i!~~e"t~~e 
1::/itm"t ~t:~(f)~1i1!!.~01::-:>L '"C~BJl"t ~. 

lSI 7 f::;!SL '"C. ;}llfJat~tl GPC let. CPU(cj:l :!k: 
~lUifft), 1\-t:-T"f'A.?~*A.I--;(-=E:IJ~(f):;k 
~:!liciiM';f* MSD,~IJ[(f) ATM 71f:111,;:;h, 
.;O)ra,(f)7-11~:i!~tr?mm-T-11' \A. GPD 
B 1f:fii"9~t(f)-rfN,LJ, ~J:itfflg) I (::~"9~1i1!i. 
~fm~let:W:ia'i!\I]~Jf)L\~;f\A.t- CPU•Fl t:-fO) 
Ji!jj)2l~if!I::Miit"9 ~t(f)~N,~. 

;:O)~e, ;}I.Jflft~tl GPC let ATM .A-{•:,.7-&2 
~-+.t-1\ SVR t:l .. "Ctl#ml..., ATM 11)7'-$1'':111 A 
DP1 ,ADP2 ~~L.. ""( -t;h,~;h,~* Tl,T2 t.l<ft*fe 
¢;h,~. 

;:0)~* T2 n<. lSI 1 r::~"9~1i1!i.~®~ret. :i! 
ia'i!\IJ~JflL\~;f\A.I-- CPU•F1 t:-f(f)JWji]1~~1:: 
Mlit"t ~t(f)~N,~. 

L..t::t.J<-:>-c. lSI 1 r::;;r-"t~tlffiffttmret. ISl 1 r::;;r­
"t~ia'i!IY~mL'~*A.r. CPU·F1 t:-fO)JWlill~ 
iii::, ¢i;f::.:t-·:~I--'J-?71i:1111.J-j:~~L.. -c 
fl!!O)~*<;:;:~rct~* TI)~tt*fCL..t::•P.l(;r::M 
litL.. ·n '~. 
lSI 7 r::;;r-"9~1i1!i.~O~Iet. ~J::tlf.C.Xl'l:::;r-"9 
"FJII.R 1-9 (::J::-:>'t'i!ia'~~fi"t~;:t:f.l<~~~. 

1998-8-4 

CPU *HI isinstalled. 

data which was transferred to PCI bus H3a after being treated 
over CPU *H 1, compilation is done in hard disk H6 which is 
connected to the PCI bus H3a side where CPU *H 1 is 
installed. 

this way in order not to restrict forwarding rate where is high 
from A TM network adapter card of high speed 
communication regarding whichever configuration of Figure 
1 -3, withoutadministering treatment with CPU , it transfers 
to memory which with such as DRAM configuration is done. 

Because of this, be able to release network to early stage , 
effective use is possible high speed A TM network . 

Because continuous writing speed is slow, using general 
purpose bus of high speed in discontinuous ,you must transfer 
hard disk or other magnetic memory media which is ahead 
final compilation . 

It treats thawing or other then making use of time when data 
transfer to the hard disk has broken off. 

Next, referring to above-mentioned Figure 1 -Figure 6 , when 
with this invention which you explain each embodiment , 
communication speed different data transfer lies between 
inside ATM network when applying, you explain concerning 
embodiment . ' 

In Figure 7, general purpose computer GPC, CPU (central 
processing unit ), being something which possesses general 
purpose data bus GPDB which does data transfer ATM 
adapter, at these of hard disk and the host memory or other 
large capacity storage media MSD , plural time, with 
embodiment which it shows in for example Figure 1 is 
somethingwhich corresponds to host CPU *F 1 and peripheral 
which are used with the called side . 

In case of this, general purpose computer GPC functions as 
ATM switch &secondary server SVR, through the adapter 
ADP1, ADP2 of ATM, terminal T1, T2 is connected 
respectively. 

this terminal T2, with embodiment which is shown in Figure 
1 , is somethingwhich corresponds to host CPU *F1 and 
peripheral which are used with the transmitting side . 

Therefore, as for embodiment which is shown in Figure 7 , 
furthermorethrough network adapter card to host CPU *Fl 
and peripheral which are used with the called side which is 
shown in Figure l , it corresponds to configuration 
whichconnects other. terminal (Here terminal Tl ). 

With embodiment which is shown in Figure 7 , 
communication can be executedwith protocol l-9 which is 
shown below for example . 

Page 33 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1113



W01997033227 At 

(~JI!Jl: I) ATMi!JL-O)VCI,VPIC:;}l.lfl-T-$11\ 
A. GPDB p;j0)7!-='vA.~~ft2:1t~;::C:t::J:-::> 
"C, ifl.m-T-$11 \A. GPDB ~itl.. "C~Ij[O) AT 
M 7$1":11trll,"C: ATM i!JL-~tiiaT~C:btt::, 
7$1""1$1 ADPI,ADP2 fJ'r;O)-T-$t~j;;:~,;_~c 
i'S~i* MSD t::liUf2:1t~;::C:t::J:~J. ;}l.lfl~tlJ 
Ul GPC ~ ATM A.-{•:;7&2 ~"';t-1\ SVR C:l.. 
-ctt~2:i:t~. 

(~Jill2) i)jffl* Tl tJ<~* T2 fJ\.;j;;:~:it77-f 
JL-~fJr.11-te"tt::.i'h0)77-f JL-tiia~fi?~. ~ 
* n f.l'.;~* nt::~-t~•J:J?IDt~O)t::.i'hO) 
~If ;-•J ::.,t'f i! JL-1::: ~ilUt~iiU&~JEp::J~f::J: 
~). ATM A.-f•:J'f-&2 ~"';t-1\ SVR tJ<;J;;:~m7 
7-f Jv,iiiaO)f::.tlf)O) ATM IJ:J?"C:;!i)~;::C:~~ 
~"t~. 

(~Jitl3) ATM A..f•:J'f-&2 ~"'t-1\ SVR tJ<'Yi/i 
* nt::tJ:~JtJ'nLJ, Y~M* n C:O)rl'l,-c:~'ft-•J:J 
IJ"t ~;::C:f::J:~J. ~* Tl C:;J;;:~:it~i'S~f;t; M 
SD C:O)rll,"C:1J:J? I ~IDt~9 ~. 

(~Jill4) 1J:J? I t::J:~J. i)jffl* Tl fJ\.;;J;;:~:it7 
7-f JL-1::~9~7:J$1" .L...7?i!A.::::r~:Jt:tJ<, i)jffl 
* Tl fJ'.; ATM A.-f•:J'f-&2 ~"';t-1\ SVR "'ia 
.;;tt "C, ;J;;:~:il~i'S~f* MSD 0) 1/F ::J:JI-C-
7p;j0) FIFO t::A.$1•:;?2::tt~. 

(~JI!Jl: S) ATM A.-{•:;7-&2 ~"';t-1\ SVR tJ<~ 
* n r::tJ:~JtJ,nLJ, Y~M* T2 cO)rl'l,-c:~'ft-•J:J 
'f9~;::ct::J:LJ, ;J;;:~:I:lici'S~f* MSD C:~* 
T2 C:O)rll,I::•J:J? 2 ~IDt~T~. 

(~Jill6) 1J:J?20)Ulf1L:fi, ~*TJ fJf7?i!A. 
T ~j;;:~:it77-f Jl,.~IJ:J? 2 ~~?"C~* T2 
fJ\.;~-?-:J~-\1 JL-1:::~11-te L... i)jffl* Tl l::tiia 
T~ft;bLJf::, ;rt.lfl-T-$11\A. GPDB ~ftl.. "C 
;J;;:~:iUci'S~f* MSD t::-ffltiia"t ~. 

( ~117) ;J;;:~:il~ci'S~f* MSD "'0)77-f Jvti 
iatJ<je7L..t::.fi, ~IJ-j- 1J:JIJI::J:-::>"C~* T2 
C: ATM A.-{•:;7-&2 ~"';t-1\ SVR C:O)fl;llO)•J:,t 
? 2 ~ft¥1&-t ~. 

< ~llll8> 'J :J? 2 O)ft¥1&fi. ;J;;:~:ilicts~f* M 
SD 0) IfF ::J:JI-C-70) FIFO t::!i'Uf2:n "CL '.Q 
;J;;:~:I:77-f )1,."'0)7>$1" J... 7?-t!A.:::Ft:Jt-='~ 
Jlll~~fil.., •J:J? 1 ~itl.. -c. ;J;;:~:it77-f Jv 
-T-$1~ ATMA.-1·:;7-&2 ~"';t-1\ SVR tJ'.;~ 
* Tl "'7:J~ .L...t::tiia"t ~. 

<~Jill9) i)jffl*n f.l'.;77-f JL- ....... 0)7:J~ .L.7? 
i!A.tJ<~ 7 fit::, A TM A.-{·:;7-&2 ~"'t-J \ SV 
R e:~* n C:O)r~~,-c:•J:J?ft¥1&0)t::.i'hO)~'f-r 
1J :,tlj~fiL '· ;J;;:~:it77-f JL-0)7:J~ .L.fJ:-T-
1ttiia~~7T~. 

1998-8-4 

VCl, VPl of {protocol I } ATM-cell and address inside 
general purpose data bus GPDB by factthat it corresponds, 
through general purpose data bus GPDB, as ATM-cell is 
transferredbetween A TM adapter of plural , it functions data 
from adapter AD PI, ADP2 by compilation doing, with 
general purpose computer GPC as ATM switch &secondary 
server SVR in large capacity storage media MSD . 

When transferring because {protocol 2 } terminal Tl reads 
out large capacity file from the terminal T2 file , fact that 
A TM switch &secondary server SVR is ATM link for large 
capacity file transferwith data element content which is 
included in Signa ring cell for link settingfrom terminal Tl for 
terminal T2, is recognized._ 

{protocol 3 } A TM switch &secondary server SVR becomes 
terminal T2 and changes, sets link 1 between the terminal Tl 
and large capacity storage media MSD by Signa ring doing 
between terminal T I. 

With {protocol 4 } link I, random access command from 
terminal Tl for large capacity file , being sentto ATM switch 
&secondary server SVR from terminal Tl, stack it is done in 
FIFO inside IfF controller oflarge capacity storage media 
MSD. 

{protocol 5 } A TM switch &secondary server SVR becomes 
terminal Tl and changes, sets link 2 between the large 
capacity storage media MSD and terminal T2 by Signa ring 
doing between terminal T2. 

After establishing {protocol 6 } link 2, terminal Tl using link 
2, through general purpose data bus GPDB-instead of from 
terminal T2 transferring to reading , terminal Tl in the 
sequential , lumps together transfers large capacity file which 
access is done in large capacity storage media MSD . 

After file transfer to {protocol 7 } large capacity storage 
media MSD completes, link 2 between the terminal T2 and 
ATM switch &secondary server SVR is released with Signa 
ring. 

After releasing {protocol 8 } link 2, random access command 
to large capacity file which compilation is done sequential is 
executed in FIFO ofi!Fcontroller of large capacity storage 
media MSD ,through link I, large capacity file data from 
A TM switch &secondary server SVR is transferred to the 
random to terminal Tl. 

From {protocol 9 } terminal Tl random access to file after 
ending, does Signa ring for link release between A TM switch 
&secondary server SVR and terminal Tl, ends random data 
transfer of large capacity file . 

Page 34 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1114



W01997033227 Al 

~1::, ..t ~-¥Jfm~~UW."'t ~t::d)o:>~i*0lJI::-::> 
L '"'C~B,ij"'t ~. 

jg] 8 l;;l:f5)~1JffiJf~flSI::J:~ ATM 77-f JL-lii~n 
~f~m"t~~d)ro~~romd~~"t~o~~ 
jgj~if>LJ, f51~m'l;;l:iF!.fflMl:JUii::J:~ ATM .A 
1·:~7-&2 ~-l;t-1\ DIOO "t:if>~o 

lii]jg]l::~"'t:§.~~dl;t, *At- CPU·Cl01, ORA 
M(1f .f-J-~·:J~ RAM)~~md~h~*.At-;L.:C 
1) C102 'f.1/iii®iF!.1!'11\.A"t:if>~ PCI /\,A ClO 
3, *.AI- CPU·C101 C. PCI J'i.A C103 ~*6,5~* 
AI--PCI ~1)•:~:/ C104, :::J::.r'r/';l"i;t-J\(fii111) 
@.l)l::fl$ft"'t ~ 155Mbps 0) ATM 71f::f1! Cl05, 
1\-f''T..f.A~ Cl06, ..:::J...--If~*(fii11i)iJl.l]l::ft 
~"'t~ 25Mbps o:> ATM 71f-::J'J. CI07 "t:(li)~. 

-"jj, li:!l91;;l:, li:!ISI::~"'t ATM .A-{•;~7-&2 ~ 
-ij--1\ DIOO C...:::J...--If~*•::::J/'T/';1-I;t-J\,A 
TM .A.f•:J'T~ ATM "t:ll~Lt;:t;'@jo:>~~d0\J~ 
~L "'CL '~• 

jgj 91::~9:§-mdr;t. jg!SI::~Lt::iF!.fflMl:JUI 
I::J:~ ATM .A-{•;~7-&2 ~-l;t-1\ DIOO. PC(1'\ 
-')-J-JL-::::~/t:.:~.-'J.)t.i:co:>..:::~...--lf~* o2oo. 
::::J/'T/';1-I;t-J \ D300, ::::J/'T/';1-I;t-J \ D300 
C. ATM .A-{•;~7-&2 ~-l;t-1'\ DIOO C.~*6-5~ AT 
M A1':1T 0400 ~CV.,~. 

t.;:1:), .:L--If~* D200 l;;l: CPU·0221 C. ATM 
7'/:f'J. 0222 tJ< PCI 1\.A "t:fl~~h -cmd~ 
h "'CL '~• 

a:;t::, ::::J/'T/';1-I;t-i\ D300 l;;l: CPU·033l,/\ 
-f'-T -1' .A~ 0332,ATM 71':1 'J. 0333 tJ<-t-n-f' 
h PCI I \.A "t:fi~~tt, -cmd~h "CL '~• 

~I:, ..t~md~fflL't:: ATM 77-fJL-~~Jj 
5i&~B,ij"'t~. 

;:;:~, jgi10 l:l;tjgl9 o:>.::t-•:Jt-'J-~~ii'IL'"C::::J 
/'T/';1-I;t-J'\ D300 fJ'i::J ATM .A-{•:~7-&2 ~ 
-ij--1\ DIOO 1::;;:~:1:77-f JL-'T-'J.~-fflfii 
~"'t ~~o:>::to t-::::1 JL-.A'J.·:~~ C.-T-'J.o:> mfh~ 
~L "Cif>~. 

t.;:t:>, liilli:!JI::!>L '"C, SSCF l;t CO(::::J-1'·~~3/) 
~-+J--t:: .AI:!m:fiit.i:Uilm"t:if>~"'t-t:: .A f\&f¥::::1 
-f..f.::t'--~3/Ui!m,SSCOP l;;l:~"Co:> CO "'7-
t:: AI::J:I:iit.i:Uitm~m~"'t ~"'7-t:: .A 1\&ff:::::J-1'· 
?~3/~-;fo 1-::::J JL-,SAR l;;l:-1! JL-~!IJ • *ll..ll. "'7-::f 
t..-1-\t~if>~. 

a:;t::, jg] 11 (::(;t, .:L--If~* D200 fJ'i::J ATM 
7..1·:~7-&2 ~-l;t-1\ DIOO l::;ttL "C7/1i' .L..7 
~1:!7.. "'t ~~o:>-::Jo 1-::::JJL-.A 'J.·:~~ C.-T-1!o:>J11f 

1998-8-4 

Next, you explain concerning embodiment in order to 
actualize theabove-mentioned protocol . 

As for Figure 8 with block diagram which shows 
configuration of device inorder to actualize A TM file transfer 
method with same embodiment , the same equipment is ATM 
switch &secondary server 0 I 00 with general purpose 
computer. 

Each configuration which is shown in same Figure is ATM 
adapter CJ07 of25 Mbps whichconnect PCI bus Cl03, host 
CPU *ClOt and PCI bus Cl03 which are a general purpose 
bus of host memory Cl02, high speed which configuration is 
done joining * on A TM adapter C I 05, hard disk C 106, user 
terminal (Later description) side of 155 Mbps which withsuch 
as host CPU *ClOt, DRAM (dynamic RAM) are connected 
on host -PCI bridge C104, contents server (Later description) 
side. 

configuration example when ATM switch &secondary server 
DlOO and user terminal, contents server, ATM switch which 
on one hand, as for the Figure 9 , are shown in Figure 8 are 
connected with ATM has beenshown. 

Each configuration which is shown in Figure 9 is A TM switch 
&secondary server D 1 00, PC ( [paasonarukonpyuuta ] ) or 
other user terminal 0200, contents server 0300, contents 
server D300 and the A TM switch 0400 which ties A TM 
switch &secondary server 0100 with general purpose 
computer which is shown in Figure 8 . 

Furthermore, user terminal 0200 is done CPU *0221 and 
ATM adapter 0222 being connectedwith PCI bus , 
configuration . 

In addition, contents server 0300 is done CPU *0331, hard 
disk 0332, ATM adapter 0333 being connected 
respectivelywith PCI bus , configuration . 

Next, A TM file transfer method which uses above-mentioned 
configuration isexplained. 

When here, in Figure 10 from contents server 0300 lumping 
together transferring large capacity file data in A TM switch 
&secondary serverDlOO making use of network of Figure 9 
flowof protocol stack and data is shown. 

Furthermore, as for SSCF peculiar service dependence 
coordination function which is a function, as for SSCOP as 
for service dependence connection type protocol , SAR which 
stipulates common function in the all COservice it is a cell 
portion percentage & an assembly sub layer in CO 
(connection )type service in same Figure. 

In addition, when.random access doing from user terminal 
0200 vis-a-vis A TM switch &secondary server 
OlOO,protocol stack and data flow is shown to Figure 11 . 

Page 35 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pendin~ Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1115



W01997033227 Al 

:h ~ m L. "t' 4i'H> o 

*"f • .:L--If~* 0200 (;j:~?"7 1J /-7"(~15tl1 
Q.2931 c!::l. '?t:./r::J 1-:::JJt; )I::J:?"t'::J/T/'/-If 
-J\ 0300 0) ATM 71-!'vA.-" ATM 1)/~~~ 
5EL.J:?c!::T .go 

;:(J)t:'e", ATM A.-{•:~7-&2 ~.fj--1\ 0100 (;j:~ 
5E(J) VCI,VPI(VCI=5,VPI=0)~~-7"7 1J /-7" -I! 
Jt;c!::~~L.. ~;1:: Q.2931 0)~-7"7 1J/-7" -I!Jt; 
"t'iil;f;h_gf1f*R~~!"'~I::J:LJ, .:L--If!ijiff* 0 
200 tJ<::J/-T/';1-f}--J\ 0300 (J)j;;:~:li771 )!; 
(1\-I-!'T'-<A.~ 0332)-"7~-I!A.l...J:?c!::L. "t'l.' 
.g;:c!::~~.go 

-t-::"t'. ATM A.-{·:~7-&2 ~.fj--1\ DJOO (;t::J/ 
-r~·;J.fj--J \ 0300 ~~illlL. • .:L --If~* 0200 
t:(J)r~~,"t'~?"-r•J:,?"~rrt. '· .:L--If!ijiij* 02oo 
c!:: ATMA.-{·:~7-&2 ~.fj--1\0IOO 0)1\-i-!'T-< 
A.~ CI06 t:O)rp,"(''J/~(25Mbps)~~:i:E1- .go 

"tfJ;;b"t;;,*§'aBjj"('(;j:, .:L--If¥ilti* 0200 c!::::J/-T 
~·;1-f}--1\ 0300 r~~,t:: ATM 1)/~~~:i:ET .gO) 
"('(;j:f.j;(. \

0 

-fl. -r:;:O)•J:,~t::J::?"t' • .:L--If¥ilti* 0200 fJ\ 
i;ji,.gt:, ATM A.-{•:~7-&2 ~.fj--1 \0100 tJf-(li 
~a<J(:::::J~T/';1-fj--J \CfJ:.go 

*f:. • .:L --lf¥ilii* 0200 fJ'i;::J/-T/';1-f}--J \ 0 
3oo t::iRJrt-r:~;:ht:.:k~:l!:771 Jt;0)7~'$ 
.L.. 7~-I!A.(J)f:.AI)(J):::J-::r/1-!'l;t, /\-l-!'7-< A.~ 
C106 0) IfF ::J/I-r:J-7(PCI 1\A.:::J/1-J:J-7) 
11;)(/) FIFO(First In First Out memory:l!i:Wt:: 
.A :t.J ~nt:.Uf*R~B::Wt::l±l :t.J""9 .g$t.A;!'L$t 1±1 
l.,~ (/) ;(.::C1J "('jg] ;f-~1!;ii!IAL. "t' ~_g )I::A.-$1'.!1~2: 
;hQo 

~(::(g) 10 (::;f-""9 J::?l::, ATM A.-{•:~7-&2 ~.fj­
-1\0100 (;j:.:L--If¥i/ii* 0200 (::f.,tL)fJ\;bL), ~ 
?""t1J/-7"(Q.293l)I::J::?"t', ATM A.-{•:J'T 040 
0 ~1'i'L. "t'::J/-T/';1-Ij--1\ 0300 c!:: 155MbPs 
(/) ATM •J:,~~~5E""9.g(jgl 10 0) c /v-~0) 
T'-$JO)if.t;I'L~~!m)o 

1)/~?Jt.TI:.ffel;j:, ATM A.-{·:~7- 0400 ~1'i'L. "t'. 
.:L--If¥ilii* 0200 tJ<7~-I!A. ""9 .g::J/-T/'Y-If­
,, 0300 11;)0)];::~:1!:771 Jl;~~-7/~-\' )!; 
t::~(jlj.!±IL,, ATM 7~:1-$1 C105 !"'"t' PHY(~ 
i.m), ATM,AAL5 (J)4S-v1-\"'~~¥i/li2:nt:.-T­
$l(;j: CPCS-POU(CS ~ilrul-:fr:J I-::JJt;7-1Z.:L 
.=.·:~1-)0)m"t' PCI I \A. C103l::.lii~~;!'L, *A.I-­
PCI:1'J'.!JY C104 ~1'i'Vt.\- .§.. *A.I-;(.::CIJ C 
1021::\liM~;t-L.go 

;:(J)t:'e", ATM 7~:1$1 Cl05 ~0) AAL5 J;).""F 
(J)v1-\"'0)~JII;tt<Z-r:' \-I-!'?I.7"t'~itiiJfm 
-n-:1:.%. 

1998-8-4 

OIOO,protocol stack and data flow is shown to Figure II . 

First, it tries user terminal 0200 to set ATM link to ATM 
address of contents server 0300 with Signa ring (protocol 
such as for example Q.2931 ). 

At time of this, ATM switch &secondary server 0100 Signa 
ring cell will recognize thespecific VCI , VPI (VCI =5, VPI 
=0 ), you inform that it has been about that user terminal 
0200 access will do to large capacity file (hard disk 0332) of 
contents server 0300, furthermore by the data element 
content which is carried with Signa ring cell of Q.2931 . 

Then, contents server 0300 imitation it does A TM switch 
&secondary server 0100, does Signa ring between user 
terminal 0200, sets link (25 Mbps) between hard disk C106 
of user terminal 0200 and ATM switch &secondary server 
0100. 

Namely with this invention , it is not to set ATM link between 
user terminal 0200 and contents server 0300. 

When and with this link , you see from user terminal 0200, 
ATM switch &secondary server 0 I 00 hypothetically 
becomes contents server . 

In addition, command for random access oflarge capacity file 
which is sent from user terminal 0200 destined for contents 
server 0300 stack is done in FIFO (Illustration is abbreviated 
with memory of first-in, first-out type whichoutputs data 
which Firstln FirstOutrnemory: first is inputted first. )inside 
1/Fcontroller (PCI bus controller) of hard disk CI06. 

As shown next in Figure 10, ATM switch &secondary server 
0 I 00 becomes user terminal 0200 and changes, with Signa 
ring (Q.2931 ), through ATM switch 0400, sets ATM link of 
contents server 0300 andl55 MbPs (You refer to flow of data 
ofCplane of Figure 10 ). 

After link establishment, through ATM switch 0400, user 
terminal 0200 large capacity file inside contents server 0300 
which access is done in sequential PHY (physical ), asfor data 
which each layer of ATM , AAL5 terminal is done 
istransferred by PCI bus Cl03 in form ofCPCS-POU (cs 
common section -protocol data unit ) inside reading , A TM 
adapter CIOS,through host -PCI bridge Cl04, once, 
compilation is done in host memory C I 02. 

At tiine of this , treatment of layer of AALS or less inside 
ATM adapter CIOS is realizable with all hardware. 

Page 36 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1116



W01997033227 Al 

~~-l>. 

~.;(::, *.::;1;.(-.;'-=EIJ C102,PCI J(;;i;. C103,*;;1;.!--­
PCI 71J·~.Y C104 O)~i!i!Jll;:l: ATM 1)':./'JO) 
iii!i!Jl(l5 5Mbps )I ::.tt .-{ -c + ~-Nii iart: ~ -l> t.: · 
lh, 155Mbps (f) ATM 1)':./'JO);;i;.JL--:1·~(-.~$1J 
~W-t -l>::::.ct.;:<. ::k~il:77-1' ,~.-~*;;~;.r-.;t-=E•J c1 
02 r::-~fiii!"t -l>::::.ctJ<iiJ~"t:~-l>. 

*;;1;.(-.;'-=E1) Cl02 "'-0>77-1' JL-~i!tJ<~7L,t.: 
~- ~-1t-•J':./?'I::ci::?"C::i>r':./'.:r".1·-,( mo 
0 c ATM .::;i;.-{·~7-&2 ~"'7-1\ DlOO cO) ATM 
•J:;?~Mt&"t-l>. 

ATM IJ:;'JO)!Wf&~. *.::;1;.(-.;'-=E:IJ C102 ~O)T 
-~l;:l:, :jij:{J, $;;i;.f-.-PCI:t•J·~.;/Cl04,PCIJ(;;i;. 
Cl03 ~11-L, "C/\-~T1'A? CI06 "'-fiim~*t. 
-l>o 

::::.::::.~. iitriifiL,t.:cl::?l::"-t:-T'-<;;i;.? Cl06 ~0) 
IfF :::::J':./!--t:J-7(1) FIFO 1::1;:1:, .:J..--if~* D200 
fJ\.;(f):;k~i!:77-1' Jl-"'-(/)7':./~ .k. 7?i!;;i;.:::::JX' 
':./t:tJ<;;~;. ~·~?~*'-"("I, '-l>. 

::::.n~lf!fil::~ft"t -l>::::.c~, ATM 1)':./'J(::J:::?"C 
;A;:~:fi!77-1' JL--T-~tJ< ATM .::;i;.-{·~7-&2 ~"'7 
-1\ DlOO fJ'.; ATM 7/f:flj. Cl07(25Mbps)~ 
11-1., -c.:J..--tf~* moo "~~~m~n-l>. 
.:J.-"'f~* D200 t.l'.;77-1' Jt.-(::~"9 -l>7':./~ .k. 
7?i!;;~;.tJ<$l7fl1t • .:J.-"'1.~* moo cO>Fa91: 
ATM 1)':./'J!W1fi.O>t.:ltJ(J)~-1-T 1J ':./-1tJ<ft~*t 
-c. *~~77-1' Jt-(/)7':./'f .k.t.;:-T-9.fiimtJ< 
$l7"t-l>o 

J;t..t~B}ll,t.:cl::?l::, ::c$:~1i1!i~~(::J:::nl;t, * 
;;~;.f-.;t-=E'J J(:J1 \-~ -T-< ;;i;.'J'!J;O> ::k~i!:BiH:iU¥1* 
c-T-9.1(;;i;.~'f!f9 -l>!t·~~i1Ml*Fa91::Mdj.i6 
lv~ ATM .::;i;.-{·~-T.&tJ-!f-1\cl, "C~~~tt, 
~ 1 O>i1Mlif.l\.;~ 2 (/)~*"'-0)7'/i:!.AO)~ 
r::, ~ 2 O>i1Ml*tJ'.;*~:I:77-1' Jt-~::k~:l:!a 
tiU¥f*r=-~~ml, • .:r(/)~. ~ 1 (f)i1Ml*tJ'.; 
fi-~O>::k~:I:EM~f*"'-7':./~.k.7?i!;;~;. 
iiJ~cl,~~O>-c:.~1(f)i1Ml*~~.;-t~cfi• 
~tJ<{&~(J<JI::~ 2 O>i1Ml*cf.i:LJ. ~ 2 O)~*t.l' 
.;r;ttt•~tJ<~ 1 O>i1Ml*r::~;t~. 

::::.(J)J:::?r::. *~:luam~¥f*c ATM ;;~;.-{·~::r~ 
Madj.'$'~tt-l>::::.cr::J::: LJ. -1':./9.7.:r.-.Ai!JlO> 
Wt.i:-l> ATM 1J':./?(!)i!JlJ:tttJ<tr;t~t::rt-r: 
t.;:<. ::k~iiEM~f*tJ< 2 ~"'.t-1\cl, -c:f!Jm 
~'i!-l>t.:ll>. ::k~ii77-1' J'v0)7':./~ .k. 7'/i:!.::;l;. 
et. '?t.:::k'i!t.;:ft 7ij~~:Ht~-c:i!. ~~. 'fiim.AJt.­
-:t·~r-.tJ<~~~~-l>et. '?18J!iJ!:tJ<~.;n-l>. 

iJ;t.:. ~~~~ PC f,tcO>iR.JfJ!t-~I::J:::LJftijJit 

1998-8-4 

Furthennore, as for forwarding rate of host memory Cl02, 
PCI bus Cl03, host -PCI bridge C104 because it is a fuJiy 
high speed incomparison with forwarding rate (155 Mbps) of 
A TM link , large capacity file it is possiblewithout restricting 
throughput of ATM link of 155 Mbps , to lumptogether to 
transfer in host memory C I 02. 

After file transfer to host memory Cl02 completes, ATM link 
of contents server 0300 and ATM switch &secondary server 
0 l 00 is released with Signa ring . 

data after releasing A TM link and inside host memory C I 02, 
again,through host -PCI bridge Cl04, PCI bus Cl03, is 
transferred to hard disk CI06. 

As here, mentioned earlier, random access command to large 
capacity file from user tenninal 0200 the stack is done, to 
FIFO ofi/FcontroJier inside hard disk Cl06. 

By fact that this is executed in order, with ATM link large 
capacity file data through ATM adapter Cl07 (25 Mbps) 
from ATM switch &secondary server 0100, sequential it is 
transferredto user terminal 0200 . 

random access from user tenninal 0200 for file Signa ring for 
A TM link releasebeing done after ending and between user 
tenninal 0200, random data transfer of large capacity file 
ends. 

As above explained, according to this embodiment , installing 
computer whichpossesses host memory and hard disk or other 
large capacity storage media and data bus between 
tenninal ,functioning as A TM switch and server , from first 
tenninal case of the access to second terminal, from second 
tenninal to lump together transfer large capacity file in large 
capacity storage media , after that, from first tenninal being 
something which is made random accessible to large capacity 
storage media of computer , From point of view of first 
tenninal side computer becomes second tenninal 
hypothetically, from second tenninal computer is visible in 
first tenninal . 

this way, not only being able to do rate conversion of different 
A TM link of the interface speed , due to especially combining 
large capacity storage media and ATM switch , because large 
capacity storage media it can utilize, as secondary server be 
able to disperse large load such as random access of large 
capacity file , effect that is acquired itcan be actualized high 
transfer throughput . 

In addition, as device is designated as configurable with PC or 
~ .. ~ . ~ 

Page 37 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1117



W01997033227 At 

"iiJfit!c-t ~c.c.tr::~iltJmm-T-11, \.Aa:t* 
mt....t::CI)-c:, J:.~c~*r:::bD;t, J:.i!llt....t::*~aJl 
a>tltm~ ifl.ma+Wt~J:. -c::ttfalir::~m -c:~~c. 
L \?~*f.J<f,i;,;h.~o 

fJt), J:.~2~~Jf~~t::;t;)t. '""CI;t, .:L--!futal* D 
200 a: 1 "(3CI)J.f ATM .A.f•v=f-&2 ~-tj--1\ DIO 
0 t:tt~"t ~~~;f-L. -ct. \~fJ<, .:L--ifutal* 02 
00 CI)E;-~1;1;, 2 E;-V,..lJ:.CI)ifi:~"C:iJ.>-::>""Ct~L \o 

I@ 12 t;t, *~aJl~. 1\-t:-T-<.A?t::~rm~n 
t::::;t;::~:li:'77-1 J'-'t::raJ~t:7?1!.A"t ~~..g.r:: 
~fflL.~~~m~~~~T~~~C1)!@1:if.>~o 

I@ 12 t;t*~BjjCI)-~~Jf~~t::;t;)tt~'77.f )!,... 
iii!litfi:CI)mP.£1@-c:. ;:CI)lii~~ A.::;-kt;t, ~~ 
;tt;t, <-'11'" JI,...:::J:/t:: .::1. -1ZfJ'i;fit~~iattW 
tl I c. ~iaB+Wtlt 0)1\-t-:-T-<.A? 2 c, ~~ 
5tli1 <-')1'" JI,...:::J:/t:::' .::1. -1Zf.J'i;fOC~~ia~+• 
tlaf 3l-3n c, 5¥:ia~tWU!Ulf 31-3n 0)/\-t:-'f 
-<.A?M 41-4n c, ~ia~Wtl 1 cS'l:ia~tWtl 
Uf 3l-3n c~tl~"t~:?-·vf-.'7-? 5 ca:frm;t -c 
L \.Qo 

~r:J:.~'77-1 '"'e~~A .::;- .L..CI)liii!ll.l1'l:t::-=> 
1,\"(~BJlT~o 

5¥:~~tWtiM 31-3n f.J'i;i!ia~tWtl 1 t::~L. 
-c' '77-1 )1,..."'-0)'5:/'1' .L.. 7?-t!.ACI)~*f.J<if.>-::> 
t::C.T~o 

;:;h.t;t, ~J;tt;fJ:.~1fk~VOO~.A7-.L..I::~mL. 
t::t;..g., i!iailtiJ8tWtlt;tt:-=f;;t"'t-J\I::, S'l:ia 
fBUtWtlfJ¥1;1;?71'7:/H::. '771' J'-'l;t~OOt,: 
c!:"O>t:-T;;t'J:7H::, 7:/'1' k7?1!.AI;t;:CI)t: 
7;;t'J'7f--"'-C1)-~~~~~~tc!:"L.~~~~ 
I:~~T~o 

i!~UWtltl;t~~CI)S'l:iaHUJtiM 3I-3n f.J' 
i;,fii!~l:~*~;h.~~~C1)7:/'I' .L..7?1!.AI:: 
1)7 )1,...1!-{ .L..I::J;f;§T ~ftbLJ 1::, -{-;h."f;h,CI) 
5¥:~UWtlt::~*~tLt::-T-1Z~$'C'771' J'-' 
~771' ,~,...;::-c.-mt.. -cei!L.. ~ram-wt~CI)'' 
-1.!'7-<.A?rf 41-4n "'-:::Jt:::'-"t~o 

;:a>~. ~J5tli5¥:ra~•• 31 r::flii!t.J<fivn 
""CL'~ra,l;t, it!!CI)S'l:iaMWtiM 32-3n f.J';C1)7 
?i!.A~*t;t- .EI.i!iaMWtl I 1:.A1Z·v?L. -c 
E~, S'l:iaMWtl 31 .-...CI)liii!tJ<~ 7"9 ~a;-c: 
l;t;:tl,i;,CI)~*f::l;tJ;f;§L.fJL \ 0 

a;t::, --::>CI)S'l:ia~--~=~"9 ~J;f;§l;t, --::> 
(/)771' JI,...CI) t:fl Cl);f.,'f:,;:-; Cl)fln:S:)-.-...0)7:/'1' k 

1998-8-4 

other general purpose computer ,because high speed general 
purpose data bus was adopted, effect that is acquired on the 
general purpose computer it can actualize function of this 
invention which descriptionabove is done in inexpensive in 
addition to above-mentioned effect. 

Furthermore, user terminal 0200 only I example which 
connects to ATM switch &secondary server 0100 has been 
shown regarding above-mentioned embodiment , but number 
of devices of user terminal 0200 is good even with plural of 
two or more. 

Figure 12, when this invention, simultaneously to large 
capacity file which compilation is done access it does in hard 
disk , is figure in order toexplain embodiment which is 
applied. 

As for Figure 12 with configuration diagram of file transfer 
device in the one embodiment of this invention , as for this 
transfer system, hard disk group41- 4 n ofhard disk 2 of 
transmission computer 1 and thetransmission computer 1 
which consist of for example [paasonarukonpyuuta ] and· 
reception computer group 31 - 3 n and reception computer 
group 31 - 3 n which consist of for example 
[paasonarukonpyuuta ] and, It has transmission computer I 
and network 5 which connects thereception computer group 
31- 3 n. 

Next you explain concerning transfer operation of 
theabove-mentioned file transfer system . 

From reception computer group 31 - 3 n vis-a-vis 
transmission computer I, we assume that there was demand 
for random access to file . 

As for this, when for example above-mentioned system is 
applied to the VOOsystem , as for transmitting side computer 
in video server , as for calle<!.side computer group in the 
client , as for file in motion picture or other video software , 
as for random access it is suitableto halt and rewind and rapid 
feed to this video software . 

Transmission computer I transfers, instead of responding to 
real time in random access of plural which is required 
simultaneously from thereception computer group 31 - 3 n of 
plural , every file lumpingtogether file which includes data 
which is required to therespective reception computer , copy 
does to hard disk group 41 - 4 n of reception computer . 

Until at time of this , while transfer is done in for example 
reception computer 31 , access request from other reception 
computer group 32- 3 n stack does once' with transmission 
computer 1, transfer toreception computer 31 ends, you do not 
respond to these requests. 

In addition, response for reception computer of one is notto 
respond to random access to portion of here and there in file 

Page 38 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1118



W01997033227 Al 

fJ7?t!.AI::mitlJ;C;*"'t.QO)~IifJ(, "771 Jt-
0) :$t;ilfJ' aS*~ a;;~O)~-'T:ry"" )J;f,;~;;. 1:1:1 
l.,.O)OZ;.~fi?. 

771 lt-"'0)=;,:.,;'.1 k. 7?-t!.Aii, ~~ffiitW 
tltO)/\-t:-T-1' .A? ..tl:::::ll::' -~:h.f.:/71 Jt-
1::, ~~ffijjfJI:tltfJ<CJ-;jJ)J;~fi?o 

-rutl::*il!l?717';.; t-~l&~T .Q-tf-1'\~ .A 
"Tk.l::i.it.'"Cii, ?717';.;i'-fJ'IS0)7:,;'.1 1...7 
?t!.AI::mitlJ;C;*L..J::?C:T .QC:, 'J/1--0)i!l!J ~Ji6 
;;.~rp, e:-tt-1 \:1 o 1z ·;~-tt 0) ft r.:r n<~ L.. <~1m 
L.., -tt-1 \l::ttJI:tlt~iilhtttilHtL.. -ctl&~T Q 
?717';.;!--0)I!l~~~"t::C:Ii!1Mft:~i!i).Q. 

a::t::., /\-t:-T-1'.A?"'0)7?t!.Aii, ~;;.~~ 
"•;~j:fJ<3i!JL.. "CT -1' .A ?O)~IJ ';.;5(1:: {U.fi1;f' It 
T .Qt::.cV:>O)~-?iii1'FiillfJ<t~t~~~::i&ti!! 
(,\. 

::O)~-?~~~*~?c~?-c,=;,:,;5fJ...7? 
t!.Aii~-7:.,;~"" Jt-t.;~;;.~~ 1::.1±.-.:. -c~L.. 
<A.Jt--:1·;~t-fJ<iii""FT .Q. 

:::n.s1t~ffl!J. -r-110)~;;.1:1:1 L..C:t. '?J!~O) 
~IH.ll! n<fMB W :h. I:: fit.> :h., ~ l.ll! c ~lH.ll! 0) ~ 0) ~ 

. fi~r~,M<~f*O)~J.ll!1::!0~t.;~rp,~*tlU~~ 
Cid).Q::C:I::~IZJ-t.Q. 

..t t2~!JU1!Hf~ 1m -c-it.-.:. t::.J::? I::* 1.nt -c-11, ~ m 
tiJI:tlt~ti:I·.Q~~~~~;;.~~~')/t-~l.ll! 
~-aSL.., a::t.:/\-t:-T-1' .A?Ii~-7:.,;~"" Jt­
t,;~OZ;.ti:IL..I::~~T .Q::C:I::J::~J, ~l.li!C:~l.li!C: 
O)rp,0)3fi~rp,t:fi'l'~l::-t .Q::C:I::J:: ~J, t--
11Jt-O)A.Jt--:1·;~t-~rR1..t~it-ct. \Qo 

~1::, *~BJlO)-T-1lfii~:l.nti::J::.Q-T-1fO) 
fii~ -'F-1111 O)it!! 0) ~~~1m I::·::)(,' "C~ Bjj T Q 0 

jgJ 13 11. ~FaflltJ»:U:~FaflltJHWt~tn<~:n~:n 
tt*"t~:h.t::.*•;~ t-? -? l::i.i It .Q-T -1lfii~ "F­
lfii~;FT111 k.-T""-t-~61>-Q. 

~ra~&u:~ra~Hwt~t~-~:n~:n~rn-t 
.-.:.~-r-1l~iifl-t .Qt.:cV:>O)~mflltJ;(-=t:'J e:. ~ 
ra-r-1t~iifl-t.Q~d)O)~ia~;(-=t:~e:~rn 
~~J~ti~T .Qf.:d)0)1f1x~{ilij;t "Ct. 'Q· 

jgj II::;F-t~~Jf~fmC:.I:t~L..f::.tl~, 181131::;F 
T~ia{lJ.qfiJI:tlli, 181II::;F-t~iaflltj"("Jfjt, \.Q 
*.At- CPU•Fl c~O)Jilill~fii::~J;C;L.., jgJ 13 
I::;F-t:i:iaill~tiJI:tltli, 181 1 I::;F-t:i:iaflltj"(O 
lf.lt.'.Q*A-1-- CPU·Fl c~O)Jilill~fii::~J;C;L.. 
"((, \Qo 

f_;i.), 181 13 li, -0JJC:L.. "C, SEQ=40 O)I~'T·;~t-
,,. ..._....... --- ..... -- -·--- ··~ .. _._ 

1998-8-4 

of one directly, sequential to tail only reading is done from 
head of file. 

As for random access to file , on hard disk of each reception 
computer in file which copy is done, each reception computer 
does with the local . 

When directly it tries to respond to random access from client 
regarding server system which accommodates plural client 
generally, it isdifficult to increase quantity of client where 
interrupt time of the software and load of server processor 
increase considerably, high efficiency do computer in server 
and accommodate. 

In addition, as for access to hard disk , read-write head 
moving, the seek operation speed in order position to attach in 
cylinder of disk isslowest in mechanical . 

this seek time becoming neck , as for random access 
throughput decreasesconsiderably sequential in comparison 
with read-write . 

These are done after all true case, reading of data 
treatmentchopping *, transfer time during treatment and 
treatment required time originates in occupying major portion 
in treatment of entirety . 

As expressed with above-mentioned embodiment , with this 
method , as fortransmission computer as much as possible 
interrupt time and software treatment is decreased, in addition 
hard disk throughput of total has improved by designating 
transfer time during treatment and treatmentas minimum 
sequential by devoting to reading . 

Next, you explain with data transfer method of this invention 
concerning other embodiment of transfer protocol of data . 

As for Figure 13 , it is a time chart which shows data transfer 
protocol in network where transmitting side.and called side 
computer are respectively connected. 

transmitting side and called side computer , have timer in 
order timer to do the called side memory and reception time 
in order compilation to do transmitting side memory and 
received information in order compilation to do data which it 
should transmitrespectively. 

When it compares with embodiment which is shown in Figure 
l , transmitting side computer which is shown in Figure 13 
corresponds to host CPU *F l and peripheral which are used 
with transmitting side which is shown in Figure I , called side 
computer which is shown in Figure 13 corresponds to host 
CPU *Fl and peripheral which are used with called side 
which is shown in Figure l . 

Furthermore, packet of SEQ=40 omission does Figure 13 , as .. .. .. ... ___ "'"" 

Page 39 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1119



W01997033227 Al 

fJ<;::riL... SEQ=60 C1).:f-111::.:r.?-fJ<§!~T 
.Qfl~~jf-l,. "(I, \.Qo 

~~ili.IJiit •mui~~ iJliJ;t.:r 'J fJ'.; .:r-11~ ~3-J. 
l±ll.-. "fC1)~0)~~:1CJI-:::JJL-, 0ll5tlt. UDP/IP 
(User Datagram Protocoi:..:J..--!f-.:f-11~7 
J.... :1CJ 1-:::JJI.-/Internet Protocot:.-(::,.,11-.::f'.•.:JI-7' 
CJt-:::JJL-)"\'!1 ATMIAAL-5 I::Jitt:"C, ~3-J.I::fjl..t.: 
.:f-11~r\7•.:~H:5t~JL.. -c.::t-·;~t-'J-?1:~~ 
T.Qo 

~~T .Q1 ~7'.:JH::I;t, "fO)I ~7·:,~1-(])~~ili.IJ;L 
.:r•J l::t-.>tt.Q;U.i71-=v'Ab ~7·;~t-Ji:~~~L.. 
"(i:)(o 

~~ru~~~ru~.;C1)Jit•~~0c~~ffl~ 
;:J::tJ<. ~ ~lt§O)~±li£1:Jitt:t.:ti~illl£i:.:f 
-11(SEQ=I0,20,···,110)~~~o 

I ~T•;JI-~~~l..t:::~~iJlljjif.t\Ui, I ~7•.:JI-C1) 
X5i"\'!l.I.?-fJ<fJit*'t.l;f~~{J!IJI:: ACK ~ii&T 
;:J::t.J:(~~.:f...,.11~;L-l:'J l::flirt~fiU[L.. "'(f'4>(o 

~~ili.YH.tlli, d?-·:~I-C1)X1ifJ<§!~L..t.:ti'i 
~l:li(SEQ=40 (])d?-·;.~1-), PJf~O)~ra~fJ<ft 
~l...t:::~, "fO)I <1T';J I-O)~~iJll];'i:;jijj7!-=v'AJ:: 
1~7"·:~1-Ji:~it-9-L.. "(j!~iJll]l:::jiij~~*T .Q(N 
AK=40)o 

a::t::., ~f~L..t::.1 ~7·.:~H::.:r.7-fJ<4i;-:>t::::ti';~l:: 
li(SEQ=60 0)1~7·.:~1-). "f(])l~?"·.:~l-~ii"tl:: 
II ~T .Q J:: J:::t. I::' -t C1) I < 7·.:~ 1-0) i! ~ {J!IJ $t:Rri7 
1-=vA.b <?-·;~t-!i:~it -9-L.. "C~~fl!9t::Mi!~* 
T .Q(NAK=60)o 

~~t~rutt•t~~.x•"\'!l.:r.7-~4i:>?~ti'i~ 
l::li. X1i4i;.Qt, \(;j:Ji~L..t:::I~?"·.:Jt-fJ<~f:lll~ 
h.Q~i! ~~fl!9;t.:r•J tQ~~-t(])**~ 8 r::L.. 
-ct-.>~ • .~;~.~~~"9 .Q.:r.7-C1)f.J:t, 'I <7·.:~t-~;: 
0)~ 8 tQ±li£J;J.~O)tQ±li£1::fiU{L.. -cn<o 

tJt-.>. ;:;:~:fi. ~~ill9i:,<7·.:~1-C1)X5ifJ<§!~ 
L..t::.ti~l::li, PJf~~IL~ft~~l::i!~iJliJ(:::jiij 
~~*"t .Q;:J::J::L.. "CL '.QfJ<, XrifJ<§!~L..t:::~ 
~1:: it-t l::i!~ill91:::jiij~~*"t .Q;:c!::::t, iiJ#mi: 
4i).Qo 

a::t.:, X1i4i;.Qt, 'li.:r. 7-I::.J::-:::>"C 1<7·;.~1-Ji:~ 
11J.Q ;:c!:::tJ<~:~t.J: fJ'-:> t.:1 <7·.:~ t-tJ<~f:lll~n~~ 
i!:!ll:~iJli];L-l:'JtQ~(])fiiif;;J:, ~l::iEL..(~~L.. 
t.:I<?"•.:JI-(;:O)J:;~, SEQ=50 0)1<?"·.:~1-)l::ft 
-9-~n "CL '~~~iJlq;t.:r•J t::t-.> rt .Q;t;imrt:v'A 
(]){i(::ttf-:>"'(~~T .Q;:J::tJ<i:i! oQo 

M~~*~~ltt::i!~ill91i. i!Ull(NAK=60 & 
tJ. NAK=40)~ht.:;'Cim7!-=v:Ab<7·.:~1-Ji:~ 

1998-8-4 

the one example , case where error occurs in data of SEQ=60 
hasbeen shown. 

transmitting side computer reading it is data according to 
communication protocol , for example UDP /IP of thattime of 
reading , (UserDatagramprotocol :user data gram protocol 
/internet protocol :Internet protocol) and ATM /AAL-5 from 
transmitting side memory , dividing data to packet , transmits 
to network. 

In packet which it transmits, start address and packet length in 
transmitting side memory of packet are recorded. 

transmitting side data (SEQ=IO, 20, *, 110) with forwarding 
rate which responds to domain of communications line 
without waiting for response verification (ACK ) from the 
called side , sends. 

called side computer which receives packet , if there is not a 
omission and a error of packet , sequential compilation does 
received information in memory withoutretuming ACK to 
transmitting side . 

called side computer , when omission of packet occurs, 
(packet of SEQ=40 ), predetermined time passage after doing, 
granting transmitting side start address and packet length of 
packet, resendsrequires to transmitting side (NAK=40 ). 

In addition, when there is a error in packet which is received 
(packet of SEQ=60 ),as packet is abolished at once, granting 
transmitting side start address and packet length of packet , it 
resends requires to transmitting side (NAK=60 ). 

receiver side computer , when there is a omission and a error , 
omission ordesignates called side memory area which packet 
which is abolished should housethat way as white space , later 
compilation does packet which does nothave error which is 
received in region after this white space region . 

Furthermore, here, when omission of packet occurs with 
called side ,it resends requires to transmitting side after 
specified time , but when omission occurs, also it is possible 
at once to resend to require to transmitting side . 

In addition, as for capacity of called side memory area which 
packet whichcannot acquire packet length with omission or 
error should house, following to value of start address in 
transmitting side memory which is granted to packet (In case 
of this , packet of SEQ=50 ) which is received next correctly 
it can decide. 

transmitting side which receives retransmission request 
reading * reconstruction does retransmission packet from 

Page 40 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1120



W01997033227 Al 

m L '"C:pj:~, <?-·;.~ ~--~~:fR(I(Jf::~~i!tiJ;L-=E•J tJ' 
i;MChl±l 1... -c:jij:mntL.. ~~i!tiJ":jij:~T ~0 

-fl."(, :jij:~1 <Jr·;.~f-.~~(t!ljl-:>f::~~{li.IJI;J:, -f 
0)11J~'<?-·;.~t--~~,~~=litt: -c:pJm~~.... ~s 
O'>if;if;?.iL. "Ci-JL 't::MiitT ~~~@.IJ;L-=E•Jfi.rt.l;t 
r::f~UI9~. 

;:O)~ft. ~~{l!IJfJ,i;O):pJ~~*I::Ict. M~9 
.I'{~~~@.IJ$tiJl7 f-!'l.t .At: I <Jr•;J f-. !it tJ<i;t 42: 
n -cL'~O'>"t:, ~~tll.q1:rct. ~~r::11J~'<?-·;.~ 
t--~11Jmnt9 ~;:t:tJ<"t:~~. 

*t::, M~~*O'>N.>-=>t=' <?-·;~t--0'>1tiili7f-!'v.A 
bVr;.~f-.!itO)fi~ .A~·;.~?L. "Ci-Jitlt. ~tf:l"t: 
~m:~ .lt.&?1'r::~.:r-~O">~mL. -c1... *L,. ~ 
~0),<?-·;.~f-.O):pJ~~a~r::*t:&?-ctr?;:ct 
1:~~. 

~1:181 14 ~~~1... "(' ;;t;;~a..FJO)'T-~~~1.i 
51& UDP/IP ~fflL't::MJJtlr~:n-T-~~~I:ii'®: 
fflT ~~fti::-:>L '"C~BJ19 ~o 

;:0)~1i(fjff~fm"t:lcJ:. UDP I <'T·;~t--tJ<'T-~~~ 
f:i-Jft~/ <Jr•;.~H:~ ~9 ~tO)"t:NJ~o 

-tl*· IP lct::J*-?'Y3::..-v.Ai.i~O);f'.•;.~f-.'J-? 
H!:11=1f-.::JJL-t:l.. "C!t<W&L. "CL'~tJ<. -T-~ 
lMm~i!iH 'miitttJ<~*2:n~~.g. • ..t. iJLO) t--
7::...-.Aif.-r.H!:t~=~r.:::~JL-I::rctwr~O"> TCP ~ffl 
L '~O)tJ<fi-i@i"t:NJ~. 

l..fJ'l.., i!m/t&f::'ifl..L '~-tJ<tJ:(~~@.I]/ \•;J'7 
7mtJ<+)t"t:NJhf;f, ;;t;;~BJII::J:~'T-~~~ 
1.i~~fflL't::..t."t:t--5::..-.A;f--f-.H!f:: UDP ~{t 
~~-+)t~m:mttt:M$(1(]~.:;:-~~~~~ 
ti:"t:~~o 

1998-8-4 

selectively transmitting side memory making use of start 
address and packet length it is notified (NAK=60 and 
NAK=40 ), resends to called side. 

compilation it does in called side memory area where and, 
called side which receives theretransmission packet according 
to need reconstruction did retransmission packet , while itwas 
a white space left and corresponded. 

In case of this, because transmitting side start address and 
packet length which it shouldresend are granted to 
retransmission request from called side , with transmitting 
side , reconstruction is possible retransmission packet easily. 

In addition, if start address of packet which has 
retransmissionrequest and value of packet length stack are 
done, midway transmissionnot stopping, all data transmitting 
it finishes, collecting theretransmission of packet of plural 
lastly, it is possible alsoto do. 

Referring to Figure 14 next, when data transfer method of this 
invention it applies to data transfer between computer which 
uses UDP liP , being attached, youexplain. 

With this embodiment , it is something which is suitable to 
packet the UDP packet in data transfer. 

Until recently, IP has spread widely as network layer protocol 
of [konekushonresu ] communication , but data 
communication isometry it is and when reliability is required, 
it isnormal in transport layer protocol of upper position to use 
aforementioned TCP . 

But, if not to be considerable congestion called side buffer 
quantity is the fully in communications line, after if using 
data transfer method with this invention , UDP is used in 
transport layer, sufficient reliability and efficient data transfer 
both achievements is possible. 

1m 14 fctUDPI<?-•;.~f-.0)'7;;t-~·;Jf-.~mT o UDPI'\?-•;.~f-.O)"'.t-(;((;J:jlj;:;: 

Figure 14 shows format ofUDP packet. As for size ofUDP packet maximum 

tJ<64kBO'>iiJit!it"t:NJ~. ;:O)~ft. ~~~ <'T·;.~H::i-t 4 9 ~d'T·;.~f-.!itfctU 

Is variable length of 64 kB. In case of this , as for packet length which is granted to thetransmission packet U 

DP"-•:J1f 0) Length '7-<-JL-J-!'f::~·;.~l::">~f2:.tl. "CL '~• ~m@.q$fCiJl7f-!'v.Af;J: 

mapping it is done in Lengthfield ofDPheader. As for transmitting side start address 

IP"-•:J1fO)*ftffl0)'71'-Jl-f-!' ( '9ll~f;f§];;:32t:.:' •;.~f-.O)IP Option 7-<-

<seq>IP Optionfee of for example maximum 32bit unused field ofiP header 

Page 41 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1121



W01997033227 Al 1998-8-4 

[rudo]) mapping it does. With UDP, transmission origin and IP address of addresee [rna] 

After adding false header [ppingu ], header and checksum of all data line 

.:;. 
;::.(J)=f:r.·:;?if .L..~ m1.. '~;::.c!::-c:ilm'il (/)I <7·:; 
~O)fllfl~~t±l"t ~;::.c!::i.J<-c:~~. 

a;t:::; <7':/~(J)~:if;j:. ~millU(J)1t4 .L.. 7? Hi! 
J;.J.p;J r::t~~ (/) :$tim7f-!'v :J..O)' ~7·:;~(/)*fiJ~ 
"t:*IJI*T ~. 

;::.tt,;~m~.. '-c. 'IW:i!li(J)/J~~-c:-T-1t(J)~ia& 
tJ4ijia~*~rr?. 

~1::. ;;fi;~BJIO)-T-1t~ia/.75~~ ATM/AAL-5 
~ m1.. 'f:::ltWU~r~~,-r-1T~iar::J®m-t ~~.g. 
r::-:::>1.. '-cmaJJ-t ~. 

;::.0)~1Jt!Ht~Ym"t:f;j: CPCS-PDU(Common Part C 
onvergence Sublayer-Protocol Data Unit:CS ~ 
ii :ms-:tc ~:::JJL--T-1t.:t.=.·:;t-)i.J<-T-1T~iar:: 
;1'31t~d?"·:;H::~ ~ L.. ATM-i!JL-i.J<-T-1t$ii 
ial::;l'31t~i!JL-I::~ ~"t ~. 

AAL-5 l;j:-T-1r~ia(J)~¥it::;~~t~ 13 (i(]"t:. S 
AR-PDU(Segmentation And Reassembly-PDU: 
i!JL-~~~ • Mliif:1v4 'V)r::--..·:;1r" ~H ... -1'"7~ 
~lt"f. CPCS-PDU fjj(::(J)J.J.::r.5-=f:r.•:;?~ 
fi?. 
~illS (;j: AAL-5 CPCS-PDU 0)/;t-~·:;~~~ 
l..t:::t(J)"C:~~. 

CPCS-PDU (J)if-{;;((;j:fl*i.J< 64k.B (J)A]'fl::§; 
't:~~. 

;::.(J)~'@j, iaia1 ~7·:;H::{;f' lj. T ~~ ~?"·:;~;§;(;j; 
CPCS-PDU l-v4"7(J) LI(Length Indicator)7..f 
-JL-t:r::~·:;t:;..,~~n -c1.. '~. 

iamilliJ:$tim7f-!'v.AI;j: CPCS-PDU H..;-{"50)* 
G!ffl(J)7.(-JL-I-=(il.l;tl;f 8 1:::•:;1-(J) CPCS- UU(C 
PCS .:t--tf-·.:t--+.fr~~mi'$RP..f-JL-f-!'~ CPI 
(Common Part Identifier:iltil:ms~~t~ll-TP..f­
Jf,f-!')l::~·:;t::';..,~L,. "(;:1'3(. 

CPCS "t:l;j:*ii!l(J) SAR-PDU ~a;c!::d.>"C CRC-3 
2(Cyclic Redundancy Check-32:32 t: ·:;~(])~@] 
:n: :§; ?tf-ij-) (/) ::r. "7 -=f I.':/ '.7 ~ fi? 0 

~ia.ijt{ii(;j:;::.(J) SAR-PDU 1:: ATM "-•:;$(~{-;f' 
Itt:: ATM i!JL-"t:~~i.J'b, i!JL-(J)~:ic!::fllfl 

• 
injury of packet in communication can be detected by fact that 
this checksum is used. 

In addition within timeout value of called side it judges 
omission of the packet , with not yet arrival of packet of 
specific start address . 

Making use of these, transfer and retransmission request of 
data are done with aforementioned method . 

When next, data transfer method of this invention it applies to 
data transfer between the computer which uses ATM /AAL-5, 
being attached, you explain. 

With this embodiment it is suitable to packet CPCS-PDU 
(common PartConvergenceSublayer-protocol data Unites 
common section protocol data unit ) in data transfer ,it is 
suitable to cell ATM -cell in data transfer . 

AAL-5 with objective which measures making efficient of 
data transfer, doesnot provide header and trailer in SAR-PDU 
(SegmentationAndReassembly-PDU :cell portion percentage 
& assembly sub layer ), does error check inevery only 
CPCS*PDU. 

Figure 15 is something which shows format of 
AAL-5CPCS*PDU . . 

size of CPCS-PDU maximum is variable length of 64 k.B. 

In case of this, packet length which is granted to transmission 
packet mapping is done in LI (Lengthindicator) field of 
CPCS*PDU trailer. 

transmitting side start address mapping does in unused field 
(CPCS*UU (data between CPCSuser *user) field and CPI 
(common Partidentifier:common section identifier) field of 
for example 8bit ) of CPCS-PDU trailer . 

With CPCS collecting SAR*PDU of plural, it does error 
check ofCRC *32 (Round redundant code of 
CyclicRedundancyCheck-32:32bit ). 

Because transfer unit is ATM-cell which attaches ATM 
header to this SAR *PDU , omission and injury of cell being 

Page 42 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I0/367,296) 

Oracle Ex. 1002, pg. 1122



W01997033227 Al 

f.J<:.(J) CRC-32 'T.r.·v?"'t:ISI~I::~!±l"'C:~~. 

:_tt,.;~ Jfl(, \"'(' Jitri11!(J)1J:~-c:-T-1Z(J)fiii!& 
UMi!~*~ft?. 

*~ntliJJ~tmr::J:nr:. ttE*(J)J:?r::~t*m~~ 
'<7·vt-4ir::ft? =~~tt-rr::, i!~' <7·:~1--(}) 
~m7~vA~~~~i!~~~"'C:~~9~.:.~ 
1'!, fiii!(J)~Jiit~.I7-~!±l~nt.:' <7·vt-(}) 
Mi2i(J)3'dJ$it~ISI~r=~m-c:~~. 

J.;J.J:mBJIL.t.:J:?r=*~1i1!i:m~(J)-'f-1Ztni!:n 
~It, -T-11~*-il~!u~-'rvH::~~Jl .. -c~i!9~ 
~~r=. '<?-·vt-tir:r,c;*m~~ft?.:.~tJ:<­
ffll.. "'Ci!~9~f.:6':>, tl£*J:LJ~l..(~i!3'dJ$~ 
[RJJ:~tt~.:.~t.J<-c:~ ~. 

a::t:., ~~cfl(J).I7-:t.J<[jj{~"t"Mi!:t.J<!JZ,~I::tJ: 
?t:.~.g., 1'\?-·vi--(J)$t;Jm7~vA~I '\7·:~1--~~ 
i!i:~rlil,-c:~~L.t:..t -c:. ~~iltiJ:t.J'.;~~' <7 
-:Jt-~~mrr.:u:Mi!~*9 ~:n:~~~~. 

:.nr:J: LJ. Mi!fm~(J)t.:tV:>r=i!~iJtq?t-1'~(}) 
~ 7~ffl:-=>!0~:t.J<tJ:(, :f.J'-=>'*-~f.i., '\7·:~1--~M 
i!9 ~=~=ttJ:<fJ:~. 

~.;r:Mi!' ~7·:~ t-~i!~iltiJ-c:MmfiX:9 ~~(}) 
~7 H18I.lll~.>t"E'J ~I.lll~ill'J'Ilil:: 9 ~.:. ~:t.J<-c: 
~~t:.ll>, TCP ~~.l:t~L. "'Cit~:f.J'I:Wili!""C:3'dl 
$1¥-Jt.i.Mi!~I.lll:t.J<~m-c::~~. 

a::t.:, ~1::, *~BJI(J)-'f-1Z~i!1J:~I;t1\JL-? 
f-,1Z(})fiii!I::Jflt, '~(J)I::~=tlii""C:Q.,~. 

~r=, (g) 13-jg) I5 ~~~L. -cmaJIL.t:.~1i1!i:JJ~tm 
~- i!~~it•ttrlil,,:,~.--?t~L. -c(J)tJfm~m 
m-t ~ cp•mn•t~~iB:IJDL.t:.~.g.(J)mntr= 
illfl9 ~~.g-(})~1i1!i:mtmr:-::>L '-cmaJI9 ~. 

:.0)~1i1!i:Jl~~"t:'lt, cfl.it.tJl:t.J<, jgJ I (::ff-9 
I&III:ff-9*At- CPU·Fl ~-f(J)p./Ji]l~ii:(})i! 
m i!IIJ ~ ~ ~ iJtiJ (J) }J( 1J (J) tt 1m~ m m 9 ~ :t (J) r = 
MJ;t;9~. 

a:;"(, AAL-5/ATM ~Jfll, 'f:.~t-mtr.;ll-'f-?tfii 
i2ir:liim9 ~~.g.r:-::>L ,-c v.J. '"Fr:maJI9 ~. 

1&1 I6 r=*~BJir::if.irt~fiii!~-7:'..1-A~J~ff-
9. 
:.CT.>~1i1!i:JJ~S"t:'lt, CPCS-PDU :t.J<-T-?tfiii! 
r:tJrt~' ~7·vH:::m ~9 ~. 

CPCS-PDU (J)-fj-.{;;((;j:J'llj;::t.J< 64kByte (J)iiJ~ 
:& -c: a;;~ 0 

1998-8-4 

this CRC *32check , itcan detect simultaneously. 

Making use of these, transfer and retransmission request of 
data are done with aforementioned method . 

According to this embodiment , conventional way doing 
response verification inevery packet do, start address and 
length of transmission packet byfact that communication it 
does, acceleration and error of transfer making efficient of 
retransmission of packet which is detected can beactualized 
simultaneously between transmission and reception . 

As above explained, dividing data into plural packet , when 
ittransfers, lumping together without doing response 
verification inevery packet , in order to transmit, transport 
efficiency it can improve data transfer method of this 
embodiment , from until recently considerably. 

In addition, when error in communication with cause 
retransmissionbecomes necessary, start address and packet 
length of packet between the transmission and reception 
communication after doing, method which selectively it 
resends requiresspecific packet is taken from called side . 

Because of this, it is not necessary to wait for end of 
transmitting side timer for starting retransmission, it becomes 
without either at sametime resending excess packet . 

Furthermore when reconstruction doing retransmission packet 
with the transmitting side , software treatment and because 
memory managing can be designated as the minimum , being 
much simple by comparison with TCP etc, it canactualize 
efficient retransmission treatment. 

In addition, especially, data transfer method of this invention 
is ideal in order touse for transfer of bulk data. 

Next, referring to Figure 13 -Figure 15 , you explain 
concerning embodiment when itapplies to configuration when 
it adds computer for relay which offersfunction embodiment 
which you explain, as router between transmission and 
reception computer . 

With this embodiment , relay computer , corresponds to 
transmitting side of host CPU *Fl and-peripheral which are 
shown in Figure 1 which is shown in Figure l and those 
which offer both functions of called side . 

First, when it applies to data transfer between computer which 
uses the AAL*5/ATM being attached, you explain below. 

Transfer sequence example in this invention in Figure 16 is 
shown. 

With this embodiment, it is suitable to packet CPCS*PDU in 
data transfer . 

size of CPCS-PDU maximum is variable length of 64 kByte. 

Page 43 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1123



W01997033227 Al 1998-8-4 

J!ra{IIJ!tlJflf;J:, ;L=E'Jf.l,i;-T-$1~:10·;~?lijtftl"C:~#!±H .. , CPCS-P 

As for transmitting side computer, from memory data with block unit reading, CPCS*P 

DU;o{-{O-i-!'1:::7.r:1i!JL-it"t{)o -fO)~I::, ~;L=E 1J:10·;~?0)~)!~fi?7 

encapsulation it does in DUpayload. At that occasion, it transfers said memory block, [fu] 

71' JL-O'.>$'Cimf.l'i;O);;t7i!•Yt-7!-!'v.il-~CPCS- PDU t-t...-1' 7miO'.>CPC 

offset address from head of[airu] CPC ofCPCS- PDU trailer section 

S-UUcCPIO'.> 16bit ml~l::"?•;~t:"::...-~9 {) (jg] 15 ,Pim) o -fL "C. ATM -

mapping it does in 16 bitportion of S- UU and CPI, (Figure 15 reference ).And, A TM 

i!JL-it. ~J:!I!v1'-\"*!~IIH~. ~$'CI::flillt"t'-T-11~l!rat" {)(SEQ= 1 o. 2 

<seq>SEQ=10, 2 After cell converting and physical layer terminal, data is transmitteddestined for addresee 

0,· .. 100)0 

0 ... 100). 

-T-?r~lflm"t {)atlJfi"C:I;I:. ~J:!I!L-1'-\". ATMI...-1'-\". AALL..-1'-\"*!il/fii 

With computer which relays data , physical layer, ATM layer, AALlayer tenninal 

~h?o AALv1'-\"~il/fii~I::CPCS-UUcCPII::"?•;~t:"~~~tl.t.:7!-!' 

It does. At time of AALlayer terminal mapping it was done in CPCS*UU and the CPI, [ado] 

vA flUQ~ J6l LJ l:fj L, ~71-!'vA.!:::PDUO'.>-tf-1' ;(-c:;!I){)UO)fl!JfQ~tcl::~ 

[ resu ] data is removed, on basis of data of LI whichis a size of said address and PDU said 

!tJJU\ti::~"C-T-$1~)!,1fJ l::~f*Lt.:;L=E 1J ~i;ti::T'-$1~CPCS- PDU~UL"C:DMA (Direct Memory Access: 
~ 1'v?t-Pt:'J7?i!.il-) ~i!L. -T-?r~!iUtt {)0 -T-?r~lflmt" {)itJJU\t0):1;:~:!i;L=e:'J r::-~rt-:~r::!imt" {) 
;::.!::: 

R'egarding to computer, in memory area which it guarantees in onefor data transfer DMA (direct memory access :direct 
memory access ). it transfers data with CPCS- PDU unit , the compilation does data . In large capacity memory of 
computer which relays data compilation do in the temporary 

I ::J:? "t''J ::...-?ra9 O):fiii!iilil ::~ l:. -c :iili !lfl~fi?--cf.l~ilJfmct.l:{)o 

It becomes possible to do rate conversion, so according to forwarding rate between link. 

