

NETAPP EXHIBIT 1002

PART 3

NetApp Ex. 1002, pg. 1201

“K)9UW3fl
PCFIUS90/0471 1

-80-

To commence the transfer of the next segment of the
block of data to be transferred, the master drives
DSO* low 739 and, after a predetermined period of
time, drives Ds0* high 741. '.In response to the

transition of Ds0* from high to low, respectively 739
and 741, the slave latches the data being broadcast by
the master over data lines D00 through D31, 743. The

745, and

awaits receipt of a DTACK* signal in the form of a
high to-low transition, 747.

The slave then drives DTACK* low, 749, and,

a predetermined period of time, drives DTACK* high,
751. The data_1atched by the slave, 743,

to the device selected to store the data and the
device address is incremented 753.

after

is written

The slave waits

for another transition of Ds0* from high to low 737.

After all-

the master will

address modifier lines,

data lines, IACK* line, LWORD* line and DSO* line,
755. "The master will then wait for 5

DTACK* high to low transition 757. The slave will

drive DTACK* low, 759 and, after a predetermined
period of time, drive DTACK* high 761. In response to
the receipt of the DTACK* high to low transition, the

master will drive As* high 763 and then release the
As* line 765.

8, A through C,

illustrating the operations involved in accomplishing
the fast transfer protocol BLOCK READ cycle. To
initiate-a BLOCK READ cycle, the master broadcasts the
memory address of the data to be transferred and the

address modifier across the DTB bus 801. The master

sussnnne sum 7

receipt of a

Fig. parts is a flowchart

NetApp Ex. 1002, pg. 1202

\N()91/03788 PC!‘/US90l0471 1

-81-

drives the LWoRD* signal_low and the IACK* signal high
801.

indicates to the slave module that the fast transfer

As noted previously, a special address modifier

‘protocol will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the

address and the address modifier broadcast by the

master across the bus and receive LWORD* low and IACK*

high 803. shortly after broadcasting the address and

address modifier 801, the master drives the AS* signal

low 805.

807.

will participate in the data transfer by determining

The slave modules receive the AS* low signal

Each slave individually determines whether it

whether the broadcasted address is valid for the slave

If the address is not valid, the

data transfer does not involve that particular slave

in question 809.

and it ignores the remainder of the data transfer

cycle. ‘

The master drives WRITE* high to indicate that the

transfer cycle about to occur is a READ operation 811.

The slave receives the WRITE* high signal 813 and,

knowing that the data transfer operation is a READ
operation, places the first segment of the data to be

transferred on data lines D00 through D31 819. The
master will wait until both DTACK* and BERR* are high

818, which indicates that the previous slave is no

longer driving the DTB.

The raster then drives DSO* low 821 and, after a

predete mined interval, drives DSO* high 823.

master then awaits a high to low transition on the

DTACK* signal line 824. 8B, the

slave then drives the DTACK* signal low 825 and, after

a predetermined period of time, drives the DTAcK*
signal high 827.

In response to the transition of DTACK* from high

As shown in Fig.

to low, respectively 825 and 827, the master latches’
the data being transmitted by the slave over data

SUBSTITUTE SHEET

The »

NetApp Ex. 1002, pg. 1203

u«)9um3nw

.of time, drive DTACK* high 857.

PCT/US90l047ll

-82-

lines ubo through D31, 331. The data latched by the
master, 831, is written to a device, which has been

selected to store_ the data the device address is
incremented 833. '

The slave places the next segment of the data to be

transferred on data lines D00 through D31, B29, and

then waits for another transition of Ds0* from high to
low 837. ‘

To commence the transfer of the next segment of the

block of data to be transferred, the master drives

DSO* low 839 and, after a predetermined period of

time, drives DSO* high 841. The master then waits for

the DTACK* line to transition from high to low, 843.

_The slave drives DTACK* low, 845, and, after a
predetermined period of time, drives DTACK* high, 847.

In response to the transition of DTACK* from high to
low, respectively 839 and 841, the master latches the

data being transmitted by the slave over data lines

D00 through D31, 845. The data latched by the master,

845, is written to the device selected to store the

data, 851 in Fig. 8C, is

incremented. The slave places the next segment of the

data to be transferred on data lines D00 through D31,

849. p

The transfer of data will continue in the above-

described manner until all of the data to be

transferred from the slave to the master has been

written into the device selected to store the data.

After all of the data to he transferred has been

the master will

release the address lines, address modifier lines,
data_lines, the IhCK* line, the LWORD line and DSO*

line 852. The master will then wait for receipt of a

DTACK* high to low transition 853. The slave will

drive DTACK* low 855 and, after a predetermined period

and the device address

written into the storage device,

In response to the

suflstnurz sum

NetApp Ex. 1002, pg. 1204

W0 91/03788 PCT/US90/0471]

-33-

receipt of the DTACK* high to low transition, the

master will drive AS* high 859 and release the AS*
line 861.

To the fast
conventional 64 mA tri-state driver is substituted for

the 48 mA open collector driver conventionally used in

VME slave modules to drive DTACK*. Similarly, the

implement transfer protocol, a

conventional VMEbus data drivers are replaced with 64
The latter

modification reduces the ground lead inductance of the

mA tri—state drivers in SO-type packages.

itself thus, reduces

“ground bounce“ effects which contribute to

DSO* and DTACK*, In addition,

return inductance along the bus backplane is reduced

actual driver package and,
skew

between data, signal

by using a connector system having a greater number of

ground pins so as to minimize signal return and mated-

pair pin inductance. One such connector system is the
Model No. 420-8015-

OOO, manufactured by Teradyne Corporation.
I

“High Density Plus” connector,

NetApp Ex. 1002, pg. 1205

wo 91/03788 A ' ‘ PCI‘/US90/04711"

The parity FIFOs 240, 260 and 270 (on the network

.control1ers 110), and 544 and 554 (on storage

processors 114) are each implemented as an ASIC. All

the parity FIFOs are identical. and are configured on

power-up or-during normal operation for the particular

function desired. The parity FIFO is designed to

allow speed matching between buses of different speed,

and to perform the parity generation and correction

for the parallel SCSI drives.

The FIFO comprises two bidirectional data ports,

Port A and Port B, with 35 x 64 bits of RAM buffer

between them. Port A is 8 bits wide and Port B is 32

bits wide. The RAM buffer is divided into two parts,

each 36 x 32 bits, designated RAM X and RAM Y. The

two ports Vaccess different halves of the buffer

alternating to the other half when available. When

the chip is configured as a parallel parity chip (e.g.

one of the~FIFOs 544 on SP 114a), all accesses on Part

B are monitored and parity is accumulated in RAM X

and RAM Y alternately.

The chip also has a CPU interface, which may be 8

or 16 bits wide. In 16 bit mode the Port A pins are

used as the most significant data_hits of the CPU

interface and are only actually used when reading or

writing to the Fifo Data Register inside the chip.

A REQ, ACK handshake is used for data transfer on

both Ports A and.B. The chip may be configured as

either a master or a slave on Port A in the sense

that, in master_mode the Port A ACK / RDY output

signifies that the chip is ready to transfer data on

Port A, and the Port A REQ input specifies that the

slave is responding. In slave made, however, the Port

A RBQ input specifies that the master requires a data

8!JB§I!TllTE SHEET

NetApp Ex. 1002, pg. 1206

WO 91/03788 PCTIUS90l0471 1

-55-

transfer, and the chip responds with Port A ACK / RDY

when data is available. The chip is a master on Port

E since it raises Port B REQ and waits for Port BACK

to indicate completion of the data transfer.

§lfiNAL_DE§§Bl2IIQN§

Port A 0-7, P

Port A is the 8 bit data port. Port A P, if used,

is the odd parity bit for this port.

A Req, A Ack/Rdy

These two signals are used in the data transfer

mode to control the handshake of data on Port A.

u? Data 0-7, uP Data P, uPAdd o-2, cs

These signals are used by a microprocessor to

address the programmable registers within the chip.

The odd parity signal uP Data P is only checked when

data is written to the Fifo Data or Checksum Registers

and microprocessor parity is enabled.

Clk

The clock input is used to generate some of the

chip timing. It is expected to be in the lD—20 Mhz
range.

Read En, Write En

During microprocessor accesses, while CS is true,

the direction of the

During data transfers in the

these signals determine

microprocessor accesses.

WD mode these signals are data 'strobes used in
conjunction with Port A Ack. '

SUBSHTUTE SHEET

NetApp Ex. 1002, pg. 1207

W0 91/03788

isimple FIFO chip.

PCTIUS90/0471 1

-35-

Port 3 60-07, 10-17, 20-27, 30-37,

Port B is a 32 bit data port.

Port B OP is the parity of

0P—3P

There is one odd

parity bit for each byte.

bits 00-07, PortB 1P is the parity of bits 10-17, Port-

B 2P is the parity of bits 20-27, and Port 3 3P is the

parity of bits 30-37.

B select, B Reg, B Ack, Parity Sync, B Output Enable

These signals are used in the data transfer mode to

control the handshake of data on Port B. Port B Reg

and Port B Ack are both gated with Port 3 Select.

The Port B Ack signal is used to strobe the data on
the Port B data lines.

used to indicate to a chip configured as the parity

chip to indicate that-the last words of data involved

in the parity accumulation are on Port B. The Port P
data lines will only be driven by the Fifo chip if all

of the following conditions are met:
a. the

b. the

c. the Port B output enable signal is true; and
d. the

or it is in parity correct mode and
.Sync signal is true.

The parity sync signal is

data transfer is from Port A to Port 8;

Port 8 select signal is true;

chip is not configured as the parity chip
the Parity

Reset

This signal resets all the registers within the

chip and causes all bidirectional pins to be in a high

impedance state}

DEE§BIEI1QN_QE_QEEEAILQfl

' ugrmaL_gpg;a:ign. Normally the chip acts as a

A FIFO is simulated by using two

RAM buffers in a simple ping-pong mode. It is

intended, but not mandatory, that data is burst into

or out of the FIFO on Port B. This is done by holding

Port B Sel signal low and pulsing the Port B Ask
signal. When transferring data from Port B to Port A,

gusgrnute sum s

NetApp Ex. 1002, pg. 1208

W0 91/03788 PCl'/US90/047I 1

-37..

data is first written into RAM X and when this is

full, the data paths will be switched such that Port

8 may start writing to RAM Y. Meanwhile the chip will

begin emptying RAM X to Port A. When RAM Ylis full

and RAM X empty the data paths will be switched again
such that Port B may reload RAM X and

empty RAM Y. V

 . This is the default mode and

the chip is reset to this condition. In this mode the

chip waits for a master such as one of the SCSI

adapter chips 542 to raise Port A Request for data

If data is available the Fifo chip will

respond with Port A Ack/Rdy.

_ .22z;_A_flQ_Mg§§. The chip may be configured to run

in the WD or Western Digital mode. In this mode the
chip must be configured as a slave on Port A. It

differs from the default slave mode in that the chip

responds with Read Enable Enable as

appropriate together with Port A Ack/Rdy. This mode
is intended to allow the chip to be interfaced to the

Western Digital 33C93A SCSI chip or the NCR 53C9O SCSI

chip.

£grt_A_Ma§;gr;Mg§e. When the chip is configured as

a master, it will raise Port A Ask/Rdy when it is

ready for data transfer.

transfer.

or Write

This signal is expected to

be tied to the Request input of a DMA controller which

will respond with Port A Req when data is available.

the

Port A Ack/Rdy signal will only be negated after every

In order to allow the DMA controller to burst,

8 or 16 bytes transferred.

mode, the chip is configured to be the parity chip for

a parallel transfer from Port 3 to Port A.- In this

mode,

In parallel write

when Port B select and Port 8 Request are

asserted, data is written into RAM X or RAM Y each

time the Part B Ack signal is received. For the first

8_U_B_S_TlTUTE SHEET l

Port A may

NetApp Ex. 1002, pg. 1209

WO 91/03788

V not performed.

PCT/US90l0471l

-33-

block of 128 bytes data is simply copied into the

selected RAM. The next 128 bytes driven on Part B will

be exclusive-ORed with the first 128 bytes. This

procedure will be repeated for all drives such that
The Parity

Sync signal should be asserted to the parallel chip

together with the last block of 128 bytes. This

enables the chip to switch access to the other RAM and

start accumulating a new 128 bytes of parity. '

 .This mode

is set if all drives are being read and parity is to
be checked. ‘

the Data Transfer Configuration Register is not set.

The parity chip will first read 128 bytes on Port A as

in a normal read mode and then raise Port B Request.

While it has this

monitor the Port B Ack signals and exclusive-or the

data on Port B with the data in its selected RAM. The

Parity Sync should again be asserted with the last

block of 128 bytes. In this mode the chip will not

drive the Port B data lines but will check the output

If any bits are

the parity is accumulated in this chip.

In this case the Parity Correct bit in

signal .asserted the chip will

of its exclusive-or logic for zero.

set at this time a parallel parity error will be

flagged.

R2rL_E_2arallel_3aad_M9da_;_§2rra2t_Data. This

mode is set by setting the Parity Correct bit in the

Data_Transfer Configuration Register. In this case

the chip will work exactly as in the check mode except

that when Port B Output Enable, Port B Select and

Parity Sync are true the data is driven onto the Port

B data lines and a parallel parity check for zero is

Eyt§_§wap. In the normal mode it is expected that

Port 3 bits 00-07 are the first byte, bits 10-17 the

second byte, bits 20-21 the third byte, and bits 30-37

the last byte of each word. The order of these bytes

gunsmurzlysum

NetApp Ex. 1002, pg. 1210

W0 91/03788

n

PCT/US90/04711

-39-

may be changed by writing to the byte swap bits in the

configuration register such that the byte address bits

are inverted. The way the bytes are written and read

also depend on whether the CPU interface is configured

as 16 or 8 bits. The following table shows the byte

alignments for the different possibilities for data

transfer using the Port A Request / “Acknowledge
handshake:

cpu

I/F

Part B
00-07

Port 8
20-27

Invert
Addr 0

False

Invert
Addr 1

3 False

Port 3
10-17

Port B
30-37

Port A

byte 1

Port A

byte 2

Port A

byte 1

Port A

byte 0

Port A

byte 0

Port A

byte 1

Port A »
byte 2

Port A

byte 3

Port A

byte 0

Port A

byte 1

Port A

byte 0

Port A

byte 2

Port A

byte 3

Port A

byte 0

Port A

byte 1

False True

True False Port A

byte 3

Port A

byte 2

True True

False False Port A

byte 1

uProc

byte 1

Port A

byte 1

uProc

byte 0

uProc PortA

byte0 byteo

When the Fifo is accessed by reading or writing the

Fifo Data Register through the microprocessor port in

uProc

byte 0

Port A

byte 0
False True uProc

byte 1

Port A

byte 0

uProc

byte 0_

Port A

byte 1

uProc

byte 1

False uProc

byte1

Port A

byte 1

True

True True

8 bit mode, the bytes are in the same order as the

table above but the uProc data port is used instead of

Port A. In 16 bit mode the table above applies.

Q§g_Length_zransfe;§. If the data transfer is not

a multiple of 32 words, 128 the

microprocessor must manipulate the internal registers

of the chip to ensure all data is transferred. Port

A Ack and Port B Req are normally not asserted until

SUBSTITUTE SHEET

or bytes ,

NetApp Ex. 1002, pg. 1211

W0 91/03788 PC!‘IUS90/0471 1

-90-

all 32 words of the selected RAM are available. These

signals may be forced by writing to the appropriate

RAM status bits of the Data Transfer Status Register.

