
-- --

Kerberos: An Authentication Service for Open Network Systems

Jennifer G. Steiner

Project Athena

Massachusetts Institute of Technology

Cambridge, MA 02139

steiner@ATHENA.MIT.EDU

Clifford Neuman†

Department of Computer Science, FR-35

University of Washington

Seattle, WA 98195

bcn@CS.WASHINGTON.EDU

Jeffrey I. Schiller

Project Athena

Massachusetts Institute of Technology

Cambridge, MA 02139

jis@ATHENA.MIT.EDU

Introduction

This paper gives an overview of Kerberos ,
an authentication system designed by Miller and
Neuman1 for open network computing environ-
ments, and describes our experience using it at
MIT’s Project Athena.2 In the first section of the
paper, we explain why a new authentication
model is needed for open networks, and what its
requirements are. The second section lists the
components of the Kerberos software and
describes how they interact in providing the
authentication service. In Section 3, we describe
the Kerberos naming scheme.

Section 4 presents the building blocks of
Kerberos authentication − the ticket and the
authenticator . This leads to a discussion of the
two authentication protocols: the initial authenti-
cation of a user to Kerberos (analogous to
������������������
† Clifford Neuman was a member of the Project Athena staff during the design and initial implementation phase of Ker-
beros.

logging in), and the protocol for mutual authenti-
cation of a potential consumer and a potential
producer of a network service.

Kerberos requires a database of informa-
tion about its clients; Section 5 describes the data-
base, its management, and the protocol for its
modification. Section 6 describes the Kerberos
interface to its users, applications programmers,
and administrators. In Section 7, we describe
how the Project Athena Kerberos fits into the rest
of the Athena environment. We also describe the
interaction of different Kerberos authentication
domains, or realms ; in our case, the relation
between the Project Athena Kerberos and the
Kerberos running at MIT’s Laboratory for Com-
puter Science.

In Section 8, we mention open issues and
problems as yet unsolved. The last section gives

January 12, 1988

Petitioner Apple Inc. - Ex. 1045, p. 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 2 -

the current status of Kerberos at Project Athena.
In the appendix, we describe in detail how Ker-
beros is applied to a network file service to
authenticate users who wish to gain access to
remote file systems.

Conventions. Throughout this paper we
use terms that may be ambiguous, new to the
reader, or used differently elsewhere. Below we
state our use of those terms.

User, Client, Server. By user , we mean a
human being who uses a program or service. A
client also uses something, but is not necessarily
a person; it can be a program. Often network
applications consist of two parts; one program
which runs on one machine and requests a remote
service, and another program which runs on the
remote machine and performs that service. We
call those the client side and server side of the
application, respectively. Often, a client will
contact a server on behalf of a user .

Each entity that uses the Kerberos system,
be it a user or a network server, is in one sense a
client, since it uses the Kerberos service. So to
distinguish Kerberos clients from clients of other
services, we use the term principal to indicate
such an entity. Note that a Kerberos principal
can be either a user or a server. (We describe the
naming of Kerberos principals in a later section.)

Service vs. Server. We use service as an
abstract specification of some actions to be per-
formed. A process which performs those actions
is called a server . At a given time, there may be
several servers (usually running on different
machines) performing a given service . For exam-
ple, at Athena there is one BSD UNIX rlogin
server running on each of our timesharing
machines.

Key, Private Key, Password. Kerberos
uses private key encryption. Each Kerberos prin-
cipal is assigned a large number, its private key,
known only to that principal and Kerberos . In
the case of a user, the private key is the result of a
one-way function applied to the user’s password .
We use key as shorthand for private key .

Credentials. Unfortunately, this word has a
special meaning for both the Sun Network File
System and the Kerberos system. We explicitly
state whether we mean NFS credentials or Ker-
beros credentials, otherwise the term is used in
the normal English language sense.