Page 44 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1124



W01997033227 Al 

.:r-?~~;tctJ~iit~mtr::rR:Jwniii! -t ~tfi 
~. §!:mL.t:::7t:vAcftc;O)ffl~~:tcr:~;( 
"E;IJ~lfafJ\i;, DMA ~i!I::J::LJ' -T-?~~~Jj.l:f:l 
To 

;:;tt.(::J;:LJ, ~fi(;I;JO)-T-?~~I::;f.)l, \"(;:;tt. 
'*1:~~~~~jH!l;("E;1J~J!~~Jfl~I::~J!l.. "( 
L't:::;t-Af-. CPU 0)1\fojfJ<ft:ll9£c;n~c~l:, ~ 
~~Jml::'.r.7 f-.~JmtJ<IMJ-9-L.fJL 't:::li:> ~ii H:: "9 
~;:ctJ<"t:~~o 

;("E 1Hli;ifJ'i;,-T-?~~c11-ti:IL.t:::~. :jijt} CP 
CS-PDU X:-{IJ-t-:'1::-T-?~:t.r::f-t!JLdt:L., CP 
CS-UU, CPI 1::7t-:'vA~tfH'~T ~;:ct::J::-::>"C 
~mrufi~mt~J::?"CM-9-c;n~7t:vAffl~ 
O)t'f;ff:~fi?o 

;::nr:J:: LJ. ~mmnt ~mt fJ' i;, §!:mli:t~tlt* 
1: • I./t-:'" I./t-:'"'(<fi~tlra,O);("E;IJ rl'l,~7t-:'v 
Ac~1'~ffl~~~mL.~~ii~~~~~~~ 
r::tJ~o 

~I::I 7--T-?:jij]!Ef.J!lriO)~n1§m1i!H:: -:>1.' 
"(~BJIT .:f>o 

, ~ 1r;~t--~!fl*ll-t .:f>iit~mtcil~~r::' (?-·;~t--~ 
:i:M-t .:f>fi~mt"t:rct:. -T-1r~§!:mL.~Imv1' 
"\", ATM v1'-\', AAL v1'-\'~!tifii~fi?o 

AAL v1'-\'~!tifii~l: CRC-32 filJI::J::L)I7-
~~I:f:l L.t:::-T-?(SEQ=40,60)1::-:>L \"((;t;, CPC 
S-PDU .titiU""C~-t:,I::-T-?~J§e~L.. ~iitlJti 
r::-T-?~i!iaL.t:::iitlJmtr::~L. -c7t:vAc P 
DU ft~~ A.,t;::jij~J!*m-t!JL-(NAK=4 0,60) 
~~.:f>o 

:jiij:~J!*~§!:Itt:::iit~tilct:, 7t-:'vAc PDU ft 
~ ~(::;("E;I) ~fafJ\ i;,:jij)!'"t ~~T-1l~~Jj. 
ti:IL., :jijt:J CPCS-PDU l:::t.r::f-t!JL-1t:L. "(:jij~T 
~0 

;:O)J::?r::, 7t-:'vAc-tt1'~0)ti!f~~i;t-9-L. -c 
-T-?~~i!-t .:f>c~r::-T-?O)Ifl•~n:?fi 
~mtra,L'~~L.~tJ<i;,~i!'"t .@;:cr::J::?"Ci! 
MflliJiitlJtic§!:Mfll'liitlJmtrP,t::rt-c~<. !fl• 
1i:Hfmtra,t::;f.)L '"C:t 1' i3Lv1' -\'I::J::.:f>, '-t:? 
::~: 7 ~!I~ ::E i*cL. -c~~.!iH ':jiji!tJ<~~c~ 
LJ' :t··;Jf-.'J -?~i*fJ\i;,Jj. "(:fJ:jij]!t::fJ'fJ'V.:f> 
1\f,!iffJ<::*:~I::ft:~c;n~o 

~r::. mm-T-?r\A, *~ii:;(.::e-•J. *·;Jt--'J 
-?:11J f-.::JJL-~~!tifii-9 .:f>*•;Jf-.'J-?1'/?7::~: 
-A 71f::t?r::J::? -cmnK:c;n.:f>mmM~mt7 
-~~?~~~i;,nK:.:f>-T-?~i!~tiO)tMftK:~ 
t::-:>1. \"(~BJI'"t ~o 

1998-8-4 

When it transfers data destined for computer which becomes 
the addresee , data is read out on basis of data of address and 
length which are received from said memory area with DMA 
transfer. 

Because of this, as load of host CPU which so far 
treatedtransfer treatment and memory managing intensively in 
data transfer inside the device is lightened, because software 
treatment does not participate intransfer treatment, 
acceleration it is possible. 

From memory area data reading it is after, again in 
CPCS-PDU payload the encapsulation to do data , it retains 
address data which by fact that the address is housed in 
CPCS-UU, CPI is granted with transmitting side computer . 

Because of this, from transmitting side computer to reception 
computer , with endo *endo between memory between 
computer high speed compilation transfer which utilizes 
address and size data becomes possible. 

Next you explain concerning embodiment of error data 
retransmission protocol . 

With computer which receives computer and finally packet 
which relay the packet , data is received and physical layer , 
ATM layer , AALlayer terminal is done. 

At time of AALlayer terminal data is abolished at once with 
CPCS-PDU unit concerning data (SEQ=40, 60 ) which 
detects error with CRC -32 calculation, cell (NAK=40, 60) 
for retransmission request which includes address and PDU 
length vis-a-vis computer which transmitted the data to said 
computer is sent. 

reading , encapsulation doing data which it should resend 
from the memory area on basis of address and PDU length 
again in CPCS-PDU itresends computer which receives 
retransmission request. 

this way, granting data of address and size , as ittransfers 
data , while compilation doing between computer whichrelays 
data efficient retransmission becomes possible with the lower 
position layer with hardware treatment as main component by 
fact that it transfersnot only between transmitting side 
computer and called side computer , in between relay 
computer , load which relates to retransmission considered as 
network entirety is lightened greatly . 

Next, you explain concerning configuration example of data 
transfer device which consists of general purpose computer 
architecture which configuration is done with 
[nettowaakuintafeesuadaputa] which general purpose data 
bus , large capacity memory , network protocol the terminal is 
done. 

Page 45 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1125



W01997033227 Al 

[g] 11 r::~t~mfi1H~IJ~ff-"t 0 

;:O)jg)f::jf--t~mfl1tr;t, ,< .. ,..~~-~~mL... ~11 
v1'""', ATM v1'""', AAL v1'""'~ll~ft?;t. 
·~1-'J -11':/11-7::~:-A. 71f:111(if.>.gL 'f;t;t. 
•;~I-'J-17$1":1117J-t!)C508, C509, C510, :& 
tt C511, i@iiifJiFl.lfl-T-111 \A. -c>a;:,{';, PCI I \A. 
C506 :&rJ C507, PCI J\A.t!:::*A.I-1\A.~1':/11 
7::~:-A."t{)*A.I--PCI J\A.:1 1J·~y@)Jl! C504 
]]l..{J C505, *A.I-1\A. C503, *.AI- CPU(cp:9i!; 
~~~ti)C502, DRAM -c>mfi1t~tl.{)*A.I-JL-=E 
1) C50l "t>if:l{)o

;t-·:~t-'J-11'::..-117::~:-A. 71':111 csos r::J:?
"t'"f-11~~mL., ~llv1'""', ATM L..-1'""'~
~fi. -t:!Jl,A.•;!$1"0) VPINCI ~f::J:LJ, ~}!$t;
O)it~tlt!:::flrt~tl. "t'L '{);t.·~I-'J-11':/117
x-A. 7$1":111~~~1]"'9 {)o

-fL. "t', fi!il-VPINCI ~O){!Jl,~J \·~77 1):/_,-L.
"t' AAL v.f""'i:l:-c>:h-t-:'(1;1-c>~~"t{)o

AAL [.;-(""'~~~1:: CRC-32 ~~f::J:LJ-T-11
I:7-0)7-:r.·~1~ft?t!:::::ltf:: CPCS-PDU 1-v-(
7mlf::~·~t::::..-.,-~tt. -n '{) 7t-='v.A tttllit!::-+t1'
;;('~lll!LJif:lL.. CJ-jJJI, CPU iJ<*A.I-JL-=E1J C50
1 f::ML. "(CPCS-PDU jj!ft£-c> DMA ~1!~1!·~
1-"t{)o

*A.t-JL-=EIJ r::t:iL '-r•~i!f::1!m iiJfili~~Ji£ r;t
il?i;:dJ'CcV>*A.I- CPU iJ'i;Cl-:fJJI, CPU f::ML.
"t'-f0)~-A.7t-='v.At!::-+J--(;;(~ii~L. "Ct:i<o

CPCS-PDU l-v1' 7fi!lJ: LJ l!ll LJ lf1 L.t=.7t-='v.A tl1
~- LI r::m~~tt, "CL ,.g PDU :(i:, *A. I- CPU 1::
J:LJil~~~ltf:::-'T-111ljfil.lf.I*A.I-;(-=E:IJ~Ji£
0)~-A. 7t-='v.A, -+J-1' ;;(0)11ffa~tt!:::r::c-:n
J(... CPU l;t*A.I-;L-=E1Jf::m~"t.g7t-:"L-A.O)f!i

iHJ~ftL '· Wit=.tJ7t-='vA.~*d){;;:t!::t iiJfili
"t:il?{)o

;.::tt,f::J: LJ !t-A.I-JL-=E-1) ~I)::,...,- I \·~77 t!;::l, "({!
m9 {);:t!:::t iiJtmr::t.;:LJ, ~i!"t {) 771' J(.,-+J-1'
;;('~O)JL-=E 1JMia~*A.I-JL-=E 1J cpf::i(ff!t!;"C:~fJ
L 'fi.g.f::t:iL '"t't~~~tfitJ?;:t!:::t.;:(-T-11~
i!~ft?;:bi.J<-c:~ {';, 0

-fL. "t';t.·~I-'J-17$1":1117J-t-:' C508 O)CJ-:h
Jl, CPU l;t, VPINCI ~iJ'i;~:lE~ht=.~i!;t
O);t.·;~I-'J-?1':/117:r.-A.71f:111 C511 O)CJ
-tJJ!, CPU f::ML. "Cli1Ji27t-:'v.At!:::-+t1' ;;(ttffa
~il~"t{)o

il~~~~~;t.~t-'J-11':/117:r.-A71f:1
11 C511 O)CJ-jJJI, CPU l;t, DMA ~1!~1!·~1-
L.*A.I-JL-=E-1) C501 iJ'i;-'T-11~~~1±1"'9 o

1998-8-4

equipment configuration example is shown in Figure 17 .

It is a host memory C501 which configuration is done with
host -PCI bus bridge circuit C504 and C505, host bus C503,
host CPU (central processing unit) C502, DRAM which PCI
bus C506 and C507, PCI bus and host bus which are a
network interface face adapter (Or network adapter card)
C508, C509, C510, and a C511, high speed general purpose
data bus where each configuration which is shown in this
figurereceives packet , treats physical layer , A TM layer ,
AALlayer interface are done.

data is received with [nettowaakuintafeesuadaputa] C508,
[nettowaakuintafeesuadaputa] which computer of the
forwarding destination is connected is identified after physical
layer , ATM layer terminal , due to VPI NCI value of cell
header.

And, [baffuaringu], to AALlayer terminal it does cell of same
-VPI NCI value inside card .

As check of data error is done at time of AALlayer terminal
with CRC -32 calculation, it removes address data and size
which mapping aredone to CPCS-PDU trailer section, local
CPU it transfers DMA with CPCS-PDU unit vis-a-vis host
memory C50 I set.

In host memory useable region notifies base address and size
to transferbeforehand from host CPU vis-a-vis local CPU .

Also it is possible local CPU re-to calculate address which
ishoused in host memory on basis of data of base address,
size of the host memory area for data storage , which receives
notification PDU lengthwhich is housed in address data , LI
which is removed from CPCS-PDU trailer section, with host
CPU to seek -new address .

Because of this as ring buffer, it becomes possible, to use
host memory when memory area of file size amount which is
transferred cannot beguaranteed in host memory putting,
efficiency without impairing also itis possible to do data
transfer·.

And local CPU of network adapter card C508 notifies
aforementioned address and the size data vis-a-vis local CPU
of [nettowaakuintafeesuadaputa] C5ll of forwarding·
destination which isdecided from VPI NCI value.

local CPU of [nettowaakuintafeesuadaputa] C511 which
receives notification transfers DMA and set reads out data
from host memory C50 1.

Page 46 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1126

W01997033227 Al

"f-11~~thl:liLt::::f;t, AAL v1'~~1UI~I:: C
PCS-PDU l-v1'7$(CPCS-UU, CPI)I::litri2iM.
~~~~~7~v~~v~~~~~~o 

;:;tt.I::J;: LJ7~v ~ frUfiO>f*:ff~ft?o 

-tO)~, ATM v1'~~1lHI$~i:!JL-il:~;h.~;t~ 
tJ:~ ttWtll::raJ lt"t'i!ia:~h~o 

;::0)~, PCI 1 (~ C506 ~ C507 l;;t~.tr.I::11.JfF9 
~;:~IJ<iiJfm~iti)LJ, *~l-1 (~O)"f-11$iiia)i 
/ll;;t PCI 1\~(32bit/33MHz=l32MB/s)J;:LJji;lli)i 
(64bit/66MHz=528MB/s)~if.>~f::::d.> PCI I\~ ill.tJ 
IJ'i;l;;t;f\~1-;L-t'JI::~L -c"f-111J:lb~~thl:li 
LIJ<fiil~l::ft::t~J;:?I::th::t~o 

01Jxlct. *·;~t-'J-?1'~11?:z:-~71f:t11:tJ­
t: C508 ~~ia:Lt::::d?"·;~H;;t PCI d~ C507 0) 

l-7t::·;~?~!m I ::P:I)fjtJ:<*~ 1- ;L-t1J I ::tt~lbC 
;:~IJ(iiJfm~if.>~o 

-tL "C;f\~t-;C-t 1JI::JtfitLf::::"f-111;;t PCI 1\~ 
C507 0) l-7t::•;~?~!ml::ttl:. "t'~thl:li 9;:~1::J;: 
LJ. ~tl~l::l;;t"f-11~amt..., t-7t::·;~? .m.IJ< 
1>t.i:~ '~~~;;t~t>l::~"tthl:li 9 ~~ '?t::::i'illiiib'? 
~~fJ:"f-11~iaiJ<iiJfm~fJ:~o 

l(~l-7t::·;~?O'):J~HJ-JI-I;;t*~l- PCII(~-;J 
1) •,:J"./0)1 \~ 7-t:: f-v-~3~tlfmi::J;:?"( I\ 
-~rJI71::J;:LJji;lli)ii::~JI~;h.~o 

1998-8-4 

data reading is after, at time of AALiayer treatment address 
which receives aforementioned notification to CPCS-PDU 
trailer section (CPCS-UU, CPI) the mapping is done. 

Because of this it retains address data. 

After that, to cell it is converted with A TM layer processing 
unit and it istransmitted destined for computer which becomes 
addresee. 

At·time of this, as for PCI bus C506 and C507 beingpossible 
to operate in independence, as for data transfer speed of host 
bus because PCI bus (32 bit/33MHz =132MB Is) from it is a 
high speed (64 bit/66MHz =528MB Is), in order to be able to 
do data writing and reading simultaneously, vis-a-vis host 
memory from PCI bus side it is visible. 

As for packet which is received with for example 
[nettowaakuintafeesuadaputakaado] C508 it ispossible to 
write to host memory, regardless of traffic state ofPCI bus 
C507. 

high speed and flexible data transfer that become possible and 
in host memory the data compilation it does data which 
compilation is done to whencongesting by reading out 
according to traffic state ofPCI bus C507, when amount of 
traffic is little, it reads out at once. 

Control of bus traffic is treated to high speed with bus 
arbitration function of host PCI bus bridge by hardware. 

J.;~...t~lj.I}Lt::::J::?I::, *~Bffimtmi::J::nrct. '\?-·;~H-it -9-~n -c~ '~ 7~v 

As above explained, according to this embodiment, it is granted to-the packet, [adore] 

A t1Ua~-~.t1' ;<twm~;.s m-t ~;:~1::J:: LJ, 'J7t-? :z:71::J;:~,c.:e'J ffimiJ<M*it~nttwmrlii,O')iM. ;ar::«ISL '"Cit 
fit$iii!~II~i'illiiiit~~~o ~;r::, .:r:7-"f-1!0):jij:ia~i!ia:ill.IJ!t•UI!~:!fl:ia:ill'l!t•UI!rlil,t=.rt~t.i:<tPM~ft? 
ttwU~rlil,~ 

memory managing simplification is done with software by [su] data andutilizing size data, acceleration is possible 
compilation transfer treatment in communication between computer . Furthermore, between computer which relays 
retransmission of the error data not only between transmitting side computer and called side computer 

iHR~I::t-r?;:~IJ<~~, TCP~!t~L "t'WJ~~tJ::jij:J!~JIIJ<~J.Jl~~~o ~1::. *~lj.I}O)"f-11$iiia1.n~l;;t1 (JL-
?"f-11 O')$iiial =~~-coif>~ 0 ~l::,lg) 13-ISI l7 ~~mlL "t'~lj.I}Lf::::~Bffimtml::if.:IL '"t',\?-·;~H::it-9-9~7~v 
A.O')fl:!!O)~fmi::?L '"t'~BA9 ~o ~ 1a1;;t, *~BAI::J;:~ 7~v~ it -9-0')~Bffimtm-co&;~e4t:·;~t-0')7t:t..-~ 

selectively it is possible, to do, it can actualize efficient retransmissiontreatment by comparison with TCP . Especially, 
data transfer method of this invention is ideal in transfer of bulk data. Next, referring to Figure 13 -Figure 17 , you 
explain concerning otper form of address which it grants to packet in embodiment which youexplain. As for Figure 18 , 
address of 64 bit which are a embodiment of address grant with this invention 

i*Wi:(1.)-0\l~;r-918J't"if.>~o ;trui 32 t:·;~H;tiP7i'=v.A. ~, TCP /IPiM.ia: 

Page 47 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1127



W01997033227 Al 1998-8-4 

It is a figure which shows one example of system . As for head 32bit with IP. address , TCP/IP communication 

-c:ii~~-'F~f~jE"t ~t.:d.><1)rnliJ!7!-=vA. -c:N.>~. 21113 (J) 24 t:: ·;~Hit. ~-U!l~I::IHI~tl.t.:-T-$1(1)~t:i'l~iiJT 
~;r-9 ;t-=E•J7!-=vA. -c:N.>~. t.:t=.t..., ;:nrct 

So it is a logic address in order special running to do communication counterpart. 24 bit of2 nd are memory address 
which shows storage site of data which compilation is done inside computer. However, as for this 

"'~'J (1)011tt!!.~~.er::L.t::~~7t:vA. -c:rctto:<. fii!"t ~7r.-f JL-(1)$\":m!Uti'i~~~c"t ~:t71!·;~t--7t:vA. -c:N.> 
~. 31113 (1)3t::' ·;~Hct~JI:U!l(l)SCS 

It is not an absolute address which designates 0 of memory as the source , it is a offset address which designates head 
position of file which istransferred as source . As for 3 bit of 3 rd SCS of computer 

I( Small Computer System Inerface) r\A.f::fl*"C~h~SCSITI~-{A.~~="t ~SCSI-ID"c:N.>~. :5:fi(1)5t::'·;~l--
"c:ii~::to t--:JJL-~rei:iE"t ~. iliai::~L. "Ciit, .:L--iflit.fltlfE)ILJIP7!-=vA.~ij!?;:ctJ<I:I::B~~. ilial::ij!;t?tl,~ 
::tot--:::~ JL-tJ<~*(J)IPilia-c: N.>nri, ;t-=E•J 7 t:vA.l?l"f~~'*t'I::IP' <'T·;~ H:::tJ::t-tzJL-it:"tntiiP JL--?r~1tt... 
t.:ii~tJ<-f(1)8?:8?:iiJ!m"c:N.>~ 

It is a SCSI - ID which recognizes SCSI device which is connected to the I (Smallcomputer system Inerface ) bus . 
communication protocol is appointed with last 5 bit . In case of communication , user until recently sort can use IP 
address . If protocol which is used in communication is conventional IP communication , without readingbelow 
memory address , encapsulation does in IP packet , is through IP router the communication that way being possible, it 
is 

0 

-· - . 
fii!;t-=E•J:1o·;~~l-;t-=E'J7t-= vA.~i-t -9-L. "Cil 
ia9~:1ot--:::~JL-"c:tct, 2 :a 13 (1);t-=E'J7!-=vA. 
(t71:!·;~t--7!-=vA.)~~t7j.~t;~.:;t::"t~. 

'*f.: 3 :fil3 (1) SCSI-ID ~il!ffl9 ~;:ct::J::LJ, ~ 
fl:tlt~(l) SCSI TI~-{A.~iiflrei:iET~;:ctJ< 
-c:~~. 

J:. ta(l)J:: .:;~r£~7 t:vA. U;~~c~ ;:ct::J:: 
LJ, iiia::to t--:::~JL-~~-•~*~rll~:t?~L ,_,: 
-,-$liJ.iaU!l~~ii.:ll.9 ~;:ctJ<-c:~~. 

*t.: . .::t-·;~t--'7-~Jfl(l)::tot--:::~JL-ct... -c IP ~m 
L '~fl~, ~ I91::m9 J::?r=,<'T·;~H::7t:vA. 
~M~"t~;:ctJ<-c:~~. 

jg](::;"f-9 J::?l::. ii~. IP iliaf::fj!;t?tl,~ IP (1) 
Mtarct IP "''!11(1)1:Pf=llll~~n~. 

IP 9l!:l!~n~-T-$11::1;1: IP "''!11ft.l<i-tlt~n. 
J:.{!LiltJ'~ill~nt::-T-?r~ IP "''!11fi::J::-::>-c 
:t.J:11!JL-it:L., 1'Ui®l::lll9 0 

Grantmg memory address to transfer memory block , with 
protocol which the communication is done, it reads memory 
address (offset address) of2 nd, it requires. 

In addition SCSI device inside computer can be appointed 
directly byusing SCSI -ID of3 rd. 

data communication mechanism which does not question 
communication protocol and computer inside and outside 
asdescription above by taking integrated address system , can 
be established. 

In addition, when IP is used as protocol of network layer , 
asshown in Figure 19, address can be granted to packet. 

As shown in figure, data of IP which usually, is usedin IP 
communication is accommodated in IP header . 

encapsulation it does data where IP IP header is attached by 
data which is treated, is transferred from upper position layer 
with the IP header , transfers to lower position layer. 

Page 48 Patemi® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1128



W01997033227Al 

:i!l:: "'F i:itlflh'J'i;*f::-T-1Zict IP "'.:J1i' C7) p;j~~ 
M~L., ~,!1:1::/;(;L: -c J:. i:iLJII::ill"t. 

IP "•,:~1( C7) tj:l a.>*:1"Y3 :./7-f-JL- t-:'lctiiJ ri:.JltC7) 
.Jlt2:~M:t;,, 1! .:f .:::~. 1) 7-f' v""JL-~'J- .A JL--t­
~c~,gljC7) 13 (l<]~itf.t. '"Cil~tctG!:m2:nto:t. '· 

;:a.>*:1.Y3';.17-f'-JL-t:l::fni!-"=E'J :!c ·,:~?(7) 
;'=E;IJJ"t-!'v .A~~·,:~t::"';.I1'T .Q;:c!:::t::J: LJ, jl~ 
C7) IP JL--11~1i'l..f::::$:~B.JH::J:.Q"'f-1Zfni!tJ< 
iiJ'imc!:::fJ.Q. 

~S,J:.E&~~-~~·~1...-c~~L.~::$:~ 
BJJI::J:.Q 77-f JL-fiii!1n!~~fi"t .Qt::l!hC7)C7) 
:1C?"7.L...I;t, 7tJ•,:~t::"--T-f'.A?, '*--T-f.A?, 
m~*--T-f'.A?~C7)112tl~f*I::~~L. "Ci52~2: 
1t .Q;:c!:::tJ<iiJfm"t'! if.>.Q 0 

"iF.t::, -f:.,1Z-*·,:~t-~eC7).:t-·,:~t-?-?~G!:mL. 
"CiiC~"t .Q;:c!:::t iiJim"t'!N>.Q. 

~J:.~oo~•~L.-c::$:~~(7)~~-~~~~ 
BJlL.f::tJ<, *~BJH;t, -'fC7)m*'fJ~Ict.±!l:fJ~tl 
fJ'i;it!m"t .Q;:c!:::to:C i!Ba.>t. '~1. '~to:B-c:~~ 
"t .Q;:c!:::tJ<"t'!~ .Q. 

-'f0)~~---(7)~~-~~~if.>i;~.Q·-c:• 
~.Q0llff-l::"t~9', llJUE:(I<]I::MWRL-"Cictto:.;to: 
(,\. 

::$: ~ B)j 0) i!il!Hllct, ~ ~ ~\l * C7) i!i!IHJI::: ff- "t t C7) 
"t'!;l;>?"C, BJlflillJ:IJ::$:3tl::l;t{iiJi;#i.JJR2:tt.fJI. '• 

2: .; I::, ~ ~lf all* C7) i!i!IHJ C7) lS.J ~ tJIIi I ::)1! "t .Q ri: B 
~ri:J!Ict, "t"" "C::$:~BJla.>i!i!IHJp;)c!:::fJ.Q. 

Drawings 

[IS)1] 

1998-8-4 

data which comes from lower position layer conversely 
analyzes content of IP header , transfers to according to need 
upper position layer. 

Usually option field in IP header is not used with length of the 
variable length , excluding special objective such as security 
level and source root . 

Is through conventional IP router data transfer becomes 
possible with this invention by the mapping doing memory 
address of transfer memory block in this option field. 

Furthermore, referring to above-mentioned each 
embodiment , in order toexecute file transfer method with this 
invention which you explain as for program , housing in 
floppy disk , optical disk , magnetic optical disk or other 
storage media , distribution fabric it ispossible to do. 

In addition, using Internet or other network , distribution 
fabric also it ispossible to do. 

From here, referring to upper drawing aspect, you explained 
embodiment of this invention, but it can execute this 
invention, in other various shapewithout deviating from 
emotion or principal feature. 

Because of that, in all respects interpretation you do not have 
to do theaforementioned embodiment in limited to be no more 
than a mereillustration. 

Range of this invention being something which is shown in 
Claims , thewhat restraint is not done to specification main 
text. 

Furthermore, deformation and modification which belong to 
theequivalent theory of Claims are inside range of all this 
invention. 

[Figure l ] 

Page 49 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1129



W01997033227 Al 1998-8-4 

t< 
~ 

tr.. 
!L. 

I 
K ; ..... 
"""' ..... - ~"-'" 

(I] 
u ..... '?:-./' -f'f") 
~ -1.1.. Ul ::s 

t'%l - .__ 
N - l 

tf 
!t-

=" ~I 

*' - I<R 

G:!'- ""' 
::E ['~ 

_,_ < ""'-"' Cl:: 
r< c ::Ei'~ - t-
;:.? <·*-(I... 

I 

s;z.. -- - ~ '-to. ~ 
! ::s >-

\ - ~ :::r: 
~':;\ 

C3 < ~ 

:::;:, 1- ..:_i' -c.. 1-... 

u - .. r<=' ........ 
J- 1- ( *h r< 
..;!. 1£ ~ 

I 

0 -u.. 

v/ ['· 

u.. ..L. 

~r--
t-
<•* 

[18] 2] [Figure 2] 

Page 50 Paterra® ht!ltantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1130



W01997033227 Al 1998-8-4 

" ., 
"' of;:\ -· u .....- ~ Q... r (' 
~I 

t:.lo. ~ ........ 
~ - n.... 0 :1 

~ ~ 
!&... m \) \) -._,. 1 ,. 
..... 

\0./ -N - 0 

r-- :.c.. 
I"" -~ IJ.. i;IF l ........ ::?: ~ - -..... "" ~ ";:' = = Q *' :::--. - "''I\ 

*'- ~../ M ""~ (!)....._ 0 
-'-~ 
t<C 
-w- -..... 

...-t -,.....- -0 
\ I s.:t. ........ 

~ 
~ - ~ ... !! ~ ::>--

:.>" - ::c 
g.. ~~ en < < ~· 

u • ..._ 
..c.. - _,_~ 

r< r<=' 0) :.e.. ' '*' 16-" ~J " - 1-R I 

~J ['~ t' 
..L..h _,_ 

0 ~~~ ::s~ 

< ·~'""" I !;:'* 

Page 51 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1131



W01997033227 AI 

[[gj3] [Figure 3) 

1998-8-4 

Page 52 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1132



W01997033227 Al 

-

_,__ ·-

-M - ._ 

---

~ 

7\-i 
t' 
..L. 

I ~.~ 
I. 

1998-8-4 

;7,296) 

Oracle Ex. 1002, pg. 1133



W01997033227 Al 

[ISJ4] [Figure 4] 

1998-8-4 

Page 54 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1134



Bl 

-~~)! 

*A ~ j. .:r IJ 
( ~a1itt-f* 2 ) B3 
~i(Al:fj1.J 

N 

y 

' . 

»8-8-4 

i7,296) 

Oracle Ex. 1002, pg. 1135



W01997033227 Al 

[1815] (Figure 5] 

1998-8-4 

Page 56 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1136



f'.-__ ~ 
)8-8-4 

' '- ~· T 4 A 7 
c :a1it¥ft 1) ~Al 

<1~llAW1.J) 
~ ~ 

~ ~ 

-

' ~ ,. 
7---¥f±ti ~"A2 

~r 

,, 

;7,296) ..... 

Oracle Ex. 1002, pg. 1137



W01997033227 Al 

[~6] [Figure 6] 

1998-8-4 

Page 58 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1138



W01997033227 Al 1998-8-4 

C12 

Cll 

N 

C6 

;t. '- ~ ;C .:C •J 
N CICiU'f*.l) 

<~ii.AWJJ) 
ClO 

-t&~i? 

;f.-y~']-:7 C1 *':1 ~?-P' C9 
7 If/~ n - r· 7~7~"1.1- ~ 

C8 

i7,i96) 

Oracle Ex. 1002, pg. 1139



W01997033227 Al 

[@7] [Figure 7) 

1998-8-4 

Page 60 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1140



W01997033227 Al 

·L-------------~ I 

'< 
I .,.. 

ATM.A 1 "::T & 2 *oftu:D'*ffl\7 7 .'( JJ..i'i!(7) 
ATM 1J :,t?~~.O.":.);~ (.f.Xi2) 

'J ~ !! 2 M1it (:fa 7 ) 

I I 
I I 
I I 1) :,t ~ 1 fiJZ (ft 3 .... .__.,;:;_.:......;::....:;.:=-..:..:..=.:::...&-~ 
I 

' I 
I 

-- ------ ---- ---

., 

' ....... ---~~---...... 
I I 
i I 

1998-8-4 

. . ~7 
Page 61 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,54!1; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1141



W01997033227 Al 

[jg]B] [Figure 8) 

1998-8-4 

Page 62 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296) 

Oracle Ex. 1002, pg. 1142



ClOl ATM.A ..-( 'Y 7-& 2 *-tj--1-t -*.Ar 
CPU 

C102 

C1041 *A "-ra H *A~~ .:r •J 
~ ') 7 :; (DRAM) 

Cl05 

BusiiF 

AALS 

ATM 

PHY 

C106 

ATM 
~~~~ 

I
rsusi!FI

§
,,_ P.r .-f .A 7

ATM.A ;{ ':J 7-, 155Mbps
D100

:J ~ .:r ~ -.:; ~- J'("'

.::;i
'N
10 ,e

~8

Cl07

PCIJf.A C103

lBusW-1
I I

AALS

ATM

PHY

ATM
7.Y7'~

2SMbps ..:I.- -lfli* ""'-

~
0
""""' IQ
IQ
-...l = ~
~
N
N
-...l
>
""""'

""""' \C
IQ
oc
I oc
~

Oracle Ex. 1002, pg. 1143

W01997033227 Al

[jgj9] [Figure 9]

1998-8-4

Page 64 Paterra® InstaritMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1144

7'1-

' "'

ATMA1 ':17&2*.ft-J<
. CPUv-ClOl tC102 - C103

"" ~A r; t 11 PC I Jl .. A .. -:' ,
~ ,
;; lit.

~ ~ ~ '
.,

ATM
HDI\

ATM v C107
7'i. 7. 'I l'IA 7•'

' ' DlOOc1oR C105
1'5MbpS ATM2S

.::.i
'"tv
\0

.e

~9

.:1.--.Jf~*

CPU - --
~ ~ PC In· A

~ ~

ATM r;· .,. ~ __.

D200

D221g'
(/) -
~
!.
iii"
tT
CD"
()
0

D222 ~

-00
I

00
~

Oracle Ex. 1002, pg. 1145

W01997033227 AI

[jgj10] [Figure 10]

1998-8-4

Page 66 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1146

u

·-

::t ~ T ;.;' •)14J'"-I< A TM;(..f 7 "!* A TM;t ..f -~ "1-&. 2 ?J\it-·Jt

Q. 2 9 3 1 Q. 2 931 '12931
I

sscFrss:cop SS CTF/S S COP SSCF/SSCOP
I

SAR.CPCS SAR.CPCS SAR.CPCS :
~

(AAL5) CAAL5) (AAL5) r
• r--------, i • ATM ATM I 1

ATM
1 i

! ' I
PHY IPHY PHYI PHY J ! ' Mb p s> f{155Mbpsli (l 5 5Mbp s) i

I • I I .Jvp 1 ~o.f
l I 'I 1 ·. C-plane

1
I' I VCI=S
l 1 n I

L--~- ... ---.... ---~

-..1
'N
\0
.E)

U-pla.ne
,.. ___ _. ~ _,.

1M 1 0

CPCS-PDU

\
1::=:.1 ~-- -~6

<DRAM) (HD)

PCI
Bus

OCi
I

QC

J:..

Oracle Ex. 1002, pg. 1147

W01997033227 AI

[ISI11] [Figure II]

1998-8-4

Page 68 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1148

J s>

-..J
'N
\0
0\ .._,

.:L--tffiiSR
ATM;z: 4 ·~ t!-&2i*ii'-J'<

i511\.llj~
77 1)

Q. host
Q. 2 9 31 I .2 93 1 DRAM .

CPCS-PDZ l • ~

SSCF/SSCOP SSCF/SSCOPt
i

td--~ ~SAR.CPCS SAR.CPCS i
CAAL5) <AAL 5) ! -

(DRAM) CHDl I ATM ATM ! !
i I

I PHY PHY •
• I 1
i<25Mbps) C p lane I ----- I
' . - J ~.-_._. __,,.._ ... ~ ~-- ,_-----..................... _

U-plane

~ 11
~
I

00
J.

m
(I)
(I) -)>
<
!.
Dr
0"
ii)
("')
0

"0
'<

Oracle Ex. 1002, pg. 1149

W01997033227 Al

[[gj12] [Figure 12]

1998-8-4

Page 70 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1150

W01997033227 Al

......
~

~
K
~

lh
!l...

...... I N
/'

(") "' <"':1

• ~ • --· qt;g
~I III

·llm linD'
~ ~

C\1

~

(\

K

"' lh
!l...

""' "'

LC)

~
I
[\'

• • •

1998-8-4

~
~

~
K

"" 1h
u...

t::: I
(")

,.
" • a

~liD

!1!
if!>(

Oracle Ex. 1002, pg. 1151

W01997033227 Al

[ISI13] [Figure 13]

1998-8-4

Page 72 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1152

H11JJ
~8-8-4

SEQ::10

SEQ=50

NAK==4
7,296)

S£0.110'
·~-

Oracle Ex. 1002, pg. 1153

W01997033227 Al

[(g)14] [Figure 14]

1998-8-4

Page 74 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1154

W01997033227 Al 1998-8-4

t: •J t--ft: 0 16 31
~--------------------~--------------------~

UDP Source Port UDP Destination Port

UDP Massage Length UOP Checksum

Data

~ 14

Page 75 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1155

W01997033227Al

(jgj15] [Figure 15]

1998-8-4

Page 76 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1156

Best Available Copy

-I I

)8-8-4

C\1
(")

I
(.)
a:
0

r- -

-C\1 _J

0 --
r-. - ctS

"" +6 , - - I
a..

-!--~
.,....

(.)

~
~ --... a.=> -~

......
u=?

1'-- Cl ~
<(l a_

0
........... --·····

!.£..

I i7,296)

z 0
'--- I ._. ., I

Oracle Ex. 1002, pg. 1157

W01997033227 Al

[(g)16] [Figure 16]

1998-8-4

Page 78 Paterra® InstantMT® Machine Tmns1ation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1158

W01997033227 Al

~m~U

NAK=4 0

1998-8-4

~{giJ

X

;7,296)

Oracle Ex. 1002, pg. 1159

W01997033227 AI

[ISI17] [Figure 17]

1998-8-4

Page 80 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1160

C502 -
*Al-
CPU

C501

*A r ;e .e •J
{DRAM)

*.A ~ 1<""' C503
--~~--~~~ .. ----~~
I *.A 1---PCI ;l\.A ~ ·PCI

~M ~~?~ ~~79 r~~

~.,"?-?
1~?7:£-
711'"7~

PCirtA. C506

~llust/F

~IXAUI
I ATI\tf I
IPHYI

C608

ilmill at• fa..-.....

.:..i
'N
\0
~

I