When an odd length transfer has taken place the

wait until both ports are

quiescent before manipulating any registers. It

should then reset both of the Enable Data Transfer

bits for Port A and Port B in the Data Transfer

Control Register. It must then determine by reading

their Address Registers and the RAM Access Control

Register whether RAM X or RAM Y holds the odd length

data. It should then set the corresponding Address

Register to a value of 20 hexadecimal, forcing the RAM

full bit and setting the address to the first word.

microprocessor must

Finally the microprocessor should set the Enable Data_

Transfer bits to allow the chip to complete the

transfer.

At this point the Fife chip will think that there

are now a full 128 bytes of data in the RAM and will

transfer 128 bytes if allowed to do so. The fact that

some of these 128 bytes are not valid must be

‘recognized externally to the FIFO chip.

BL I T

f ' ' ' r

Register Address 0. This register is cleared by

the reset signal.

Bit 0 flD_Mgde. set if data transfers are to
use the Western Digital .'WD33C93A
protocol, otherwise the Adaptec 6250
protocol will be used.

gazigy Chip. Set if this chip is to
accumulate Port B parities.

 . set if the parity
chip is to correct parallel parity on
Port B.

$L'BSTlT“TE W‘

NetApp Ex. 1002, pg. 1212

W0 91/03788 PCTIU590/047-1 I «

-91-

 . If set. the
microprocessor data bits are combined
with the Port A data bits to effectively
produce a 16 bit Port. All accesses by
the microprocessor as well as all data

transferred using the Port A Request and
Acknowledge handshake will transfer 16
bits.

 .’ Set to
invert the least significant bit of Port
A byte address.

 . Set to
invert the most significant bit of Port
A byte address. “

 - Set to enable the
carry out of the 16 bit checksum adder to
carry back into the least significant bit
of the adder.

gggg-.. Writing a 1 to this bit will
reset the other registers. This bit
resets itself after a maximum of 2 clock

cycles and will therefore normally be
read as a 0. No other register should be
written for a minimum of 4 clock cycles
after writing to this bit.

r ‘ R i

Register Address 1. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0 . Set to
enable the Port A Req/Ack handshake.

 .»Set to
enable the Port 3 Req/Ack handshake.

2g;;_A_:g_2g:;_a. If set, data transfer_
is from Port A to Port B. If reset, data
transfer is from Port B to Port A. In

order to avoid any glitches on the
request lines, the state of this bit
should not be altered at the same time as
the enable data transfer bits 0 or 1
above.

Bit 1

Bit 2

suasntufe sum

NetApp Ex. 1002, pg. 1213

wo 91/03788 ' ~ pcr/us9o/04711 -

-92-

Bit 3 . set if parity
is to be checked on the microprocessor
interface. It will only be checked when
writing to the Pifo Data Register or
reading from the Fife Data or checksum
Registers, or during a Port A
Request/Acknowledge transfer in 16 hit
mode. The chip will, however, always
re-generate parity ensuring that correct
parity is written to the RAM or read on
the microprocessor interface.

 . Set if parity is
to be checked on Port A. It is checked

when accessing the Fife Data Register in
16 bit mode, or during a Port A
Request/Acknowledge transfer. The chip
will, however, always re—generate parity
ensuring that correct parity is written
to the RAM or read on. the Port A
interface.

 . Set if Port B
data has valid byte parities. If it is
not set, _byte parity is generated
internally to the chip when writing to
the RAMs. Byte parity is not checked
when writing from Port B, but always
checked when reading to Port B.

Qhegksug_£nahle. Set to enable writing
to the 16 bit checksum register. This
register accumulates a 16 bit checksum

for all RAM accesses, including accesses
to the Fifo Data Register, as well as all
writes to the checksum register. This
bit must be reset before reading from the
Checksum Register.

Bit 7 . Set if Port A is to
operate in the master mode on Port A
during the data transfer.

 m

Register Address 2. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0 . 8611 if BIIY bits
are true in the RAM X, RAM Y, or Port A
byte address registers.

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1214

“K)9U03flM PCT‘!US90/0471 I

-93-

 . Set if the
uProc Parity Enable bit is set and a
parity error is detected on the

microprocessor interface during any RAM
access or write to the Checksum Register
in 16 bit mode.

E9££_A_E§£iL!_E££Q:. Set if the Port A

Parity Enable bit is set and a parity
error is detected on the Port A interface
during any RAM access or write to the
Checksum Register.

 . Set if
the chip is configured as the‘ parity
chip, is not in parity correct mode, and
a non zero result is detected when the
Parity Sync signal is true. It is also
set whenever data is read out onto Port

B and the data being read back through
the bidirectional buffer does not
compare.

29;; B gytgs 0-3 Eggitx Erggz. Set
whenever the data being read out of the
RAMs on the Port B side has bad parity.

Ram_A2225s_Q9ntr2l_B£9is:§r__iBsadLflrital

Register Address 3. This register is cleared by

the reset signal or-by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to write to

this register, else the write will be ignored.

Bit 0 . This bit is the
' least significant byte address bit. It

is read directly bypassing any inversion
done by the invert bit in the Data
Transfer configuration Register.

29;; A byte address 1. This bit is the
most significant byte address bit. It is
read directly bypassing any inversion
done by the invert bit in the Data
Transfer Configuration Register.

Pgr; A fig 3AM Z.
accessing RAM Y,
accessing RAM X .

set if Port A is
and reset if it is

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1215

W0 91/03788 . PCT‘IU590/0471 I -

-94-

29rr_JL_:g_JunL_x.‘ set if Dart 3 is
accessing RAM Y, and reset if it is
accessing RAM X .

Lgng_fiu;§;. If the chip is configured to
transfer data on Port A as a master, and
this bit is reset, the chip will only

negate Port A Ack/Rdy after every 8
bytes, or 4 words in 16 bit made, have
been transferred. If this bit is set,

Port A Ack/Rdy will be negated every 16
bytes, or 8 words in 16 bit mode. '

Bits 5-7 N9:_Hasd.

Ba” x E33. E 1 [3 . I

‘Register Address 4. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to write to

this register, else the write will be ignored.

Bits of-4 RAM x word address

Bit 5 RAM X full

Bits 6-7 Not Used

BAH_X.AQQ£2§§_B§9iE£££_lE§§§£E£i£2l

Register Address 5. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must_be reset before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM Y word address

Bit 5 RAM Y full

Bits 6-7 Not Used

Register Address 6. The Enable Data Transfer bits

in the Data Transfer Control Register must be reset

before attempting to write to this register, else the

write will be ignored. The rort A to Port B bit in

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1216

wo 9_1/03788
PC!‘IUS90/04711

-95-

the Data Transfer Control register must also be set

before writing this register. If it is not, the RAM

controls will be incremented but no data will be

written to the RAM.

PortB should be reset prior to reading this register.
Bits 0-7 are Fifo Data.

For consistency, the Port A to

The microprocessor may

- access the FIFO by reading or writing this register.

The RAM control registers are updated as if the access

If the chip is configured with a 16

bit CPU Interface the most significant byte will use

the Port A 0-7 data lines, and each Port A access will

increment the Port A byte address by 2.

was using Port A.

 1m

Register Address 7. This register is cleared by

the reset signal or by writing to the reset hit.

Bits The

accumulate a 16 bit checksum for all Port A accesses.

If the chip is configured with a 16 bit CPU interface,

the most significant byte is read on the Port A 0-7

If data is written directly to this

register it is added to the current contents rather

than overwriting them. It is important to note that

the Checksum Enable bit in the Data.Transfer control

Register must be set to write this register and reset
to read it.

0-7 are Checksum Data. chip will

data lines.

EBQQRAQMING EHE FLEQ Qfllg

In general the fifo chip is programmed by writing

to the data transfer configuration and control

registers to enable a data transfer, and by reading

the data transfer status register at the end of the

transfer to check the completion status. Usually the

data transfer itself will take place with both the

Port A and the Port 8 handshakes enabled, and in this

case the data transfer itself should be done without

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1217

wo 9i/03738 PCT/US90/04711“

-95-

any other In

applications, however, the Port A handshake may not be

enabled, it will be for the

microprocessor to fill or empty the fifo by repeatedly

writing or reading the Fifo Data Register.

Since the fifo chip has no knowledgeof any byte

counts, there is no way of telling when any data

transfer is complete by reading any register within

this chip itself. Determination of whether the data

transfer has been completed must therefore be done by

microprocessor. interaction . some

and necessary

some other circuitry outside this chip.

The following C language routines illustrate how

the parity FIFO chip may be programmed. The routines

assume that both Port A and the microprocessor port

are connected to the system microprocessor, and return

a size code of 16 bits, but that the hardware

addresses the Fifo chip as long 32 bit registers.

struct FlFO__regs {
unsigned char ccnfig.a1,a2,a3 ;
unsigned char control,b1,b2,b3;
unsigned char status,c1,c2,c3;
unsigned char ram access_controI,d1,d2,d3;
unsigned char ram:X_addr.e1.e2,e3;
unsigned char ram_Y__addr,f1,i2.f3;
unsigned long data;

I}1nsigned Int checksum.h1;

#define FIFO1 ((struct FlF0__regs*) FIFO_BASE;ADDRESS)

I #deflne FIFO RESET 0x80
#define FlFO'16 BITS 0x08

#define F|FO:CKRHY__WRAP 0X40
#define F|F0_PORT A_ENABLE 0x01
#define FlFO_PORT:B_ENABLE 0x02
#deflne FlFO_PORT_ENABLES oxos
#define F|FO__PORT A TO 3 0x04 -
#define F|FO_CHEC1-(SUM-ENABLE 0X40
#deflne FlFO_DATA__IN_RKM 0x01
#dei_ine FlFO_FORCE_RAM_FULL 0x20

#define PORT A__TO PORT B(fifo) ((fifo~> control) & 0x04)

#de1;ne POR‘l’:A_BYTE_ADDRESS(fi'fo)’ ((fito->ram_access__oontrol) &0x03 ‘ »

#dsfine PORT A_TO_RAM Y(fifo) ((fifo->ram_aocess_oontrol) & 0x04)
#define POR1':B_TO_RAM:Y(fifo) ((fifo-> ram_aooess__oontrol) & 0x08)

8_llB_8__TlTllTE sum

NetApp Ex. 1002, pg. 1218

WO 91/03788 PCTIUS90/0471 I

The following routine Initiates a Ftfo data transfer using two
values passed to it.

config_data This is the data to be written to the configuration register.

control_data This is the data to be written to the Data Transfer Control

Register. If the data transfer is to take place
automatically using both the Port Aand Port B
handshakes. both data transfer enables bits should be
set in this parameter.

fltflitifiittttttttttttiitttiltttttintfiittitdiiittiitittttftifil

FlFO_inltiate_data_transfer(conflg__data, control_data)
unsigned char config__data, oontroI_data;
{ .

FlFO_FlESEl'; /* Set

FlFO1->control = control data & (~FlF0__PORT_ENABLES): /* Set
everything but enaBles */

FlFO1->control = control_data; T
enables */
}

lit!*itiittiftitttR*flfi**k&*tflfi**fii*ifl*i*ti*Iii§iiii**iifiii!*

The following routine forces the transfer of any odd bytes that
have been left in the Fnfo at the end of a data transfer.

It first disables both ports, then forces the Ram Full bits, and then
re-enables the appropriate Port.ititiiiiiittiiiitiittkitf

FlFO1->oonfig = oonfig data |
Configuration value & Reset ‘/

/* Set data transfer

fittfltttflfifififflfitflkfil

FlFO_force_odd_length__transfer0
{ V A »

FlFO1->control &= ~FlF0_PORT_ENABLES: /* Disable Ports A & B
«I I

if (PORT A TO PORT_B(FlFO1)) {
it‘(Pbn1’A TO_RAM__Y(FlFO1)) {

FIFG1->ram_Y_addr = FlFO__FORCE_RAM_FULL; /*
Set HAM Y full */

}

else FIFO1->ram_X_addr = FlFO_FORCE_RAM_FULL: /* _Set
RAM X full */

FlFO1->control |= FlFO_POFtT__B_ENABLE; /*
Re-Enable Part B */

}
else {

if (PORT B TO_RAM Y(FlFO1)) {
FIF51-> ram_Y_addr = F|FO_FORCE_FlAM___FULL; /*

Set RAM Y full */
} .

else FlF0t->ram_X_addr = FlFO_FORCE_RAM_FULL; /* Set
RAM X fuu */

EZSBSTITIETE SHEET

NetApp Ex. 1002, pg. 1219

WO 91/03788 PCT/U590/04711

-98-

' FlFO1->control | = FlFO__PORT_A'__ENABLE; /*
Re-Enable Port A */

}
}

lttiffttittfitttfitfittfitttififtititiiiii-ktitfititttiitttiii-itit
The following routine returns how many odd bytes have been

lett in the Fifo at the end of a data transfer.

itkttttiittttiiii-tt*tti**i**k*§1"t'**i**i'**I'***iliftifktffltflfktl

int FlF0_count_cdd_byles0

int number odd_bytes:
number_ccTd_bytes=0;
if (FIFO1->status & FIFO DATA IN RAM)

If (PORT_A TO_PURT_B-(FIF-01)) {
num'ber odd bytes =

(PORT_A_BYTE_ADDFlES§(FlF61)) :
if (PORT_A_TO_RAM Y(FlFO1))

nurnber__odd_Bytes + = (FIFO1->ram_Y_addr) *
4 ;

else numlaer_odd__bytes + = (FIFO1->ram_X_addr) * 4;
} .
else {

ii (PORT_B 'l'O_RAM Y(FlFO1))
num'ber odd_Bytes = (FIFO1->ram_Y_addr) * 4 ;

else number_o3d_bytes = (FIFO1->ram_X_addr) " 4 ;
}

} I
return (number_odd_bytes);

}

l***kif**i*****t**k***iift***t&**I*1'*t*Q1ti*fi'*t**tt**ti*fiit*
The following routine tests the microprocessor lntertace of the

chip. It first writes and reads the first 6 registers. it then writes 1s. Os, and
an address pattern to the RAM, reading the data back and checking it.

The test returns a bit significant error code where each bit
represents the address of the registers that failed.

Bit 0 = oontlg register tailed
Bit 1 = control register failed
Bit 2 = status register failed
Bit 3 = ram access control register failed
Bit 4 = ram X address register failed
Bit 5 = ram Y address register failed
Bit 6 = data register failed
Bit 7 = checksum register failed

i **&Rflfl***K%***fif*#fl!

#deiine RAM_DEPTH 64 /* number of long words in Fife Rarn‘ *1

reg__expected_data[6] = {0x7F. OxFF. 0x00, 0x1F. 0x3F. Ox3F };

8llli§_TlT|lTE slim

NetApp Ex. 1002, pg. 1220

W0 91/03788 ' PC!‘/US90/04711

-99..

char FlFO_uprocessor_interface_test0
{

unsigned long test data;
char *register_addr_;
Int I;
char j,error,

FIFO1->oonfig = FIFO_FlESEI';
error=O;

egister_addr =(char *) FIFO1;
i=1:

/* first test registers 0 thru 5 */

for (i=0; i<6; i++) {

*register__addr = oxFF; /' write test data */
if (*register addr I= reg_expeoted__data[|]) error. I = J;
register_aHdr = 0; / wnte Os to register */
if (*register_addr) error I: j; '
register_addr = 0xFF; / write test data again */
it (*regIster_addr l= reg_expected_data[i]) error |= J;
FIFO1->oonfig = FIFO RESEI; /* reset the chip */
if (*regIster_addr) error"| = j; /_* register should be 0 */
reg|ster_addr+ +; /* go to next register */
]<<=n

/" now test Ram data & checksum registers
test is throughout Ram & then test as */

tor (test_data = -1; test_data l= 1; test_data+ +) { /* test for 1s
& Os */

FIFO1->oonfig = FIFO RESET I FIFO 16_BITS :
FIFO1->oontrol = FIFO" POFiT_A_TO_E;
for G=0;i<RAM_DEPTHfi++) /* write data to RAM

FIF01->data = test_data;
FIFO1->oontroI = 0;
for G=O;i<RAM_DEF’I'H;i+ +) ‘

If (FIFO1->data I= test_data) error |= j; /* read &
check data */

if (FIFO1->checksum) error |= 0x80; /* checksum
should = O */ .