Master and Slave. It is possible to run Ker-
beros authentication software on more than one

machine. However, there is always only one
definitive copy of the Kerberos database. The
machine which houses this database is called the
master machine, or just the master . Other
machines may possess read-only copies of the
Kerberos database, and these are called slaves .

1. Motivation

In a non-networked personal computing
environment, resources and information can be
protected by physically securing the personal
computer. In a timesharing computing environ-
ment, the operating system protects users from
one another and controls resources. In order to
determine what each user is able to read or
modify, it is necessary for the timesharing system
to identify each user. This is accomplished when
the user logs in.

In a network of users requiring services
from many separate computers, there are three
approaches one can take to access control: One
can do nothing, relying on the machine to which
the user is logged in to prevent unauthorized
access; one can require the host to prove its iden-
tity, but trust the host’s word as to who the user
is; or one can require the user to prove her/his
identity for each required service.

In a closed environment where all the
machines are under strict control, one can use the
first approach. When the organization controls
all the hosts communicating over the network,
this is a reasonable approach.

In a more open environment, one might
selectively trust only those hosts under organiza-
tional control. In this case, each host must be
required to prove its identity. The rlogin and rsh
programs use this approach. In those protocols,
authentication is done by checking the Internet
address from which a connection has been esta-
blished.

In the Athena environment, we must be
able to honor requests from hosts that are not
under organizational control. Users have com-
plete control of their workstations: they can
reboot them, bring them up standalone, or even
boot off their own tapes. As such, the third
approach must be taken; the user must prove
her/his identity for each desired service. The
server must also prove its identity. It is not suffi-
cient to physically secure the host running a net-
work server; someone elsewhere on the network
may be masquerading as the given server.

Our environment places several

January 12, 1988

Petitioner Apple Inc. - Ex. 1045, p. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 3 -

requirements on an identification mechanism.
First, it must be secure. Circumventing it must be
difficult enough that a potential attacker does not
find the authentication mechanism to be the weak
link. Someone watching the network should not
be able to obtain the information necessary to
impersonate another user. Second, it must be reli-
able. Access to many services will depend on the
authentication service. If it is not reliable, the
system of services as a whole will not be. Third,
it should be transparent. Ideally, the user should
not be aware of authentication taking place.
Finally, it should be scalable. Many systems can
communicate with Athena hosts. Not all of these
will support our mechanism, but software should
not break if they did.

Kerberos is the result of our work to satisfy
the above requirements. When a user walks up to
a workstation s/he ‘‘logs in’’. As far as the user
can tell, this initial identification is sufficient to
prove her/his identity to all the required network
servers for the duration of the login session. The
security of Kerberos relies on the security of
several authentication servers, but not on the sys-
tem from which users log in, nor on the security
of the end servers that will be used. The authenti-
cation server provides a properly authenticated
user with a way to prove her/his identity to
servers scattered across the network.

Authentication is a fundamental building
block for a secure networked environment. If, for
example, a server knows for certain the identity
of a client, it can decide whether to provide the
service, whether the user should be given special
privileges, who should receive the bill for the ser-
vice, and so forth. In other words, authorization
and accounting schemes can be built on top of the
authentication that Kerberos provides, resulting
in equivalent security to the lone personal com-
puter or the timesharing system.

2. What is Kerberos?

Kerberos is a trusted third-party authentica-
tion service based on the model presented by
Needham and Schroeder.3 It is trusted in the
sense that each of its clients believes Kerberos’
judgement as to the identity of each of its other
clients to be accurate. Timestamps (large
numbers representing the current date and time)
have been added to the original model to aid in
the detection of replay . Replay occurs when a
message is stolen off the network and resent later.
For a more complete description of replay, and
other issues of authentication, see Voydock and

Kent.4

2.1. What Does It Do?

Kerberos keeps a database of its clients and
their private keys . The private key is a large
number known only to Kerberos and the client it
belongs to. In the case that the client is a user, it
is an encrypted password. Network services
requiring authentication register with Kerberos ,
as do clients wishing to use those services. The
private keys are negotiated at registration.