~~~usm 
~~AALSI 

tATh11 
I P,* I 

C509 

I 

~[Busl?J 

~~~AfSJ 
lATMJ
IPHYI

C510

~ 17

PCII</, C507

~l8qs 1/Fl
'~(AALsl

C511

lATM(

I PHY I"'

$tii1JUit

00
I

QC

J.

Oracle Ex. 1002, pg. 1161

W01997033227 Al

[[gj18] [Figure 18]

1998-8-4

Page 82 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1162

-
~

~ ..-....... -'-n
,.._ -· at! om
91'\ l

)8-8-4

~ ,.

lJ
\t)

..L.
......
ti'JQ ~
u

~ Cl'll lJ
~ ~

j

t\
~
:t-

~~
~ -
~
~

i7,296)

K
~

Oracle Ex. 1002, pg. 1163

W01997033227 Al 1998-8-4

[IS!19] [Figure 19]

m
.,......

@EI

N
rrl ..L l::\

?\ 1\
.tJ "' "'

4. .. 1h
-R ~ ~.,..

l1tt ..L ~
~

..L ,\ ~

~

""'
H

.t--. ~ "" """' .. ll\ ~
""' ~I\ ~

e= (K:l.
~

c.,) K ::r:: !L.
•. If\ ~

~
~

~J'\
!L

U)
A..

r""'
~ -

l-\ 1~ ~ ~

Ig - 1${
~ ~

~
~ -

~ ""' ~ 1\ n ..
K •• ;L. :i < m
:u t;c

Q ,~

ci.il ~h h
e*' r+ -R

(X) "=" :z ~

II
0

U¢{ 11!
......
E--1 .. .,

Q 1!r
c..

53~ - 0

-< ll:
v ,......, :l+f

.m
•

~ .. '" ek
0

H~(~~

Page 84 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1164

W01997033227 AI

[rg]20] [Figure 20]

1998-8-4

Page 85 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1165

W01997033227Al 1998-8-4

*"~CPU
vEt

E30 CRT I E32 :t--;f- r-
E2 Ell\ I E33'\ I

E~ ~ J.. ~-PCI ~" ~ j. :r ') !/77.{'7~" !f-~- t
'1')1Y 1-

{DRAM) ;!{- t :J/~0-7

I
•J \E3:iflm r-? ''{:X

ES, .l-7~'7-~
~ .., (PCIJ'\.A)

r¥1'111-r
,,_ ~-· r-E6

(ATM)
:;'.('}..9

EIO ~-""' ""') '-

-~ it1t:ll
~1~'7-?

~20A (ATM-LAN,ete
.

~20B
Page 86 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1166

W01997033227 Al

[[gj21]

7"0 ~ :l}v A ~ ':1 7

ftp (7 7 1J -7-:; 3 /)

TCP
IP
SNAPILLC
AAUtvne5)
ATM

PHY

[[gj22]

CPU

{Figure 21 }

)\-~·?.:X:. 7

SARchip
ATMchip

1998-8-4

7G .:r :; .:z. - Jv, SIP~~' -l! J~fiiJMIID!l

~21
{Figure 22}

Page 87 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1167

W01997033227 Al

-< B101
-

I
I - I

JSSMbps

--- ---

ATM:A -1 •:t 7- Bl03

I. I
I

..... - ---

I
I
I

--..... --- ---.... -- ----

.. U:ebme
7·,-{ Jv ~?·;-
~ ') :;,..~

C-Pianc C. Plane :,.. ~-t ') :;,.. !I'
AAL AAL
A'IM ATM
PHY PHYIPHY

J55Mbps 2SMbps

~2 2

1998-8-4

rii* B 102

D
I I

--

...
7y,(Jl;

~~-t &~ '):,.. 'Y
AAL
ATM
PHY

;7,296)

Oracle Ex. 1002, pg. 1168

W01997033227 Al

[jgj23] {Figure 23}

1998-8-4

Page 89 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1169

llmil ,.....__ ___ _,, .

10

20

30

40

50

SEQ=10

SEQ:50
'

)8-8-4

;7,296)

Oracle Ex. 1002, pg. 1170

W01997033227 Al

[1!1 ~iliH~HIH3-l

1998-8-4

Page 91 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

Oracle Ex. 1002, pg. 1171

G itl;)_
11111~11111111111111111~1 ~~~ ~~~ IIIII ~1111m ~~.

(12) PATENT ABRIDGMENT (11) Document No. AU·B-64125/90
(19) AUSTRALIAN PATENT OFFICE (1 0) Acceptance No. 64 7 414

(54) Title
PARALLEL 1/Q NETWORK FILE SERVER ARCHITECTURE

International Patent Classiflcatlon(s)
(51)5 G06F 01&/18

(21) Application No.: 64125/90

(87) PCT Publication Number·: W091/03788

(30) Priority Data

(31) Number (32) Date (33) Country

(22) Application Date : 20.08.90

404959 08.09.89 US UNITED STATES·OF AMERICA

(43) Publlcatlon Date : 08.0-'.91

(44) Publication Date of Accepted Application: 24.03.94

{71) Appllcant(s)
AUSPEX SYSTEMS, INC.

,{72) lnventor(s)
EDWARD JOHN ROW; LAURENCE B. BOUCHER; WIU.IAM M. PITTS; STEP!iEN E. BLIGHTMAN

(74) Attorney or Agent
DAVIES COWSON CAVE , 1 Little Collins Street, MELBOURNE VIC 3000

{56) PriE>r Art Documents
AU 679806 63068/86 006F 13/1 t

(57) Claim

1. Network serve.+ appar;q.tu~ for use with a d.ata

network and a ~ass: s.tora·qe device, .comprising:

.an interface processor u.nit coupleable to said

network and to said mass storage device;

a 'host process(j)r ·unit c.apable of runninq remote

procedures defined by a client node on said network;

means in said interface processor unit for

satisfring requests from sai<l network to st.ore data

from said network on said mass storage device;

means in sai~ interface processor unit for

satisfying requests from said network to retrieve data

from said'mass storage device to said network; and

means in $aid interface processor unit for

transmitting predefined categories of messages from

said network to said host processor unit for processing

in sai4 host p~oaessor unit, said t~ansmitted messages

AU908412&
1

.. ./2

Oracle Ex. 1002, pg. 1172

(11) AU·B-64125/90
(10) 647414

·2-

includinq all requests by a network client to run

client-defined procedures on said network Derver

apparatus.

Oracle Ex. 1002, pg. 1173

..

Vf 1 Ul'\1 ~ VUt V"H ;.!.t. n .- r ._ •• • tU

Per AOJP DATE 16/05/91 PCT NUMBER PCT/US90/04711

INTERNATIONAL At>t'LlC...:A l'lON PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCn

(51) latematlonal Pateat Oassincatlon 5 :

C06F1S/16 A1
(II) International Publltatlon Number:

(43) International Publlc:ation Date:

WO 91/03788

21 Man:h 1991 (21.03.91)

.(11) lnti!J'II8tloaal Application Number: PCT/US90/047lt (74)Agents: FLIESLER, Martin, C. et ~~~.; Fliesler, Dubb,
Meyer & Lovejoy, 4 Embarcadero Center, Suite 400, San
Francisco, CA 94111 (US). (12) International RUng Date: 20 August 1990 (20.08.90)

(30) Priority data:
404,959 8 September 1989 (08.09.89) US

(71) Applic:ant: AUSPEX SYSTEMS, INC. [US/US); 2952
Bunker Hill Lane, Santa Clara, CA 95054 (US).

(7l) Inventors: ROW, Edward, John ; 468 Mountain Laurel
Court, Moutain View, CA 94064 (US). BOUCHER,
Laurence, B. ; 20605 Montalvo Heights Drive, Saratoga,
CA 95070 (US). PlTIS, William, M. ; 780 Mora Drive,
Los Altos, CA 94022 (US). BLIGHTMAN, Stephen, E. ;
775 Salt Lake Drive, San Jose, CA 95133 (US).

(81) Designated States: AT (European patent), AU, BE (Euro­
pean patent), CA, CH (European patent), DE (Euro­
pean patent)•, OK (European patent), ES (European pa­
tent), FR (European patent), GB (European j)atent), IT
(European patent), JP, KR, LU (European patent), NL
(European patent), SE (European patent).

Published
With international search report.
Before the expiration of the rime. limit for amending the
claims a11d to be republished in the et•ellf of the receipt of
amendments.

6 4 7 4 1 4

(54)1it1e: PARALLEll/0 NETWORK FILE SERVER ARCHITECTURE

{ ,

(S1)Absfmd

llOb llOCl ""·
llOc:-. \

liOd..., \ ,J.

UEoo.-.....
u6:b "",.-~o-\ __ _,

U6c:-...,

.---100

ti£TVORK ll&d~ SYST£H

I
_j

rJLE

CONTROLLER
,.. .

ll2b- /
U!o-

H£HDRY

I

LOCAL
HOST

I ll4b

.---..!L--',v uco

I

STORAGE L_j::J+:J:+::P+I+J•
PROCESSOR ~""H-HH-t-+++-t-1~

---s11EEEII 1EEEIIIB:EIII

A file server architecture is disclosed, comprising as separate processors, a network .controller unit (110), a file conttGiler
unit (Ill) and a storage prcx:essor unit (114). These units incorporate their own processors, and operate in parallel with a local
Unill best processor (118). All networks are connec:ted to the network. controller unit (110), which perfonns all protocol process­
ing up through the NFS layer. The virtual file systenl is lmplemente(l in the file controller unit (112) and the storage processor
(114) provides high-speed multiplexed acc:leSS to an array of mass storage deviaes. The nte controller unit (I 12) controls file in for·
mation caching ~hrough its own local cache buffer, and controls disk data cacliing through a large system memory which is acces­
sible on a bus by any of the pnx:essors.

Oracle Ex. 1002, pg. 1174

r

.....

-1-

PABALLEL I/0 NETWQRK FILE SERYER ARCHIT$CTURE

5

to· The present application is related to the

following published International Patent Applications:

1. MULTIPLE FACILITY OPERATING SYSTEM

ARCHITECTURE, invented by David Hitz, Allan Schwartz,

James Lau and Guy Harris, PCT Publication No.

15 W091/04540, internati0nal. filinq date April 4, 1991;

2. ENHANCE.O VMEBUS PROTOCOL UTILIZING

PSEUDOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA

TRANSFER, invented by Daryl Starr, PCT Publication No.

W091/03786, international filing date March 21, 1?91;

20 and

3. BUS LOCKING FIFO MULTI-PROCESSOR COMMUNICATIONS

SYSTEM UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND

BLOCK MODE DATA TRANSFER invented by Daryl D. Starr,

William Pitts and Stephen Bliqhtman, PCT Public4tion

25 No.W091/11768, international filinq date Auqust 8,

1991.

The above applications are all assigned to the

assiqnee of the present invention and are all expressly

incorporated herein by reference.

Oracle Ex. 1002, pg. 1175

W09l/03788 PCT/US90/04711

-2-

BACKGROUND OF THE iNVENTION

Field of the Inyention

The invention relates to computer data networks,

and more particularly, to network file server

5 architectures for computer networks.

10

pescription of the Relat_ed Art

Over the past ten years, remarkable increases in

hardware price/performance ratios have -caused a

startling shift in both technical and office computing

environments. Distributed workstation-server networks

are displacing the once pervasive dumb terminal

attached to mainframe or minicomputer. To date,

however, network I/O limitation~ have constrai~ed tke

15 potential performa.nce available to workstation users.

This situation has developed in part because dramatic

jumps in microproeessor performance have exceeded

increases in network I/O performance.

-In a computer network, individual user workstations

20 are referred to as clients, and shared resources for

filing, printing~ data sto~a9e and wide-area

communications are +efe.t:red to as servers. Clients

and servers are all considered nodes of a network.

Clie·nt nodes use standard communications protocqls to

25 exchange service requests .and responses with server

nodes.

Present-da~ network clients and servers usually .run

the DOS, Macintosh OS, OS/2, or Unix operating

systems. Local networks are usually ~thernet or Token

30 Ring at the high end, Arcnet in th-e midrange, or

LocalTalk or StarLAN at the low end. The client­

server communication protocols are fairly strictly

dictated by the operating system environme~t

usually one of several proprietary schemel!i for .Pes

35 ' (NetWare, 3Plus, Vines, LANManager, LANServe:t);

AppleTalk for Macintoshe~; and TCP/IP with NFS. or RFS ..

S_UPSTffUTE SHEET

Oracle Ex. 1002, pg. 1176

'

W091103788 PCf/US90/04711

-3-

for Unix. These protocols are all well-known in the

industry.

Unix client nodes typically feature a 16- or 32-

bit microprocessor with 1-8 MB of primary memory, a

5 640 ~ 1024 pixel display, and a built-in network

interface. A 40-100 MB local disk is often optional.

Low-end examples are 80286-based PCs or 68000-based

Macintosh I's; mid-ran9e machines include 80386 PCs,

Macintosh Il' s, and 680XO-based Unix workstations;

10 ~i9h-end machines include RISC-based DEC, HP, and Sun

Unix workstations. Servers are typically nothin9 more

than repacka9ed client node&, confi9ured in 19-inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

15 disk or tape drives, and power supplies.

Driven by RISC and CISC microprocessor

developments, client workstation performance has

increased by inore than. a factQr of ten in the last few

years. Concurre.ntly, these extremely fast clients

20 have also 9ained an appetite for data that remote

servers are unable to satisfy. Because the I/O

shortfall is most dramatic in the Unix environment,

· the description of the preferred embodiment of the

present invention will :focus on Unix file servers.

25 The architectural principles that solve the Unix·

server I/O problem, however, extend easily to. server

performance bottlenecks in other operatin9 system

environments as well. Similarly, the description of

the preferred embodiment will focus on Ethernet

30 implementations, thou9h the principles extend easily

to other types of n·etworks. \. .

In most Unix environments, cli~ts and servers

exchange file data using the Network File System

(•SFs•), a standard promulgated by Sun Microsystems

35 and now widely adopted by the Unix community. NFS is

defined in a document entitled, •NFS: Network F'ile

~UBS.TITUTE SHEET

Oracle Ex. 1002, pg. 1177

r
W091/0l788

5

PCTiUS90/04711

-4-

System Protocol Specification," Request For Comments
(RFC) 1094, by Sun Microsystems, Inc. (March 1989).
This document is incorporated herein by reference in
its entirety.

While simple and reliable, NFS is not optimal.
Clients using NFS place considerable demands upon both
networks and NPS servers supplying clients with NFS
data. This demand is particul~rly acute for so­
called diskless clients that have no local disks and

10 therefore depend on a file server for application
binaries and virtual memory paging as well as data.
For these Unix client-server ~onfigurations, the ten­
to-o~e increase in client power has not been matched
by a ten-to-one increase in Ethernet capacity, in disk

15 speedt or server disk-to-netw~rk I/O throughput.
The result is that the number of diskle.ss clients

that a single modern high-end server. can adequately
support has dropped to between 5-10, depending on
client power and application workload. For clients

20 containing small local disks for applications and
paging·. referred to as dataless clients •. the client­
to-serve·r ratio is about twice this, or between 10-
20.

Such low client/server ratios sause piecewise
· 25 network confiqurations- in which each ·local Ethernet

conta~ns isolated traffic for its own 5-10 (diskless)

clients and dedicated server. For overall
connectivity~ these local networks are usually joined
together with an Ethernet backbone Qr, in the future,

30 with an FDDI backbone. These backbones are typically
connected to the local networks either by IP routers
or MAC-level bridges, coupling the local networkB
together directly, or by a ~econd server functioning
as a network interface, coupling servers for all the

35 local networks together.

SUBSTITUTf ~nr:r:T

Oracle Ex. 1002, pg. 1178

,

'

W091103788

5

10

PCT/US90/047J 1

-5-

In addition to performance considerations, the low

client-to-server ratio creates computing problems in

several additional ways:

1.. Sharing. Development groups of more than 5-

10 people cannot share the same server, and thus

cannot easily share files without file replication and

manuai, multi-server updates. Bridges or routers are

a partial solution but inflict a performance penalty

due to more network hops.

2. Administtation. System administrators must

maintain many limited-capacity servers rather than a

few more substantial servers. This burden includes

network administration, hardware maintenance, and user

account administration.

15 3. File System Backup. System administrators or

operators must cond~ct multiple file system backups,.

which can be onerously time. consuming tasks. It is

also e~pensive to duplicate backup peripherals on each

server (or every few ·servers if slower network backup

20 is used).

4. Price Per Seat. With only 5-10 clients per

server, the cost of. the server must be shared by only

s small number of users. The real cost of an entry­

level Unix workstation is therefore significantly

~5 greater, often as much as 140% greater, than the cost

of the workstation alone.

The widening I/0 gap, as well as administrative and

economic considerations, de~onstrates a need for

higher-performance~ larqer-capacity Unix file servers.

30 Conversion of a display-less workstation into a server

may address disk capacity issues, but does nothing to

addre8$ fundamental l/0 limitations. As an NFS

server, the one-time workstation must sustain 5-10 or

more times the network, d+sk, backplane, and file

35 system thr:oughput than it was desic;ned to support as

8 elient. Adding larger disks 1 more network adaptors 1

SUBSTITU.TE SHEET

Oracle Ex. 1002, pg. 1179

W091103788 PCf/US90/04711

-6-

extra primary memory, or even a faster "processor do
not resolve basic. architectural I/O constraints; I/O
throughput does not increase sufficiently.

Other prior art computer architectures, while not
5 specifically designed as file servers, may potentially

be used as such. In one such well-known architecture,
a CPU, a memory unit, and two I/O processors are
connected to a single bus. One of the I/O processors
operates a set of disk drives, and if the architecture

10 is to be used as a server, the other I/O processor
woul~ be connected to a network. This architecture is
not. optimal as a file server, however, at least
because the two I/O processors cannot handle network
file requests without involving the CPU. All network

15 file requests that are received :Qy the network I/0

processor are f.:i,rst transmitted to the cpu·, which
makes appropriate requests to the disk-I/O processor
for satisfaction Of the network request.

In another such computer architecture, a disk
20 oontroll.er CPU manages. access to disk drives, and

several other CPUs, three fo:.: example, may be
clustered around the disk controller CPU. Each of the
othe.r CPUs can be connected to its. own network. The
network CPUs are each connected to. the disk controller.

25 cpu· as well a~? to each other for interprocessor
communication. One ot the disadvantages of this
computet architecture is that each CPU in the system
runs its own complete operating system. Thus, network
file server requests must be handled by an operating

30 system which is also heavily loaded with facilities
and processes for performing a large number of other,
non file .. server tasks. Additionally, the
interprocessor communication is not optimi~ed for file

server type requests.
35 In yet anQther computer architecture, a plurality

of CPUS1 each having its own cache memory for data and

S-UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1180

... . .
' ...

. 7.

instruction storage, are connected to a common bus with a system memory and a

disk controller. The disk controller and each of the CPUs have direct memory

access to the system memory, and one or more of the CPUs can be connected to a

network. This architecture is disadvantageous as a file server because, among other

.5 things, both file data and the instructions for the CPUs reside in the same system

memory. There will be instances, therefore, in which the CPUs must stop running

while they wait for large blocks of file data to be transferred between system

memory and the network CPU. Additionally,. as with both of the previously

described comput~r architectures, the entire operating system runs on each of the

10 CPUs, including the network CPU •

. In yet another type of computer architecture, a large number of CPUs are

connected together in a hypercube tOpology. One of more of these CPUs can be

connected to networks, while another can. be connected to disk drives. This

15 architecture is also disadvantageous as a file server because, among other things each

processor runs th~ entire operating system. lnterprocessor communication is also not

optimal for file server· applications~

20

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided a network serv~r

apparatus for use with a data network and a mass storage device, comprising:

an interface processor unit coupfeable to said network and to said mass

storage device;

25 a host processor unit capable of running remote procedures defined by a

client node on said network;

. means in said interface processor unit for satisfying requests from said

network to store data from said netwOrk on said mass storage device;

· means in said interface processor unit for satisfying requests from said

930303.p:\oper\jcm.6412S.SPE. 7

Oracle Ex. 1002, pg. 1181

#•••

-8-

network to retrieve data from said mass storage device to said network; and

means in said interface processor unit for transmitting predefined categories

of messages from said network to said host processor unit for processing in said host

processor unit, said transmitted messages including all requests by a nelwork client

S to run client-defined procedures on said network server apparatus.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be descnbed with respect to particular embodiments

10 thereof, and reference will be made to the drawings, in which:

Fig. 1. is a block diagram of a prior art file server architecture;

Oracle Ex. 1002, pg. 1182

r
W09JI03788 PCT/US90/0471 J

-9-

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network

controllers shown in Fig. 2;

5 Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig. 5 is a block diagram of one of the storage

processors shown in Fig. 2;

Fig. 6 is a block di(lgram of one of the system

10 memory cards.shown in Fig. 2;

15

Figs. 7A-C are a flowchart illustrating the

operation of a :fart transfer protocol BLOCK WRITE
cycle; and

Figs. SA-C
operation of 1,1.

cycle.

are a flowchart illustrating the

fa!;t transfer protocol BLOCK READ

DEXAILEp bESCRIPTION

For comparison purposes and background, an

20 illustrative prior-art file server architecture will

first be described with respect to Fig. 1. Fig. 1 is
an overall block diagram of a conventional prior-art
Unix-based file server for Ethernet networks. It

consists of a host CPO card 10 with a single
25 microproces·ser o.n .board. ~he host CPU card 10

connects to an Ethernet 11 12, and it connects via a
memory management unit (MMU) 1 t to .a large memory

array 16. The host CPU card 10 also drives a

keyboard, a video display, and two RS2J2 ports (not
30 shown.) • It also connects via the MMU 11 and a

standard 32-bit VME bus 20 to various p·eripheral

devices, inoludin·g an SMD disk controller 22

controlling one or .two disk drives 24, a SCSI host

adaptor 26 connected to a SCSI bus 28, a tap&

35 controller 30 connected to a quarter-inch tape drive

32, and possibly a network 12 controller 34 connected

8UBSTf'tUTE SHEET

Oracle Ex. 1002, pg. 1183

W091/03788 PCT/US90/0471 1

-10-

to a second Etheraet 36. The SMO disk controller 22

can communicate with memory array 16 by direct memory

access via bus 20 and MMU 11, with either the disk

controller or the MMU acting as a bus master. This

5 configuration is illustrative; many variations are

available.

The sy$tem communicates over the Ethernets using

industry standard TCP/IP and NFS protocol stacks. A

description of protocol stacks in general can be found

10 in Tanenbaum, "Computer Networksn (Second Edition,

Preatice Hall: 1988). File server protocol stacks are

described at pages 535-546. The Tanenbaum reference

is incorporated herein by reference.

Basically, the followinq protocol layers are

15 implemented in the apparatus of Fig. 1:

Netwprk Layer. The network layer converts data

packets between a formal specific to Ethernets and a

format which is independent of the particular type of

netwo'rk used. the Ethernet-specifie format which iii

20 used in the apparatus of Fiq. l is described in

Hornig, "A Standard For The Transmission of IP

Oatagrams Over Ethernet Networks," RFC 894 (April

1984), which is incorpQrated hereia by reference,

The Internet Protocol (IPl Layer. This 1 aye r

25 provides the functions necessary to deliver a package

of bits (an. internet datagram) from a source to a

dest~nation over an interconnected system of networks.

For messages to be sent from the file server to a

client, q higher level in the server calls the ·rp

30 module, provtding the internet address of the

destination c'lient and the message to transmit. The

IP module performs any required fragm~atation of the

message to accommodate packet size limi~ations of any

intervening gateway, adds internet headers to each

35 fragment, and calls on the network layer to transmit

the resulting internet datagrams. The internet hea'der

~UB_~JITUiE SHEET

Oracle Ex. 1002, pg. 1184

W091103788

5

PCT/US90/04711

-11-

includes a local network destination address

(translated from the internet address) as well as

other parameters.

For messages received by the IP layer from the

network layer, the IP mod·.1le determines from the

internet address whet'her the datagram is to be

forwarded to another host on another network, for

example on a second Ethernet such as 36 in Fig. 1, or

whether it is intended for the server itself. If it

10 is intended for another host on the second network,

the IP module determines a local net address for the

destination .and calls on the local network layer. for

that netwo~k to. send the datagram. If the datagram is

intended for an applicati0n program within the server,

15 the ~P layer strips eff the header and passes the

remain.ing portion o·f the message to the. a~ropri~te

next hiqher layer. The ~nternet protocol standard

used in the illustrative . apparatus of Fig. 1 is

specified in Infcrmation ~ciences Institute, "Internet

20 Protocol, DARPA Inte~det Program Protocol

Specifi¢ation," RFC 791 (September 1981), which is

incorporated herein by reference.

TCP/UDP Layer .. This layer i,Ji a dataqram service

with more elaborate paokaging and addres.sing options

25 than t:he IP layer. For ex.p.·mple, whereas an IP

datagram can hold about 1,50() bytes and }:)e addressed

to host::s., UDP d:a-taqrams can hold about 64KB and be

addressed to a particular port within a host. TCP and

UDP are a.lternative protocols- at this layer;

30 applications requiring ordered. reliable delivery of

streams o.f data may use TCP, whereas applications

(sueh as NFS) which do not require ordere~ and

relia~le delivery may use UDP.

The prior art file server Gf Fig. 1 uses both TCP

35 and uoP. It usee ODP for file server-related

services, and uses TCP for certain other services

SUBSTITUTE SilEET
..... ·-

Oracle Ex. 1002, pg. 1185

W091103788 PCf/US90/047JI

-12-

which the server provides to network clients. The UDP

is specified in Postel, 11 User Datagram Protocol·," R.FC

7&8 (August 28, 1980), which is incorporated herein by
referen~e. TCP is specified in Postel, "Transmission

5 Control Protoco~,~~ RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein by

reference.

10

XDR/RPC Layer. This layer provides functions

callable from higher level programs to run a

designated procedure on a remote machine. It also

provides the decoding necessary to permit a client

machine ta execute ~ procedure on the server. For

example, a caller process in a client node may send a

call me·Ssaqe to the server of F"ig. 1. The call

15 message includes a spec£fication of the desired

proc·edure, and its parameters. The. message j,.s passed

up th~ sta-ck to the RPC layer, which calls the

appropriate procedure within the se·rv&r. When the

procedure is complet~, a ·reply messaqe is generated

20 and RPC passes 1 t back down the stack. and . over the

networ~ to the caller Cli·ent. RPC is described in Sun

Microsystems, l.rtc., "RPC: Remote Procedure- Call

PrOtQcol Specifioati9n,. Vereion 2, a RFC 1057 (June

1988), which is incorporated herein by r~ference.

25 RPC uses the XDR external data representation

standard to represent information passed to and from

the underlying UDP layer. XDR is merely a data

encoding standard, useful for transferring data

between different comput~r architectures. Thus, on

JO the network ·side Qf the XDR/RPC .layer, information is

machine-independent; on the host application side, it

may not be. XDR .is described in Sun Microsystems,

Inc., "XDR: External Data Representation Standaro,"

RFC 1014 (June 198 7 ~ • wh:ieh .is incorporated .herein by
35 reference.

SUBSTITUTE SHEET
... ··-- ..

Oracle Ex. 1002, pg. 1186

r
W091/03788

5

PCf/US90/04711

-13-

NFS Layer. The NFS ("network file system")
layer is one of the proqrams available on the server
which an RPC request can call. '!'he combination of
host address, proqram number, and procedure number in
an RPC request can specify one remote NFS procedure to
be called.

Remote procedure calls to NFS on the file server of
Fig. 1 provide transparent, stateless, remote access
to shared files on the disks 24. NFS assumes a ~ile

10 system that is hierarchical, with directories as all
hut the- bottom level of files. Client hosts can call
any of about 20 .NFS procedures includinq such
procedur~s as reading a specified number of bytes from
a specified file; writing a specified number of byte$

15 to a specified file; creating.,_ renaming and removj,.ng
specified files; parsing directory trees; creating and

removing d.irectories ~ and reading and setting file
~ttributes. The location on disk ~o wbich and from

which 4ata is stored and retrieved is always specified
20 in logical terms, such as by a file handle or Inode

designation and a byte offset. The details of the
actual data storage a~e hidden from the client. The

NFS proeedures, tog:ether with possible high~r. level
modules such as Qnix VFS ~nd UFS, p~rform all

25 conversion ·of loqical data addresse!l to physical data.
addresees such as drive, he·aa, track and sector
identifi.cat;l.on. NFS is specified in S.U·n Microsystems,
Inc., "NFS: Ne~work F~le System Prctocol
Specif.ica.tion, .11 RFC 1094. (March 1989), incorporated

30 herein by reference.
With the possible exception of the network layer,

all the protocol processing·descrihed above is done in
software, by a single processor in the host C~U card

10. 'l'hat is, when an Ethernet packet arrives on
35 EtherRet 12, the host CPU 10 performs all the protocol

processin9 ift the NFS stack, as well as the protocol

SUIJSTITUTE SHEET

Oracle Ex. 1002, pg. 1187

W091/03788 PCf/US90/04711

-14-

processinq for any other appl'ication which may be
runninq on the host 10. NFS procedures are run on the
host CPU 10, with access to memory 16 for both data
and proqram code beinq provided via MMU 11. Logically

5 specified data addresses are converted to a much more

physically specified form and communicated to the SMD

disk controller 22 or the SCSI bus 28, via the VME bus

20, and all disk caching is done by the host CPU 10

throuqh the memory 16. The host CPU card 10 also runs

10 procedures for performing various other functions of

the file server, communicatinq with tape controller 30
via the VME bus 20. Among these are client-defined

remote procedures requested by elient workstations.

If the server serves a second Ethernet 36, packets

15 from that Ethernet are transmitted to the host CPU 10

over the same VME bus 20 in the form of IP datagrams.

Again, all protocol processing except for the network
layer is performed by software processes runni.ng on
the host CPU 10. In addition, the protocol processing

20 for any messaqe that is to be sent from the server out

on either of the Ethernets I2 or 36 is also done by
processes running on the host CPU 10.

It can be seen that the host CPU. 10 performs an

enormou·s amount of processing of data4 especially if

25 5-10 clients on each of the twD Ethernets are makinq
file server requests and need to be sent responses on

~ frequent basis. The host CPU 10 runs a multitasking
Unix operating s·ystem, so each incoming request need

. not wait for the previous request to be complete'ly
30 processed a11d returned before being processed.

Multiple processes are activated on the host CPU 10

for performing different stages of the processing of

different requests, so many req~ests may be in process

at the ~ame time. But there is only one CPU on the

35 card lO, so the processing of these requests is not

accomplished in a truly parallel manner. The

SUBSTITUTE SHEEJ
,...,. ·-.--·

Oracle Ex. 1002, pg. 1188

J ... ,

W091103788

5

PCT/US90/04711

-15-

processes are instead merely time sliced. The CPU 10

therefore represents a major bottleneck in the

processinq_ of file server requests.

Another bottleneck occurs in MMU 11~ which must

transmit both instructions and data between the CPU

card 10 and the memory 16. All data flowing between

the disk drives and the network passes throuqh this

interface at least twi.ce.

Yet another bottleneck can occur on the VME bu·s 20 1

10 which must transmit data amonq the SMD disk controller

2!, the SCSI host adaptor 26, the host CPU card 10,

and pos·sibly the network 12 cont.;oller 24.

PREFERRED EMBOOIMENT-OVEBALL HARDNARE ARCHITECTURE

15 In Fiq. 2· there is shown a block. diaqram of a

n~twork fi~e server 100 accordinq to the invention.

It can include multiple network controller (NC)

boards, one or more file controller (FC) bo~~d~, one

or more storaqe processor (SP) boards, multiple system

. 20 memory boa~ds, and one or mQre bost processors. The

particular embodiment shown in Fiq. 2 includes four

network controller boards uoa-110d, t-wo file

controller boards 112a-ll2b, two storaqe processors

114a..:.l14b, f.our system: memory cards 116a-116d foa:; a

25 total of 192MB of ~emory, and one local host proc&ssor

118. The boards 119, 112, 114, 116 and 118 are

connected together over a VME bus 1~0 on which an

enha.nced block transfer mode .as· described in the

ENHANCED VMEBUS PROTOCOL application identified above

30 may be used. Eaeh of the four network controllers 110

shown in Fig. 2 ~an be . connected to up to two

. Ethern-ets 122, for a total capacity of 8 Ethernet&

122a-122h. Each of the storage processors 114

operates ten parallel SCSI busses, nine of which can

35 each support up to three: $C"Sl disk drives each. The.

tenth SCSI channel on eaeh of the storage processors

~UjSJJTUTE SHEEJ

Oracle Ex. 1002, pg. 1189

W091103788 PCT /US90/04711

-16-

114 is used for tape drives and other SCSI
peripherals.

The host 118 is essentially a standard Sunos Unix
processor, providinq all the standard Sun Open Network

5 Computinq (ONC) services except NFS and IP routinq.
Importantly, all network requests to run a user­
defined procedure are passed to the host for
execution. Each of the NC boards 110, the FC boards
112 and the SP boards 114 includes its own independent

10 32-bit microprocessor. These boards essentially off­
load from the host processor 118 virtually all of the
NFS and disk processinq. S.ince the vast majority of
messages to and from clients over the Ethernets 122
involve NFS requests and responses, the processing of

15 th·ese requests in parallel :t:.iy th~ NC, FC and SP
'processors, with minimal involvement by the local host
118, vastly im~roves file server performanqe. Unix
is explicitly eliminated from virtually all network,.
file, and storaqe processinq.

20 OvERALL SOFTWARE ORGANIZATION ANQ QATA FLOW

Prior to a detailed discussion of the hardware
subsystems shown in Fiq. 2, an overview of t.he
software st;-uc:ture will .nQw be undertaken.. The
software organir&ation is described in more detail in·

25 the above-identified application entitled MULTIPLE

fACILITY OPERATING SYSTEM ARCHITECTURE.
Most of the elements o.f the software are well known

in the field and are found in most networked Un'i:x:
systems, but there are two components which are note

30 Local NFS t •LNFS") and the messa,qing kernel ("MK 11
)

operatinq system kernel. These two components will be

explained first.
The Kesgaqing Kernel. The various processors in

file serve~ 100 communicate with each other throuqh
35 the u.se of a messacging kernel running on each of the

AI 11:1~.,.. ·-- -- __ _

Oracle Ex. 1002, pg. 1190

..

..

W091/03188

5

PCT/US90/047J I .

-17-

processors 110, 112, 114 and 118. These processors do

not share any instruction memory, so task-level

communication cannot occur via straightforward

procedure calls as 1 t does in conventional Unix.

Instead, the messaging kernel passes messages over VME

bus 120 to accomplish all necessary inter-processor

communication. Message passing is preferred over

r~mote procedure calls for reasons of simplicity and

~speed.

10 Messages passed by the messaging kernel have a

fixed 128-byte length. Within a sinqle processor,

messages are sent by reference~ between processors,

they are copied by the messaginq kernel and then

delivered to the destination process by reference.

15 The processors of Fiq. 2 have special hardware,

discussed below, that can expediently exchan9e and

buffer inter-processor messaging ker·nel messages.

The LNFS Local NFS interface. Th~ 22-function NFS

standard was &pacifically designeq for stateless

20 operatien using unreliable communication. This means

that ne·i-the:; clients noJ:" server can b.e sure if they

hear each other when they talk (unreliability). In

prac~iee, an in an Ethernet environment~ this works

well.

25

30

Within the server 100, however, NFS level datag·rams

are also used for communication between,processors, in

particular between the petwork controllers 116 and the

.file controller 112, and between the host prQcessor

I 18 and th~ file controller 112. For .this internal

communication to ~e both efficient an4 convenient, it

is undesirable and impractical to have complete

st.atelessnes'S or unreliable communications.

Consequently, a modified form of NFS, namely LNFS, is

used for internal communi~ation of NFS req~ests and

3S responses. LNFS is used only within the file server

100; the external network protocol supported by the

.SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1191

r

W09J/83788

5

PCT/US90/04711

-18-

server is precisely standard, l'icensed NFS. LNFS is
described in more de~ail below.

The Network Controllers 110 each run an NFS server
which, after all protocol processing is done up to the
NFS layer, converts between external NFS requests and
responses and internal LNFS requests and responses.
For example, NFS requests arrive as RPC requests with
XPR and enclosed in a UDP datagram. After protocol
proGessing, the NtS server translates the NFS request

10 into LNFS form and uses the messaging kernel to send
the request to the file controller 112.

The file controller runs an LNFS server which
handlee LNFS requests both from network cont~ollers
and from th·e host: 118. The LNFS server translates

15 LNFS requests to· a form appropriate for a file system
server~ also running on the file controller, which
manages the system memory file data cache through a
blOCk I/O layer.

An overview of th~ software in each of the
20 processors will now be set forth.

Natwork_Controller 110

'Th:e op'timized dat'aflow of thE! server 100 begins

with the iAtelliqent network controller 110. This
25 processor receiveQ Ethernet packets from client

. workstations. Itt quiqkly i<Ientifies NFS-destined
packets aftd then performs full protocol processing on
them to the NFS level, passinq the resul·ting LNFS
requests directly to the file controller 112. This

30 protocol processing includes IP routinq and
reassembly, UPP demultiplexing, XD~ decoding, anci NFS

request dispat~hin9. The reverse steps are used to

send an NFS reply back to a client. Importantly,
theee time-c:onsuming activities ;lre performed directly

35 in the Network Controller 110, not in the host 118·.

SUBSTITUTi: SHEET _ ...

Oracle Ex. 1002, pg. 1192

W091/03788

5

Pcr/US90/0471 l

-19-

The server 100 uses conventional NFS ported from
Sun Microsyatems, Inc., Mountain View, CA, and is NFS
protocol compatible.

Non-NFS network traffic is passed directly to its
destination host processor 118.

The NCs 110 also perform their own IP routing.
Each network controller 110 supports two fully
parallel Ethernets. There are four network
controllers in the· embodiment .of the server 100 shown

10 in Fig. 2", so that server c~n ~upport up to eight
E~hern~ts. For the two Ethernets on the .same .network
controller 110, IP routing ocsurs completely within
the network controller and generc;lt~s no backplane
traffic. Thus attaching two mutually ac~iv~ Ethernets

15 to the same controller not only minimizes their inter­
net t.ransit time, but also significantly reduces

backplane con~ention on ·the VME bus 120. Rol.lting

table . updates are distributed to the network
controllers £rom the h-ost proc·essor 1 iS., which runs

20 either the gated ~r routed Unix d~mon.

25

While the network controller described here is
desiqned for Ethernet LANa, it W·ill be understood that
the invention oan be used just as readily with other
netwo~k types, including FDDI.

Filg Controller 112

In addition to d$dieating a separate processor for

NFS protocol pro.cessing and IP routing, the server 100
also dedicates a s~parat$ processpr~ th~ intelligent
file controller 112, to be responsible for all file

30 system processing. It uses conventional Berkeley Unix

4.3 file system code and uses a binary-compatible data

representation on disk. These two cho.io-es allow all
standard file system utilities (particularly block­

level tools) to run unchanged.

SUiiSTITUTE SHEET

Oracle Ex. 1002, pg. 1193

W091/03788 PCr/US90/04711

-20-

The file controller 112 runs the shared file system
used by all NCs 110 and the host processor 118. Both

the NCs and the host processor communicate with the
file controller 112 using the LNFS interface. The NCs

::; 110 use LNFS ~.s described above, while the host
processor 118 uses LNFS as a plug-in module to SunOs's

standard Virtual File System ("VFS•) interface.

When an NC receives an NFS read request from a

client workst~·tion, the rf,iisulting LNFS request passes

10 to the FC 112. The FC 112 first searches the system
memory 11& buffer cache for the requested data. If

found, a reference to th·e. buffer is returned to the NC

15

110. If not found,. the LRU (least
cache buffer in system memory 116

reassigned for the requested block.

directs the SP 114 to read the block

recently used)
is freed and

The FC then

into the cache

buffer .from a disk drive array. When complete, the SP

so notifies the FC, which in turn notifies th~ NC 100.

The NC 110 then sends an NFS reply, with the data from

.20 the buffer, ~ack to the NFS client workstation out on
the network. Note that th~ SP 114 transfers the data

into system memory 116, if necessary, and the NC 110

trans~erred the ·a~ta from system me-mory 116 to the

networks. The process -takes place without any

as invQlvement of the host 118.

Storage Progessot

The intelligent storage proce.ssor 114 manages all

disk and tape storaqe operations. While autonomous,

Jo· storage processors are primarily directed by the file

controller 112 to move file data between system memory

116 and the d!sk subsystem. The exclusion of both the

host 118 and the FC 112 from the actual data path

helps to supply the performance needed to s·ervice many

35 remote eli&rtts.

SUBSTITUTE StlEET
.-:.- - ..

Oracle Ex. 1002, pg. 1194

r

:

W09l/03788

5

PCf /US90/04711

-21-

Additionally, coordinated by a Server Manaqer in

the host 118, storaqe processor 114 can execute server

backup by movinq data between the disk subsystem and

tape or other archival peripherals on the SCSI

channels. Further, if directly accessed by host

processor 118, SP 114 can provide a much higher

performance conventional disk interface for Unix,

virtual memory 1 and databas.es. In Unix nomenclature,

the host.process6r 118 can mount boot, storage swap,

10 and raw partitions via the storage processors 114.

Each storage processor 114 operates ten parallel,

f'ully synchronous SCSI channels (busses)

simultaneously. Nine of th~se_channels support three

arrays of nine SCSI disk drives each, each drive in an

15 array beinq assiqned· to a different SCSI channel. .The

tenth SCSI channel hosts up to seven tape and other

SCSI pe.E.ipherals. ln addition to performing reads and

writes, ·s·P 114 performs device-level optimizations

such a·s disk seek queue sorting, directs device error

20 recovery, and controls D~ transfers between the

devices· and system· memory 116.

Host l?rogessor 11.8

The local host 118 has three main purposes: to run

25 Unix I to provide standard: ONC network services for

cliefits, and to run a Server Manager. Since Unix and

ONC are po~~ed from the standard SunOs Release 4 and

ONC Services Rele~se 2, the server 100 can provide

identically sompatible high-level ONC services such ~s

30 the Yellow Pages, Lock Manager, DES Key Authenticator,

Auto Mounter, and Port Mapper. Sun/2 Network disk

booting and more 9eneral IP internet services such as

Telnet, FTP, SMTP, SNMP I and reverse ARP are also

supported. Finally, print spoolers and similar Unix

35 demons operate transparently.

SUDSTITUTE SifEET

Oracle Ex. 1002, pg. 1195

W091103788 PCf/US90/04711

-22-

The host processor 118 runs the following software
modules:

TCP and socket layers. The Transport Control
Protocol ("TCP 11

), which is used for certain server
5 functions other than NFS, provides reliable bytestream

communication between two processors. Socket are used
to establish TCP connections.

YFS interface. The Virtual File System ("VFS")
interface is a standarq S\JnOs file syst.em interface.

10 It paints a uniform file-system picture for both users

and the non-file parts of the Unix operating system,
hiding th& details of tne specific file system. Thus
standard NFS, LNFS, and any local Unix file system can
co.exi.st harmonious·ly.

15 Drs· interface. The Unix
interface is the traditional
interface for co~m:~ni.cation

File System ("UFS")
and well-known Unix
with local-to-the-

processor disk drives. ln the server 100, ~t is used
to occasionally ·mount storage processor volumes

20 directly, without ·going through the ·file controller

112. Normally, the ho.st 118 uses LNFS and goes

through the file contr.oller.
Device layer. ~he device: layer is a standard

software interface between the Unix dev;J.ce model and
25 different physical device implementations. In the

server 100, disk devices ar~ .not attached to host
processors directly, so the disk driver in the host's
device layer uses the messaqing kernel to communicate

. with t.he storaqe· processor 114.
3() Boute and Port Mapper Demons. The Route and Port

Mapper demons are Unix user-level background processes
that maintain the Route and Port databases for packet
.routing. They· are mostly inactive and not in any
performance path.

35 Yelloy Pages and Authentication Demon. The Yellow
Pages and Authentication services are sun-ONC t~:tandard

~UBSJITUTE s::EEr

Oracle Ex. 1002, pg. 1196

W091103788 PCT/US90/04711

-23-

network services. Yellow Pages is a widely used

multipurpose name-to-name directory lookup service.

The Authentication service uses cryptographic keys to

authenticate, or validate, requests to insure that

5 requestors have the proper prtvileges for any actions

or data they desire.

Server Manager. The

administrative application

Server Manager is an

suite that controls

confiquration, logs error and performance reports, and

10 provides a monitoring and tuning interface for the

system administrator. These fu~ctions can be

exercised from ·either system console connected to the

host· 118, or from a system administrator's

workstation,

15 The host proc~ssor 118 .. is a conventional OEM Sun

20

central processor card, Model 3E/120. It ipcorporates

a Motorola 68020 microprocessor and 4MB of on-board

.memory. Other processors, such as a SPARC-based

pr·ocessor, are also possible.

The structure and operation of each of the hareware

components of server 100 will now be descri;bed in

detail.

NETWORK CONTROLLER BARPWABE ARCH.iT;E.CTUBf!

25 Fig. 3 is a. block.. diagram showing the data path and

some cqnt.J;"ol paths for an illustrative one of the

network controll-~rs 110a. It comprises a 20 MHz 68020

microprocessor ~ 1.0 connected to a 32-bit

microprocesso·r data bus 212 .. Also connected to the

30 microprocessor data bus 212 is a 256K byte CPU memory

214. The low order 8 bits of the microprocessor data

bus 212 are connected throuqh a. bidirectional buffer

216 to an 8-bit slow-speed data bus 218. On the slow­

speed data bus 218 is a 128K byte EPROM 220, a 32 byte

35 PROM 222, and a multi-function peripheral (MFP) 224.

The 'EPROM 2~0 contains boot code for the network

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1197

W091/03788 PCT /US90/047 J 1

-24-

controller 110a, while the PROM 222 stores various

operating parameters such as the Ethernet addresses

assigned to each of the two Ethernet interfaces on the

board. Ethernet address information is read into the

5 corresponding interface control block in the CPU

memory 214 during initialization. The MFP 224 is a
Motorola 68901, and performs various local functions

such as timing, interrupts, and general purpose I/0.

The MFP 224 also includes a UART for interfacing to an

10 RS232 port 226. These functions are not critical to·

the invention and will not be further described

herein.

The low order 16 bits of the microprocessor data

bus 212 are also coupled through a bidirectional

15 buffer 230 to a 16-bit LAN data bu·s 2·32. A LAN

controller chip 234,. such as the Am7990 LANCE Etl)ernet

controller manufactured by Advanced Micro. Devices;

Inc. Sunnyvc;~.le,. CA., interfaces the LAN data bus 232

with the first Ethernet 122a shown in Fig. 2, Cont.rol

20 and data for the LAN controller 234 are· stored in a

512K byte LAN memory 236, which is also 'Connected to

the LAN data bus 232. A specialize4 16 to 32 bit FIFO

chip 240, re~erred to herein as a parity FIFO chip and

described 'below, is aiso connec;ted to the LAN data bus

25 232. Also connected ta the LAN data ~us 232 is a LAN
DMA controller 242, which controls movements of

packets of data between the LAN memory 236 and the

FIFO chip 240. The ~N DMA controller 242 may be a

Motorola M68440 DMA controller using channel zero

30 only.

The second Ethernet 122b shown in Fig. 2 connects

to a second LAN ~ata bus 252 on the network controller

card 110a shown in Fiq. 3. 'l'he LAN data bus 252

connects to the low order 16 bits of the

35 microprocessor data bus 212 via a bidirectional buffer

250, and has similar components to those appearing on

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1198

W09l/03788 PCT/US90/04711

-25-

the LAN data bus 232. In particular, a LAN controller
254 interfaces the LAN data bus 252 with the Ethernet

· 122b, using LAN memory 256 for data and control, and
a LAN DMA controller 262 controls DMA transfer of dat~

5 betweE\n the LAN memory 256 and the· 16-bit wide data
port A of the parity FIFO 260.

10

The low orde·r 16 bits of mic'roprocessor data bus
212 are also connected directly to another parity FIFO
270, and. also to a control port of a VMt:/FIFO DMA

controller 272. The FIFO 270 is ·used for passing
messages between the CPU memory 214 and one o.f th:e
remo~e ~oards 110, 112, 114, 116 or 118 (Fig. 2) in a
manner described below. The VME/FIFO DMA controller
272, which supports three round-robin non-prioritized

15 channels for ·copying data, controls ali data transfers
between one of the remote bo·a:,::'d~ and any of the FIFOs
240, 260 or 270, as well as between the FIFOs 240 and
260.

32-bit data bus 274, w:Qich is c·onnected to the 32-
20 bit port B of each of the FIFOs 240, 260 and 270, is

the·. data b1,1a ove-" whi-ch these transfers take pla·ce.
Data bus 274 communicates wit:Q a local 32-bit bus 276
via. a bidirectional pipelining la~ch 218, which is
also controlled by VME/FIFO DMA controll~r 727, which

25 in turn communicates with the VME bus 120 via a
bidirectional buffer 280,

The local data bus 276 is also connected t.o a set
of control ·registers 282, which are ~irectly

addressable across the VME bu·s 120. The registers 282

30 are used ~ostly for ~ystem ini tializatiO·n and

diagnostics.

'l'he local data bus 276 is also coupled to the
microprocessor data bus 212 via a bidirectional buffer
284. When the. Nc 110a operates in slave mode, the CPU

35 memory 214 is directly addressable from VME bus 120.

One of the remote boards can copy data directly from

8U8STITUIE t:»HEET

Oracle Ex. 1002, pg. 1199

W091103788 PCT/US90/04711

-26-

the CPU memory 214 via the bidirectional buffer 284.

LAN memories 23·6 and 256 are not directly addressed
over VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of
5 an ASIC, the functions and operation of which are

described in· the Appendix. The FIFOs 240 and 260 are
confi~ured for packet data t~ansfer and the FIFO 210

is configured for massage passing. Referring to the
Appendix, t.he FIFOs 240 and '260~ are programmed with

10 the following bit settings in the Data Transfer

15

20

25

30

Configuration Register:

JU..t. Def'inition s~:t:tins

0 WD Mode . N/A
1 Parity Chip N/A
2 Parity Correct Mode N/A
3 8/16 bi~s CPU & PortA interfaee 16. bits (1)

4 Invert Port A addreGs 0 no (0)

5 Invert Port A address 1 yes (1)

6 Checksum Carry Wrap yes ~1)
7 Reset no (0)

The Data Transfer Control Register is programmed as

f~llowS!:

:~ill Definttion s~:tting;

0. Enable PortA Req/Ack yes (1)

1 Enable PortB Req/~ek yes (1)

2 Data Transfer Direction (as desired)
3 CPU parity ~nable no (0)

4 PortA ;parity enable no (0)

5 PortB parity ena·ble no {0)
6 Ch~CkSUlD Enable yes (1)
7 PortA Master yes {1).

Unlike the confiquration used on FIFOs 240 and
260, the microprocessor 210 is responsible for loadinq
and unloading Port A directly. The microprocessor 210

35 reads an entire 32-bit word from port A with a single
inatruction usinq two port A access cycles. Port A

SUSSTITU1"E SHEET

Oracle Ex. 1002, pg. 1200

W091/03788 PCT/US90/0471 I

-27-

data transfer is disabled by unsetting bits 0 (Enable
PortA· Req/Ack) and 7 (PortA Master) of the Data
Transfer Control Register.

The remainder of the control settings in FIFO 270
5 are the same as those in FIFOs 240 and 260 described

above.
The NC llOa also includes a command FIFO 290. The

command' FIFO 290 includes an input port coupled to the

local data bus 276,_and which is directly addressamle
10 across the VME bus 120, and includes an output port

connected to the microprocessor data bus 212. As
explained in more detail below, when one of the remote
~oards issues a command or response to the NC 110a, it
does so by directly writing a 1-word (32-bit) message

15 descriptor into NC 110a's co~and FIFO 290. Command
FIFO 290 generates a aFIFO not empty .. status to the

microprCi>cessor 210, which then reads the message
descriptor o~f the top of FIFO. 290' and processes it.

If the message is a command, then it includes a VME
20 addre·ss at which the message is located (presumably an

address in a shared memory -similar to 214 on one of
the remote boara.s) • The mi.crop~ocessor 210 then·

programs the FIFO 270 .~nd the VME/Flto OMA controlle.r

272 to copy the messaqe fr9m the remote location into
25 the CPU memory 214.

Command FIFe 290 is a conventional two-port FIFO,
except that additional circuitry i~ included for
generating a Bus Erroz: signal on VME bus 120 if an.
atte~pt is made to write to the data igput port while

30. the FIFO is full. Command FIFO 290 has space for 256
entries.

A noteworthy fea~ure of the architecture of NC 110a
is that the LAN buses 232 and 252 are independent of

the miG:roprocessor data bus 212. oa·ta packets bein9
35 rou~ed to or from an Ethernet are stored in LAN memory

236 on the LAN .data: bus 232 (or 256 on the LAN data

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1201

W091103788 PCf/US90/047t 1

-28-

bus 252), and not in the CPU memory 214. Data
transfer betwe~n the LAN memories 236 and 256 and the
Ethernets 122a and 122b, are controlled by LAN
controllers 234 and 254, respectively, while most data

5 transfer between LAN memory 236 or 256 and a remote
port on the VME bus 120 are controlled by LAN DMA
controllers 242 and 262, FIFOs 240 and 260, and
VME/FIFO DMA contro:ler 272. An exception to this
rule qccurs .when the size of the data transfer is

10 small, e.g., less than 64 bytes,· in which case
microprocessor 210 copies it directly without using
DMA. The microprocessor 210 is no.t involved in larger
transfers exc~pt in ~nitiating them and in receiving
notification when they are complete.

15 The CPU memory 214 contains mostly instructions for
microprocessor 210, messages being transmitted to or
from a remote board via FIFO 270, and various data.
blocks for controlling the FIFOs, the DMA controllers
and the LAN controllers. The mic·roprocessQr 210

20 ·accesses the data pa9kets in the LAN memories 236 and
256 by directly addressing them through the
bidLrectional buffers 230 and 250, respectively, for
protocol processing. The local high-speed static RAM

in CPU memory 214 can ther-efore provide zero wait
25 state memory access for microprocessor 210 independent.

of network traffic. This is in sharp contrast to the
prior art architecture shown in Fig. 1, in which all
data and data packeta, as well as microprocessor
instructions for host CPU card 10, reside in the

3'G memory 16 and must:. communicate with the host CPU card
10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as

separate buses in Fig. 3, it will be understood that
they may instead be implemented as a single combined

35 :bus ..

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1202

,
WOtt/03188

5

· PCf/US90/0471 1

-29-

NET!ORK COHTROLLER OPEBATIQN

In operation, when one of the LAN controllers (such
as 234) receives a packet of information over its
Ethernet 122a, it reads in .the entire packet and

stores it in corresponding LAN memory 236. The LAN

controller 234 then issues an interrupt to
microprocessor 210 via MFP 224, and the microprocebsor

210 examines the status register 0n LAN controller 234
(via bidirectional buffer 230) to determine that the

10 event causing the interrupt was a •receive packet
completed. • In order to avoid a potential loc·kout of

the second Ethernet 122b causeQ. by the prioritized
interrupt handling characteristic of MFP 224, the.

micro.processor 210 .does not at this time immediately
15 prQcess the received packet; instead, such processing

is scheduled for a polling function.
When the polling f~nction reaches the prOcessing of

. th~ received packet, eortt-rol over the packet is passed
to a software .link level rece.ive module. The link

20 level receive module then decodes the paoket according
to- either of two different frame formats: sta·ndard
Ethernet format or SNAP (IEEE 802 LCC) format. An
-entry in the header in the packet specifies which
frame format was used. .IJ.'he link level driver then

25 determines whiqh of three types of messages is
contained in the recei. ved packet: (1) IP, (2 j AttP

packets -whJ.ch'can be handled by a local AltP module, or
(3) ARP packets and other packet types which must be

forwarded to the local host 118 (Fig. 2) for

30 processing. If th& pack~t is an ARP packet which can

be handled by the NC 110a, such as a request for the

address of server ·100, then the znicroprocessor 210

assembles a response packet in LAN memory 236 and, in

a conventional manner, causes LAN controller 234 to
35 transmit that packe~ back qver Ethernet 122a. It is

noteworthy that the data ~ani~ulation for

SUBSTITUTE SHE;ET

Oracle Ex. 1002, pg. 1203

WOfJ/03788 PCT/US90/04711

-30-

accomplishing this task is performed almost completely

in LAN memory 236, directly addressed by

microprocessor 210 as controlled by instructions in

CPU memory 214. The function is accomplished also

5 without generating any traffic on the VME backplane

120 at all, and without disturbing the local host 118.

If the received packet is either an ARP packet

which cannot be processed completely in the NC 110a,

or is another type of packet which requires delivery

10 to the local host 118 (such as a client request for

the server 100 to execute a client-defined procedure),

then the microprocessor 210 programs LAN DMA

controller 242 to load the packet from LAN memory 236

into FIFO 240, programs FIFO 240 with the direction of

15 data transfer, and programs DMA controller 272 to read

the packet out of FIFO 240 and across. th~ VME· b·us 120

into system memory 116. In particular, the

microprocessor 210 first p~ograms the LAN DMA

controller 242 with. the star~ing address and len~th of

20 the packet ip LAN memory 236, and programs- the

cont.roller to beqin tr~nsferring data from the LAN

memory 236 to port A ~f parity ~IFO 240 .as soon as the

FIFO is ready to receive data. Second, microprocessor

210 programs the VME/FlFO DMA controlle-r 272' with the

~5 destination add'ress in system ·memory 116 and the,

length of the data packet, and instructs the

controller to begin transferrihg data from port B of

the FIFO 26'0 onto VME· bus- .120. Finally, the

microprocessor 210 programs FIFO 240 with the

30 direction of the- transfer to take placf;!. The transfer

then proceeds ~ntirely under the control of DMA

controllers 242 and 272, ·without any further

involvement by microprocessor 210.

The microprocessor 210 then sends a message to host

35 118 that a packet i.s available at. a ·specified system

memory addr~ss. The ~icroprocessor 210 sends such a

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1204

W091103188

5

PCf/US90/0471 I

-31-

message by writing a message descriptor to a software­

emulated command FIFO on the host, which copies the

message from CPU memory 214 on the NC via buffer 284

and into the host's local memory, in ordinary VME

block transfer mode. The host then copies the packet

from system memory 116 into the host's own local

memory using Ordinary VME transfers.

If the packet received by NC 110a from the network

is an IP packet, then the microprocessor 210

10 determines whether· it is (1) · an IP packet for the

server 100 which is not an NFS packet; (2) an IP

packet to be ~outed to a different network; or (3) an

NFS packet. If it is an IP packet for the server 100,

but not ~n NFS packet, then the microprocessor 210

15 causes the packet to be transmitted from the LAN

memory 236 to the host 118 in the same manner

described above with respect t@ certain ARP packets.

If the IP packet is not intended for the server

100, but l!'ather is to be routed to a client on a

20 different network, then the packet is copied into the

LAN memory assQciated with the Ethernet to. whic·n the

destination client is connected. If the destination

client is on the Ethernet 122b, which is on the same

NC board as the source Ethernet 122a, then the

~5 microprocessor 210 causes the packet to be copied from

LAN memory 236 into LAN 2$6 and then causes LAN

controller 254 tQ transmit it over Ethernet 122b. (Of

course, if the two LAN data buses 232 and 25'2 are

combine~, then copying would be unne~essary; the

30 microprocessor 210 would simply cause the LAN

cc>ntroller 254' to read the packet out of the same

locations in LAN memory to which the packet was

written by LAN cont~oller 234.)

The copying O.f a packet from LAN memory 236 to LAN

35 memOry 256 takes place similar~y to the copying
~&scri~ea above from LAN memory to system memory. For

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1205

W09l/03788 PCT/US90/047Jl

-32-

transfer sizes of 64 bytes or more, the microprocessor

210 first programs the LAN DMA controller 242 with the

starting address and length of the packet in LAN
memory 236, and programs the controller to begin

5 transferring data from the.LAN memory 236 into port A

of parity FIFO 240 as soon as the FIFO is ready to

receive data. Second,. microprocessor 210 programs the

LAN DMA controller 262 with a destination address in

LAN memory 256 and the length of the data packet, and

10 ins~ructs that controller to transfer data from parity

FIFO 260 ;i.nto the LAN memory 256. 'l'hird,

mic:;:ropr.ocessor 2.10 programs the VME/FifO DMA

controller 272 to Qlock words of data out of port B of

the FIFO 240, over the data bus 274, and into port B

1.5 of FIFO ~60. ·ri,naliy, th.e microprocessor 210 programs

the two. FIFOs 240 and 2q0 with. the direction of the

transfer to take .Place. 'l'he transfer then proceeds

e·ntirely under the control of DMA controllers 242, 262

and 272, without lilPY further involvement by the

20 microprocessor ZlO. Like the copying from LAN memory

to· system memory, if the ~ransfer size is smaller than

64 bytes, the microprocessor 210 performs the transfer

direc·tly 1 without DMA ..

When each of the. LAN DMA contro.:Uers 242 ai\d 262

25 c;:omplete their work, they so notify microprocessor 210

by a respeQt.tve interrupt provided through MFP 224. ·

When the microprocessor 210 has received both

interrupts, it programs LAN controller 254 to transmit

the packet on the Ethernet 122b in a conventional

30 manner.

Thus, IP routing. between the two Ethernet a in a

single network controller 110 takes place over data

bus 274, qeneratinq no traffic over VME bus 120. Nor

is the host processor 118 disturbed for such routing,

35 in contrast to the prior art architecture of Fiq. 1.

Moreover 1 all bu.t th-e shortest copying work is

SUSSTITUTI! SHEET

Oracle Ex. 1002, pg. 1206

W09J/03788 PCT /US90/047ll

-33-

per.formed by controllers outside microprocessor 210,

requiring the involvement of the microprocessor 210,

and bus traffic on microprocessor data bus 212, only

for the supervisory functions of programming the DMA

5 controllers and the parity FIFOs and instructing them

to beg~n. The VME/FIFO DMA controller 272 is

programmed by loading control registers. via

microprocessor oata bus 212; the LAN DMA controllers

242 and 262 are programmed by loading control

10 registers on the respective controllers via the

microprocessor data bus 212, respective bidirectional

buffers 230 and 250, and respective LAN data buses 232

and 252, and the parity FIFOs 240 and 260 are

programmed as set forth in the Appendix.

15 If the destination workstation of the IP packet to

be routed is on an Ethernet connected to a different

one of the network controllers 110, then the packet is

copied into the appropriate LAN memory on the NC 110

to which that Ethernet is connected. S~ch copying is

20 accomplished by first copying the packet into system

memory 116, in the manner described above with respect

to certain ARP packets, an~ then notifying the

destination NC that a packet is available. When an NC

is so· notifiedt it programs its own parity FIFO and

25 DMA controllers to copy the packet from system memory

116 into the ap~ropriate LAN memory. It is noteworthy

that though this type of lP routing does create VME

bus traffic, it still does not involve the host CPU

118.

30 If the IP packet received over the Ethernet 122a

and now stored in LAN memory 236 is an NFS packet

intended for the· server 100, then the Jllicroproc;:essor

210 performs all ~ecessary protocol preprocessing, to

extract the NFS· messag·e and convert it to the local,

35 NFS (tNFS) format. This may well involve the logical

concatenation of 4ata extracted from a large number of

SUB$TITUTE SHEET.

Oracle Ex. 1002, pg. 1207

WOtl/03788 PCf/US90/0471 J

-34-

individual IP packets stored' in LAN memory 236,

resulting in a linked list, in CPU memory 214,

pointing to the different blocks of data in LAN memory

236 in the correct sequence.

5 'l'he exact details of the .LNFS format are not

· important for an understanding of the invention,

except to note that it includes commands to maintain

a directory of files which are stored on the disks

attached to the storage processors 114, commands for

10 reading and writing data to and from a file on the

disks, and various configuration management and

diagnostics control message3. 'l'h-e directory

maintel'\ance col1UI'Iands which are supported by LNFS

include the following messages based on conventional

15 NFS: get attributes of a file (GETATTR); set

attributes of a fiie (SETATTR); look up a file

"(LOOKUP); created a file (CREATE); remove a file

(REMOVE); rename a file (~ENAME); created A new linked

file (LINK); create a symlink (SYMLINK); remove a

20 directory (RMDIR); and return. file system statistics

CSTATF~). The data transfer commands supported by

LNFS include read from .a file ("READ); write to a file.

(WRITE).; read from a directory (~PDIR}i and ~ead a

link {READLINK). LNFS also .supports a buffer release

25 command (RELEASE), for notifying the file controller

that an NC is ·finished using a specified buffer in

system memory. It also supports a VOP-derived access

command, for detetm·i.ning whether a given type access

is legal for specified 9redential on a specified file.

If the LNFS. request includes the writing of file

data from the LAN memory 236 to· disk., the ~C 1 ~Oa

first requests a buff.er in . .system memory 116 to be

allocated by the appropriate FC 112.' When a pointer

to the buffe~ is returned~, microprocessor 210 programs

15 t.AN OMA controller 242, parity FIFO 240 and VME/PlFO
DMA controller 272 to transmit the entire block of

~HR~TITUTF ~R£ET

Oracle Ex. 1002, pg. 1208

W091/03788

5.

Pcr/US90/04711

-35-

file data to system memory 116, The only difference
between this transfer and the transfer described above
for transmitting IP packets and ARP packets to system
memory 116 is that these data blocks will typically
have portions scattered throughout LAN memory 236.

The microprocessor 210 accommodates that situation by
programming LAN DMA controller 242 successive~y for
each portion of the data, in accordance with the
linked list, after receiving notification that the

10 previous portion is complete. The microprocessor 210
can program the parity FIFO 240 and the VME/FIFO. OMA
9Qntroller 272 once for the entire message, as long as
the entire data block is to be placed contiguously in
s~stem memory 116. If it is not, then the

15 microprocess~r 210 .c~n program the DMA controller 272
for 'Successive :blocks in the same manner LAN DMA
controll-er 242..

If the network c;:ontrol.ler 110a receives a message
trom another processor in s~rver 100; usuall:y from

20 file controller 112, that file data is available 'in
system memory 116 J:or t;r~nsmiss.ion on one of the

Ethernets, for examr.le Ethernet i22a~ tben th~ network
eont~oller 110a copies the file data into LAN memory
236 in a manner similar to the copy·ing of file data in

25 the opposite directionr In particular, the
microprocessor 210 first programs VME/FIFO DMA
controller 272 with the star~ing address and length of
the data in system memory 116, and programs the
controller to begin transferring data ove~ the VME bus

30 120 in~o port B of parity FIFO 240 as soon as the FIFO
is rea,dy to receive data. ,-h.e microprocessor 210 then

proqrams the ~ OMA controller 242 with a destination

address in LAN memory 236 and then length of the file

data, and instructs that controller to transfer data
35 froll\ the parity FIFO 240 into the LAN memory 236.

Third, microprocessor 210 proqrams the parity FIFO 240

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1209

W091/03788 PCf/US90/04711

-36-

with the direction of the transfer to take place. The
transfer then proceeds entirely under the control of
DMA controllers 242 and 272, without any further
involvement by the microprocessor 210. Again, if the

5 file data is scattered in multiple blocks in system
memory 116, the microp~ocessor ~10 program~ the
VME/FIFO DMA controller 272 with a linked list of the
blocks to transfer in the proper order.

When each of · the DMA controllers 242 and 2-72
10 complete their work, ~hey so notify microprocessor 210

th;rough MFP 224. The microprocessor 210 then performs
all necessary protocol ~rocess~ng on the LNFS message
in LAN memory '236 in order to prepare th.e message for
transmiss,ion over the Ethernet 122a in the form of

15 Ethernet IP packets, As set forth above, this

protocol processing: is p·erformed entirely in n:etwQrk
'Q.Ontroller 116a,~ without:. any involvement of the local
host 118.

It should be noted that t.:he pari 1:-Y FIFOs are
20 des~g .. ned to move .multiple.s .of 128-byte blocks most

efficien~ly: The data t.ransf.er s·i2;e through port B is
always 32-bits wide.(~tond the VME. aQ.dres·s cottespondincg
to the ~2-'bit data Jllust be quad-byte ~ligned. The
data transfer size fpr. po~t A can be either 8 or 16

25 bits. For bus ~til~zation reasons# i~ is set to 1o
bits when the corresponding iocal start address is
double-byte aligned, ond is set at 8 bits otherwise.
'!'he TCP/J;P chf;lcksum iii always cromputed in the l6 bit

mode. Therefore, th~ checksum word t'equires byt-e
30 swapping if the local. start address is not. double­

byte aligned.

Accordingly~ for transfer from port B to port A of

any of the FIFOs 240, 260 or 270 '· th-e microprocessor
210 pto~rams the VMS/FIFO DMA controller to pad the

35 transfer count to the next 12&-byte boundary. The

extra 32-):)it word transfers do not involve the VME

$UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1210

W091/03788 PCT/US90/04711

. -37-

bus, and only the desired number of 32-bit words will
be unloaded from port A.

For transfers from port A to port B of the parity
FIFO 270, the microprocessor 210 loads port A word-

S by-word and forces a FIFO full indication when it is
finished. The FIFO full indication enables unloading
from port B. The same procedure also takes place for
transfers from port A to port B of either of the
par·ity FIFOs 240 or 260, since transfers_ .of fewer than

10 .128 bytes are performed under local microprocessor
control rather than under the control of LAN DMA

controller 242 or 262. For all of the 7IF0s, the
VME/FIFO DMA controller is programmed to un~oad only
the desired number of 32-bit words.

15 F!LE CONTROLLER HARDWARE ARCHITECTURE
The file controllers (FC) 112 may each be a

standard off-the-shelf microprocessor board, such as

one manufactured by Motorola Inc. Preferably,
however, a more specialized board is used such as that

20 shown in block diagram form in Fi9. 4.
Fig. 4 shows one of the FCa 112a, and it will be

understood that the other FC can .be identi~<:al. ·In
many ·aspects it is simply a scaled-down version of the
NC 110a shown in Fig. 3, and in some respects it is

25 scaled up. Like the NC 110a, FC 112a comprises a
20MHz 68020 micropro·cessor 310 connected to a 32-bit
microprocessor data bus 312. Also connected to the
microprocessor data bus 312 is a 256K byte shared CPU
memory 314. The low order 8 bits of the

30 microprocessor data bus 312 are connected thr.ouc;Jh a

bidirectional buffer 316 to an 8-bit slow-speed data
bus 3·18. On slow-spe~d data bus 318 are a 128K byte

PROM 320, and a multifunction peripheral (MFP) 324.
The functions of the PROM 320 and MFP 324 are the same

35 as those described above with respect to EPROM 220 and.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1211

W091/03788 PCT/US90/04711

-38-

MFP 224 on NC 110a. FC 112a 'does not include PROM
like the PROM 222 on NC 110a I but does include a
parallel port 392. The parallel port 392 is mainly
for testing and diagnostics.

5 Like the NC 110a, the FC 112a is connected to the
VME bus 120 via a bidirectional buffer 380 and a 32-
bit local data bus 376. A set of control ~egisters
382 are connected to the local data bus 376 1 and
directly addressable acr(?ss the VME bus 120. The

10 local data bus 376 is also coupled t.o the
microprocessor data bus 312 via a bidirectional buffer
384. This permits the direct addressability of CPU

;

memory 314 from VME bus 120.
FC. 112a al$0 includes a command FIFO 390, which

15 includes an input port coupled to .the local data bus
376 and which is directly· addressable across the ~E
bus 120. The command FIFO 390 also includes an output
port connected to the microprocessor data bus 312.
The structure, operation and pu~se of command FIFO

20 390 are the same as those described above with respect
to command FIFO 290·, on NC 110~.

The FC 112a omits the LAN data buses 323 and 352
which are present in NC 110a, but instead includes a
4 megabyte 32-bit wide FC memory 396 coupled to the

25 microprocessor data bus· 312 via a bidirec.tional buffer
394. As will be seen, FC memory 396 is used as a

cache memory for file control information, separate
from the file mata information cached in system memory

116.
30 The file controller emQodiment shown in Fig. 4 does

not include any DMA controllers, and h~nce cannot act

as a master for transmitting or receiving data in any

block transfer mode, over the VME bus 120. Block

transfers do occur with the CPU memory 314 and the FC
35 memory 396, however, with the FC 112a acting as an VME

bus slave. In such transfers, the remote master

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1212

W091103788

-39-

addresses the CPU memory 314 or

directly over the VME bus

PCT/VS90/0471 I

the FC memory 396
120 through the

bidirectional buffers 384 and, if appropriate, 394.

5 FILE CONTRQLLER OPEBATION

The purpose of the FC 112a is basically to provide

virtual file system services in response to requests

provided in LNFS format by remote processors on the

VME bUs 120. _ Most requests will come from a network

10 controller 110, but requests may also come from the

locaL host 118.

The file related commands supported by LNFS are

identified above. They are all specified to the FC

112a in terms ·of l~qically identified disk data

15 blocks. For example 1 the LNFS command for reading

data from a f:il.e includes a specification of the file

from which to read (file system :ID (FSID). and file ID

(inode)), a byte offset 1 and a c·oqm't of the number of

bytes to read. The FC H2a converts that

20 identification into J?hY(:lical form, namely disk and

.sector .number-s·, .in··order to s~~i~fy tHe command.

The FC 1"12a. runs a conventional Fast F;ile System

(fFS or UFS), ~hich is based on the Berkeley 4.3 VAX

release. This code pei:'f'orms ·the. conversion and also

25 performs all di~k. a·ata cach.ing and: control: data

caeh~ng. However·, as. previously mentioned, control

data c~hing is performed using the FC memory 396 on

FC l!~a, whereas disk data caching is performed using

the system memor-y 116 ('Fig. 2.). Caching this file

30 c~ntrol infQrmation within the FC 112a avoids the VME

bus conqest·ion and speetl degradation wh.i.cn would

result 'if file c9ntrol information was cached in

sys.tem memory 1i.6. 'l'he memory on the FC 112a is

di~ectly ac~essed over the VME bus 120 for three main

35 purposes. Pirst, and by far the most frequent, are

accesses to FC $emory 396 by l;ln SP 1-14 to read or

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1213

W091103788 PCr/US90/04711

-40-

write cached file control information. These are

accesses requested by FC 112a to write locally

modified file control structures throuqh to disk, or

to read file control structures from disk. Second,

5 the FC's CPU memory 314 is accessed directly by other

processors for messaqe transmissions from the FC 112a

to such other processors. ·For example, if a data

block in system memory is to be transferred to an SP

j.14 for writinq to disk, the FC 11;2a first assembles

10 a messaqe in its local memory 314 requesting such a

transfer. The FC 112a then notifies the SP 114, which

copies the messaqe directly from the CPU memory 314

and executes the requested transfer.

A third type of direct· access t:o t;he FC' s local·

15 memory o·ccurs when an LNFS client reads directory

entries. When FC· 112a receives an LNFS r~quest to

read direct~ry entries, the FC 112a formats the

request~d directory entries in FC memory .396 and

notifies the requestor of their loc~tion. The

20 requestor then directly acc.ess·es FC memory 396 to read

the ~ntries,

The vers~on of the UFS code pn FC 112a includes

some modificati~ns in order to separate th~ two

caches. In particular, two sets of buffer headers are

25 maintained• o~ for the FC memo~ 396 and one for the

system memory 116 .. Additionally, a second set of the

system buffer routines (GETBLK(), SREtSE(), BREAD();

BWlt.ITEO, and lijU:ADA()) exist, one for buffer a·oooesses

to FC Mem 396 and one for buffer accesses to system

30 .memory 116. The UFS Qode is further modified to call

the appropriate buffer ~outines for FC memory 396 for

.accesses to file .ctntr.ol i1'1formation, and to call the

appropriate buffer routines for the system memory 116

for the caching of disk data. A. de5cript~on of UFS

35 may be· found in chapters 2, 6, 7 and 8 of *Ke:cnel

Structure and Flow,• by Rieken and Webb of .sh

SUBSTITUTE: SHEET

Oracle Ex. 1002, pg. 1214

W091/03788

5

PCT/US90/04jl I

-41-

consulting (Santa Clara, California: 1988),

incorporated herein by reference.

When a read command is sent to the FC by. a

requestor such as a network controller, the FC tirst

converts the file, offset and count information into

disk and sector information. It then locks the system

memory buffers which contain that information,

instructing the storage processor .114 to read them

from disk if necessary. When the buffer is ready, the

10 FC returns a message to the requestor containing both

~he attributes of the designated file and an array of

buffer descriptors that identify the locations in

system m~mory 116 holding the data.

Attar the requestor has read the data out of the

15 buffers, it sends a release request back to the FC.

The release request is the sam·e messet,ge that was

returned by the.2C in response to the read request;

the FC 112a uses the information contained therein to

determine which buffers to free.

20 A write commano is processed by FC 112a similarly

to the read command, bUt the caller is expected to

write to (instead of read from) the locations in

system memo~y 116 identified by the buffe~ descriptors

returned by ·the PC 112a. Since FC l12a employs ~rite-

25 through caching* when it receives the release.eommand·

from the requestor, it instructs storage processor 114

to copy the data from system memory 116. onto the

appropriate disk sector& before freeing the s-ystem

~emory bufferq for possible reallocation.

30 The llEADDia transaction is similar t<> ·read and

write, but the request is satisfied by the FC 112a

directly out of its own FC memory-396 after formatting

the requested directory information specifically for

this purpose. The FC 112a causes the storage

35 processor read the requested directory information

from aisk if it is not already locally cached. Also,

SUBSTITUTE SH.EET

Oracle Ex. 1002, pg. 1215

W09l/03788 PCr/US90/04711

-42-

the specified offset is a •magic cookie" instead of a

byte offset, identifying directory entries instead of

an absolute byte offset into the file. No file

attributes are returned.

5 The READLINK transaction also returns no file

attributes, and since links are always read in their

entirety, it does not require any offset or count.

For all of the disk data caching performed through

system memory 116, the FC 112a acts as a central

10 authorit:y for dynamically allocating, deallocating and

keeping track of buffers. If there are two or more

FCs 112, each has exclusive control over its own

assigned portion of system memol!y 116 .. In all of

these transactions, the requested buffers are locked

lS during the period between the initial .request and the

release requ·est, This prevents corruption of the data

by other clients,

Also in the situation where there are two or more

FCs, each file system on the disks is assigned to a

20 particular one of the FCs, .Fe tto runs ·a process

called. FC_ VICE_PRESIOENT, which maintains a list of

whi~h file syst~ms are assigned to which FC. When a

client proce•sor (for example an NC 110) is about to

make an LNFS request designating a particular file

29 system, it first sends the fsid in a message to the

FC_VICE_PRESIDENT ~skin9 which FC controls the

speeified ·file system. The FC_VICE_PRESIDENT

responds, and the · client processo.z:o sends the LNFS

request to th.e designated FC. The client processor

30 also maintains its own list of fsid/FC pairs as it

discovers them, so as to minimize the number of such

requests to the FC VICE PRESIDENT. - . -
STQBAGE PRQCES§OR HARDWARE ARCHITECTURE

35- In the file server 10·0, each of the storage

processors 114 can in~erface the VME bus 120 with up

SUBSTITUTE SHEE1'

Oracle Ex. 1002, pg. 1216

•

W09l/03788

s

PCT/US90/0471 J

-43-

to 10 different SCSI buses. Additionally, it can do

so at the full usage rate of an enhanced block

transfer protocol of 55MB per second.

Fig. 5 is a block diagram of one of the SPs 114a.

SP 114b is identical. SP 114a comprises a

microprocessor 510, which may be a Motorola 68020

microprocessor operating at 20MHz. The microprocessor

510 is coupled over a 32-bit microprocessor data bus

512 with CPU memory 514, which may include up to 1MB

10 of static RAM. The microprocessor 510 accesses

instructions, data and status on its own private bus

512, with no contention from any other source. The

microprocessor 510 is the only master of bus 512.

The low order 16 bits of the microprocessor data

15 bus 512 interface with a control bus 516 via a

·bidirectional buffer 518. The low order 8 bits of the

contr9l bus 516 interface with a slow speed bus 520

via another bidirectional buffer 522. The slow speed

bus 520 connects to an MFP 524, similar to the MFP 224

20 in NC 110a (Fig. 3), and with a PROM 526, similar to

PROM 220 on NC 110a. The- PROM 526 comprises 128K

bytes of EPROM which centains .the fun~tiQnal code for

SP ~14a. Due to the width and speed of the EPROM 526,

25

30

the functional code i·s copied t~ CPU memory 5.14 upon

reset for faster execution.

MFP 524, like the MFP 224 on NC 110a, comprises a

Motorola 68901 multifunction p.eri:Pheral device. It

provides the functions of a vectored interrupt

controller, individually programmable I/0 pins, four

timers and a UART. The UART functions provide serial

communications across an RS 232 bus (not shown in Fig.

5) for debug monitors and diagnostics. Two of the

four timing functions may be used as general-purpose

timers by the microprocessor 510, either independently

35 or· in cascaded fashion. A third timer function

provides the refresh clock for a DMA controller

Oracle Ex. 1002, pg. 1217

W091103788 PCJ'/US90/0471 I

-44-

described below, and the fourth timer generates the
UART clock. Additional information on the MFP 524 can
be found in hMC 68901 Multi-Function Peripheral
Specification," by Motorola, Inc., which is

5 incorporated herein by reference. The eight
general-purpose I/O bits provided by MFP 524 are
configured according to the following table:

10

15

20

25

30

Direqtion Definition

7 input

6 input

5 input

4 o.utput

3 input

2 input

1 output

Power Failure is Imminent
functions as an early warning.

This

SCSI Attention - A composite of the SCSI.
Attentions f~om all 10 SCSI channels.

Channel Operation Done - A composite of
the ehannel done hits fro·m all 13
.channels of the OMA ·controller, desc;:ribed
below,

DMA Controller Enabl~. Enables the DMA
CQntroller tQ run~

VMEbus Interz::upt Pone - Indic(.ltes the
completion of a VMEbus Interrupt.

Command Available - Indicat·es that the
SP'S Command Fito, described below,
·contains one .or more command pointer$.

External Interrupts Disable. Disable$
externally generated interrupts to the
micro~rocessor 510.

35 0 output C~and Fifo J.:nable. Enables operation of
the SP' S Command .Fifo. Clears t.he Comma-nQ.

Fifo when reset.
Commands are provided to the SP 114a from the VME

bus 120 via: a .Didirectional buffer 530, a local d~·ta

40 ~us Sl2, and a command FIFO 534. The command FIFO 534

is similar t~ the command FIFOs 290 and 390 on NC llOa
and FC 112a, respectively, and has a depth of 256 32-

bit entries.. The command FIFO 534 is a WJ:i te-only

register as seen on the VME bus 120, and as a read-
45 only re91ster as seen by microprocessor 510. If the

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1218

W091/03788

5

PCf/US90/04711

-45-

FIFO is full at the beginning of a write from the VME

bus, a VME bus error is generated.

removed from the command FIFO 534

Pointers are

in the order

received, and only by the microprocessor 510. Command

available status is provided through l/0 bit 4 of the

MFP 524, and as a long as one or more command pointers

are still within the cGimmand FIFO 534, the command

available status remains asserted.

As previously mentioned, the SP 114a supports up to

10 10 SCSI buses or ehannels 540a-540j. In the typical

configuration, buses 540a-540i support up to 3 SCSI

disk drives each, and channel 540j supports other SCSI·

peripherals such as tape drives, optical disks, and so

on. Physically, the SP 114a connects to each of the

15 SCSI buses with an ultr~-miniature D sub connector and

round shielded cables. Six 50-pin cables provide 300

conductors which carry 18 sig·nals per :bus and 12

grounds. The cables attach at the front panel of the

SP 114a and to a commutator· board at the disk drive

20 array. Standard SO-pin cab.les connect each SCSI

device to the commutator bo.J.rd. Termination resistors

are installed on the SP 114a.

The SP 114Jl supports . synchronous parallel data

transfers up to 5MB per second on each of the SCSI

25 buses 5.40, arsitration« an4 di~cQnnect/reconnect

services. Each SCSI bus 540 is connected to· a

respective SCSI adaptor 542, which in the present

embodiment is an AIC 6250 controller IC manufactured

by Adaptec lnc., Milpit,s, California, operating in

30 the non-multiplexed· aQ.dress b'\olS mo(le. The AIC 6250 is

descri:bed in detail in DAIC-6'250 Functional

Specification., u by Adaptec Inc., ~hich -is incorporated·
herein by ~eference. The SC:Sl adaptors 542 each

provide the necessary hardware interface and low-

35 level electrical protocol to implement it~ respective

SCSl channel~

SUBST,TblE SHEET

Oracle Ex. 1002, pg. 1219

W091103788 PCf/US90/04711

-46-

The 8-bit data port of each'of the SCSI adaptors

542 is connected to port A of a respective one of a

set of ten parity FIFOs 544a-544j. The FIFOs 544 are

the same as FIFOs 240, 260 and 270 on NC 110a, and are

5 connected and configured to provide parity covered

data transfers between the 8-bit data port of the

respective SCSI adaptors 542 and a 36-bit (32-bit plus

·4 bits of parity) common data bus 550. The FIFOs 544

provide handshake, status, word assembly/disassembly

10 and speed matching FIFO buffering for this purpose.

The FIFOs 544 also generate and check parity for the

32-bit bus, and for RAlD 5 implementations they

accumulate and check redundaDt data and accumulate

recovered data.

15 All of the SCSI adaptors 542. reside at a single

location of the address space of the microprocessor

510, as do all of the parity FIFOs 544. The

microprocessor 510 selects individual co~trollers and

FIFOs for access in pairs~ by first programming a pair

2Q select registe·r (not shown) to point to the desired

pair and then reading from or writing to the cont~ol

regi~?ter addres·s of the· desired. chip in the pair. The

microprocessor 510 communicates with the coDtrol

registers on the SCSI adaptors 542 via the con.trol bus

25 516 and an additional bidirectional buffer 546! and

communicates ·with th·e control registers on FIFOs 544

via the c:ontrol bus 516 and .a bidirectional buffer

552. Both the SCSI a.;lap·tors 542 and FIFOs 544. employ

8-bit contrOl .re9.isters, and register addres·sing ot

30 the FIFOs 544. ,is arranged such that such registers

alias in consecutive byte locations. This allows the

microprocessor 510 to write to the reqister& as a

sinqle 32-bit register., thereby reducing instruction

overheaQ. ..

~5 The parity FIFOs 544 are each configured in their

Adaptec 6250 mode. Referring to the Appendix, the

SM~SrJ.TUTE SHE£7 -- .

Oracle Ex. 1002, pg. 1220

'

W09ll03788

5

10

15

2.0

25

30

PCT/US90/04711

-47-

FIFOs 544 are programmed with the following bit

settings in the Data Transfer Configuration Register:

A1t Definition Setting

0 WD Mode (0)

1 Parity Chip (i)
2 Parity Correc~ Mode (0)

3 8/16 bits CPU & PortA interface (0)

4 Invert Port A address 0 (1)

5 Invert Port A address 1 (1)

6 Checksum Carry Wrap (0)

7 Reset (0)

The Data Transfer Control aeqister is programmed as

follows:

JU.t. .
0

1

2

3

4

-s

6

7

DefinitiOn

Enable PortA Req/Ack

Enable PortB ~eq/Ack

Data Transfer Direction

CPU parity enable

PortA pa~ity enable

PortB parity enable

Check.sum Enable

Setting

(1)

(1)

as desired

(0)

(1)

(1)

(0)

Port~ Master (0)

In addition, bit 4 of the RAM Access Control

Register (Long Burst) is programmed for 8-byte bursts.

SCSI adaptors 542 each generate a respective

interrupt siwnal, the status of which are provided to

microprocessor 510 as 10 bit' of a 16-bit SCSI

interrupt regist&r 556. The SCSI interrupt register

556 is connected to the control bus 516.

Additiona~ly, a composite SCSI interrupt is provided

throu9h the MFP 524 \llleneve:t any one of the SCSI

adapto-rs 542 needs. servicing.

An additional parity FIFO 554 is ~lso p~ovided in

3~ the SP 114:a, for messa.qe passing. Again referring to

the Appendix, the parity FIFO 554 is programmed with

SUBSTITUTE SUEET

Oracle Ex. 1002, pg. 1221

W091/03788

5

10

15

20

25

PCf/US90/0471l

-48-

the following bit settings in the Data Transfer
Configuration Register:
~ Definition
0 WD Mode
1 Parity Chip
2 Parity Correct Mode
3 8/16 bits CPU & PortA
4 Invert Port ~ address

5 Invert Port A address
6 Checksum Carry Wrap
7 Reset

interface
()

1

Setting
(0)

(1)

(0)
(1)

(1)

.(1)

(0)

(0)

The Data Transfer Control Register is programmed as
follows:

lU.t.
0

1

2

3

4
5

6

7

IUilf1n1:t1Qn
Enable .PortA Req/Ack
Enahle Porta Req/Ack
Data Transfer Direction
CPU parity enable
PortA parity enable
Porta parity enable
Checksum Enable
PortA Master

Setting

(0)

(1)

as desired
(0)

(0)

(1)

(0)

(0)

In addition, · bit 4 of the RAM Access Col,ltrol
Registe~ (Long Burst) is programmed for 8-byte bursts.

Port A of FIFO 554 is connected· to the 16-bit
.contr·ol bus S 16 , and port a is connected to the common
data bus SSO.. FIFO 554 provides one means by which
the microprocessor 510 can communicate directly with
the VME bus 120, as is described in more detail below.

30 ·The microprocessor 510 man-age'S data movement using

a set of 15 channels, each of which has an unique

status whieh indicates its current state. Channels
are implemented using a channel enable register 560

and a channel $tatus register 562, both connected to

35 the control bus 516. The channel enable register 560

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1222

W091103788

5

PCI'/US90/04711

-49-

is a 16-bit write-only reqister, whereas the channel
status reqister 562 is a 16-bit read-only reqister.
The two reqisters reside at the same address to
microprocessor 510. The microprocessor 510 enables a
particular channel by setting its respective bit in
channel enable register 560, and recognizes completion
of the specified operation by testing for a •done 11 bit
in the. channel status register 562. The
microprocessor 510 then resets the enable bit, which

10 causes the respective •doneu bit in the channel status
re·gister 562 to be cleared.

15

20

30

35

40

45

The channels are defin~d as follows:
CHANNEL FUHCTION

0:9

11:10

12

13

14

These channels control data movement to
and ·from the respective FIFOs 544 via the
COI!lJ;ROn dat.a .bus 550. When a FIFO is
enabled and a request is received fl:oin
.it, the channel bec·omes ready. .Once the
channel has .been serviced a status of
done is· generated.

These channels. cont.rol .data ~ovement between
a local data buff~r 564, described below, and
the VME b\1s 120. When enabled th~ channel
becomes re.ady. Once the chahnel has been.
se·rviced a status of done ·is generated.

When enable·d., this channel causes the DRAM in
local data 'buffer 564 to be refreshed based on
a clock which i.s generated by the MFP 524.
The r&fresh consists of a burst of 16 rows.
This ·channel does not generate a status of
done.

'l'he mi·croprocessor' s communication FIFO 554 is
serviced ~y this channel. When enable is set·
and the FIFO '54 asserts a request then the
·channel becomes ready. This channel generates
a status of aonea

Low latency writes from microprocessor 510
onto the ~E buS .120 are controlled by this
channel. When this channei is enabled data is
moved from a special 32 bit register,
described below, onto the VME bus 120. This
channel generates a done status.

~nRniTUTE SHF.tT

Oracle Ex. 1002, pg. 1223

W091103788 PCT/US90/0471 I

-so-
15 This is a null channei for which neither a

ready status nor done status is generated.

Channels are prioritized to allow servicing of the
5 more critical requests first. Channel priority is

assigned in a descending order starting at channel 14.
That is, in the event that all channels are requesting
service, channel 14 will be the first one served.

The common data bus 550 is coupled via a
10 bidirectional regis~er 570 to a 36-bit junction bus

57~. A second bidirectional register 574 connects the
junction QUS 572 with the local data bus 532. Local
data buffer 564, which comprises 1MB of ORA", with
parity, is coupled bidirectionally to the junction bus

15 572. It is orqan.ized to provide 256K 32-bit words
with byte parity. The SP 114a operates the DRAMs in
page mode to support a very high data rate, which
requires bursting of dat~ instead of random single­
word accesses. It will be seen that the local data

20 buffer 564 is used to implement a RAID (redundant
array of inexpensive disks) algorithm, and is not used
for direct :t:eading and writing betwe-en the VME bus i20
and a peripheral on one of the SCSI buses 540.

A read-only register 576, containing all zeros, ~s

25 also connected to the junction bus 572. This register
is used mostly for diagnostics, initialization~ and

clearing of large blocks of data in syst~m memory 116.
The movement of data between the FIFOs 544 and 554,

the· local data bu£fer 564, and a remote entity such as
30 the ·system memory 116 on the VME ~us. Uo, is all

controlled b~ a VME/FIFO. DMA controller 580. T~e

VME/FIFO DMA controller 580 is similar to the VME/FIFO

DMA c.ontroller 272 on network controller l.lOa (Fiq.

3), and is described in the Appendix. Briefly, it

35 iaeludes a bit slice engine 582 and a caual-port static
BAR 584. One port of the dual-port static RAM '58.4
communicates over the 32-bit microprocessor data bus

Oracle Ex. 1002, pg. 1224

W091103788

5

PCr/US90/04711

-51-

512 with microprocessor 510, and the other port

communicates over a separate'16-bit bus with the bit

slice engine 582. 'l'he microprocessor 510 places

command parameters in the dual-port RAM 584, and_uses

the channel enables 560 to signal the VME/FIFO DMA

controller 580 to proceed with the command. The

VME/FIFO DMA controller is responsible for scanning

the channel status and servicing requests, and

returhing ending -status in the dual-port RAM 58-4. 'l'he

10 dual-port RAM 584 is organized as 1K x 32 bits at the

32-bit port and as 2K x 16 bits at the 16-bit port. 4

exampl~ showing the method by which the microprocessor

510 controls the VME/FIFO DMA controller 580 is as

follows. First, the microprocessor 510 writes into

15 the Qual-port RAM 584 the desired command and

associl.ated pa-rameters .for the desired channel. For

example, the command might be, •copy a block of data

£ro~ FIFO 544h out into a block of system memory 116

beginning at a specified VMJ:: address. II Second, the

20 microprocessor sets the channel enable bit in channel

enable register 560 for the desired channel,

At the titne the channel enable :bit is- set, the

appropriate FIFO may not yet be ready to send data.

Only when th~ ~E/FIFO DMA controller 580 does receive

25 a •ready" status from the channel, will the controller

580 ~xecute the command. In the meantime~ the DMA

controller 5-80 is- free to execut.e commands and move

data to or from other channels.

When the DMA controller· 580 does receive a status

30 of •ready• from the specified chann,el, the controller

fetches the channel command and parameters from the

dual-ported RAM 584 and executes. When the command is

complete, for example all the requested data has been

copied, the DMA cOntroller writes status back into the

35 dual-port RAM 584 and asserts •done• for the channel

tn channel status register 562. The microprocessor

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1225

W091/03788 PCT/US90/04711

-52-

510 is then interrupted, at which time- it reads

channel status register 562 to determine which channel

interrupted. The microprocessor 510 then clears the

channel enable for the appropriate channel and checks

5 the ending channel status in the dual-port RAM ~84.

In this way a high-speed data transfer can take

place under the control of DMA contr.oller 580, fully

in parallel with other activi~ies being performed by

microprocessor 510. The data transfer takes place

10 · over busses different from microprocessor data bus

512, thereby avoiding any interference with

microprocessor instruction fetches.

The SP 114a also includes a high ... speed register

590, which is coupled between the microprocessor data

15 bus 512 and the local data bus 532. The high-speed

register 590 ls used to write a single 3·2-bit word to

an VME bus . target with a minimu~ · of overhead. The

register is write only as viewed from the

microprocessor 510. In order to. write a word onto the

20 VME bus 120, the microprocessor 510 first writes tae

word into the register 590, and the desired VME target

address into dual-port RAM 584. When the

microprocessor 510 enables the appropriate channel in

channel enable register ·560, the DMA controller 580

25 transfers the data from the register 590 into the VME

bus address specified in the dual-port RAM 584t The

DMA controller 580 then writes the ending status to

the dual-port RAM and sets· the channel •done" bit in

channel status register 562.

30 This procedure is very efficient for transfer of a

sinqle word of data-, but becomes inefficient for large

blocks of data. Transfers of qreater than one word of

data, typically for message passing, are usually

·performed using the FIFO 5~4.

35 The SP 114a also includes a series of registers

592, similar to the registers 282 on NC 110a (Fig. 3)

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1226

W091/03788

5

PCf /US90/04711

-53-

and the ::-egisters 382 on PC 112a (Fl.g. 4). The

details of these registers are not important for an

understanding of the present invention.

STQRAGE PRQCESSOR OPERATION

The 30 SCSI disk drives suppqrted by each of the

SPs 114 are visible to a ·Client processor, for example

one .of the file controllers 112, either as three

large, logical disks or as 30 independent SCSI drives,

10 dependiaq on configuration. When the drives are

visib.le as three logical disks 1 the SP ·uses RAID 5

design algor1thms to distribute data for each logical

drive on nine physical drives to minimize. disk arm

contention. The tenth drive ~s left a~ a spar~. The

15 RAID 5 algorithm (redundant ar.ray of inexpensive

dri"ves.. revision 5) is desc-ribed in •A Case For a

Redundant Arrays of Inexpensive Disks (RAID) n I by

Patterson et al., pubiished at ACM SIGMOD Conference,

ChicagQ, Ill., June 1-~. 1988, incOrporated herein by

20 reference.

In the RA!O 5 de8ic;Jn •. disk data are divided into

stripes. Data · stripes are recorded sequentially on

eicjbt different disk drives. A ninth- parity st:ri·pe,

the ~xclusive-or of eiqht data stripes, is recorded on

25 a ninth drive. If a st·ripe size is set to 8K bytes, a

read of 8K of data involves only one drive. A write of

8·K of· data involves two drive·s: a data drive and a ·

parity drive. Si.nee a writ·e requires the reading back

of old data to generate a new patity stripe, writes

30 are also Z"eferred to as modify writes. The SP 114a

s~pports nine small · read~ to nine SCSI Qrives

concurrently. When $tripe size is set to SK, a read of

64K of data start& all eight SCSI drives, with each

drive reading one $k stripe worth of data. The

3·5 parallel operat;.ion is transparent to the caller

client.
S.UBSTITUTE SHEET

Oracle Ex. 1002, pg. 1227

. wo 91/03788 PCf/US90/04711

-54-

'l'he parity stripes are rotated among the nine
drives in order to avoid drive contention during write
operations. 'l'he parity stripe is used to improve
availability of data. When one drive is down, the SP

5 114a can reconstruct the missing data from a parity
stripe. In such case, the SP 114a is running in error
recovery mode. When a bad .<irive is repaired, the SP
114a can be instructed to restore data on the repaired
drive while the system is on-line.

10 When the SP 114a is used to attach thirty
independent SCSI 4rives, no parity stripe is created
and the client addresses each. drive airectiy.

The SP 114a proc·esses multip.le m~ssages

(transactions, CQIIlJ1lalld&.) at one time., up to 200
15 messages per second. The SP 114a does not initiate any

messages after initial system configuration. The
following SP 114a operations are defined:

(H No 0p

02 Send Configuration Data
20 03 Receive Configuration' Dat.a

05 Read and W.ri·te Sectors
06 Read and Write Cache Pages
01 IOC'l'L Operation
08 Dump SP 114'- Local Data Buffer

25 09 Start/Stop A SCSI Drive
OC Inquiry
OE Read Message .Lo9 Buffer
OF Set SP 114a Interrupt

The above transactions are described in detail in

30 the above-identified applic.ation entitled MULTIPLE
FACILITY OPERATING SYSTEM ARCHITECTURE. For and

understanding of the invention~ it -will be useful to
describe the function and operation of only two- of
these commands: read and write sectors, and read and

35 write cache pages.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1228

W09J/03788

5

PCf/US90/0471 J

-ss-
Read and Write Sectors

This command, issued usually by an FC 112, causes
the SP 114a to transfer data between a specified block
of system memory and a specified series of contiguous
sectors on the SCSI disks. As previously described in
connection. with the file controller 112, the
particular sectors are identif~ed in physical terms.
In ~articular~ the partic~la~ disk sectors are
identified by SCSI channel number {0-9), SCSI Ia en

io that channel numbe~ t0-2), s~artinq sector address on
tl:le specified drive~ and a count of ~he number of
sectors to read or write. The SCSI channel nu~ber is

·zero if the SP 114a is ope:rati.nq under RAID 5.
~he SP 114a can execute up to 30 messages on the 30

15 SCSI drives si~ultaneously. Unlike most of the
commands 1:0 an SP 114, which are proc·e~sed by

·microprocessor ·sto as· li>OOn as they appear on the
command FIFO !;il4, read and write sectors commands (as
well as read and wrtte· cache memory comman(ls) a.re

20 first sorted and qu~ued. Hence, they are not served

in the brdet of arrivalf
When a ·disk ~ccess command •~rives, the

micr9proces.sor 510 determin:es which. disk: drive i$
targeted e,nd inserts the message in a queue fo-r that

25 disk drive .sorted by the target sectol:' address. The
microprocessor 510 executes ·com~an4s on all the queues

simultaneously, in the order present in the queue for
each disk dr·ive. In order to minim1ze disk arm
movements, the microprocessor 510 moves ba¢k and forth

3'0 am:onq queue entries in an elevator fashion.

If no error condit~ons are detected from the SCSI

disk drives, the ·command is oompleted normally. When
a data check error condition occurs and the SP 114a is
configured for RAID 5, rec9very actions using

lS redundant data begin automatieally. When a drive is
down while the SP 1.14a is confiqured for RAID 5,

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1229

W09ll03788 PCT /US90/047 11

-56-

recovery actions similar to data check recovery take

place.

Read/Write C~che Pages

5 This eommand is similar to read and write sectors,

except that multiple VME addresses are provided for·

transferring disk data to and from system memory 116.

Each VME addr~ss points to a cache paqe in system

memory 116, the si%e of which ~s also specified in the

10 command. When transferring data from a disk to system

memory 116, dp:t;a are scattered. to different each~

pages; when writing data ~o a 4isk, data are gathered

from different cache pages in system memory 116.

Hence, this ope.ration is referred to as a scatter-

15 gather ·fu~ction.

The target sectors ~n tb.e SCSI dis.ks ~re specified.

in the command in physical terms, in the same manner

that they ar~ spe~i.fied for the read and write sectors

o·ommand. Termination of the co~unand with. or without

20' er.ror -c.ondi t:i..ons is the same as fo.r the read and write

~!fee tors stnnmane.

~~e dual-port RAM. 584 in the DM:A .cont::-oller 580

main·tains a sepa.rate set; o.f -commands· for eacn qhannel

conli,rolled by· the bit slice engine 582'. As each

25 cha-nne.l. completes i:ts previous ·operation, the
micropropesso.i: 510 'tlrit·es ·a aew 'DMA operation into the

dual-port RAM 584 .for that channel in order to satisfy

the next operation ~n a disk. elevator ~eue.

The commands written t~ the DMA controller 580

30 include an operation code ~nd a code indicating

whethe~ the operation is to be performed ia non-block

mode, in standard VME block mode, or in enhanced blo-ck

mode. The operation codes supported by DMA controller

580 a~e as follows:

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1230

WOtl/03788

5

10

15

20

25

30

35

40

45

50

Pcr/US90/047ll

-57-

OP COPE OPEBATION

0

1

2

3

4

6

NO-OP

ZEROES -> BUFFER

ZEROES -> FIFO

ZEROES -> VMEbus

VMEbus -> BUFFER

VMEbus. -> FIFO

Move zeros from zeros
register 576 to local
data buffer 564.

Move zeros fr·om zeros
register 576 to the
currently selected
FIFO on common data
bus 550.

Move zeros; from zeros
reg~ster 576 out onto
the VME bus 120.
Used for initializing
cache buffers in
sys·tern memory 116 •

Move data !rom the
VME bus 120 to the
local data buffer
564. This operat~n
Ls used during a
write, to move target
data intended for a
down drive i~t9 the
b u f f e r f o r
participation in
·r e d u n d a n c y
g~neration~ U~ed
o.nly for RAID 5
application.

New data to be
written from VME bus
onto a drive. Since
RAID 5 requires
redundancy dat.a to be
gener"ted · from data
that is buffered in
loeal data buffer
564, this operation
will be used only if
the SP 114a is not
configured for· RAID
5.

VMEbus -> BUFFER & FIFO
Target data iS moved from
VME bus 120 to a SCSI

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1231

W091/03788

5

10

20

25

30

35

7

8

9

A.

B

PCT/US90/04711

-58-

device and is also
captured in the local data
buffer 564 for
participation in
redundancy generation.
Used only if SP 114a is
configured for . RAID 5
operation.

BUFFER - > VMEbus. This operation is not
used.

BUFFER -> FIFO

FIFO -> VMEbus

tiFO -> BUFFER

Part.ici:pating data is
transferred to create
redundant data or
recovered data on a
disk drive. Used
only in RAID 5
a-pplications.

Thi..s ope-ration is
used to move target
data d~rectly fro~ a
disk dri_ve onto the
VME bUs 120.

Used to move
participating data
for recovery and
modify operation·s,
Os~d o~ly in RAID 5
ap~lications.

F'IFO -> VM~bus & BUFF~a
This operati.on is used. to
save target data for
participation. in data
recovery. Used only in
RAID 5 applications.

SYSTEM MEMORY

40 F_ig. 6 proviQ.es a simplified bloc:!k diagram of the

preferred architecture of one. of the system memory

cards 1.16a. Each of the other. system memory cards are

the same.. Each memory card 116 operates as a slave on

the enhanced VME bus 120 and therefore requires no on-

45 board CPU. Rather, a timing control block 610 is

sufficient to provide the necessary slave control

operations. In partieu1ar, the timing control block

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1232

"

Wo 91/03788.

5

PCT/US90/04711

-59-

610, in response to control signals from the control
portion of the enhanced VME bus 120, enables a 32-bit
wide buffer 612 for an appropriate direction transfer
of 32-bit data between the enhanced VME bus 120 and a
multiplexer unit 614. The multiplexer 614 provides a
multiplexing ·and demultiplexing function, depending on
data transfer direction, for a six megabit by seventy­
two bit word memory array 620. An error correction
code (ECC) generation and testing unit 622 is als.o

10 connected 'to the multiplexer 614 to generate or
verify, again depending on transfer direction, eight
bits of ECC data. The status of ECC verification is
provided back to the timing control block 610.

15 ENHANCEQ VME BUS PROTOCOL

VME bus 120 is pby~ically the same as an ordinary
VME :bus,. but each of the NCs and SPs include
additional circuitry and firmware for transmitting
data using an enhanced VME block transfer protocol.

20 The enhanced protoQol is described in detail in the
above-identified applicat·ion entitled ENHANCED VMEBUS
PROTOCOL UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND
BLOCK MODE DATA TRANSFER, and summarized in the
Appendix hereto. Typically transfers of tNFS f;l.le

25 data-between NCs and system memory, or between SPs and
system memory, and transfers of· packets being routed
f~om one NC to another through system memory 1 are the
only t~es of ~ransfers that use the enhanced protocol
in. server 100.. All other data transfe.rs on VME bus

30 120 use either conventional VME block transfer
prQtoco~s or ordinary non-block tr~nsfer protocols.

MESSAGE PASSING

As is evident fro~ the above description, the
35 different processors in. the server 100 communicate

with each other via certain· types of messages. In

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1233

W09l/03788

5

Per /US90/04711

-60-

software, thees messages are all handled by the

messaging ke=nel, described in detail in the MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE application

cited above.

follows.

In hardware, they are implemented as

Each of the NCs 110, each of the FCs 112, and each

o~ the SPs 114 includes a command or communication

FIFO such as 290 on NC 110a. The host 118 also

includes a command FIFO~ but since the host is an

10 unmodified purchased processor board, the FIFO is

emulated in software. The write port of the command

FI.FO in e·ach of the _processors is directly addressable

from any ef the other processors over VME bus 120.

Similarly, each of the processors except SPs 114

15 also includes shared memory such as CPU memory 214 on

NC 110a. This shared ~mory is also directly

addressable by any of the othe.x;- processors in the

serv~r 100.

20

If one processor, for ·example network. controller

llOa, is to~epd a message or :command to a· ,.second

processar, for example file controller· 112a, tben it

do.es so as follows. First, it forms the .message in

its own shared mem9ry (e.g .. , in CPU memory 214 on NC
110a). Second, the 11.1icroprocesso~ in the sending'

25 processor directly w-rites a message descriptor int.o

the command FIFO in the receiving processor. For a

command being sent from network coqtt"ol.ler 110a to

file controller 112a, the microprocessor 210 would

perform the write via buffer 284 on NC 110a, VME bus

30 120.,, ana buffer 384 on file controller 112a.

The command descriptor is ·.a .• single 32-bit word

eontainil'lg in its high order 30 bits: a VME address

indicating ths start -of a quad-aligned message in the

sender's shared memory. The low order two bits

35 .indicate the mes·sage type as follows 1

SUSS"tiTUTE SHEET

Oracle Ex. 1002, pg. 1234

WOtl/03788

5

PCT/VS90/0471 1

-61-

pesc:ription

0 Pointer to a new message being sent

1 Pointer to a reply message

2 Pointer to message to be forwarded

3 Pointer to message to be freed; also
message acknowledgment

All messages are 128-bytes long.

When the receiving proc&ssor reaches the command

descriptor on its command FIFO, it directly accesses

10 the sender's shared memory and copies it into the

receiver's own local memory. For a command issued

from network controller 110a to file controller 112a,

this would be an ordinary VME block or non-block mode

transfer f~om NC CPU memory 214; via buffer 284, VME

15 bus 120 and buffer 384, into FC CPU memory 314 .. The

FC microprocessor 310 directly accesses NC CPU memory

214 for th~s purpose over the VME bus 120.

When th& receiving processor has received the

command and has completed its work, it sends a reply

20 message back to the sending processor. The reply

messaqe ptay be. no more than the oriqinal command

message unaltered, or it may be a modified version of

that m.essaqe or a completely new message. If the

reply mes·sage is not identical to the. orig;i.nal command

25 message, then the receiving processor directly

accesses the oriqinal sender's shared memory ~o modify

the original command message .or overwrite it

completely. For replies from the FC 11~a to the NC

110a, this involves an ordinary VME block or non-

30 block mode transfer from the. FC 112a, via buffer 384,

VME bus 120f buffer 284 and into NC CPU memory 214.

Again, the FC microprocessor 310 directly accesses NC

CPU memory 214 for this purpose oyer the VME bus 120.

Whether or not the oriqinal command messaqe has

35 been changed .• the receivifl.g processor then wz'ites a

reply message descriptor directly into the oriqinal

sender's command FIFO. The. reply.message descriptor

~U\\Sl\lUlf. S\\EEl

Oracle Ex. 1002, pg. 1235

W091/03188 PCT /\JS90/047l1

-62-

contains the same VME address as'the original command
message descriptor, and the low order two bits of the
word are modified to indicate that this is a reply
message. For replies from the FC 112a to the NC llOa,

5 the message descriptor write is accomplished by
microprocessor 310 directly accessing command FIFO 290
via buffer 384, VME bus 120 and buffer 280 on the NC.
Once this is done, the receiving processor can free
the buffer in its local memory containing the copy of

10 the command message.
When the original sending processor reaches the

reply message descriptor on its command FIFO, it wakes
up the process tbat originally sent the· message and
permits it to continue. After examining the reply

15 message, the origina~ sending processor can free the
original command message buffer in its. owtl local
shared memory.

As mentioned above, network controller llOa uses
the buffer 284_ data path in order to write messaqe

20 descriptors onto the VME bus 120, and uses VME/FIFO
DMA controller 272 together with parity FIFO 270 in
order to copy messa9es from the VME bus 120 into CP'f.J

memory 214. Oth~r processors read from CPU memory 214
using the buffer 284 data path.

25 File c;:ontroller 112a writes message descriptors
onto the VME bus 120 using the· buffer 384 Q.ata path,
and copies messages from other processors' shared
memory via the same data path. Both take place under
the control of microprocessor 310 .. Other processors

30 copy messa~es from CPU memory 314 also via the buffer
384 data path.

Storage processor ll4a writes message descriptors
onto the VME bus using high-speed register 590 ··in the
manner described above, and copies messages from other

35 processors using DMA controller 580 and FIFO 554. The

SP 114a has no sha~ed memory, however, so it uses a

SUBSl\lUTf. SHEET

Oracle Ex. 1002, pg. 1236

.....

-63-

buffer in system memory 116 to emulate that function. That is, before it writes a

message desaiptor into another processor's command FIFO, the SP 114a first copies

the message into its own previously allocated buffer in system memory 116 using

DMA controller 580 and FIFO 554. The VME address included in the message

5 desaiptor then reflects the VME ~ddress of the message in system memory 116.

In summary, the embodiments of the present invention involve a new, server­

specific 1!0 architecture that is optimised for a Unix file server's most common

actions- flle operations. Rough1ystated, a file server architectur-e is provided which

10 comprises one or more network controllers, a.ne or more file cOntrollers, one or

more storage processors, and a system or buffer memory, all connected over a

message p~ing bus and operating in parallel with the Unix host processor. The

network controllers each connect to one or more network, and provide all protocol

processing between the network layer data format and an internal file server format

15 for communicating client requests to other processors in the server. Only those data

packets which cannot be iriterpreted by the network controllers, for example client

requests to run a. client-defined program on the server, an; trapsmitted to the Unix

host for processing. Thus the network controllerS, flle controllers and storage

processors contain only small parts of an overall operating syste~, and each is

20 optimised for the particular type of work to which it is dedicated.

Client requests for file operations are transmitted to one of the file controllers

which, fudependently of the Unix host, manages the virtual file system of a mass

storage device which is coupled to the storage processors. The file controllers may

25 also control data buffering between the storage processors and the network

controllers, through the system memory. The file controllers preferably each include

a local buffer memory for ca.ehing file control infortnatio~ separate from

Oracle Ex. 1002, pg. 1237

....
• • • •

.. 63a •

the ~tem memory for caching fde data. Additionally, the network controllers, fde

processors and storage processors are all designed to avoid any instruction fetches

from the system memory, instead keeping all instruction memory separate and local.

This arrangement eliminates contention on the backplane between microprocessor

S instruction fetches and transminions of message and fde data.

The invention has been described· with respect to particular embodiments

·- thereof, and it will be understood that numerous modifications and variations are

possible within the scope of the inventiort

Oracle Ex. 1002, pg. 1238

W091/03788 PCr/US90/04711

-64-

APPENQIX A

VME/fiFO DMA Cpntroller
In storage processor 114a, DMA controller 580

5 manages the data path under the direction of the
microprocessor 510. The DMA controller 580 is a
microcoded 16-bit bit-$lice implementation executing
pipelined instructions at a rate of one each 62.Sns.
It is responsible for scanning the channel status 562

10 and servicing request with parameters stored in the
dual-ported ram 584 by the microproc~ssor 51~. Ending

status is returned in the ram 584 and interrupts are
gene·rated for the microprocessor 510.

15
Control Stpre. The control store contains

microcoded instructions which control the

the

OMA

controller 580. The ·contr-ol store consists of 6 lK x
8 proms configured to yielq a 1K x 48 bit microword.
Locations within the control store are addressed by
the sequencer ilnd data .. is presented at the inp\:lt of

2'() the pipeli.ne. reqisters.

Sequencer. The sequencer controls program flow by

generating control store addresses based upon pipeline

data and vario'IJ.S status bits. The control store

address consists of 10 bits. Bits 8:0 of the control
25 store address ·derive from a multiplexer having as its

inputs either an ALU output cr the output of an
incrementer •. The incrementer can be . preloade\1 w,i th

pip9line register bits 8:0, or it can be incremen~ed

as a result of a test condition. The lK address range

30 is divided into two pages ~y a latched flag such that

the microprogram can execute from either pa~e.

Branches, howev~r remain within the selected page.
Conditional sequencing is performed by having the test
condition increment the pipeline provided address. A

35 false condition allows execution from the pipeline
address while a true condition causes execution from

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1239

. .

W091103788

5

PCf/US90/0471l

-65-

the address + 1. The alu output is selected as an
address source in order to directly vector to a
routine or in order to return to a calling routine.
Note that when calling a subroutine the calling
routine must reside within the same page as the
subroutine or the wrong page will be selected on the
return.

AJ:&, The alu comprises a single IOT49C402A
integrated circuit. It is 16 b~ts in width and most

10 closely resembles four 2901s with 64 registers. The
alu is used primarily for incrementing, decrementing,
addition and bit manipulation. All necessary control
signals originate in the control store. The IOT HIGH
PERFORMANCE CMOS 1988 DATA BOOK, incorporated by

15 reference herein, contains additional information
abo\,J.t the alu ..

Microword. The 48 bit.microword comprises several

fields which control variou.·s functions of the DMA

controller 580. The format of tbe microword is defined
20 below along with mnemonics and a description of each

function.

AI<8:0> 47:39

25

30 CIN 38

RA<5:0> 37:32:

35

RB<5:0> 31:26
40

(Alu Instruction bits 8:0) The AI
bits provid~ the instruction for the

· 49C402A .alu. Refer to the tOT data
book for a complete definition of
the alu instructions. Note that the
I 9 signal input of the 4 9C402A is
always low.

(Carry INput) This bit forces the
carry input to the alU.

(Register A address bits 5:0) These
bits select one ot 64 registers as
the "Aa operand for the alu. These
bits also provide literal bits 15: 10
for the alu bus.

(Register B address bits 5:0) These
bits select one of 64 registers as
the "B" ·operand for the alu. These
bits also provide literal bits 9;4
for the alu bus.

~nRST\TUlE SKEEl

Oracle Ex. 1002, pg. 1240

W09l/Ol788

5

10

15

20

25

30

40

45

LFD 25

PCT/US90/04711

-66-

(Latched Flaq Data) When set this bit
causes the selected latched flaq to be
set. When reset this bit causes the
selected latched flag to be cleared. This
bits also functions as literal bit 3 for
the alu bus.

LFS<2:0> 24:22 (Latched Flag.Select bits 2:0} The
meaning of these bits is dependent
upon the selected source for the alu
bus. In the event that the literal
field is selected as the bus source
then· LFS<2:0> function as literal
b:its <2·:0> otherwise;. the bits are
used to select one of the latched
flags.

LFS<2·0> SEL&CTED FLAG

SRC<l,O> 20,21

0

1

3

This value selects a null flag.

When ~et this bit enables the
buffer clock. When reset this
b;i.t disables the buffer clock.

Wh~n tl:\is pit iS cleared VME
bus transfers, buff~r
operations end RAS are all
disabled.

NOT USED

When set this bit ena~les VME
bus transfers.

S ·when set this ~it enables
bUffer operations.

6

7

When set this bit asserts the
row address strabe to the d~am
buffer,

When set this bit selects page
0 of the control store.

(alu bus SouRCe select bits 1, 0)
These bits select the data source to.
be enabled onto the alu bus.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1241

W091/03788

5

10

15

20

25

3'0

35

40

45

,.

so

PF<2:0> 19:17

PCf/US90/04711

-67-

SBC<l.O> Selegted Source

0
1
2
3

alu
dual ported ram
literal
reserved-not defined

(Pulsed Flaq select bits 2:0) These
bits select a flag/signal to be
pulsed.

PF<2;Q?

0

1

3

4

null

SGt._CLK
generates a single transition
of buffer cloc_k,

SET.._ VB
fo_r-c~s vme ·and buff·er enable to
be set.

CL l?ERR
clears buffer parity error
status.

SET ON
set -cijannel done status for t:Pe
eurrently .selecte(i channel.

5 INC AOR
increment dual porteq ram
address.

~:7 RESERVED • NOT DEFl~EO

DES'l'<3:0> 16~13 {DESTination select bits .3:0) These
bits select one of 10 destinations
to be. loaded .from the alu bus.

pEST(3;Q) Destination

0 null

1 WR_RAM
causes the data on the alu bus
to be written to the dual
ported ram..
D<1S:O> -> ramc15z0>

2 wa_BADD·

SUBST-ITUTE SHEET

Oracle Ex. 1002, pg. 1242

W091103788

5

10

15

20

25

30

35

40

50

3

4

5

7

8

9

10d4

15

PCT/US90/04711

-68-

loads the data from the alu bus
into the dram address counters.

0<14:7> -> mux addr<8:0>
WR VADL
loads the data from the alu bus
into the least significant 2
bytes of the VME address
register.
0<15·:2> -> VME addr<15:2>
01 -> ENB_tional registers
0 < 15.: 2 > - > VME addr < 15 : 2 >
01 -> ENB El~if

DO -> ENB:BLK

WR VADH
loads the most significant ·2
bytes of the V.ME address
register.
0<15:0> -> VME addr<31:16>

WR RADO
lQaqs the dual ported ram
address counters.
0<10:0> -> ram addr <10:0>

WR WCNT
loads the word counters.
D15 -) count ~nable*
0<14:8> -> count <6:0>

WR CO
loads the. co-channel sele.ct.
register,
0<1: 4>· -> t:0<3: O:JI

WR NXT
loads the next-channel select
reqister.
0<3:0> ~>· NEXT<3:0~

WR CUR
loads the current-channel
select register.
0<3:0> -> CURR <3:0>

RESERVED ~ NOT DEFINED

JUMP
causes the cqntrol store
s.equencer to select the alu
data b'tls·.
·o<c :·O> -> cs_A<&: O>

SDB$TITUTE SHEET

Oracle Ex. 1002, pg. 1243

W091/03788

5

10

15

20

25

30

TEST<3:0> 12:9

PCf/US90/047l I

-69-

(TEST condition select bits 3:0)
Select one of 16 inputs to the test
multiplexor to be used as the carry
input to the incrementer.

TEST<3•0? Condition

0

1

2
3

4

s

6

7
8

9

14: 10

15

FALSE

TRUE

·ALU COUT
ALU:EQ

ALU_;_OVR

At.U_NEG

-always false

-always true

-carry output of alu
-equals output of alu

-alu overflow

-alu neqative

XFR_DONE -transfer complete

PAR ERR
TIMOUT

-l:)uffer parity error
-bus operation
timeout

ANY_ERR -.any error stat:us

RESERV£0 -NOT PEFI~ED

CH_RDY -next ch·annel ready

NEXT _A<8: ()·> 8: 0 (NEXT Address bits 8: Q) Selects an
instructions from the ·cu~rent page of the
qontrol store for execution.

35 Dual Ported Ram~ The dual po.I:ted ram is the

medium by whic;n command, parameters and status are
communicated between tne DMA ·controller 580 and the

micropro-cessor 510. The ram is organized as 1K x '2 at

the master port and as 2K x 16 at the DMA port. The

40 ram may be both written and read at either port.
The ram is addressed by the DMA con~roller 580 by

loading an 11 bit address into the address counters.

Data is th.en r~ad into biditectional re<Jisters and the

address counter is ineremented ·to allow read of ~he
45 next location.

SPB_$JITUTE SHEEI

Oracle Ex. 1002, pg. 1244

W091103788 PCT /US90/0471 J

-70-

Writinq the ram is accomplished by loadinq data
from the processor into the reqisters after loadinq
the ram address. Successive writes may be performed
on every other processor cycle.

5 The ram contains current block pointers, endinq

10

1~

20

25

30

35

40

status, hi!Jh speed bus address and parameter blocks.

The followinq is the format of the ram:
OFFSET 31 0

0

4

58

5C

60

64

68

6C

70

74

'78

'??

~-----------~--~-~-------------ICURR POINTE~ 0 I STATUS 0

-------------------·-~---------
INITIAL POINTER 0

---------"--·---------------~:-""'=' --.

------~----~-~---·----------~--
I CURR POI.NTER B ~ STATUS B
--~-----~---~--~---------------

INITIAL POINTER B
-----·--~---~---~--------------not useq not used
--------------~---~---~-~-----~

not ·used not used .
-----------------~----~-----~--

ICURR POINTER D I STATUS 0

--~-~------~-------~----------
INlTIAL ~OINTER D

--~--.-~---------------·---------

not 'l,lsed S'I'ATUS E
--·-~-----------------~~-------

tHIGH SPEED BUS ADDRESS 31;210101
---------------~-----------·---

PARA~ETER ~LOCK 0
----~~---~----------------~--·-

---------------------~--~~-·---PARAME.TER BLOCK n
----~------~-~----~-------¥----

The Initial Pointer is a 32 bit value which points

. the first comin·and ·block of a chain.. The cu,rrent

pointer is -a sixteea 'bit value used b.y the DMA
controller sao to point to the ¢urrent commanCi blo.ck.

Tbe current command block pointer should be
45 initialized to Oxoooo by the microprocessor 510 before

enabling the channel. Upon d.etectifi-q a value of OxO.OO'O

;uastiTUTE SHEEt

Oracle Ex. 1002, pg. 1245

W09l/03788 PCf/US90/04711

-71-

in the current block pointer the DMA controller 580

will copy the lower 16 bits from the initial pointer
to the current pointer. Once the DMA controller 580

has completed the specified operations for the
5 parameter block the current pointer will be updated to

point to the next block. In the event that no further
parameter blocks are available the pointer will be set
to OxOOOO.

The status byte indicates the endinq status for the
10 last channel .operation performed. The followinq status

byt~s are def.in~d~

15

20

25

30

3S

STATDS ME.ANING
0 NO .ERRORS
1 ILLEG,l\L OP CODE
.2 'BUS ()P.ERA-;riON TIMEOUT
3. BUS OPERATION ERROR
4 DATA J?ATij. PARlTY ERROR

The format of the parameter block i~:
OFFSET 31 0

0 FORWARD LINK

N.OT USED WORD COUNT

8 VME ADDRJi!SS 31:2., ENH, BLK

TERM 0 OJ? 0 BUF ADDR 0

c ... (4Xnl I. TERM n .1 OP n . BUF ADDR nl

POltWAR.D LlNK - The forward link points to the first
\ford of the aext parameter block for execution. lt

allows several parameter blocks to be initialized and
40 chaine4 to credte a sequence of operations for·

execution. The forward p~inter has the fQllowinq
format,

SUB_$MUTE SHEET

Oracle Ex. 1002, pg. 1246

W091/0J788 PCT /US90/04711

-72-

A3l:A2,0,0

The format dictates that the . parameter block must
start on a quad byte boundary. A pointer of oxoooooooo
is a special case which· indicates no forward link

5 exists.

WORD COUNT - The word count specifies the number of
quad byte words that are to be transf~rred to or from
each buffer address or to/.from thea VME address. A word
count of 64K words may be specified by initializing

to· the word count witn the value of o. The word count has
the following format~

ID15jD141013ID12ID11ID10ID9I"D8ID7106ID5·ID4!03ID2ID1IDOI
The wo.rd count is updated by the DMA controller 580

at the complet·i\')n of a transfer tO/from the last

15 specified buffer address .. Word count is not updated
after trartsferring to/from each buffer address and is
therefore not an aceu~ate i~dicator of the total da~a
moved to/from the 'buffer. Word count represents the
amo.unt of da~a trfinsferr~d t.o the VME bus or one of

20 the FIFOs 544 o~ 554.

VM~ ADDRESS - · The VME address specifies the
starting address for .gata transfers. Thirty bits

al.lows the ad9,res·s to .~~art at any quad byte boundary.

25 ENH • This b~~ when set selects the enhanced block
trans·fe.r protocol ·d.esc·J;"ibed. in the .above-c:::i ted

ENHANCED VMEBUS PROTOCOL UTILIZING PSEUDOSlNCHRONOUS

HANDS~.KING AND' BLOCK MODE DATA TRANSFER application,
to be used duJ;ing the VME bus transfer. Enhanced

JO _prot·ocol will be ~Hsa:Qled automatically when

performing any transfer to or from 24 bit 9r 16 bit

adaress space, when the starting address is not 8 byte

aliqned or whe~ 'the word count is not even.

BLX • This bit whe~ set aelects the conventional

3 5 VME bl0ck mode protocol to be Ut:J·e4 du.rinq the VME bus
transfer. Block mode will be disabled automatically

SUBSTITUTE. SHEEJ

Oracle Ex. 1002, pg. 1247

·.

W091/03788

5

PCT/US90/04711

-73-

when performing any transfer to or from 16 bit address
space.

BUF ADDR The buffer address specifies the
starting buffer address for the adjacent operation.
Only 16 bits are available for a 1M byte buffer and as

a result the startint address always falls on a 16

byte boundary. The proqramll\er must ensure that the
starting address is on a modulo 128 byte boundary. The
buffer address is updated by the DMA controller 580

10 after completion of each data burst.

IA19IA18IA17IA16lA15IA14IA13IA12IA11IA10IA9IA8I·A7IA6IA5IA4l
TERM ~ ~he last buff~r address and operation within

a parameter block is identified by the terminal bit.
The DMA controller 580 continues to fetch. buffer

15 addresses and operations to perform until this bi~ is

encountered. Once the last operation within the
parameter block is executed the word count~r is
updated a-nd if not e<JUal to zero the series of
opera-tions is repeated .. One~ the word cpunter reaches

20 zero the fo·rward link pointer is used to access the
next parameter block.

25

I~IOIOIOIOIOIOLOJT4

OP - .Oper-ations ·are specified by the op cod.e. The

op code byt~ has tbe following format:

·1 0 I 0 I 0 I 0 I.OP3 ·: OP2 I OP 11 OPO I
The op codes are listed below ("FIFO" refers to any of
the FIFOs 544 or 554):

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1248

W091103788 PCT/US90/0471 J

-74-

OP CQI.lE QEEBA~lQt:I

0 NO-OP
1 ZEROES -> BUFFER
2 ZEROES -> FIFO

s 3" ZEROES -> VMEbus
4 VMEbus -> BUFFER
5 VMEbus -> FIFO
6 VMEbus -> BUFFER & FIFO
7 BUFFE2. -> VMEbus

lO 8 BUFFER -> FI-FO

9 FIFO -> VMEbus
A FIFO -> BUFFER
B FI'FO -·> VMEbus & BUFFER
c i.ESERVED

15 D RESERVED
.E RES.ERVED
F RESERVED

S~B_$JfTUTE SHEET

Oracle Ex. 1002, pg. 1249

·•

W09JIOJ788

5

PCf/US90/04711

-75-

APPENQIX B

Enhaneed VME Block Transfer Protocol

The enhanced VME block transfer protocol is a

VMEbus compatible pseudo-synchronous fast transfer

handshake protocol for use o:q a VME backplane bus

having a master functional module and a slave

functional module logically interconnected by a data

transfer bus. The data transfer bus includes a data

strobe signal line and a data transfer acknowledge

10 signal line. To accomplish the handshake, the master

transmits a data strobe signal of a given duratio~ on

·the data strobe line. The master then awaits the

reception of a data transfer acknowledge signal from

the slave module on the data transfer acknowledge

15 signal line. The slave then respond·s by transmitting

data transfer aeknowleQ.ge Sic;Jnal of a given duration

on ~he data transfer aeknowledge signal line.

Consistent w;i.th the pseudo-synchronous nature of

the handshake protocol, the dat.a to be transferred is

20 referenced to Only .one signal dependi.ng upon whether

the transfer operation is a READ or WRITE operation ..

In tran$fe~ring ~ata fr.O~ the master functional

unit to the slave, the ma~ter ~roadcasts the data to

be transferred. The master asserts a data strobe

25 signal and the slave, in respons~ to the data s·tro:be

signal~ captures. the data broadcast by the master.

Similarly, in transferring data from the slave to the

master, the slave broadcasts the data to be

transterred to the master unit. The slave then

30 asserts a data trj!lnsfer acknowledge siqnal and the

master, · ~n response to the data transfer acknowledge

signal~ captures the data broadcast by the slave.

The fast transfer protocol, while not essential to

the present invention, facilitates the rapid transfer

35 of large a•ounta.of data across a VME backplane bus by
substantially inereasing the data transfer rate.

SUBSl\lutf. S~EEl

Oracle Ex. 1002, pg. 1250

W091/03788 PCT /US90/047l 1

-76-

These data rates are achieved by using a handshake

wherein the data strobe and data transfer acknowledge

signals are functionally decoupled and by specifying

high current drivers for all data and control lines.

5 The enhanced pseudo-synchronous method of data

transfer {hereinafter referred to as •fast transfer

mode•) is implemented so as to comply and be

compatible with the IEEE VME backplane bus. standard.

The protocol utilizes user-defined address modifiers,

10 defined in the VMEbus standard, to indicate use of the

fast transfer mode. Conventional VMEbus functional

units, capable only of implementing $tandard VMEbus

~rotocols, will ignore transfers made using t~e fast

transfer mode and, as a result, are fully compatible

15 with functional units capable of implementing the fast

transfer mode.

The £ast transfer mode reduces the number·of bus

propagations required to accomplish a handshake from

four propagations, a·s· requireo under conventional

20 VMEbus ~rot6cols, to only two bus propagations.

Likewisel the number 9f bu$ propagations required to

effect a BLOCK READ or BLOCK WRITE data transfer is

reduced. Consequently, by reducing the propagations

across the VMEbus to accomplish handshaking and data

25 transfer functions·, th-e transfer rate is materially

increas·ed.

The enhanced proto·col is descri.bed in detail in the

above-.cited ENHANCE'D VMEBUS PROTOCOL application, and

will only be summarized here. Familiarity with the

30 convent~onal VME bus standards is assumed.

In the fast transfer mode handshake protocol, only

two bus propagations are used to aocomp~ish a

handshake, rather than four as re~~ired my the

conventional proto~ol. At the initiation of a data

· 35 transfer cycle, the maater will assert ana. deassert

DSO* in the form. of a pulse of a given duration. The

SUBSIDUTE SHEET ---

Oracle Ex. 1002, pg. 1251

W091103788 PCT/US90/04711

-77-

deassertion of DSO* is accomplished without reqard as

to whether a response has been received from the
slave. The master then waits for an acknowledgement

from· th~ slave. Sub~equent pulsing of DSO* cannot

5 occur until a responsive DTACK* signal is received

from the slave. Upon receiving the slave's assertion

of DTACK*, the ~aster can then immediately reassert

data strobe, if so desi~ed. ~he tast transfer mode

protocol does· not require the master to wait for the

10 deasse.rtion of DTACK* by the slave as a condition

precedent to subsequent assertions of DSO*. In the

fast transfer mode, only the leading edqe ·{i.e. , the

assertion) of ·a siqnal is E!ignificant. Thus I the

deassertion of either DSO* or OTACK* is completely

15 i~relev~nt fo+ completion of a handshake. The fast

transfer protocol does not employ the DSl* line for

data· strobe purposes at all.

The· fast ·tra.nsfer mode protocol may be

characterized as pseudo synchronous as it includes

20 both synchronous q_nd asynehrbnous aspects. The fa·st

transfer ~ode p~otocol is synchronous in character due

to tbe fact that DSO*' is ~sserted and deasserted

wi tbo~t rega;t:d to a .response from the slave . The

asynchronou·s aspect of the fast transfer mode protocol

25 is attributable to the fact that the maste.r may not

subsequently assert DSO* until a respon~e to the prior

strobe is rece.ived. from the slave. Consequently I.

becaus.e the protocol includes both sl:ncbronous and

asynchronous compon~nts, it is most accurately

.30. classified as apse·ud:o.-syncbronous. n

The transfer of data durinq a BLOCK WRITE cycle in

the £ast transf~r protocol is referenced only to DSO*.

The master first broadcasts valid data to the slave,

and then asserts DSO to the slave. The slave is given

·35 a predeter~ined period of time afte~ the assertion of

oso• ill which to capture the d•ta. lienee, slave

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1252

W091103788 PCf/US90/04711

-78-

modules must be prepared to capture data at any time,
as OTACK* is not referenced during the transfer cycle.

Similarly, the transfer of data during a BLOCK READ
cycle in the fast transfer protocol is referenced only

5 to OTACK*. The master first asserts DSO*. The slave
then broadcasts data to the master and then asserts
DTACK*. The master is given a predetermined period of
timeafter the assertion of DTACK in which to capture
the data. Hence, master modules must be prepared to

10 capture data at any time as oso is not referenced

during the transfer cycle.
Fig. 7, parts A through C, is a flowchart

illustrating the operations involved in accomplishinq

the fast transfer . protocol BLOCK WRITE cycle. To
15 initiate a BLOCK WRITE cycle, the master 'broadcasts

the memory address p:f the data to be transferred and·
the address modifier across the DTa bus. The master
als~ drives interrupt acknowledge signal (IACK*) high
and the LWORO.* signal low 701. A special address

20 modifier, tor example "lF 1 a broadcast by the m.aster

indicates to the slave module that the fast transfer

protocol will be used to accomplish the BLOCK WRITE.
The starting memory address of the data to be

transferred should reside on a 64-bit boundary and the
as size of block of data to be transferred'should be a

multiple of 64 bi·ts. rn order to remain in compl.i.ance
with the VMEbus standard, the block must not c.ross a
256 byte boundary without performing a new addre$.S

cycle.

30 The slave modules connected to the DTB receive the
address and the address Jttodifier bl!oadcast by the

master across t~e bus and receive LWORD*·low and I'ACK*

high 703. Shortly after broadcasting the address and

address.madifier 701, the master drives the AS* signal
35 low 705. The slave modules receive the AS* low siqn~l

797. Each slave individually determines whether it

SUBSTITUTE SIIEET · -- .

Oracle Ex. 1002, pg. 1253

..

W091/03788 PCT/US90/04711

-79-

will participate in the data transfer by determining

w~ether the broadcasted address is valid for the slave

in question 709. If the address is not valid, the

data transfer does not involve that particular slave

S and it ignores the remainder of the data transfer

cycle.

The master drives WRITE* low to indicate that the

transfer cycle about to occur is a WRITE operation .

711. 'rhe slave reQeives the WRITE* low signal 713

10 and, knowing that the data transfer operation is a

WRITE operation, ·awaits receipt of a high to low

transition on the DSO* signal line 715. The master

will wait until both DTACK* and BERR* are high 718,

which lndipates that the previous slave is no longer

15 driving the DTB.

The maste~ proceeds to place the first segment of

the data to be traRsferred on data lines DOO through

031, 71~. After placing data on 000 through 031, the

master drives DSO* low 721 and, after a predetermined

20 interval, drives OSO* high 723.

In response to the transition of DSO* from high to

low, respectively 721 and 723~ the slave latches the

data being transmitted by the master over ~ata lines

000 throuqh · 031, 725. The maste-r. places the next

25 segment of the data to be transferred on data lines

DOO thro.ugh 031, 727, and awaits receipt of a OTACK*

signal in the form of a high to low transition signal,

729 in Fig. 7B.

Referring to Fig. 7B, the slave then drives DTACK•

30 low, 731, and,. after a predetermined period of time,

drives DTACK high, 733·. The data latched by the

slave, 725, is w~itten to a devic~, which has been

selected to store the data 735. The slave also

incr~ments ~he device address 735.. The slave then

3' waits for another transition of oso• from high to low

737·.

SUBSTITUTE SHEET -·

Oracle Ex. 1002, pg. 1254

W09l/&3788 PCT/US90/047ll

-80-

To commence the transfer of the next segment of the

block, of data to be transferred, the master drives

DSO*- low 739 and, after a predetermined period of

time, drives DSO* high 741. In response to the

5 transition of DSO* from high to low, respectively 739

and 741, the slave latches the data being broadcast by

the master over data lines DOO through D3l, 743. The

master places the next segment of the data to be

transferre.d on d.ata lines DOO thro\lgh 031, 74§, and

10 awaits receipt of a DTACK* signal in the form of a

high to low transition, 747.

The slave then drives DTACK* low, 749, and, after

a predetermined period of time, drives DTACK* high,

751. The data latched by the slave, 743, is written

15· to the devi.ce S$lected to store the data and the

device add·ress is incremented 753. The slave waits

for another transition of DSO* from high to low 737.

The transfer of data will c·ontinuE! in the above­

described manner until all of the data has been

· 20 transferred from the master to the slave. After all

of the data bas been transferred, the· master will

release the addrees 1;i.nes, address modifier lines,

data lines, IACK* line, .t.WORD* line and DSO* line,

755. The master will then wait for receipt of a

25 DTACK* high to ;tow· traftsiti9n 751. The slave will

drive DTACK* low, 759 and, after a predeterm-ined

period of time, drive OTACK• high 761. In response to

the receipt of the OTACK* high to low transition, the

master will drive AS* high 763 and then release the

30 AS* line 765.

Fig. 8, parts A through c, is a flowchart

illustrating the operations involved in accomplishing

the fast transfer protocol BLOCK READ cycle. To

initiate a BLOCK READ.cycle, the master.broadcasts the

35 memory address of the data to be transferred and the

address modifier across the DTB bus 801. The master

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1255

W091/03788

5

PCT/US90/04711

-81-

drives the LWORD* signal low and the IACK* signal high
801, As noted previously, a special address modifier
in4icates to the slave module that the fast transfer
protocol will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the

address and the address modifier broadcast by the
master across the bus and receive LWORD* low and IACK*
high 803. Shortly after broadcasting the ad~ress and
address modifier 801, the master drives the AS* signal _

10 low 805. The slave modules ~eceive the AS* low signal
807. Each slave individ·ually determines whether it
will participate in the data transfer by determining
whether the broaqcasted address is valid for the slave
in. question 809 . If the address is not valid, the

.15 data transfer does not involve that particular slave
and it i.gnores the rema;Lnder of the data transfer
cyele.

The master drives WRITE~ high to indicate that th~
transfe~ cy9le about to occur is a READ operation 811.

20 The slave receives the WRITE* high signal 813 and,
knowing that the .data transfer operatio-n is a READ
operation~ places th~ first segment of the data to. be
transferred on data lines DOO through D31 .819. T~.e

J~~.aster will wait un-til :b.oth DTACK* and BER.R* are hiq.h
25 818, which indicates that the previous slave is. no

longer driving the DTB.
The master then drives DSO* low 821 and, after a

predetermined interval, drives OSO* high 823. The
master then awaits a high to low transition ·on the

30 DTACK* signal line 824. As shown in Fig. 88, the
slave then drives the DTACK* signal low 825 and, after

a predetermined period of time, drives the DTACK*
signal high 827.

In response to the transition of DTACK« from high

35 to low, re~pectively 825 and 827, the master latches

the data being transmitted by the slave over data

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1256

W091103788

5

PCT/US90/04711

-82-

lines DOO through 031, 831. The data latched by the
master~ 831, is written to a device, which has been
selected to store the data the device address is
incremented 833.

The slave places the next segment of the data to be

transferred on data lines 000 through 031, 829, and
then waits 'for another transition of DSO"' from high to
low 837.

To commence the transfer of the next segment of the
10 block of data to be transferred, the master drives

DSO* low 839 and, after a predetermined period of

time, drives DSO* high 841. The master then waits for
the DTACK* line to transition from high to low, 843.

The slave drives DTACK"' low, 845, and, after a
15 predetermined period of time, drives OTACK"' high, 847.

In .res·ponse to the transition of OTACK* from high to
low, respectively 839 and. 841, the master latches the
data being transmitted by the slave over data lines
000 through D31, 845.. .The data l~'l:ched by the master,

20 845,· is written to the devide sele-cted to store the
data, 851 in Fig.· 8C, and, the device address -is
incremented. The slave~laces the next segment of the
data to be transferred on data lines 000 through 031,
84'9.

25 The transfer o£ data will continue in the above-

described ~anner until all of the data to be
transferred from the slave to the master has been

written into the device selected to store the dat~.
After all of the data to be transferred has been

30 written into the stO>raqe device, the master will

release the address lines, address modifier lines,

data lines, the lACK* line, the LWORD line and DSO*

line 852. The master will then wait for receipt of a

DTACK* high to· low transition 853. The slave will

35 drive DTACK* low 855 and, after a· predetermined peri~d

of time, drive DTACK* high 857. In response to the

SU~STITUTE SHEET

Oracle Ex. 1002, pg. 1257

wo 91103788 PCT/VS90/04711

-83-

receipt of the DTACK• high to low transition, the

master will drive AS* high 859 and release the AS 11

line 861.

To implement the fast transfer protocol, a

5 conventional 64 mA tri-state driver is substituted for

the 48 mA ope_n collector driver conventionally used in

VME slave modules to drive DTACK*. Similarly, the

conventional VMEbus data drivers are replaced with 64

mA tri-state.drivers in SO-type packages. The latter

10 modification reduces the ground lead inductance of the

actual driver package itself and, thus, reduces

"ground bounce" effects which contribute to skew

between data, DSO* and DTACK*. In addition, signal

return inductance along the bus backplane is ·reduced

15 by using a connector system having a greater number of

ground pins so as to minimize signal return and mated-

pair pin inductance~

"High Density Plus"

.000, manufactur·ed by

One such connector system is the

connector, Model No. 420-8015-

Teradyne Corporation.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1258

W091103788

-84-

APPENDIX C

Parity FIFO

PCJ'/US90/04711

The parity FIFOs 240, 260 and 270 (on the network

5 controllers 110), and 544 and 554 (on storage

processors 114) are each implemented as an ASIC. All

the parity FIFOs are identical, and are configured on

power-up or during normal operation for the particular

function desired. The parity FI.FO is designed to

10 allow speed matching between buses of different s_peed,

and to perform the parity generation and correction

for the parallel SCSI drives.

The FIFO comprises ~wo bidirectional data ports,

Port A and Port B, with 36 x 64 bits of RAM buffer

15 between them. Port A is 8 bits wide and Port B is 32

bits wide. The RAM buffer is divided into two parts,

each 36 x 32 bits, .designat-ed RAM X and RAM Y. The

two ports access diff~rent halves of the buffer

alternating to the other half when available. When

20 the chip is configured as a parallel parity chip (e.g.

one of the FIFOs 544 on SP 114a), all acc~sses on Port

B are monitored and parity is accumulated in RAM X

and RAM Y alternately.

The chip also has a CPU interface, which may be 8

25 or 16 bits wide. In 16 bit mode th~ Port A pins are -

used as the most significant data bits of the CPU

interface and are only actually used when reading or

writing to the Fifo Data Register inside the chip.

A REO, ACK hand~hake is used for data transfer on

30 both P6rts A and B. The chip may be cor figured as

either a master or a slave on· Port A in the sense

that, in master mode the Port A ACK I ltDY output

signifies that the chip is ready to transfer data on

Port A, and the Port A REO input specifies that the

35 slave is responding. Iri slave mode, however, the Port

A REO input specifies that the master requires a data

SUBSTITUTE SHEET . _

Oracle Ex. 1002, pg. 1259

W09ll03788 PCT /US90/0471l

-as-
transfer,· and the chip responds with Port A ACK I ROY
when data is available. The chip is a master on Port
B since it raises Port B REQ and waits for Port B ACK
to indicate completion of the data transfer ..

5 SIGNAL DESCRIPTIONS

Port A 0-7, P

Port A is the.8 bit data port. Port A P, if used,
is the odd parity bit for this port.

10 A Req, A Ack/Rdy

These two signals are used in the data transfer
mode to control the handshake of data on Port A.

uP Data 0-7, uP Data P, uPAdd 0-2, CS
15 These signals are used by a microprocessor to

address the programmable regist~rs within the chip.
The odd parity signal UP Data P is only checked when

data is written to the fifo Data or Checks~m Registers
and microprocessor parity is enabled.

20 Cl~

The clock input is used to generate some of the
chip timing. It is expected to be in the 10-20 Mh&
range.

25 Read En, Write En
During microprocessor accesses, while CS is true,

these- signals determine the direction of the
microprocessor accesses. During data transfers in the

WD mode these signals are data strobes used in

30 gonjunction with Port A Ack.

SUBSTITUTE SHEET

Oracle Ex. 1002, pg. 1260

W091/03788 PCf/US90/04711

-86-

Port B 'oo-07, 10-17, 20-27, 30-31, OP-3P

Port B is a 32 bit data port. There is one odd

parity bit for each byte. Port B OP is the parity of
bits 00-07, PortB 1P is the parity of bits 10-17, Port·

5 B 2P is the parity of bits 20-27, and Port B 3P is the·
parity of bits 30-37.

B Select, B Req, B Ack, Parity Sync, B Output Enable

These signals are used in the data t~ansfer mode to

10 control the handshake of data on Port B. Port B Req

and Port B Ack are both gated with Port B Select.

The Port B Ack signal is used to strobe the data on

the Port B data lines. The parity sync signal is

used to indieate to a chip configured as the parity
1~ chip to indicate that the last words of data involved

in the parity accumulation are on Port B. The Port B

data lines will only be driven by the Fifo chip if all

of the following conditions are met:

20

-a. the data transfer is from Port A to Port B;

b.

c.

d.

the Port B select signal is true;

the Port B outp~t enabie signal is true; and
the chip is not configured as the parity chip
or it is in parity co~rect mode and the Parity
Sync si9nal is true.

25 Reset

This siqnal resets all the registers within the
chip and causes a~l bidirectional pins to be in a high

impedance stat.e.

30 QESCRIPTIQN OF OPEBATION

Normal Operation. Normally the chip acts as a

simple FIFO chip. A FIFO is sim·ulated by using two

RAM buffers in a simple ping-pong mode. It is

intended 1 but not mandato-ry, that data is burst into
35 or out of the FIFO on Port B. This is done by holding

S?ort B Sel signal low and pulsing- the Port B A.ek

signal. When transferring data from Port B to Port A,