}

*/

/" new test Ram data with address pattern
uses a different pattern for every byte "/

test data=oxooo1o203; /* address pattern start */
FIFO1->config = FlF0_RESET | FIFO_16_BITS |

FIFO CARFiY_WFlAP;
FIFO1->oontroI = FIFO POFIT_A_TO_B |

FIFO CHECKSUM ENABLE?
far (i=0;i<FlAII7T_DEPTH;i++) { .

FIFO1->data = test_data; /' write address pattern */

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1221

W0 91/03788 PCIYUS90/04711 9

-1oo-»

' test_data += 0x04040404;
1*
test data=0xD0O10203; /* address pattern start */
FIFC1->oontml = FIFO CHECKSUM_ENABLE;
for 0=0;i<RAM__DEPTHEI+ +) { r

if (FIFO1->status r= FlFO_DATA_IN RAM)
error |= 0x04; 7* should be data In ram */

if (FIFO1->data l= test_data) error |= J; /* read & check
address Vpattem */

address

*/

*/

test_data + = 0x04040404;
}
if (FIFO1->ohecksum l= 0x0102) error |= 0x80: /* test ohecksum of

pattern */ ‘
FIFO1->oonfig = F|FO_RESE|' | FlF0_16_BITS; /* inhibit carry wrap

F|F01->checksum =‘ OXFEFE;
if (FIFO1->ohecksum) error |=Ox80;

' /* writing adds to checksum */
/* checksum should be 0

if (FIFO1-> status) error |= 0x04; /* status should be 0 */
retum (error);

NetApp Ex. 1002, pg. 1222

“K)9hW3788 PC!‘IUS90/0471 l

-101-

CLAIMS

What is claimed is:

1. Network server apparatus for use with a data

network and a mass storage device, comprising:

an interface processor unit coupleahle to said

network and to said mass storage device;

a host processor unit capable of running remote

procedures defined by a client node on said network;
and

in said interface unit for

satisfying requests from said network to store data

means processor

from said network on said mass storage device, for

satisfying requests from said network to retrieve data

from said mass storage device to said network, and for

transmitting predefined categories of messages from
unit

unit,

said network to said host processor for

in said host said

transmitted messages including all requests by a

processing processor

network client to run client-defined procedures on

said network server apparatus.

2. Apparatus according to claim 1, wherein said

interface processor unit comprises: .

a network control unit coupleable to said network;

a data control unit coupleable to said mass storage

device;

a buffer memory; and
means:

for transmitting to said data control unit

requests from said network to store specified storage

data from said network on said mass storage device,

for transmitting said specified storage data

from said network to said buffer memory and from said

buffer memory to said data control unit,

for transmitting to said data control unit

requests from said network to retrieve specified

guasmma sues

NetApp Ex. 1002, pg. 1223

WO 91103788 PCT/US90/047I 1

-102-

retrieval data from said mass storage device to said
network,

for transmitting said specified retrieval data

from said data control unit to said buffer memory and

from said buffer memory to said network,
said

categories of messages from said network to said host

and for transmitting predefined

processing unit for processing by said host processing

unit. .

3. Apparatus according to claim 2, wherein said

data control unit comprises: I

a storage processor unit coupleable to said mass

storage device; I
ma file processor unit;

means on said file processor unit:

for translating said file system level storage

requests from said network into requests to store data

at specified physical storage locations in said mass

storage device,

for instructing said storage processor unit to

write data from said buffer memory into said specified

physical. storage locations in said mass storage

device, _

for translating file system level retrieval

requests from said network into requests to retrieve

data from specified physical retrieval locations in

said mass storage device,

and for instructing said storage processor

unit to retrieve data from said specified physical

_retrieva1 locations in said mass storage device to

said buffer memory if said data from-said specified

physical locations is not already in said buffer

memory; and
said

transmitting data between said buffer memory and said

means in storage processor unit for

mass storage device.

suasmura sum

NetApp Ex. 1002, pg. 1224

W0 91/03788 PCTIUS90/0471 1

-103-

4. Network server apparatus for use with a data

network and a mass storage device, comprising:

a network control unit coupleable to said network;

a data control unit coupleable to said mass storage

device;

a buffer memory; and
means:

for transmitting from said network control

unit to said data control unit requests from said

network to store specified storage» data from" said

network on said mass storage device,

for transmitting said specified storage data

by DMA from said network control unit to said buffer

memory and by DNA from said buffer memory to said data

control unit,

for transmitting from said network control

unit to said data control unit requests from said

network to retrieve specified retrieval data from said

mass storage device to said network,

and for transmitting said specified retrieval

data by DNA from said data control unit to said buffer

memory and by DMA from said buffer memory to said‘
network control unit.

5. A data control unit for use with a data‘

network, a mass storage device and a buffer memory,

and in response to file system level storage and

retrieval requests from said data network, comprising:

"a storage processor unit coupleable to said mass‘

storage device;

a file processor unit; _

means on said file processor unit:

for translating said file system level storage"

requests into requests to store data at specified

physical storage locations in said mass storage

device,

suasnum: sum

NetApp Ex. 1002, pg. 1225

W0 91/113788 PCTIUS90/0471 l

-104-

for instructing said storage processor unit to

write data from said buffer memory into said specified

physical storage locations in said mass storage

device, I ‘
file

retrieval requests into requests to retrieve data from

for translating said system level

specified physical retrieval locations in said mass

storage device, ’ A
‘and for instructing said storage processor

unit to retrieve data from said specified physical

retrieval locations in said mass storage device to

said buffer memory if said data from said specified

physical locations is not already in said buffer
and ‘

in

transmitting data between said buffer memory and said

memory;

means said storage processor unit for

mass storage device.

6. A data control unit for use with a data

network and a mass storage device, and in response to

file system level storage and retrieval requests from

said data network, comprising:

a data bus;

a buffer memory bank coupled to said bus;

storage processor apparatus coupled to said bus and

coupleable to said mass storage device;

file processor apparatus coupled to said bus, said

file processor apparatus including a local memory

bank ;

means on said file processor unit for translating

said file system level storage requests into requests.

to store data at specified physical storage locations

in said mass storage device and for translating said

‘file_system level retrieval requests into requests to
data

locations in said mass storage device,

retrieve from specified physical retrieval
said means

including means for caching file control information

suasmuxtisum

NetApp Ex. 1002, pg. 1226

W0 91/03‘/'88 IHVUSNMWWII

-105-

through said local memory bank in said file processor

unit; and

means for caching the file data, to be stored or

retrieved according to said storage and. retrieval

requests, through said buffer memory bank.

7. A network node for use with a data network and

a mass storage device, comprising:

a system buffer memory;

a host processor unit having direct memory access

to said system buffer memory;

a network control unit coupleable to said network

and having direct memory access to said system buffer

memory; I

a data control unit coupleable to said mass storage

device and having direct memory access to said system

buffer memory;

means for satisfying requests from said network to

store data from said network on said mass storage

device, for satisfying requests from said network to

retrieve data from said mass storage device to said

network, and fcr_transmitting predefined categories of

messages from said network to said host processor unit

for processing in said host processor unit, said means

comprising means i

for transmitting from said network control

-unit to said system memory bank by direct memory

access file data from said network for storage on said

mass storage device,

for transmitting from said system memory bank

to said data control unit by direct memory access said
file data from said network for storage on said mass

storage device, I

for transmitting from said data control unit

to said system memory bank by direct memory access

file data for retrieval from said mass storage device

to said network, ‘

SUBSTITUTE SHEET —

NetApp Ex. 1002, pg. 1227

“K)9lKB788 PCTIUS90/0471 1

-106-

‘ and for transmitting from said system memory
bank to said network control unit said file data for

retrieval from said mass storage device to said

network;

at least said network contro1.unit including a

microprocessor and local instruction storage means

distinct from said buffer all

instructions for said microprocessor residing in said

system memory,

local instruction storage means.

8. A network file server for use with a data

network and a mass storage device, comprising:

a host processor unit running a Unix operating

system; >

an interface processor unit coupleable to said
network and to said

interface processor unit including means for decoding

said mass storage device,

all NFS requests from said network, for performing all
for satisfying said NFS requests, for

any ms _
transmission on said network,

procedures

encoding reply messages for return

and for transmitting

predefined non—NFS categories of messages from said

network to said host processor unit for processing in

said host processor unit.

sussmura sum

NetApp Ex. 1002, pg. 1228

T.B.._00
mm.NamAmw.flawmamHmuwmmhm¢n<mu44um»zuuTmm44um»znoBu:MEE.

“mum A»m¢mu_m¢V

PCT/US90/04711

mmmammz>»Hm:mm

F.HSF.T:UmSBUS

WM

mm44um»zuuxmfianzm.

dd

»mnzm: ..."M2mm."2..—..MZMUI._..m

W0 91/03788

NetApp Ex. 1002, pg. 1229

PCT/US90I047ll

mummuuummmm44nm»zuumuqmnzww._E

H.EHSF.
W.SBU3

—II.
--.I

>mnzuzmu44umhznuzm»m»mum:xmu>»uzum:06:3:

WO 91103788

NetApp Ex. 1002, pg. 1230

&u._._u~Fz_H_v_~_u>EzV.mw......_@%|.*
mm..:T_m.mP.:...mmmm36

PC!‘IUS90/04711

T.EEHSETWSBUS

m..E.:_a
2mM

W0 91/03788

NetApp Ex. 1002, pg. 1231

&m._._u~:z8n._.__.._vV.l .l.._mummzm.Lana

PCT/US90/0471 1

mm

mmEEnix._u._._$_§

Vamfi\\mmm

mnmmmmam

W0 91/03788

NetApp Ex. 1002, pg. 1232

a mumwunmuw¢o¢mm¢ma¢¢m.mu~¢¢n¢.U.o_mum_mummmmnnufimmmo.m_n.Ammm .mm
05%

~m_E¢2

SwumBum.n_..:.._uo.vmnu.nz<zzuoguise.mamaU. am
QmmmwIUHIN0omm

~35$3u.._E\uz>
uzfizu

PCT/US90/0471 1

D
la.
La.

¢o¢m

¢u»m¢n¢mHmumHmmmmowmH.muhm¢n¢mHmumHmum;o¢m

mu»m¢n¢ :1,.mu4m¢zunHmuwHmum‘4mzz<:u
_o¢m

.mu»m¢n¢wo¢mmmwm¢q¢H.335mu..:.._m

Dun...

SUBSTITUTE SHEET

m

mvwm

D
La.r-c

WO 91/03788

NetApp Ex. 1002, pg. 1233

wad:

PC!‘/US90/0471 I

n»mnzmzzu»m»mV

.4nm»zuuuzfizfl

»¢mm«>mnzuz

EHSETw_nS.BUS

W0 91/03788

NetApp Ex. 1002, pg. 1234

wo 91/03733 _ PCI‘/Us90/04711

MASTER

BREIADCAST ADDRESS AND

ADDRESS MDDIFIER.
DRIVE LVDRD* LUV

AND IAcI<* HIGH

RECEIVE ADDRESS.
DRIVE’ A3,. LW ADDRESS MDDIFIER.

LVEJRD* LUV AND
IACK" HIGH

IS

ADDRESS VALID FDR
THIS SLAVE

wAIT UNTIL Dsu*‘ GUES
HIGH TEI Luw

PLACE NEXT DATA [JN _
D00_D31 LATCH DATA FRDM D00 D31.

I L

FIG.-7A

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1235

wo 91/03733 PCT/U590/04711

I

I

I
MASTER SLAVE

FRDM FIG-7A I FRIJM FIG-7A

729 | 731
~ A _ DRIVE DTACK"‘ LUV

. WAIT UNTIL DTAcn<* I 733
HIGH TD LUV TRANSITIDN I DRIVE DTACK,‘ HIGH

WRITE DATA INTI]
SELECTED DEvIcE AND

DRIVE D803“ Luv INCREMENT DEVICE ADDRESS

DRIVE Dsmr HIG
H wAIT_FElR_DSEl" V

HIGH TD Lnw TRANSITIEIN

PLACE NEXT DATA DN LATCH DATA FREIM LINES _
D00-D31 D00—D31

DRIVE DTACIU‘ LDW

DRIVE DTACK’* HIGH

WRITE DATA INTEI
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

TE] FIG.—7C ' .

FIG.-7B

SUBSTITUTE SHEET .

NetApp Ex. 1002, pg. 1236

wo 91/03733 PCT/US90/0471]

FRUM’ FIG.-7B FRUM FIG.-7B
 _—__—jj

CEIMPLETE NUMBER
DF CYCLES REQUIRED

TD TRANSFER ALL DATA

RELEASE ADDRESS LINES.
ADDRESS MDDIFIER LINES.

DATA LINES, Ly/DRD",
1130"‘. AND IACK"‘

757

WAIT FDR DTACK" 7
HIGH TD LEIW TRANSITION .

761

DRIVE DTACK" HIGH '

59

DRIVE DTACK* LEIV

FIG.-7C

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1237

W0 9]/03788

MASTER

BRDADCAST ADDRESS.
ADDRESS MDDIFIER AND

DRIVE L\r/DRD"‘ LUV

DRIVE AS3* LUV

WAIT UNTIL DTACK’* AND

BERR" ARE HIGH

‘ WAIT UNTIL nTAcn<"
HIGH TD LUV TRANSITIEIN

TD FIG.-8B

PCIIUS90/04711

RECEIVE ADDRESS.
ADDRESS MEIDIFIER AND

LWIJRD’ LUV

IS

ADDRESS VALID FDR
THIS SLAVE

PLACE DATA UN LINES
D00-D31

TD FIG.-8B

NetApp Ex. 1002, pg. 1238

PC!‘/US90/0471]

MASTER - SLAVE

FRDM FIG.-8A FRDM FIG.-8A

WRITE DATA INTI]

SELECTED DEVICE AND

' LATCH DATA FRIJM LINES PLACE NEXT DATA UN
D00-D31 LINES D00-D31

TEI FIG.-8C . TEI FIG.-8C

FIG.-8B

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1239

W0 91/113788 PCl‘lUS90I047l I

FRDM FIG.-8B FREIM FIG.-BB

WRITE DATA INTI]

SELECTED DEVICE AND
-NCREMENT DEVICE ADDRESS

CDNTINUE DATA TRANSFER
CYCLES UNTIL DATA

HAS BEEN TRANSFERRED

RELEASE ADDRESS LINES. 352 '
ADDRESS MDDIFIER LINES CDMPLETE

DATA LINES. LwnRD*. ' TRANSFER
DSD*‘ AND 1AcH’*LINES

853

WAIT FUR DTACl<"‘ 355
HIGH TU Lnw TRANSITION

DRIVE DTACK I‘ LUV

857

DRIVE DTACK"‘ HIGH

DRIVE AS‘ HIGH

RELEASE A83‘

FIG.-8C

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1240

1 cl

INTERNATIONAL SEARCH REPORT '1

international Application No ,
I. CLASSIFICATION OF SUBJECT MATTER (it several classification eymhols apply, Indicate oil) I
According to international Patent Classification (IPC) or to both National Classification and IPC

IPC (5) : G06F 15/16
U.S.Cl : 364/200

Minimum Documentation Searched ‘

Classification Srslem I Classification Symbols

U.S. — 364/200,900

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are induded In the Fields Searched 6

Z
ill. DOCUMENTS CONSIDERED TO BE RELEVANT 1‘

Category ' I Citation at Document. 15 with indication. where appropriate. of the relevant passages I1 Relevant to claim No. 10

US,A 4,897,781 (came) 30 January 1990
See the entire document.