Because Kerberos knows these private
keys, it can create messages which convince one
client that another is really who it claims to be.
Kerberos also generates temporary private keys,
called session keys , which are given to two
clients and no one else. A session key can be
used to encrypt messages between two parties.

Kerberos provides three distinct levels of
protection. The application programmer deter-
mines which is appropriate, according to the
requirements of the application. For example,
some applications require only that authenticity
be established at the initiation of a network con-
nection, and can assume that further messages
from a given network address originate from the
authenticated party. Our authenticated network
file system uses this level of security.

Other applications require authentication of
each message, but do not care whether the content
of the message is disclosed or not. For these,
Kerberos provides safe messages . Yet a higher
level of security is provided by private messages ,
where each message is not only authenticated, but
also encrypted. Private messages are used, for
example, by the Kerberos server itself for send-
ing passwords over the network.

2.2. Software Components

The Athena implementation comprises
several modules (see Figure 1). The Kerberos
applications library provides an interface for
application clients and application servers. It
contains, among others, routines for creating or
reading authentication requests, and the routines
for creating safe or private messages.

January 12, 1988

Petitioner Apple Inc. - Ex. 1045, p. 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 4 -

� Kerberos applications library
� encryption library
� database library
� database administration programs
� administration server
� authentication server
� db propagation software
� user programs
� applications

Figure 1. Kerberos Software Components.

Encryption in Kerberos is based on DES,
the Data Encryption Standard.5 The encryption
library implements those routines. Several
methods of encryption are provided, with trade-
offs between speed and security. An extension to
the DES Cypher Block Chaining (CBC) mode,
called the Propagating CBC mode, is also pro-
vided. In CBC, an error is propagated only
through the current block of the cipher, whereas
in PCBC, the error is propagated throughout the
message. This renders the entire message useless
if an error occurs, rather than just a portion of it.
The encryption library is an independent module,
and may be replaced with other DES implementa-
tions or a different encryption library.

Another replaceable module is the database
management system. The current Athena imple-
mentation of the database library uses ndbm ,
although Ingres was originally used. Other data-
base management libraries could be used as well.

The Kerberos database needs are straight-
forward; a record is held for each principal, con-
taining the name, private key, and expiration date
of the principal, along with some administrative
information. (The expiration date is the date after
which an entry is no longer valid. It is usually set
to a few years into the future at registration.)

Other user information, such as real name,
phone number, and so forth, is kept by another
server, the Hesiod nameserver.6 This way, sensi-
tive information, namely passwords, can be han-
dled by Kerberos , using fairly high security
measures; while the non-sensitive information
kept by Hesiod is dealt with differently; it can,
for example, be sent unencrypted over the net-
work.

The Kerberos servers use the database
library, as do the tools for administering the data-
base.

The administration server (or KDBM
server) provides a read-write network interface to

the database. The client side of the program may
be run on any machine on the network. The
server side, however, must run on the machine
housing the Kerberos database in order to make
changes to the database.

The authentication server (or Kerberos
server), on the other hand, performs read-only
operations on the Kerberos database, namely, the
authentication of principals, and generation of
session keys. Since this server does not modify
the Kerberos database, it may run on a machine
housing a read-only copy of the master Kerberos
database.

Database propagation software manages
replication of the Kerberos database. It is possi-
ble to have copies of the database on several dif-
ferent machines, with a copy of the authentication
server running on each machine. Each of these
slave machines receives an update of the Ker-
beros database from the master machine at given
intervals.

Finally, there are end-user programs for
logging in to Kerberos , changing a Kerberos
password, and displaying or destroying Kerberos
tickets (tickets are explained later on).

3. Kerberos Names

Part of authenticating an entity is naming it.
The process of authentication is the verification
that the client is the one named in a request.
What does a name consist of? In Kerberos , both
users and servers are named. As far as the
authentication server is concerned, they are
equivalent. A name consists of a primary name,
an instance, and a realm, expressed as
name.instance@realm (see Figure 2).

bcn
treese.root

jis@LCS.MIT.EDU
rlogin.priam@ATHENA.MIT.EDU

Figure 2. Kerberos Names.