~~~R~TITIITF ~IIFFT 

Oracle Ex. 1002, pg. 1261



·. 

W09ll03788 

5 

PCT/US90/04711 

-87-

data is first written into RAM X and when this is 

full, the data paths will be switched such that Port 

B may star.t writing to RAM Y. Meanwhile the chip will 

begin emptying RAM X to Port A. When RAM Y is full 

and RAM X empty the data paths will be switched again 

such that Port B may reload RAM X and Port A may 

empty RAM Y. 

Port A Slaye Mode. This is the default mode and 

the chip is reset to this condition. In this mode the 

10 chip waits for a master such as one of the SCSI 

adapte~ chips 542 to raise Port A ~equest for data 

transfer. If data is available the' Fifo chip will 

respond with Port A Ack/Rdy. 

Port A WD Mode. The chip may be configured to run 

15 in the WD or Western Digital mode. In this mode the 

chip must be configured as a slave on Port A. It 

differs from the default slave mode in that the chip 

responds with Read Enable or Write Enable as 

appropriate together with Port A Ack/Rdy. This mode 

20 is intended to allow the chip to ~e interfaced to the 

Western Digital 33C93A SCSI chip or the NCR 53C90 SCSI 

chip. 

Port A Master Mode. When the chip is configur~d as 

a master, it will raise Port A Ack/Rdy when it is 

25 ready for.data transfer. This signal is expected to 

be tied to the Request input of a DMA controller which 

will. respond with Port A Req when data is available. 

In order to allow the DMA controller to burst, the 

Port A Ack/~dy signal will only be negated after every 

30 a or 16 bytes transferred. 

Port B Parallel Write Mode. In parallel write 

mode, the chip is ~onfigured to be the parity chip for 

a parallel transfer from Port B to Port A. In this 

mode, when Port B Select and Port B Request are 

35 asserted, data is written into RAM X or RAM Y each 

time the Port B Ack signal is received. For the first 

~~JSTJTUTE SHEET 

Oracle Ex. 1002, pg. 1262



W091/03788 PCT /US90/04711 

-88-

block of 128 bytes data is simply copied into the 
selected RAM. The next 128 bytes driven on Port B will , 
be exclusive-ORed with the first 128 bytes~ This 
procedure will be repeated for all drives such that 

5 the parity is accumulated in this chip, The Parity 
Sync signal should be asserted to the parallel chip 
together with the last block of 128 bytes. This 
enables the chip to switch a-ccess to the other RAM and 
start accumulating a new 128 bytes of parity. 

10 Port B Parallel Read Mode - Check Qata. This mode 
is set if all drives are being read and parity is to 
be checked. In this case the Parity Correct bit in 
the Data Transfer Configuration Register is not set. 
The parity chip will first read 128 bytes on Port A as 

15 in a normal read mode and then raise Port B Request. 
While it has this signal asserted the chip will 
monitor the Port B Ack signals and exclusive-or the 
data on Port B with the data in its selected RAM. The 
Parity Sync s·hould a.gain be .asserted with the last 

20 block of 12& ~ytes. In this mode the chip will not 
drive the Port B· data -lines but will check the output 
of its exclusive-or logic fer zero. If any bits are 
set at this t;:ime a parallel parity error will be 

flagged. 
25 Port B Paratlel tte;d Mode . - Correct pata. This 

mo.de is set by setting the .Parity Correct bit in the 
Data Transfer Configuration Reqister. In this case 
the chip wil.l work exactly as in the check mode except 
that when PQrt B Output Enable, Port B Select and 

30 · Parity Sync are true the data is driven onto the Port 

B data lines and a parallel parity check for zero is 

· not performed. 
Byte swap~ In the normal mode it is expected that 

Port B bits 00-07 are the first byte, bits 10-17 the 

35 second byte, bits 20-27 the third byte, and bits 30-37 

.the last byte of each word. The order of these bytes 

SUBSTITUTE SHEET 

Oracle Ex. 1002, pg. 1263



W09l/03788 PCT/US90/0471 I 

-89-

may be changed by writing to the byte swap bits in the 
configuration register such that the byte address bits 

are inverted. The way the bytes are written and read 

also depend on whether the CPU interface is configured 
5 as 16 or 8 bits. The following table shows the byte 

alignments for the different possibilities for data 
transfer using the Port A Request 1 Acknowledge 
handshake: 

10 

15 

20 

25 

30 

CPU Invert Invert Port B 
1/F Addr 1 AddrO ()()-()7 

Port B 
10-17 

Port B 
20-27 

Port B 
30-37 ---·------· ----=-..._ _________________ _ 

8 False False 

8 False True 

.8 True FaiS$ 

8 True 

16 False False 

16 False True 

16 True False 

16 True True 

Port A 
byteO 

Port~ 
byte 1 

PortA 
byte 2 

PortA 
byte 3 

PortA 
byte o 

uProc 
byte o 
PortA 
byte 1. 

uProc 
byte 1 

Port A 
byte 1 

Port A 
byte o 

Port A 
byte 3 

Port A 
byte2 

.uProc 
byte 0 

PortA 
bytE:!: 0 

uProc 
byte 1 

Port A 
byte 1 

Port A 
byte 2 

PortA 
byte 3 

Port A 
.byte o 

Port A 
byte 1 

Port A 
byte1 

uProc 
byte 1 

PortA 
~yte 0 

uProc 
byte o 

Port A 
byte 1 

Port A 
byte 2 

Port' A 
byte 1 

Port A 
byte o 

uProc 
byte 1 

Port A 
byte 1 

uProc 
byte o 

Port A 
byte 0 

When the Fifo is accessed ~Y reading or writing the 

Fifo Data Register through the microprocessor port in 

35 8 bit mode, the bytes -are in· the same order as the 

table above but the uProc data port is used instead of 
Port A.. In 16 bit mod.e the table above applies. 

Odd Length Ttansfers. If the data transfer is not 

a multiple of 32' words, or 128 bytes, the 

40 microprocessor must manipulate the internal registers 

of the chip to ensure all data is transferred. Port 

A Ack and Po~t B Req a~e normally not asserted until 

SUBSTITUTE SHEET 

Oracle Ex. 1002, pg. 1264



W091/03788 PCT/US90/04711 

-90-

all 32 words of the selected RAM are available. These 

signals may be forced by writing to the appropriate 

RAM status bi~s of the Data Transfer Status Register. 

When an odd length transfer has taken place the 

5 . microprocessor must wait until both ports are 

quiescent before manipulating any registers. It 

should then reset both cf the Enable Data Transfer 

bits for Port A and Port B in the Data Transfer 

Control Register. It must then determine by reading 

10 their Address Registers and the RAM Access Control 

Register whether RAM X or RAM Y holds the odd length 

data. It should then set the corresponding Address 

Register to a value of 20 hexadecimal, forcing the RAM 

fuli bit and sett·ing the .address to the first word. 

15 Finally the microprocessor should set the Enable Data 

Transfer bits to allow the chip to complete the 

transfer. 

At this point the Fifo chip will think that 1:l:lere 

are no~ a fall 128 .bytes of data in the RAM and will 

20 transfer 128 bytes if ·aLlowed to do so. The fact that 

some of these 128 bytes are not valid must be 

recognized externally _to the FIFO chip. 

PRQGRAMMABLE REGISTERS 

25 Data Transfe£ Qonfiguration Register (Read/Write) 

Register Address 0. This register is cleared by 

the reset signal. 

Bit 0 WD Mode. Set if data transfers are to 
use the Western Digital W033C93A 

30 protocol, otherwise the Adaptec 6250 
protocol will be used. 

Bit 1 

35 Bit 2 

Parity Chip. Set if this chip is to 
accumulate Port B parities. 

Parity correct Mode. 
chip is to correct 
Port B. 

SUBSl\lUTE SHEEl 

Set if the parity 
parallel parity on 

Oracle Ex. 1002, pg. 1265



W09l/03788 

Bit 3 

5 

10 Bit 4 

.Bit 5 
15 

Bit 6 

20 

Bit- 7 

25 

PCT/US90/04711 

-91-

CPU Interface 16 bits wide, If set, the 
microprocessor data bits are combined 
with the Port A data bits to effectively 
produce a 16 bit Port. All accesses by 
the microprocessor as well as all data 
transferred using the Port A Request and 
Acknowledge handshake will transfer 16 
bits. 

:tn~in::t E'u;:t A :b~til a,;l,;l ~iUi Iii o. Set to 
invert the least significant bit of Port 
A byte address. 

lDVi1J::t fQJ::t A. :b:ll:ti1 sdd:ri11Hi 1. Set to 
invert the most significant bit of Port 
J\ ·byte address, 

Checksum ca;r~ Wrap. Set to enable the 
carry out of the 16 bit checksum adder to 
carry back into the least significant bit 
of the adder. 

Reset. Writing a 1 to this bit will 
reset the oth.er .registers. This bit 
resets its~lf after a maxim~m of 2 clock 
cyclei:i and will therefore normally be 
read as a o. No other register should be 
written for a minimum of 4 clock cycles 
after writing: to this bit. 

30 Data Transfer C8ntrol Register (Read/Write) 

35 

40 

45 

Register Address 1. This register is cleared by 

the reset signal or by writing to the reset bit. 

Bit 0 'Ena;ble nata Transfer on Port A. Set to 
enable the Port A Req/Ack ~ndshake. 

Bit 1 

Bit 2 

EnA:ble Data Trart§fer Qn Port B. Set to 
enable the Port B Req/Ack handshake. 

Port A to Port B. If ~et~ data tra~sfer 
is from Port A to Port B. If reset, data 
transfer is from Port B to Port A. In 
order to avoid any glitches on the 
request lines, the state of this bit 
should not be altered at the same time as 
the enable data transfer bits 0 or 1 
above. 

~uBSTITUTE SHEET 

Oracle Ex. 1002, pg. 1266



W091/03788 

5 

10 

15 

20 

25 

30 

35 

40 

Bit 3 

Bit 4 

Bit 5 

Bit 6 

Bit: 7 

Pcr/US90/047ll 

-92-

uFrocessor Parity Enable, Set if parity 
is to be checked on the microprocessor 
interface. It will only be checked when 
writing to the Fifo Data Register or 
reading from the Fifo Data or Checksum 
Registers, or during a Port A 
Request/Acknowledge transfer in 16 bit 
mode. The chip will, however, always 
re-generate parity ensuring that correct 
p~rity is written to the RAM or read on 
the microprocessor interface. 

Port A Parity Enable. Set if parity is 
to be checked on Port A. It is checked 
when accessing the Fifo Data Register in 
16 bit mode, or during a Port A 
Request/Acknowledge transfer .. The chip 
will, however, always re-generat~ parity 
ensuring that correct parity is written 
to the RAM or read on the Port A 
interface. 

Port B :faritv Enable. Set if Port B 
data has valid byte parities~ If it is 
not set, byte parity is generated 
internally to the chip when writing to 
the RAMs. Byte parity is not checked 
when w.ri ting from Port B, but always 
checked when reading ~o Port B. 

Checksum Enable, Set to enable writing 
to the 16 bit checksum register. This 
register accumulates a 16 bit checksum 
for all RAM acce&;ses ,. in.cluding accesses 
to the Fifo D~ta Registe~, as well as all 
writes to the checksum registe~~ This 
bit must be reset before reading from the 
Checksum Register. 

Port A Master. 86t if Port A is to 
oper11te in the master mode on Port A 
·during the data transfer. 

Data Transfer §tatus Register tRead Only) 

Register Address 2. Th~& register is cleared by 

45 the reset signa·l or by writing to the reset bit. 

Bit 0 Dato in RAM X or RAM Y. Set if any bits 
a~e true in the RAM X, RAM Y, or Port A 
byte address re_gisters. 

SUBSTITUTE SHEET 

Oracle Ex. 1002, pg. 1267



W091103788 

5 

10 

15 

20 

25 

Bit 1 

Bit 2 

Bit 3 

PCT/US90/04711 

-93-

uPrgc Port Parity Error. Set if the 
uP roc Parity Enable bit is set and a 
parity error is detected on the 
microprocessor interface during any RAM 
access or write to the Checksum Register 
in 16 bit mode. 

Port A Parity Error. Set if the Port A 
Parity Enable bit is set and a parity 
error is detected on the Port A interface 
during any llAM access or write to the 
Checksum Register. 

Port B Parallel Parity Etror . Set if 
the chip is configured as the parity 
chip, .is not in parity correct mode, and 
a non zero result is detected when the 
Parity Sync signal is true. It is also 
set whenever .data is read out onto Port 
B and the data -being read back through 
the bidirectional buffer does not 
compare. 

Bits 4-7 Port B Bytes 0-3 Parity Error. Set 
whene.ver the data being read out of the 
RAMs on the Port B. side has bad parity. 

Ram Access Control .Rggister <Read/Write) 

Register Address 3'. This regi~ter is cleared by 

30 the reset signal or by writing to the reset bit. The 

Enable Data Transfer.bits in the Dat~ Transfer Control 

Reg~ster must b~ reset before attempting to write to 

this register 1 else th~ write will be ignored. 

Bit 0 Port A byte address 0, This bit is the 
35 least significant byte addre~s bit. It 

is read Ctirectly bypas·sing any inversie>n 
don~ by the invert bit in the Data 
Tx:ansfe.r ConfiguJ<ation Register. 

40 Bit 1 E2;rt A byt~ iiUls:l 1.:~ ~Ui 1· ~his bit is the 
most significant byte addr~ss bit. It is 
read directly bypassing any inversion 
done by the invert bit in the Data 
Transfe~ Configuration Register. 

45 Bit 2 E'u::t A to BAM I· Set if Port A is 
accessing RAM Y, and reset if it is 
apcess!ng RAM X . 

SUBSTITUTE SHEfT 

Oracle Ex. 1002, pg. 1268



W091/03788 

5 

10 

Bit 3 

Bit 4 

PCf/US90/04711 

-94-

Port B to BAM Y. Set if Port B is 
accessinq RAM Y, and reset if it is 
accessinq RAM X • 

Long Burst. If the chip is configured to 
transfer. data on Port A as a master, and 
this bit is reset, the chip will only 
neqate Port A Ack/Rdy after every 8 
bytes, or 4 words in 16 bit mode, have 
been transferred. If this bit is set, 
Port A Ack/Rdy will be negated every 16 
bytes, or 8 words in 16 bit mode. 

Bits S-7 Not Used. 

15 BAM X Address Register !Read/Write) 
Register Ad4ress 4. This reqister is cleared by 

the reset signal or by writing to the reset bit. The 
Enable Data Transfer bits i.n the Data Tran.sfer Control 
Regis~er must be reset before attempting to.write to 

20 this reqister, else the write will be ignored. 
Bits 0-4 RAM X word address 

Bit S ~ X full 
Bits 6-7 Not Used 

25 RAM Y Address Re9ister .fRead/Writel 

Register Ad~ress S~ This register is cleared by 
the reset signal or by writin9 to the reset bit. The 
Enable Data Transfer bi~s .i:n the Data Transfer Control 

Register must be reset before attempting to write to 
30 this register, else the write w.ill be ignored. 

Bits 0-4 RAM Y word address 
· Bit 5 RAM l' full 

Bits 6-7 Not Used 

35 fifo pata Register <Bead/Write) 

Register Address 6. The Enable Data Transfer bits 

in the Data Transfer Control kegister ~ust be reset 
before attempting to write to this reqister, else the 
write vill be ig~ored. The Port A to Port B bit in 

SUBSMUTE SHEET 

Oracle Ex. 1002, pg. 1269



W091103788 PCT/US90/04711 

-95-

the Data Transfer Control register must also be set 
before writing this register. If it is not, the RAM 
controls will be incremented but no data w.ill be 
written to the RAM. For consistency, the Port A to 

5 PortB should be reset prior to reading this register. 
Bits 0-7 are Fifo Data. The microprocessor may 

access the FIFO by reading or writing this register. 
The RAM control registers are updated as if the access 
was using Port A. If th~ chip is configured with. a 16 

10 bit CPU Interface the most significant byt~ will use 
the Port A o-7 data lines, and each Port A access will 
increment the Port A byte address by 2. 

Port A Checksum Register <Read/Write) 
15 Register Address 7. This register is cleared by 

the reset si9nal or by writing to the reset bit. 
Bits 0-7 are Checksum Data. The chip will 

accumulate a 16 bit checksu.m for all Port A accesses. 
If the chip is ~onfigured with a 16 bit CPU interface.,. 

20 the most significant byte i~ read on the Port A 0-7 

data lines. If data is written directly to this 
register it is added to the current contents rather 
than overwriting them. lt is i~portant to note that 
the Checksum Ebable bit in the Data Transfer Control 

25 Register must be set to write this register and reset 
to read it. 

PROGRAMMING THE FIFP CHIP 

In general the fifo chip is programmed by wri~ing 
30 to the data transfer configuration and control 

registers to enable a data transfer, and by reading 
the data transfer status register at the end of the 

transfer to check the completion status. Usually th~ 
data transfer itself will take place with both the 

35 Port A and the Port 8 handshakes enabled, and in this 
ease the data transfer itself should be done without 

SUBSTITUTE SHEET 

Oracle Ex. 1002, pg. 1270



W09l/03788 PCT/US90/0471l 

-96-

any other microprocessor interaction. In some 
applications, however, the Port A handshake may not be 
enabled,. and it will be necessary for the 
microprocessor to fill or empty the fifo by repeatedly 

5 writinq or readinq the Fifo Data Register. 
Since the fifo chip has no knowledge of any byte 

counts, there is no way of telling when any data 
transfer is complete by reading any reg~ster within 
this chip itself. Determination of whether the data 

10 transfer has been completed m'l,lst therefore be done by 
some other circuitry outside this chip. 

The following C language routines illustrate how 
the parity FIFO chip may be programmed. The routines 

assume that both Port A and the microprocessor port 
15 are connected to the system microprocessor, and return 

a size code of 16 bits, but that the hardware 
addresses the Fifo chip as long 32 bit registers. 

struct FIFO _regs { 
unsigned char config,a1,a2,a3 ; 

2 o unsigned char control,b 1,b2.b3; 
unsigned char status.c1.c2.c3; 
unsigned .char ram access control.d1,d2.d3; 
unsigned char ram>< addr7e1,e2,e3; 
unsigned char ram -y-addr,f1,f2,f3; 

2 5 unsigned long data; -
unsigned lnt cheoksum,h1; 
}; 

#define FIF01 ((struct FIFO_regs*) FlfO_BASE_AODRESS) 

3 o #define FIFO RESET Ox80 
#define FIF0-16 BITS Dx08 
#define FIFO-CJG:\RY WRAP OX40 
#define FIFO-PORT A ENABLE Ox01 
#define FIFO-PORIB-ENABLE OX02 

3 5 #define FfFO--POR'f"ENABLES Ox03 
tdefine FIFO:PQRT-A TO B OX04 
#define FIFO CHECT<SlJM'"ENABUf Ox40 
#define FIFO-DATA IN MM 0x01 
#define FIFO:FoRc:r:J~AM _FULL Ox20 

40 #define PORT A TO PORT B(fifo) ((fifo-> control} & OX04) 
=ne PORT:A:BYTE_AODRESS(fifo) ((fifo->rarn_access_contro~ & 

#define PORT A TO RAM Y'(fifo) ((fifo->ram access control) & 0x04) 
#define PORr:B)"0:RAM)'(fifo} ((fifo-> ram_aeceas_ control ) & Ox08) 

SUBSTnnuTE SHEET 

Oracle Ex. 1002, pg. 1271



WO 91/03'788 

5 

10 

PCf/US90/04711 

-97-

. /*********************************************************** 
The following routine initiates a Fifo data transfer using two 

values passed to it. 

config_ data This is the data to be written to the configuration register. 

control_ data This is the data to be written to the Data Transfer Control 
Register. If the data transfer Is to take place 
automatically using both the Port Aand Port B 
handshakes, both data transfer enables bits should be 
.set in this parameter. 

- ********************************** .. *********** .. **********1 

.15 

20 

25 

35 

. 40 

45 

50 

FIFO initiate data transfer(config data, control data) 
unsigned char corifig data, contrOl data; -
{ - -

AF01->config = conflg data I FIFO RESET: /*Set· - ·· ~· ··· .. 
Configuration value & Reset • I . -

FIF01·>control = control_ data & (-.FIFO_PORT_ENABLES); /*Set 
everything but enables * 1 · 

_FIF01->control = control_data; I* Set data transfer 
enables *I 
} 

/**********~***********************************-************ 

The following routine forces the transfer of any odd bytE;~S that 
have ~:>een left In the Afo at the end of a data transfer. 
It first disables both ports, then forces the Ram Full bits, and then 
re-enables the appropriate Port .. 
********************************* ... ***********************/ 

rFO _force_ odd Jength_ transferO 

FIF01-,control &= -FIFO_.PORT_eNABLES; I' Disable Ports A & B 
*I 

If (PORT A TO PQRT B(FIF01)) { · 
HlP'ORI A TO-RAM Y(AF01)) { . 

. FTF01->ram f/ addr =FIFO FORCE RAM FULL; I* 
Set RAM Y fuiP'/ - - - - -

} . 

else FIF01· >ram X addr = FIFO FORCE RAM FULL ; ./* Set 
RAM X full*/ - - - - -

AF01->control 1 = FIFO_PORT_B_ENABLE; I* 
Re-Enable Port B • I · 

} 
else { 

if (PORT B TO RAM Y(FIF01)) { 
F=il=01·>ram <:f addr = AFO FORCE RAM FULL: /* 

Set RAM Y full *I - - - - -
} 
else FIFQ1 .. >ram X addr = FIFO FORCE RAM FULL; /*Set 

RAMXfuD•/ -- - - -

~~BSTITUTE SHEET 

Oracle Ex. 1002, pg. 1272



W09l/03788 

5 

10 

15 

20 

25 

PCT/US90/04711 

-98-

FIF01->control I= FIFO_PORT_A_ENABLE; /* 
Re-Enable Port A *I 

} 
} 

/*********************************************************** 
The following routine returns how many odd bytes have been 

left in the Fifo at the end of a data transfer. 
***********************************************************/ 

lnt FIFO count odd bytesO 
{ - - -

lnt number odd bytes; 
number odd bYtes= 0; 
if (AFOf->status & FIFO DATA IN RAM) { 

if (PORT A TO P'ORT B(Fif'!01)) { 
number -odd bYtes = 

(PORT A BYTE AODRESS(FIF01)); 
- - - H (PORT A TO RAM Y(FIF01)) 

4; 
number .=odd_ 5ytes + = (FIF01·> ram_ Y _ addr) * 

} 
else number_:odd_bytes + = (Fif01->ram_:X_addr) * 4; 

else { 
if (PORT a TO RAM Y(FtF01)) 

nuth~r-odd 5ytes = (FIF0·1·>ram Y ac;tdr) * 4; 
else number_odd_bYtes = (FIF01->ram_x:.aadr) • 4; 

} 
} 
return (number odd bytes); 

30 } 

35 

/*********************************************************•• 
The following ro~ne tests the microprocessor interface of the 

chip. It first writes and reads the first 6· regi$ters. It then writes 1 s, Os, and 
an address pattern to the. RAM, reading the data back and checking it. 

The test returns a bit significant error code Wht)re each bit 
represents the adqress of the registers that failed. 

4 o Bit 0 = conflg register failed 
Bit 1 = control register failed 
Bit 2 = status register failed; 
Bit 3 == ram access control register failed 
Bit 4 = ram X address register failed 

4 5 Bit 5 = ram Y address register failed 
Bit 6 = data register failed 
Bit 7 = checksum register failed 

************-**********************************************/ 

SQ. #define RAM_ DEPTH 64 /* number of· tong words in Fifo Ram * /. 

reg_expected_Clata[G) = { Ox7F, OxFF, OxOO, Ox1F, Ox3F, Ox3F }~ 

SUBSTJTUTE SHEET 

Oracle Ex. 1002, pg. 1273



W091/03788 

5 

10 

15 

20 

2S 

30 

35 

PCf/US90/047ll 

-99-

char FIFO uprocessor InterfaCe ·testO 
{ - - -

unsigned long test data; 
char *register_ add'f; 
lnt I; 
char j,error; 
FIF01·>config = FIFO RESET; 
error=O; -

I* reset the chip *I 
register addr a: (char *) FIF01; 
j=1; -

I* first test registers 0 thru 5 *I 

for (1=0;1<6;1++) { 

} 

*register addr = OxFF; · I* write test data * 1 
if (*register addr I = reg expected data[i]) error I = j; 
•register-aadt = O; - I* write Os to register *I 
If (*register addr) error 1 = j; 
*register aadr = OxFF; I* write test data again *I 
if (*register addr I = reg expected data[i]) error 1 = j; 
FIF01· > coiifig = FIFO RESET; - /* reset the chip * / 
if (*register_ addr) error l = j; /* register should be 0 *I 
~eglster _ addr + +: /* go to next register • 1 
J <<=1; 

/* now test Ram data & checksufT! registers 
test 1 s thr<:>ughout Ram & then test as *I 

for (test data = -1; test data I= l; test data+ +) { 
& Os */ - . - -

FIF0'1-> config .= FIFO RESET l FIFO 16 BITS : 

r test for 1s 

FlF01·>COAtrol = FIFO" PORT A TO B; -
for (i = 0;1 <RAM OEPTH;i + +) - -· - /* write data to RAM 

*I 
FIF01·>data =test data; 

FIF01· >-control = 0~ -
for 0 ==0;1 <RAM DEPTH;i+ + )' 

If (FIF01":'>data '""test data) error I= j; I* read & 
40 check data* I -

45 

50 

If (FIF01·>checksum) error 1 = oxao; /*checksum 
should= 0 *I 

} 

I* now test Aam data with address pattern 
uses ~ different pattern for ev!'ry byte *I 

test data=Ox00010203; /*address pattern start* I 
FIF01·>config = FIFO RESET I FIFO 16 BITS I 

FIFO CARRY WRAP; - - -
~F01->&mtrol = FtFO PORT A TO B I 

FIFO CHECKSUM ENABL...E:;" - - -
fOr~=O;I<RAtl_DEPTH;i+ +} { 

FIF01·>data = test_data; 1• write address pattern*/ 

SUB$TITUTE SHEET 

Oracle Ex. 1002, pg. 1274



W091103788 

5 

10 

15 

PCT/US90/04711 

-100-

} 
test_ data + = Ox04040404; 

test data==OX00010203; /*address pattern start *I 
FIF01->control =FIFO CHECKSUM ENABLE; . 
for Q=O;i<RAM DEPTH;l+ +) { -

if (FIF01->status I= FIFO_DATA_IN RAM) 
error I = OX04; 7* should be data In ram *I · 

if (FIF01·>data I= test_data) error 1 = j; /*read & check 
address pattern *I 

test data + = Ox04040404; 
} -
lf (FIF01·>checksum I= OX0102) error I= Ox80; /*test checksum of 

address pattern *I 
FIF01->conflg = FIFO RESET I FIFO 16 BITS; /*inhibit carry wrap - - -*I 
FIF01·>checksum = OxFEFE: I* writing adds to checksum* I 
if (FIF01·>checksurn) error 1 =Ox80; /*checksum should be o 

*I 
if (FIF01->status) error I= Ox04; I* status should be 0 *I 

20 return (error); 
} 

S~BSTJTUif SHEET 

Oracle Ex. 1002, pg. 1275



•• •• . . . . . .. . ...... .... 
• • • ·­•••• . " . . . . " ..... . . • • .... . .. . . . . . ' .... ..... . . . . ..... 

101 

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 

1. Network server apparatus for use with a data 

network and .a mass storage device, comprising: 

·an interfaee processor unit coupleable to said 

network and to said mass storage device; 

a host proce.ssor unit capable of running remote 

procedures defined by a client node on said network; 

means · in said inter~ace processor unit for 

satisfying requests from said network to store data 

from said network on said mass storage device; 

means in said interface processor unit fo~ 

satisfying req~ests from said network to retrieve data 

from. said mass sto.raqe device to said network; and 

means in said interface processor unit for 

transmitting predefined categories of messages from 

sai~ network to sa~d host processor unit for processing 

in. said h.ost process~r \J;nit, said transmitted messages 
.. 

including all request.s by a network client to run 

client-defined procedures on said network server 

apparatus . 

2. Apparatus according to claim 1, wherein said 

interface processor unit comprises: 

a network control unit coupleable to said network; 

a. data control unit coupleable to said mass 

storaqe device; 

a buffer memory; 

Oracle Ex. 1002, pg. 1276



• •• . . 
• ..... . 

' . . . . . ... .. .. . . . 
' . . .. .... . . . . . ..... . . .. . . . 
I • ~~' .... ... . . .. . . ...... 

102 

means in said network control unit for 

transmitting to said data control unit requests from 

said network to store specified storage data from said 

network on said mass storage device; 

means in said network control unit for 

transmitting said specified storage data from said 

network to said buffer memory and from said buffer 

memory to said ~ata control unit; 

means in. said network control unit for 

transmitting to said data control unit requests from 

sai·d network to retrieve specified retrieval data from 

said mass storage device to said network; 

means in said network control unit for 

transmittinq sai4 specified retrieval data from said 

data control unit to said buffer memory and from said 

buffer memory to said networ~: and 

means in said network control unit for 

transmitti-ng said predefined Cfrtegories of messages 

from said netwo.rk to said host processinq unit for 

proeesainq by said host pracessinq unit . 

3. Apparatus accordinq to claim 2, wherein said 

d~ta coatrol unit comprises: 

a storage pro¢essor unit coup~eable to said mass 

storaqe d.evice; 

a file processor unit; 

means on said file processor unit; for translatinq 

said file system level storage requests from said 

Oracle Ex. 1002, pg. 1277



• •• . . . . .. ,. 
' .. ' .. . . . . .. 
' . . ' . ' . ...... 
.. ., ... • • . .. 

' . ' ' . .. .... ...... 
• .. ... 

103 

network into requests to store data at specified 

physical storage locations in said mass storage device; 

means on said file processor unit for instructing 

said storage processor unit to write data from said 

buffer memory into said specified physical storage 

locations in said mass storage device; 

means on said file processor unit for translating 

file system level retrieval requests from said network 

into requests to retrieve data from specified physical 

retrieval locations in said mass storage device; 

means on said file process¢r unit for instructing 

said ·storage processor unit to retrieve data from said 

specified physical retrieval locations in said mass 

storage device to· said buffer memory ~f said data from 

said specified physical locations is not already in 

said buffer memory; and 

means in sai(l st.oraqe processor unit for 

transmi tt.inq data between said: buffer memory and said 

mass storage device. 

4. Network server app~ratus for use with a data 

network and a mass storage device, comprising: 

a network control unit coupleable to said network; 

a data control unit c·oupleable to said mass 

storage d.evioe; 

a buffer memory; 

means for transmittiftg from said network control 

unit to said data control unit requests from said 

Oracle Ex. 1002, pg. 1278



.... 
• • . . .... • • 
.. 0 .. . ... . . . 

: .. .. .. . . . . . .... . .. . . . 
' . . .... ..... . . .... 

104 

network to store specified· storage data from said 

network on said mass storage device; 

means for transmitting said specified storage data 

by DMA from said network control unit to said buffer 

memory and by DMA from said buffer memory to said data 

control unit; 

means for transmitting from said network control 

unit to said data control unit requests from said 

network to retriev·e specified retrieval data from said 

mass storage device to $aid network; and 

means for transmitting said specifie'd retrieval 

data by DMA from said data control unit to said buffer 

memory and by DMA from. said buffer memory to said 

network. control unit. 

5. Apparatus according to claim 1, for use 

further with a b~ffer memor.y; and wh$rein said requests 

from said network to store and retrieve data include 

file system level stora·ge and. retrieval requests 

.t'espectively, .and wherein said itlterface p~ocessor unit 

comprises: 

a storage processor unit coupleable to said mass 

storage device.; 

a file processor unit; 

means on said file processor unit for translating 

said file &ystem level storage requests into. requests 

to store data at specified physical ato~age locations 

ln sai4 mass storage device; 

Oracle Ex. 1002, pg. 1279



.... . . . . .. . ' .. . . .. . .. ' . . • .. . . . . .... .. . . . 
• • ... 
. ..... 