US,A 4,887,204 (JOHNSON) 12 December 1989
See the entire document.

US,A 4,819,159 (SI-IIPLEY) 04 April 1989
See the entire docmnent.

US,A 4,710,868 (CDCKE) 01 Decenber 1987
See the entirevdocumeniz.

' Special categories oi cited documents: I5 lgteprfidocurrdlgrret ::::li::a:l"e3’e;fitli'; Ln‘:‘rr‘Ifi3o.I;ap1‘£:I:'gnd:$
'-"' gg§:"3:f:d‘;':'g'_f'g{';gl:f.7;}',g}::§:g°”‘° "‘ """“" “ "°' cited to u!nderstnnd the principle or theory. underlying the- invention

of fifgggfifkment but published on or altar the International documam 0, “menu” Mean”: an dllmad .,“,,,,“°,,cannot be considered novel or-cannot be considered to
"I." document which may throw doubts on priority clnlmts) or involve an inventive stop

which is cited to establish the publication date oi another dacumem °' “man” down“: we film“ ,m,°,,u°,,
‘“‘"°“ °' °"‘" ‘'’’°'‘' "’‘‘°" (“ "'°°'fi°‘” cannot be considered to involve an inventive step when the

"0" document referring to an oral dleclnsure, use, axhlbltlon or document is combined with _ono or more other ouch docu-otiler means merits. euch combination hemp obvious to a person eldllcd
"P" document oubliohed prior to the international nung date but "‘ "'° "'~

later than the priority date claimed '5' document member ol the sum: patarrt fernily
IV. CER1'lFll:A‘l’lOIl

Data at the Actual Completion oi the international Search I Date oi Malling oi this lntornatlonal Search Report I

30 WEB 1990 24 JAN 3991international searching Authority I

I A S
ForrnFc'l’IlSAI210ioooon¢ohootitllllv1saa)

NetApp Ex. 1002, pg. 1241

wo1997o33227A1

Bibliographic Fields

Document Identity

(19)I§éfil§l]

El1liI§l¥#§‘Ffi" (JP)

Ififififilll

§’z.‘§t#§4F(A1)

(1 1)Il§ll#’AEfi§%I
wo97/33227

Ififial

$521041-1(1998)8JEI4EI

International Filing

(11)Il§B.’%!'z.§F;fi§%]

wo97/33227

(21)IElli;%tflE§%]

PCT/JP97/00655

(22)IEli%ti:fiB)

5Ffi29f§(‘I 997)3Fl4El

(43)IEl5§r!’AF;fiEIl

3Fli3Z9fl'3(1997)9H 1 2B

(8l)II'€‘iEl§II

JP US

Technical

(54)I%BJiaJafi]

Ei$—I%774Il«$2':i£7:'v}*2i$‘LU§E31liZ.$l:$z':

i.3§7i$€¥fi‘§'?of;d)0)7D0'5A’é‘§EI§Lf:
Eiféfifilili

(s1)[I§lli%¢$§%‘fi§ 6 iii]
G06F 13/00

(23%)

57

Filing.

Igfiiififil

I-’19{f%§§§§3R)

1 998-8-4

(19) [Publication Office]

Japan Patent Office (JP)

[Kind of Document]

Japanese Republished Patent Publication (A1)

(I1) [lntemational Publication Number]
WO 97/325227

[Publication Date]

1998 (I998) August 4*

(I 1) [International Publication Number]

WO 97/33227

(2 I) [lntemational Application Number]

PCT /JP97/00655

(22) [lntemational Application Date]
I997 (1997) March 4*

(43) [International Publication Date]

1997 (1997) September 12*

(81) [Designated States]
JP US

(54) [Title of Invention]

STORAGE MEDIA WHICH HIGH SPEED
COLLECTIVE FILE TRANSFER METHOD AND THE
PROGRAM IN ORDER TO EXECUTE DEVICE AND
TRANSFER METHOD STORAGE IS DONE

(51) [International Patent Classification, 6th Edition]

G06Fl 3/00

[Number of Pages in Document]
67

[Request for Examination]

Unrequested

[Provisional Request for Examination]

Unrequested

Page I Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

5 if

NetApp Ex. 1002, pg. 1242

I?

WOl997033227A1

[tfifi§%]

t$fi3I9—531 658

(22)lEIB§%.‘iifiEI]

4?Ii*29££(i997)3Fi4EI

Foreign Priority

(31)(E9Et§3E§E§%]

4i”rfl$8—5o51 o

(32)[E£Ell

$8(1996)3Fi7B

(33)lE5H§I§EI§l]

axum

(31)[$5Et§$§E§%]

téfiifisésosi 1

(32)[E5i';E]

¥8(1996)3fi7E!

(33)l¢5E&$iEl§)

E$(.1P)

(3I)[fi%$$?yE§-3]

4#E$8—164883

(32)(E5EE!}

3Fa(1996)6FJ25EI

(33)l$5'et§$9E@]

EI:4:(uP)‘

Parties

Applicants

(71)lH:fiM

(Biz 211% m

B2l:%f.;;%%Et»$it%$i

l{3iFfiSLl:EF)’rJ

3€I+Z%1!¥fif§lzE£‘rf§3TE 19§2-2*

Inventors

(72)l¥eBJ%%'l

[Em

Ihfifiil Eli!

[Domestic Application Number]

Japan Patent Application Hei 9- 53 I658

(22) [Intemational Application Date]

1997 (1997) March 4*

(31) [Priority Application Number]

Japan Patent Application Hei 8- 50510

(32) [Priority Date]

1996 (1996) March 7"

(33) [Priority Country]

Japan (JP)

(31) [Priority Application Number]

Japan Patent Application Hei 8- 5051]

(32) [Priority Date]

1996 (1996) March 7*

(33) [Priority Country]

Japan (JP)

(31) [Priority Application Number]

Japan Patent Application Hei 8- 164883

(32) [Priority Date]

1996 (1996) June 25‘

(33) [Priority Country]

Japan (JP) '

(71) [Applicant]

[Name]

1998-8-4

NIPPON TELEGRAPH & TELEPHONE CORP.
(NTT) (DB 69-062-6718)

[Address]

Tokyo Shinjuku-ku Nishishinjuku 3-Chome 19"2*

(72) [Inventor]

[Name]

Onoda Tetsuya

Page 2 Paterra® Instant.M'I‘® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1243

W01997033227A1

[{$F)’r2I;tEFJt)

#$§-EJIIL%&%EE?fi7"J~>/vf‘y2—5—4o2

(72)l3€BJi%l

(H24?-l

Elli 2:313

[{$F)i1li}§Ffi]

1¢§%JIlfi;‘§Fl-ilifi-?l$1~3EE9—2—4—2o2

(72)[£a)i%l

lE=E.]

Il\Eli’s’:'l3 ts:

[{IFfiXI1EFfi)

¥$§?JIIL%fi;‘§$fl§¥Iz$2£H9—2—12—c—
412 -

Agents

(74)[l’c‘EA)

létflil

lfitfi Ritz #5)

EH 1Er1t

Abstract

(57)(¥%‘-J]

ilififlfill:J:%>F:.§E—%774Il«$f;i£fi5iili. 7‘-‘
-51§ii£’&?"r5f:<&’)l:.'fi 1 a)§al§9£l$&U7c
0)% 1 aJ§E."l§D¥{$J:'-JJ\tl:;lJ7b‘5$I.\¥ 2 0)‘Fa'B
tsasvsémut. 77«r/L§ii£i:'6iatE'J>7§
§§E'«;‘6fifII:§'; 1 0):=.'a'r.*-a!I£f7$ImIJ77-«(IL-7—‘—
’;1l:$I=ll,‘C. EtE%"s0)6l1lE’&fiL\fQIiJh‘o. fa)?
74»-7-‘-55% 2 a)§Ef.‘-E-‘.fi%lili’\$z'::b§t,. 774’
ii,-T-—’;=l:§I=t*«l'»5911E0)%3Tt£. 5Ef§'J>0’E
EEEL. % 2 a>:=:Bt§m>t<i7<ia>77»r)L-T——’;?E.
F-5-l:$«tL,U&E§Efi3?‘I:$-yI~U—91:—
l~"\-tS$ii£‘4'%>$llEé:t 774’IL§Ei3§9E'C'#~-y
|~'7—71J—l~‘l:ii:i£$t1.1':774IL»-?—5l’&:r’
—5rI:;'tLI5l11E€EE3fI:¥ 2 a>%Br§!%{$'\
-tfifiifiln fi$;i%0>6lI1EEfil.\f.i:b<-3% 1 0)
§Et§!I%{$~$ii£?'6$E£’&fil,'cL\6.

1998-8-4

[Address]

Kanagawa Prefecture Yokosuka City Green Heights 2- 5- 402

(72) [Inventor]

[Name]

Yoshikawa Taro

[Address]

Kanagawa Prefecture Yokohama City Isogo-ku Sugita 9- 2-
4~ 202

(72) [Inventor]

[Name]

Oda *Satoru *

[Address]

Kanagawa Prefecture Yokohama City Isogo-ku Sugita 9- 2-
12- C- 412

(74) [Attomey(s) Representing All Applicants]

[Patent Attorney]

[Name]

Shiga Masatake

(57) [Abstract]

high speed collective file transfer method before setting
communication link in file transfer origin making use of
second storage media where input-output isfaster than first
storage media and its first storage media , doing compression
or other treatmentvis-a-vis file data inside first storage media ,
while in order to do data transfer ,to transfer file data to

» second storage media with this invention , alter
oompletingtreatment for file data , It sets communication
link , without administering treatment file data inside second
storage media , vis-a—vis data , without administering
treatment, with protocol and file forwarding destination which
it lumps together transfers to network card file data which
transmission is done vis-a—vis data in network card while

lumping together transferring to second storage media ,
treating thawing or other ithas possessed means which it
transfers to first storage media .

Page 3 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/3 67,296)
I

NetApp Ex. 1002, pg. 1244

WO1997033227A1 1998-8-4

cu

13

cu
Y

79"7'9‘1?- F

136

Page 4 Patena® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1245

WO1997033227Al 1998-8-4

Claims

ltfiétéfiatwfil [Claim (s)] ,

1. 77»r)L0>§ii£2“:3'cU77»r;i»0)$i:5£5*e'ef#L%1'L. ~‘r‘—9§£i£Efi57‘:

Respectively, data transfer is done with transfer origin of 1 .file and forwarding destination of file , it is

Kamfllfifi-‘~51/<1. %1a)EBt§9§l$. Eufitzfifii a).‘3:a1‘§9£t$J:UA.‘fliJE§2b<EL\%20>:%‘Bl§!I£tt2':\-3fi£%>;R
m'a=’r§i&7—=\=-77flv€Ffit\t. 77«r»a>tz‘:i£;rT:'6. iEfE"J'/7’&§9i'§‘%>fifil:. %1a)r=.'afsft£tzwqa>77«r;i.

4-?‘—9t:$dl.‘c. '|2t.t<é:t,Efi. 7’nI~:iMt§fia“t. RUUI/—E‘/0'0)¢'0)l.\’J’5h.7‘J\1 oa>9&E§t-‘rL\7::1J<E~. 5:577
»ru&‘—’5!E;‘J1fii-‘r‘—’;ntxéfrtxcfi2a)f:”E1Et§42t<~lIE3t§ii£'4'%>$lIEt. fiil§E774Il«0)§fii£7_n’G.'fiiII%'E77
»rIlfi-'—’;Il:>*<-1‘§*.7.z5II1E0)y'%Tf£. iél§'J>’7£§’£$L.. ‘r3fI‘.—‘:E%2a)%E1’§t!¥l2liI*1a)77»f/1»-‘r‘—’;1i. {'7l‘Ll:i=lL.'C
911§Ebt§3'd"I:. i1I:=:Ez‘l=Lr¥i-';-‘-61/<7~E1'rt,'CEt§. §iF|.Ffi7"'—'3/§Xl:f§fi$#L‘CL\§a§+fil§%5E‘l'§Fl30)3i<‘yl~'7
-’J75~"7'5V7J—-I-”\—l%§2':i£L.§$*yl~'7—775T7$l7J—F7‘J\E>=t='yl~'7--7’~li:i£3'%>$IlEt. 77—r;ta)$z3
ifiifira fifi.'5:E«“r«yl~'7——9/i\I‘oa§5%_9t=.0>z‘FLFFi-":-‘—’;‘v/<1l:t§$5%i=:l'L‘CL\6*‘yl~'7—77$f75-'7J—F/xlfziiéitt
f:fi?I‘E§E774IL«7'-‘—’;"&. 7‘-'-51a>fi;§. 71:1 lilbfigfis E41117!/-5‘/7’€»*§at:t\€‘2l10)fl&Et,llfia=a‘t:

‘Making use of general purpose computer architecture which consists of second storage media where input-output
speed is faster than general purpose data bus , first storage media , and said first storage media , while in transfer origin
of file , before setting communication link , at least treating any one inmidst of compression, protocol terminal , and
flaming vis-a—vis file data inside first storage media , protocol which through general purpose data bus , sequential
transfers said file data to second storage media and, With forwarding destination of protocol and file where in transfer
origin ofaforementioned file , after completing treatment for theaforementioned file data , it sets communication link ,
without administeringtreatment vis-a—vis that, through aforementioned general purpose data bus , to the network
adapter card for computer communication which directly, is connected to said general purpose data bus it
lumpstogether transfer file data inside aforementioned second storage media , from the said network adapter card to
network transmission they do, Aforementioned file data which transmission is done, withoutadministering thawing ,
protocol terminal , of data or each treatment which includes flaming to network adapter card which from
aforementioned network isconnected to general purpose data bus of said forwarding destination

. .;?§iH.Fl5J-7-’—'3I {X{r3’l‘L‘C¥20)§El§l|%i7l§’*¥E$z';i£|... §iI§’EiEl§‘J.‘z7E$)‘i5l?'%>5l‘=llfié:. EiI§E774Il«0)§E
i£5E'C'. fiTlI%'EiEfE‘.'J‘/7’&fl1iSIl.T:t£:. fiiI§E’ie'20)%Ef§!1§l$

Through said general purpose data bus , with forwarding destination of protocol and aforementioned file which it lumps
together transfers to second storage media , release theaforementioned communication link , after releasing
aforementioned communication link , theaforementioned second storage media

W1’)-';-‘—’;?l:§dL,'C. 'J>7'.‘£<¢‘:t.fl7§4?&E. i§f§l?llE0)FP0)L"§’FhJJ\1 'Ja)5l&E€—FrL\f.tf1<I‘o. lIfi>fiUlllEa=1'LT:fi«‘I
§‘a%2a>-.2:e1an§t1:usa>+‘—sz*.§at‘.=:a;71Jfi—7—a/<x§m.ta1a>-.%a§a;4=t«$£s£-Mensa €—§'9"?o.:tét#
Elle‘.-?'677»f/I«§.=.5£7:‘$z’°.. 2. §~§3ttE1 :%'EfiaJ77»fJb$ii£7i;‘ztl:;t5L\-C. ‘é7I§E$z‘;s£:r‘i:'e. fi1I%a77-m-F—5I€-
iI‘I§E«‘?~‘yl~'7—075’7’517J—F75\-3fi?I§'E=l<-y|~'7-Olxlfiiifi‘/I>t%%I:.

