
Petitioner Apple Inc. - Ex. 1030, p. 1

.‘|u1=:uvL::1L'L::-:«.:,u..r-.-: SOCKS

David Koblas

Independent Consultant]

koblas@sgi.com

Michelle R. Koblas

Computer Sciences Corporation
NASA Ames Research Center

mkoblas@nas.nasa.gov

Abstract

This paper presents the Socks package, an Internet socket service consisting of client library routines and a
daemon which interact through a simple protocol to provide convenient and secure network connectivity
through a firewall host. Client software applications can be easily modified to utilize the Socks library
routines in place of the normal socket library calls such that all outgoing connections will go through the
Socks daemon (sockd) running on the firewall host. We will review several methods for setting up secure
environments and then explain the detailed mechanisms of the Socks package. A current implementation
will also be briefly discussed along with experiences with it.

1.0 Introduction

Security is a major consideration when connecting a network to the Internet. One of the more important
issues which must be addressed is intruders attempting to gain access to local hosts. A common method for
preventing these types of intrusions is to install a “firewall”, a single point of attachment to the Internet

which can be made highly secure. This paper presents the Socks library and daemon package. Using this
package in conjunction with a network application (such as ftp) allows users convenient access to the

resources of the Internet through a firewall hosts, while preventing unwanted intrusion. Although there are
several possibilities for the setup of a firewall, the Socks package presents a simple, vendor-independent and
unique solution which poses the least inconvenience for local users and maintains the integrity of the
firewall.

1.1 Potential Solutions

This section will briefly review several strategies which can be used to configure an Internet connection to
prevent unwanted intrusion and the advantages and disadvantages of each. The following solutions are
presented:

0 Having two sets of hosts -- secre (isolated) and non-secure (those connected to the Internet).

1. Developed while employed at MIPS Computer Systems, Inc.

Petitioner Apple Inc. - Ex. 1030, p. 1
77USENIX Association UNIX Security Symposium

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Apple Inc. - Ex. 1030, p. 2

.a:1:‘‘‘‘‘T7 §Zf\L'I;l;::-.v...:r-..«—.':1L":

Petitioner Apple Inc. - Ex. 1030, p.78
USENIX Association

0 Setting up a firewall host which users have accounts on and allowing traffic to and from this host, but not
allowing any traffic to pass through it.

0 Utilizing router filtering such that only certain hosts/ports can connect to the firewall from the external
network.

0 Setting up a firewall host which uses the Socks package such that users are not required to have accounts
on this host.

The most simple and obvious method for providing a completely secure environment is to have two sets of

hosts: secure and non-secure. Secure hosts have no Internet access and operate only on an isolated network
within their environment. Non-secure hosts are those which are connected to the Internet and

communication between these hosts and secure hosts must be done manually (e.g. via tape). This method
has the disadvantage of being cumbersome and inconvenient to the user. However, since the non-secure
hosts should not have critical or vital information, security maintenance can be minimal.

To provide slightly more convenient access to the Internet, another alternative for secure access is to have a
firewall host which does not allow any traffic to pass through (i.e. it doesn’t route traffic), but will allow both
incoming and outgoing connections. Users would have accounts on this host and could access the Internet

only when logged in here. For example, in Figure 1, if a user wanted to transfer a file from host A to host X,
s/he would first have to transfer the file from A to the firewall host and then log into the firewall and transfer
the file to host X. This solution is still not optimal in terms of user convenience, but has the advantage that
security intrusions are limited to a single point of access. Unfortunately, the number of users requiring
access to this host makes maintaining the security a difficult task.

FIGURE 1. Firewall Gateway Physical Connectivity

Removing the firewall host and replacing it with a router which can filter packets based on their source/
destination host and port addresses can also be used to provide secure access. A reasonable filtering scheme
is to allow all outbound traffic, but prohibit inbound traffic to low numbered TCP ports (i.e. less than 1O24)2.
This solution is very convenient for users who can now have Internet services directly available from their
own workstations, but prohibits unwanted external access. A major problem with this design, however, is
that if security on the router is compromised, all hosts on the internal network are then wide open to the
Internet.

Since none of these solutions appear to be ideal, the Socks package was created to attempt to provide the
best features of these methods, while keeping security problems and maintenance to a minimum. Socks

2. Ports less than 1024 are reserved for well-known network services (i.e. finger, ftp, telnet); ports greater
than this are allocated as needed by the UNIX operating system and this is generally where outbound port
numbers are obtained. ’

UNIX Security Symposium

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Apple Inc. - Ex. 1030, p. 3

2

automates the process of having a firewall host which is utilized as a transient point for Internet access,

making the firewall host a much more convenient security strategy, while still limiting the possibility of
security intrusions to a single point of direct Internet connectivity. Although Socks does not enhance the

security of the host it runs on, the simplicity and convenience of the Socks package, along with the lack of
maintenance required, make it a better mechanism for securing Internet accessibility through a firewall and
providing a more secure access method to the local network in general.

2.0 The Socks Package

From the point of view of a user behind the firewall host (i.e. within the local area network), there is no
apparent difference between running Socks and the regular client software on a host. All connections at the

application level will appear to work the same, with the hidden difference that all traffic is passing through
sockd on the firewall host. This transparency is achieved through the Socks library routines which
applications use in place of the normal socket library calls.