105 

means on said file processor unit for instructing 

said storage processor unit to write data from said 

buffer memory into said specified physical storage 

locations in said mass storage device; 

means on said file processor unit for translating 

said file system level re.trieval requests into requests 

to retrieve data from specified physical retrieval 

locations in said mass storage device; 

means on said file processor unit for instructing 

said storaq.e processor unit to retrieve data from said 

specified phy·sic.al retrieval locations in said mass 

storage device to sai4 buffer memory if said data from 

said specified physical locations is not already in 

said buffer memory;· and 

means in. said storage processor unit for 

transmitting data between said buffer memory and said 

mass storage device. 

6. A data: control unit for use with a data 

network and a Jllass storage device· 1 and in r~sponse to 

file system level stora~e and retrieval reqaests from 

said data network1 comprising: 

a data bus different froa said network; 

a buffer memory bank coupled to said bus; 

stora~e procesl!!or apparatus coupled to said bus 

and c~upleable to said •ass storage device; 

file processor apparatus coupled to said bus~ said 

file processor apparatus includinq a local memory bank; 

Oracle Ex. 1002, pg. 1280



. .. 
' . . ' . . . .... . . . . . . .. . . ... . "' . ' . I e 

a • '• . • ...... 
' .. . . . . . . ... ..... . . ..... 

106 

first means on said file processor unit for 

translating said file system level storage requests 

into requests to store data at specified physical 

storage locations in said mass storage device; and 

second means on said file processor unit for 

translating said file system level retrieval requests 

into requests to retrieve data from specified physical 

retrieval locations in said mass storage device, said 

first and second means for translating collectively 

in~ludinq means for caching file control information 

through said local m·emo;-y bank in .said file processor 

unit, 

said dat.a control unit further comprising means 

for caching the file data, to be stored or retrieved 

according to said storage and retriev~l requests, 

through said buffer memory bank. 

7, A network node for use with a data network 

and a mass storag~ device, comprising: 

a system buffer memory; 

a host processor unit having.direot memory access. 

to said sys~em buffer memory; 

a ~etwork control unit coupleable to said network 

~ having direct memory access to said system buff~r 

rrtemory; 

a data control unit coupleable to said mass 

storage device and having direct memory access to said 

system buffer memory; 

Oracle Ex. 1002, pg. 1281



. .,... . . . 
• .... ' . . . . . . .. . . .. . . . . . . . ..... .. .. • • . .. . . . . . . 

' .... ..... 
: ..... 

107 

first means for satisfying requests from said 

network to store data from said network on said mass 

storage device; 

seCCl'""l.d means for satisfying requests from said 

network to retrieve data from said mass storage device 

to said network; and 

third means for transmitting predefined categories 

of messages from said network to said host processor 

unit for processing in ~aid host processor unit, said 

first, second a~d thi~d me~ns collectively including 

means for transmitting from said networ~ 

control ·unit to said system memory bank by direct 

memory access file data from said network for storage 

~n said mass storage device, 

means for tra·nsmitting from said sys·tem 

memory bank to said a~ta cont~ol unit by direct memory 

access said file data from said network for storaqe on 

said mass storage devic·e.~ 

means for transmitting fxom satd data control 

unit to said system memory bank b~·direct memory access 

file data for retrieval from $aid mass stor~e device 

to said network, and 

means for transmitting from said system 

memory bank to said n6·twork control unit said file data 

tor retrieval from· said mass stora~ -device to said 

network; 

Oracle Ex. 1002, pg. 1282



. ... • • . . ... . . . . . . . ... .... .. . . 
• • .... . . • .... . .. . . . . ..... ... . 
: .... 

108 

at least said network control unit . ineludinq a 

microprocessor and local instruction storaqe means 

distinct 
liJ 

from said system buffer memory, all 

instructions for said microprocessor residing in said 

local instruction storage means. 

8. A network file server for use with a data 

network and a mass storage device, comprising: 

a host processor unit running a Unix operating 

system; 

~n interfac~ processo-r unit coupleable to said 

network and to said mass storage device, ·said interface 

processor unit including means for decoding all NFS 

requests from said network, means for performing all 

procedures for satisfying said NFS requests, means for 

encoding any NFS reply messages for return transmission 

on said network, and means. for transmitting predefined 

non-NFS pategories of messages from said network to 

said host proces~or unit for processing in maid host 

proce-ssor unit. 

9. Network server apparatus for use with a data 

network, comprising: 

a network.con~roller coupleable.to said network to 

receive incoming information packe-ts over said network, 

said incoming information packets including certain 

packets w~ich con-tain part or all:. of a request to said 

server apparatus, said request being in either a first 

or a second cla.ss of requests to said se·rver apparatua; 

Oracle Ex. 1002, pg. 1283



. .. . . . . . . . ... , . .. . . ., . .. . . . . . . . . . . .. ..... . . .. ... . .. . . • • ... ..... .... • . 

109 

a first additional processor; 

an interchange bus different from said network and 

coupled between said netwo~k controller and said first 

additional processor; 

means in said network controller for detecting and 

satisfying requests in said first class of requests 

contained in said certain incoming information packets, 

said network controller lacking means in said network 

controller for satisfying requests in said second class 

of requests; 

means in said network controller for detecting a~d 

assembling into ass&m~led requests, requests in said 

second class of requests contained in said certain 

incoming information packets; 

means for delivering said assembled requests from 

said network controller to said first additional 

processor over said intexchange bus; and 

me~ns in $aid first a~ditional processo~ for 

furthe~ processing eaid assembled reque~ts in said 

second class of requests • 

10. Apparatus according to· claim 9, wherein said 

packets eaph include a. network . node destinatiGn 

ad4ress, and wherein said means in said ne~work 

controller for detecting and assembling into assembled 

requests, as&embles said assembled requests in a format 

which omits said net~ork node destination addresses. 

Oracle Ex. 1002, pg. 1284



... • • . 
• .... . . . . " . ... . . .. . . . .· ....... 
• .•... . .. . . . . 

• • .... ...... 
• 

•••• 

110 

11. Apparatus according to claim 9, wherein said 

means in said network controller for detecting and 

satisfying requests in said first class of requests, 

assembles said requests in said first class of requests 

into assembled requests before satisfying said requests 

in sai~ first class of requests. 

12. Apparatus according to claim 9, wherein said 

packets each include a network node destination 

address, wherein said means in said network controller 

for detecting and assembling into assembled reqtiests, 

a·ssemhles said assembled requests in a format which 

omits said network node destination addresses, and 

wherein said means in said network controller for 

detecting arid satisfyinq requests in sai:d first class 

of requests, assembles ·said requests in said first 

class of reqUests, in a format which omits said network 

node destination addresses, before satisfyinq said 

requests in said first class of requests. 

13. Apparatus accordinq to claim 9, wherein said 

means ia said networ~ controller for detecting and 

satisfyinq requests in said first class includes mean~ 

for prepar.inq ii\n outqoinq me·ssaqe .in response to one of 

said first class of requests, means for packaging said 

outqoinq message in outqoinq information packets 

suitable for transmission ove~ s~id network, and m~ans 

for transmittinq said outgoing information packets over 

said network. 

Oracle Ex. 1002, pg. 1285



... . . 
• . ... ..,. . . . . . .. . . . .. . 
• • ' .... ..... . .. • . • • . . .. . -··· • . .. ' 

111 

14. Apparatus accordinq to claim 9, further 

comprising a buffer memory coupled to said interchange 

bus, and wherein said means for deliverlng said 

assembled requests comprises: 

means for transferring the contents of said 

assembled requests over said interchange bus into said 

buffer memory; and 

means for notifyinq said first additional 

processor of the presence of said contents in said 

buffer memory. 

15. Apparatus according to claim 9, wherein said 

means in said first additional processor for further 

processing said assembled requests includes means for 

prep•ring an outgoinq messaqe in response to one of 

said second class of requests, said apparatus further 

compriainq means 'for delivering said outgoing message 

from said first additional processor to said ·network 

controller over said interchanqe bus, said network 

controller further comprisinq means in sai(l. network 

controller for packaging said ~utg~ing message in 

outgoing information packets auitable for transmission 

over said network, and means in said network controller 

for tran,mitting said outqoing information packages 

oveE said network . 

16. Apparatus accordinq to claim 9, wherein said 

first class of requests comprises requesta for an 

address of said server apparatus, and where.in a aid 

Oracle Ex. 1002, pg. 1286



' .. • • 
~ • ...... . . . . . .. 

4 I •• . . 
'!' . -···. • ••• .. . . • • .. ~ .... 
• . ••• 

112 

means in said network controller for detecting and 

satisfying requests in said first class comprises mea~s 

for preparing a response packet to such an address 

request and means for transmitting said response packet 

over said network. 

17. Apparatus according to claim 9, for use 

further with a second data network, said network 

controller being c9upleable further to said seeond 

network, wherein said first class of requasts comprises 

requests· to route a message to a destination reachable 

over said second network, and wherein said means in 

said network contr9ller .for detecting and satisfying 

requests in said first class comprises means for 

detecting that one of said certain packets comprises a 

request to route a message contained in said one of 

said certain packets to a destination reachable over 

said second network, and ~eans for transmitting said 

message over •aid seQond network. 

18. Apparatus according to claim 17 ,. for use 

further with .a third data network, said network 

controller further comprising means in said network 

controller for d~teeting particular ~eqUests in said 

incoming information packets to route a message 

contained in said particular requests, to a destination 

reachable over said third network, said appar~tua 

further comprising: 

Oracle Ex. 1002, pg. 1287



•• • • . 
• ..... • • . " • •• . . • • ••• • ' .. , 

•• . .. • • • • .... 
••• 

.. .. 

113 

a second network controller coupled to said 

interchange bus and coup1eable to said third data network; 

means for delivering said message contained in 

said particular requests to said second network 

controller over said interchan~e bus; and 

means in said second network controller for 

transmitting said message contained in said particular 

requests over said third network. 

19. Apparatus according to claim 9, for use 

further with a third data network, said network 

controller further comprising. 1neans i-n said network 

controller for detecti·ng part~cular request& in said 

incoming information packets to route a message 

contained in said particular requests, to a destination 

reachable ov•r said ~hird network, said apparatus 

further comprising~ 

a second network · controller coupled to said 

interchange bus and coupleable to said third data 

network.r 

means f.or delivering said message contained in 

said particular r~quests to said second network 

controller over said interchange bus; and 

means in said second network controller for 

transmitting.said message eontained in said particular 

requests over said third ·network. 

20. Apparatus· according to claim 91 for U9e 

further with a mass storage device, wherein said first 

Oracle Ex. 1002, pg. 1288



.... 
• • • • .. 

• •• • • . 
• ..... . 
' •••• .. . . 

<I • ... .. , . .... • . 

114 

additional processor comprises a data control unit 

coupleable to said mass storage device, wherein said 

second class of requests comprises remote calls to 

procedures for managing a file system in said mass 

storage de.vice, and wherein said means in said first 

additional processor for further processing said 

assembled requests in said second class of requests 

comprises means for executinq file system procedures on 

said mass storage device i~ response to said assembled 

requests. 

·21. Apparatus according to claim 20, wherein said 

file. system. procedures include a read procedure for 

reading data ·from said mass storaqe device, 

said means in said first additional processor for 

further processinq said a&S!!i:rlbled requests includin9 

means for reading data from a specified location in 

said mass storage. device in response to a remote call 

to said read procedure 4 

said apparatus further including means for 

-deliverinq said data to said network controller, 

said network co·ntroller further comp·rising means 

on said network controller for packaging said data in 

outgoing information packets suitable for transmission 

over said network. and means for transmitting said 

outgoing informatlGn packets over said network. 

22. Apparatus according to claim 21, wherein said 

~eans for deliverinq comprises: 

Oracle Ex. 1002, pg. 1289



.. . . . .. . .. . . 
• .. ..... 
• . 

•••• •• . . . . . . .... .... 
• • .... 

115 

a system buffer memory coupled to said interchange 

bus; 

means in said data control unit for transferring 

said data over said interchange bus into said buffer 

memory; and 

means in said network controller for transferring 

said ·.data over said interchange bus from said system 

buffer memory to said network controller. 

23. Apparatus according to. claim 20, wherein said 

file system procedures include a read· procedure for 

reading a specified number of bytes of data from said 

mass storage device beginning at an address specified 

in lo~ical terms including a file system ID and a ft'le 

ID, saiq means ·for executing file system proceQ.ures 

comprising: 

means for converting the logical address specified 

in a remote call to said read procedure to a physical 

address; and 

meana far ~eading data from said physical address 

in said mass storage device. 

24. Appa;ratus accordinq to claim 23, wherein said 

mass storage deviee comprises a disk drive havinq a 

numbered tracks and sectors, wherein said logical 

address specifies said file system ro, said file ID, 

and a byte offset, and wherein said physical address 

specifi~s a correspondinq track and sector number. 

Oracle Ex. 1002, pg. 1290



. .... . . . . . 
•• .. ... 

' . . • . .... . 
I •••• ' ... . . . 

• • • ' ..... ...• 
' • .. ... 

116 

25. Apparatus according to claim 20, wherein said 

file system procedures include a read procedure for 

reading a specified number of bytes of data from said 

mass storage device betinning at an address specified 

in logical terms including a file system ID and a file 

ID, 

said data control unit comprising a file processor 

coupled to said interchange bus and a storage processor 

coupled to said interchange bus and coupleable to said 

mass storage device, 

said file processor comprising means for 

convertinq the 1o9ical address spe~ified in a remote 

call to said read procedure to a physical address, 

said apparatus further comprising means for 

delivering said physical address to· said storage 

p;:oc;:essor 1 

said storage processor c()mprising means for 

readinq· cilata from said physical address in said mass 

storaqe devlce and for transf~rrinq said4ata over said 

interchanqe bus into said buffer memory·; and 

means in.said network controller for transferring 

said data over said interchange bus from said system 

buffer memory to said network controlJ..er. 

26. Apparatus accordinq to claim 20, wher:ein said 

file syst~m procedures include a write procedure for 

writing data contained in an asse~led request,. to said 

mass storage device, 

Oracle Ex. 1002, pg. 1291



.... ., . . . . .. . ... . . . . .. .. . . .... .. ' .. . • • ... .... . . ..... 

117 

said means in said first additional processor for 

further processinq said assembled requests includin9 

means for writinq said data to a specified location in 

said mass storage device in response to a remote call 
" 

to said read procedure. 

27. Apparatus according to claim 9, wherein said 

first additional process~r comprises a host computer 

coupled to sai4 interchange bus, wherein said second 

class of requests comprises remote calls to procedures 

other than procedures for managing a file system, arid 

·wherein said. means in said first additional processor 

for further processing said assembled requests in said 

second class of requests comprises means for executing 

remote procedure calls in response to said assembled 

requests. 

26. Apparatus according to claim 27, for use 

further with a mass storagQ device and a data control 

unit coupleable to said. mass ~torage device and coupled 

to said int~rchange · · bus, wherein said netw()rk 

cont~oller further compr~ses m4;1~Ds in said network 

controller for detecting and assemblinq remote calls, 

rec.eived over said network, to procedures for -managing 

a file system in said mass storage device, and wherein 

said data control unit comprises means for executing 

file system procedures on said mass storage devic~ in 

response to said remote calls to procedures for 

managinq a file system in said mass storage device. 

Oracle Ex. 1002, pg. 1292



.. . . . ... . ... • • • . .... • . ... , 
•• . -" .. ... . .... .. ... · 

118 

29. Apparatus according to claim 27, further 

comprising means for delivering all of said incoming 

information packets not recognized by said network 

controller to said host computer over said interchange 

bus. 

30. Apparatus according to claim 9, wherein said 

network controller comprises: 

a microprocessor; 

a. local ingtruetion memory containing local 

ins~ruqtion code.; 

a local bus coupled between s·aid mic-roprocessor 

and said local instt'uc·tion memory; 

bu.s interlace means for interfacin~ said 

znicropro'f,:essor with said interchange bus at times 

dete~mined b~· ~aid microproce$sor in response to said 

local instruction co~e; and 

netwoEk interface means for interfa~ing said 

microprocessor with said data network, 

eaid iocal instruc·tio.n memo.t'y inciuding all 

instruction c:ode necessary for sa-id microprocessor to 

perform said function Qf detecting and ·satisfyinc;r 

requests in said. first class o.f requests,. and all 

instruction code necessary f0r said microprocessor to 

perfor• said function of detecting an~· asaembli~g into 

assembled requeStS 1 requests in' Said S-8C0nd OlaSS Of 

requeetiJ. 

Oracle Ex. 1002, pg. 1293



•• 
. . . . . .. . .. . • ····. • •••• .. 

' 0 I . . ... ..... 
...... • . 

119 

31. Network server apparatus for use with a data 

network, comprising: 

a network controller coupleable to said network to 

receive incoming information packets over said network, 

said incoming information packets including certain 

packet·s which contain part or all of a message to said 

server apparatus, said message being in either a first 

or a secpnd class of messages to said server apparatus, 

said messages in said first class of messages including 

certain messages containing requests; 

a host computer; 

an interc'hange bus different from said network and 

co.upled betw-een, said network controller and said host 

computer; 

means in said network controller for detecting and 

satis.fying said reqUests in said first class of 

messages ; 

means for delive~ing message& in said second class 

of messages from said network controller to said host 

computer over said interchange. bu~; and 

means in said host computer for further processing 

said messages in said second qlass of messages . 

32'. Apparatus according to claim 31, wherein said 

packets each inelude a network node destination 

address, and wherein said means for delivering messages 

in said Becond class of messages comprises means in 

said network controller for detecting said messages in 

Oracle Ex. 1002, pg. 1294



.... . . •• . ... • • • . .. . . 
• . .... .. . ' . . .. . .... • • •• •• 

.,. 

120 

said second class of messages and asaembling them into 

assembled messages in a format which omits said network 

node destination addresses. 

33. Apparatus according to claim 31, wherein said 

means in said network controller for detecting and 

satisfying requests in said first class includes means 

for preparing an outgoing message in response to one of 

said requests in said first class of messages, means 

for packaging said outqoing m·essaqe in outgoinq 

information packets suitable for transmission over said 

network, and means for transmitting said outgoing 

information packets over said network. 

34. Apparatus according to clai.m 31, for use 

further with a second data network, said network 

controller being co~pleable further to said $econd 

network, wherein said first class of-messages comprises 

messages to be routed to a destination reachable over 

said second network, and wherein said means in said 

network controller for detecting and satisfying 

requests in said fi~st ciass compriaes means for 

detecting that one of said certain paekets includes a 

request to route a message contained in said one of 

said ~ertain packets to a destination reachable over 

said second network, and means for transmitti.nq said 

mess.age over said second network. 

35. Apparatus according to claim 31, for use 

further with a third data network, said network 

Oracle Ex. 1002, pg. 1295



, ..... . . . .. •• • •• . . 
• • 

··~· ~ • ..... 
•• . . . . . ... .. . .... 

• . ..... 

121 

controller further comprisinq means in said network 

controller for detectinq particular messaqes in said 

incoming information packets to be routed to a 

destination reachable over said third network, said 

apparatus further comprisinq: 

a second network controller coupled to said 

interchanqe bus and coupleable to said third data 

network; 

means for deliverinq said particular messaqes to 

said second network controller over said interchanqe 

bus, substantially without invol vinq said host 

computer; and 

means in said second netwo~k controller for 

transmitting said message contained i~·Sai~ particular 

requests over said third networ~, substantially without 

involving sai4 host computer. 

36. Apparatus accordin9 to claim 31~ for use 

further. with a mass storaqe ~evice, further comprisinq 

a data coh't;rol unit coupl~at;>le to said mass storage 

device, 

said netw•rk controller further comprising means 

in s•id. network controller for detecting ones of said 

incominq information packets containing remote calls to 

procedures for managinq a file system in saiu mass 

stora~e device, and means in said network controller 

~or assembling' said remote calllf from said incoming 

Oracle Ex. 1002, pg. 1296



,, .. 
• • " . oc ... . . . 
• 

.... I 

• • .... .. 
. ' : i ••• .. ,. .. 

• • •••• 

122 

packets into assembled calls, substantially without 

involvinq said host computer, 

said apparatus further comprisinq means for 

deliverinq said assembled file system calls to said 

data control unit over said interchanqe · bus 

substantially without involvinq said host computer, ai 

said data control unit comprisinq means in s.aid data 

control unit for executinq file_ system procedures on 

said mass storaqe device in response to said assembled 

file system calla., substantially without involving said 

host cQmputer. 

3 7 . App~ra tu·S accordinq to Claim 31, further 

comprisinq means for deliverinq all of said incominq 

information packets not recoqnized by said network 

controller to said host computer over said interchanqe 

bus. 

38. Appar.atus accordinq to claim 3 L wherein said 

neuwork controller cODtJ;It'ises :. 

a microprocessor; 

a local instruction memory containinq local 

instruction code; 

a local bus coupled between said microprocessor 

and said local instruction memory) 

bu~ interface means for i~terfacinq said 

microprocessor· with 5aid interchange bus at times 

determined by said microprocessor itl res·pOnse to said 

local instruction code; and 

Oracle Ex. 1002, pg. 1297



... , . . . . 
•• " ... . ~ 

•" .. , . 
• • .... .. • • • • .... .... 
: .... 

123 

network interface means for interfacing said 

microprocessor with said data network, 

said local instruction memory including all · 

instruction code necessary for said microprocessor to 

perform said function of detecting and satisfying 

requests in said first class of requests. 

39. File server apparatus for use with a mass 

storage device, comprising: 

a requesting unit capable of issuinq calls to file 

system procedures in a device-independent form; 

a file· controller including means for converting 

said file system procedure calls .from said device-

independent form to a device-specifie form and means 

fox: issuing device-spe.cific t:Ommands in 'response to. at 

least a subset 9f said procedu;re calls, said file 

controller opereting in parallel with said requesting 

unit; and 

a storage processor including means for executing 

said device-specific commands on said mass storage 

4e•ice, said storage processor operating in parallel 

with said requesting unit and said file controller. 

40. Apparatus according ito claim 39, further 

contprisinq: 

an interchange bus; 

first delivery means for delivering said file 

system procedure calls from said requesting unit to 

said file controller over said interchange bus; and 

Oracle Ex. 1002, pg. 1298



. . . . •• • • • • • • • ...... .... 
•• 

• .. 
• ! • • .... ... , . 

• I •••• 

124 

second delivery means for delivering said device­

specific commands f:rom said file cont:rolle:r to said 

storage processor over said interchange bus. 

41. Apparatus according to claim 39 1 further 

compri~t~ing: 

an int-erchanqe bus coupled to said requesting ""it 

and to said file controller; 

first memory means in said :requestinq unit and 

add:ressable over said interchange bus; 

second memory means in said file controller; 

means in said .reques.ting unit for preparinq in 

said first memory means one of said calls to file 

system procedures; 

means for n~tifyinq said file cont~oller of the 

availability of said bne of said calls in said first 

memory means; and 

means in said file.controller for controlling an 

access to said first memory means for· reading said.one 

of said calls over said interchange bus into said 

secon4 membry means in response to said notification .. 

42. Apparatus according to claim 41 1 wherein said 

means for notifying said file controller comprises: 

a co~and FIFO in said file controller addressable 

over said interchange bus; and 

means in said requesting unit for controllinq an 

access to sa.id FIFO for writing a .descriptor into said 

FIFO over said interchange ~us, said descriptor 

Oracle Ex. 1002, pg. 1299



... 
- . • • •• • •• • • 

" • .. ,, 
•••• •• 

• . 
• • • • ••• .•... 

• • .... 

125 

describing an address in said first memory means of 

said one of said calls and an indication that said 

address points to a message being sent. 

43. Apparatus according to claim 41, further 

comprising: 

means in said file controller for controlling an 

access to said first memory means over said interchange 

bus for modifying said one of said calls in said first 

memory means to prepare a reply to said one of said 

calls; and 

means for notifying said requesting unit of the 

availability of said reply in said first memory. 

44. Apparatus according to claim 41, further 

comprj.sing: 

a command FIFO in said requesting processor 

addressable over said interchange bus; and 

means in said file co.ntroller for cohtrolling an 

access to said.FIFO for writing a descriptor into said 

FIFO over said interchange bus, said descriptQr 

describing said address in said .fi.r"'t memory and an 

indication that said address points to a reply to sai·d 

one of said calls . 

45. Apparatus according to claim 39, further 

comprising: 

an interchange bus coupled to said file controller 

and to said storage processor; 

Oracle Ex. 1002, pg. 1300



.. 
• t I I . ..... .. . . . . . , . -·· 

.... ... 
• • • fl I . . . , .. . . . 
• • • .. 
•• •• . " . . . • • ...... 

126 

second memo~y means in said file controller and 

addressable over said interchange bus; 

means in said file controller for preparing one of 

said device-speoific commands in said second memory 

means; 

means for notifying said storage processor of the 

availability of said one of said commands in said 

second memory means; and 

means in said storage processor for controlling an 

acQess to said eecond memory means for reading said one 

of said commands over said interchange bus in response 

to said notification. 

46. Apparatus according to claim 45 1 wherein said 

means for notifying said storage processor comprises: 

a command FIFO in said storage processor 

addressable over .said interchange bus; and 

means in said file· controller for controlling an 

access to said FIFO for writing a descriptor into ~aid 

FIFO over said interch·ange bus, said descriptor 

describing an address in sa~d second memory 9f said Qne 

of said calls and an indication_ that said address 

points to a measaqe being sent . 

4 7. Appara,tus according: to claim 391 wherein said 

means for con-verting said file system procedu.t·e calls 

cotnprises: 

Oracle Ex. 1002, pg. 1301



. . . . . . •••• .. • • • . . . .... 
.... . . . . . 
... . 
•••• . . . . . . .. .. .. * • • . . ' . . 

,. 
·.;........ ·':". 

JJ: ... • ,~= .. . ' . 
~ ~ J, \.. 

'\"t· / .. 
• , ~ ........ 11! ... ; 

127 

a file control cache in said file controller, 

storing device-independent to device-specific 

conversion information; and 

means for performing said conversions in 

accordance with said conversion information in said 

file control cache. 

48. Apparatus according to claim 39, wherein said 

mass storage device includes a disk drive having 

numbered sectors, wherein one of said file system 

procedure calls is a read data procedure call, 

.said apparatus further comprising an 

i~terchange bus and a system buffer memory addr~ssable 

over said interchange bu~, 

said means for converting said file system 

procedure calls including means· for issuing a read 

sectors command in response to one of said read data 

procedure calls, said read se.ctors command s·pecifying 

a starting sect·or on s~id disk drive, a count 

indicating the amo~nt of data to read, and a pointe~ to 

a buffer in said system buffer memory, and 

said means for executing device~specif1c 

commands including means for reading data from said 

disk drive beginning at said starting sector and 

continuing for the number of sectors indicated by said 

co~t, and cont~olling an access to said system buffer 

memory for writing said data over said interchange bus 

to said buffer in said system buffer memory •. 

Oracle Ex. 1002, pg. 1302



. .... . . 
• ..... .. . . . . . . . .... 

.... . .. . . . . . ..... . . . . " . .. 
•• •• • • • . . . . .... 

128 

49. Apparatus according to claim 48, wherein said 

file controller further includes means for determining 

whether the data specified in said one of said read 

data procedure calls is already present in said system 

buffer memory, said means for converting issuing said 

read sectors command only if said data is not already 

present in sai~ system buffer memory. 

so. Apparatus according to claim 48, further 

comprising: 

means in s.aid storage processor for controlling a 

hotification: of said file controller when said ·read 

sectors command has been executed; 

means in said file controller, responsive to said 

notification from said stora-ge processor, for 

controlling a notification of said reqUesting unit that 

said read data procedure call has been executed; and 

means in said requesting unit, responsive to said 

notification from said fil~ controller, for controlling 

an access to saiq system buffer memory for reading said 

data over sai~ interchange bus from said buffer in said 

system buffer memory to said .requesting unit . 

51. Apparatus according to .claim 39,. wherein said 

mass storage device includes a disk drive having 

numbered ·sectors, wherein one of said file system 

procedure calls is a write data procedure call, 

Oracle Ex. 1002, pg. 1303



. .. . 
• .. .. .. . . . 

• • • ..... 
..... . . . . . . . . ..... 
" .. . . . .. .. . ' • • • .. . . . .... 

129 

said apparatus further comprising an 

interchange bus and a system buffer memory addressable 

over said interchange bus, 

said·means for converting said file system 

procedure calls including means for issuing a write 

sectors command in response to one of said write data 

procedure calls, said write data procedure call 

including a pointer to a buffer in said system buffer 

memory containing data to be written, and said write 

·sectors command including a starting sector on said 

disk drive, a count indicating the amount of data to 

write, and said pointer to said buffer in said buffer 

memory, and 

said means for executing device~specific 

comman(ls ;Lncludinq Jneans fQz; contr·olling an access to 

said buffer ·memory for reading said data over said 

interchange bus. from said buffer in said system buffer 

memory, and writing said data to said disk drive 

beginning at said starting sector and continuing for 

the number of sectors indicated by said count . 

52. Apparatus according to claim 51, further 

comprising: 

means in said requesting unit for controlling an 

access to said system buffer ~emory for writing said 

data over said interchange bus to said buffer in said 

system bu£fer memory; and 

\ ·, .... _. __ , 
.. ·, ,, .. ' 
•·. I ' \ ., 
• 4 /J-' ~:·; 

• ... "\:. I • I' . ' ,.,.... ..... " 

Oracle Ex. 1002, pg. 1304



. . .. ' . • .. ,. .. . . . . . . .... 
... , 
• • • . . . ..... 
• • ..... .... . . . . . . . 

... 
·' 

130 

means in said requesting unit for issuing said one 

of said write d&ta procedure calls when said data has 

been written to said buffer in said system buffer 

memory. 

53. Apparatus according to cl~im 52, further 

CQmprising: 

means in said requesting unit for issuing a buffer 

allocation request; and 

me~ns in said file controller for allocating said 

buffer in said system buffer memory in response to said 

buffer allocation request, and for providing said 

pointer, before said data is written to said buffer· in 

said system buffer memory. 

54. Network controller apparatus for use with a 

first data network carrying signals representing 

information packets encoded according to ~ first 

physical layer protoeol, comprising: 

a first network interface unit, a first packet bus 

and fi;rst packet. memory addr.essable by said first 

network interface unit over said first packet bus, said 

first network interface unit including means for 

receiving signals over said first network representing 

incoming information packets, extracting said incoming 

information packets and writing said incoming 

information packets into s·aid first packet memory over 

said first packe~ bus; 

a first packet bus port; 

Oracle Ex. 1002, pg. 1305



. ·- " . . ... .. .. . . . . . . ..... 
•••• . . . 
6 • . . .. ·:· .. . . . .. 
•• •• . . . . . . . ... ., 

131 

first packet DMA means for reading data over said 

first packet bus from said first packet memory to said 

first packet bus port; and 

a local processor including means for accessing 

said incoming information packets in said first packet 

memory and, in response to the contents of said 

incoming information packets, controlling said first 

.Packet DMA means to read selected data over said first 

packet ~us from said first packet memory to said first 

packet bus port, said local processor incl~ding a CPU, 

a CPU bus and CPU memory containing CPU instructi0ns, 

said local ~rocessor o~erating in response to said ·cpu 

instruc.tions, said CPU in~tructions being received by 

said CPU over sai4 CPU bus; independently of any of said, 

wr~ting by said first network inte~face unit of 

incoming information pao.kets into said first packet 

memory over sa1Q first packet bus and ~nde~endently of 

any of said reading by said first packet DMA means ~f 

data over s&id first packet bus from said first packet 

memory to said first pa~ket bus· port • 

55. ·Apparatus· a~cording to cl.aizn. 54, where.in said 

first network i~terface unit further includes means for 

reading outgoing information packets from said first 

packet memory over said. first packet bUs; encoding said 

outgoing inf~rmatiom packets according to said first 

physical layer protocol, and transmitting signals over 

Oracle Ex. 1002, pg. 1306



. .. . . ... .. ' . . . . . ..... 
.... 

. . . : 
• ..... . . . . . .. 

•• ... .. . . . 
I • . . 
•••• 

132 

said first network representing 

information packets, 

said outgoing 

said local processor further including means 

for preparing said outgoing information packets in said 

first packet memory, and for controlling said first 

network interface unit to read, encode and transmit 

said outgoing information packets, 

said. receipt of CPU instructions by said CPU 

over said CPU bus ~~ing independent further of any of 

said reading by said first network interface unit of 

outgoing information packets from said first .packet 

memory over said first packet bus. 

56. Apparatus according to claim 54, further 

comprising a first FIFO having first and second ports, 

said first port of said ~irst FIF.O being said first 

packet bus port. 

57. Apparatus according to claim 56, for use 

further with an interchange bus, further comprising 

interOhanqe bus DMA means for reading data from said 

second port of said first FIFO onto said interchange · 

bus, 

said local processor further includ-ing means 

for controlling sa~d intercnanqe bus DMA means to read 

aaici data from said second port o.f said first FIFO onto 

said interchange bus . 

58. Apparatus accordiag to claim 54, .for use 

further with a second data network carryinq signals 

Oracle Ex. 1002, pg. 1307



• .. . 
• •••• .. 

• • • • • • ...... 
.... . . . . ; 
• • .... : .:, : ... . . .. . . . . . 
' . •••• 

133 

representing information packets encoded according to 

a second physical layer protocol, further comprising: 

a second ~etwork interface unit, a second packet 

bus and second packet memory addressableil by said second 

network interface unit over said second packet bus, 

said second network interface unit including means for 

reading outgoing information packets .from· said second 

packet mel!lory over said second packet bus, encoding 

said outgoinq information packets accordinq to said 

second physical layer protocol, and transmitting 

signals. over said second network representing said 

outqoinq i.nformation .packets; 

a second packet bus port; and 

second paaket DMA means for reading data over said 

second packet bus from said second packet bus port to 

said second packet memory, 

said local processor f~rther includinq means 

for contro~l~nq said second packet DMA means to read 

data over said second packet bus from said. second 

packet bus port to said second packet memory, and for 

controlling said second network interface unit to read, 

e~code and transmit outgoing information packets from 

said data in said second packet memory, 

said receipt of CPU ~nstructions by said CPU 

ove·r said CPU bus being independent further of any of 

said reading by said second packet DMA means of data 

over said second packet l:;lus from said second packet bus 

Oracle Ex. 1002, pg. 1308



• .. . 
• .... .. . . . . . . .... 

••• • I 

• . .... 
o I I • • .. . . . . . . . . . . . .... 

,. 

134 

port to said second packet memory, and independent 

further of any of said reading by said second network 

interface unit of outgoing information packets from 

said second packet memory over said second packet bus, 

and all of said accesses to said first packet 

memory over said first packet bus being independent of 

said accesses to said second packet memory over said 

second packet bus. 

59. Apparatus according to claim 58, wherein said 

second physical layer protocol is the same as said 

first physicai layer protocol. 

60. Apparatus according to claim 58, further 

comprising ·means, responsive to signals from said 

processor, for coupling data from said first packet bus 

port to said second packet bus port~ 

61. Apparatus ac·cording to claim 61, further 

comprising: 

firs'\: a-nd . second FIFOs, each having first and 

second ports, said first port of said first FIFO being 

said first packet bus port and said first port of said 

second FIFO being said second packet bus port; 

an interchange bus; and 

interchange bus DMA. means for transferring data 

between said interchange bus and either said second 

port of $aid first FIFO or said second port of saio 

second FIFO, selectably in response to DMA control 

signal~ from said local processor. 

Oracle Ex. 1002, pg. 1309



• .. . . 
••• .. 

' . . . . . .. ... 
... 
• • .· 

. ••t•. 
' . . •• . . . .. 

• • . . . . ..... 

135 

62. Apparatus according to claim 62, wherein said 

interchange bus OMA means comprises: 

a transfer bus coupled to said second port of said 

first FIFO and to said second port of said second FIFO; 

coupling means coupled between said transfer bus 

and said interchange bus; and 

a controller coupled to receive said DMA control 

signals .from said processor and coupled to said first 

and second FIFOs and to said coupling mean·s to control 

data transfe.J:s over s·aid transfer bus. 

63. Storaqe processing apparatus for use with a 

plurality of storage devices on a respec~ive plurality 

of channei buses, and an intercaange bus, said 

interchange bu~ capable of transferring data at a 

higher rate than any of said channel buses, comprising: 

.data transfer means coupled to each of ~aid 

channel buses and to said interchange bus, for 

transferring data in parallel between said data 

transfer means and each of said channel buses at the 

data transfer rates of each of said chann~l buses, 

reepectively, and for transferring data between said 

data transfer means and said inte·rchange bus at a d1-ta 

transfer rate higher than said data transfer rates of 

any of said channel buses; and 

a local processor including transfer control means 

for controlling said data transfer means to transfer 

data between said data transfer ~neans and specified. 

Oracle Ex. 1002, pg. 1310



• ..... 
• ••• .. 

• • • • ... , 
I e t • • . 

• .... 
• 
. . . .. .... 

• • . 
··~ 

136 

ones of said channel buses and for controlling said 

data transfer means to transfer data between said data 

transfer means and said interchange bus, 

said local processor including a CPU, a CPU 

bus and CPU memory containing CPU instructions, said 

local processor operating in response to said CPU 

instructions, said CPU instructions being receiyed by 

sa~d CPU over said CPU bus independently of any of said 

data transfers between said channel buses and said· data 

transfer means and independently of any of aaid data 

transfers between :said dat~ transfer· means and said 

interchange bu~. 

64. Apparatus according to claim 63,.wherein the 

highest da~a transfer rate of said interchange bus is 

substantially equal to the sum 'Of. the highest data 

transfer· rates of all of· s.aid channel buses. 

65·. Apparatus according: to elaill\ 6'3, wherein said 

data transfer means comprise•:· 

a FIFO· co.rres.pondinq to eaeh of said channel 

buses, each of said FIFOs having a f1rst port and a 

second port; 

a ~~nne! adapter coupled between the ~irst port 

of each of said FIFOs and a respective on:e of said 

ohannels; and 

DMA means coupl-ed to the S'econd po~t .of each of 

said FIFOs and to said interchange bus, . for 

Oracle Ex. 1002, pg. 1311



. .. , . . . .. .. . . . . ... 

.. 
• • • . ·-·· •• • • . .. 
• • . . -· 

137 

transferring data between said interchange bus and one 

of said FIFOs as specified by said local processor, 

said transfer control means in said local 

processor comprising means for controlling each o£ said 

channel adapters separately to transfer data between 

the channel. bus cou.pled to said channel adapter and the 

FIFO coupled to said channel adapter, and for 

controlling said DMA 0ontroller to transfer data 

between separately specified ones of said FIFbs .and 

said interchange bus, said OMA means performing said 

transfers sequentially. 

66. Apparatus according to claim 65 f wherein said 

DMA means comprises a command memory and. a DMA 

processor, 5aid local proceseor bav.ing means for 

writing FIFO/ int.erchang:e bus bMA commands into said 

command memory, eacb of said commands bei~g specific to 

a given one said FIFO• and including an indication of 

the dire'ctiC)n of d~_ta transfer 'between said interchange 

bus and $aid g~ven F~FO, each of said FlFOs generating 

a ready sta1:us indication, said PMA proc·essor 

controlling the data transfer specified in each of said 

comm~nds aequentially after the correspondinq FIFO 

ind.icates a .ready status_, ·and n.otifyinq said local 

proces~or upon completion of the data transfer 

specified in each of said commands. 

67. Apparatus according to claim 65 further 

comprising an additional FIFO cou~led between said CPU 

Oracle Ex. 1002, pg. 1312



• ... , 
• •• 
·~ • lr 

• • ... 
.. 

0 I 

' • ••• • • o I 
• 

f I • • . 
~ ... 

138 

bus and said DMA memory, said local processor further 

havinq means for transferrinq data between said CPU and 

said add~tional FIFO, and said OMA means beinq further 

for transfe~rinq data between said in~erchanqe bus and 

said additional FIFO in respons~ to commands issued by 

said local processor • 

Oracle Ex. 1002, pg. 1313



• ... . . ••• ... 
• • . ... .... 
.. 

• • I . 
•• • • • o I • • • • • . 

• ••• 

139 

68. Network server apparatus for use with a data 

network and a mass storage device, comprising: 

an interface processor unit coupleable to said 

network and to said mass storage device; 

a host processor unit; 

means in said ~nterface processor unit for 

satisfying requ~sts from said network to store data from 

said networ~ on said mass storage device; 

means in said interface processor unit for 

satisfying- requests from said network to re-trieve data 

fro~ said mass storage device to said network; 

m~ans in said interface processor unit for 

. satisfying requests from said host processo.r unit to 

store dat~ from said host processor unit on said mass 

storage device; and 

means in said interface proce.ssor unit for· 

satisfying requests from said host proc.essor unit to 

retrieve data from said mass storag~ device to said host 

processor unit. 

69. Apparatus· ac·co.rding to claim 68, wherein said 

interface processor unit comprises' 

a network control unit coupleabie to. said network; 

a data control unit caupleable to said mass s~orage 

device1 

a buffer memory; 

Oracle Ex. 1002, pg. 1314



• .. , . . 
t ••• 

•• • • • • ... u. 

••• .. . . . 
' .... . . 

• • • ... • • .. • . ... 

'": -....... 
::.., ... l .......... }'" 

• •,J " " 
1'.::.1-11 .·. 
;~ ' ~.· • --1 .. . " (: 

... ·~ (,I 
·-.!~"V."'.·, -..... · ....... • 

140 

means in said network control unit for transmitting 

to said data control unit requests from said network to 

store specified storaqe data from said network on said 

mass storaqe device;, 

means in said network control unit for transmitting 

.said specified storaqe data from said network to said 

buffer memory and from said buffer memory to said data 

control unit; 

means in said network control unit for transmitting 

to said data control unit requests fro~ said network to 

retrieve specified retrieval data. from said mass storage 

device to said network; and 

means in said network-control uni~ for transmitting 

said specified retrieval. data from said data control 

unit to said buff&r memory and from said.buffer memory 

to said network. 

'70. Apparatus accordinq to claim 69, -where:t.n said 

data cont~ol un~t comprises: 

a storage pro·cessor unit coupleable to said mass 

storage device; 

a. file processor unit; 

means on said file processor unit for translating 

said file system level storaqe requests from said 

network into requests to store data at specified 

physical storage locations in said mass storaq.e device; 

Oracle Ex. 1002, pg. 1315



. . ... . . 
• ·····• . . 

• ·:·· ••• •• . . 
• • •••• 

• •• • • • • ... .. . . . . 

141 

means on said file processor unit for instructing 

said storage processor unit to wri.te data from said 

buffer memory into said specified physical storaqe 

locations in said mass storage device; 

means on said file processor unit for translating 

file ,ystem level retrieval requests from said network 

into requests to retrieve data f~om specified physical 

retrieval locations in said mass storaqe device; 

means on said file ~rocessor unit for instructing 

said storage processor unit to retrieve data from said 

specified physical retrieval locations in said mass 

storage device to said buffer memory if said data from 

said specified physical locations is not already in said 

buffer memory; and 

means in said storaqe processor unit for 

transmitting data between said buffer memory and $aid 

mass storaqe device. 

71~ Apparatus according to ~laim 68, for use 

further with a buffer memory, and wherein said requ-ests 

from said network to stor~ and retrieve data include 

file system level storage and retrieval requests 

respectively, and wherein said interface processor unit 

comprises: 

a storage processor unit coupleable to said mass 

storaqe device; 

a file processor unit; 

Oracle Ex. 1002, pg. 1316



. . .. ., . 
• ••••• • • .. .... . .... .. 

• • 0 I •••• 

• •• . . 
.... • .. 

: : 

142 

means on said file processor unit for translating 

said file system level storage requests into requests to 

store data at specified physical storage locations in 

said mass storage device; 

means on said file proce,sor unit for instructing 

said storage proc·essor unit to write data from said 

buffer memory into said specified physical storage 

locations in said mass storage device; 

means on said file pro.ces.sor unit for translating 

said file system level retrieval requests into requests 

to retrieve data from specified physical retrieval 

locations in said mass st9rage device; 

means· on.. said file processor unit for instructing 

said s·torage processor unit to retrieve da·ta from said 

specified physical retrieval locations in said mass 

sto~age device to said buffer memory if said data from 

said specified physical locations is not already in said 

buf.fer memory; and 

means· in sa.id storage p.r.ooessor unit for· 

transmitting data between said buffer memory and said 

mass stora~e. device • 

72. A netwo.rk node for use with a data network and 

a mass storage deviee, comprising: 

a system buffer memory• 

Oracle Ex. 1002, pg. 1317



.. .. , . . ••••• . .. 
• ..... 
• ••• •• . . . . 

•••• 

••• . . . . ... ' . . . . 

143 

a network control unit coupleable to said network 

.and having direct memory access to said system buffer 

memory; 

a data control unit coupleable to said mass storage 

device and having direct memory access to said system 

buffer memory; 

first means for satisfying requests from said 

network to store data from said network on said mass 

storage device; and 

.second means for satisfying requests from said 

network to retrieve data from said mass storage device 

to said network, said first and secoild means 

collectively including 

means for transmitting from said network 

control unit to aaid system memory bank by direct memory 

access file data from said network for storage on said 

mass storage d~vice, 

means for transmitting from said system memory 

bank to said data control u~it by direct memory access 

said file data from said network for storage on said 

mass storage device, 

means for trans~itting from said data control 

unit to said system me~ory bank by direct memory acQess 

file data for retrieval.from said mass storage device t~ 

said network, ~nd 

Oracle Ex. 1002, pg. 1318



. . .. 
• • ..•.. : • • . ·:·· .... 

•• • . . .... 
" .. • • . .. ...... . . • • 

144 

means for transmitting from said system memory 

bank to said network control unit said file data for 

retrieval from said mass storage device to said network; 

at least said network cont_rol unit including a 

microprocessor and local instruction storage means 

distinct from said system buffer memory, all 

instructions for said microprocessor residing in said 

local instruction storage means. 

73. A network file server for use with a data 

network and a mass storage device, comprising: 

a host processor unit; and 

an intel;:'faee processor unit co1,1pleable to said 

network, to said mass sto~age device and to said host 

processor unit, said interface processor unit including 

means for decoding all NFS requests from said network, 

means for performing all procedures for satisfying said 

NFS requests, means for encodln«J any NFS reply messages 

for return transmission on said network, an4 means for 

satlsfying file system requests £rom said host processor 

unit .. 

74. Network server.~pparatus for use with a data 

network, comprising: 

a network controller coupleable to said network to 

. receive incoming information packets over said netw9rk, 

said incoming information packets including certain 

packets which contain part or all of a ·request to said 

Oracle Ex. 1002, pg. 1319



•• . . 
• ....... 

• • . .... . . .. .. . . . . .... 
. .. . . • • 
•• , I . . . . 

145 

server apparatus, said request being in either a first 

or a second class of requests to said server apparatus; 

a first additional processor; 

an interchanqe bus different from said network and 

coupled between said network controller and said first 

additional processor; 

means in said network controller for detectinq and 

·satisfyinq requests in said first class of requests 

contained in said certain incoming i'nformation _packets, 

said network sontroller lacking means in said network 

controller for satisfying requests in said second class 

of requests; and 

means in said network controller for satisfying 

requests .received over said interchan9e bus from said 

first additional processor. 

75. Apparatus aceordinq to- claim 74, wherein said 

means in said network controlier for detecting and 

satisfying requests in said first class of requests, 

assembles said requests in said first elass of requests 

into assembled requests before satisfying said requests 

in said first class of requests . 

76. Apparatus according to claim 74, wherein said 

packets· each include a network node destination address, 

wherein said means in said network controller for 

detecting and satisfying requests in said first class of 

requests, assembles said requests in said first class of 

Oracle Ex. 1002, pg. 1320



.. ..... 
• ... .. . . . ' .... 

... . " f . ... . . • • 

146 

requests, in a format which omits said network node 

destination addresses, before satisfyinq said requests 

in said first class of requests. 

77. Apparatus according to claim 74, wherein said 

means in. -said network controller for detecting and 

satisfying requests in said first class includes means 

for preparing an outgoing message in response to one of 

said first class of requests, means for packaging said 

outgoing message in 9utgoing information packets 

suitable for transmission over said network, and means 

for ~ransmitting said outgoing information packets over 

said netwol;'k. 

·1a .• Apparatus accordin~ to claim 74, wherein said 

first class of requests comprises requests for an 

address of said server apparatus,. and wherein said Jl!,eans 

in said network controller for detecting and satis~ying 

requests in said first class comprises means for 

preparing a response packet to such an address request 

and means for transmi ttinq said response packet pver 

said network. 

19. Apparatus aceordinq to· claim 74, for use .. 

further with a second data network, said network 

controller being coupleable further to said second 

network, wherein said first ¢las8 of requests comprises 

requests to route a message to a destination reachable 

over said second netwo~k, and wherein said means in said 

Oracle Ex. 1002, pg. 1321



. . .. .. 
• • ..... • • . 

•:•" ... . ··. . . ..... 
f' ••• 
• • • • ...... . . 

'II • 

147 

network controller for detecting and satisfying requests 

in said first class comprises means for detecting that 

one of said certain packets comprises a request to route 

a message contained in said one of said certain packets 

to a destination reachable over said second network, and 

means for trans~itting said message over said second 

network. 

80. Apparatus according to claim 79, -for use 

further with a tbird data network, said network 

controller further comprising means in said network 

controller for detecting particular requests in said 

incoming information packets to route .a message 

contained in said partic~lAr requests, to a destination 

reachable over said third network, said apparatus 

further comprising: 

a second network controller c~upled to s~id 

interchange bus ana coupleable to said thir~ data 

network; 

means fQr d~livering said message contained in said 

particular requests to said second network controller 

over said interchange bus; and 

means in said second network controller for 

transmitting said messaqe contained in said particular 

requests over said third network. 

81. Apparatus according to claim 74, for use 

further with a third data network, said network 

Oracle Ex. 1002, pg. 1322



.. 
•• . . . ..... . . 

• .... • .... 
•• . . . . .... 

••• . . 
•• ... . . . . 

148 

controller further comprising means in said network 

controller for detecting particular requests in said 

incominq information packets to route a message 

contained in said particular requests, to a destination 

reachable ove~ said third network, said apparatus 

further comprising: 

a second network controller coupled to said 

interchange bus and coupleable to said third data 

network; 

means for delivering said message contained in said 

particular requests to said second network controller 

over said interchange bus; and 

means in said second network controller for 

transmitting. said message contained in said particular 

requests over said third network. 

82. Apparatus according to claim 74, for· use 

further with a mass storage device( wherein said first 

additional processor comprises a data control unit 

coupleable to said mass storage devicet wherein said 

second class of requests comprise$ remote calls to 

procedures for managing a file system in said mass 

storaqe device, and wherein said means in said first 

additional processor for further processing said 

as·sembled requests in said second class of requests 

comprises means for executing file system procedures on 

Oracle Ex. 1002, pg. 1323



... .. . . . ..... . . 
• . .... 
• ... .. 

• • . . ..... 
-.. • • . . .... . . . . 

149 

said mass storaqe device in response to said assemb~ed 

requests. 

83. Apparatus accordinq to claim 82, wherein said 

file system procedures include a read procedure for 

readinq data from said ma~s storaqe device, 

said means in sa·id first additional processor for 

further processinq said assembled requests includinq 

means for readinq data £rom a specified location in said 

mass storaqe device in response to a remote call to said 

read procedure, 

said appara.tus further includinq means for 

deli verinq said data to said network controller_, 

said netwo~k controller further comprisinq means on 

said network controller for paekaqinq said data in 

out~oinq information packets s~itable for transmission 

over said network, and means for transmitt1nq said 

outqoinq information packets over said network. 

84. Apparatus aecordin~ to claim 83, wherein said 

means for delivering eo~prises: 

a system buffer memory coupled to said interchanqe 

bus; 

means in said data control unit for transf&rrinq 

said data over said interchanqe bus into said buffer 

memory; and 

Oracle Ex. 1002, pg. 1324



I 1 .. . 
• •• ••• • • 

• • ••• . .. . .•. • • • I ..... 
••• . . . . ... 

! : 

150 

means in said network controller for transferring 

said data over said interchange bus from said system 

buffer memory to said network controller. 

85. Apparatus according to claim 82, wherein said 

file system procedures include a read procedure for 

reading a specified number of bytes of data from said 

mass storage device beginning at an ~ddress specified in 

logical terms-including a file system ID and a file ID, 

said means for executing file system procedures 

comprising: 

means for converting the logical address specified 

in a remote call tQ said read _procedure to a physical 

address; and 

means for reading dat~ from 5aid physical. address 

in said mass storage qevice. 

86. Apparat~s accordiag to claim as, wherein said 

mass storage devj.ce comprises a disk drive having a 

numbered tracke ~nd sectors, wherein said logical 

address spect£ies said file system ID, said file ID, and 

a pyte offset, and wherein said physical address 

specifies a corresponding track and sector number. 

87. Apparatus _accordi~g to claim 82, wherein sait;i 

file system procedures include a read procedure for 

reading a specified number of bytes of data trom said 

mass storage device beg~nnin9 at an address specifie~ in 

logical terms including a file system ID and a file IO, 

Oracle Ex. 1002, pg. 1325



... 
•• . . ...... . . 

• .... . .. . 
•• . . . . .... 

••• ·• . 
" • ....... . . .. . 

151 

said data control unit comprising a file processor 

coupled to said interchange bus and a storage processor 

coupled to said interchange bus and coupleable to said 

mass storaqe device, 

said file processor QOmprising means for converting 

the logical address specified in a remote call to said 

read procedure to a physical address, 

said apparatus further comprisin~ means for 

delivering said physical address to said storage 

processor, 

said stQrage processor comprising means for reading 

data from said physical address in said mass storage 

device and for tr~nsferrinq said data over said 

interchange bus into said buffer memory; and 

means in said network controller for transferring 

said data over s~id interchange bus from said system 

buffer memory to sa-id network contro~1er. 

88. Apparatus according to claim 82, wherein said 

file system procedures include a write procedure for 

writinq data contained in an assembled request, to eaid 

mass storage device, 

said means in said first ad4itional processor for 
~ 

further processing said aQsembled requests includinq 

means for writing said· data to a specified locat·ion in 

&aid mass storage device in response to a remote call to 

said read procedure. 

Oracle Ex. 1002, pg. 1326



.. 
•• . . ...... . . . .... • ••• .. • • . . .... 

• •• . . 
• • ... . . . . . 

152 

89. Apparatus according to claim 74, wherein said 

network controller comprises: 

a microprocessor; 

a local instruction memory containing local 

instruction code; 

a local bus coupled between said microprocessor and 

said local instruct·ion memory; 

bus interface means for interfacing said 

micropr9cessor with said interchange bus at times 

determined by said microprocessor in response to said 

local instruction code; and 

network interfac' means for interfacing said 

microprocessor with said data network, 

said local instruction memo~ including all 

instruction code necessary for said micJ;oprocessor to 

pe·rfor~n said function of dete-cting and satisfying 

requests in said first clase of requests. 

90. Network .server apparatus for use with a data 

network, comprising: 

a network controller coupleable to said network to 

receive incoming information packets over 'aid network, 

said incoming information packets incl~ding certain 

packets which contain part or all of a message to said 

server apparatus, said me.ssage being in either a first 

or a second class of messages to said serv&r apparatus, 

Oracle Ex. 1002, pg. 1327



. . •• . . . ..... . "' 
• • •• • • 

··~ .. • • . ' .... 
••• . . 

• • ... ... 

:. : 

153 

said messages in said first class of messages including 

certain messages containing requests; 

a host computer; 

an interchange bus different from said network and 

coupled between said network controller and said host 

computer; 

means in said network controller for detecting and 

satisfying said requests in said first class of 

messages; and 

m119ans for satisfying requ119sts received over. said 

interchange bus from said host comp~ter. 

· 91. Apparatus according to claim 90, wherein said 

means in said network controller for detecting and 

satisfyi~ requests in said first class includes means 

for preparing an outgoing messaqe in response to one- of 

•aid requests in said first class of messages, means for 

packaging said outgoing messaqe ·in outgoing information 

packets suit.~ble for transmias~on over said network,, and 

means for transmitting said outgoing information packets 

over said network . 

92.. Apparatus accorcUnq · 'to claim 90, for use 

further with a second data network, said n~twork 

controller peing coupleable further to said second 

network, wherein said first class of messages comprises 

messages to be routed to a destination reaphable over 

said second network, and wherein said means. in said 

Oracle Ex. 1002, pg. 1328



.. •• . . 
, .... : 
• • 

• ..... 
• .... 
•• . . . . . 

•••• 

., ... 
' . . ' . . . ...... . . . . 

154 

network controller for detecting and satisfying re~ests 

~- · in said first class comprises means for detecting that 

one of said certain packets includes a request to route 

a message contained in said one of said certain packets 

to a destination reachable over said second network, and 

means for transmitting said message over said second 

network. 

93. App~ratus aocording to claim 90, for use 

further with a third data network, said network 

controller further comprising means in said network 

controller fo.r detecting particular messages in said. 

incoming information packets to be routed to a 

destination reachable over said third network, said 

apparat~s further comprising: 

a ~econd network controller cQupled to said 

interchange bus and coupleable to said thir~ data 

network;. 

means for delivering ~aid particular messages t~ 

said seconli network -controller over said inter.change 

bus, s\lb~tantial.ly without involving saiO. host computer·; 

and 

means in said second .network controller for 

transmH:ting said message cont~ined in said particular 

requests over said third network, substantially without 

involving said host eo~puter . 

Oracle Ex. 1002, pg. 1329



I I 

• •• . . . ........ • • 
• •1 II • ••• .. 

I t • . ' •••• 

... 
• II • • ...... 

.. 

. . . . 

155 

94. Apparatus according to claim 90, for use 

further with a mass storage device, further comprising 

a data control unit coupleable to said mass storage 

device, 

said network controlle:c:' further comprising means in 

said network controller for detecting ones of said 

incoming information packets containing remote calls to 

procedures for managing a file syste.m in said mass 

storage de~ice, and means in said network controller for 

assembling sai~ remote callq from said incoming packets 

into assembled c-alls,. substantially without involving 

said host comp:u·'t~r, 

said apparatus ·further compris·ing means for 

delivering said aeseli\bled file system calls to said data 

control unit ov~r sai<l .inte-rchange bus substantially 

without involv·ing said host computer l and said data 

contro.l unit comp~;l.sinq means in said data control unit 

for exeeuting file system procedures on said mass 

storage device i.n response to said assenU>ied file system 

calls. $ubstantially without involving said host 

co~puter. 

95. Apparatus according to claim 90, wherein said 

network controlier comprises: 

a microprocessor; 

a local instruction ~emory containing local 

instruction code; 

Oracle Ex. 1002, pg. 1330



• •• • • • ·:···: 
• • rt t • . ... , ... 

• • • • ....... 
.. . ., ' . : • • .. ,. . . . . . ... 

156 

a local bus coupled between said microprocessor and 

said local instruction memory; 

bus interface means for interfacing said 

microprocessor with said interchange bus at times 

determined by said microprocessor in response to said 

local instruction code; and 

network interface means for· interfacing said 

microprocessor with said data network, 

said local instruction memory including all 

instruction code necessary for said microprocessor t:o 

perform said function of detecting and satistying 

requests in said first class of requests. 

96. ~ network file server for use with a data 

network and a mass storage device, comprising: 

means for decodi"n9 NJ:'S Xiequests from saia netwox:k; 

means for performing -pJ;ocedures for satisfying said 

NFS. requests, including accessing said mass stQr.age 

device if required; and 

means (or encoding any NFS reply messages for 

return transmission on said network, 

said network file server lacking means in said 

network file server for satisfying any non-~FS requests 

from said network . 

Dated this 4th day of March, 1993 

AtrSPEX SYSTEMS, INC. 

By its Patent Attorneys 

- -. DAVIES COLLISON CAVE 
.... f'•.,.""•- ......... ~ . "· ,.· . ' ·.·.) .~., . 

1··.' If\.' , ~ 1 
-~ ' -~ ' /j, I 

,., i.· .1\"'.. • .• : 
• : .... i"': ... ;... .II' ........... 

Oracle Ex. 1002, pg. 1331



ETHERNET 11 
· . 

.;12 

" 

HOST 
CPU 

.CARD 
1Q_ 

MMU 

.ll. 

128MB 
MEMORY 

16 

20 

SMD DISK 
CONTROLLER 

22 

24 

..---.K--...------l-_....._,_ ______ ....__ ___ ...__ _____ _. 32-BIT VME BUS 

ETHER.NET (t2 I NET\IORK #2 
, CONTROLLER 

36_, I 34 -
TAPE 

CONTROLlER 
30 

FIG.-1 

SCSI 
HOST 
ADAPTER 

26 

(PRIOR ART> 

28 

14 • ~scsi BUS 

.... ....... .... 
N 

~ 
'0 -I 

., 
g 

I ..... --

Oracle Ex. 1002, pg. 1332



~2Q 
c: 
~ 

1 
121 

122e 
122g 

1 
122 

122f 
t22h 

~2b 
d 

--..... 

( 
} 

110 116 
.U.UII,II.., \ U6b uoc:· 

uoa,:\ /- 116c~)_ ~ 
\ ..L NET\,/ORK 116cl~ 
..1.. 

CONTROLLER 

41 I 
.. 4~ I 

I I 
4 

1 1 I 
IIU 

' I I 

FILE ----
CONTRDLLER . 

~ 

112b J 
112o. 

FIG.-2 

\ ~4UU 

SYSTEM 
.MEMORY vue 

LOCAL 
4~ I HOST 

4~ I 
4~ I 

·~ 

' ' .~ 
rl~O 

~ J 

•• 114b 
r 

/114a 

STORAGE 

PROCESSOR 
-

I I I I 
-. I I I I I I I I I I 

(f' 

f -tl 
"' -.D 
0 

N -~ N 

! 
'10 -I 

., 
g 

i --

Oracle Ex. 1002, pg. 1333



2 

RS232 2 .. • 
CPU 

110o. 