Vis-a-vis data inside, while treating any one in midst of thawing treatment and communication treatment at least,
sequential data inside aforementioned second storage media which was treated through theaforementioned general
purpose data bus , regarding to file transfer method which itstates in file transfer method . 2.Claim l which designates
that it possesses protocol which it transfers to first storage media as feature, inaforementioned transfer origin, When
aforementioned file data from aforementioned network adapter card transmission it does to aforementioned network ,

§77'f)l«'T'—@’.£1llfl$T:l14§fiilE0)I§’7'7l~$li‘G§Ei£L.. 75‘?

Page 5 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/3 67,296)

NetApp Ex. 1002, pg. 1246

WO1997033227A1 1998-8-4

To transfer said file data with packet unit of one or a plurality , at same time

33/ {’7"Vl‘(7)§fii§9i‘:’€"f§E'§‘§>?~“Jl*'7—0'7|*' file transfer method . which designates that it uses memory
I/XtL/C. Eili:-'E§z':i£7_I:0)¥ 2 0)‘§El‘§9§i7M7‘l'G address whichcorresponds to site where data which
3 I ('7' “J |*lZ?‘il7t‘.'- ?'%>‘7"—9 7'J‘l§§=l7i$1‘L'CL‘%> corresponds to the said packet inside aforementioned transfer
E FRI: $355 3'5 FE‘) 7FDR E H L‘ 6 Cti original second storage media as network address appointing
¥?'ffit§’.7a774)|z§ii£7i;‘£., forwarding destination of said packet , is housed as feature
3. 3.

§§3lUE2§Efi0)§z':i£7:T;‘a‘l§t:a*3L\‘C.

Regarding to transfer method which is stated in Claim 2,

=t~vI~'7-7Ea)7’I:II~:uLtL'C ’f‘J9—5i'~“Jl~7Eli~:Ul»(IP) are

As protocol ofnetwork layer Internet protocol (IP) business

IP~y6='a>7r7~>a>$Et§*2I:. HJ:=;a2<=&'J7 Fpx§t=tEr9“/sat

In option region of IP header’, description above [memoria] Grant dress

*&t$m_-§*677»r/Lfii£J‘3;‘£.

file transfer method . which is made feature

4. Efiikfii§E§:ta>77«r)b§i:i.’§7=J%£t:atsL~'C. fi1IE‘a§2‘:i£:“cr«.fi?I§E774'1i»-?‘—6"¢E‘riTJ::‘B=iwI~'7—079'7°5U:
—|~‘7§\E~fi?I§B>?~-‘Jt~'7—7’\lz':i£'§'E>i%%l:. $77411.-'r‘—9€1tE1$f:t:t1Efi{E0>/V7-yI~$fit'6$ii£L. to
E2!VT‘y|~0)fii£5‘E’&¥§E’J'*5»1='yl~U—77FlzZé:l/C. r?~-yI~'7—7E

Regarding to file transfer method which is stated in 4.Claim 1, whenin aforementioned transfer origin, aforementioned
file data from theaforementioned network adapter card transmission it does to aforementioned network , as network
address which transfers said file data with packet unit of one or a plurality , atsame time appoints forwarding
destination of said packet , network layer

0J§i'riEB4J7FlzX. Bfi§E$Ei£5E0)¥20)§Ef§fi§l$W‘C'E§I i‘7"‘Jl~l:fi9‘F6§‘Zfi"—

D which corresponds to said packet inside logical address , aforementioned transfer original second storage media

5125<1%¥4ta¥11rL\%>i—%FfiI:$<a‘rr7*4'?s:¢%'J7F1/7.. kufifiaaiiiisemfifiiaa/x

predetennined of memory address , and aforementioned forwarding destination which correspondto site where [ta] is
housed [ha]

—l~"7I7’&?&5'l"5'éT:61)0)/ \"F'7I77 |~’|zZ¥'~:$£‘::’:L‘CE§éh7‘:'7—)l»

Page 6 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/3 67,296)

NetApp Ex. 1002, pg. 1247

WO1997033227A1 1998-8-4

Integrating hardware address in order to identify [douea], it was defined [waaru]

F'7*fFl:1:—972i—rK7_I:0)7FlzXEFt‘-llné .‘_t‘é4$fi«’_'*9"677*f)l«$Ei£fi;‘£.

file transfer method . which designates that unique one-dimensional address is used for
[dowaido] as feature

5. E§§5lZIE‘|§Bfi0>77’fJb$ii275;‘£lZ3‘3L\'C. fiil§'E$ii£ifi‘E.ii?l§E77*{JLa‘r’—51é'fiiI§E=i"'yl~'7—779'7517J
—|~'fJ\Ea‘fi?I

Regarding to file transfer method which is stated in 5.Claim 1, inaforementioned transfer origin, aforementioned file
data from theaforementioned network adapter card before

§E«‘?~"J|~'7—’7'\iEii’9"Zni%$lZrE71335-’—’5'77»f}l»7‘J‘1{lE§f:l:l:§&{lE0)IV7"yl~$if.‘G§£i£$#L. 351:. at
E3774/La)$z‘:i£r‘:‘C-. EIEE77-r1L—?—@E§zz*:Mt~'7—77’3‘7’91a—

When transmission it does to description network , aforementioned data file to be transferred with packet unit of one or.
a plurality , furthermore, intransfer origin of aforementioned file , aforementioned file data said network adapter car

F75\IBfiil§E=i'~“Jl~'7-7’\hEi£’4'Za3Fll[E7‘J‘.

From [do] to aforementioned network transmission protocol which isdone,

iilél t"7*yl~t:fi?IE‘E$z‘:i£:'rE0>'$' 2 afiflfillfililitz
$51-rééfir i"‘7"‘J|~l:§<‘lE?'€>5"-$lU)5’f:§E7|~°lz‘
Rt/V7'yl~E’c'i=l5L‘C. fifi§EEi£5'r':7‘J\4‘s0)fi
EI6‘§’&?v*rf:'~i"t:§xf/V7'\yl~EJflE3Zi£lE'§'?9$
llfit. fiTr§E$£i£5’«‘:b\»‘_»/t”7'“Jt~0)fii£§*’&§
l‘H'::‘:?5'l:l1. .7§i£§3lZE§l‘H:I V7"'J|~0)
J+".«:-EN!’-Jl:§af§z‘:i$§7‘c0)% 2 0):='.‘a'l’§tl%l7lm\Fo
in-7+&1L‘C§i£1"E:¥lIE’&§J+. §?I%?B774)L
0)§i3£9r:‘C*. ETI§EiEf§'J:/'7"éfl1i5I’i‘%'>¥lIfi
11‘. -3'£'f.;;l.7‘:/i”7“Jl~0)1:-iv--‘I’-:~y0Efil.\.
5E|1='C°i-‘-—’30>fiE%Z‘Llfi§lJ fJ‘§§$lJ3‘JJ\'3'I':
§lEI<’7'~yl~E. F1‘II§E§i:5£f:’~‘e‘rEm§’£-ili‘4'
:tf.t<.%TA*§z':i£5E0)¥ 2 0)E.'E‘|‘§lI£l$'\lIE>5E§
fiL’Ct¢<$l|Et. 5-‘—5!0MK%&Zfi-‘r'—’30)
$90)=l30>4«‘7§:<é:t;-7:T7‘J‘t§t:li3:tLf:I<’7'~yl~
l:’JL\‘Cli. E*5t::#I.Efi¥L,. .3I€’7'-yba)
§i§$11.%v<é*i3.'E1‘§fi‘Efi"¢'-.31V7‘yl~¥§§$rT£
«regattas. lH.I!§El§’9"6X%l5iU§")0)t;
L\I<’7‘yl~’&l|EZE§1*§L'CI<l><¢‘:.*:t.t:. fi?I‘Fit'-11%
Hfi$irLf:A"r-yl~0)5'r:E7FIzXt/<'7‘yl~E’&
T1Tl§E§r':i£;r—l:’\i§iill.‘C§i£’&¥3§i§'%>¥ll[§t.
§i}£Ii’7'y |~§§l‘fHS(9T:.?§£. Ex*I§’7"yl~".«_"fiiI

‘ETE§l’r’C$a‘L\f:§El‘§‘i?Etil:§%§"%>¥lllE€$
I} CtE¥§flt1’*5774Jlzfii£7:‘;’2’§.

Granting start address and packet length of data which
corresponds to the said packet in aforementioned transfer
original second storage media in transmission packet ,without
waiting for affirrnative response from aforementioned
forwarding destination ,when receiving retransmission
demand for packet from protocol and aforementioned
forwarding destination which sequential it transmits said
packet, Only packet which receives said retransmission
request reading * is resent including protocol which from
selectively said transfer original second storage media ,
protocol where with forwarding destination of aforementioned
file , protocol which releases aforementioned communication
link , does error check of packet which is received, midway
omission of data or reception packet where error does not
occur, without returning affinnative response
toaforementioned transfer origin, to second storage media of
said forwarding destination sequential compilation does and,
It abolishes this at once conceming omission of data and the
packet where at least one in error of data is detected,
compilation of said packet memory region which it should
you do, as is less crowded just said packet capacity fraction ,
later sequential compilation it does packet which does not
have the omission or error which are received, Description
above notifying start address and packet length of packet
whichis detected to aforementioned transfer origin, afier
receiving the protocol and retransmission packet which
require retransmission, the said packet description above in
memory region which is less crowded compilation file
transfer method . which designates that protocol which is

Page 7 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1248

W01997033227A1

6

Eesltlfi 1 §E§il2¢7)77"f)l«§Ei£7:T;'2*.il:Il’:§l.\'C.
§7l§E77’fIL0)$1'Ii£5’ElZ. »'?~vI~'7—74>5~'7
1—x1a—FE1tLttE§1o)fia“sX’.a_=t£$:’z*L. 3
4fifi0)fifiSEa>ct=0>1o'E5aZa§a’1o)fi:1”aXb<. E11
§E77»r1tcI)$z':5£:T:iJ\B=r‘—@7741L€§=fzJ;
:fl'9"B!%l:. fifififiifiiifiibf. fi?I%’B§z':i£:‘1:l:7'i£*)
aEbU.fifiEE!§fi 1 0)aé“a3tEt0>Fa'1‘c“-é 1 anareu.
y'7€1i&fiL.. firrriaaasisw. E-‘1§E’i=' 1 (DU:
’7E‘fl'L,‘C1‘alI‘E’.E% l U)fia"é5E75\t3i£B#L%>fiTI§E7
74Jl«~0)5‘J5I’1.t77t1¥3§ZEX5"y0|.,.
fi?1r=;E§ii£5t:1J<.fiTI§E¥ 1 a)fia“i5lE1:t.c'»J2‘£a‘oU.
fi?I§’B§Ei£7"r.t0>Fsi1'G’fi 2 0)U>7€li§1‘zl.. fill
%E§£i£5'e2‘a<. fiT1EE% 2 0)'J>’7€'l%L\‘C§Tl§E7'—'
-’21774’)l»EfiTI§'EEi£:T:75\B9-’7>9wl«
l:%6‘rH.“.L. L,f:7'-'—51774)l/&§§§E
5£9ea>%' 2 dJ:=:Bt§t¥l2lv\—tS$Z-.i£l,. fifliafii
iififibf. fiiléfi-1%$z':i£$§T’&l:filIE'B¥ 2 cD'J>
fiémstb. EI'I§E§i1i;‘§5’1':75‘. fifliafi zafiafibi
mx1a>+'—a1:mr. M;<.l_—$fl;§5l11E. SE
t§911E0)CP0)l.\'-i‘#LfJ\ 1 00)6lllEEFrl.\7QtfJ<
E».lIEmI&E$#Lf:fi1‘IEE%’ 2 a>*.=:at§t§i*=fiW9a)-?
—’5".a_"1iiIf§’E2RFFl'7"—’5II(7K’Ef‘t‘L'C.§:§§f:i§.5'E0)
7% 1 0)§Bf§t¥i7$’\Ei£L. '§fIEa§£i.§9E;'fi.'s‘1TI
EH5‘/5¢'A701z:<¥aZ=&IIE&%t-‘rL. fir‘I§E%’ 1
0)')>0§9'tL‘CfilIEE77«f)Ifi-'—’:1E§§§fii£5’E
03% 1 w'.§‘a1:‘-ea£4z:25~afir1*E:a%' 10)‘>'i1"i3E’\§>’5"
Alzfiiib. fi?I§E§Ei£5Efa<.fi1I'§E5>s’L\$i
issiré-<Tt$:1:fif1E:a% 1 0)'J‘/7§fifiS£'9“é :.L-=2
t%’%f%5z.t¢/577»r11;§.=.i£7:';‘z’2.,

7. .

.§.§3RIE6‘§Bfi0)§Ei£7:'2‘iil:$$L\'C.

Regarding to transfer method which is stated in Claim 6,

1998-8-4

doneis included as feature

6.

Regarding to file transfer method which is stated in Claim
l,through [nettowaalcuintafeesukaado] to forwarding
destination of aforementioned file , you connect terminal of
plural , first te'rrninal which is a one in tenninal of the said
plural , occasion where data file is read out from transfer
originof aforementioned file , aforementioned forwarding
destination , becomesaforementioned transfer cause and
changes, establishes first communication link between
aforementioned first temiinal , Aforementioned forwarding
destination , through aforementioned first link , demand
foraforementioned file which is sent from aforementioned

first tenninal random access stack , aforementioned
forwarding destination , to become theaforementioned first
terminal and change, to establish second link
betweenaforementioned transfer origin, aforementioned
forwarding destination , Aforementioned data file from
aforementioned transfer origin reading , said reading it is in
sequential making use of aforementioned second link to
second storage media of said forwarding destination to lump
together transfer data file , while theaforementioned
forwarding destination , to release aforementioned second link
afierdescription above bundle transfer ending, aforementioned
forwarding destination ,treating any one in midst of thawing
treatment and communication treatmentat least vis-a-vis data

inside aforementioned, second storage media , sequential
through aforementioned general purpose data bus , to transfer
data inside aforementioned second storage media which was
treated to first storage media of the said forwarding
destination , aforementioned forwarding destination ,
sequential to execute aforementioned random access request,
through aforementioned first link , from first storage media of
the said forwarding destination to transfer aforementioned file
data to random to theaforementioned first terminal ,
aforementioned forwarding destination , Description above
file transfer method 4 which designates that theaforementioned
first link is released afier random transfer ending asfeature
71

§TI§E§£i£7_1:l:‘>’=lL'Cl§l3§l:§§5l0)fii1"1i3lEiJ\Bi‘§&0)5>5"A77tX¥3l?fJW;9

Vis-a-vis aforementioned transfer origin simultaneously from terminal of plural random access demand for plural oh

Page 8 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. I0/367,296)

NetApp Ex. 1002, pg. 1249

WO1997033227A1 1998-8-4

—
'fiil‘§B§i:i£9EfJ‘. fiilfifllfilB#l:¥3i€$#I.T:§§t0)3>’$*'J.-.7‘7‘l:X§3l€EQEUC

Aforementioned forwarding destination , rearranging random access demand for plural which description above
simultaneously is required

. llfizfi. %fia”a3taiJ<-:v>5I'L.70-ezfiSRL2‘:-7-'—*5r77»i’il,€fi?I%E§z35£fc2'i\u3—?El,'c9—*ry9«-;I.l::%a+ti1?
:t1;E?:*rt':*&.1:?'Za77«r)L§z':i.§7:'iz*.a8. Efistzrfi6%'afia)77«f1v§ii£75i£I:;BL~‘t. fifisaéiiiieé/V7-yt~m;L—
6vtLr#§fiEa=tt. §iI§E§i:i$§9E7b‘Eil§".E'§20)‘JDOEFEL\‘CEil§B:r'—$|3'7*t'll«€'Iiil§EEi£7T:fJ\Ea

sequential , each terminal random access lumping together data file which isrequired regarding to file transfer method
which is stated in the file transfer method . 8.Claim 6 which designates that it reads out in sequential as feature from
aforementioned transfer origin, functioning with theaforementioned forwarding destination as router of packet ,
aforementioned forwarding destination making use of aforementioned second link aforementioned data file from
aforementioned transfer origin