2.1 The Socks Library

The Socks library calls establish connections to sockd on the firewall and transmit information such that the

daemon may perform the operation as if it was originating the request. Any data the daemon receives from

the external connection will then be passed on to the original requestor (i.e. to the internal host, everything
appears as usual, but to the external host, the daemon appears as the originator of the communication).

The Socks library routines are designed to propagate all network connections to the Socks daemon running
on the firewall. The functions provided are designated by an “R” preceding the name of the normal C library
socket calls which they are replacing (e.g. connect0 becomes Rconnect()). See Table 1 for a complete list of
these functions. The Socks routines take the same parameters as the original functions (with the exception of
Rbind).

TABLE 1. Socks Library Routines

 Etincfinnllarameters

Rconnect (int socket, struct sockaddr *name, int namelen)

 Rbind (int socket, struct sockaddr *name, int namelen, struct sockaddr *remote)

Rlisten (int socket, int backlog)

 Rgetsockname (int socket, st:ruct sockaddr *name, int *namelen)

(int socket, struct sockaddr *addr, int *addrlen) Raccept

Rbind0’s additional parameter is the address of the remote host from which the connection will be
established such that the daemon can refuse other, possibly hostile, connections.

2.2 The Socks Protocol

The protocol used between the Socks library routines and the daemon running on the firewall simply
consists of two commands:

CONNECT <ip_address> <po1t number> <usemame>

BIND <ip_address> <usemame>

UNIX Security Symposium
Petitioner Apple Inc. - Ex. 1030, p. 3

USENIX Association 79
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Apple Inc. - Ex. 1030, p. 4

The CONNECT command requests that the daemon establish an outbound connection to the given address
and port number, while BIND requests an inbound connection expected from the given external address. The
usemame field is a string passed from the requesting host to sockd, containing the requestor’s usemame for
the purposes of logging.

2.3 Sockd

The Socks daemon (sockd) is started by inetd on a firewall host and accepts connections only from approved
hosts (as determined through a configuration file, discussed in section 3.1). Applications running on these
hosts may utilize the Socks library routines, presented in section 2.1, to communicate with the daemon. All

attempts to establish connections are logged with both usemame and originating host and the daemon
performs either of the actions requested through the Socks protocol: CONNECT or BIND and operates as a
transient point for socket connections (see Figure 2 for an example of how a typical writeO to a Socks socket
would appear).

FIGURE 2. Sockd as a transient socket server

ii i S.o_d<_d

Write to socket -A Read from incoming socket

1
Write to outbound socket -:5 Read from socket

CONNECT request are originated by a call to Rconnect0 on the internal host and cause the daemon to

establish a connection to the remote host and return a success or fail response. At this point, the application
can then read and write to the socket connection to the firewall and sockd will simply act as a bridge between
the local and external socket connections. Refer to Figure 3 for an example of how the CONNECT request
works.

FIGURE 3. CONNECT Request

Client Application

93 Internal H951; S_Q_c1<_d

Rconnecto request ———> Validate connecting host

1
Connect to remote host —-——> Establish connection

/
Return success or failure

Application continues‘/

BIND requests are slightly more complicated, but follow the same principle idea. Figure 4 shows an
example of this process. The sequence of events begins when RbindO connects to sockd which binds a new

socket connection to a free port on the firewall. If successful, sockd returns the firewall port to which this
connection was bound. The daemon then assumes that a bind command will be followed by 1isten0 and
accept0 and performs these actions. The client can then call Rlisteno, a stub routine which always returns

Petitioner A le Inc. - Ex. 1030, p. 4
80 UNIX Security Symposium USENIX Association
 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Apple Inc. - Ex. 1030, p. 5

I

l
l

successfully. The next caH, to Raccept0, waits for a second packet from the daemon, containing the remote
host address and port from which a connection was established. This second packet can also return a failure
which might be caused by either a resource failure or a connection received from a ditferent host than

specified in the BIND request. Now the connection is in a state such that all reads and writes to the socket

will pass through the firewall between the internal and remote hosts.

FIGURE 4. BIND Request

Client Application

9.n.Int.er:n.aLH.ost S.Qcl<_d

Rbind() request —j._p Validate connecting host

1
Bind to a local port on the firewall

l
Return local port binding

l
Listen on the bound portHandle bind information Connect to firewall

R1isten() on the port Accept connection 4/

Rlisten returns Validate the remote host

1 l
Raccept0 my Return the remote address & port

APD1ication continues 4/

3.0 Implementation

The Socks package has been implemented at MIPS Computer Systems, Inc., where there is a single host
which connects to the Internet. Client applications which have been modified to work with the Socks library
include ftp, telnet, finger, and whois. These applications have been renamed rftp, rtelnet, rfinger, and rwhois,
respectively. This section will look at the issues involved in setting up the Socks package.

3.1 Configuration File Format

The configuration file is located on the firewall host and is used by sockd when determining whether to
accept or deny requests. The file is parsed from beginning to end, with the first fully matching line returning
the accessibility. The syntax of the lines in this file is as follows:

{permit I deny] <source-host> <mask> [<dest-host> <mask> [<operator> <port>]]

Lines begin with either “permit” or “deny” following which are either 2, 4, or 6 fields, containing host
address and mask pairs for source and destination, as well as a boolean operator and a service port. The host
address and mask pairs are based on the syntax used by Cisco, Inc. routers and may appear backwards to

UNIX Security Symposium

Petitioner Apple Inc. - Ex. 1030, p. 5
USENIX Association 81

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