~ MEH EPROM PROM MFP ~ 

~2 -~-2 . t •l l i ...... ~·---....li.__ -· __ _,8~_,_..BI-Dl~ t- 8_, • . 
)'32 , BUr - ' .218 __/ /- Z12 

234~ 236--"' 242~ t A 
4 

ETHERNET A LAN LAN LAN 
270~16 TO 32 

~ ..., .7 CTLR HEM DMA 240) BIT , 16 
~~~ ~ I ~ 

~-~~ BI-DI~ ~ lt6 1~ { 16 · :1~ 232
/ 16 TO 32 32 ~B [__ V~E/

I - BUF - , .. BIT ~ , -, .. FIFO ir 27
254\ 25u~ 262~ A fiFO 'TJ--~----- DMA

ETHERNET B LAN LAN LAN 27 4---...,. r-- CTLR
-/ DMA I I

122b_......../'250 CTLR HEM CTLR 260 J ,v32 I I

-~~ B!-DI~ :16 16 'ft6 :16 252J 16 TO 32 3s : :
. ' .. BUF -- ' • BIT ~ , • ...J I

fiFO 1'!..---- I
- 32 . . A B tr 278 I

290...-.. ;~~ -- ,-~ REG ~ BI-DI~~----_.
--...--..a· 2·94."'\ ~-282 BUF ! f280

· 3s : 32" BI-DIR _ { 32 32.. l 32 . Bl-DIR 3s
,. . 212 __/ .. BUF - ., 276 _/ ::: BUF 'j

FIG I-3 (NET\./ORK CONTROLLER>
120

2

VME
BUS

to) -.... N

~
110 -.... e
~
QO

g
~
~ --

Oracle Ex. 1002, pg. 1334

I
. I

I' 310
F I

JJP

32

CPU
MEM
-r-

32

390

314 320

.. PROM

8

rc
MEM -.-

318

'"396

32

32 CMD -.. <
FIFD > I

REG

----r-
32 32

FIG.-4

382

392 RS232 . >- 112o.
326 I

32

PARALLEL
PORT

376

<FILE CONTROLLER)

324

VME
.. ><•sus

~ -.... N

~ ,., ;

a
c:

I --

Oracle Ex. 1002, pg. 1335

51Q

32
~

584
'DUAL
PORT r/,
RAMENGlNE

VME/FIFO DMA CTLR
590 .

FIG.-5.

VI
N

!
~ -I

Q
......
c:! g
...... : --

Oracle Ex. 1002, pg. 1336

VME
BUS
120

t-
T

,_
r

32 /" ...
I

116Q\
614 620

v
=!2 64

BUF ... - MUX , . - , p

MEMORY
4 8:, ARRAY

ECC ..
:-- I

-
u

622

TIMING 610

.CONTROL

(SYSTEM MEMORY>

FIG.-6

a. -~ N

~
\0 -e a

g

I --

Oracle Ex. 1002, pg. 1337

f,
W091103788

MASTER 701

BROADCAST. ADDRESS AND
ADDRESS MODlf"IER,

DRIVE L \lORD • LO\/
AND lACK• HIGH

DRIVE AS • LD\t/

DRIVE \/RITE • LO'w'

'WAll UNTIL Dl AtK • AND
BERR • ARE HluH-

DRIVE Dso• LD'W

DRIVE Dso• HIGH

P~ACE NEXT DATA ON
DOO-D31

PCT /US90/04711

SLAVE

RECEIVE ADDRESS,
· ADDRESS MODifiER,

L\t/ORD • LO\J AND
lACK• HIGH

'JAIT UNTlL nso• GOES
HIGH . TO LO\t/

LATCH DATA FROM DOO-D31

I
FIG.-7A

Oracle Ex. 1002, pg. 1338

W091103788 PCf/US90/04711

. • ..

MASTER SLAVE

(fROM fiG-7A) I (fROM FIG-7A J
729 I 731 -:1 *-r_ DRIVE DTACK • LOW'

\r/AIT UNTIL DTACK• I 733 ~ •
HIGH TO LOW' TRANSITION I DRIVE: DT ACK. HIGH

: I

I 735~ ,
,--7391 \r/RITE DATA INTO

•• SELECTED DEVICE AND
DRIVE DSO • LD'w' I INCREMENT DEVICE ADDRESS • ,-74i

1737~ • DRIVE DSO • HIGH
'w' AIT fOR DSO •

I HIGH TO LO'w' TRANSITION

I

r745 1 743--... -
~Ito 1

PLACE NEXT DATA ON I LATCH DATA fROM LINES
DOO-D3i

I DOO-D31

. I 749 ~ -,
Ito r·747 I DRIVE nrAcK• Lo-w

\JAIT UNTIL DTACK• 751 -.. •
HIGH TO LO'w' TRANSITION I DRIVE DT ACK.. HIGH

- I ;

I
75~ . ',

I \JRITE DATA INTO .

I
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

lr I 1
(TO FIG.-7C) (TO FIG.-7C)

FIG.-7B

~IIR.~TITUTE SHEci

Oracle Ex. 1002, pg. 1339

... , ...
W09ll03788 PCT/US90/04711

(fROM flG.-7B) (FROM flG.-7B)

s COMPLETE NUMBER
Of CYCLES REQUIRED

TO TRANSfER ALL DATA

RELEASE ADDRESS LINES,~755
ADDRESS MODifiER LINES,

DATA LINES, L\JORD•,
Dso•, AND lACK•

1P

s

\JAIT FOR DTACK•
HIGH lO LD\t/ TRANSITION 759~ .~

(DRIVE DT ACK • LO\J

761~ ,,

I

I DRIVE DT ACK. HIGH I

' ,...-763
DRIVE AS • HIGH

, ,-765

RELEASE AS•

FIG.-7C

Oracle Ex. 1002, pg. 1340

W091/03788

MASTER

BROADCAST ADDRES~
ADDRESS MODIFIER AND
DRIVE L \JORD • LOW'

__ , __
PCf/US90/04711

801 SLAVE

805 I 803~------~----~
DRIVE . AS • LOW I

I

DRIVE \JRITE • HIGH

\JAil UNTIL DT ACK • AND
BERR • ARE HIGH

~------~----~821 I
DRIVE Dso• LOW' I

r------'--:::--'""-118231
DRIVE DSD • HIGH

\1 All UNTIL DT ACK •
HIGH TO LD\1 TRANSITION

TO flG.-8B

1 st9

I
I
I

RECEIV(ADDRESS,
ADDRESS MODIFIER AND

L \lORD • LO\J

RECEIVE AS• LO\J

RECEIVE "WRITE • HIGH

~------~------~
PLACE DATA ON LINES

DOO-D31

FIG· .. -8A

....... ~·~- .. --- -·,.

Oracle Ex. 1002, pg. 1341

W091103788
11/12

PCI'/US90/047ll

MASTER SLAVE

(fRDM fJG.-8A) I (fROM FIG.-8A)
I 82s, · ~

. I DRIVE DT ACK. LD\J
827"-\ . •

'
...

.I DRIVE DT ACK• HIGH

..... ~8311
LATCH DATA fRDM LINES I DOO-D31

• . 1829"' •
r-833

\JRITE DATA INTO PLACE NEXT DATA ON
SELECTED DEVICE AND I LINES DOO-D31

INCREMENT DEVICE ADDRESS 1835~ ~

• \J All FOR DSO • ~9391
DRIVE DSO • LO\J

HIGH TO LO\J TRANSITION

• /.""" 841 1
DRIVE DSO • HIG~ . l

-
•• ,_8431 845 ~ ...

\JAIT UNTIL DTACK• I DRIVE DTACK. LO\v'
HIGH TO LD\J .TRANSITION -847~ • _

I DRIVE DT ACK • HIGH

... r 845 l 949--.. ., ..
LATCH DATA fROM LINES I PLACE NEXT DATA ON

DOO-D31 LINES noo-D31

• I l
(TO FIG.-8C J (TO f"IG.-SC)

FIG.-BB

Oracle Ex. 1002, pg. 1342

t
W091103788 PCT/US9t)/04711

. .: : : .
12/12

(fROM . F"IG.-SB J (FROM F"IG.-SB)

•-
ra5t

\r/RITE DATA INTO
SELECTED DEVICE AND
~CREMENT DEVICE ADDRESS

• f

CONTINUE DATA TRANSfER
CYCLES UNTIL DATA

HAS BEEN TRANSfERRED

,
RELEASE ADDRESS LINES, l/-852 1
ADDRESS MDDiflER LlNES, I TRANSfER COMPLETE I DATA LINES, L \JCRD•,

llSD • AND IACH • LlNES

rs53

'WAll FOR DT ACK w 855, . ,~
HIGH TO LD\1 . TRANS.ITIDN

I DRIVE Di ACK • LD\.1 I

851~ ,
I DRIVE DT ACK • HIGH -1

--
r r 859

-
DRIVE AS • HIGH

, r- 961
·. RELEASE AS•

FIG.-BC

~~ IA~TITIII..: ~1-U::!:T

Oracle Ex. 1002, pg. 1343

r INTERNATIONAL SEARCH REPORT
lnlenwiUonal ANfiaiiOD No ,. . .,..,.,.. ..

L CLASSIFICATION OF SUII.IICT MATTIIt (If _,., dnlillc:llloll a~ •JIJIIr, flldkate •U) a

Accotdifto COt')' P.lltftt O.llllllc:alloQ OPQ or 10 IIOUl National ClaaaiiiCIItioft wiPC
· IPC 5 : G06F 15/16 u.s. Cl . 364/200 .

II. FIELDS SIAACttaD

Mlnkltclnl Docume11tatlcn Seardled a

Clnsltlc.alion SJatem I C:laulficalioll Srmlllola

u.s. ! 364/200,900 . -- OOCUI'IIelllaliOII SHrched other Ulan Minimum Documentalion
to 1M latent Ullt lliCh Documents are lnctucleclln IM Field• Seardled a

Ill. DOCUMENTS CONSIDERED TD BE REUVANT ••
C.iltGOf'J • I Citation of O~;;ment, " wltll indlj:allOn, where approor•alt, of llle ,....,ant puaao•• n I Rtle•anl to Claim No. u

I
I

YP US,A 4,897,781 (Cl!ANG) 30January1990 I
1-8 I

I
See .the entire document.

i :
:

YP US,A 4,887,204 (JOHNSON) 12 December 1989 1-8
See the e.ratire document. l .

y US,A 4,819,159 (SHIPLEY) 04 April 1989 1-8
See the entire document.

i

y

I
US,A 4,710,868 ((X)Cl(E) 01 December 1987 I 1-8 I See the entire d()cument. i

'
I

i
j

i

I
I
I

!
I

-·"'~'· --
0 S,.Coal CalqOtoH Ol crUd document.: I~ ·r· la\111 document Oubbahad al\at lila lf'llatl\abohat f'IIII\O data
"A" dCJCUI'Itfll defilltftQ '"' Qtfler .. llllt -ol II·• art ""'•Ch '' not 01 llfiOIIIJ Cia" ilftd IIOt Ill connrtl ••Ill 1111 lllllltCIIron IIUI

contadarad to ba ol cr•rtiCular rt:.WIIICf Coled IO und6rttalld tile IIIIIICIPI• 01 lhtory UIICieiiWiftQ ICII
•n•ent•Oft

•(• """" doc_,, llul llrtbloallect 011 or alter lilt onter11ataonal ·x• clocume111 of 111rtreu"r rtl..,ence: lilt '"""'d lnwtntron lilanq dale CIIIIIOI IHt unaadlllcl noM! or c•nnot II• cona•dered 10
"L' docv:~~~nt '"'"'" mar th•- doullll Ofl pr.or•h cl••mlll or allwOI•t ltl ltlwtfllr .. 11111

.,.,,.,, •• c•tt'd to eatelll•lll '"' pullbcltoon cilia ol ano:llar ·v· document ot 11.1fl•et1lar rtlew•nc•: the claimed on•arlllon C:Miron or ot11ar aoeca.tl raaaon Cll apec:rr.t'd) cannot lit COIIaaCierad to onwolw.p .1,11 lf'IWIIII••e lito wlltn lilt •o- dOCII!!Jant "'"""ll to an orat dt'ICioaurt, use. a•hil>tt•on or oocumen1 •• comlla...O "''h ont or more ottaar "''" oocu·
othll' meane Mlftt .. IUCh comlloniiiOII 11111'0 ObWIOIII Ill I iltiiOn "'llt'd

•r focument putllothtc_l onor to '"''"""'atoonet filtno dale but on 111e alt.

later 11111n '"' p11or••r dllt c..,med dqc:u"'tfll 11\eml.\er ol lCII II""" patent '-""''

lV. CIATI,lCAT10N

Oall of U.. Aclull CompJeUOII of Ule lnttflllllional Starch • 0111 of MaiiHio ol thit lnternellon11 S11rc11 fle11011 •

.3C' ER 1990 v '
24JAN 1991

~Atem~Uonal S.arciUng AuUIOtltY • ~ure of Authonrt4-Qjr'- •• _.,:,
~ ~~

I SAlUS .

Oracle Ex. 1002, pg. 1344

I !11!1!1 illlllm IIIII illllllllllli!! !1!1! I IIi! ill! lUI
AU9466905 •.

(12) PATENT ABRIDGMENT (11) oocwmentNo. AU·B-65905/94
(19) AUSTRALIAN PATENT OF~lCE (10) Acceptance No. 670376

(54) Title
PARAlLEL 1/0 NETWORK FILE SERVER ARCHITECTURE

International Patent Classification(s)
(51)5 Got'iF 015/16

(21) Application No. :65905/94 (22) Application Date : 23.06.94

(30) Priority Data

(31) Number (32) Date (33) Country
404959 08;09.89 US UNITED STATES OF AMERICA

{43) Publication Date: 01.09.94

(44} Pubiication Date of Accepted Application : 11.07.96

(62) Retat~d to Division(s) : 64125/90

(71) Applicant(s)
AUSPeX SYSTEMS, INC.

(72) lnventor(s)
EDWARD JOHN ROW; LAURENCE B BOUCHER; WILliAM M PITTS; STEPHEN E BLlGHTMAN

(74) Attorney or Agent
DAVIES COLLISON CAVE, 1 Little Collins·Street, MELBOURNE VIC 3000

(56) Prior Art Documents
us 4897781
us 4887204
us 4819159

(57) Ctairn
1. A network file server for use with a data network and a mass storage device,

comprising:

a host processor unit; and

an interface processor unit coupleable to said net:vlork, to said mass storage device

and to said host processor unit, said imerface processor unit including means for

decoding all NFS requests from said network, means for performing ail procedures for

satisfying said NFS requests, means for encoding any NFS reply messages for return

transmission on said network, and means for satisfying file system requests from said

host processor unit. and

means for tra..'1Smitting predefined non-NFS categories of messages from said

network to said host processor unit for processing in said host processor unit

2. A nerwork file server for use with a data nerwork and a m.a.ss storage device

comprising;

a host processor unic running a Uf\ITX operating system; an.d

an interface processor unit coupleable to said netv.·ork, to said mass storage device

and to said host processor unit. said interface processor unit including means for

:.:

~-:.

.. ./2

Oracle Ex. 1002, pg. 1345

(11) AU-8-65905/94 ·2·
(10) 670376

decoding all NFS requests from said network, means for performing all procedures for

satisfying said NFS requests. means for encoding any NFS reply messages for return

transmission on said netv.·ork. and means for satisfying file system requests from said

host processor unit.

3. Appararus for use with a data network and a mass storage device, .comprising ·the

combination of first and second processing units,

said first processing unit being coupled to said network and performing

procedures for satisfying requests from said network which are within a predefined non~."·

NFS class of requests,

aud said second processing unit being coupled to said network and to said mass

storage device and decoding NFS requests from said network, performlllg procedures for
satisfying said NFS requests, and encoding NFS r-eply messages fo;- return rransmissio.n

on said network. said second piOcessing unit not satisfying any requests from said:

network vihich are within said predefked non-NFS class of reque..:ts.

Oracle Ex. 1002, pg. 1346

. ..
0 • •
0 GO

.
.
•o ••

..

AUSTRALIA(::
} ~

Patents Act 1990 V

r:,-,~.,.::j

i'
J

PATENT REQUEST: STANDARD PATENT

.... il-,.,.;
~

•·-4, .. ,. v

We being the persons identified below as the Applicant, request the grant of a patent to
the person identified bctcw as the Nominated Person, for an invention described in tbe
accompanying standard complete specification. ·

Full application details follow:

[71/70] Applicant'Nominated Person:

[54]

[72]

[74]

Address: Auspex Systems, Inc.
2952 Bunker Hill Lane
Santa Qara, California~ 95054
UNITED STATES OF A.t\ffiRICA

Invention Title:

"Parallel I/0 Network File Server Architecture"

Name(s) of actual inventor(s):

Edward John Row
Laurence B Boucher
William M Pitts
Stephen E Blightrnan

Address for service in Australia:

DAVIES COWSON CAVE, Patent Attorneys, of 1 Little Collins Street,

.. · . •' ...

Melbourne, Victoria, Australia. Attorney Code: OM

DMSIONAL APPLICATION DETAILS:

[62J Original Application No. 64125/90

1'\ r
/ I ! I , '

~ , f, I ! :
Iii~ j/ jjj .
IJL<.J4~~~:..::.).~ ~..... ... 22 June, 1994

(a member of the firm of DAVIES COLLISON C..o\ VE
for and on behalf of the Applicant) .

.. ;-~7'""";'
. ·· .. ,.· {

·'\ ..
Of.! . /.. · ..

.-

Oracle Ex. 1002, pg. 1347

.. . .
.! ••
..
..

AUSTR.l\LIA

Patents Act 1990

NOTICE OF E:NTITLEMENT

We, Auspex Systems, Inc the applicant/Nominated Person in respect of Applicatior:i .Nd.
65905/94, state the following:-

The Nominated Person is entided to the grant of the patent because the Nor:nimited-'
Person derives title to the invention from the inventors by assignment. · ·

The person nominated for the grant of the patent is the applica.m and Nominated
Person of the original application No. 64125/90 .

8 May, 1996

(A member of the firm of Davies & Co1lison for
and on behalf of the applicant(s)) ·

Oracle Ex. 1002, pg. 1348

' •

-

. ····•
.
•• eo

Name of Applicartt:

Address .for Service:

Invention Tide:

AUSTRA'LfA

Patents Act 19.52

COMPLETE SPECIFiCATION .
. FOR A sTAl~tDA..IU> PATENT

. (ORIGINAL)

Auspex Systems; Inc.

.DAVIES COI.i.ISON, CAVE, Patent Aho~eys;.

1 Little Collins. Street; ·Melbourne, 300Q

. :,_,

"Parallel I/0 Network File Server Architectute" · .

.·.·

The following statement is a full description of this invention, including the:o¢sr< :: ·

method of performing it known to me/us:

-1-

Oracle Ex. 1002, pg. 1349

.
0 • •

.
. . .
• 0 •
.
• • 0 . ..

5

10

-la-

PARAf.LEL I /0 NE'T'WQRE{ fiLE S:SRVER ARCHITBCTURE

The present application is related to t.he

following published International Patent Application:s:

MULTIPLE FACILITY OPER..l~:TING SYSTEM

ARCHITECTURE, invented by David Hitz 1 Allan Schwartz 1

James Lau and Guy Harris, PCT Publication No.

15 W091/04540, international filing date April 4 1 1991;

20

25

2. ENHANCED VMEBUS PROTOCOL UTILI ZING

PSEUDOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA

TRANSFER, invented by Daryl Starr, PCT Publication No.

W091/03736, international filing date March 21~ 1991;

and

3. BUS LOCKING FIFO MULTI-PROCESSOR COMMUNICATIONS

SYSTEM UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND

BLOCK f-!OOE DATA TR.\NSFER invented by Daryl 0. Starr,

William Pitts and St~phen Bliqhtman, PCT Publication

No.W091/11768, international filing date August 8,

1991.

The above applications are all assigned to the

assignee of the present invention and are all expressly

incorporated herein by reference.

Oracle Ex. 1002, pg. 1350

. .. . • •
• • •

.
. ..
• • 0
....

-2-

BACKGROUND OF THE INVENTION

field of the Invention

The invention relates to computer data net>tork.s,

and rnore particularly, to network file server

5 architectures for computer networks.

Description of the Rel:=ited Art

· Over the past ten years, remarkable inc.reases .. in

hardware price/performance ratios have· caused a:
10 startling shift: in both technical and office ~<:imputing

env·ironments. Distributed workstation-server net:'W'ork.s

are displacing the once pervasive dumb .terminal

attached to mainframe or minicomputer. To date,

however, network. I/0 limitations have constrained t.h.e·

15

20

25

30

.potential performance available to vorkstatiQn useis.

This situation has developed in part because dramatic

jumps in microprocessor performance have exceeded

increases in net~ork I/O performance .

In a computer network, individual user workst.atio·ns

are referred to as clients, 'and shared resources for

filing, printing, data storage and wide-area

communications are referred to as . servers. Clients

and servers are all considered nodes of a network.

Client nodes use standard communications protocols to

exchange service requests and responses with server

nodes.

Present-day network clients and servers usually run

the. DOS, Macintosh OS, OS/2, or Unix operating

systems. Local networks are usually Ethernet or Token

Ring at the high end, Arcnet in the midrange., or

LocalTalk or StarLAN at the low end. The client­

server communication protocols are fairly strictly

dictated by the operating system envirc~men~

usually one of several propri·etary schemes for PCs

3 5 (UetWare, 3Plus, Vines, LANManager, LANSe rver);

AppleTalk for.Macintoshes; and TCP/IP with NFS or RFS

Oracle Ex. 1002, pg. 1351

..
• 0 .. .
.... . .
oo • ..

0 •

.
.

....
• • 0

-3-

for Unix. These protocols are all well-known in the

i:1dustry.

Unix client nodes typically feature a 16- or 32-

bit microprocessor with 1-8MB of primary mem.ory, a

5 640 x 1024 pixel display, and a built-in :n~trwo~i

interface. A 40-100 MB local disk is often oa~idria~:: . " ..
Low-end examples are 80286-ba.sed. ·Pes or 6.SOOO.l.base4

Macintosh I' s; ::nid-ranqe machi:nes include 803 86 · l?Cs,. ·

MacintO·Sh II' s I and saoxo-based Unix workstatiotn:i·;:

10 high-end machines include ·RISC-based DEC, Hl?, and Sun

Unix workstations. Servers are typically nothing more

than repackaged clien.t nodes, configured in 19-inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

lS disk or~tape drives, and power ·supplies.

20

25

30

Driven RISC and C!SC microprocesso·r

developments, client workstation performance has

increased by =ore than a factor of ten in the last few

years. ~oncurrently, these extremely fast: clients

have also gained an

servers are unable

appetite for data that re!:':ot:e

to satisfy. Because the I/O

shortfall is ~ost dramatic in the Unix environ::n~nt,

the descript..ton of the preferred e111bodiment of the .

present in·.Ten'tion will focus on Unix file ser·.;ers .

The architectural principles that solve the Unix

server I/0 p=oblem, however, extend easily to server

performance bottlenecks in other operating syS'tem

environments as well. Similarly, the description of
the preferred embodiment will focus on Ethernet·

implementation$, though the principles extend easily

to other types of networks.

In most Unix environments, clients and servers

exchange file data using the Network File Sys'tem

("NFS"), a standard promulgated by Sun Microsystems

35 and now widely adopted by the Unix community. NFS is

defined in a document entitled, "NFS: Network File

Oracle Ex. 1002, pg. 1352

.
-

.,
.
....

-4-

System Protocol Specification,• Request for Comments

(RFC) 1094, by Sun Microsystems, I!lc. (March 1989}.

This document is incorporated herein by rete.::::-ence in

its entirety.

5 While simple and reliable, NFS is not: optimaL

Clients using NFS place considerable demands upon l;>oth·:

networks and NFS servers supplying clients with NFS.

data. This demand is particularly acute for so­

called diskless clients that have no local disks and

10 therefore depend on a file server £or application·

binaries and virtual memory paging as well as dat~~

For these Unix client-server configurations, the ten•

to-one increase in client power has not been ma.tch.ed­

by a ten-to-one increase in Ethernet capaeity, in disk

15

20

25

30

speed, or server disk-to-network I/O throughput. ·

The result is that the number of diskl~ss clients

that a sinqle modern high-end server can adequately

support has dropped to between 5-10, d~penC.i:ng on

client power and applicatior: workload. For clients

containinq small local disks for a!l?lications and

paging, referred to as.dataless clier:ts, the clie~t­

to-server ratio is about twice this, or bet~een 10-

20.

Such low client/server ratios cause piecewise

network configurations in which each local Ethernet

contains isolated traffic for its own 5-10 (diskless)

clients and dedicated s~rver. For overall

connectivity, these local networks are usually joined

together with an Ethernet backbone or, in the future~

with an FDDI backbone. These backbones are typically

connected to the local networks either by IP routers

or MAC-level bridges, coupling the local networks

together directly, or by a second serve= functioning

as a netwo~k interface, coupling servers for all the

35 local networks together.

Oracle Ex. 1002, pg. 1353

. • •

.
• • 0 .. .
.
• •
..

-5-

In addition t~ perform•nce considerations, the low
client-to-server ratio creates computing problems in

several addi~ional ways:

1. Sharing. Development grou·ps of more thari 5..;.

5 10 people cannot share the same server, anii tl1us
cannot easily share files without file replicatio:n::'arid.

manual, mul ti-seiver updates. B'ridges or roi.rters ~:ie
a· partial solution but inflict a performance p·eha:fty.

due to more network hops.

10 2. Adl'llinistration. System administra-cors mus:t ·

15

20

25

30

maintain many limited-capacity servers ratber tha.'n·.a

few more substantial servers. This burde·n i:nclud~s.·

network administration, hardware maintenance, and user

account administration.

3. File Svstem Backup. System administrators cr

operators must conduct multiple file. system backups,

which can be onerously time consuming tasks. It is

a!so expensive ~o duplicate backup peripherals on each

server (or every few servers if slow-er network batk\J;p

is used).

4. Price ?er Seat. With only 5-lO clients per

s~rver, the cost of the server must be shared by only

a small number of users. The real cost of an e;"ltry­

level Unix workstation is therefore signif icantl~ .

greater, often as much as 140% greater, than the cost

of the workstation alone.

The widening I/0 gap; as well as administra~ive and

e~~nomic considerations, demonstrates a need for

higher-performance, larger-capacity Unix file servers .

Co~version of a display-less workstation into a server

may address disk capacity issues, but does nothing co

address fundamental I/O limitat~ons. As an NFS

server, the Che-time workstation must sustain 5-10 or
more times the network, disk, backplane, and file

35 system throuahput. than it ~as designed to support as

a client. Adding larger disks, more network adaptors,

Oracle Ex. 1002, pg. 1354

.
0

0
0 .

0 .. .
0

0 .

0 . .
0 .
•
• .
. .
•
0
0 ..

-6-

extra primary memo~y, or even a fas~er processor do

not resolve basic architectural I/0 cons~raints; I/0

throughput does not increase sufficien~ly.

Other prior art computer architectures, whil~ .not

5 specifically designed as file servers, may potentially.

b~ used as such. In one such well-know'll architectur-:e·,

a CPU, a me::tory unit, and two I/O processors a:re

connected to a single bus. One of the I/0 proce·s·sor·s ..

operates a set of disk drives, and if the archite·ctil're

10 is to be used as a server, the othe.!: I/O proceS:sor

would be connected to a network. This archit·ecture ±s·.
not optimal as a file server, however, at l~as:t

because the two I/O processors cannot handle. nef:twork ·

file requests without involving the CPU. All net:work

15 file .requests that are received by the network !/0

processor are first tra:1smi t:ted to the C?U, ·..:hie~:·

20

25

30

makes appropria~e requests to the disk-!/0 processgr

for satisfactio:: cf the net•·ork req\>est .

In another such computer architecture, a dis~

controller CPU :nanages access to disk d.=ives, anc

several other CPUs, three for example, may be

clust:ered arounC. t.he disk controller CPU. Each of the

ether CPUs can ~e connected to it:~ own net~ork. The

network CPUs are each connected to the disk controller

CPU as well as to each other for inte.=processo.=

communication. One of the disadva.ntages of this

computer. architecture is that each CPU in the system

runs its own complete operating syste~. Thus, network

file server requests must be handled by an operating

system which is also heavily loaded wit.h facilities

and processes for performing a large number of other,

non file-server tasks. Addi tion:lly, the

interprocessor communication is not optimized for file

server type requests.

35 In yet another computer architecture, a plurality

of C?Us, each having its own cache me~ory for data and

Oracle Ex. 1002, pg. 1355

.. • • • •

.. . .
• 0
• 0

0

- 7 -

instruction storage, are connected to a common bus with a system memory and a disk

controller. The disk controller and each of the CPUs have direct memory access to the

system memory, and one or more of the CPUs can be connected to a nem·ork. This

architecture is disadvantageous as a fiie server because. among other things, bo.th file

5 data and the instructions for the CPUs reside in the. same system memory. Tnere \Vill ·be

instances. therefore, in which the CPUs must stop running while they wait for lar~e

blocks of file data to be transferred between system memory and the network·CPtl.

Additionally, as with both of the previously described computer architectures, the:emire

operating system runs on each of the .CPUs, including the network CPU.

10

In yet another type of computer architecture, a large number of CPUs :;ue

connected together in a hypercube topology. One or more of these CPUs can· be

connected to networks, while another ca.,., be connected to disk drives. This architecture

is also disadvan~veous as a file server because, among other things each processor runs

15 the entire operating system. Interprocessor communication is also not optimal for ftle

server applications .

20

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided a network file server

for use with a dara network and a mass storage device, comprising:

a host processor unit; and

an interface processor unit coupleable to said network, to said mass storage device

and to said host processor unit, said interface processor unit i..1cluding means for

25 decoding all ~"FS requests from said network, means for performing all procedures for

satisfying said NFS requests, means for encoding any NFS reply rne:.;.;ages for return

transmission on said network, and means for satisfying file system requests from said

host processor unit, and

means for transmitting predefined non-NFS catego~ies of messages from said

30 network to said host processor unit for processing in said host proc...<>ssor unit.

Oracle Ex. 1002, pg. 1356

.. . .
•
• ..

..
• .

•

... .
• •
•

• 7A-

In yet another aspect, there is provided a network ftle server for use wit.."t a data

network and a mass storage device comprising:

a host processor unit running a UNIX operating system; and

an interf'.,re processor unit coupleable to said nerwork, to said mass storage dev-ic:e

5 and to said host processor unit. said interface processor unit induding means· for.·

decoding all NFS requesrs from said network, means for performing alt procedures for:
satisfying said NFS requesrs. means for encoding any NFS reply messages for return

transmission on said network, a:1d means for satisfying file system requests frorn·said.

host processor unit.

10

The invention also provides a net:v;,·ork file server for use with a dati network and ·

Oracle Ex. 1002, pg. 1357

:

. .
• .

-8-

a mass storage device, said network file server including a fim uni~ comprising:

means for decoding NFS requests from sa!d network:

means for performing procedures for satisfying said N'FS requests, including

accessing said mass storage device if required; and

5 means for encoding any NFS reply messages for return transmission· on: said

nern·ork,

said fli'St unit tacking means in said first unit for executing any programs which ·

make u~~ operating system calls.

10 In accordance with the invention there is also provided a network file server for

15

20

usc with a data network and a mass storage device, said network file server· indudmg a

f:L..--st unit comprising:

means for decoding NFS requests from said network;

means for performing procedures for satisfying said NFS requests, incl,~ding

accessing said mass storage device if required; and

means for encoding any £'-i'"FS reply messages for return transmission ·on said

network,

said first unit lacking any U~1X kernel.

The invention further provides a network file sen:er unit for use with a data

network and a mass storage de..,ice, said network file server unit comprising:

means for decoding NFS requests from sajd netv.'ork;

means for performing procedures fur satisfying said NFS requests, including

accessing said ~ass storage devi~ if required; and

25 means for encoding any l'.'FS reply messages for rerum transmission on· said

network,

said fi..rst ~::'\it lacking any UN1X application programs ru.."ll."ling on said first unit.

BRIEF DESCRJFTION OF THE DR.L\ WINGS

30 The invention is described in greater detail hereinafter, by way of example only,

with refe!ence to the accompanying d:.-awings, in which:

F!g. 1 is a block diagram of a prior art file server architecture;

Oracle Ex. 1002, pg. 1358

00
0 "

.
•• • •

.... 0
0

. ..
0 :

-9-

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network

controllers shown in Fig. 2;

5 Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig. 5 is a block diagram of one of the storage

processors shown in Fig. 2;

Fig. 6 is a block diagram of one of the system

10 memcry cards shown in Fig. 2;

Figs. 7A-C are a flowchart illustrating the

operation of a fast transfer protocol BLOCK WRI"TE,-.

cycle; and

Figs. SA-C are a flowchart illustratinq the

15 · operation of a fast transfer protocol BLOCK READ

cycle.

20

25

30

DETAILED DESCRIPTION

For comparison purposes and background, a·n

illustrative prior-art file server architecture will

first be described wi:h respect to Fig. 1. Fig. 1 is

an overall block diagram of a conventiona~ prior-art

Unix-based file server for Ethernet. networks. It

consists of a host CPU card 10 with a single

microprocessor on board. The host C?U card 10

connects to an Ethernet #1 12, and it connects via a

memory manac;emEint ~.mit (MMU) 11 to a large me.mory

array 16 . The host CPU card 10 also drives a

keyboard, a video display, and two RS232 ports (not

sho;..--n). It also connects via the MMIJ 11 and a

standard 32-bit VHE bus 20 to various peripheral

devices, including an SMD disk controller 22

controlling one or two disk drives 24, a SCSI host

adaptor 26 connected to a SCSI bus 28, a tape

35 controller 30 connected to a quarter-inch tape drive

32, and possibly a net~ork ~2 controller 34 connected

Oracle Ex. 1002, pg. 1359

.. • •

.

..
•o•• • •a••

... . :
•• 0 : . ..

-10-

to a second Ethernet 36. The SMD disk con~roller 22

can communicate with memory array 16 by direct memory

access via bus 20 and MMU 11, with either the disk

controller or the MMU acting as a bus master. This

5 configuration is illustrativei many variations are

available.

The system communicates over the Ethe·rnets using

industry standard TCP/I? and NFS protocol stacks. A

description of protocol stacks in general can be found

. 10 in Tanenbaum, "Computer Ne~works" (Second Editi-on,

Prentice Hall: 1988). File server protocol stacks are·

described at pa:ges 535-546. The Tanenbaum refer:enc·e

is incorpora~e! herein by reference.

Basically, the following protocol layers are

15. implemented in tl:le a;::>par.atus of Fig. 1:

20

25

30

Network Laver. The net~ork layer converts data

packets between. a formal specific to Ethernets and a

format which is independent -,f the particular tj·pe of

network used. the Ethernet-specific format which is

used in

Hornig,

the apparatus of

•A Standard For

Fig. l is described

The Transmission of

in

IP
Datagrams Over Ethernet Networks 1 • RFC 894 (April

1984), which is incorporated herein by reference .

The Int~rnet Protocol (Ip) Layer. This layer

provides the functions necessary to de~iver a package

of bits (an internet datagram) from a source to a

destination over an in~erconnect~d systc~ of networks.

Fez: messages to be sent from the file server to a

client, a higher level in the server calls the IP

module, providing the internet address of the

destination client and the message to transmit. The

IP module performs any required fragmentation of the

message to accommodate packet size limitations of any

intervening gateway, adds internet headers to each

35 fragment, and calls on the network layer to transmit

the resulting internet datagrams. The internet header

Oracle Ex. 1002, pg. 1360

..
• • · : ..
• •

.
••
..

'

5

-11-

includes a local network destination address

(translated from the internet address) as well as

other parameters.

For messages received by the IP layer from the

network layer, the IP module determines from the

internet address whether the datagram is to be
forwarded to another host on another network, for

example on a second Ethernet such as 36 in Fig. 1, or

whether it is intended for the server itself. If it

10 is intended for another host on the second netw6~k,

the IP module determines a local net address for the

destination and calls on the local network lay-er for

that network to send the datagram. If the datagram is

intended for an applicatio-n program within the server,

15

20

25

30

the IP layer st.rips off the header and passes the.

remaining portion of the message to the appropriate

next higher layer. The internet: protocol s t.andard

used in the illustrative apparatus of Fig. 1 is

specified in Information Sciences Institute, "Internet.

Protocol, o.;RPA Internet Proqram P:::otocol

Specification," RFC 791 (September 1981}, which is

incorporated herein by reference .

TC?/UOP Laver. This layer is a datagram service

with more elaborate packaging and addressing options

than the IP layer. For example, whereas an I.P

datagram can hold about 1,500 bytes and be addressed

to .hosts, UOP datagrams can hold about 64KB and be

addressed to a particular port within a host. TCP and

UDP are alternative protocols at t.his layer;

applications requiring ordered reliable deli very of

streams of data may use TCP,

(such as NFS) which do not

reliable delivery may use UDP.

whereas applications

~equire crdered and

The prior art file server of Fig. 1 uses both TC?

35 and UDP. It uses UDP for file server-related

services, and uses TCP for certain other services

Oracle Ex. 1002, pg. 1361

..
• . ..
•

• •
•

.
•o

• ••

..
• . .

• • ..

-12-

whic~ the server provides to network clients. The UDP

is specified in Postel, •user Datagram Prctocol,Q RFC

768 (August 28 I 1980) 1 which is incorporated herein by

reference. TCP is specified in Postel, •Transmission

5 Control Protocol,• RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein by

reference.

10

15

20

25

30

· XDR/RPC Layer. This layer provides functions

callable from higher level programs to run a
designa-ted procedure on a remote machine. It also

provides the decoding necessary to permit a client

machine to execute a pro<:edure on the server. For

example, a caller process in a clien~ node may send a

call message to the server of Fig. 1. The call

message~ includes a specification of the desired

procedure, and its parameters. The ~essage is passed

up the stack to the Rl?C layer, which calls .the

appropriate procedure within the server. When the

procedure is complete, a reply message is generated

and RPC passes it. back down the stack and over the

network to the caller client. R?C is desc.:::ibed in Sun

Microsystems, Inc., "RPC: Remote Procedure Call

Protocol Specification, Version 2," RFC 1057 (June

1988), which is incorporated herein by reference.

RPC uses the XDR external data representation

standard to represent information passed tc and from

the underlying UDF layet: XDR is merE::ly a data

encoding standard, useful for transferring data

between different computer architectures. Thus, on

the network side of the XDR/RPC layer, information is

machine-independenti on the host application side, it

may not be. XDR is described in Sun Microsystems,

Inc., "XDR: External Data Representation Standard,"

RFC 1014 (June 1987), ~hich is incorporated herein by

35 reference.

Oracle Ex. 1002, pg. 1362

.
•

• . . .
• 0 . .

. . •

. .

-13-

NFS Layer. The NFS ("network file system")

layer is one of the programs available on the server

which an RPC request can call. The combination of

host address, program number, and procedure numbe·r in

5 an RPC request can specify one remote NFS procedut;e to

be called.

Remote procedure calls to NFS on the file server of ·

Fig. 1 provide transparent, stateless, remote access

to shared files on the disks 24. NFS assumes a file

10 system that is hierarchical, with directories as all

but the bottom level o:f files. Client hosts can ea-11

any of about 20 NFS procedures including such

procedures as reading a specified number of bytes .from

a specified file; writing a specified number of bytes

15 ..

20

25

to a specified file: creating, renaming and removing

specified files; parsing directory trees; crea-ting and

removing directories; and reading and setting file

attributes. The location en disk to which and from

which data is stored and retrieved is always specif~ed

in logical terms, such as by a file handle or Inode

designation and a byte offset. The de"tails of the

actual data storage are hidden from the client. The

NFS procedures, together with possible higher level

modules such as Unix VFS and urs, perform all

conversion of logical data addresses to physical data

addresses such as drive, head, track and sector

·identification. NFS is specified in Sun Microsystems,

In;::., "NFS: Network File System Protocol

Specification, n RFC 1094 (March 1989) I incorporated

30 herein by reference.

With the possible exception of the network layer,

all the protocol processing described above is done in

software, by a single processor in the host CPU card

10. That is, when an Ethernet packet arrives on

3 s Ethernet 12, the host CPO 10 performs all the protocol

pzocessing in the NFS stack, as well as the protocol

Oracle Ex. 1002, pg. 1363

..
• •

••
• • ..
• ...

.
• .

" • •
• .. .
• . ••

-14-

processing for any other appl'ication \o:hich may be

running on the host 10. NFS procedures are run on the

host CPU 10, with access to memory 16 for both data

and prog.ram code being provided via MMO 11. Logically

5 specified data addresses are convert:ed to a muc·h more

physically specified form and communicated to the SMD·

disk controller 22 or the SCSI bus 28, via the VME bus

20, and all disk caching is done by the host CPU 10

through the memory 16. The host CPU card 10 also runs

10 procedures for performing various other function.s of

the file server, communicating with tape controll~r 30

via the VME bus 20. Among these aie client~defi~ed

remote procedures requested by client workstations.

15

20

25

30

If the s e:rver serves a second Ethernet 3 5, packet.s

from that E~hernet are transmitted to the host CPU 1~

over the same VME bus 20 in the form of IP datagram~ .

Again, all protocol processing except for the network

layer is performed by software processes running on

the host CPU 10. In addition, the pro~ocol processi~g

for any message that is to be sent froa the serv~r cu~

on either of the Ethernets 12 or 36 is also done by

processes running on the host CPU 10.

It can be seen that the host CPU 10 performs a~

enor~ous amoun~ of processing of data, especially if

5-10 clients on each of the two £thernets are making

file server requests and need to be sent responses on

a frequent b~s~s. The host CPU 10 runs a multitasking

Unix operating sys~em, so each incoming request need

not '\..:ait for t!'l.e previous request to be cornpletel1-·

processed and returned before being processed.

Multiple processes are activated on the host CPU 10

for performing different stages of the processing of

different req~ests, so many requests may be in process

at the same time. But there is only one CPU on the

35 card 10, so the processing of these requests is not.

accomplished in a truly parallel manner. The

Oracle Ex. 1002, pg. 1364

.. ..
0

• .. • .
• .
• •

• • I

• .
•

-15-

processes are instead merely time sliced. The CPU 10

therefore represents a major bo~~leneck in the

processing of file server requests.

Another bottleneck occurs in MMtl 11, which must

·s transmit bo~h instructions and data between the CPU

card 10 and the memory 16. All data flowing between

the disk drives and the network passes through this­

interface at least twice.

Yet another bottleneck can occur on the VME bus 20,

10 w~ich must transmit data among the SMO disk controller

22, the SCSI host adaptor 26, the host CPU card 10,

and possibly the network fi2 controller 24.

15

20

PREFERRED EMBODIMENT-OVE&ALL HARDWARE ARCHITECTURE

In Fig. 2 .. there '·is shown a block diagram of a·

network file server 100 according to the invention.

It can include multiple network cont=oller (NC)

boards, one or more file controller (FC} boards, one

or more sto:age processor (SP) boards, multiple system

memory boards, and one or 6ore host processors. The

particular embodiment shown in Fig. 2 i~cludes four

network controller boards llOa-!lOd, two file

con~roller hoards 112a-112b, two storage processors

ll4a-114b, four system memory cards 116a-116d for a

total of 192MB of memory, and one local host processor

118. The boards 110, 112, 114, 116 and 118 are

conne·ct-:.:d togeto.her over a VME bus 120 on \.lhich an

enhanced block transfer mode as described in the

ENHANCED VMEBUS PROTOCOL application identified above

30 may be used. Each of the four network controllers 110

shown in Fig. 2 can. be connected to up to two

Ethernets 122, for a total capacity of 8 Et.hernet.s

122a-122h. Each of the storage processors 114

operates ten parallel SCSI busses, nine of which can

35 each support up to three SCSI disk drives each. The

tenth SCSI channel on each of the storage processo=s

Oracle Ex. 1002, pg. 1365

..
• • ...

•
..
.. . : . .
0 • ..

-16-

114 is used for tape drives and other SCSI

peripherals.

The host 118 is essentially a standard Sunos Unix

processor, providing all the standard Sun Open Network

5 Computing (ONC) services except NFS and IP routing.

Importantly, all network requests to run a user­

defined procedure are passed to the host· for

~xecution. Each of the NC boards 110, the FC bo~ids

112 and the SP boards 114 includes its own independent

10 32-bit microprocessor. These boards essentially off-.

load from the host processor llS virtually all of the

N?S and disk processing. Since the vast majority of

messages to and from clients over the Ethernets lt~

involve NFS requests and responses, the processing of

15 these requests in paralle.l .b}' t:he NC, FC and SP

processors, 'With minimal invol vernent by the local ho·s t:.

118, vastly improves file server performance. Unix

is explicitly eliminated from virtually all network,

file, and storage processing.

20 OVERALL SOFTWA~E ORGANIZeTION AND DATA FLOW

25

Prior to a detailed discussion of the. hardware

subsystems shown in Fig. 2~ an overview of the

software structure will now be undertaken. The

software organization is described in more detail in·

the above-identified application entitled MULriPLE

FACIL!TY'OPE~~TING SYSTEM ARCHITECTURE.

Most of the elements of the software are well known

in the field and are found in :nost networked Unix

systems, but: there are two cornpo~ents which are not.:

30 Local NFS ("LNFS" j and the rr.essaging kernel ("MK~}

operating system kernel. These two components will be

explained first.

The Messagina Kernel. The various processors in

file server 100 communicate with each other through

35 the use of a messaging kernel running on each of the

Oracle Ex. 1002, pg. 1366

.
!II ••

.
.

••oo

•• oo

-17-

processors 110, 112, 114 and 118. These processors do

not share any instruction memory, so task-level

communication cannot occur via straigh tfor'W'ard

procedure calls as it does in conventional Ur:.ix.

5 Instead, the messaging kernel passes messages over VME.

bus 120 to accomplish all necessary inter-processor

communication. Message passing is pref.erred over

r·emote procedure calls for re·asons of si:nFlicity arid

speed.

10

15

20

25

30

Messages passed by the messaging kernel ·hav·e a

fixed 128-byte length. Within a single processor,·

messages are sent by reference; bet.'lol'een proce~·sors..,

they are copied by the messaging kernel and tnen

delivered to the destination process by reference.

The,. processors of Fig. 2 have special hardwa=e,

discussed !:lelow, that can expedient:ly exchange a!'ld

buffer inter-processor messaging kernel messages .

The LNFS Local NFS interface. The 22-function ~FS

standard ~as specifically designee for stateless

operation using unreliable communication. This means

that neithe: clients nor server can be sure if th~y

hear each other \O"he:n they talk (unraliability). Zn

practice, an in an Ethernet environ~ent, this works

well.

Within the server 100, however, NFS level datagra~s

are also used for communication between processors, in

·particular between the network controllers 110 and the

file controller 112, and be~ween the host processor

118 and the file controller 112. For this interr.al

communication to be both efficient and convenient, it

is undesirable anc impractical to have complete

statelessness or unreliable communications.

Consequently, a modified form of NFS, namely LNFS, is

used for internal communication of NFS requests and

35 responses. LNFS is used only within the file server

100; the exter~al network protocol supported by the

Oracle Ex. 1002, pg. 1367

..
• .

••
• ..
• •

.

.. .
00

•• • ..

.

-18-

eerver is precisely st~ndard, licensed .NFS. LNFS is
described in more detail below.

The Network Controllers 110 each run an NFS server

which, after all protocol processing is. done up to the

S NFS layer, converts between external NFS requests a.nd

responses and internal LNFS requests and responses.

For example, NFS requests arrive as RPC reque'sts with

XOR and enclosed in a UOP datagram. After protocol

processing, the NFS server translates the NFS requ:es.t

10 into LNFS form and uses the messaging kernel to send

~he request ~o the file controller ll2.

20

25

30

The file controller runs an LN?"S server which

handles LNFS requests both from network controllers

and from the host 115. The LNFS server translates

L.NFS reques~s to a fo.,rm appr.optiate for a file system

server, also running on the file controlle-r, which

:nanages the system me:nory file data cache through a

block !/0 laye:::- .

An overview of ~he software in each of the

processors will now be set forth.

Network Controller 110

The optimized dataflow of the server 100 begins

with the in~:elligent netYo:rk controller 110. This

processor receives Ethernet packets from client

workstations. It quickly identifies NFS-destined

packets anq thEn perf~~ms full protocol processing on

them to the NFS level, passing the resulting LNFS

requests directly to the file controller 112.

protocol processing includes I? routing

This

and

reassembly, UDP demultiplexing, XDR decoding, and NFS

request dispatching. The reverse steps are used to

send an NFS reply back to a client.. Importantly,

these time-consuming activities are performed directly

35 in the Network Controller 110, not in the host 118·.

Oracle Ex. 1002, pg. 1368

. :
• •

.
. •
... : . . .
• . .

-19-

The server 100 uses conventional NFS ported from

Sun Microsyste~s, Inc., Mountain View, CA, and is NFS

protocol compatible.

Non-NFS net~ork traffic is passed directly to its.

5 destination host pro.cessor 118.

The NCs 110 also perform their own IP routing.

Each network controller

parallel Ethernets.

110

There

supports two fully

are four networ~

controllers in the embodiment of the server 100 shown·

10 in Fig. 2, so that server can support up to eig.h.t

Et:hernets. For the two Ethernets on the same netwO'rk

controller 110, I? routing occurs completely wi thi·ri::

the network controller and generates no backplane·

traffic. Thus attaching two mutually active Eth.e.rnet:s

15

20

25

30

to the same cont.rolle.x: not on.l.y minimizes their inte.r- ·

net transit time, but also significantly reduce~

backplane cont.antion on the VME bus 120. Routing

table updates are distributed to the network

controllers fro~ the host processor 118, which runs

either the gated or routed Onix demon.

While the ne~work controller described here is

designed for E~hernet LANs, it will be understood that

the invention can be used just as readily with other

network types, including FDDI .

~'le Controller 112

In addition to dedicating a separate proc~~sor for

NFS protocol processing and IP routing, the server 100

also dedicates a separate processor, the intelligent

fi:e controller 112, to be responsible for all file

system processing. It uses conventional Berkeley Unix

4.3 file system code and uses a binary-compatible data

representation on disk. These two choices allow all

standard file system utilities {particularly block­

level tocls) to run unchanged.

Oracle Ex. 1002, pg. 1369

..
.

.

..
•

..

-20-

T~e file controller 112 runs the shared file system

used by all NCs 110 and the host processor 118. Both

the NCs and the host processor communicate with the

file controller 112 using the LNFS interface. The NCs

5 110 use LNFS as described above. while the·· host

processor 118 uses LNFS as a plug-in module to Su-nOs' s
standard Virtual File System (•VFS•) interface.

When an NC receives an NFS read request from a

client ._.O:!:kstation, the resulting LNFS request pass·es_

10 to the FC 112. The FC 112 first searches the syst'e.rn.

me!nory 116 buffer cache for the requested data. If

found, a reference t.o the buffer is returned to the NC

110. If not found. the LRU {least rec:.mtly used)

cache buffer in system memory 116 is freed and

1.5 .

20

25

30

.. reassigned !or the. requested block. The FC t.hen

directs the SP 114 to read the block int.o the cache

buffer from a disk d:ive array. When complete, the S?

so notifies the FC, which in turn notifies the NC 100 .

The NC 110 then sends an NFS reply, with the data from

the buffer, back to the NF~ client workstation out on
-~o '-••- net•...rork. Note that the SP 114 transfers the data

in:.o system memory 116, if necessary, and t.he NC 11-Q

transferred the data fro::n systezn memory 115 to the

::letworks. The process takes place without any

involvement of the host 118.

S1Q=age ?ro7essor

The intelligent. storage processor lt4 manages all

disk and tape storage operations. While autonomous,

storage processors are primarily directed by t.he file

controller 112 to move file data between system memory

116 and the disk subsystem. The exclusion of both the

host 118 and the FC 112 from the actual data path

helps to supply the performance needed to service many

35 remote clients.

Oracle Ex. 1002, pg. 1370

. :
&

.
. ..

5

-21-

Additionally, coordinated by a Server Manager in

the host 118, s~orage processor 114 can execute server

backup by moving data between the disk subsystem and

tape or other archival peripherals on the SCSI

channels. Further~ if directly accessed by ho:st·

processor 118, SP 114 can provide a much hig.her

performance conventional disk interface for Unix.,.

virtual memory, and databases. In Unix nomenclature,

the host processor 118 can mount boot, ~torage swap,

10 and raw partitions via the storage processors 114.

15

20

... -.:.;)

30

Each storage processor 114 operates ten pa:rallel,

fully synchronous SCSI channels (busses)

simultaneously. Nine of these channels support:. three

arrays of nine SCSI disk drives each, each drive in a~

array being assigned to a different SCS! channel. The

tenth SCSI cha~nel hosts up to seve~ tape and oth~r

SCSI periphe.::als. In adC.ition ~o performi:-:g reads and

..,rites, SP 114 perfo::-rns device-level optimizations

such as dis~ seek queue sorting, directs device error

recovery, and controls D~~ transfers be~ween the

devices and syste~ memory llc .

~os~ Processor 118

The local host 118 has ~hree nai:-: purposes: ~o run

Unix, to provide standard ONC neto;.;ork services for

clients, and to run a Server Manager. Since Unix and

ONC are ported from the standard SunOs R2lease 4 and

CNC services Release 2, the serve= lOO can provide

identically co~patible high-level ONC services such as

t:he Yellow ?ages, Lock :-~anager, DES Key Auther.tica tor,

Aut:o Mounter, and Port Mapper. Sun/2 Net'W·ork disk

booting and more general IP internet services such as

Telnet, fTP, Sl>tTi?, SNM?, and reverse AR? are also

support:ed. Finally, print spoolers and similar Unix

35 de~ons operate ~ransparently.

Oracle Ex. 1002, pg. 1371

·
• • •. ·.

.
.
... ..
.,..

s·

10

15

20

25

30

35

-22-

T~e host processor 118 runs the !o!lo·wing s.oft",;Ta·ra

modules:

ICP. and socket lay·er:;,. The Transport. ·:··¢,c;>~.t,r.ol

Protocol (•TC?·) I which is· us·ed for. ce:r~<ii·~~ ~/~.~j'i;"..~,;::. ·
functions other than NFS, ?rovides· ·reliaplef.byt·e:$.trea:m.

. ;:: . :· · .. ·, :~ ' . ..-.;. .. :.~~ .. : . ·:. . "

comrnuni·ca.tion :betwe.en two processors. Socke·t:·,ai't(.>ii~·ed· ·
to establish TCP co:me.ctions. .. :/;.:,".;:~\'·~ .., ··

i~t:: a!:t ::! :e~~a :::rdVis"u:~sl f: ::• sy:~::·:~f,t:~·~:~r . • ..
!t. paints a uniform file-svs~em·pictut.e f·6r.:·:oo:f~i~:~:~;~:·:

:~:~~:::=:.::~7lF1S=::~: t::~ :~::::~~n::~:·ls.:tt~J~ft~! :·~· •...
co~xist harmoniously. .•. . " .. /.·

~ ::::::~:te :;:::,:. c::::~:::::~ F i ::th ~!~!~f:~t~]~~t' .• {
processor disk drives. In the ·server H)O ~;!,:it:·. :i): ··u:·i{~·~;:'.,, .·

to occasionally

directly, ~ithout

mount storage riroce.sso::r· 'iio'l\i'k~{s :./;·
going through ·t~e file:: c·o·~tib . .ff·~:fY·>

112. Norl:".ally I the host. 118 uses !..N·FS anc. ... :·~~·e:~~·.' .. ·. ·

through the file controller . :.: ·.···

Device laver. The de•lice layer is. a. st:;ant:i.tcr·: ·
soft>Tare inte.rface l:>et•,.,.een the Unix device modei.. ~tid. ·· ·,•· ·.

diffe.r·ent physical de•:ice imple-mentations.

server 100, disk devices are not attached to . no·st.·
. ·

processors directly, so the disk driver in the ho·st./$'

device layer uses the messaging kernel to communicat• .

with the storage processor 114.
Route and Port Manper D::omons. The Route and ?'Q.rt.

Mapper demons are Unix user-level background procfts~es

that maintain the Route and Port databases for packet

routing. They are mostly inactive and not in any

performance path.

Yellow Paaes and Authentication Demon. The Yellow

Pages and Authentication services are Sun-ONC standard

Oracle Ex. 1002, pg. 1372

. . .

-23-

network services. Yellow Page:> is a widely used

multipurpose name-to-name directory lookup servic.e.

The Authentication service uses cryptographic ·keys to

authenticate 1 or validate 1 requests to in:sure t}lat

5 requestors h~ve the proper privileges for any a-ctio·n.s

or· data they desire.

10

Server Manager. The

administrative application

Server Manager is· .. a:n, ·
suite that c<::>n·trols

conf ig.uration, l-ogs error and ·performanc·e reports 1 .an!i .

provides a monitoring and tuning interface· for t~e

system adminis-crator. The·se fun·c.tions can -be

exercised from either system console ·connecte&. to th~: ... · ..

host 118, or from a sys·tem adminis--cratorls ..

workstation.

15 _ The hos't processor 118 is a conventional OEM S\.in

20

central processor card, Model 3E/ 120. I~ incorporate~{

a ~1otorola 68020 microprocessor and 4MB of on-board

memory. O'ther processors I such as a SPARC-based

processor, are also possible.

T~e structure and operation of each of the hardware

components

det.ail.

of server 100 will now be described ·in

NETWORK CONTROLLER HARDWARE ARCH!TECTQRE

25 Fig. 3 is a block diagram showing the data path and

30

some control paths for an illustrative one of the

network coocrollere llOa. It comprises a 20 MHz 68020

microprocessor 210 connected to a 32-bit.

microprocessor data bus 212. Also connected to the

microprocessor data bus 212 is a 256K byte CPU memory

214. The low order 8 bits of the microprocessor data

bus 212 are connected through a bidirec-cional buffe=

216 t.o an 8-bit slow-speed data bus 218. On ~he slow­

speed data bus 218 is a 128K byt.e EPROM 220, a 32 byte

35 PROM 222 1 and a multi-function peripheral (MFP) 224.

The EPROM 220 contains boot code for the net.·..;ork

.>.

. ~ ...

. :

'.

. ;

Oracle Ex. 1002, pg. 1373

. .

. .

.
•
• . ..

5

10

15

20

25

30

-24-
... ;

cont~oller llOa I while the .PROM 222 stores· va:rious :

operating parameters- such· ·as . the· Ethernet· _ad·di~:~~~e;~:· .. ';--. ·

assigned to each-o'f the two Ethe~net·interfaC:~~··,c!,:rl>:~~~i._. .. -·: ::·

board. ::.thernet .address infotmatio~ is read ·1x1t~:/:t'h:~:l·-;-:·., · :;

co,~spo·nding: · ·inte~f~ce_ .. contro.l ~·loc~ . in :.':Fh~:-:·:'_,;9:-~:9<.·· .. ·
mei!(ory 2.1-.4' during .. initialization. _ 'The MFP . 2<2:4\ +:~:i~;:'<i"'. ,
Motorola 68 90t~ .arid -performs ·various ·lo;cal·:fi:i.Itct"io'ns(·~;.:,-.~ ... :·: ,;: ·. ·

·::~ ~::o~~::::•:o·~:~~=~::~~:::.::::~:::f:~~t:::1~!~~;i}i,i\{: ···.·
the invention and will. not· .be fur·ther : d'escr.;kb:ed':!':\ ·:_i{:.,:.F.'.'-; ·

her:~:· lo~ or4er. i6 .bits of t~e m~croproces>:r .i·i~~~~.L' >.

bus i12. ·are also ·coupled thr.ough ·a b-id.i'rect:ioiliJ' ... , :

~::::: 11:
3
: c::p ~ 3 4

1
,
6 -sbu~: ~Nt~:~ ::, 9~:• ~:~t~ ~~il.t.iit~.t:) ... ·.

con.troller ·ma·nufactu:r::ed ·'by 'Adv~·~ced Mic~o .:oJii:~·~:~~:.~r~-· ·. ~-·
Inc·. sunnyvale, ·cA.,· interfaces the UN:. d·iita· -~·u·~ }:j~:: -~-_<:·.·:':
wit:.h the first Ethernet 122a shown in F·ig. 2 ~· :c;~n~r§;~ ~­
and data fer the ·LAN controfler 234. are s.tored:·. i'n::· .. a·'-.
512K byte LAN memory 236, which is also connect~·4:·:¥o ,

the LAN data bus 232·. A specialized 1·6 to 32' bi:t:. :f.-~f..P.~-::
chip 240, referred to -herein as a pari t.y FIFO· :c~ip::;arid''. ~- .

described below, is also connected to the L.'~N data.'h~s. ·:.:.

232. Also connected to the LAN data bus 232 is .a LA~>··.·

DMA controller 242, which controls movements·

between the LJI.N memory 2 36 rr.-nd. the! .. . pack.ets of data

FIFO chip 240 .

Moto=ola M68440

only.

The LAN DMA controlle= 242 may be ·a·

DMA controller using channel zerb

The second Ethernet 122b shown in Fig. 2 connects

to a second LAN data bus 252 on the network controller

card llOa shown in Fig. 3. The L~.N data bus 252

connects to the low order 16 bits of th-e

. ...

. :~

._· .. ·

._..:

,:'

35 microprocessor data bus 212 via a bidirectional buffer

250, and has similar components to those appearing on

Oracle Ex. 1002, pg. 1374

.
0
•

•• . .
•

.
•
.
• .
• • ..

-25-

the LAN data bus 232. In particular, a LAN controller

254 interfaces the LAN data bus 252 with the Ethernet

122b, using LAN memory 256 for data and control, .and

a LAN DMA controller 262 controls DMA transfer of data

5 between the LAN memory 256 and the 16-bit wide da·ta

port A of the parity FIFO 260.

The low order 16 bits of microprocessor dat:a bu·s

212 are also connected directly to another parity FIFO.·

270, and also to a control port of a VM.E/FIFO DMA

10 controller 272. The FIFO 27{) is used for passin(]:

messages between the CPU memory 214 and one of the:·

remote boards 110, 112, 114, 116 or 118 (Fig. 2). in ·a.

manner described below. The VME/FIFO Dt-'.A controll'e'r

272, which supports three round-robin non-priori tiz·ea·

15 •·

20

25

30

cha.~nels for copying data, controls all data transfers

between one of the remote boards and any of the FIFOs

240, 260 or 270, as well as between the f:FOs 2·N and

260 .

32-bit data bus 274, whith is connected to the 32-

bit port B of each of the F';.FOs 240, 250 and 270, is

the data bus over·which these transfers tak~ place.

Data bus 274 communicates with a local 32-bit bus 276

via a bidirectional pipelining latch 275, which is

also controlled by VME/FIFO DMA controller 727, which

in tur:1 communicates with the VME bus 120 via a

bidirectional buffer 280 .

The local data bus 276 is also connec~ed to a set

of control registers 282, which are directly

addressable across the VME bus 120. The registers 282

are used mostly for system initialization and

diagnostics.

The local data bus 276 is also coupled to the

microprocessor data bus 212 via a bidirectional buffer

284. When the NC 110a operates in slave mode, the CPU

35 memory 214 is directly addressable from VME bus 120.

One of the remote boards can copy data directly from

Oracle Ex. 1002, pg. 1375

. . . .

. .

. . .

-26-

the ~PO memory 214 via the bidirectional buffer 284.

LAN memories 236 and 256 are not directly addresse_d

over VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of

5 an ASIC, th~ func·tions and ope·raticn of .,..hich are

described in the Appendix. The FIFOs 240 and 260 a-re

configured for packet data transfer and the FIFO 2jo

is configured for massage passing. Referring to t'he

Appendix, the FlFOs 240 and 260 are programmed wi·th

10 the following bit settings in the Data ·Transfer

Configuration Registe~:

15

20

25

30

35

Sit D~finHiQD S~=>ttina

0 WD Mode N/A

1 Parity Chip N/A

2 :Parity Correct Mode N/A

3 8/16 bits CPU & PortA interface 15 bit:s(l)

4 Invert Port '}.. address 0 no (0)

5 Invert Port A address 1 yes (1)

6 Checksum Carry Wrap yes (1)

7 Reset no (0)

The Data Transfer Control Register is programmed as

follows:

.!iit
0

1

2

3

4

5

6

7

Q~4'i"'i:t'~!2D

Enable PortA Req/Ack

Enable PortB Req/Ack

Data Transfer Direction

CPO parity enable

PortA parity enable

PortB parity enable

Checksum Enable

PortA Master

se~ting

yes {1)

yes (1)

(as desired)

r.o { 0)

no (0)

no (0)

yes (l)

yes (1)

Unlike the configuration used on FIFOs 240 and

260, the microprocessor 210 is responsible for loading

and unloading Port A directly. The microprocessor 210

reads an entire 32-bit word from port A with a sin9le

instruction using two port A access cycles. Port .b,.

Oracle Ex. 1002, pg. 1376

. . .
• .
.
•

-27-

data.transfer is disabled by unsetting hits 0 (Enable

PortA· Req/Ack} and 7 (PortA Master) of the Data
Transfer Control Register.

The remainder of the control settings in FIFO 2 70.

5 are the same as those in FIFOs 2 40 and 260 described­
above.

The NC llOa also includes a command FIFO 290 ~. The

cotr.mand FIFO 290 includes an input port coupled to the;

local data bus 276, and which is directly add.ressaible'

10 across the VME bus 120, and includes an output po:rt ·

15

20

connected to the microprocessor data bus 212. A.s

explained in more detail below, when one of the· remote .~

boards issu·es a command or response .to the NC llOa ~ ·.it.

does so by directly wri·ting a 1-word (32-bit) me·s·s-age .

descr,iptor, intq NC llOa' s command .. fiFO 2·90. Comma·nd

FIFO 290 generates a "FIFO not empty" status to the

microprocessor 210, which then reads the mes'sage

descriptor off the top of FIFO 290 and processes {t .

·If the message is a command, then it includes a VME

address at which the message is located (presumably an

address in a shared memory similar to 214 on one of

the remote boards). The microprocessor 2.10 then

programs the FIFO 270 and the VME/F!FO OHA controller

272 to copy the message from the remote location into

25 the CPO memory 214.

Command FIFO 290 is a conventional two-port FIFO,

except that additior.~l cir~uitry is included for

qeneratinq a Bus Error signal on VME bus 120 if an

attempt is made to write to the data input port while

30 the FIFO is full. Command FIFO 290 has space !or 256

entries.

A noteworthy feature of the architecture of NC !lOa
is that the LAN buses 232 and 252 are independent of

the microprocessor data bus 212. Data packets being

35 routed to or from an Ethernet are stored in LAN memory

236 on the LAN data bus 232 (or 256 on the LAN data

Oracle Ex. 1002, pg. 1377

-28-

bus 252} • and not: in the CPU memory 214. Data

transfer between the LAN memories 236 and 256 and t·he

E"=.h.ernets 122a and 122b, are controlled by LAN

con~rollers 234 and 254, respectively. while most data

S transfer between LAN memory 2 3 6 or 2 56 and a rembte

port on the VME bus 120 are controlled by LAN OMA·

controllers 242 and 262, FIFOs 240 and 26.0, and

VME/FIFO DMA controile.:r 272. An exception to th.l.'s

rule occurs when the size of the data transfer. is

10 small, e.g., less than 64 bytes, in whi~h ca•e:

microprocessor 210 copies it directly without us:it,'lg

DMA. 'l'he microp·roce.ssor 210 is not involved in larg·er

transfers except in initiating them and in re.ceiving

notification TiHhen they are complete.

~15 -~ J The CPU memory 214 contains mostly instructions for

microprocessor 210, messages being transmitted to or

from a remote hoard via FIFO 270, and various data

blocks for controlling the FIFOs, the DMA controllers

and the LAN controllers. 'l'he microprocessor 210

20 accesses th.e data packets in the LAN memories 236 and

256 by directly addressing th.em through the

bidirectional buffers 230 and 250, respectively, for

protocol processing. T~e local high-speed static RAM

in CPU memory 214 can therefore provide zero wait

25 state memory access for microprocessor 210 independent

of network traffic. This is in sharp contrast to the

prior art architecture shown in Fig. 1, in which all

data and data packets, as well as microprocassor

instructions for host CPO card 10, reside in the

30 memory 16 and must communicate with the host CPU card

10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as

separate buses in Fig. 3, it will be understood that

they may instead be implemented as a single combined

35 bus.

Oracle Ex. 1002, pg. 1378

....
•

•ct•• •
' • ... • ..

0 • ..
•

•
••• •• •

.. • • •••
••• • ...

.... . .
•

• • • 0 ...

-29-

NETWORK CONTROLLER OPERATTQN

In operation, when one of the LAN controllers (such

c>s 234) receives a packet of information over its

Ethernet 122a, it reads in the entire packet and

5 st.ores i. t in corresponding LAN memory 235. The LAN

controller 234 then issues an interrupt t'C:>

microprocessor 210 via MFP 224, and the microprocesso;c

210 examin~s the status register on LAN controli.er ·2'34

(via bidirection~l buffe~ 230) to determine that the

10 event causing the interrupt was a •receive paC'ke·t

completed." In order to avoid a potential lockout of
the second Ethernet 122b caused by the pr.iori'tizEid

interrupt handling characteristic of MFP 2.24 ~ · the

microprocessor 210 does not at this time. immediately

~5

20

25

30

35

.. p-rQ;cess the received pa-<:ket; instead, such proc£rss·irig

is scheduled for a pollinq function .

When the polling function reaches the processing of

the received packet, control over the packet is -passe~

to a software link level receive module. The link

level receive module then decodes the packet accord~nq

to either of two different frame formats: standard

Ethernet format or SNAP (IEEE 802 LCC) format. J..n:

entry in the header in the packet specifies which· .

frame format was used. The link level driver then

determines which oi three types of messag~s is:

contained in the received packet: (1) tP, { 2) .AR?

packets which ca."' be handled by a local ARP module, or

(3) ARP packets and other packet types which must be

forwarded to the local host 118 (Fig. 2} for

processing. If the packet is an ARP packet which can

be handled by the NC llOa, such as a request for the

address of server 100, then the microprocessor 210

assembles a response packet in LAN memory 236 and, in

a conventional manner, causes L.AN controller 234 to

transmit that packet back over Ethernet 122a. It is

noteworthy that the data manipulation for

Oracle Ex. 1002, pg. 1379

• •

• ..
• ..

• .

5

10

15

20

25

30

-30-

accomplishing this task is perfoi::ltled almost completely

in LA..'l Jllemory 2 36, directly addre·s.sed · by

microprocessor 2 ~ o as controlled· l:>y instru~tipn$;. ,·i,if:

CPU memory 214. The function is accompl.ished.: ;.~.i·so··
wi:t·hout· generating· any traffic. on the VME ·:back:P.i:~ne··. •· . ·: ··:-

120 a.t a·ll,. and· w.i t,hout disturbing· th.e· l9ca:i hb·st'::.)i~i:~;:· ... •: ··
r.f the r~~eived . pa.cket ,is ·e~t~e·r ·an J\~~: .. kai~h~y;::.:;.

whi-ch cannot bEf prqc·essed· .co1npletely·· in the.::· .Nq .. :tt().a~; .. ,.,,.

. . ~

:: ... ~:. ·~:::~.r·h::~• ~::. Pt.~:·· ... :h i:hc;::~:~;:~!!~~i~~~ · ..
the serv.e.r. 1 OO: .to execute .a ·clie.nt-debried· .pr9:c:e.d.~.:t.e.J ;. ~ ..
th'e.n the mi·c·.;:-()proces:so~ · · 210 · ·· prqgrams: :. ··::LA;N::·· ~·:~~\§ ··
controller :2'42 ·. to. l~ad ~he. pac·k·~t ... fro~ 'LAN::-.nt.e~~,r~~;~f;:~·S.:::··:·-:.::
into FlFO '249, .programs FIF'O .240· wi:th ·the: di;t'eetiop-,,:·.'?t::''\
d.a.ta: tr.ans.fer,: ~nd .prog~ams .0:~. co~:t~clie.i:; 2:1.;2 :t~:.J~;:~·d· 1

..
. ' . •' . . . ' ·': : . . f:' . ·. :·: ;: •. <~~·:.:..: .. : :::: :.: '

the packet otit. of. FIFO 240 and across :the)1ME:··bu·s·":t20'' :

~:::opr5:c·:::or m•27ory f i~~:· . pro~; • .:;'"";~: ~(:e· .·\:~'··;· j•.\• · ... ·
COntroller 24'i With th·e •St.artin~··addre'SS and' l:eftgtb;;:~d,i-:.)F':';>. '··

~:: ,r~::::t .~nb•~:: :::::::r:~:~ :.:: ~:;:r~hf .~~Zfi .. f ~ · · ·
l!'>em·ory 236 to port A of parity .FIFO 240 as :soOn· ~:s: ::-;K~;::{·::;· .. ::·,
FIFO is ready to receive. data. Second. microp,roce's'scb*\'::::_:.::,: ·· .. ·.(

210 programs the VME/FIFO. DMA ·controller 272''·w~th;··t'li:.,i:'i-:.:):·... · · .
-...... : . '::. ~-;·

destinati·on address in system memory 1 i6·' and' ~h~::;·,;;·:

~:::::u:: t:~:egi~t:ra:.~:::~g :::. ~:::r:::: l~i".·.t ·
the fiFO 260 onto VME bus 120. Finally, th:~:/ ··: ..
microprocessor 210 programs FIFO 240 with th~·::::: ..
direction of the transfer to take place. The trans·fer .,::

then proceeds entirely under the control o.f O.MA

controllers 242 and 272, without. any further

involvement by microprocessor 210.