~>—'7‘J~‘/»v1l,l:.§.%.7~»ti:l,. %§i:i‘é9f:0)'§20)‘§'El§l|¥l7$’\—i“3Ei£'§‘?ol%l:. E11

When in sequential lumping together transferring to second storage media of the reading , said forwarding destination ,
before

Efliiiiib‘. fiiIEB“'r'—’5~'77*f)l/£1 iElE1‘:l:t?i%3IiE0)/ i”7“Jl~$‘l.-‘Z’E. 7‘.)\’)§?E

Description transfer origin, aforementioned data file with packet unit of one or a plurality ,at same time said

I V7“;l~l:'iiTl§i‘..Ei£:i0)'§=’20)§‘B%§£i7l<I7<l‘G331 V7“/l~

In packet inside aforementioned transfer original second storage media said
packet

ehrtxetaifiiasrxe-)7Fuzt#4Xw
l§fl=&l=tE,~Lr5£f.%‘L. fifi%B§£i£9Eb<.¥:a$£i£
9Ea>% 2 0)‘.:§E‘l'§ll£l9l§l*l0)5''--$!l:3'<7=ll.,'C. 1%:
<tibfifi;§51LlE.i§1Emma>=l=a>L*d‘1t25\ 1 0
a>&11E=é2-T~‘rL\1:t75<-5. lIE3fl6lllEé=irLf:§z<*§ 2 0)
salfiltilrlslfia)-‘r‘—5¢EfifI‘.§’E;71FFl5-‘-51/<7~*&9’T
L.‘C§z:*$i:5£5‘w‘:0)‘§'§ 1 a>§EEh%l2lv~$2‘:5£3*»:=.»IIe
l:. .=':§§£i£9eb<. 'fiiIE5.‘E§fii2’§:T:l:J:o'Cl7l5r3#L
f:2"E'J'7l~’|/Z¢‘:*J‘*fX0)i§¥‘dl:7—cl:. 52% 2-
0>§El‘§1l¥i?l§l*!0)§l§I*°’7"‘Jl~Efifii2’§5*E0)'§t':' 1
0)§El‘§9%l7kl:%%L. 'ti1l%E§7'3i;‘£5E75‘fiI‘l‘.?‘E5>
$~".Lx70‘lzX¥3l?€'lllE>fi%fiL.fiiI§E'?§E 1 0)‘)
‘/7€'il‘L'Cfiil§E77vf)l«-T--’3§§§§ii£5'E0)
% 1 0).§El‘é9%i2lSiJ\I3§iI§E'§:' 1 0)fii“iiX’\5>’i'A
l:$Ei£'9"/Bl§l:. fiiI§B$z':i2’§$lEfJ‘. §iI‘%?E?—’;?7'
74’;LEIll§1§f:li1=§filE0)/\"7~yl~$tfL‘6. fr
9. fiiI.5§E§i£7—1:I:..-l:o‘Ci=l53i'l.T:2‘=E')'i’l~'lz

Rt‘?*t’Z'(7)i%ifi’&§U§§Ii’7*:I|~l:l=l5L,'C
fiI‘I§E’§:'10)fia"ii$'\$Ei$L. 351:. fi?I§E’fi 1 a)
fla“a3lEl:a‘sL\'c. fiiI§EIi"r'y|~l:l=l—‘}é=tI.T:2HE')

l:$(=lfi‘tS’J'6-'r‘—’;‘I75‘l‘§¥45!.

data which corresponds houses

Granting data of memory address and size which show site
which is done while transmitting, when aforementioned
forwarding destination treating any one in midst of thawing
treatment and communication treatmentat least vis-a-vis data

inside second storage media of said forwarding destination to
the first storage media of said forwarding destination ,
sequential data inside said second storage media which
wastreated through aforementioned general purpose data bus ,
transferring, When said forwarding destination , in data of
memory address and size which aregranted in aforementioned
transfer origin in origin, compilation doesreception packet
inside said second storage media in first storage media of said
forwarding destination , theaforementioned forwarding
destination sequential executes aforementioned random
access request’,through aforementioned first link ,
aforementioned file data from the first storage media of said
forwarding destination transferring to random to
aforementioned first terminal , aforementioned forwarding

~ destination , Aforementioned data file with packet unit of one
or a plurality , at sametime, granting data of memory address

Page 9 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1250

WOl997033227A1 ' 1998-8-4

7|~'lxX¢‘:*1'*fX0)l§fi§5'_l2lC§§¥ l 0)35'fi3lE0) and size which are grantedin aforementioned transfer origin to
FfiE0)§Bfii:'El§lZ7—’2"':£§?§7}"?a C&§¥3'f said packet again, on basis ofdata ofmemory address and
Wé:’sl'§>:I,"-3§I_:ii75§£. size which it transfers to theaforementioned first terminal , are

‘ granted to aforementioned packet furthermore, in
aforementioned first terminal , in predetermined memory
region of said first tem-iinal data transfer method . which
designates that compilation it does data asfeature
9.

E§'>lU§1~F%§3RI§8§Efi0)l.\fi‘:l1.75\1IEE‘Ei320)7"—6'§i:i£75$2*iE%i’r'§'%>

data transfer method which is stated in any one claim which is stated in Claim 1 ~Claim 8 isexecuted

f:<V)t7)7’t:1’7SL~"&'§El§LT:.3‘:El‘§ll§l$o

storage media . which program of for sake of storage is done

10. -'r’—5?$z';i£’¢~_'—t‘r-‘21“:t1><I)%1a>;Rfi=r’—6v/<7t.1:.

first general purpose data bus in order to do l0.data transfer and,

$1 0)‘EiEfl5',!1¥l7$<*:.

first storage media and,

fi?l§E%10)'.;§El’.§.l1¥i7$J:"J)ktl$ 7J£EiJ‘i$l.\%20)'E?El’§ll¥l$t.

second storage medium where input-output speed is faster than aforementioned first
storage media and,

fi?I§E'§10);HR3:I"—9I<7»lZl§fiE‘1’L'Cl.\%:'§‘l'§&5§f§FE0)'3if;'10)$v|'~'7—

first for computer communication which is connected to aforementioned first general purpose data bus [nettowaa]

979'7’91J—l~'é:.

[kuadaputakaado] With,

SE13‘)/7E§Q$*4"%>fiiI|2. T1‘II§E%1c1)‘.%B1‘§!1§l7$lNtT>77«{)l«-?—’$~'l:$dL‘C

Before setting communication link , in file data inside aforementioned first storage media confronting

. '&‘7t;<t£E.’fi. 7EI|~:lIl«$§9a"fi. &U7L2—E‘/70)Fl30)l.\?’7l'l.fJ\1Ot7)5lE

At least place of any one in midst of compression, protocol terminal , and flaming

Eéfitxtbte. 37741»-7-'—6r€-fiu‘I':=.'E%1 o);‘J1FIi-'1-‘-5-/<;L€o’tl,r§TI§E%2o)§at§b§v$«lE3zEi£?6f:&>
o>%1a)§ii£%=—é£t. -

Page 10 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1251

WOl997033227A1 . 1998-8-4

While doing reason, first forwarding means in order through aforementioned first general purpose data bus , sequential
to transfer said file data to aforementioned second storage media and,

fi?l'%IE774’Il/?-’z‘ll:§l=l’i'%>5lflE0)%Ti§. iat§"J/7§E'xtEL.

After completing treatment for aforementioned file data , communication link is set

Eetetfitis17903774)»-?-—'sri::dL'caaE£b*a
a=s‘i:. 377'f)l«7'-’—’3’&. ‘i-ifisafi i miflfifi-7-'
—5n<:<z~:-1’tL'ce‘.t£.'iii‘I§E% 1 03$-yI~'7—7
7$?'7’;77J—F’\—iE§1':5£l...;?§'§ i 0):?-vI~'7
—’77’51‘3°’5I7J—t~’fi\a‘s#~‘yl~'7—7'\47T:ii€.*d’%>
7‘:1¢)0)fz‘.-ii-‘F-Efit. §=fi*J'%>§z‘:i£:T:§+fi%t.

¥—’$'§iTii3§’£'?"r‘T>f:6fJ(T)%20);‘}‘lFli5"—9Ii:<
it. % 3 aasatatabst. ifisafi 3 aasaletifiut
J:‘JJkti3'7‘J:Ef§fJ‘iEL\%' 4 maarsnmsa. at
sea 2 0)5Fl.Fl5l5"—5!/§XlZi§¥:’f"c“=fL'Cl.\«5§:+§
fiififéfiiwfsia’ 2 0)=?~~yI~'7—*776?’7’5!7J—F
kt §Tl§E*“Jl*'7—77J‘5§7l§E§§ 2 cD=i’~"2l~'7-
076f76«7J—F~+Ei£é2h.r:HfJ%a77-fur?’-—
ea. -7-‘—’;w>fl;§t 7°i:ii~:i;L#§fifi. Z1071;
—sp7’€€at:L\fiia>9aEt.1i*éa=s‘I:. fifisa
% 2 0>2‘J1Ffi-‘r‘—5!I<7<”.a_'—:fl*l.'Cfi1I'%‘E%’ 4 meats
tfitzlm-#a$£i£L.. 'fi1I:%‘EiEi.'%"J 27%.-#¥1i$tT»§
T:v§)05fiBI¥F£<‘:. §7I§'E5Efi;§'J‘J7f$73lLT:‘
&. TaTI§'E¥ 4 dJ‘i3;'B1§9§i7$l*l0)-T-—6'l:S€~TL,‘C.
d«‘ti<t$fl}§£Ulfi. iEl§6l&E0)CF0)L\’9"#I.7‘J\
l ’30)5?}lE€'fil.\f£fJ<I‘:«. J|lE3.’E5l&E37l’Lf:'fiiI§E
%'4cI)r"iEl.'*%tl£i$P*l0)-'1"—’3¢§'FiiI§E%20)iFll3l5l'7"
-5’/<15-il‘l.‘Cfifi§E% 3 0)§El§D¥i7$’\§z":i£fi'
%'>7‘:ai)J)¥ 2 0)$i5$E¥EQt €fi’§'%:$Ei£f7E§’r

ii}: EE{Yfi‘4‘%:é:’é*l?ifi&?'é774’Ilz§z_:E,

11.

:-.T’§3§I§ 10 §Efi0)77*fJLfii£§éEl:2l‘3l.\‘C.
§1i€a§ai£:‘csiei:§n<. fiTI‘E‘.E774’lt«?—’27E'fiTI
23%’ 1 0)=fvyf~'7—775f7’5!7J—F2b\IBfiiIEB2'~
-yI~'7—7~4i:5.¥J“%>%%i:. 377-4;i,¥—9
‘E’ l il§§f:l;"¥§%3liEOJ/€’f‘yl~${fi'C'§Ei£L.
fr’). ii/<'7vI~a)§iia§s'i':€—tEE§*é:i'~~yI~'7—
97l-'l/X:‘_'L‘C. mm 2 mietehitivqr-exit?
/7~yI~i:;za‘Wn.a"»§>—7—’—szri<1%t4iae#t%>%Fm:$d
Wrexe-J7Fvx§F§L~5 atétmiésé
77*f)l«fi5£§E..

12.

Description above

Without administering treatment vis-a-vis file data inside
storage media ,said file data , through aforementioned first
general purpose data bus , transfer original computer and
second general purpose data bus in order to do data transfer
and storage media of the third which possess transmission
means. in order directly, it lumps togethertransfers to
aforementioned first network adapter card , from said first
network adapter card to fietwork the transmission to do and,
From second network adapter card and aforementioned
network for computer communication which isconnected to
storage media and aforementioned second general purpose
data bus of 4 th where input-output speed is faster than
storage media of aforementioned third theaforementioned file
data which transmission is done, without administering
thawing , protocol terminal , of data or each treatment which
includes flaming toaforementioned second network adapter
card , through -aforementioned second general purpose data
bus , it lumpstogether transfers to storage media of ‘
aforementioned 4 th , While treating any one in midst of
thawing treatment and ‘communication treatment at least
releasing means in order to release aforementioned
communication link and, after releasing aforementioned
communication link , vis—a—vis the data inside storage media
of aforementioned 4 th , sequential file transfer device . which
designates that forwarding destination computer which
possesses second forwarding means in order through
aforementioned second general purpose data bus ,to transfer
data inside storage media of aforementioned 4 th which were
treated to storage media of aforementioned third ispossessed
as feature '

11.

When aforementioned transfer original computer ,
aforementioned file data from aforementioned first network

adapter card transmission it does to tlieaforementioned
network in file transfer device which is stated in Claim l0, as

network address which transfers said file data with packet unit
of one or a plurality , at same time, appoints forwarding
destination of said packet , file transfer device . which
designates that memory address whichcorresponds to site
where data which corresponds to the said packet inside
aforementioned second storage media is housed is used as
feature

12.

Page 11 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1252

W01997033227A1

11 ’E:afia)$1‘:s£§E1:a=sL\t. =t'~-'Jt~'7
—7E0)7°nI~:uLé:L,'C of‘/9—»‘t~\yI~71:1I~:1

»(11=)§FfiL\. 11> ~ya*a)7r7~>a>fiE1at1:.1‘a?1
Fifi)!-"&'J7FlzX"&i‘f5?‘45C¢E Et$%&t's‘437
7«r;1,:.=.ss§e.

13.

same 10 :3.'afio>774;L§£i§’a's=?E1:rsL\‘c.
fi?1:=:E§ii£7‘:E+§t?£at. §?I%a77«r1v-‘r’—51€fi1I
‘EE% 1 0)#~~yH7—079’797J—Fb~BETI§E?~
*'J|~'7—7'\tEi2'€_’-5'%>f%‘e‘.l:. E3/'E77*f)l«‘7"—5'
E 1 tEl¥7‘:t1?§¥5Iflfi0)/ V7‘? |~§‘1i.7.’C*fii£L.*
mo. '§a/<'r-yI~a>$ii£9E*&#'aE=4'5:r~-yb'7-
’77FbXé:L'C. =?~vt~'7—’JE 0)§'1%EH4J7Flz
1. area 2 o):=.'at§h¥4>t:11=1'c-:=.'a/i"r‘yI~1:31a‘r.t~*,
re»=—an<ramanrt\z>eFn1::rrs=rax
=E'J7FIxZ. &UfitI§afii£9'r:§+fi#&1t1o>1‘=7ii
0)!\—F'7I7E§fi3|l?'%>T:<V)0)/\—F'7I77
FlzZE¥3i5‘r?:‘L'CE§$1’L1’:'7—}l«F'74FlZ:L
:—'7>f.:—:ka‘.—.rI>7I~'L»;<éRa1.~5.'> catfifi
2:Té77»rJL»$i;i.%§§§E.,

14.