The primary name is the name of the user
or the service. The instance is used to distinguish
among variations on the primary name. For
users, an instance may entail special privileges,
such as the ‘‘root’’ or ‘‘admin’’ instances. For
services in the Athena environment, the instance
is usually the name of the machine on which the
server runs. For example, the rlogin service has
different instances on different hosts:

January 12, 1988

Petitioner Apple Inc. - Ex. 1045, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 5 -

rlogin.priam is the rlogin server on the host
named priam. A Kerberos ticket is only good for
a single named server. As such, a separate ticket
is required to gain access to different instances of
the same service. The realm is the name of an
administrative entity that maintains authentication
data. For example, different institutions may
each have their own Kerberos machine, housing a
different database. They have different Kerberos
realms. (Realms are discussed further in section
8.2.)

4. How It Works

This section describes the Kerberos authen-
tication protocols. The following abbreviations
are used in the figures.

c -> client
s -> server
addr -> client’s network address
life -> lifetime of ticket
tgs, TGS -> ticket-granting server
Kerberos -> authentication server
KDBM -> administration server
Kx -> x’s private key
Kx,y -> session key for x and y
{abc}Kx -> abc encrypted in x’s key
Tx,y -> x’s ticket to use y
Ax -> authenticator for x
WS -> workstation

As mentioned above, the Kerberos authentication
model is based on the Needham and Schroeder
key distribution protocol. When a user requests a
service, her/his identity must be established. To
do this, a ticket is presented to the server, along
with proof that the ticket was originally issued to
the user, not stolen. There are three phases to
authentication through Kerberos . In the first
phase, the user obtains credentials to be used to
request access to other services. In the second
phase, the user requests authentication for a
specific service. In the final phase, the user
presents those credentials to the end server.

4.1. Credentials

There are two types of credentials used in
the Kerberos authentication model: tickets and
authenticators . Both are based on private key
encryption, but they are encrypted using different
keys. A ticket is used to securely pass the iden-
tity of the person to whom the ticket was issued
between the authentication server and the end

server. A ticket also passes information that can
be used to make sure that the person using the
ticket is the same person to which it was issued.
The authenticator contains the additional informa-
tion which, when compared against that in the
ticket proves that the client presenting the ticket is
the same one to which the ticket was issued.

A ticket is good for a single server and a
single client. It contains the name of the server,
the name of the client, the Internet address of the
client, a timestamp, a lifetime, and a random ses-
sion key. This information is encrypted using the
key of the server for which the ticket will be used.
Once the ticket has been issued, it may be used
multiple times by the named client to gain access
to the named server, until the ticket expires. Note
that because the ticket is encrypted in the key of
the server, it is safe to allow the user to pass the
ticket on to the server without having to worry
about the user modifying the ticket (see Figure 3).

{s, c, addr, timestamp, life, Ks,c}Ks

Figure 3. A Kerberos Ticket.

Unlike the ticket, the authenticator can only
be used once. A new one must be generated each
time a client wants to use a service. This does not
present a problem because the client is able to
build the authenticator itself. An authenticator
contains the name of the client, the workstation’s
IP address, and the current workstation time. The
authenticator is encrypted in the session key that
is part of the ticket (see Figure 4).

{c, addr, timestamp}Ks,c

Figure 4. A Kerberos Authenticator.

4.2. Getting the Initial Ticket

When the user walks up to a workstation,
only one piece of information can prove her/his
identity: the user’s password. The initial
exchange with the authentication server is
designed to minimize the chance that the pass-
word will be compromised, while at the same
time not allowing a user to properly authenticate
her/himself without knowledge of that password.
The process of logging in appears to the user to
be the same as logging in to a timesharing system.
Behind the scenes, though, it is quite different
(see Figure 5).

January 12, 1988

Petitioner Apple Inc. - Ex. 1045, p. 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