The microprocessor 210 then sends a message to host

35 118 that a packet is available at a specified sys~~~

memory address. The microprocessor 210 sends such a

Oracle Ex. 1002, pg. 1380

. .
•
• . . .

..
• • •

. . . .
.

-31-

mess~ge by writing a ~essage descriptor to a software­

emulated command FIFO on the host, vhich copies the

message from CPU memo::y 214 on the NC via buffer 284

and i:1to the host's local memory, in ordinary VME

5 block· transfer mode. The host then copies the packet

from sy·stem memory 116 into the host's own local

memory using ordinary VME transfers.

· If the packet received by NC 110a from the network

is an IP packet, then the microproces·sor 210

10 determines whether it is (1) an IP packet for the

server 100 which is not an NFS packeti (2:) a.n IP

packet to be routed to a different ne-cwork; or (3) an

NFS packet. If it is an lP packet for the server 100,

but not an NFS packet, then the microprocessor 210.

15 causes , _the packet . to be transmitted from the LAN

memory 236 to the host 118 in the same manner

described above with respect to cer-cain ARP patkets .

20

25

30

r f the IP packet is not intended for the server

100, but rather is to be routed to a client on a

different network, then the packet is copied into the

LAN memory associated with the Ethernet to which the

destination client is connected. If ~he destination

client is on the Etherr.et 122bl which is on the same

NC board as the source Ethernet 122a, then the

microprocessor 210 causes the packet to be copied from

U.N memory 236 into LAN 256 and then causes LAN

c<;•ntroller 254 to transmit it over Ethernet !22b. (Of

course, if the two LAN data buses 232 and 252 are

combined, then copying would be unnecessary; the

microprocessor 210 would simply cause the LAN

controller 254 to read the packet out of the same

locations in LAN memory to which ~he packet was

written by LAN controller 234.)

The copying of a packet from LAN me~ory 236 to LAN

me~ory 256 takes place similarly to the copying

described above from ~~N memory to system memory. For

Oracle Ex. 1002, pg. 1381

••
.
..

• ..
.. . .

•

-32-

tra~sfer sizes of 64 bytes or more, the mic:oprocessor
210 firs't. programs the LAN DMA controller 242 \Jith the

starting address and length of the packet in LAN

memory 2 36. and programs the controller to beg.in

5 transfe;r::dng data from. the LAN· memory :l-36 into po·r·t A

of parity FIFO 240 as soon as the FIFO is re•dy t6

receive data. second, microprocessor 210 prog.ra.ms the

LAN DMA controller 262 with a destination address in

LAN memory 256 and the length of the data packet, and

10 instructs that controller to transfer data from pa·rity

FIFO 260 into the LAN rnen1ory 256. Third,

microproc·essor 210· programs the VME/FIFO DMA

controller 272 to clock words of data out of port a ·of
the FIFO 240, over the data bus 274, and into port B.

15 of FIFO 260. F in.ally, 'th.e ~:~icroprocessv.r 2l0 progr'ai\IS

the two FIFOs 240 and 260 •<lith the direction of the

transfer to take place. The transfer then proceeds

20

25

30

entirely under the control of DMA controlle=s 242, 262

and 272, without any further involveme:1t by the

microprocessor 2l0. Like the copying from LAN memory

to system memory, if the transfer size is s~aller than

64 bytes, the microprocessor 210 performs 'the trans fer

directly, without D~A.

When each of the LAN OMA controllers 242 and 262

complete their work, they so notify microprocessor 210

by a respective interrupt provided through MFP 224.

When the microprocessor· ·210 haca re<;eived both

interrupts, it programs LAN controller 254 to transmit

the packet on the Ethernet 122b in a conventional

Thus, IP routing between the two Ethe=nets in a

single network controller 110 takes place over data

bus 274, generating no traffic over VME bus 120. Nor

is the host. processor 118 disturbed for such routing,

35 in contrast to the prior art architecture of Fig. 1.

Moreover, all but the shortest copying work is

Oracle Ex. 1002, pg. 1382

.. ·••..

.
• •

..
• •
.

5

10

20

25

30

-33-

pe.rfol."1ned by controllers outsid·e micropro.cess.or 210 i·

requiring th.e· involv.ement of. the microp.x;-oc!a,ss6•.(,:2;1'Q,i .. '

and· bus traffic on mic·toproce·ssor d·at.a biis' 2lJ.~·:-:~'rift;.::-.
' ' ' ' ... " ':. '·.::;·.: .. ;,:··-

for the supervisory functions 'of. p'rogrammi~c{ tt{e ,:;oM.A ':> .
. . . ' ·. . . ·. . : . :.· .. -: :.··. ::~·:>~~:.:·.:·~~:··..-::·. ·:··: .)
controllers and the parity. FIFOs and•: inst.r.u.c_;tfn:_g.~~\~:.qem · ·

;:aq:::~ • b:h• ~=~zro c:ro:ontc;· MA:·~~.:·c:o;netk_._t_.o):lj~li·~·e::r·;._·_·:·:·.;
uiicroproces~o.i: data hus 2.1'.2; :the LAN - .,

·~ •• '• ~.~· : •!

2:42' :and .262 . are pro.gram~e~ ' -by. ':loadih'lf con:i.~oi ;;_:·
: ;'·.; '~- .

the.·

data·

' 'J. : ~·:.,

::· ..

If the destlnat.io~ workstatio'n.~f~·th~· Ii>p~dke··t:<~;:;··
'be routed is o'n ·an Eth_erne~ •. c~~necte~ '~~:~.a_';¥i~:fe!~~E~~.
one of the network control.l~rs ·110, th'en ~he)::;~C:~\:ft\is_: .. · ·· ·

copied into· the app~opriate LA:N ·. meme>rY: ori · .th:~· :N;{:'.~;_i:i'(ii: :_;. .. •:
to which that· Ethe.rnet is connectea·. Such·. c:o·~~ing;:-'i·~··:·:.::: .>

. ··. ·~:
accomplished by first copy.ing the packe.t 'intO. :::~f~t,em.~ .. ~:> .·
memory 116, in the manner described abo•,;-e wi·£h .i:.e&p;~-~~:.·3:<: .
to certain ARP packets, a-rid then no'tit,j(in~. ··!~ij·Ei 3·;:·
des-tinatic.n :~c that a packet is available:· -~he~-ia::n(N.t~ .. ,, ..
i-s so notified, it programs its own parity FIFO :~:n'4:<·· : ·
DMA controllers to copy the packet from system m~?m~ry: -~ .
116 into the appropriate LAN memory. It. is rio.tew:~l:t·hy:;·.·_,_<
that though this type of IP routing does create "VM}::: .

bus traffic, it still does not involve the host e~~~
. .

118 .

If the IP packet received over the Ethernet 122~_,.
and now stored in LAN memory 236 is an NFS packet

intended for the server 100, then th~ microprocessor

210 performs all necessary protocol preprocessing to

extract the NfS message and convert it to the local

35 NFS (LNFS) format. This may well involve the logical

concatenation of data extracted from a large number of

:. :··

Oracle Ex. 1002, pg. 1383

.
• . . .

. .

.
• •

. .
•

•

5

10

15

20

25

30

-3~-

individual IP packets stored· in LAN memo-ry .2:3:$.,·

in CPU m~mory :2·1:,4:.;· .. resulting in a linked list, . . .

pointin9 -to the different ·blo_cks of data :.j..n·· :LAN- Eli~ll\.or._r.. · ·
2:36 in the correct sequence. .. ·' . . . ;.

~ ... · .. ·

imp:::an :"a:~r d::ai~=de::t;a:~ein;NF:f f:::a~n::ti~~~~ -~; _· ~
:·~:~:c::;o:~. t:::e Sit w~:;:u:::' ::::~d8on~0t::;{::;t~; ; .··,j ·._ ;_,•- ·_

. . ~ ·, ·.·· ' :~ :···~:~.~ \:~·· \"·: ::· •. ·:':.;

att.aC:hed ·:to the storag·e proc~ssors 11·~, cofn~~nds·.·;-~c::>.r(~: .;.·· .. ·
I • • ~ .• ~, • • •' • • ' ' ' •

··:·:
:·.

re·~cling and

di·sks, arid various
. . . ~

control· mes·sages ~-
• , I • ' .

diagnostics '• ~

maintenance commands which···are-

inc·lude the follow;i.n<;J

NFS: c;et at-tribu:.tes -:.of a file '(GETAT'f'RJ; :~_s·~-~::- · .

~~:~~;~7• c::at:d f~lefil(:E~~:r~~£J;10::,.o::-: it~!;<_; .. '' -:'
(REMOVE);· rename a file {RENAME); crea.t.ed· a :·n~~ l{n"k~~,; <; ... : .. ::_:- .:
file (LINK); cre·ate· ·a s·ymi"ink (SYMLJNKl ;' ·--~~m"~~~:·-::,:a.):;:·.:.·
direc·tory (RMDIR).; and return file system st:ati'sti:c;~-:·,.

(STATFS}. The da·ta· transfer command-s supported;'::;:;.{: .

LNFS include read from· a file (READ) i wri"t:e to a 'f~fl:~:.'·.r':
("WRITE); read from a directory (READDIR}; a~a rea:a-.;;~<..:
link CREADLINK}. LNFS also supports a buffer·re1:Ea:s~:.':
command (RELEASE), for notifying the file control:i~~-,;··:~;

that an NC is finished using a specified bQ.ff-er. i"n·.·

·system memory. It also supports ·a VOP-deri ved access··· ·· .

command, for determining whether a given type acc'e:s.s

is legal for specified credential on a specified file.

If the LNFS request includes the writing of filw

data from the LAN memory 236 to disk, the NC llOa

first requests a buffer in system memory 116 to be

allocated by the appropriate FC 112. When a pointer

to the buffer is returned, microprocessor 210 programs

35 LAN DMA controller 242, parity FIFO 240 and VME/FIFO

O~.A conti:olle.r 272 to transmit the entire block of

Oracle Ex. 1002, pg. 1384

.
0
0

•
• . .

• . .
.

0 •
• 0 .

0
0 . . ••

-35-

file. data to system me~ory 116. The only difference

between this transfer and the transfer described above

for transmitting IP packets and ARP packets to syst.em

memory 116 is that these data blocks will typically

5 have portions scattered throughout LAN m~mory 23·6 ..

The microprocessor 210 accommodates that situation,by

program.ming LA.~ DMA controller 242 S·Ucces·si vely for

each portion of the data, in accordance with t·h·e

link~d l-ist, after receiving notification t·hat the

10 previous portion is c.omplete. '!'he microproce;ssor 2'1'0.

can program the pari!Cy FIFO 240 and the VME/F'rFODMA

controller 272 once for the entire mess-age, as· long as:

the entire data block is to be placed contig·uously in

system memory 116. If it is not, then the

15 microprocessor 210 can program the-.DMA controller 272 ...

for successive blocks in the same manner LAN 01-i:A'

controller 242.

20

25

30

If the network controller llOa receives a message

from another processor in server 100, usually from

file controller 112, that file data is available in

system memory 116 for transmission on one of the

2thernets, for example Ethernet 122a, then the network

controller 110a copies the file data into LAN memory

236 in a manner similar to the copying of file data in

the opposite direction. In particular, the

microprocessor 210 first programs VME/FIFO DMA

controller ·2 72 with the starting address !"nd len-:1:h of

the data in system memory 116, and programs t:he

controller to begin transferring data over the VME bus

120 into port B of parity FIFO 240 as soon as the FIFO

is ready to receive data. The microprocessor 210 then

programs the LJL~ DMA controller 242 with a destination

address in LAN memory 236 and then length of the f~le

data, and instructs that controller to transfer data

35 from the parity FIFO 240 into the LAN memory 236.

Third, microprocessor 21-~ programs the parity FIFO 240
....... ' •).•

Oracle Ex. 1002, pg. 1385

•• • • • .. .
•

.
..

•
.. . •

• • • ..

5

-36-

with_ the direction of the transfer to take place. ?he

transfer then proceeds entirely under the control of

DM.A controllers 242 and 272, without any furt·her

involvement by the micropr9cessor 210. Again, if the.

file data is scattered in multiple blocks in system

m.eraory 116, the microprocessor 210 programs· the·

VM·EJFIFO 01-'.A controller 272 with a linked list of the

blocks to transfer in the proper order.

When each of the DMA contro-llers 242 and 272

10 cot:!.plete their work, th·ey so notify microproces.sor 210 .

through MFP 224. The microprocessor 210 then- per"!'orms

all necessary protocol processing on the LNFS me·s·s-a9.~

in LAN memo::y 236 in order to prepare the messa:ge·.fc;ir:

:tansmission over the Ethernet 122a in the form 6f

15 E:thernet .'!? packets .. - As set forth above, this

p::otocol processing is performed entirely in net:W:o·ik

controller llOa, without any involvement of the local

host 118 .

20

25

30

35

It should be noted that the parity Flf·Os are

des i-qned to move rnul tiples of 12 8 -byte blocks mo·st

efficiently. The data transfer size through port B is

always 32-bit:s-ide, and the VME address corresponding

to the 32-bit data must be quad-byte aligned. The

data transfer size for port A can be either 8 or 16

For bus utilization reasons, it is &et to 16

bits when the corresponding local start address is

double-byte alig-ned, an.:! is set at 8 bits otherwise .

The TCP/IP checksum is always computed in the 16 bit

mode. Therefore, the checksum word. requires byte

swapping if the local start address is not double­

byte aligned .

Accordingly, for transfer from port B to port A of

any of the F!FOs 240, 260 or 270, the microprocessor

210 programs the VME/FIFO DMA controller to pad the

transfer count to the next 128-byte bounda.:y. The

extra 32-bit word transfers do not invol va the VME

Oracle Ex. 1002, pg. 1386

s

20

25

30

•.;

.·.::;

-31-
'\ ..

·. :.·:

bus;. and orily the· desired .. num:be·r of ·32-b'i t woz;ds "'f.fl~:

be unloa:ded f;rom port A. ·· ., .. ,. .. ·

~;:~::;~::::;:::~c:::;;;:::~1:
0

i£:~~£:~~::~,p~~~~;\~1Cr.
f.in:ish:e;d. ·Tne 'FIFO .. ;ful.i :indi~~tion e.rl~bles :t:inid~a.'ific{:;<'·: ,

~!;;=~r;;p;:~~::::::s::::~~.t::::~~:::~l~t~~t\:·. ··, · , ·· ·
128: <by.tes: -'are .. pe±'"form:ed''. under H_.local .ml.crop:to.c;•as.so'r'<l'> .; .

coritro:i . r~the~ th.~n· · \md~~:: t.h~ .. ~ontro'l-' o~ -~N~.<~~;:r::(..
cor.t::~o:l..le.t-::" .. 242 ·or 262 ~· For all of. ·.the. FI.r.Os.,:·: .. the.·.-o-.:.

vM~/Frto ·,o~.A .con.t:t:C>0lt'le3~ .. -:-~--~~·t:pfo·C;i~a;nim~d ·.to .un~'~.f.~ ~:~~t.:r.:.:.;_;··:/i
th.e d:e1.1red :nt,1mber. ' i.J.Jo. words·. .

'.' ,:·~·/:.:· .. ·:-':, ',

' ..

. FI,LE'·;'CON'~'ROLLER' HARDWARE 'l\.RCHITECTURE . . .

one

:.... . -~::.·\~.:=::•::. ~~<· .. ·_.:~. ~.
shown in :block d.iagram· form· in Fi_g ~ · 4. , ··· .. ·,~:·,··'

und:~=~o~ •:::: ::: ::h:~e F~Caca~12:; :::n::~::_+~·~,~)g,;-L. ' .
many aspects i-t is simply a scaled-do"~oo'"Il versio.ri ;of.·:i~~t-[·'<,:.
N'C llOa shown in Fig. 3, and in some respe:ct-S i"t:::".j;:liik\-·.·:·

.. . ,·;, =.··.

scaled up. Like the NC llOa, FC 112a compri:s~-~-<~/·: ~ .. ,~.
20·MHz 68020 microprocessor 310 c.ounected ·co ~ 32.:._bi~:. ·<:>·[~.:·~;:: , >
microprocessor data bus 312. Also connected t..:> the · · "! ·· ··' .·:

. ·;; .. '

microprocessor data bus 312 is a 256Kbyte sha!:"ed CEt:J. .. '\.
memory 314. The low order 8 bits· of th~~:

'· ;: '

... :.''·

microprocessor data bus 312 are connected through .. a· ::.
bidirectional buffer 316 tv an 8-bit slow-speed data

bus 318. On slow-speed data bus 3le are a 128K byte·

PROM 320, and a multifunction peripheral {MFP) 324.

The functions of the PROM 320 and MFP 324 are the same

' .. ''·

35 as those described above with respect to EPROM 220 and

Oracle Ex. 1002, pg. 1387

• •

. • . . .

-38-

MFP 224 on NC 110a. FC 112a "does not include P'ROM

like the PROM 222 on NC J lOa, but does include a

parallel port 392. The parallel port 392 i~ mainly

for testing and diagnostics.

5 Like the ·Nc ll.Oa, the FC t12a is :::onnect.ed to the

VME bus 120 via a bidirectional buffer 380 and a·32-

bi:t local da·ta.. bus 376. A set of control registe~s

38'2 ·are con:nected to the local -data bus 376, arid-·

directly address·able across .the VM.E: bus 1 ZO. The. :
10 local data bus 376 is also coupled to ·~r;:e ·

microprocessor data bus 312 via a bidirectional buffe=. · ·

384. This permits the direct addressabili ty of CJ?U

memory 314 frorn VME bus 120.

FC 112a also includes a comm-ar:d FIFO 390, which

) 15 •. ' ::lr"nelud~s an :!:nput pol!t :coupled to the local da-.:a ·bus

3 76 and which is directly addressable across the 'VME

bu.s 120. The command F!FO 390 also includes an output

port connect.ed to the microprocessor data bus 3:12.

The structure, operation and purpose of command FIFO

20 390 are the same as those described above with respect

t.o command FIFO 290 on NC llOa.

The FC ll2a omits tbe LAN data buses 323 and 352

which are present in NC llOa, but instead includes a
4 megabyte 32-bit wide FC memory 396 coupled to the

25 microprocessor data bus 312 via a bidirectional buffer

394. As will be seen, FC memory 396 is used as a

cache mambry f~r file control information, separate

from the file data information cached in system memory

116 .

30 The file controller embodiment stown in Fig. 4 does

not include any DMA controllers, and hence ca~not act

as a master for transmitting or receivi~g data in any
block transfer mode, over the VME bus 120. Block

transfers do occur with the CPU memory 314 and the FC

35 memory 396, however, with the FC 112a acting as an VME

bus slave. In such transfers, the remote master

Oracle Ex. 1002, pg. 1388

. .
. •
• .
0

.
• .

• •
• • .
• . ..

-39-

addresses the CPO memory 3l4 or

directly over · the VME bus

the FC memory 396

120 through the

bidirectional buffers 384 and, if appropriate, 394.

5 FILE CONTROLLER OPERATION

The purpose of the FC 112a is basically to provide

virtual file syste~ services in response to reque~ts

provided in LNFS format by remote processors on the

VME bus 120. Most r!'!quests will come from a network

10 controller 110, but requests may also come from the··

local host 118.

15

20

25

30

The fi·le related commands supported by LNFS a.t:e

identified above. They are all specified to the FC

112a in terms of logically identified disk d~ta

blocks. For exa'mple, • ·the~ LNFS commar.d for .reading

data from a file i:1cludes a specification of the file

from which to r~ad (file system ID (FSID) and file ID

(inode)), a by-te offset, and a count of the number: of

bytes to read. The FC 112a conve.rt.s that

identification into physical form, namely disk a·nd

sector numbers, in order to satisfy the com~and .

The FC 112a runs a conventional Fast File System

(FFS or UFS), which is based on the Berkeley 4.3 VAX

release. This code performs the conversion and also

performs all disk data caching and control data

caching. However, as previously mentioned, control

data caching is performed using the FC .t.:amort 396 on

FC 112a, whereas disk data caching is performed using

the system memory 116 (Fig. 2). Caching this file

control information within the FC 112a avoids the VME

bus congestion and speed degradation which would

result if file control information was cached in

system memory 116. The memory on the FC 112a is

directly accessed over the VME bus 120 for three main

35 purposes. First, and by far the most frequent, are

accesses to FC memory 396 by an SP 114 to read or

Oracle Ex. 1002, pg. 1389

• . . .

. .

. .
0 .
0

5

10

. ·:- 15

-40-

Yrit.e cached file control information. These are

accesses requested by FC 112a to write locally

modified file control structures through to disk, or

to read file control structures from disk. Second .•

the FC's CPU memory 314 is accessed directly by oth~r

processors· for message t·ransmissions from the FC ll2a

to such. other processors. For example, i·f a ·data.

block in system memory is to be transferred to an S·P

114 for writing to disk, the FC 112a first assembles.

.a message in its local memory 3'14 requesting:. such a

trans fer. The FC 112a then notif.ies the SP 114·, which.

copies the message directly from the CPU mem·ory 314

and executes the requested transfer.

A third type of direct access to the FC "s local

memory occurs when a·n LNFS client reads ·di:rect0 ry · ·1·

entries. When FC 112a rec·ei ves an LNFS regue:st ·to

read directory entries, the FC ll2a formats the

requested directory entries in FC memory 396 and

notifie.s the requestor of their location. The

20 requestor then directly accesses FC memory 396 to read

the entries.

25

30

The version of the UFS code on FC ll2a includes

some modifications in order to separate the two

caches. In particular, two sets of buffer headers are

maintained, one for the FC me~ory 396 and one for the

system memory 116. Additionally, a second set of the

system buffer routines (GETBLK(), "BRE.LSE(), 'B·READ(),

BWRITE{), and BR.E:ADA()) exist, one fo~ buffer access.es

to FC Mem 396 and one for buffer accesses to syste~

memory 116. The UFS code is further modified to call

the appropriate buffer routines for FC memory 396 for

accesses to file control information, and to call the

appropriate buffer routines for the system memory 116

for the cachinq of disk data. A description of UFS

35 may be found in chapters 2, c, 7 a:1d e of • Kerne 1

Structure and flow,• by Rieken and Webb of .sh

',•,

.. ~.

Oracle Ex. 1002, pg. 1390

.
• • . .

• . • .
• • . .

•

• • •

. . •
•
~ .

• .
•
• . ..

-41-

consultinq (Sant~ Clara, California: 1.988),

incorporated herein by reference.

When a read command is sent to the FC by a

requestor such as a net•.1ork controller, the FC · r·±rst

5 converts the file, offset and count information into

d:isk and sector information. It then locks the sy,s·t:em

m.·emory bu-ffers which contain that inf.ormatio.n., · ·

l-nstructinq ·the storac;re processor 114 to ·re.ad.: them

from disk if nec.essary. When the .buffer is ready, the ·.

10 FC returns a message to· the requestor containiqcg- hoth
the attributes of the desig·nated file and an· array o:£·. ..

buffer descriptors that id·entify the locations -i·rr' .;

system memory 116 holding the· data.

15 ..

20

25

30

After the requestor has read the data . ou:t .Of t·he· ·

buffe'rs, it sends•· a release request back to· the :fC'. ·

The release request is the same· message tha·t wa..$

returned .by the FC in response to the read . .r.e.q'Uest;

the FC 112a uses the information co~tained therein·to

determine which buffers to free .

A write command is processed by FC ll2a similatLy'

to the read com.D\and, but the caller is expected to:

write to (instead of read from) the locations in

system memory 116 identified by the buffer de·scripto,rs ·

returned by the FC 112a. Since FC 112a employs write-

through caching, when it receives the release command

from the requestor, it instructs storage processor ll4

to copy the data from system memory 116 onto the

appropriate disk sectors before freeing the system

memory buffers for possible reallocation .

The READDIR transaction is similar to read and

write, but the tequest is satisfied by the FC 112a

directly out of its own FC memory 396 after formatting

the requested directory information specifically for

this purpose. The FC ll2a causes the storage

35 processor read the requested directory information

from disk if it is not already locally cached. Also,

Oracle Ex. 1002, pg. 1391

. ..
• • •
••o•

• ••
• • • ••oo

.
•• •

.
'
....
• • 0
• • 0 . ..

5

-42-

the specified offset is a •magic cookie" instead of a

byte offset, identifying directory entrie~ instead of

an absolute byte offset into the file. No fil·e

attributes are returned.

The REAOLINK transaction also returns no : fil·e

attributes, and since links are always rea:d -in ·the'i;r·

en.tirety, it does not require any offset ·or count.

· For all of the. disk data caching performed th.rou:~h::

system memory 116, the FC 112a acts as a centra1 · ·

10 authority for dynamically allocating, deallocating and·

keeping track of buffers. If there are t.wo or .·more.

FCs 112, each has exclusiv·e control over its own

assigned portion of system memory 116. In· al1 of

these transactions, the requested buffers a·re lock.ed

15~ du·ring the period between the initial request and the

release request. This .prevents corruption o·f the data

by other clients.

20

25

30

35

Also in the situation where there are t·..1o or more

FCs, each file system on the disks is assigned to a

particular one of the FCs. FC #0 runs a process

called FC_ VICE_PRESIOENT, which maintains a list of

which file systems are assigned to which FC. When a

clie~t processor {for example an NC 110) is about to

make an LNFS request designating a particular file

system, it first sends the fsid in a message to the

FC VICE_PRESIDENT asking which FC controls the

specified file system. The FC_VICE...:,PRESIDENT

responds, and the · client processor send.s the LNFS

request to the designated FC. The client processor

also maintains its own list of fsid/FC pairs as it

discovers them, so as to minimize the number of scch

requests to the FC_VICE_PRESIOENT .

STORAGE PROCESSOR HARDWARE ARCHITECTURE

In the file server 100, each of the storage

processors 114 can interface the VME bus 120 with up

Oracle Ex. 1002, pg. 1392

.. . .
•• •
•o••

0 • •• •

....

.. . .
••••
....

• •

-43-

to 10 different SCSI buses. Additionally, it can do

so at the full usage rate of an enhanced block

transfer protocol of 55MB per second.

Fig. 5 is a block diagram of one of the SPs 114a~

5 SP 114b is identical. SP 114a comprises a.

microprocessor 510, which may be a Motorola· .6;80-20.::

microprocessor operating at 20MHz. The microproce·ss:or

SIO is coupled over a 32-bit microproceisor da~a b~i,

512 with ·CPU memory 514, which may include up to iM.a;
10 of· static RAM. The microproc.essor 510 acce·sSes

instructions, . data and status on its own pr:iva·te bus :.

512, with no contention from any other source. ·The·.'
microprocessor 510 is the only master o~ bus Sl2~

The low order 16 bits of the mic.rop·roce.sso·.r dat,a:·

15 bus 5"12 interfac-e with a. control bus ·sl6 . vi·a. ~'

bidirectional buffer 518. The low or.der 8 bits ·of the··

control bus 516 interface with a slow spe~d bu~ 520

via another bidirectional buffer 522. Th:e slow .sp-e.ed

bus 520 connects to an MFP 524, similar to the MFP 224

20

25

30

35

in NC llOa (Fiq. 3), and w.tth a PROM 526, s"irnilar to

PROM 220 on NC l!Oa. The PROM 526 comprises 12·8·K

bytes of E:::'~.OM whic-h contains the functional c.ode for

SP 114a. Due to the width and speed of the £P:ROM 52.6 ...

the functional code is copied to CPU memory 514 u.pon

reset for faster execution.

MFP 524, like the MFP 224 on NC l10a, comprise~ ~

Motorola 68901 multifunction peripheral device. It

provides the functions of a vectored interru.p-t:

controller, individually programmable I/O pins, four

ti:::~.ers and a UART. The fJART functions provide se::i·al

-communications across an RS 232 bus (not shewn in Fig .

5) for debug monitors and diagnostics. T-wo of the

four timing f~nctions may be used as general-purpose

timers by the microprocessor 510, either independe~tly

or in cascaded fashion. A third timer function

provides the refresh clock for a D~-\ controller

Oracle Ex. 1002, pg. 1393

. .. .

. . .

. .

.. . . .

5

10

15

20

25

30

•C: .. ~

-44-

described below, and the fourth timer generates the

UART c·lock. Additional information on the MFP 524 ca·n

be found in •Me 68901 Multi-Function Peripheral

Specification,• by Motdrola, Inc., which

incorporated herein by reference. '!'he e i g.l'rt
524 are general-purpose I/O bits provided by MFP

cc:nfiqured according to the following table:

Qirection Qefinition

7 input

6 input

5 input

4 output

3 input

2 input

1 output

0 cu"tput

Power Fai.lure is Imminent
functions ·as an early wa:r:ning.

This

SCSI Attention - A composite of the SCS! ~
Attentions from· all 10 SCSI cha·rinels.

Channel Operation Done - A compo::d te -of
the channel done bits from all 13
channels of the DMA controller, .descri·ped ·
below.

0~\ Controller Enable. Enables the DMA
Controller to run.

VMEbus Interrupt Done - Indica'tes the
completion of a VMEbus Interrupt.

Comr.tand Available - Indicates that the
S?' S Command Fifo, described belo ,
contains one or more command ~ointers .

External Interrupts Disable. Disables
externally generated interrupts to the
microprocessor 510.

Co::1mand Fifo Enable. Enables operation of
~he S?' S Co:nmar..d Fifo. Clears the Col!lm-and

Fifo when reset:.

Cc=~ands are providsd to the SP 114a from the VME

~us !20 via a bidirectional buffer 530, a local data

c~s 532, a~d a co~~and :1:0 534. The com~and FIFO 534

is simila: ~o ~he com~a~d FIFOs 290 and 3SO o~ NC llOa

':'he co::-.:::and FIFO 534 is a -write-only

=e;~st:= as see~ en the v~~ bus 120, and as a read-

~n:y :e;iste: as seen by ~:c~oprocessor 510. If the

Oracle Ex. 1002, pg. 1394

..

.
• 4 ••

..
...

• 0 . ..

-45-

FIFO.is full at the beginning of a write from the VME

bus, a VME bus error is generated. Pointers· are

removed from the command FIFO 534 in the order

received, and only by the microproces-sor 510·. ·Command

5 a'Vailable s·tatus is provided through I/0 bit 4 of .the.
MFP 524, and as a .long as one or more· co::unand po·i:·n-te.'i::-s •.·

are still within the command FIFO 534, the comuia·nd.

available status remains asserted.

As previously mention.ed, _the SP 114a supports up t'o· ..

10 10 SCSI buses or channels 540a-540j. Ib the typit~l.

configuration, ouses 540'a-540i support up to 3 SCSI.:
disk drives each, and clianriel 540j support·s· othe·r .s'CSl ·

peripherals such as tape drives, optical disks.; a:nd .So·.·

on. Physically, the SP 114a connects to each o.f .tl'l'e.
.... 15 SCS-I bu ses·~w-ith an ul t.ra-miniature 0 sub connecto-r a·nd ·

round shielded eables. Six· 50-pib cables pi:ovid!e 3ob ..
conductors which carry 18 signals per bus ana 12

grounds. The cables attach at the fr.ont partel of th:e

SP 114a and to a commutator board at the disk drlve

20 array. Standard 50-pin cables connect each SCSI.

device t.o the commutator board. Termination resi-s'tors

are inst.alled on the SP l14a .

25

30

The SP ll4a suppo·rts synchronou$ parallel data

transfers up to 5MB per second on each of the SCSI

buses 540, arbitration, and disconnect/reconnect.

services. Each SCSI bus 540 is connectad to a

resp~cti ve SCSI adaptor 542, which in the present

embodiment is an AIC 6250 controller IC manufactur.ed

by Adaptec Inc., Milpitas, California, operating in

the non-multiplexed address bus mode. The AIC 6250 is

described in detail in aAIC-6250 Functional

Specification," by Adaptec Inc., which is incorporated

herein by reference. The SCSI adaptors 542 each

provide the necessary hardware interface and low­

level electrical protocol to implement its respective

SCSI channel .

Oracle Ex. 1002, pg. 1395

.. . •
• . • .
•• •

.
•• tl • ..
•••
..
.. . . •

• • . .

-46-

The 8-bit data port of each'of tha SCSI adaptors

542 is connected to port A of a respective one of a

set of ten parity FlFOs 544a-544j. 'l'he FIFOs 544· 'ar.e

the same as FIFOs :NO·, 260 and 270 on NC 110a, and a-r:e ·

5 connected and configured to provide parity. covel;'ed.·

data trans.fers between the 8-bit d.ata port or ~h~
respe.ct:'ive SCSI adaptors 542 and a 36.:..bit l 3'2'-'-bi"t' ·plus···
4 ·bits of parity) common da·ta bus 550. The F!f'Os .. s4,4.;,

provide handsha·ke, status, word assembly/di·sassemb~.y

10 and speed matching FIFO buf.fering f·or this purpo.s·e·.-._; ·

The FIFOs 544 also generate· and check parity for .the

15

20

25

30

35

3 2-bit bus, and for RAID· 5 implementations . they:·.,

accumulate and check redund·ant data and accuinu~,jji:t:e · ·

recovered data:

All of the SCSI adaptors 542 reside at a sing:l"e

location of the address space of the micropro~~ssdr
...

510, as do all of the parity FIFOs 544. ~he

microprocessor 510 selects. individual cont·rollers· and.

FIFOs for access in pairs, -by first p.rogramming a pair

select .register (not shown) to point to the d.esired

pair and then :reading from or writing to the control

register address of the desired chip in the pair. The

microprocessor 510 communicates with the control

registers on the SCSI adaptors 542 via the control bus

516 and an additional bidirectional .buffer 546, an·d

communicates with the control registers on FIFOs 544

via the control bus 516 and a bidirec\.ional buffer

552. Both the SCSI adaptors 542 and FIFOs 544 employ

8-bit control reqisters, and register adC.ressing of

the FIFOs 544 is arranged such that such registers ·

alias in consecutive byte locations. This allows the

microprocessor 510 to write to the registers as a

single 32-bit register. thereby reducing instruction

overhead .

The parity FIFOs 544 are each configured in their

Adaptec 6250 mode. Referring to the Appendix, the

Oracle Ex. 1002, pg. 1396

5

10

15

20

30

-47-

FIFOs 544 are programmed with the following bit

settings in the Data Transfer Configuration Register:

ai.t Oefinit.i.QD S~t·ting

0 WD Mode (O)

l Parity Chip (1)

2 Parity Correct Mode (0)

3 8/16 bits CPU & PortA interface (·0)

4 In~ert Port A address· 0 ('1)

5 Invert Port A ad,\resS'· 1~ (t)

6 Checksum Carry Wrap (0}

7 Reset (0)

The Data Transfer Control Register is programmed as

follows:

~

0

l

2

3

4

5

6

7

Definition

Eriable PortA Req/Ack

Enable PortS ReqfAck

Data Transfer Direction

CPO parity enable

PortA p~rity enable

PortB parity enable

Checksum. Enable

PortA Master

Setting
(1)

0)
as desired

(0)

(1)

(1)

(0)

(0)

In addition. bit 4 of the RAM Access Control

aegister (Long Burst) is programmed for 8-byte bursts.

SCSI adaptors 542 each generate a respective

interrupt ignal, the status of which are provided to

microproc~~sor 510 as 10 bits of a 16-bit SCSI

interrupt register 556.

556 is connected to

The SCSI interrupt register

the control bus 516.

Additionally, a composite~ SCSI· interrupt is provided

through the MFP 524 whenever any one of the SCSI

adaptors 542 needs servicing.

An addition~l parity FIFO 554 is also provided in

35 the SP 114a, for message passing. Again referring to

th·e Appendix, the pa::ity.FI.FO 554 is pr.ogrammed with

· ... :

.. ~

.. .~

Oracle Ex. 1002, pg. 1397

.. ••
•• •
h

.

..
• ..

..
• .
• • • ••

5

10

15

20

25

- 30

~ 35 .

-48-

the following bit settings in ~he Da~a Transfer

Configuration Register:

.a.u.
0

1

2

3

4

5

6

7

g~f ~n;U;jon

WD Mode

Parity Chip

Parity Correct Mode

8/16 bits CPU & Port.A interface

Invert Port A address 0

Invert Port A address ·1

Checks·um Carry Wrap

Reset

Set tina

(0)

(1)

(0)

{1.)

(1)

{1)

(0)

(0)

The Data Transfer Control Register is programmed as
follows:

.all
0

1

2

l

4

5

6

7

Definition

Enable Port.A Re~/Ack

Enable PortS Req/Ack

Da~a Transfer Direction

CPU parity enable

PortA parity enable

PortB parity enable'

Checksum Enable
PortA Master

Setting

(0)

(1)

as· .desired

(0)

(0)

(1}

(0)

(0}

In addition, bit 4 of the RAM Access Contr·ol

Register (Long Burst} is progranuneCI. for 6-byte bursts .

Port A of FIFO 554 is connecteCI. to the 16-bit

control bus 516, and port B is connected t-~:~ the common

data· bus 550. FIFO 554 provides one meajs by which

the microprocessor 510 can communicate directly with

the VME bus 120, as is described in more de':ail below .

The microprocessor 510 manages data move~ent using

a set of 15 channels,· each of which has an uniqua

status which indicates its current state. Channels
are implemented using a channel enable register 560

and a channel status register 562, both connected to

the control bus 515. The channel enable r~gister 560

Oracle Ex. 1002, pg. 1398

..
• • .. •
• •

• • .

. .
•

.. ..
• . .
.
• •
• • ...

-49-

is a. 16-bi t wri te-onl~t register, whereas the channel

status register 562 is a 16-bit read-only register.

The two registers reside at the same address to

microprocessor 510. The microprocessor 510 enablas a

5 particular channel by setting its respective bit in

channel enable register 560 I and recognizes completion·

of the specified op.eration by testing for a "done"' bit

in the channel status register 562. Th·e

microprocessor ·510 then resets the, enable: b.!. t 1 which

10 causes the respective "done• bit in the channel statu~

register 562 to be cleared.

15

20

25

30

35

40

45

The channels are defined as follows:

CHANNEL FUNCTION

0:9

11: 10

12

i3

14

These channels control data movement to
and from the respective FIFOs .54 4 via the
common data bus 550. When a :'!FO is
enabled and a request is received from
it. the channel becomes ready. Once the
channel has been serviced a status of
done is generated.

These channels control data movement b&t~een
a local data buffer 564, described below, and
the VME bus 120. When enabled the channel:
becollles ready. Once the ch·annel has been
serviced a status of done is genera~e~ .

When enabled, this channel causes the DRAM in
local data buffer 564 to be refreshed based on
a clock which is generated by the ·MFP 524 .
The refresh consists of a burst of 16 rows .
This channel does not generate a status of
done .

The microprocessor• s communication FIFO 554 is
serviced by this channel. When enable is set
and the FIFO 554 asserts a request then the
channel becomes ready. This channel generates
a status of done.

Low latency writes from microprocessor 510
onto the VME bus 120 are controlled by this
channel. When this channel is enabled data is
moved from a special 32 bit register,
described below, onto the VME bus 120. This
channel generates a done status .

Oracle Ex. 1002, pg. 1399

..
• •
• •
••

•
•• •

•• • •
... • • . ..

-so-

15 This is a null channel fo~ which neither a
ready stat~s nor done status is genera~ed.

Channels are prioritized to allow servicing of the

5 more critical requests first. Channel priority is

assigned in a descending order starting at channel· lA.

That is. in the event that all channels are req-.Jet·:ting

service, channel 14 will be the first one. served.

The com~on data bus 550 is coupled . ~i~ a-

10 · bidirectional register ·570 t:o.:.: a 36-bit. ju,nction bu:s

572. A second bidirectional register 574 connect;$ t:·he.

junction bus 572 with the local data bus 532. _:t;oca)·

data buffer 5.64, which comprises 1MB of DM.M: w:i-t:h'

parity, is coupled bidirectionally to the junction .. bus.:.

15

20

25

30

572. It is organized to provide 2S6K 32-bi-c: :word's.

with byte parity. The S? ll4a operates t:he D-R1dfs i-n·.

page mode to support a very high data rate, whi~h

requires bursting of data instead of random single~·

word accesses. It will be seen that: -r.he local da-::a

buffer 564 is used to implement a R.;!D {redu·ndant

array of inexp•nsive disks} algorithm, and is not use~

for direct reading and writing between·the·VWE bu.s 120

and a peripheral on one of the SCSI buses 540.

A read-only register 576, containing all zeros, is­

also connected to the junction bus 572. This register

is used ~ostly for diagnostics, initialization, and'

clearing of large blocks of data in system memory 116 .

The movement of data between the FIFOs 544 and 554,

the local data buffer 564, and a remote entity such as

the system memory 116 on the VME bus 120, is al.l

controlled by a VME/F!FO D~..A controller sac. The

VME/FIFO OM..\ controller 5.80 is similar to the VHE/F!FO

0~\ controller 272 on network controller llOa (fig.

3), and is described in the Jl.ppendix. 2rief ly, it

35 includes a bit slice engine 582 and ~ dual-pert static

AAM 584. One port of the dual-port static RA.M '584

co~unicates over the 32-bit microprocessor data bus

Oracle Ex. 1002, pg. 1400

.. .
• ..
•

•
• . ..
• ..

.
• • . .
.
..

-51-

512 .w-ith microprocessor 510, and the other port

communicates over a separate 16-bit bus with the bit

slice engine 582. The microprocessor 510 p.la.ces

command parameters in the dual-port RAM 584, a,na::u~{es:'

5 the channel enables 560 to S·ignal the VMEiFIF:O::' b.M};.

controller 580 to proceed Yith the command.·;,:.::Th.e:.'

VME/FIFO DMA controller is responsible for scann:.i4-i~
the channel status and servicing requests, '· .:it.h:a ..

. returning ending statu:. in the dual-port RAM. 584: · The.:

10 dual-port RAM 584 is organized as lK x 32 bits· a·t thE(.:~.

15

20

25

30

. .

32-bit port and as 2K x 16 bi-ts at the 16-b:it·port. :J>>.
' . ..

example showing the method by which the mi.c.x;-oproces:.sor<;

S 10 cont·rols the VME/FIFO DMA controller 5:80· ·i.'s>:a~s, :<
follows. First,

the dual-port

the microprocessor 510 \.tr"i"te:s ·~n~(:)· ·

RAM 584 the desired command a:rid
associated parameters for the desired channel·. . 'For
example, the command might be, Mcopy a blbck of a•t~'

from FIFO 544h out into a block of system memory 1~6

beginning at a specified VME address." Second, the
microprocessor sets the channel enable bit in channel·

enable register 560 for the desired channel .

At the time the channel enable bit is set.# the

appropriate FIFO may not yet be ready to send data .

Only when the VME/FIFO OMA controller sao does receive

a "ready" status from the channel, will the controlle.r

580 execute the command. In the meantime, the DMA

controller 580 is free to execute commands and move

data to or from other channels .

When the DM.A controller 580 does receive a s~atus

of "ready• from the specified channel, the controller

fetches the channel command and parameters from the

dual-ported RAM 584 and executes. When the command is

complete. for example all the requested data has been

copied, the DMA controller writes status back into the

35 dual-port ~.M 584 and asserts •done- for the channel

in channel status register 562. The microprocessor

. • ...

Oracle Ex. 1002, pg. 1401

.
••• 0 • • •

.
•••o

• ••
• •
..

-52-

510 is then interrupted, at which time it reads

channel status register 562 to determine which channel

interrupted. The microprocessor 510 tr.en clears the

channel enable for the appropriate channel and checks

S the ending channel status in the dual-port RAM 584-.

In this way a high-speed data transfer can take

place under the control of DMA controller sea, ·fully

iri parallel with other activities being perfor~ed by

microprocessor 510. The data transfer takes pla:=.;e

10 over busses different from microprocessor cia ta bus

512, thereby avoiding any interference with

microproces$or instruction fetches.

15

20

25

30

Tbe SP ll4a also includes a high-spe.ed register

590, which is coupled between the microprocess·or data

bus 512 and the local data bus 532. · The high-speed

register 590 is used to write a single 32-bit word to

an VME bus target with a minimum of overhea~. The

regis'Cer is write only as viewed from the

microprocessor 510. !n order to write a word onto the

VME bus 120, the microprocessor 510 first wri~es the

word into the register 590, and tne desired VME target

address into dual-port RAM 584. When the

microprocessor 510 enables tne appropriate channel in

channel enable register 560, the DMA controller 580

transfers the data from the register 590 into th(~ VME

bus address specified in the dual-port RAM 584. The

DMA controller 580 then writes the ending status to

the dual-port RAM and sets the channel •done• bit in

channel s~atus register 562 .

This procedure is very efficient for transfer of a

single word of data, but beco~es inefficient for- large.

blocks of data. Transfers of greater than one word of

data, typically for message passing, are usually

performed using the FIFO 554.

35 The SP 114a also includes a series of registers

592, similar to the registers 282 on NC l.lOa (Fig. 3}

"*"'"'iiC:htW.a u.;;""' :: .:; s: a:&o .. :a::W - ::a:a.

Oracle Ex. 1002, pg. 1402

. .

.
• .

-53-

and the registers 382 on FC 112a {Fig. 4). The

details of these registers are not important for an

understanding of the present invention.

5 STO&~GE PROCESSOR OPERA~ION

The 30 SCSI disk drives supported by each of the

SPs 114 are visible to a client processor. for exam~le

one of the file controllers 112, either as three

Jarge, !ogical disks or as:30 independent SCSI driv~s.

10 depending on configuration. When the drives are

visible as three logical disks, the SP uses RAID 5

des1gn algorithms to distribute data for each logical

drive on nine physical drives to mini:nize disk ·arm

contention. The tenth drive is left as a spare. The

!S RAID 5 algorithm (redundant array of inexpensive

drives, revision S) is described in •A Case For a

Red1.:r.dant Arrays of Inexpensive Disks (RAID)", by

?atte:son et al., published at ACM SIGMOD Conf~re~ce,

Chicago, r:L I June l-3, 1988, incorporated herein by

20 :e!e~ence.

25

30

I:: the RAID 5 design, disk data are divided into

stripes. Data stripes are recorded sequentially on

eight different disk drives. ~.ninth parity s~ripe,

the exclusive-or of eight data stripes, is recorded on

a ninth drive. lf a stripe size is set to 8K bytes, a

read of 8K of data involves only one drive. A write of

8K of data involves two drives: a data drive and a

parity drive. Since a write requires the reading back

of old data to generate a new parity stripe, writes

are also referred to as modify writes. The SP 114a

suppcrts nine small reads to nine SCSI drives

concurrently. When stripe size is set to 8K, a read of

64K of data starts all eight SCSI drives, with each

drive reading one 8K stripe worth of data. The

35 parallel opera~ion is transparent to the caller

client.

Oracle Ex. 1002, pg. 1403

. .

• •

-54-

The parity stripes are rota:ed among the nine.

d:ives in order to avoid drive conten~ion during write

operations. The parity stripe is used to improve

availability of data. When one drive is down. th·e SP

5 ll4a can reconstruct tbe missing data from a pa·rity

stripe. In such case, the SP ll4a is running in error

recovery mode. When a bad drive is repaired, the s·p

114a can ·be instructed to restore data on the repait~d · . ,

drive while the syst~m is on-line.

10

15

20

25

When the SP ~ 14a is used to attach thirty

independent SCSI drives, no parit·y strip·e is created

and the client addresses each d~ive directly .

. Th:e SP ll4a p.rocesses multiple messages
(transactions, cotnll'lands} at one time, up to ·200

messaqes per second. The SP 114a does not in{tiate

messages aftsr initial system configuration.

following SP ll4a operations are defined:

01 No Op

02 Send Configuration Data

03 Receive Configuration Da·ta

OS Read and Write Sectors

06 ~ead and Write Cache Pages

07 IOCTL Operation

08 Dump SP 114a Local Data Buffer

09 Start/Stop A SCSI Drive

OC Inquiry

OE Read Message Log Buffer

OF Set SP 114a Interrupt

any

Th·e

The above transactions are described in detail in

30 the above-identified application entitled MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE. For and

understanding of the invention, it will be useful to

describe the function and operation of only t-..;o of

these commands: read and write sectors, and read and

35 write cache pages.

Oracle Ex. 1002, pg. 1404

·•
•

. . .

.
• . .
• .

•

-ss-

Read and Write Sectors

This command, issued usually by an FC 112, causes

the SP ll4a to transfer data between a spec!! led block

of system memory and a specifi.ed series of contiguous

5 sectors on the SCSI disks. As previously desci:'ibed; ·in

connection with the file controller 112·, th.e

particular sectors are identH ied in physical t·e;~ms· •. _ ... ,

In parti·cular, the particular disk sectors· a·re.: :_
' '•., :~;·-:

ider-.tified by SCSI ~ch.annel:.number (0-9), sc:Si: .ID ·on

10 t:hat c·hannel num:ber · (0-2,), startinq sector address_c:m~:.
_ .. ,,

15

20

25

30

the speci-fied driv·e,. ·and a co·un:t of th·e. numbe.r· o~ ...

sectors to read or write. The SCSI channel nu:mber is · .-:.

zero if the SP 114a is operating un:de::: RAE> 5.

The SP 114a can execute up to 30 messages on· ·t.he ·3o.·

SCSI drives si.mu1t<;l.neously. Unlike mos:. of the.

commands to an SP 114, which are prc~essed ·:by···

mic-roprocessor 510 a·s soon as they api)~a= -on th.e

command FIFO 534,. read and write s.ectors co::-.:::a.nds (as

well as read and write cache memory co::-.t:3nds') are

first sorted and queued. Hence, they are ::o: served

in the order of arrival .

When a disk access command ar::ve.s, th·e

microprocessor 510 determines which dis it C.ri ve is

tarqeted and inserts the messaqe in _a queue for that

disk drive sorted by the tarqet sector add.=ess. The

microprocessor 510 executes eoiillllands on all the queues

simultaneously, in the order present in the queue for

each disk drive. In order to minimize disk arm

movements, the microprocessor 510 moves back and forth

among queue entries in an elevator fashion.

If no error conditions-are detected from the SCS!

disk drives~ the command is completed normally. When

a data check erxor condition occurs and the SP 114a is

configured for RAID 5, recovery actions using

··:.

35 redundant data begin automatically. When a drive is

down vhile the ,SP ,114a is configured fo:: RAID 5,

Oracle Ex. 1002, pg. 1405

••

• ••••
• •

..
••• 0

••
••

5

recovery actions similar to data check recovery take

place.

Read/Write Cache Pages

This command is similar to read and write sectors,

except that zn.ultiple VME addresses are provided for·

transferring d·isk data to and frorn system memory ·1 i.6 ·

Each VME address .points to a cache page in sy-sti.'e~.:

memor~· 11'6·, ':·he size of which is. also specif.ied in ·th~·~
10 comman-d. When transferring data from a d·isk: to· sys~_i:!m

memory 116, data are scattered to different ca"C'Ji..e·

15

20

25

30

pages; when writing data to a di.sk, data are gatbei·:ed,

from different c·ache pages in system memory t 16:.

Hence, this operation is referred to as a sea t:t·e-r­

gather function.

The target sectors on the SCSI disks are specified

in the commarid in physical term•, in the sam• m~nn•r ·

that they are specified for the read and write sectors

CO'mmand. Termination of the command with- or wi thc;:>Ut

error conditions is the same as for the read and ~rite

sectors command .

The dual-port RAM 584 in the DMA controller 5:8;()

maintains a separate set of commands for each chann•l

controlled by the bit slice engine 582. As ea.ch

channel completes ·.its previous operation, the

microprocessor 510 writes a new DM.A operation into the

dual-port RAM 584 for that channel in order tq satisfy

the next operation on a disk elevator queue.

The commands written to the DM.A controller 580

include an operation code and a code indicating

whether the operation is to be performed in non-block

mode, in standard VME block mode, or in enhanced block

mode. The operation codes supported by DMA controller

580 are as follows:

Oracle Ex. 1002, pg. 1406

• . •
• • • ..
•

• • .

.. . ..
•

.. . · . . •

. •
• • ..

5

10

15

20

25

30

35

40

45

sc

-57-

OP COD~ OPERATION

0

1

2

.3

4

5

6

NO-OP

ZEROES -> BUFFER

ZEROES -> FIFO

ZEROES - > VME.bus

VMEbus -> BUFFER

VMEb\,;.s -> FIFO

Move zeros from. zero.s
register 576 to loca.l
data buffer 564.

Move zeros from ZEb:o::r
register 57·6 tl'····the
currently ·sele~·te{i ·
FIFO on common· •. :d;at.~ ·
bus 550.

Move zeros fr.om zeros
reqis.ter 576 ·out:·on;~o
the VME bus {2'0 ..
Used for ini tiali:z·iiig:.
cache buffers . · tn'·
system memory H6.

Move data from ·the
VME bus 1 2·0 t~ .th..e·. ·
local data buff·e:r .·
564. This ooeration
is used during a·
'l.l'ri te, to move t~rget
data intend~d fot a
down drive into th~
b u f f ~ r f 6 +

in·
n c y

used:

participation
r e d u n d a
generation.
only for
application.

RAID 5

New data to be
written from VME bus
onto a drive. Since
RAID 5 requires
redundancy data to be
generated from data
that is buffered in
local data buffer
564, this o~eration
will be use~·only 1f
the SP 114a is not
configured for RAID
5.

VMEbus -> BUFFER & FIFO
Target data is moved from
VME bus 120 to a SCSI

Oracle Ex. 1002, pg. 1407

5

!0

15

20

25

• . • . . .
• 30

35

. .
•

40 .
•

• .
• . .

?5

7

e

9

A

B

-58-

device a~d is also
captured in the local data
buffe::- 564 fo.r
part.ici?a~ion in
redundancy generat~on.
Used only i: SP 11·4a .. is
configured for RA'!:D: 5
operation.

SUFFER -> VMEbus This 01)eration is no:t
used.

BUFFER -> FIFO Participating data is .
transferred to cr¢ate · ·
redundant data ·or
recovered .data _o·n _a;·

F!FO

FIFO

FIFO

-> VMEbus

-> BUFFER

disk drive·, U:sed· ..
only i..n .RI\ro·.-s .. :
applica ~iori!L

This opera·-.: ion i•s' · ·
used to mo~e ta~g~~­
data directl~ f~6~ a.
ciisk drive :<;;nto the,
VME bus 120.

Used to mdve
participating data.
for recovery and··
modify operati<ms .
Used only in RAID 5
applications .

-> VMEbus & BUFFER
This operation is used to
save target ciata for
participation in data
recovery. Used only in
RAID 5 applications .

SYSTEM MEMORY

Fig. 6 provides a simplified block diagram of the

preferred architecture of one of the system memory

cards 116a_ .Each of the other system memory cards are

the same. Each memory card 116 operates as a slave on

the enhanced VME bus 120 and therefore requires no on­

board CPU. Rather, a timing control block 610 is

sufficient to provide the necessary slave control

operations .. In particular, the timing control block

Oracle Ex. 1002, pg. 1408

•• • •
• • . •

• • . •

.. . • • ...

.. . . .
• •

-59-

610, in response to control signals from the control

portion of the enhanced VME bus 120, enables a 32-bit

wide buffer 612 for an appropriate direction tia~sfer

of 32-bit data between the enhanced VME bus 120 and a
5 multiplexer unit 614. The multiplexer 614 prov~.des -a·

multiplexing and demultiplexing function, depend·ing·.on:

data transfer direction, for a six ·megabit by s~V'e.ri:t.y..;.. ·

two bit "'ord memory array 620. An error cor:rec·tto·n·

code (ECC) seneration and testi-ng· un.i:-t -:.$22 is a'l:so

10 connected to the multiplexer 6·14 to generate ·or

verify, again depending on transfer direction, e.ig:h.t··

bits of ECC data. The status of ECC verification is·

provided back to the timing control block &to_·

15 ENHANCED VME BOS PRQTOCQ.L

20

25

30

35

VME bus 120 is physically the same as an o=dinary

VME bus, but each of the NCs and SPs includ:e .· ·

additional circuitry and firmware for transmitti.ng ..

data using an enhanced VME block transfer protoco'l.

The enhanced protocol is dr -::ribed in detail in the

above-identified applicat±c :!ntitled ENHANCED VMEB.US

PROTOCOL UTILIZING PSEODOSYNCHRONOUS HANDSHAKING . .AND .

BLOCK MODE DATA TRANSFER~ and summarized in the

Appendix hereto . Typically transfers of LNFS file ·

data between NCs and system memory, or between S?s :and ·

system memory, and transfers of packets being route·c ·

from one NC to another through system memory, are the

only types of transfers that use the enhanced protocol

in server 100. All other data transfers on VME bus·

120 use either conventional VME block transfer

protocols or ordinary non-block transfer.protocols .

MESSAGE PASSING

As is evident from the above description, the

different processors in the server 100 communicate

with each other via certain types of messages. .In

Oracle Ex. 1002, pg. 1409

5

10

15

~· . 20 . ..
•

25

. ,.. • .

.. .. . 30
•• • ..
..

• . . . • ..
35

-60-

so'ftware~ these messages a.z:oe all handied· :~Y . t.he ·

messagin9 kernel. describ.ed .in detail in the. M:u!)r':(.. P:.i:t".

;~~~:::~o;:.eAA :~cha:::::: .. A:~:;~:~:u::lpl.f2.:,:_'·a~ni~d~.:de~a~rc,:_~h~;['·;. ~· ·, .

·E~cli of· 'the ,NCs.·UO, e·ach .. of the :FC:s. :-·

o{· t£h.e · S.P:s ·ll4.· i·I1clud.e;s. a command ·6·t-· cd.Il{mu·ni'~:ci:t:{6;~:'::.::

' . :::~~:.u:b~ ~=~9.~d ~:..::. 1

:::· ~~n::e t:: ·.~6~t~ ;(~~i;·· .''.
~·n~-o·a:i£i.~d: . p:u:rc·hased · .. processo-r ·bo.ard the >:;F_:tF:o·;'/i's. ·. · . ·. , .. '.' . , . , >· "·:· . . : .·, : I .'. ·::_.·,-; .: , ::~·~·~~:;~:-~·:.;:
e.uiuia:te·d.:. i·n.'softvare. :·The. wr:i,fe po_r.t · of' .::the' :c·~n\ma"rtd.:,: ~ ·

F·I;FO. in eaeh. ~f i~·e processors· is direc~ly ~dcire~~:~~-i·~·.-·. ,. .

. . meino·ry'

~d:d:t~ssa~:·ie ~Y .. a.n·y .of ·the' o·th.er
':{·. ~~}.;;:y ,:.·;

. .. ' :· . •'
server 100.

' ·~ '

If. on~ processor I f-or example network· cont:rql·:f~.r-:::··. ·: .

llOa, is. to- 'send. a· messag~ :or :-~_ommand .to -~-~ ~:~=e-:¥".~~~\.:.;\:. .,.
processor 1 for example file· control:ler 1' l2a ;/th~n-;: ··ft ... · •·

;~~:;~ ======~~::::Y ~~::;r~:e::::::::::~jl~:;~i~~~[,t:
proces·sor direct:ly writes a message descriptor- iti,t'9,:. ':-'
the command FH~O in the receiving processor. 'Fo:;:- 1 :,~.~

~ ...

command being sent from network controller _.llOa· · 'ti¢':

file controller 112a, the microprocessor 210 _'W'oui~·:::·
perform the write via buffer 284 on NC llOa, VM~ bU~·

120
1

and buffer 364 on file controller 112a. . ·· .. ·:·· .

The command descriptor is a single 32-bit wor9,' ··

containing in its high order 30 bits a VME add.re:s~s

indicating the start of a quad-aligned message in t-he·

sender• s shared memory. The low order t1.1o bits

indicate the message type as follo1.1s:

Oracle Ex. 1002, pg. 1410

5

~

0

1

2

3

All :messages are

-61-

Description

Pointer to a new message being sent

Pointer to a reply message

Pointer to message to be forwarded

Pointer to message to be freed; als(;>
message acknowledgment

128-bytes long.

When th.e receiving processo.r reaches the ·comina·Ji.d ··

descriptor on its command FIFO, it directly accesses

10 the sender's shared memory and copies it into · th.e . ·

15

20

receiver's own local memory. For a command issue;d

from network controller llOa to file controller 112a ~

t!':is would be an ordinary VME block or: non-bl'ock .mod:e ;.

transfer from NC CPO memory 214, via buffer 284, VMt
bus 120 and bu.f.fer 384, into FC.cPU memory 314.

FC microprocessor 310 directly accesses NC CPU'inerrtory

214 for this purpose over the VM£ bus 120.

Whe·n the receiving p-rocessor has received .the

command and has completed its work, it sends a reply

m·essage back to th.e sending processor·. The re·p:J.y

message may be no more than the original command

message unaltered, or it may be a modified version of

that message or a completely new message. If the

reply message is not identical to the original command

25 message, then the receiving processor directly

accesses the original sender's shared memory to modify

the original command message or overwrite it

For replies from the FC 112a to the NC completely.

llOa, this involves an ordinary VME block or non-

30 block mode transfer from the FC 112a, via buffer 384,

VME bus 120, buffer 284 and into NC CPU memory 214.

Again, the FC microprocessor 310 directly accesses NC

CPU memory 214 for this purpose over the VME bus 120.

Whether or not the original command message has

35 been changed, the recei·,ing processor then writes a

reply message descriptor directly into the orig{nal

sender's co~and FIFO. The reply message descriptor

Oracle Ex. 1002, pg. 1411

..
•

.
• . .
..
..

-62-

contains the same VME address as the orig1nal command

rr.essage descriptor, and the low order two bits of the

word are modified to indicate that this is a reply

message. For replies from the FC 112a to the NC llOa,

5 the message descriptor write is accomplished . by

microprocessor 310 directly acces.sing co·rni.l.and FIFO 2.90 ·

via buffer 384, VME bus 120 and buffer 280 on the ·NG;
Once this is done, the recei~ing processor can ·fr~e

the buffer in its local C'lemory containing the copy of ·

10 the command mes.sage.

When the original sending processor reaches the

rep~y message descriptor on its command FIFO, it wakes

up the process that originally sent the mes$age a.nd

permits it to continue. After examining the rep.ly·

15 message, the original s~nding processor can free the

original command message buffer in its own local

shared memory.

20

25

30

35

As mentioned above, net. work controller 11 Oa us~s

the buffer 284 dat.a path in order to "''rite mess.age

descriptors onto the· VM& bus 120, and uses VME/FIFO

DMA controller 272 together with parity FIFO 2 70 in

order to copy messages from the VME bus 120 into CPU

memory 214. Other processors reaa froC'I CPU memory 214

using the buffer 284 data path .

File controller 112a. writes message descriptors

onto the VME bus 120 using the buffer 384 data path,

and copies messages from other processors' shared

memory via the same data path. Both take place under

the control of microprocessor 310. Other processors

copy messages from CPU ~emory 314 also via ~he buffer

384 data path .

Storage processor 114a writes message descriptors

onto the VME bus using high-speed register 590 in the

manner described above, and copies messages from other

processors using DMA controller 580 and FIFO 554. The

S? ll4a has no shared memory, however, so it uses a

Oracle Ex. 1002, pg. 1412

..
•

.
•• . . .
..

•
..

• •

- 63a •

the system memory for caching file data. Additionally, the network controllers, file

processors and storage processors are all designed to avoid any instruction fetches

from the system memory. instead keeping all instruction memory separate and local.

This arrangement eliminates contention on the backplane between microprocessor

5 instruction fetches and transmissions of message and file data.

The invention has been described with respect to particular ernbodimeri[$:

thereof, and it will be understood that numerous modifications and variations· are ·

possible within the scope of the invention .

9:.0.\'l3,p:\oper\jc:m.~125.SPf~~

Oracle Ex. 1002, pg. 1413

.
• •

0
•• 0

.

.. .. : . :
•• 0 ·. ·.:

- 63 -

buffer in system memory 116 to emulate that function. That is. before it v.Tites a

message descriptor into another processor's command FIFO, the SP l14a first copks

the message into its 0\\-11 previously allocated buffer in system memory 116 lL"ing

DMA controller 580 and FIFO 554. The \/ME address included in the message

5 descriptor then reflects the VME address of the message in system mert:rory 1 16.

In sununary, the embodiments of the present invention involve a new, server·

specific 1/0 architecture that is optimised for a Unix file server's most common

actions-· file operations. Roughly stated, a file server architecture is pro'Vided which

10 comprises one or more network controlkrs, one or more flle controllers, one or

more storage processors, and a system or buffer memory. all <;onnected· over a

message passing bus and operating in parallel ..,..;th the Unix ·host processor:; The

network controllers each connect to one or more network, and provide all protocol

processing betv.reen the network layer data format and·an intemal:flle·server form·at

15 for comrnwrlcating client requests to ouier processors in the server. Only those data

packets which cannot be interpreted by the network controllers, .for example client

requests to run a client-defined program on the server, are transmitted to the Unix

host for processing. Thus the network controllers, file controllers and storage

processors contain only small parts of an. overall operating system. and each is

20 optimised for the particular type of work to v.ilich it is dedicated.

Client requests for file operations are transmitted to one of the file controllers

\\hich, independently of the Unix host, manages the virtual file system of a mass

storage device which is coupled to the storage processors. The flle controllers may

25 also control data buffering between the storage processors and the netv.~ork

controllers, through the system memory. The file controllers preferably each include

a local bll.i&fer memory for caching file control irJormatior., separate from

Oracle Ex. 1002, pg. 1414

...
•

• • •
00

. ...
•
·~ . . .
..

•
• ..

..

-54-

;;.?P£NDIX Z..

V!IE !FIFO Dld..A Controlle:

In storage processor 114a, OMA co~ troller 580

5 rnanage.s the data path under the direction of ·the ·
microprocessor 510. The OMA controller 580 i~\.,<a

microcoded 16-bi t bit-s lice implementation execut:png. •. ·., '

pipeli:1ed instructions at a rate of orte each 62. Sns<:. · ·

It 'is responsible for. scanning. ~h·e cr.an!'lel status. 56;;(

10 and sarvicing request with parametf:cs stored . in. ·t.:he · ·. ·

dual-ported ram 5·84 by the microprl:·· ~ssor 510. Endin·g .• ;:

15

20

25

3·~

35

status is returned in t~e ram 584 and

generated for the microprocessor 510.

int.er:rup.t$ a.r.e ·-. · c:.

Control Store. The control

microcoded instructions which

store contains

cor:::::rol the

th.e···

bMJ,.
controller 580. The control store consists of.6 lk x

8 proms configured to yield a lK x 48 bit microwo·rd:

Locations within the control store are acc::-e·ssed by

the sequencer and data is presented at the input of

the pipeline registers .

Sequencer. The sequencer controls program 'flow by

generating control store adC.resse.s based upon pipel;.n.e

data and various status bit.~. The control store

address consists of 10 bits. Bits 8:0 of the control

store address derive from a multiplexer having as its

inputs either an ALU output or the output of an

incrementer . The incrementer can be preloaded with

pipeline register bits 8:0, or it can be incremented

as a result of a test condition. The lK add~ess range

is divided into two pages by a latched flag such that

the microprogram can execute from either page .

Branches, however remain within the selected page .

Conditional sequencing is performed by havin; the test

condition increment the pipeline provided address. A

false condition allo•..rs execution from the pipeline

address while a true condition causes execution from

···.:-.

. · . .'

. 't•

Oracle Ex. 1002, pg. 1415

.. . . •• • ••o•
a •

• • .. .
•• • •

•
.. . . ••c.•

. .. • • 0

5

-65-

the add::ess • 1. The alu output is selected as an

address source in order to directly veccor to a

routine or in order to return to a calling

Note that when calling a subrou~ine the

routine must reside within the same page

calling ...

as th.e.

subroutine or the wrong page will be select~d on the

return.

· AIJl. The alu comprises a single ID'!'49C4-o2A.

integrated circuit. It is 16 bits in width and mo'~t '-

10 cle;sely. ::esembles four 290ls with 64 regist.ers. The

alu is used primarily for incrementing,, decrem.en:tin·g ,. ··

addition and bit manipulation. All necessa::y c:·ont~rol

signals originate in the control store. The ID~ HIGH

PERFORMANCE CMO.S 1988 DATA BOOK, incorporated ,by.

15 reference herein, contains additional information·

20

25

30

35

40

about the alu.

Micro~ord. The 48 bit microwo~d comprises several

fields ;..·hich cor~:crol various functions of the Dl'-1 .. ~ ·

controller sao. The format of the microword is defined

below along with mnemonics and a description of each·

function .

AI<8:0> t.7:39

CIN 38

RA<S:O> 37:32

RB<5:0> 31~26

(Alu Instruction bits 8:0} The AI
bits provide the instruction fo.r th.e
49C402A alu. Refe!' to the IDT data ··
bool< for a complete de£ ini tion .of
the alu instructions. Note that the
I9 signa~ input of the 49C402A is­
always low .

{Carry INput) This bit forces the
carry input to the alu.

(Register A address bitz 5:0) These
bits select one of 64 registers as
the •A• operand for the alu. Thes~

bits also provide literal bits 15:10
for the alu bus .

(Re~ister B address bits 5:0) These
bits select one of 64 registers as
the •s• operand for the alu. These
bits also provide literal bits 9:4
for the alu bus.

Oracle Ex. 1002, pg. 1416

..
• • 01 I

••••

• •••o •••
• • •• •

.. . .
CH•4•
... . . .
DO I • • . ..

5

10

15

20

25

30

35

40

45

50

LFO 25

-66-

(Latched Flag Oata) When S·et this bit
causes the selected latched flag to be
set. When reset this bit causes the
selected latched flag to be cleared. This
bits also functio-ns as literal bit 3 for
the alu bus.

LFS<2:0> 24:22 (Latched Flag Select bits 2:0·) the
meaning of these bits is dependeri·.t
upon the selected source for the alu
bus. In the event that the literal··
field is selected as the bus.~6ur~e .:
then LFS<2: 0> func.ti::n as liteial
bits <2: o > ot'her-.1ise the bits ar.e·
used to select one of the latc .. hed·
flags.

LFS<2.:0> SEL·ECTED FLAG

0

1

2

3

4

This value selects a null flag.

When set this bit ·enables the .·
buffer clock. When reset this
bit. disables the buffer clock.

When this bit is cleared VME
bus transfers, buffar
ot>erations and RAS are al.l
disabled.

NO'l' USED

When set this bit en·a:bles VME
bus transfers.

S When set this bit enables
buffer operations .

6

7

When set this bit asserts the
row address strobe to the dram
buffer .

When set this bit selects page
0 of the control •tore.

(alu bus SouRCe select bits 1. 0)
These bits select the data source to
be enabled onto the alu bus .

Oracle Ex. 1002, pg. 1417

. . . .

. .

. .
• . .

-67-

SRC<l 0> SPlPctPd Source

0 alu
1 dual ported ram

5 2 literal
3 reserved-not defined

PF<2:0> 19:17 (Pulsed Flag select bits 2:0) The.se.
bits select a flag/signal to be

10 pulsed.

15

20

25

30

35

40

45

so

PF<2:0>

DEST<3:0> 16:13

0 null

1 SGL_CLK

2

3

4

5

generates a single transition
of buffer clock.

SET VB
forces vme and buffer enal:;l.le· to
be set.

c:.. ?ERR
clears buffer parity error
status.

S!:T ON
set -channel don.e status for the
currently selected channel.

INC ADR
increment dual ported
address.

ra·m

6:7 RES~IWED - NOT DEFINE'D

(DESTination select bits 3:0) These
bits select one of 10 destinations
to be loaded from the alu bus.

DEST<3:0> Pestination

0 null

1 WR RAM
causes the data on the alu bus
to be written to the dual
pcrted ram.
0<15:0> -> ram<15:0>

2 WR_BADD

Oracle Ex. 1002, pg. 1418

.. . .
•• •
• • .
••
.

.

..
·~

• • 0

5

10

15

20

25

30

35

40

45

50

3

4

5

6

7

8

9

10:14

15

-68-

loads the data from the alu bus
into the dram address counters.

0<14:7> -> rncx addr<B:O>
WR V.P>.OL
loads the data from the alu bus.
into the least significant .2
bytes of the VME address
register.
0<15:2> -> VME addr<15:2>
01 -> ENB_tional regist.ers:
0<15:2> -> VME addr<15:2~
Dl - > EN:S_·ENH
DO -> .ENB_BLK

WR VAOH
loads the
bytes of
register.
0<15:0> ->

WR RADD

most s ignifi.c.a.nt 2
the VME addies~

VME addr<31:16>

loads the dual port·ed r.am
addres.s counters.
0<10:0> -> ram addr <ln:O>

WR WCNT
loads th~ word counters .
015 -> count enable~
0<14:8> -> count <6:0>

WR CO
loads the co-channel select
register.
0<7:4> -> C0<3:0>

WR NXT
loads the next-channel select
register.
0<3:0> -> NEXT<3:0>

WR CUR
loads the current-channel
select register.
D<3:0> -> cu~~ <3:0>

RESERVED - NOT DEFINED

JUMP
causes the control store
sequencer to select the alu
data bus.
0<8:0> -> CS_A<8:0>

Oracle Ex. 1002, pg. 1419

...
•

•
0

.. ...