Eéskifi 10 t§'E.'fi0)774)l«fii£”a§El:ef3L\'C.
fiflfiflfiiiéiatfififih‘. EIIEE7-rvr)L»?—51EfiTI
Efléfi 1 0)#~‘yl~‘7—775-’7”$17J—F7f2\t‘:'§iI§E=?~
‘y|~'7—7’\f7T:i£‘9"%>i%€-‘I2. at1'E:a+‘—a77—r
ILE 1 {E¥1':l;"?§§liE0)IVr“JI~$tr‘i'C*§i:5£
L. $13!; fiiI§Bf1Tri£$F§7‘J‘. iii?/<’7"J|~
t:1‘aTI§E% 2 a)I%‘at1‘%u‘fi%t7!:l:isl+43.§.§/\°’7'~y}~t:$d
5r‘;?‘4I>+"—6v0>9E§.'a7Fl/xt;t"7~yI~EcEh‘5
LT. fi?I§EEi£fi§+§&§b\-E»0)‘1é1"EFr‘;=e'“.=’¢'—tv*rf:

fl:%§IS'7~y|~’&JlE3Ei£fE?'6¥E5%«*:. EUEEE
i£9&§‘tEfib\t‘g/\”7‘y|~0)fii£¥3R€'§|‘f1':t
31:11. §fii£¥3R"&§‘éI‘r7‘:/<'7‘yl~0>€+".«_‘-E
iRE‘JI:fi‘1IEE% 2 dJ‘E7Bt§9§4>$fJu3‘.%;J+H:L‘C§

i£?'6$EEEfiL. 'fi7I§Eflii5I$l|[§/J‘. §f§l,
1:/<’r*y|~a)I5—=f1‘y7§fil«\. 34:‘:--7-‘-
90)k%&Zfi§$'e‘-JiJ‘%£EL7£ifJ\:>f:§f‘§'I\"7"7
I02‘ fiTI§E$ii£f:%t§&’i'\‘é‘EI:3%EiE?':&
t+‘<.fi?I§E% 4 cr)‘§E1‘§9§t$'\IIfiZE¥1§l,'CI<l><

¥EEt. 7—’2‘0)K§§B'LU7_’—'70)§5"J0)‘i3
<IJ'Pf.t<tt.—7:'iJ‘&tI:.a==rLf:I<’r‘yI~t:aL\'C
t;tE15t::11.§fi§l,. Ea/tI7~y|~0>§fi$#L%>
'<2-‘E313?-‘§fiE'§w<‘;"yI~4"§§$§T5I'f§l+‘Ca’s
at l;l%§t§?69z%BLZfi%°Ja)t£L\/{'7'-yI~
”c'l|l§ifi§fiL.'Cl¢<tt-‘bl:'.. fiilfiflififliéhf:/t
’7“J|~0)5EfE7FbXt/€’7‘yt~E€'i?I§E§2Ei£7c
§+Efi’\iE£flL'C§i£E§3R‘§'%>¥E&r*:. E
i§§IVr"/l~E§lTH20f:t§:. §'&I§’7"‘J|~’&fiU‘E?E§
IrfisL\f:§Et’§§Efil:§§*s“%>¥E£E9fe7*9“%>
:tE¥§fi¢*:i”Za77—rIl«§1‘:i£§§E.

1998-8-4

file transfer device . which designates that aforementioned
memory address is granted to option region of IP header ,
making use of lntemet protocol (IP)in transfer device which
is stated in Claim 11, as protocol of network layer , as feature

13.

When aforementioned transfer original computer ,
aforementioned file data from aforementioned first network

adapter card transmission it does to theaforementioned
network in file transfer device which is stated in Claim 10, as
network address which transfers said file data with packet unit
of one or a plurality , at same time, appoints forwarding
destination of said packet , Integrating hardware address in
order to identify predetermined hardware inside memory
address , and aforementioned forwarding destination
computer which correspond to site where the data which
corresponds to said packet inside logical address ,
aforementioned second storage media of network layer is
housed, file transfer device . whichdesignates that it uses
unique one-dimensional address for world wide which is
defined asfeature

14.

When aforementioned transfer original computer ,
aforementioned file data from aforementioned first network

adapter card transmission it does to theaforementioned
network in file transfer device which is stated in Claim 10,
granting start address and packet length of data
whichcorresponds to said packet which transfers
aforementioned data file with packet unit of one or a
plurality, furthermore, aforementioned transmission means ,
in theaforementioned second storage media in transmission
packet , Without waiting for affirmative response from
aforementioned forwarding destination computer ,when

. receiving retransmission demand for packet from means.
aforementioned forwarding destination computer which said
packet sequential is transmitted, the error check of packet
where only packet which receives said retransmission request
reading ‘ is resent has means which from selectively
aforementioned second storage media , aforementioned
release protocol ,receives action, Is done concerning omission
of means. data which and packet where at least one in error of
data is detected to storage media ‘of theaforementioned 4 th
midway omission of data and reception packet where error
does not occur, to aforementioned transferoriginal computer
without retuming affirmative response, sequential compilation

this isabolished at once, compilation of said packet memory
region which it should you do as it is lesscrowded just said
packet capacity fraction , later sequential compilation it does
packet which doesnot have omission or error which are
received, description abovenotifying start address and packet
length of packet which is detected toaforementioned transfer

Page 12 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1253

WO1997033227A1

.:t€l#§.tt3“»577»rii,$i":i$§§Ea

I5.

EEBKIE 10 §Bfl0>77»ri1»$2‘:i£§E1::sL\'C.
3-31:. fi?I‘E:E§i':i£9e‘§+§#'i%l:»?~~yI~'7—’J—r>’;?
71—:U:—Fitr1rL'ct§#ia=:rif:1§%3z0>fi%i§
attic. §§§i:i£9E%+fiatb<. afifiwafix
034m) 1 cease I 0>fii*i$2h<‘ii?I§E$£i:E:T-.:=:+
§$fJ‘B7.—'3l77'f)lzE'§i""'c3i-i‘.l:‘i?'filZ. ‘ma
$z‘;i£f:E+§a&i:t.cU§btJ.fi‘uI§a*si% 1 ofiatxt
aarafirfi 1 a)5at§'J>7é6s1‘zt.. "§t‘I§’E%' 10>
‘J/7E7’tL.‘Ci‘iI‘I§'E§ 1 a)fia”a3ta25~n3i£»5:tL%a§TI
E37-M;L»\o>5>5‘A77t7.E3kEx5v-ya
L. arises 1 a)ii”s3Ei:2t:UaE=taU. fitIEB$z‘:i£7'c
aaaawraee 2 03')‘/a€E:L,. fifisafi
2 0)')>7EFfiL\'Cfi7l§E7—@77*I')lz’E'l§Tl§'E§i:
i£:‘n§+§téltb~5~>—'r>~‘/iviuizfeieistflc.
?E3I-tfiL,7‘:¥-’$l77*fJl«’E§|'l'§E§ 4 coeatafi
l$'\-#E§z‘:i£L. fi7l?E—fE§z':i£$§Ti£:l:fi?l‘P§B
as 2 a>'J>7Efi¥IiStL. fi‘Il‘EE%' 4 aasalfitfittm

0)-?—9i:$dL‘C. 'J>f;<i$_—t.fl:§5IJ1E. seem
§0)=l=0)L\?‘h.7!i\ 1 '3d)9!LE’.«_=?-‘rL\t;2ti<n‘o. IIE
:Jrisasnr:ai=:-:a<a4a>-.=:araisi2t:psa>+‘—s1*.g
fill:-i‘E‘*s1':’ 2 0)2‘flFfi-7-'-’5'I<7~€3’t*L‘CfiI‘I§E%’ 3 0)
‘setsaitvtofiiiéc. §7l'i:?E5?/’5l'A77tX§
3t2’&IIE:fiz¥fiL. sneaa 1 a>'J>'J’a'a’rLtfi?1sB
77»riL7‘——51§i*i?I%E% 3 0)EEtE!I§t2l:7a\ss‘ii?I'.%‘B
% 10>fi.T*i$«5>9‘A1:§ii£L,. fiTI§E5>’$1'A
§ii£t§Ti&i:r1T1§a§‘:-3 1 0)'J‘/7€'fliiSI'§'%>¥ES¥
sen, :t>&t€=fit?‘677»fII»§i£§E°

seize 15 %?ESit0)fii£§fit:.2f$l.\‘C.

In transfer device which is stated in Claim 15,

1 998-8-4

original computer , after receiving means. retransmission
packet which requires retransmission, said packet description
above in memory region which is less crowded the
compilation file transfer device . which designates that it
possesses the means which is done as feature
15.

Furthermore, through [nettowaalcuintafeesukaado] to
aforementioned forwarding destination computer , in file
transfer device which is stated in Claim [0, terminal ofplural
which is connected is possessed, said forwarding destination
computer , occasion where the first terminal which is a one in
terminal of said plural reads out data file from aforementioned
transfer original computer , becomes theaforementioned
transfer original computer , change, You establish first
communication link between aforementioned first terminal ,
through theaforementioned first link , demand for
aforementioned file which issent from aforementioned first

tenninal random access stack, becomes theaforementioned
first terminal and changes, establishes second link between
theaforementioned transfer original computer ,
Aforementioned data file from aforementioned transfer

original computer reading , said reading it is in sequential
making use of aforementioned second link to storage media of
aforementioned 4 th to lump togethertransfer data file , while
releasing aforementioned second link afierdescription above
bundle transfer ending, treating any one in themidst of
thawing treatment and communication treatment at least
vis-a—vis the data inside storage media of aforementioned 4
th , sequential , data inside storage media of aforementioned 4
th which were treated through aforementioned second general
purpose data bus , is transferred to storage media of _
aforementioned third , aforementioned random access request
sequential is executed, through aforementioned first link ,
theaforementioned file data from storage media of
aforementioned third istransferred to random to

aforementioned first terminal , Description above file transfer
device . which designates that itpossesses means which
releases aforementioned first link afier random transfer

ending as feature

16.

’IiiI‘E§Efii£5'E-iifififif. fiilfiflfiiiiziz%+§%t:$o‘L'C|§lB?rl:§§l0)fifiXfJ\I3fi§l0)

Aforementioned forwarding destination computer , vis-a—vis aforementioned transferoriginal computer simultaneously
from temiinal ofplural plural

Page 13 Paterra® InstantM'f® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1254

WO1997033227A1 1998-8-4

5>9*A7a1zx¥sRn<a5—ar;t%1==~.t:. §sz*fiJfl=?il:¥3iEé=2'Lf:fi%3l0>5‘/’3'A7’7

When there is random access request, said plural which is requiredsimultaneously [randamuaku]

txisltéfifict, lam. %fia“a3Ef2<5‘/;f1.t77txEazt.r:S-‘—@'27»ru,

Rearranging [sesu] request, sequential {each terminal random access data file whichis required

Efiil§B§ii$§i§1'§fifJ\E-¥§l.'C9—’T>9‘t')Ll:E'?ci+til?’$E9’&7fi§‘?3a

Lumping together from aforementioned transfer original computer , the means which it reads out in sequential it
possesses

Cc‘:§5l"ffit'§'677’{}l«§I_.iiz"§§En

file transfer device . which designates thing as feature

17. Efiaklfi 15 §Efi0)774ILfii’é‘§sEEl:2}’a‘l.\‘C.

In file transfer device which is stated in 17.Claim l5,

'fiTI%EEi£$’«‘:%+§&7'J‘I§’7vl~0)/l«—6?é:l,'C&fa“éL,.

Aforementioned forwarding destination computer it functions as router of packet ,

§iI§EEi£7_i:§+§E$275‘. E1133".-"-’;'77*fil/ét 11'[E$7‘:lififiiE<7)A”7“Jl~$

Aforementioned transfer original computer , aforementioned data file , packet of one or a plurality single

{fifa #9531V7‘)l~l:’|iiI‘§E$IT:i£7T:0J%20)§B‘|‘§I‘i9s'i€f7l§I*!'G§I{’7“yl~l:fi=ll$§"6

At rank, at same time in said packet it corresponds to said packet inside aforementioned transfer original second storage
media

-7-‘—-t~'fJ‘t§ta*ié:l'L‘CL\%>f%Ffi*.a_“—rT=‘9":<=E'J7FlzX¢‘:*74X0)t%§fi’&t=t5-L.ri£t§1'%>¥E£§EL. fi?I§B§z‘:i£5t:‘E:+
gem. fiiI‘.3?E%40)§E'l§fl¥i2l<l*!0)7"-’5ll:5‘¢a‘L‘Ct 'J>t.:<t£fl>i4lILE.iEtE'5flE0)=l=0)L*J‘7rL7'o\1:>0)6UlE€fi

u.~r;.c1:<e». llE>5E4lflE‘c"1’L-T:'&%4t7)‘E§E.'1§9=%i7lil7itl)-‘J-‘— »

Granting data of memory address and size which show site where data is housed while to possess means which
ittransmits, aforementioned forwarding destination computer , treating any one in midstof thawing treatment and
communication treatment at least vis-a-vis data inside storage media of aforementioned 4 th , sequential D inside
storage media of said 4th which was treated

5"&I'iTl§E'%'20);71lfi:I"—’;‘l/ \’X’c'a’i'L‘C'§TIE:.’E%30)§El’§!1§i7$’\§ii£’4'%>filZ. fiil

When [ta] through aforementioned second general purpose data bus , transferring to the storage media of
aforementioned third , before - '

§E$z’:i£7T:E’rfi&l:J:9‘Ci=f5}$#1.T:2‘=El)7FlzZ¢’:'*i"fX0)T%$lZf:l:. %'zz*%40)‘ETBf§fl§t1l§l7i0)§fEI V7"‘J|~E%‘§

Page 14 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1255

WO1997033227A1

§%’30)‘.3;'El‘§!I¥l?$l:§¥fi?'/'£>¥EQt.

1998-8-4

In data of memory address and size which are granted with thedescription transfer original computer in origin,
reception packet inside storage media of said 4th in storage media of said third compilation the means. which is done

fiTI§a5>5r'1.\7’Jt:<¥3R’&lIE=5E¥t-‘rL. §7l§B'fi1(D'J‘J7E'frL'C‘§i_l§E77

[fa]

411»-‘r'—€>'§—fiTI‘E’E¥ 3 0)§Bl§§¥t*iJ\I‘ai‘a?I§E% 1
a>ta*a3!E«5>c~?.Lu:§ii£a'6m:i ‘ma-‘r‘—';=
774% 1 {E§T:'I;ttEfifEI0)/{'7-yt~$4¢‘C'.
no. §iIE:a§ii£9'e%+§#ltt:J:otH5$frLr:x
H7Ft/:<t*r»r:\’a)t%fiEfilfi§/V7-yI~«:
h‘5L‘CfiTI§E% 1 mfifi3E~fii£?'6$E9§fi
L. fi?IEE% 1 0)fia‘"r$fJ‘.fi1I§E/V7-yI~l:i=lE.~$
in.7‘:2¢E')7FlxX&*7‘»rXa)T%fi{—i:l:'§§$ 1
a>fia“i3Ea>FfiEa>§at.‘é:fiEie*'I:5-'—’5I§¥1%*J'»5
¥E5t§fi'§‘%> :t”¢'-13rfic‘:’4‘»§>’7’—9§z';i£§
ED '

Specification

l%Bfil0)§‘£.‘rflts:§§&flfill

F-s.'$—ia774»$as:s7s:zzzU§§3ruu:$a
i%_J5i£€%fi§‘%>f:&>a)7’u')‘5A£—'§Et§Lf:

Eafitibs titfififi «'4<%Efill:l:=i'~‘yl~'7—'7l:i§_
¥$a=irLf;/<—‘J-1-/L:iyt";i——5I. 7-71’?-
~‘/ay. §¥§5§l§fia“r33lE%0)&%§a)F4ioJia1§I:FF-I
t.\tt¥.fit;?:=‘E—t%774/L§ii£75i££zU§a’E
'EfltUlZ§zEi£75§£E%fi§“v5f:&)0)7’I:I’J'*31.\
EEE‘|’§LT:'§IEf§9¥i7$l:l3§‘d‘%>a

i‘a'f%¥Itfi

7;ba=><7‘-47B#’rt0):4:t%tt.L-tt.l:. mafia)
ficfifiiUI»’7¥—6"'.£*f—/<iJ\t3:L-*ffi5iEl:
Ri£1'Z>+2*—t:‘7d:<$§’¥'9"§¥U:.téo

mic) VoD(I:‘-?‘7J'7J-:2-7-‘7>F)I:zsL\‘cI:. ,
774;Lmfii£Fafit‘afiH%f:°I+‘c-t;<I5é‘I§iw—fl#
t$it\6i,§'=a=ELt;E0>$+Jfifl€h‘%%.. *af=L<%71u
L. C=l’LfJ‘*7‘—/\’7°EI‘tz~y*}0)fil'rié:75+‘%>T:61>.
3?~‘yl~'7—’70)F:€5§ll:l:J:?o)"J‘yl~E+$§l:$

n\a“:an<-c*$aL\.
‘ .‘_1‘Ll:7‘Tl.'C.CD-ROMI tiubflfiam 1 zilztfiéi

'9‘%>7<r'§§0)/</L’)-7-‘—51’£fit'i‘i::L\L& 10
fl"c~:i.—+f0)§§2*-F47l:§ii£L.. HflBl:#~
-yI~'7—7Efimfi(T%>:tI:°tU:L—+f0)$IJEt$
/$*é.§t&b<»“s‘;‘u3irL6.