•
..
.. . . .

• • 0 • ..

5

10

15

20

25

30

35

40

TE:ST<3:0> 12:9

-69-

(TEST condition s<alect bits 3:0)
Select one of 16 inputs to the tes~
multiplexor to be used as th• carry
input to the incrementer.

TEST< 3 · 0 > ,C.Qn.Ut.iQ.n

0

2
3

5

6

FALSE

TRUE

.ALU COUT
ALU~):Q

ALU_OVR

ALU_NEG

-always false

-always tru-e

-carry output of aiu:
-equals output of al.u·

-alu overflow

-alu negative

XFR._OCNE -transfer complete

7 . P"AR. ERR -buffer parity e.rror
8 TIMOUT -bu-. operati.on

timeout

9 ANY_ERR -any error status

14:10 RESERVED -NOT DEFINED

15 CH_ROY -next channel ready

NEXT_A<8:0> 8:0 (NEXT Address bits 8:0) Se.lects a.n
instructions from the current page of the ·
control store for execution .

Dual Ported Ram. The dual ported ram is the

medium by which command 1 parameters and status are

communicated between the DMA controller sao and the

microprocessor 510. The ram is organized as lK x 32 at

the master port and as 2K x 16 at the DMA port. The

ram may be both written and read at either port.

The ram is addressed by the 0~~ controller 580 by

loading an 11 bit address into the address counters .

Data is then read into bidirectional registers and the

address counter is incremented to allow read of the
45 next location.

: .i

Oracle Ex. 1002, pg. 1420

• .
• • . ..
• ..

.
• • .
... ..
•• .
.. . .

•

5

10

15

20

25

30

35

40

-70-

Writing the ra:n is accom?lished by loading data

from the processor into the registers after loading

the ram address. Successive writes may be performed

on every other processor cycle.

The ram contains current block pointers 1 . end.ing .·

status I hiqh speed bus acdress and parameter blocks.·

The following is the format of the ram:

OFFSET 31

0

4

sa

sc

60

64

68

6C

70

:cURR POINTER 0 : STATUS 0

INITIAL POINTER 0

ICURR POINTER B r STATUS B

INITIAL POINTER B

not used not used

not used not used

:CURR POINTER 0 i STATUS 0

INITIAL POINTER D

not used STATUS E

74 :HIGH SPEED BUS ADDRESS 31:2:o:o:

78 PARAMETER BLOCK 0

?? PARAMETER BLOCK n

0

The Initial Pointer is a 32 bit value which points

the first command block of a chain. The current

pointer is a sixteen bit value used by the DMA

controller 580 to point to the current com:nand block.

The current command block pointer should be

initialized to OxOOOO by the microprocessor 510 before

enab ... inq the channel. Upon detecting a value of OxOOOO

··.:

. ,··

Oracle Ex. 1002, pg. 1421

.. . •
• 000

.....
•• ... • • .. .
.. ····.

...

-71-

in the current block pointer the DMA controller SSO

will copy the lower 16 bits from the initial pointer

to the current pointer. Once the DM.A controller 580

has completed the specified operation~ fat the

5 parameter block the current. pointer wi 11 be upda·ted-:_.t'O

point to the next block. In the event that no fu·rtry~.r

parameter blocks are available the pointer will be .:set;
to OxOOOO.

The status byte indicates the ending status f.or the

10 last channel operat1on performed. The following stat.us

bytes are defined:

15

20

2S

30

35

.TATUS MEANING

0 NO ERaORS

1

2

3

4

ILLEGAL OP CODE

BUS OPERATION TIMEOUT

BUS OPERATION ERROR

DATA PATH PARITY ERROR

The format of the parameter- block is:

OFFSET 31

0 FORWARD LINK

4 NOT USED WORD COUNT

8 VME ADDRESS 31:2, ENH, BLK

c TERM 0 .OP 0 BUF ADDR 0

0

C+(4Xn) TERM n OP n BUF ADDR nl

FORWARD LINK - The forward link points to the first

word of the ne:xt parameter block for execution. It

allows several parameter blocks to be initialized and

40 chained to create a sequence of operations for

execution. The forward pointer has the following

format:

Oracle Ex. 1002, pg. 1422

..
• 0

··~-·

•
. •
..

-72-

A3l:A2,0,0

The format dictates that the parameter block must

start on a quad byte boundary. A pointer of oxoo·ooooo,o

is a special case which indicates no forward link

5 exists.

WORD COU~T - The word cOunt specifies the number'of

quad byte words that are to be transferred to 6r trb~

ea~h buffer address or to/from the VME address. A word

count of 64K words may be specified by initializin~

10 th·e word cou:-:.\:. with the value o·t o. The word count ·ha:s
the following format:

I 015101410131012/ D11lD10jD9j08lD7I 06105104 f03! 02'1 D-l[OOJ

The word count is updated by the DMA cor .. troller SSO

at the cou.pletion of a transfer to/from" the la;st

15 specified buffer address. Word count is .not \;J.pdated·

after transferring to/from each buffe:::- add:::-ess and is

therefore not an accurate indicate:::- of the ~otal data

moved tojf.=om the buffer. Word count rep!."esents the

amount of data transferred to the VHE bus or·one o~

20

25

30

the F!FOs 544 or 554.

VME ADDRESS The VME address specifies the

starting address for data transfers. Thirty bits

allows the address to start at any quad byte bcundary.

ENH - This bit when set selects the enhanced block

transfer protocol described in the above-citad

ENHANCED VMEBUS PROTOCOL UTILI ZING PSEUDOSYNCHRONOOS

HANDSHAKING AND BLOCK MODE DATA TRANSFER application,

to be used during the VME bus trans fer. Enhanced

protocol will be disabled automatically when

performing any transfer to or from 24 bit or 16 bit

address space; when the starting address is not a byte

aligned or when the word count is not even.

BLK - This bit when set selects the conventional

35 VME block mode protocol to be used during the VME bus
transfer. Block mode will be disabled automatically

Oracle Ex. 1002, pg. 1423

.
• • •

·~
•

•
••
.. . .

••• ...
• ...

.. . . •

-73-

when pe=!orming any transfer to or from 16 bit address

space.

BUF ADDR The buffer address specifies th~

starting buffer address for the adjacent oper~tion.

5 Only 16 bits are available for a 1M byte buff~r an~ as

a result th:e starting address always falls on a i-6. ·

byte boundary. The prog::ammer must -ansure that th~. ' ..

starting address is on a modulo .128 byte boundary. T-he

buffer address is updated by the DMA ~ontrol.ler 58:0 ·

10 after completion of eac~ data burst.

15

20

25

IA19IA18IA17iA16IA15IA141A13·l A12IA11IA 10 IA91·A8IA71 A6JA5J:A~>I · ..
TERM - Th·e last bl.lffer address and opera·ti6n within ·'·.

. . .
a parameter block is identified by the terminal bit.:=
The ox.:. controller 5 80 continues to fetch buft"er. · ··

addresses and operations to perform until thi~ bii is·

encountered. Once the last operat'io.n within ·the·

parameter block is executed the word counter is

updated and if not equal to zero the serie-s of
operations is repeated. Once the word counter reache:s

zero the forward link pointer is used to access the

next parameter block.

:o:o:o:o:o:o:o:o:T:·
OP - Operations are specified by the op code. The

op code byte has the following format:

:o:o:OIOlOP3IOP2l0PllOPOl
The op codes are listed below ("FIFO" refers to any of
the FIFOs 544 or 554):

. . :'·

Oracle Ex. 1002, pg. 1424

• •

.
• .
•

' •
'

.
• .

• . .
• • .

• • ..

Qf

5

10

15

·CQQE
0

2

3

4

5

·6
·7.
·a
·.9

'A

~
c
D

E

·F

OPEAATIQN

NO-OP

-74-

ZEROES. -·> ,BUFFER .

ZEROES.-> Fl~O .. •"

.Z~ROES .- > VMEbus"' . ·
·VMEbus ·..:.> ·BlJF,FER ..

.. VMEbus -:- > ·F.i;"Fo
VMEbus· ~> BUFFER:.& FIFO

BUFFER·-·> VMtbus
, -~o~rEIC:~_;· ~iFO

FIFO - > Vt1"Ebus ·

.Fl~O- .-> BUF~Ei

FIFO -~.) VHEbus & . SUFFER

.RESERVED>

·RESE}rvio··

~E:s~Rv.Eo·· .
RESE.RVEO

·:> .:

, .
..

:,

Oracle Ex. 1002, pg. 1425

.. • •

.
••
..

• •
... . .

0

• 0
• 0 ..

-75-

A?PENDIX B

Enhanced VME Block TransfP: Protocol

The enhanced VME block transfer protocol is a

VME:bus compatible pseudo-synchronous fast transfe-r

5 handshake protocol for use on a VME backplane . bus

having a master functional module and a slave

functional module logically interconnected by a d•ti

transfer bus. The data transfer bus includes a d-a:ta·. :·

S·trobe signal line and a data transfer ac-1-;no;;r~ edge
10 signal line. To accomplish the handshake, th~ master.

transmits a data strobe signal of a given d~~ation ori

the data strobe line. Th.e master tl":.en awaits th'e'

rec·eption of a data transf.er acknowledge si·g.nal from
the sl3.v-e module on the data transfer ackn-owl.ed:ge

15 signal line. The'slave then responds ty. trans~ittinq

data transfer acknoQledge signal of a given duration

on the data transfer acknowledge signal line.

20

25

30

Consistent with the pseudo-synchro::.ous nat.u:::e of

the handshake protocol, the data to be transferred i~

referenced to only one signal depending upon whe·ther

the transfer operation is a READ or WRITE.: operatio.n .

In transferring data from the master functional

unit to the slave, the master broadcasts the data to

be transferred. The master asse:::ts a data st:robe

signal and the slave, in response to the data strobe

signal, captures the data broadcast by the master .

Similarly, in transferring data from the slave to the

master. the slave broadcasts the data to be

transferred tc the master unit. The slave then

asserts a data transfer acknowledge signal and the

master, in response to the data transfer acknowledge

signal, captures the data broadcast by the slave.

The fast transfer protocol, while not essential to

the present invention, facilitates the rapid transfer

35 of large amounts of data across a \~£ backplane bus by

substantially increasing the data transfer rate.

Oracle Ex. 1002, pg. 1426

••
~ .

00 I
•a•• • • .. .

••
0
••

• ...
•• • <r

•
• 0 • • ••

-7 6-

These data rates are achiE'·.:ed by using a handshake

wherein the data strobe and data transfer acknowledge

signals are functionally decoupled and by specify1n.g

high current drivers fer all data and control lines.

5 The enhanced pseudo- synchronous method of data:

transfer (hereinafter referred to as "fast tr·ardfE.!r

mode") is implemented so as to comply an¢i be
compatible with the IEEE VME backplane bus .stand~.l!'d;,-,: .

The protocol utilizes user-def inec address modif i:e:r:S, · '·

10 defined in the VMEbus s·tandard, to indicate use of th'e.•. ·.

fast transfer ·mode. Conventional VMEbus functi6nal

units, capable only of imple:::ent.:.ng standard V~fEbus -·-·

protocols, will ignore transfers made using t.he· ::ta·s't··
transfer mode and, as a resul-::, a=e fully compat:j:.bie

15 with functional units capable of i::-.?le:nenting th~. fa·s,t

transfer code.

20

25

30

The fast transfer mode reduces ~he numbex of b~s

propagations required :o accc::1plish a handshake from

four propagations, as requi::ed under conventio·ria:1

VMEbus protocols, to only 1 two bus propagat~cns .

Likewise, the .nu~ber cf _bus p=opagations required to

effect a BLOCK REAO or BLOCK WRITE data transfe·r· .is

reduced. Consequently, by reducing the propagations

across the VMEbus to accomplish handshaking and data

t.ra~sfer functions, the t:ransfer rate is materially

increased .

The enhanced protocol is described in detail in the

above-cited ENHANCED VMEBUS PROTOCOL application, and

will only be summarized here . Familiarity with the

conventional VME bus standards is assumed.

In the fast transfer mode handshake protocol, only

two bus propagations are used

handshake, rather than four as

to accomplish a

required by the

conventional protocol. At the initiation of a data

35 transfer ~ycle, the master will assert and deassert

DSO* in the form of a pulse of a given duration. The

Oracle Ex. 1002, pg. 1427

•• . .
••• •
;..

.
• •

..
ooe

.
••

5

. 10

15

20

25

.30

-7 7-

C.easse=t:ion of DSO ~ is accomp:.. i shed • .. :i thout ::ega rd as

t:o whether a res;>or.se has been received fro)'ll the

slave. The master then ;.;aits for: an ack:now1edge'ai~nt

fro:n the slave. Subsequent pulsing. of DSO • ca~h6t. . . .

occur until a responsive DTACK• signal i s .re'ce:i'v~d·
. . ' ·:~ ' . . ' .. " :.

f.rom the. slav.e. Upon receiving the slave• s :~sse,rt.ion: ·
of OTACK*, t·he ·master can then il:lmediately· ·;rea~·::i~:f{::. ·. ··
d:ata: st::::obe, if so desired. The fast tr~·nsfe~·~~~4~·<' .. ·

pr()tOcol does not re,quire ·the master to \:ait; 'fbi· !~1\~,·.~
deassertion of. DTAC:K· .by the slave as a :.co'nd~tl:o:n ,'

precedent to subsequent assertions of DS.O•. In t~~ ·
fast trans£er ~od~. only th~ leadin~ ~dge (i.e~. th~;

asse.rt·ion) of. a ·signal is s'ignificant. Thus,: ... ',th:e.: ,';--:

deassertion of either DSO* or 'OTACK• is compl~t;el:y.;::
irrelevant for completion of a handshake. The f~,;:t2:)·:-:
trans.fer protocol does ·not employ the DS l * line, .fo-r

data strobe purposes a~ all ..

The fast transfer protocol ·may be.·:.

characterized .as pseudo-synch::-onous as it · incHudti:s

both synchronous and asynchronous aspects. Th- iast

transfer mode protocol is synchronous in character a.:ue

to the fact that DSO* is asserted and deasserten ·

without regard to a response frorr. the slav.e-.· T·he. ·.~··

asynchronous aspect of the fast transfer mode protoccil: .

is attributable to the fact that th~ m~ster may not

subsequently assert DSO* until a respo~se to the prior

strobe is received from the slave. Consequently •

because the protocol includes both synchr<;>nous ·and

asynchronous components, it is most accurately

classified as •pseudo-synchronous.•

The transfer of data during a BLOCK WRITE cycle in

the fast transfer protocol is referenced only to OSO*.
~he master first broadcasts valid data to the slave,

and then asserts DSO to the slave. The slave is given

. .

35 a predetermined period of time after the assertion of

oso: in which to captur~ the data. Hence, slave

..

Oracle Ex. 1002, pg. 1428

.
• .

0 . .

-78-

modules must be prepared to capt~re data at any ~i~~.

as D7ACK~ is not referenced during the transfe= cycle.

Si~ilarly, the transfer of data during a BLOCK R&AD

cycle in the fast transfer protocol is referenced bniy
5 to DTACK~. The master first asserts OSO*. The slav­

then broadcasts data to the master .and th~~ asserts

DTACK,.. The master is given a predetermined peri,od.;of.

time after the assertion of DTACK ·in which to capt~;t:e .· ·

the data.. Hence, master modules ·must be p:::epa.:-'ed: ti.<· · ..

10 ca.ptu..::-e data at any time as DSO is not reference·d

during the transfer cycle.

rig. 7, parts A t.hrough C, is a flo-.:chart

illus::rating the o.perations involved in accor.~piis.hlng ,

the fast transfer protocol ·BLOCK WRITE cycle. To

15 ini t:..a te a BLOCK WRITE eye le, the master broacc.a.sts

the memory address of the data to be transfeire~ and

the address modifier across the DTB bus. The ~as~a~

also drives interrupt acknowledge signal (!ACK~) hi~h

and the LWORD* signal low 701. A specia 1 addres.s

20 modifier, for example •1F,• broadcast by the master

indicates to the slave module that the fa&t transfer

protocol will be used to accomplish the BLOCK WRITE.

The starting memory address of the data to be

transferred should reside on a 64-bit boundary and the

25 size of bloc~ of data to be transferred should be a

multiple of 64 bits. In order to remain in compliance

with the VMEbus standard, the block must not cross a

256 byte boundary without performing a new add.::-ess

cycle .

30 The slave modules connected to the DTB receive the

address and the address moC.ifier broadcast by the

master across the bus and receive LWORO• lew and lACK*

high 703. Shortly after broadcasting the address and

address modifier 701, the master drives the ASR signal

35 low 705. The slave modules receive the AS* lo"~o.• sign·al

707. Each slave individually determines whether it

Oracle Ex. 1002, pg. 1429

• .

. .

-79-

will participate in the data transfer by determining

whether the broadcasted address is valid for the slave

in question 709. If the address is not valid, th•e

data transfer does not involve that particular sla.ve

5 and it ignores the remainder of the data transf~.r

10

15

...........

cycle.

The master drives. WRITE• low to indicate ·:t:hal<~h":e ... ' .. •:
transfer cycle about to occur is .a · WRITt· :opera•t.ib};; .:·~' ..

•• ' '!•' ••

711. The slave receives the WRI.TE,... low ·s.l~nai ·: ·7.!.3:
and, know'ing that the data· ·transfer operation•·::[~: <a

WRITE operation, awaits receipt of a high·: to:· ·.1.;,,/,:.'; ·.·>

trans,ition on the OSO"' signal line 715. :Th~ mas~t.~::':i··:
will wa.;.t until both DTACK*. and BERR" are .}liqh: 7~ta(·::_. ... ·
which indicates that the prev·ious ·slave is. r~o lo•nge:i:

driving the DTB.

The master proceeC.s to place ·t.he first s.egmept o:·f·

the data to be transfe·rred on data lines DCO through

031, 719. After placing data en DOO through 031, thEi

master drives oso• low 721 and, af~er a predetermihed

20 interval, drives oso• high 723 .

. In response to the t·ransition of DSO" ·fronL.high to

low, respectively 721 and 723, the slave latches the

data being transmitted. by the master over data iin·es

DOO through 031, 725. The 1!\aster places the next

25 segment of the data to be transferred on data lines

DOO through 031, 727, and awaits receipt of a DTACK*

signal in the form of a high to low transition signaL

729 in Fig. 7B.

30

Referring to Fig. 7B, the slave then drives DTACK•

lo~, 731, and, after a predeter~ined period of time,

drives DTACK high, 733. The data latched by the

slave, 725, is written to a device, which has been

selected to store the data 735.

increments the device address 7 35.

The slave also

The slave then

35 waits for another transition of DSO* from high to low

737.

. . :.
.·.

. ·'

Oracle Ex. 1002, pg. 1430

..
•

.
•

..

.. .
• . . .

••

5

10

-eo-
To commence ~he transfe~ cf the next segwent of :r.e

block of data to be t.::-ansfe.::red, the master drives

DSO * low i 3 9 and, ca.fter a predetermined period of

time, d.::-ives DSO * high 7 4 1. In response ·to :he

tra,nsition of DSC • from high to lo.w, re.spectiv.ely ,i-3'.9

and 741, the slave latches the data being broadc·ast \by . .'

the m·~ster over dat.a lines DOO. through 031, 7(L, :TA:;/_;·' .,
ir.as'ter places the next s:e.grnent of ·the data ' t.o.: :·be·:,

tra'ns.ferr~d on .. cata 1 ine.s poo through o31, ,..,:,rs ,. ~~·d<· · ;,.~·
awaits· receipt of a DTACK* si9nal in :th~ ·:·:foro c.f, a
high to low transition, .747.

The slave. then drives D'l'.ACK' .. lowJ 749, and, aft:e,:r·

a predetermined period of .t i.me, drives ·oTACK"' h~gh ;: ...

7 51. The data latc;:hed by the sla:ve·, 74·3, is .'.iri,.c:·e'ri

15 tc the cevice selected to store the . data .:n'ld ~.h·.e·.

20

25

eevice address i3 incremented 753.
for ano-che.:: transi tier. of DSO .. from high t.o 16.~oo.,· 7; 7 .

The t..::ansfe:: of data will continue ir. the abc-.:.·~··-.

described manner until all of the data has be.e:n

transferred from the r.:ast:er to the s1av·e. After al.l

of the data has .been transferred, the mast.er \."ill

release the address lines J address mod if ter lin-e•s, ·

data lines, lACK* line, LWORD* line ana OSO• lin·e,

7 55. The master will then wait for receipt of .a

DTACK 111 high to low transitio·n 757. The slave will

drive OTACK* low, 759 and, after a pre·aeternt'ined·

period of. time, drive DTACK* high 761. In response to

the receipt of the DTACK* high to low transition, the

master will drive AS* high 763 and then release the

AS* line 765 .

Fig. 8, pa..::ts A through C, is a flowchart

illustrating the operations involved in accomplishing

the fast transfer protocol Bt.OCK READ cycle.. To

initiate a BLOCK READ cycle, the master broadcasts the

35 ~emory aderess of the data to be transferred and t.he

address modifier acrcss the DTB bus 801. The master

Oracle Ex. 1002, pg. 1431

. .
4 .
• .

. .

5

-81-

drives the LWORO• s1g~al lo~ and the lACK• signal high

801. As noted previously, a s9ecial address modifier

indica~es to the slave module that th9 fast transfer

protocol ..:ill be used to accomplish the BLOCK READ.

Th~ slave modules connected to the OTB receive the

address and the address modifier broadcast by · t'.he ·
. .

maste~ across the bus and receive LWORO~ lo~ and rAcK•
high 803. Shortly after b=oad~astin.g. the addre.ss· 'arrd::::> ..
ad9,ress modifie·r 80.1, the rr..ast.er drives 'the 1o.s·;· s.i·g.n·al :····.

10 low 805. The slave modules rec·e'ive the. AS"' low sig.n~f· .
807. Each slave individually. determines whe.the:r .~•~.
·..rill participate in the data t.ta'nsfer by deterl!'.inin9 ..

whether the bro·adcasted ad•dre:-ss is ·valid for the s.lave ·

in question 809. If the address is ~:ot valid, t'he

15 data transfer does not involve that particular slave

and it. ignores the remainder of the data transfer

cycle.

20

25

30

35

The :r.aster dri·;;es WRITE• high to indicate that. 'the

transfer cycle about to occur is a READ operation a·11.

The slave receives the WRITE:• high signal 6.13 and,

knowing that the data transfer operation is ·a READ

operation, places the first segment of the data to be

transferred on data lines 000 through 031 819. The

master will wait until both OTACK* and BERR* are high

818, ~hich indicates that the previous slave is no

longer driving the OTB.

The master then drives oso• low 821 and, after a

predetermined interval, drives OS0 111 hi<;h ~23. The

master then awaits a high to low transition on the

DTACKit signal line 824. As shown in Fig. 8B, the

slave then drives the DTACK~ signal low 625 and, after

a predetermined period of time, drives the OTACK*

signal high 827.

In respor.~~ to the transition of DTACK~ from high

to low, respectively 825 and 827, the master latches

the d.:.ta being transmitted h:r· the slave o·1er data

Oracle Ex. 1002, pg. 1432

.. . ..•
•
. ..

.
•

..

..

-62-

1 i~es DOO through 031, 8 31. The data latched by the

master, 831, is written to a device, ~hich has been

selected to st:.ore the dat:.a the device address is

inc.::ement:.ed 833.

5 The slave places the next: segment of the data t:.o. be.

transferred on data lines DOO through D31, :· .8.29; -a.~nd ·
then waits ;or c,nother ·trans i.tion of OSO" from high·: to

low ~37.

To ccmm:~nce the trar.sfer of the next segrr.thit ·c:>:; :t;:~~>·. ·

10 blo::k of data· to be. transf'errecL the ma::t:e:r a~:i.J·k··~. ::
oso• lo,.,. 839 and, after· a predetermined per:iod~ ·q:.f.>.'
time, drives oso• high 841. ihe ~aster then wai~~ f~r
the DTACK" line to transition from high to lowr·~~).

The slave drives DTACK .. low,. 845, and, a.f:ter .'a·· ..

15 preod:etermined period of time, dr.i ves DTACK • high, 8 4·-;.

20

25

30

In response to the ·tranSit:.ion O:f DTACK" from high t6

low, respectively 839 and 841, the master latches the

data being transmitted by the slave over data lin•s

DOO through 031, 845. The data latched by the mas·ter,

845, is w=itten to the device selected to store the

data, 851 in Fig. 8C, and the device address is

incremented. The slave places the next segment of the

data to be transferred on data lines DOO through 031,

849 .

The transfer of data will continue in the above•

described manner until all of the data to be

trans.fer.red from the slave to the master has been

written into the device selected to store the data .

After all of the data to be transferred has been

wri~ten into the storage device, the master will

release the address lines, address modifier l"ines, ·

data lines, the IACKa line, the LWORD line and OSO•

line 852. The master will then wait for receipt of a

DTACK* hiqh to low transition 853. The slave will

35 drive OTACK* low 855 and, after a predetermined period

of time, drive DTACK* high 857. In response to the

Oracle Ex. 1002, pg. 1433

.

.

... .

.

-83-

receipt of the DTACK* high to low transition, the

master will drive AS* high 859 and release the AS•

line 861.

To implement the fast: transfer protocol~ .a
5 conventional 64 mA tri-state·driver is substitute-d fox

the 48 mA open collector driver conventionall;i us~e-~'<;i'n:
VME s].ave ·modules to drive DTACK*. · .Simiiarly>::.;t.j{~'

. .. ·'·': :.··

conventional V'1Ebus data dri:Ve.rs are ·replaced W.t~'~ -6:{}<_·.
mA tri-sta~e drivers in .so-type packages. The l·~·:r:t·~·i:'': ·

10 modification reduces the ground lead inductance, 60£ the .. ·

actual driver packag·e l tself and 1 thU.S 1 r·e:d\.lce·s

"ground bounce n effects which contribute. to . skew· .. ··
between data, DSO* and .DTACK•. In addition, s:i:gn!'il

return inductance a-lqng -the bus. backplane is . reduced

15 by using a connector system having a greater nutn:Per o!:.'

ground pins so as to minimize signal retutn and rn-~~~~

pair pin inductance. One such connector system is the

"High Density Plus" conn~ctor, Model No. 4'2·0~8015-

000, manufactured by Teradyne Corporation .

Oracle Ex. 1002, pg. 1434

\ -84-

AP?E:ND!X C

Paritv FIFO

The parity FlFOs 240, 260 ·and 270 (on th~ ne:twor:k
.... : ·· ...

5 controllers 110), and 544 and 55:4 (on st:o~~ti.~·>:.::;:.

processors 114} · are each implemented. as an· ASIC.· 'Ali.·
the parity FIF'Os are identical, and a·re configu·red on

power-up or during normal operation for the. particul.i:r. ·

function desired. The parity FIFO is de,signed ·.~o.. · '··

10 allo~ speed matching. between buses of different ·spe.e&,; ·

and to perform the parity generation and correctiiori~'

for the pa.rallel SCSI dr.i Yes.

The FIFO cotr.prises two bidirectional data .port;s~

Port A and Port B, with 36 x 64 bits of RAM buf.fez:

.15. between them. Pcr't A is 8 bits wide and Port B is 32

bits wide. The RAM buffer is divided into two par.ts:,

each 36 x 32 bits, designated RAM X and RAM t. The

two ports access different halves of the buffer

alternating to the other half when available. When

20 the chip is configured as a paralle: parity chip {e.g.

one of the F!fOs 544 on SP ll4a), all accesses on Por~

B a:e monitored and parity is accumulated in R..ZI.M X

and RAM Y alternately.

The chip also has a CPU interface, which may be 8

25 or 15 bits wide. In 16 bit mode the Port A pins are

used as the most significant data bits of the CPU

interface ·and are only actually used when reading or

~riting to the Fifo Data Register inside the chip.

30

A REQ, ACK handshake is used for data transfer on

both Ports A and B. The chip may be configured as

either a master or a slave on Port A in the sense

that, in master mode the Port A ACK I RDY output

signifies that the chip is ready to transfer data on

Po=t A, and the Port A REQ input specifies that the

35 slave is respondjng. In slave mode, however, the Port

A REQ input specifies that the maste: requi:es a data

. :·: .·

Oracle Ex. 1002, pg. 1435

.
••••

.
• •
.
... 00 . . • . • •

5

10

15

20

25

-85- : .. ·-·· .··.:·:.:
. ;.:: · .. ·· : . · ... : ~· · ...

--~~:::;!::t::::::~l::!:. -:~!:~~:~; ::~t;::::~:i~t~i~i~l··.
.. ·· :~~Cln~ica:te. ·cdmpleti.o-~:··o·f the· da.ta tran·.sf:e'r:. . . >:?:::r~~x~,\} .

. ·. . . ': .; . ' ··:'::i:: .
. · ·.~ ..

srGNAf oEs~RrPxro~s:: . ·. • .. : ::~.: . , .. -.. ,.< .-•

~o~:o:t it~7i,Pt~e 8 *data· po~t. .· Pd~f ~ ¥, if :)l:s}~[:['{')~}:: .. :· ~=~ o:d A:::::: .. b~t fOr _thiS pOrt. : . :•·':<·~.:~v;:~) ?,
. ::Thes.e · two ··;:;_:igna:ls ·~.t;e u~·ed in th~ dat~L ,t;l:",ansre·r·'.:.

mode. ~o ·cont·r.ol the. hand-~hake of data· .. on 'Port' A.~

·.·: ... ·. :;. •' .

u.P Data 0-7 I ·"l.p Dt.tta' pI uPAdd_ :0:-2 ~ Cs . -:· :~:; '·,: · .. '
Th.ese · signals a·:re · used by . a · mi·cro·proces-scir. ·,to.

addre'ss the· programmable :reqis.b·e:r's ·w.itnXn' :t!b.e·' ·:~:~:rp:~~:
Th.e odd parity signal UP Data .P. is. orily chec:~·~a·~ ;~~~.n':
data ·is written ·to the Fifo· Oa.t~ O.r Ch.ecksum:·~:kg.l':~fe'r$: .. :

and microprocessor p'arity is' enabled . . ''':'' ..
' :.

Clk : .

The clock input is used to generate sdm.e. o·f: ·the·
chip timing. It is expected to be in the "i-0-20 ·Mh-z ·

ra.nge .

Read En, Write En

During microprocessor accesses, while CS is tt~e~.·

'these signals determine the direction of the ..

mic::oprocessor accesses. Durin·g data transfers in· the .

wo mode these signals are data strobes used in::

:::

," .

30 conjunction with Port A Ack.

Oracle Ex. 1002, pg. 1436

. .. • • • . •
•

.
.
• •
..
• 0

•• • • • 0 . ..

-86-

Port B 00-07, 10-17, 20-27, 30-37, OP-3?

Port B is a 32 hit data pert. There is one odd

parity bit for each by'te. Po=t B OP is the :parity of

:Oits 00-07, PortS lP is the parity of bits I0-17, ."P·ort

5 s 2P is the parity of bits 20-27, and Port B JP .i~ the

parity of bits 30-37.

B Select, B Req, B Ack, Parity· Sync, B Output Enable

These signals are used in the data t.rans-t'er modP. 'tO

10 control the handshake of data on Port B. Port B Req

and Port B Ack are both g~ated with Port B Select.

The Port B Ack signal is used to strobe the d:ata on

the Port B data lines. The parity sync sighal is

used to indicate to a chip. configured as the parity

15

20

25

30

chip to indicate tha.t the last words of data inv.qtved

in the parity accumulation are on Po.rt B. 'The Port. B

da·tat. lines will only be driven by the Fifo chip if all

of the following conditions are met:

a. the data transfer is from Port }. to Port B;

b. the Port S select signal is true;

c. the Port B output enable signal is true; and

d.

Reset

the ch~p is not configured as the parity ehip
or it is in parity correct mode and the Parity
Sync signal is true .

This signal resats all the registers W'i thin the

chip and cau!es all bidirectional pins to be in a high

i111pedance state .

DESCRIPTION Of OPE~TION

Norma 1 Oper3tion. Normally the chip acts as a

simple FIFO chip.

R.~M buffers in a

A FIFO is simulated by using two

si111ple ping-pong mode. It is

intended, but not mandatory, that data is b~rst into

35 or out of the FIFO on Port B~ This is done by holding

Port B Sel signal lo¥1' and pulsing the ?ort B Ack

signal. When transfP.rring data from Port B to Port Ai

Oracle Ex. 1002, pg. 1437

.•..
0

• : 0 ...

. •t••
••
.. ~

00

-87-

d.ata is first written into R.l\M X and •.;hen this is

full, the data paths will be switched such that Po=t

B may start writing to RAM Y.

begin emptying RAM :-r. to Port

Meanw~ile ~he chip will

A. When R.l'>.M Y is {ull

5 and RAM X empty the data paths wfll be switched :~ga.1.r1 ,:
such that Port B may reload RAM X a·nd Po·rt A 'm:ay.· .

e-mpty RAM Y.

Port- "'· Slave Mode. This is the default mod·e ·and

the chip is reset t·o this condition. In thi·s cod'?· the.

. -:·.·.

10 .::hip waits for a master such as one of the SC$;1 ...

adapter chips 542 to raise Port A Request for: ·dat~ :.·

15

20

25

30

transfer. If data is available the fifo chip, i.:l:ill

respond with Port A Ack/Rdy.

Port A ND Mode. The chip may be configured to run.·

in the WO or Western Digital mode. Iri this .:lOd.e the

chip must. be configured as a slave on Port A. T-·
differs from the default slave mode in that the c·hi.p

responds with Read Enable or Write Enable as

appropriate together with ?ort A Ack;Rdy. This mode

is intended to allow the chip to be interfaced to the

Wastern Digital 33C93A SCSI chip or the NCR S!C90 SCSI

chip .

Port A Master Mode. When the chip is configured as

a master, it will raise Port A AckjRdy when it. is

ready for data transfer. This signal is exp~cted to

be tied to the Request input of a DMA con~roller which

will respond with Port A P.eq:when.data is available .

In order to allow ths DM.l. controller to burst, ~he

Port A Ack/Rdy signal will only be nega~ed after every

a or 16 bytes transferred.

Port B Parallel Write Mode. In parallel write

mode, the chip is configured to be the parity chip for

a parallel transfer from Port S to Port A. In this

mode, w·hen Port B Select and Port B Request are

35 asserted, data is written into RAM X or RAM Y each

time the Port B Ack signal is received. for the firs~

Oracle Ex. 1002, pg. 1438

. . .
• • •
• • .
.
• •

5

-83-

block of 128 bytes data is Sii':'.ply copied int:o the

selected RAM. The next: 128 bi·t:es driv·en. o~ i?o.rt 3 wil:

be exclusive-ORed with the first 128 b:z-tes: Th.:i:S

· procedure will be repeated for all erives such t~a~

the parity· is accumu-lated in this. ·chi:p.
·t"!"l· .· .,.:: :.
·.:.ne .?ar'l:tv.·

... :r I· •• "".'
Sytic signal should be ass~tted the paral.lel .. e:h.tp. ,~:,:.

' , ' · ... ',r
to

togethe.:: with the last block qf 1.2 8· bytes'~ 'T~:i~< .. ;.'· . ·.
enables the chip t:>· switch access to the other R.~M·:atid':.

'· .. ·:

s~art accumulating a·ne~ 128 bytes of pa.::ity.

10 Port: B Parallel Read· XodP .·- Cr"'tk Data. This: :no:de:; .. ·

1 5

20

25

is set if all drives a:e being read and pa~i~~ i~·t~
be checked. In this case the Par·i ty Correct bit .in··

the Data Transfer Configuration Regi·ster i $ ·no<; ·set~ ..

The pa::ity chip will first read 128 b~·t:es on ?or.t: ·A a·s.
i:1. a :.ormal read mode and then r.aise ?ort:. B ''Re-:iue~;.
W~1ile it has this signal asserted the thip ~ill

:nonitor the Port :a Ack signals and exclusive_.or the

data on ?ort B wi-ch the data in its selected MM. The

?a:ri ty Sy:1c should again be as sert.ed '-'i th the last:.

block of 128 bytes. Ir-. this :node the chip will riot

drive the Port B data lines but will check th• ouiput:

of its exclusive-or logic for zero. If any bits are

set at this ti:ne a parallel parity er:ro.r will be

!lagged.

Port B Pa ,..~ llel Read Mode - Correct Qat a. This

mode is set: by setting the Parity Correct bit in the

Data Transfer. Configuration Registe.r. !n this case

the chip will work exactly as in the check mode except

that -:.;hen Port B Output Enable, Pert S Select and

30 Parity Sync are true the data is driven onto the Port

B data lines and a parallel parity check for zero is

not performed.

3vte Swap. !n the normal mode it: is expected that

Port B bits 00-07 are the first byte, bits 10-17 the

35 second byte, bits 20-27 the third byte, and bits 30-37

the last byte of each word. The order of these bytes

Oracle Ex. 1002, pg. 1439

-39-

~ay be cha~ged by writins to the byte s•ap ~its i~ the

configuration :egister such that the byte address bits

are inverted. The,-ay the bytes are writte:l and r·ead

also depend on whether the CP·u interface is config·ured.

5 as 16 or 8 bits. The following table -sho"Ws·the byt.;e.

10

15

20

25

30

alignments for

transfer using

handshake:

the different possibilities for dl;'l._ta. · ·

the Port A Request 1 Acknowle'd<i~' ..

CPU Invert
1/F Addr 1

Invert
AddrO

Port.B
00-07

Port· B
10-17

P-o"rt 8
20~27

Pq~·B
.30.~37

-···-----------------------------·---·----------·-_;_-
8 False False

8 False True

8 True False

8 True True

16 False Faise

16 False True

16 True False

16 True True

Port' A
byte 0

Port A
byte 1

Port A
byte2

Fort A
byte 3

Port A
byte 0

uP roc
byte 0

Pert A
byte 1

uP roc
byte1

Port A
byte 1

Port A
byte o

Port A
bYte 3

Fort A
byte 2

uProe
byte 0

Pert A
byte 0

uProc
byte 1

Port A
byte 1

Port A
byte'3

Port A
·byte 0

PortA
byte 1

Port A
byte 1

uP roc
b71e 1

Port A
byte 0

uP roc
byte 0

PortA·
·byte::,.

PoriA.
bYte 2-

Por.t A
byte -1

Port A
byte'O

uPr.cic
byte 1

PortA
t.yte ·1

uProc
byte 0

Port A
byte 0

When the Fifo is accessed by readjng or writing the

Fifo Data Register through the microprocessor port in

35 8 bit mode, the bytes a=e in the same order as th-e

table above but the u~roc data port is used instead of

Port A. In 16 bit mode the table above a?plies.

Odd Lenath Trans~ers. !f the data tra~sfer is not

a multiple of 32 ,.,.ords, or 128 bytes, the

40 ~icroprocessor must manipula~e the internal registers

of the chip to ensure all data is transferred. Port

A Ack and Port B Req are normally not asserted until

;',

.·.·.:

Oracle Ex. 1002, pg. 1440

...
• •

•• • ...
•• . • •
•• • • .. ,

• ••

•
•

..
•
" ..

• .. •
• • ...

-90-

all 32 words of ~he sele=ted RAM ara a:•ailable. '!hese

signals ~ay be forced by w=iting ~o ~he apprc;:iate

R...!>,.H status bits of the Da-.:.a T.rans!er Status: Reg·ist.er-.

When a:1 c.dd lenc;-"t.h transfer has tak.e:1 place the

5 rnicrop:oces.sor ::ust ;.;~i-t ·u,nt.il bo.th ports· · ar.e

quieseent: bef·ore manipulating any registers. : !'t. ·

shoulC! ~hen reset both of the E:1able Dat:a T:a:nsf.~r ' .. ;:

:Oi t·s for Port: 'A and Port: B in the Data T;: .. ans!'er.: _.

lO their .;ddress Registers ar:.d t:he ·:t.;M }.cces.s: Co.i:t=ol .·

15

20

25

30

35

Register -..~nether a..~x X or RAM Y holds· the oC:d :engt..n:··

data. It s!"louli! t.hen set the correspondi:r:·g Ac'dress: ·,
Register· to a value of 20 hexadecimaL forcing the i~k··
full bi-t and setting the add::.'ess to the first. ·.;ord:>.
Finally the microprocessor should set the E:::1a:,1.: :>a·:ta:

Transfer bits to allo·,.; the chip to """ ;· . .:.::; ~· -~~-.: : . co ... p ... e~..-. .t .• ,... ·

t:ransfer. ', .· .
A't this point che Fifo chip .,..ill t!link that: -:::h'i=re

are no·..t a full 128 bytes of data in th.e RAM and -..•i.l:L

transfer 125 bytes if allowed ·~.:::: co so. The· fac-:. t:~·at. ·

some of these 128 bytes are no-.: valid ~~st. ~e

recognized externally t:o .the FIFO chip .

FROGR;M~~ELE REGISTERS

Data Transfer Confieuration Reeister fRead!Writel

Register Address 0.

the reset: signal .

This re·;ister is clea,red by

Sit 0

Bit 1

Bit 2

WD Mode. Set if data transfers are to
use the Western Digital WD33C93A
protocol, otherwise the Adaptec 5250
protocol will be used .

Paritv Chi-o. Set if this chip is t:o
accumulate ?or't E parities.

Paritv Correct Mpde. Set if
chip is to correct: parallel
Port a.

~he pa=it.y
parity on

Oracle Ex. 1002, pg. 1441

Bit 3

5

10 Bit 4

Bit 5
15

Bit 6

20

Bit 7

25

-91-

CPU Interface 16 bits wide. !f set, the
microprocessor data bits ar~· combi:)e.d
with the Port A data bits to effeGtively
produce a 16 bit Port. All accesses by.
the microproc.essor as well as all data
transferred using the Port A R.;qu:est· and.
A;::knowledge handshake will transfer ':1'6.
bits. ·

lDVil:::t Es:;u;:t A :bvti i;l.QQ:t:iSS 0. Set to .
invert the least siqni f ican:t. bit. of PO·rt..
A byte addres·s.

InveJ:::t PQ;r:t A :b::t:t!l: ~dQ.t:ess 1. Set to.
invert the most significant bit of Po:rt
A byte address.

Check,um Carry Wrap. S~t to en~ble th•
carry out of the 1~ bit checksum adder t~
carry back into the least significant: bit
of the adder .

.F&:~. Writing a 1 to this bit w'ill
re t the oth~r registers. This bit
re ... ets itsel.f after a maximum of 2 clQ.ck
cycles and will therefore normally ·be
read as a 0. No other register ·should .b·e
written for a minimum of 4 clock cycles
after writing to this bit.

30 Data Transfer Control Register CRead/Writel

35

40

45

Register Address 1. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0

Bit l

Bit 2

Enable Data· Transfer on Po::t_A. Set to
enable the Port A Req/Ack handshake.

Ena:ble Da:ta Tr§nsfer on Port a. Set to
enable the Port B Req/Ack handshake.

Port A :to Port B. If set, data transfer
is from Port A to Po::t B. If reset, data
transfer is from Port S to Port A. In
order to avoid any glitches on the
request lines, the state of this bit
should not be altered at the same time as
the enable data transfer bits 0 or 1
above.

...

·.···

"'

Oracle Ex. 1002, pg. 1442

.
•

.
~

..
04

.. . . .
• • ..

5

10

15

20

25

30

35

40

Bit 3

Bit 4

Bit 5

g;,.. -- 6

Bit 7

-92-

uProcessor Paritv Ena~le. Set if parity
is to be checked on the microprocess.o·r
interface. It will only be checked when
wr.iting to the Fifo oa·ta Register or
reading from the Fifo Data or Checksum
Registers, or d~ring a Port · A
Request/Acknowledge transfer in 16 bit
mode. The chip will, however, alway~
re-generate parity ensuring that correct
parity is vritten to the RAM or read on
the microprocessor interface.

Port A Parity Enabl~. Set if parity is
to b~ checked on Port A. It is checked
-when accessing the Fifo Data Registe·r ii:l
16 bit mode, or during a Port ·A.
Request/Acknowledge transfer. The ehi~p.
will, however, always re-aenerate paxit:y
ensuring that correct pa;ity is writte·n
to tha RAM or read on the Port A.
interface.

Port B Parity Enab..l.!i. Set if Port B
data has valid byte parities. If it is
not set, byte parity is generated
internally to the cl':.ip when writing to
the RAMs. Byte parity is not checked
when writing from Port B, but always
checked when reading to Port B .

Checksum Enable. Set to enable writing
to the 16 bit checksum register. This
register accumulates a 16 bit checksum
for all RAM accesses, including acce·sses
to the Fifo ~ata Register, as well as all
writes to the checksum register. This
bit must be reset before reading from the
Checksum Reqister .

Pert b Master. Set if Port A is to
onerate in the master mode on Port A
d~ring the data transfer .

Data Transfer Status Register fRead Onlyl

Register Address 2. This register is cleared by

45 the reset signal or by writing to the reset bit.

Bit 0 pata in ~~H X or ~\M X. Set if any bits
are true in the RAM X, RAM Y, or Port A
byte address registers.

Oracle Ex. 1002, pg. 1443

..
• • ...

0 • . .
..
.. . . .
0 • ..

5

10

15

20

25

30

35

40

45

Bit 1

Bit 2

Bit 3

-93-

uProc Port Parity Error. Se'C if the
uProc Parity Enable bit is set and a
parity error is de'Cected on tne
microprocessor interface during any .R.A;M.
access or writ~· to the Checksum Register·
in 16 bit :node.

Port A Pa,.ity Error. Set if the P.or·t .;A.: .•
Parity .En.able bit is set and a .p·artt:y;.~
error is detected on the ·port A int·erface
during any RAM· acces·s or write ~0 ·the
Checksum ~egister~

Port B Parallel Pa~itv Error . Set if
the ·chip is cc::>rifigured as the' .. pari~·:
chip, i·s not in parity correct ·~b<ie·{.:·ar,;a· · ·
a non zero· resul.t is detected· ··whe·n ··tnfi.
Parity Sync sig.nal ·is t'rue. It is al!ih
set whenever data is read c;>ut onto:, ;i.o.rt·
B and the data being read bad(tni;:o.ugh
the bidirectiona.l buffer does ·"hot:
compar.e.

Bits 4-7 Porj:: B ByteS. 0-3. Parity E.t;ror. .Set
whenever the data being read ou:c of ·the
RAMs on the Port B side has bad pa.iity,-

Rarn AccAss Control Recister fRead/Write)

Register Address 3. This register ls cleared by

t.he reset signal or 'by writing to the reset bit. The

Enable Dat:.a Transfer bits in the Data Transfer Contto·l

Register must be reset before attempting to wri t.e to

this register, else the write will be ignored.

Bit 0 Port A bvte address 0. This bit is th~
least significa.nt byte address bit. It
is read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register .

Bit 1

Bit 2

Port A bvte address 1. This bit is the
most significant byte address bit. It is
read directly bypassing any inversion
done by the invert bit in th~ Data
Transfer Configuration Register.

Po,..t A to RAM Y.
accessing RAM Y,
accessing RAM X .

Set if Port A is
and reset if it is

Oracle Ex. 1002, pg. 1444

. .
• .

•
• 0 .

a

. . .

.
•
.

5

10

Bit 3

Sit 4

-94-

Po.rt B to BAM Y. Set if Port B is
accessing RAM Y, and reset if it is
accessing RAM X •

Long Burst. If the chip is configureq· to
transfer data on Port A as a master, arl~·
this bit is reset, the chip will on:-I.Y ..
negate Port A Ack/Rdy after every· · ·~·
by.tes, or 4 words in 16 bi·t mode., h:ave·
been transferred. If th.is bit is ·set, ·
Port A Ack/Rdy will be negated every 16'
bytes, or 8 words in 16 bit mode~

Biti S-7 Not Used.

15 RAM X Address R:egi ster (Read /Write)

20

25

30

35

Register Address 4. This register is clear-ed by:
the reset signal or by writing to the reset bit. The{

Enable Data Transfer bits in the Data Transfer Con·trol

Register must be reset before attempting to wr.it.e to

this register, else the w~ite will be ignored .

Bits 0-4

Bit 5
Bits 6-7

RAM X word address

RAM X full

Not Used

RAM Y Address aeaister !Read/Write)

Register Address 5. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Tr?.nsfer bits in the Data Transfer Control

Register must be resat before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM Y word address

Bit 5

Bits 6-7

RAM Y full

Not Used

Fifo Data Register (Read/Write)

Register Address 6. The Enable Data Transfer bits

in the Data Transfer Control Register must be reset

before attempting to write to this register, else the

write will be ignored. The Port A to Port B bit in

Oracle Ex. 1002, pg. 1445

..
•• ..
•
. ...
•
..

• ••
... . . . • • ..

-95-

the Qata Transfer Control register must also be set

before writing this register. If it is not, th·e RAl-t

controls will be incremented but no data will. be

written to the RAM. For consistency, the Port A to

S PortB should be reset prior to reaqing this register.,

Bits 0-7 a:re Fifo Data. The microprocessor fi',a::f ·

access the .FIFO by reading or writing this regi'ste'r; ·

The RAM control registers a·re updated a·s if the acce.s,s ·

was usin~ Port A. If the chip is configured with a 1~

10 bit CPU Interface th~ most significant byte will use

the Port A 0-7 data lines, and each Port A acces~ wi~l

increment the Port A byte address by 2.

15

20

25

30

Port A Checksum Regist·er (Read /Write l

Register Address 7. This register is cleared by

the reset signal or by writing to the reset bit .

Bits 0-7 are Checksum Data. The chip will

accumulate a 16 bit checksum for all Port A accesse.s .

If the chip is configured with a 16 bit CPU inteifaea,

the most significant byte is read on the Port A 0-7

data lines. If data is written directly to thl.s
register it is added to the current contents rather

than overwriting them. It is important to note that

the Checksum Enable bit in the Data Transfer Control

Register must be set to write this register and reset

to read it .

PROGRQMMING THE FIFO CHIP

In general the fi~o chip is programmed by writing

to the data transfer configuration and control

registers to enable a data transfer, and by reading

the data transfer status register at the end of the

transfer to check the completion status. Usually the

data transfer itself will take place with both the

35 Port A and the Port B handshakes enabled, and in this

case the data transfer itself should be done without

Oracle Ex. 1002, pg. 1446

...
•
•

•
..

• ..
..

-96-

any other microprocessor interaction. In some

applications, however, the Port A handshake may net be

enabled, and it will be necessary for the

microprocessor to fill or empty the fifo by repeated·ly

5 writing or .reading the Fife;> Data Regis·ter.

Since the fifo chip has no knowledge cf ·a'ny byte

counts, there is no way of telling when· any data.

tra:·nsfer is complete by reading any register within

this chip itself. Determination of whether the:.da'ta ·

10 transfer r.as been completed must therefore be do.ne by

some other circuitry outside this chip.

15

2()

25

30

35

The following c language routines illustra.te .. ho,..r

the parity FIFO ch·ip majl· be programmed. The routine's.:

assume that both Port A and the mictoproces·sor · ·p·o;rt

are connected to the system microprocessor, ana r~~urn

a size code of 16 bits, but that the hardt;ta··r-e

addresses the Fifo chip as lcng 32 bit registers .

struct FIFO regs {
unsigned char config,a1,a2,a3 :
unsigned char control,b1,b2,b3;
unsigned char status,c1,c2,c3;
unsigned char ram access control,d1 ,d2,d3;
unsigned char ram -x addr7e1,e2,e3;
unsigned char ram -y-addr,f1,f2,f3;
unsigned long datcl; -
unsigned int checksum,h 1;
};

#define FIF01 ({struct FIFO regs*) FIFO BASE ADDRESS) - - -
#define FIFO RESET OxSO
#define FIF0-16 BlTS OxOS
#define FIFO-CARRY WRAP Ox40
#define FIFO-PORT A ENABLE Ox01
#define FIFO-PORT-B-ENABLE Ox02
#define FIFO-PORT-ENABLES Ox03
#define FIFO-PORT-A TO B OX04
#define FIFO-CHECKSUM-ENABLE Ox40
#define FIFO-DATA IN RAM Ox01
#define FIFO:FORCE_R'AM_FULL Ox20

40 #define PORT A TO PORT B(flfo) ((fifo-> control) & Ox04}
#define PORT-A-BYTE ADDRESS(fifo) ((fi1o->ram access centro~ &
OxOO} - - - - -
#define PORT A TO RAM V(fifoj ((flfo->ram_access_control) & Ox04)
#define PORi:s:ro:RA~(Y{fdo) ((frfo-> ram_ access_ control) & oxoa}

Oracle Ex. 1002, pg. 1447

..
0

.

..
...

• • . ..

5

-97-

;••v•t**•*t••••***••2•••***••~~*e••~•••••~•*~*•**••*~•**~**

The fonowing routine initiates a Fifo data transfer using two
values passed to it.

config_ data This is the data to be written to the configuration register.

control data This is the data to be written to the Data Transfer ContFol
Register. If the data transfer is to take place
automatically using ·both ·the Port Aand Port B . .

10 handshakes. both data transfer enables bits should be

15

20

25

30

35

40

45

set .in this parameter. · ***'***·'*·················••***• •••••••* ... tlt•• ,
FIFO initiate data transfer(config data. control data)
unsigned char conlig data, contrOi data; -
{ - -

FIFOr->config ... config_data I AFO_RESET; t' Set
Configuration value & Resei •f

FIF01·>control = ~ontrol data & (-FIFO PORT ENABLES); /* Set
everything but enables */ - - ..

FIFOi- >control = control data ; f*. Set data transfer
ena~es•j -
}

;•••****~··****••••••*•********•*•••••••••••••*•••··········

The following routine forces the transfer .of any odd. bytes 1ha·t
have been left in the Fifo at the end of a data transfer .
It first disables both ports, then forces the Ram Full bits, and then
re-enables the appropriate Port .
········*················~············*~··**••,············;

FIFO force odd length transferO
{ - - - -

F1F01->control &= -FIFO_PORT_ENABLES; /*Disable Ports A & B
•;

if (PORT A TO PORT B(F!F01)) {
if(PORT A TO-RAM Y{FIF01)) {

FJF01->ram Y addr = FIFO FORCE RAM FULL;/"
Set P.AM Y full *I

}

-- - - -

else FJF01· >ram X addr = FIFO FORCE RAM FULL ; l* Set
RAM X full * / - - - - -

FIF01- >control I = FIFO PORT B ENABLE ;
Re-Enable Port B *I - - -

}
else {

if (PORT 8 TO RAM Y(FIF01)) {
FTI=61· >ram_ Y _ addr = FIFO _FORCE_ RAM _FULL ; /*

Set RAM Y full*/
so } . .

else FIF01·>ram X addr = FIFO FORCE RAM FULL; /*Set
RAM X full • I - - - - -

Oracle Ex. 1002, pg. 1448

. .. .

. . .

.. .
.

• • ..

-98-

. FIF01- >control I = FIFO PORT A ENABLE ; /*
Re-Enablc Port A *I - - -

}
}

5 /*'****'**·f:·····1:1'··'*······ * .. *•*••·······••*•****'***'**

10

15

20

25

30

35

40

45

so

The following routine returns how many odd bytes have been
left in ihe Fifo at the end of a data transfer.
•w*********/

int FIFO. count odd bytesO
{ - - -

int number odd bytes;
number odd by:ies = O;
if (fiFOf.>status & FIFO DATA IN RAM) {

if(PORT A TO .PQRT B(FH='01)) {
number -odd bYtes =

(PORT A BYTE ADOAESS(FIF~n));
- - - if {PORT A TO RAM Y(Fir01)) . .

4 ;

}

}
else {

}
}

numbeCodd:_ 6yt~s + = (HF01· >ram_ y ~ad.dr) • ·

else number_odd_bytes + = (F!F01->ram_X_addr) • 4:

if (PORT B TO RAM Y(FIF01)) .
number.)dd_cytes = (FIF01->ram_ Y_addr) * 4;

else number_odd_bytes = (FIF01->ram_X_addr) * 4;

return (number_ odd_ bytes);

/******'*******1t*** *•••••••********···········-=-·············
The following routine tests the microprocessor interface of the

chip. It first writes and reads the first S registers. It then writes 1 s, Os, and
an address panern to the RAM, reading the data back and checking it.

The test returns a bit significant error code where each bit
represents the address of the registers that failed .

Blt 0 = contig register failed
Bit 1 = control register failed
Bit 2 = status register failed
Bit 3 = ram access control register failed
Bit 4 = ram X address register failed
Bit 5 = ram Y address register failed
Bit 6 = data register failed
Bit 7 = checksum register failed

u*****~*2•~••~•~•~**~~*****~**~****~****~**************/

#define RAM_ DEPTH S4 r number of long WCidS in Flio Ram *I

reg_expected_data(S} = { Ox7F, OxFF, OxOO, OxiF, Ox3F, Ox3F };

Oracle Ex. 1002, pg. 1449

... .
•

.
000 •

.
• ..
. . .
• • ••

5

10

15

20

25

30

35

40

45

-99-

char FIFO_ uprocessor _interface_ testO ·
{

unsigned long test data;
char *register add(;
lnt i; -
char j,error;
FIF01->config = FIFO RESET;
error=O; -
register addr =(char *) FiF01;
j= 1; -

r first test registers o thrJ s * 1

for (i=O; i<S: i+ +) {

l* reset the chip :~~I

register addr = OxFF; / write test data *I
if {*register addr I= reg expected data{i]) error f = j-;
*register addr = 0; - /*write Os to· register* I

}

if (*register addr) error 1 = j;
regi~~er addr = OxFF; ! write test data .again *I
if (*·re·gisfer addr I = reg expected datapl} error· f- =- j:" ·
FIF01->coiifig· = FIFO ·RESET; - r reset the chip*/.
if ('"register addr} errorl = j; /* register should be 0 '"I
register addr + + : /* go to next register *I
j<<=f;

f* now test Ram data & checksum registers
test 1 s throughout Ram & then test Os * 1

I

/*' test .. for lS tor (test data = -1: test data ! = 1; test data+ +) {
&Os*/ - .- -

FIF01->config = FIFO RESET I FIFO 16 BITS;
FIF01·>control = FIF<J PORT A TO B; -
for ~ = O:i <RAM_ DEPTH~+ +) - - - /* write data to RAM

*I
FIF01- >data = test data;

FIF01->control = O: -
for Q=O;i<:RAM DEPTH;i+ +)

if (FIF01:>data !=test_ data) error I= j; /*read &
check data ~I

if (FIFO 1· >checksum} error I = oxao: r cr.ecksu_.,
should= 0 *I

}

r now test Ram data with address pattern
uses a different pattern for e\;ery byte *I

test data=Ox00010203; r address pattern start *I
FIF01·>config = FIFO_RESET! FIF0_16_BITS I

50 FIFO CARRY WRAP;
FiF01->ccntrol = FIFO PORT A TO B I

FIFO CHECKSUM ENABLE; - - -
for O=O;i<RAM DEPTH;i+ +) {

FiF01· >data = test_ data; r write address pattern .. I

"::'.

Oracle Ex. 1002, pg. 1450

. •

5

10

15

20

-100-

} .
test_data + = Ox04040404;

test data =Ox0001 0203; f* address pattern start • I
FIF01->control = FIFO CHECKSUM E.NABLE;
for [l=O;i<RAM DEPTH;!++) { -

if (FIF01:>status ! = FIFO DATA IN RAM)
error 1 = OX04; - - 7• should be data .in ram */

if (FIF01· >data ! = test data) error 1 = j; /" read & .check
address pattern * 1 -

test_ data + = Ox04040404;
} .
if (FiF01·>checksum I= Ox0102} error 1 = OXSO; /*test check~um·of.

address pattern * 1 .
- FIF01· >con fig = FIFO_ RESET I FIFO_ 16 _BITS ; r inhibit carry wrap· .

*l

.,
I

}

FIF01·>checksum = OxFEFE; r writing adds.to checksum •j
if (Fif01->checksum) error I =OxSO; r checksum should be 0

if (FIFO 1->status) error I = Ox04; /* status should be 0 • I
return terror};

Oracle Ex. 1002, pg. 1451

..
• . • •• • • ••

• •
• ••

.. .
•

• • • • .. • • • • . .
•• . .

• •
•

~ lOl -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

l. A network file server for use with a data network and a mass storage device.,

comprising:

5 a host processor unit; and

an interface processor unit coupleable ro said network, to said m:3Ss storage devi~

and to said host processor unit, said interface processor unit including means . fo~
decOding all ~'FS requests from said netw.ork, means for performing all procediir~· for

satisfying said NFS requests, means for encoding any NFS reply messages for return'

10 transmission on said network, and means for satisfying file system requests from sa.id

host processor unit, and

means for transmitting predefined non-NFS categories of messa:ges:from ·sai.d

network to said host processor unit for processmg in said host processor unit .

15 2 . A network flle server for use with a data network and a mass storage device

comprising;

a host processor unit running a UNIX operating system; and

an interface processor unit coupleable to said network. to said mass storage deviq:!

and to said host processor unit, said interface processor unit including means for

20 decoding all NFS requests from said network, means for performing all procedures for

satisfying said NFS requests, means for encoding any NFS reply messages for return

transmission on said network, and m~ns for satisfying file system requests from said

host pr~JeeSsor unit .

25 3. Apparams for ~ with a data network and a mass storage device, comprising the

combination of fl.l·st and second processing units,

said first processing unit being coupled to said network and performing

procedures for satisfying requests from said network which are within a predefined non­

NFS ciass of requests,

30 and said second processing unit being coupled to said nework and to said mass

storage device and decoding :NFS requests from said network, performL11g procedures for

Oracle Ex. 1002, pg. 1452

.
• .
•

. .
• • •

- 102-

satisfying said NFS requests, and encoding NFS reply messages for return transmission

on said network, said second processing unit not satisfying any requests from said

network which are within said predefrned non-NFS class of requests.

5 4. Apparatus according to claim 3. wherein said predefined non-NFS class. pf

requests incfudes a predefined set of remote .procedure calls.

5. Apparatus_according to claim 3, wherein said first processing unit indudes:a·:

general purpose operating system and wherein said seco·nd processing unit dOes not

10 indude a general purpose operating system.

6. Apparatus according to claim 3, wherein said second prOcessing unit comPtiSeS:. ·

a network control unit coupleable to said network:

a data control unit coupleable to said mass storage device;

15 a buffer memory;

20

25

means in said network control unit for decoding said NFS requests and for

encoding said NFS reply messages;

means for transmitting to said data control unit requests responsive to NFS

requests from said network to store specified data from said network on said mass storage

device;

means for a-o.nsmitting said specified storage data from said network to said buffer

memory and from said buffer memory to said data control unit;

means for transmitting to said data control unit requests responsive to NfS

requests from said network to retrieve specified retrieval data from said mass storage

device to said network;

means for transmitting said specified retrieval data from said data control unit to

said buffer memory and from said buffer memory to said network.

7. A network file server for use with a data network a..'1d a mass storage device, said

30 network flle server comprising a firs~ unit and a second unit, said first unit induding:

means for decoding NFS requests from said network;

· .. ·.

Oracle Ex. 1002, pg. 1453

..
• .

• •
• •• .
• ..

....

5

- 103-

means for performing procedures for satisfying said NFS requests, including

accessing said mass storage device if required; and

means for encoding any NFS reply messages for return transmission on sa'id

network, only said second unit running a general purpose operating sysrem.

8. A network flle server acrording ro claim 7, wherein said second unit runs a UNiX

operating system kerneL

9. A network file server for use \\ith a data network and a mass storage device •. s·ai<i

10 network tile server ccmprising:

a network control module. including a netv.rork interface coupled to receive NFS ·

requests from said network; and

a ftle system control module, including a mass storage device interface d>uptecf.: . ·

to said mass storage device,

15 a communication path coupled directly between said nem·ork control module ,and;·

said file system control module, said communication path carrying file retrieval·reque$ts

prepared by said netvlicrk control modute in response to received NFS requests to :retrieve

specified retrieval data from said mass storage device,

said file system control module retrieving said specified retrieval data from saici.

... : 20 mass storage device in response to said file retrieval requests and returning said specified · ..
• • • • retrieval data to said network control module,

• •

... . .
•
•

25

and said network control module preparing reply messages containing said .

specified retrieval data from said flle system control module for return transmission on

said ner,,.;ork .

10. A network file server according to claim 9, wherein sa!d tile. system control

module returns said specified retrieval data directly to said net\\·ork control module.

11. . A ne;;v:.·ork tile server according to ciaim 9, wherein said network comroi rnodute

30 further prepares fl.le storage requests in response to received NFS requests to store

specified stoiage dai.a on said mass storage device, said nerw·ork control module

01¥-.,(J • ., ... ·-·"" .. ~ ·--............ ,1.!1

Oracle Ex. 1002, pg. 1454

•• . . • •
• • •

..
0 •

•••• • •
••

0 D 0

•••

- 104.

communicating said tile storage requestS to said t1le system control moduie.

and wherein said file system control module further stores said specified storage

data on said mass storage device in response to said tile storage requestS.

5 12. A ner,vork file server according to claim 11. wherein said file srorage.request5:~e

communicated to said file system control module via said communication p~fu. · · .

13. A network file server subsmntially as hereinbefore described with refere.nce r.6,·the ·

accompanying drawings. . .. ·.

10

Dated this 7th day of May. 1996

AUSPEX SYSTEMS. INC.

By its Patent Attorneys

15 DAVIES COI:.LISON CAVE

Oracle Ex. 1002, pg. 1455

• •

• •

• •

•

•

• • . ..
•

ASS TRAer

A file server architecture is disclosed, comprising as separate processors, a

network controller unit, a file controll~r unit and a storag~ processor· unit. ·These un1ts

5 inCOipOJ'.lte their own processors, and operate in parallel with a local Unix· host ~I'Cce~or.

All networks. are connected· to the net,;vork controller unit, wh..ich ~rforms al.Lprot6c.tii

processing .up through.the. NFs layer: Tne virtual fife .system is impl~mented'.;in::ille:fn¢
• ,f , '·.

control .unit, cmd the storage ·processor provides bigh-~peed multiplexed acCess to a1i arraY
of mass storage devices. the file oontroller'unit'~ntrol file information taching"th:i:Ough · ·

10 its own Iccal:cache 'buffer~ and controls disk data caching through a large.system ·nrertiocy ..
·, ::. -··

which is. aecessible on a bus by any of the processors .

Oracle Ex. 1002, pg. 1456

• • • <!\ • • •

••• •• a ~ ~~'•
0 • • •• -.------------.

!NET ttl I
HOST

I I CPU 128 MB

.:12. .,JJ I CARD MEMORY
') 1Q.. I I .16_ - r

SMD DISK
CONTROLLER 24

MMU I I
22

t• ~-!..

20
.l ·--.lL---.-----1.....----:.,c---,.-----_,._------x--,.. 32-BIT VME BUS

ETHER~ET #2 !NETWORK U2
I CONTROLLER

TAPE
CONTROLLER

SCSI ,. ['
29

HOS.T ..._L.-~
ADAPTER _.SCSI BUS

36 34 }0 _gg_

n ·62
<PRIOR. ART)

r;- t .. :G': · ··t:: r ·;L .. · ·,-.< .·

--,_.
N

Oracle Ex. 1002, pg. 1457

122o.
122c

122e
NETWORK

122g]CONTROLLER
1221o~.---+-f--t-

122d ~---1--+~
122-f ~----t--4

122h

4

I

i'

I
I

j

(" .. ,
) ,. ~

•
!r I

FILE

CONTROLLER

112b __r~ '
112o.

rr- .I· ·. -r:. . . 1)'­r ::: L::r •. _,.... ci: ·. ·

. ,. :.I
p I I .

• I I) .
(

• •. * w

.----
L,;...J.

.j
,

_,

STORAGE

'PROCESSOR

r--

LOCAL

HOST

. j

_,

114b

./114o.

·-.

~100

vue

rl:O
J

"--.. . . · · tllFJ 1.1;1·.-&±1, ·
· . . ,:. .· ... _. .. .·

. . ' >' \:~·:_,:; .~_-.:. · .••. : ·; _'~:·: ,:::·'.<?:.\~:')' ,. ' ,.. . .
·. -~:· .

. •. ~ ..-.-··:· . :.-:.. '~~ ·-~: .· . :;~ ·.:· -~·: ·>• _:, · ... : ~~-~- .. •·. . . ': •'!~. /< . :-' .

N -....... N

(}

lf\
J)
0
l/1. --
-~

-._f
'

Oracle Ex. 1002, pg. 1458

r-~- 210

.MP CPU
MEM
-r-

32

214

8

234- '
ETHERNET A

212

I I

LAN
CTLR

236
I

LAN
MEM

122o. --

1~ JBI~Dii} " /
BUF 254

-z--
16

--~t..
256

ETHERNET B LAN
CTLR

I
)

LAN
MEM
..,--

220

242 l

I LAN I

DMA
CT(..R

222

EPROM PROM

270

240

-~-_._1~-~~~2 2·
262 A' "- . ·•

LAN
DMA . 260

12~--cjo
16 . BI-DI w ~ v lf I ft.!

BUF ~ ,
16' cr;R 1 2s2 1 116 to

(16 . BIT

A 1 .· FifO

290
32 CMD

1
('

fiFO Cit ,
REG

....,_ 282
I . : -~~-~:.:._~.-~·· .

32 32.
..

212

RS232 r 1100.

224

... 16

I
I
I
I
I

278 1

·----~
'. : . il . . . I .. . i

272

VME
id. Abo BUS

.•.... EJCl.·t-a· •... (N~f,vbRK>· C(JNT~o~:LE;R) .
.. ~ /'"_;·:. ::-. : ·. •:'

1.. ··-· ., ... • ·:' :.· ... · .. -:. · :"-~·. . ::.-;" J.··· .:·:···.'.: .·.:_',-,,:; .:· ... , ·._..-. ;-.__·· : .·. '·· ;.,:; ·.• - .• ;.::<·.' .. _, j,.. · .. .-c·:. ·.:.. ..·

w -,..... N

Oracle Ex. 1002, pg. 1459

,__--c..__ 310

J.tP.

32

CPU
MEM
~

32

312

390

312_/

314

..... ~ ··~·
• • • • • $ oo •o•

• • • • • • • 0

• • • •o • • •• •

8

FC
MEM r- '-396

-r
32

.. ·~

320

.

PROM

392

PARALLEL
PORT

CMD I
6382

32
I

FIFO"' ; (

I 384 .,

RSZ3Z 326 I 112o.

324

380

I BI~Dti· !.3:2 ..

BUF.t

.. 32.

'376·
~ .. · ...

I. I v ,, ,Bl-Olj32 VME , .. Bur . •nus

.... ".

; ,• -:· . ·.·

.;:... -1-'
N

Oracle Ex. 1002, pg. 1460

• :. ••. -:· : ··=•~: ··!•·:···· ··-; ~ -:.=-:···=-=-:: ;.: : :· •..... . . •· . •. ·• : :... ' . :. : ~ . ~ ~-: .. ' ...•. •
. . . :··'" . ' '

...

510

SE)O ·
.·.,

• 584

32

VME/f"IFD D~A-,~:r·.L:R-·.l- ...
..· .

. -.

·::- . . . -~ ..

·I . . · •. . ·: . . ·.. ~ ··.

"!·

..........

· .. ·· ..
. :;"'.: .

..

'-" -..... N

Oracle Ex. 1002, pg. 1461

VME
nus
120

ps

'""-r

32 _.,
r

..a.

• • • • • • •

ll6n\
v -

32 BUr ,. ..

•

1fl.

TIMING ~610
CONTROL

.
o o6 o• • ••

614

l

.64•
. . J•

MUX. ~ ,

9
ECC ...; ·_,

r ,

I
. 622.

620

L

.-
MEMORY

ARRAY

(SYSTEM MEMORY>

L_ . ,:.r:-.: ... :~:.z.;_·. ·:·· .. 1····:· · ..
. F . :_:--' \;;J: I: :· .' .9. .·

... . ·: . .. ·· .•.. ·
'

: .··.,: .. ··
.'""· •.·

. ·. : ·~· ·-:··~ ... · .. , •• •• l,

.....

.: -~ .

· ... ' . . :·· ·~ ~: •' · .. ··: >._,... :.··- .. ~.~~ .. :~:~~ ... ~--~ ·::. :.-:'.: -~··. ~.:<--.;~.:~.~~-t". .. ···.·:_~· ::: :/;.::. ·.:_:.._:·:~~----:.:<.~ . .'.·.;·:.:·.~:~ .. ::·- .. ~--· · •. ·· .. · .. ·-~---·· .· ··.·.

J• -,_.
N

Oracle Ex. 1002, pg. 1462

.
•····
• •• • • 0

.
tl •••

.

. ····

... ,.
• 0 • . ..

MASTER

BROADCAST ADDRESS AND
ADDRESS M'DDIFIER,

DRIVE L \J.ORD •. LO\J
· AND• lACK• HlGH

~:.DRIVE AS:!! .:LD\.1 .

\JAIT UNTIL DTACKllE AND

"Jill

701

. BE:RR * A:RE: HIGH .

DRIVE DSOli LD\J.

DRIVE DSDI HIGH

PLACE NEXT DATA ON
DOO-D31

SLAVE

,. ~ . . .

, I:~,.··.! ,•

: ·~ ·. . .

. .. ;~ :.· .

·'. :~ ::

. .· .. ,·:
'' • •, • I:· ., • ., ..

\JAIT UNTIL ri·so:!i ~GOES· ...
HIGH TO ·L_ .. O_\rl: · ·::··<· ·. ·· ·

...:·

DATA FROM DOO-D3J

Oracle Ex. 1002, pg. 1463

..
' ...
• •
•• 0 •

.
• • .. .
•• • 0

····.
... . : .. .

• • . ..

. t

l· 735~.. , . . ;::. :: .. ·: ..
_

739
f· \.lRlTE DATi~· :lN;To:.: <..< ·

,.-----:---...;.·..._",..-----"r~ SE:LECTED .DE\liCE}AND'.':: · ,. · · ;·.
oRrvc: nso •· Lov . I' : .JNcRE:t-1E:NT nt:vtc·~···&~PR~$s >; :_ · ·
nR:IvE D~O~t :HIGH. ~ 74:.1 I 737:--:- •. ·.· · . ·. ·* ·-~·: : .. ·.}<~._./:·_· '.:; <_;

.., .. · · · \i/AJT. ·FOR· DSQ-IE · .. ,, : ·.· ..

I

I · tJlGH. To ~ov J&At>~~J·~~ON , . · ..•. •.·.· •···
r---------'--t--...:....------"'-·· ":fi~D!• •· .' :: .

-~ · r 745 1 743.~ . "'", -<.. . ,·.·· _:::'·:: : .
PLAcE NExT nATA oN I LATcH nATA F·RoM:·_t:1NEs .::_·- ·

DOO-. D3.1 DOO.;..:D.31 . · :· .. , • .. · . · I . ,_ .
I 74·9 ~ -. :-:;,:: . .

" r 747 I DR1VE DTAcK• cow , :
\JAIT UNTIL DTACK IE 751 ~ .• · . :.· .· .

HIGH TO LD\J TRANSITION I DRIVE DTACi< .. HlGH ' ...
.... 1 . .' . -:.. . . .

' 75"'1- .
I.J "' ~ I \JRlTE DATA lNlO

SELECTED DEVJCE ANn ':; I INcREMENI nEvlcE ADDRE·s~s ...

(TO FIG.-7C) (TO FlG.-7C)

Oracle Ex. 1002, pg. 1464

' •• •
I 00

• • • ••• •
I oo
I 0 0
.

.
o•••

•'* ••
• • • ~ ..

3/12

.COMPLETE NUMBER
OF· "CYCLES .REQUiRED

TO TRANSFER. ALL DATA
j·

RELEASE ADDRESS LINES;
ADDRtSS MODIFlER .LINES,

DATA llNES L\/DRD* , I I

D'Sdl1 AND IACt<• I . .

\./AlT FOR DT'ACK•
HIGH TO LO\J TRANSiTION

RELEASE AS!E

757

755
. . . •' . ~· .

' .·:··· . :

· .. ':.' .:,

759 ''

·DRIVE DlACK~JE 'Lf!:P#:·,: .:·: \

DRIVE DlACK*>Hi:tfi:·.' ..
•, : · .

Oracle Ex. 1002, pg. 1465

. •o• • "
• • • . •·

.
.
••• 4
.... . . .

. . .
.
• ••

MASTER

BROADCAST ADDRESS.
ADDRES~S MODIFIER AND .
DRIVE L\JORn'• LD\1

DRIVE AS* LO.\J

DRIVE \./RITE • HlGH

10/12

801

aos I
I
J

I
I
I
I
~
I

\JAlT UNTIL DTACK• AND I
BERR• ARE HIGH

~--------------~821 I
DRIVE nso• LD\J I

~----~~----~8231
DRIVE DSO • HIGH

SLAVE

. ··.:
~ .. · .·

. r· ··.
. -~

I

813-:'\ v ,· . ·.·· .
I RECEIVE VRJT£:• .1-a:i'GH . .''l

\JAIT UNTIL DTACK¥
HJGH TO LO\J TRANSITION

1 819
~------~------~

TO FIG.-8B

I
I
I

PLACE DATA ON LINES
DOO-D31

(TO FlG.-8B)

FIG.-BA

.. ..

. . ~

Oracle Ex. 1002, pg. 1466

..
0 ...

..

•
..
•• . ..
.. . . .

• •

ll/12

MASTER

c FRD.M. FlG.-BA)
,.

I
I
I

t. r-·831 I
LATCH LINES DATA "fROM· l .POO-D3i

+ ;--833 I
\JRlTE DATA lNTO I SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS I • -~:839
I D.RJVE nso·• LD\1

~- ~ 841 I
DRIVE DSO·• HIGH

I
r-843 I '

f 'WAIT UNT1L DTACK~
I I HIGH TO LO\J TRANSlTlDN

I
~ rs4s I

LATCH DATA FROM LINES I
DOO-D31

I

*
I

(TO FIG.-BC)

SLAVE

....

(FROM F1~:--:8A)··.
. :.
:

.,.

825, : ',; .•. --... ·' . ~· .. -;.;
. : ..

'.!·

DRIVE DTACK~·:· Lt]_Q:,;> :, :·:._·

827--.·. .. . ~: ,,:'.·' _: /: . ~:::. :·~
DRIVE DTA C.K~:, ·Hltt:{\;J ~~:·v

:.' ..
.. ..

: _-: ·: :; ·--~~ .. -. ·:.
: '. .. . ·. , ..

..

' I• •'

.· ..

': .· ... \ ·~:

" :'"

··.··.·.
;, ·. \ ·.: .· ·-829~ 1 ,\, ._

·.'

:

PLAC£ NEXT: ·.DATA:·-:iJN:<, :; >
.. LlNES ,:no:q.:..:iJ3.1/ ::_:; _:; ;:

835~
._ J) . - .. > ·//_:·

'WAIT F·oR· DSO_~~:-_{\;: ::
HIGH io LD\J TRANS1T10N ·

• • ••. '·• I._.,·,':!,,

·1 . ·. ~ ·.:.
• ·:· .. · :_: .1

. '•'

..

,.:
845 """\ 1 ,•

DRIVE
311: : '· -DT ACK .. LO\J ... ·: .:.··

847, ~
..
. '

' .

DRIVE DTACKJE .HI(SH:·:,:·
•'·•

'
849-----.. •

PLACE NEXT DA1A ON
LINES DOO-D31 : :

~
(TO FIG.-8C)

Oracle Ex. 1002, pg. 1467

\
···.\

. \

•• . .
• ...

. 0 ...
. :
•• ' . ,.
'

•,
1+0

0 • . .
.. . ..

ou • ...
... . :

\ I

\JRlTE DATA INTO
SELECTED· D'EVICE . .AND

INc'REMENT .·DEVrc~ · ADDRE.SS

12/12

851
FR.OM :.FI.G::-"".Bif·.·

CONTINUE DATA TRANSFER
CYCLES UNTIL DA:lA ...

HAS. ·BEEN TRANSFER.RED ·.

I
RELEASE' ADDRESS LINESI
ADDRESS. MODifiER LINES; ·

DATA ·tiNES, L\r/ORD•, ..
DSO-. .AND· IACH.• LINES ..

rss3
~------~~----~~

\./All FOR DTACK•
'HlGH TO L0\.1 TRANSITION

DRIVE AS lE HIGH

l c. 861 ...------lL--------'--,1
REI EASE AS3E .

855·.

DRIVE DTACK JfLO-\i .

:. ·.

.

Oracle Ex. 1002, pg. 1468