‘sequential to execute aforementioned random access request, through theaforementioned first link , description above

When yl data from storage media of aforementioned third
transferringto random to aforementioned first terminal ,
aforementioned data file with packet unit of one or a
plurality , at same time, granting data of memory address and
size which are granted with aforementioned forwarding
destination computer to said packet again, to possess means
which it transfers toaforementioned first terminal ,
aforementioned first terminal , On basis of data of memory
address and size which are grantedto aforementioned packet
in predetermined memory region of said first terminal data
transfer device . whichdesignates that it possesses means
which data compilation isdone as feature

[Description of the Invention]

storage media technical field this invention which high speed
collective file transfer method and the program in order to
execute device and transfer method storage is done it was
connected to network [paasonarukonpyuuta], using for
communication between workstation , various communication
terminal or other equipment , regards storage media which
preferred high speed collective file transfer method and
program in order to execute device andtransfer method
storage is done.

background technology

With materialization of multimedia age , image or other large
capacity bulk data service which from the server is delivered

I in user terminal more and more becomes important.

Regarding VOD (video-on-demand) of present state , also
halt and rewinding or other control command of the motion

picture , increase considerably not only a transfer start
command of file ,because this becomes load of server

processor , they are not possible toutilize merit to fully with
acceleration of network .

Vis-a-vis this, bulk data of large capacity which is suitable to
CDROM one layer and mofion picture I is transferred to
compilation media of user with several seconds or several 10
second , convenience /economy of user is thought by
releasing network instantaneously.

Page 15 'Paterra® [nstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1256

WO1997033227A1

Jtifififili. :hE%Ifi'«i'%>T:&>0)7:';‘£2$'LZfi§E
*et;%l#'s‘%ata)c5:43n<. ztsfitvimfifitatfifit
t+‘»'.5§¥§¥i1fil:'3l,\‘C1=J.T. E€'§l’.?.|.,‘C
amcawaao

20A ti ATM #~-yI~'7—’)'7’3':"97:—FE§
fiLf:;‘R}¥1'%;+Em7—=\=-"r03‘«v£fi?'l§J‘63i;
U. 2013 l1774’ll«fii£7Dl~:I)l«€‘fiiL\'C.
7E§§77»fII«E§f§‘4'?oE:':0)fi"—’5l0)5iEtLE
5:-madam.

7-;~r;i,$Z—.i£7’I:r~:;L(ap)I:»ru5=—4<-yI~7’u
I~:uL(rcp/1P)_t:l:fiE>77"J '7-~>a>‘C*§aU .
TCP/IP saw. %+§&0)n<zI~ cPU(ct=5E;‘s€fi
§E)cv7I~-‘JI7tL,taJ1Eaw*rL%>.

it. [E 21 l1ATM(Asynchronous Transfer Mo
dezililfi$l§iii£’E—F)'J>7Efi5ll.‘1’:i%‘S‘0)'77
’fIl«$ii£jl'-'1 I~2Ib(ftp:file transfer protcol)0) "
712! l~:1)l«X9‘y7'C*F.>"J . %‘l‘T"§‘6/ \-F‘?I7
’&i3l‘§EL‘C7T<L‘CL‘Z9.

TCP. 11> mi SNAP/LLC I1. rcnemassaiau

713 l~:l)l«(Transmission Control Protocol). 4
>9—3i‘~‘yl~7|Il|~:I)la(Intemet Protocol)&U*1‘
37$-yI~'7—77'7txrfi‘—ryI~/§fiE'J>’Jfi%IJi%l!
(Subnetwork Access Point/Logical Link Contr
o1)a)E§§'E*t'fi.»/.1».

it. fhfh. AAL (1 ATM 7'37’-7-—°/azz

I/’f'V’(A'l'M Adaptation Layer). SARli‘t')Lfi‘
§lli§E.\"Z*i'7‘l/'f‘\’(Segmentation And Reassem
bly Sublayer). PHY l1§fi$:ti:iI~:uL(Physica1
Protocal). S/P §l§lI“/'J7}lz// ifiblbfiififi
7T<Tll?§§§'GfiJ%>o

1998-8-4

this invention, it is a method in order to actualize this and

somethingwhich offers device , but below, referring to
drawing concemingeach element technology which becomes
background technology of this invention , you explain
indetail.

As for Figure 20 A in figure which shows general purpose
computer architecture which equips the ATM network adapter
card , Figure 20 B when receiving large capacity file making
use of file transfer protocol , is flowchart which shows flow of
data .

file transfer protocol (ftp) with application which is recorded
on lntemet protocol (TCP/IP),includes TCP/IP , is treated
with host CPU (central processing unit) of computer as the
soflware .

In addition, inscribing hardware which with protocol stack of
file transfer protocol (fipzfiletransfer protcol)when ATM
(Asynchronoustransfer mode :asynchronous transfer mode)
link is used, is executed it has shown Figure 21 .

TCP , IP and SNAP/LLC, respective forwarding control
protocol (Transmissioncontrol protocol), Internet protocol
(intemet protocol) and are abbreviation of sub network
access point /logic link control (Subnetworkaccess
Point/LogicalLinkcontrol)4

In addition, respectively, as for AAL ATM
[adaputeeshonreiya] (ATMA daptationLayer), as for SAR
cell portion percentage assembly sub layer
(SegmentationAndReassemb1ySublayer), as for PHY the
logic protocol (physical Protocal), as for S/P conversion it is
a abbreviation which shows serial /parallel conversion.

::'c774Mii£7ni~:uLER§Lrc. x$%77«rw§-§EfE?6It§a>EJ1’E

When receiving large capacity file here making use of file transfer protocol , operation

’&§iEBJ§’9"%>. 7235. iilélfilll:9t.\‘Cld:l§l¥§0)§Ji’E0)lllE§7'J*i£l:t;%'uf£l‘f72i0)‘G.

You explain. Furthennore, because sequence of similar operation just becomesopposite is concerning transmitting
side ,

.§i,fl§é’§lll§'9"r5. ATM-LAN(El—7J)l»I'J7?~“Jl*'7—7:Local Area N

<seq>local area network work :local AreaN Explanation is abbreviated. ATM - LAN

etwork)3"rUJ§1'§%?~“Jl*'7'-7E10fJ"3i£E>1‘L'C§T:5"—9|1. if. AT

data which is sent from etwork) or other computer network E10 first, AT

Page 16 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1257

W01 997033227Al 1998-8-4

M7a'7’5z1:—I~’E5r-§f%‘én. 5‘fi-‘E’/'_1—}l«¥>S/Pfilfi-')"“J7. t)lzlfiM9'-"J7’l:.J:o‘C. 4>mw»v=2a.<aha=
h\ 53/<»t'I~a>t1L-?—'3&L‘C. ATMI/'f‘\"-'1’-“/7’l:i§‘c“1’L. ATMt/4-t'§!l=§ia“a$1rL4I>r ATMlw('t"C*liVCl/V
PKEE/{XfiSll¥:Virtual Path identifier/{J§§flv?~)Lfi5Il¥:virtual Channel ldentifrer)lZJ:6$}E§. 55
ME

It is received with Madapter card ES, with optical module and S/P conversion chip , cell synchronization chip , terminal
is done physical layer , it is transferred by ATM layer chip as cell data of 53 byte , terminal is done ATM layer . With
ATM layer to separate with VCI NPI (virtual path identifier zvirtual path identifier hldentifrer/virtual channel
identifier :virtual channel identifier nnelldentifier), multiple treatment

7‘J‘fi'7l'D3’L%>s AALlx»f‘\”(iE'i¢§94’75)‘Gl:l:$AR¥"y7l:¢tU. t1t,o)~y9‘EB%L\r; 43 /\'4’l~(SAR—PDU (71:
l*=lIlz'7"—’$'—'|-:‘yl~:Protocol Data Uint))0)l§fi’&'J‘J'7L. CRC9‘I‘77 (fll§l.TEl§§:Cyclic Redundancy Ch
eck)*\’=-”:-‘—5I~E=J=:c-y’J=&fiL\. CPCS(:r‘//\'—~‘/'1‘/Z417

<seq> [konbaajensusabu] </seq>link to do data of SAR- PDU (protocol data unit zprotoool data Uint), CRC check
(Round redundant inspection:CyclicRedundancyCheck) and to do the data length check , CPCS ls done. With
AALlayer (Usually type 5) 48 byte which exclude header of cell due to SARchip

U4‘\” 3% SE31? 2 Convergence Sublayer Common Part) - PD U0) ’\°’f C1 — FE ll?

payload of layer common section:ConvergenceSublayercommon Part) - PDU shape

. Ji2?’6(l§J 20B§l’.§).CPCS—PDU’<vfD—Fli1—“}’?—5?tL'CFE75$0)>Zll.Ffi/{7k(C_C‘GliPCl/(X(PeriPh€1’3
1 Component Interconnect Bus))E3ZiUPCI7'J‘y§E4Efi'L'C. r'l‘\Xl*CPU-E1l:§1';i.*_321,%>.,

<seq>Here through PCI bus (Peripheralcomponent lnterconnectBus) E3 and PCI bridge E4, it is transferred to host
CPU ‘El. It fomis, “' (Figure 20 B reference).As for CPCS- PDU payload as user data general purpose bus of high
speed

7l<Xl~CPU-E1 r:i£r3#Lf:=r‘—51IP-?—97‘SLtll:L‘ca*stJ. cpuri

To data IP data gram which is sent to host CPU ‘El we to have converted, as for CPU

IP l/*f‘\"”a_"lllE3J’l§fia"fiL,‘C. 7J7tllrll:$#’L1':77 sequential terminal doing IP layer , it removes contents of file
4}l«§z—:i£‘7"—5' 0) ‘F 353U Hi '9"o transfer data which encapsulation is done.

‘I-Lt. 7l=xl~ CPU- E1 I1. HWHJ L,f:$1’:i£-5-‘— And, host CPU ‘El, through PCI bus E3, houses contents of
9-0) ‘F5’? PCI I <1 E3 §j'l‘L'C. I \—-F'7"vfX transfer data which is removed in hard disk E6.

. '2 E6 r:1%!r=fi'é'6.,

ms. E 2oAr::sL\'c. E3or1cRT(7'-‘4x7’I/4':cathod—Ray Tube)

Furthermore, in Figure 20 A, as for E30 CRT (display :Cathod-RayTube)

. E31l3i7‘57«f“J77l':-F. E32|3Z=\"—7l'5'—F. E33li4'*-7l'§'—FZI‘J

As for E31 as for graphic board , E32 as for keyboard , E33 keyboard Kong

I~r:r-—5'C~fisU. l°CI/(ZE3&UPCl7'J‘79E4E)’l‘L'C7l<Xl~CPU

Page 17 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1258

WO1997033227A1 1998—8—4

With jp7 roller , through PCI bus E3 and PCI bridge E4, host CPU

-E1t¥§fi‘é1'L‘Cl.\.79.,

*El it is connected.

_l:§E0)J:57§i77'fll«fi5§7EIl~:I)l«li§<fD7’EI l~:l}l»X5“‘J’JJ:'C’¥Ifi3

As description above as for file transfer protocol on many protocol stack actualization

11.%>77"J"7'—*>a‘/‘C*&"). '?0)Ti1“L0)7Ell~3)l«0)§(7‘J‘7l<7sl~CPU'G5lll-Eéh'Cl.‘%>o #«*rI:TcPi/fivlztv‘--6!
03Ef§$§’&fi5f:&'>. 7l=Xl~CPUl:ld:7<é‘7aIfii‘§fJ<fJ\fJ\o'Cl.\f:.. Z0)7‘:&). ATM-LAN0)J:5lZ%‘§7£i%l$
&=t'~‘yl~'7—’7iw3Fe':'i§'C*I?~~y|~'7—77’$«"75UJ—Fl:-F—9iJ‘lf:i£$7rL. 79‘791J—Fb\I3PCI0)J:57f£r‘%'5$$Ei.-‘E
Elfifitizflfifiz(X’&a"rL‘($1l~CPuifilI2?-5*iJ‘§Ei£3fr1.%>f%%l:a‘$l.\'C~’E:. 7Dl~:l)l«0)§(75‘CPU‘C*9flE3#L
Eufzab. 774’n,fii£a)xu,—

“With application , are treated many of protocol of lower position with host CPU . As for especially TCP layer in
order to respond data receive , thelarge load dependedfon host CPU . Because of this , like ATM - LAN fiom high
speed computer network with high speed the data transmission is done in network adapter card , through high speed
transmission possible general purpose bus like PCI from adapter card when data is transferred to host CPU side,
putting, because are treated many of protocol with CPU ,slew of file transfer .

7"y|~b<CPUO)4l&Efi‘é7Jl;iE|ll3Ea*3l’l.'CL¥l.\. Eii$fiE'+§$?l'~“Jl~'7—’70)fiE7J75‘+5:‘§E'fJ\t!'72sIL\¢‘:L¥5Fl§l:‘?E)f=ifJ‘

3ir2T:., Skit.ATM$‘yl~'7-fblfl‘ESEEIEIE7‘J‘§7QI?~FF-@§ii£7‘J‘:fH£’§'%>f%‘%l:

There was a problem that [putto] is restricted by throughput of CPU ,fully cannot utilize capacity of high speed
computer network . When next, communication speed different data transfer lies between inside ATM network

oL~‘cEs‘tBJi1’%>. 131 2213:. tititEo)ATM'Jy7Emt\f:i%%0>-7-’—@§i:i£0>¥1IE

Being attached, you explain. As for Figire 22 , protocol of data transfer when conventional ATM link is used

c‘:. %irLE¥§fi§”é7‘:&'>0)§El‘§&0)lflfl§’£-§L'Cl.\%>.. 77411»-F—5~'€l%i1li

With, outline of equipment configuration in order to actualize that is displayed. It houses file data

L'CL‘.7.:3‘/:r‘J‘7"1'~/(B1O1&::l>‘7‘>‘y‘U'—I§B101 I7=l0)'7"—5'l€.§.'}*E:7+tlJ'9"fiii"i3lEB1021J‘1fa‘0)ATM14"y
9"B103lZi§$a*:é7lL’C}3'-J. {'1'L‘Z"il1.0)4>6D1—X5$l‘s'v*.iJ‘—E7Zi5£>£;0)¢‘:?"?u. ?'t;=lo15. :I>-7->“/#—/ <31 01

&ATM7«{“J9’-B103t0)4>5'7n:—X5$El2l:155Mbps(Megabits per second) ‘eta U. ATMZ’f“J")'-B103¢‘:fi
EEB102¢‘:0)*fV'37J:—15il?.l3:25Mbps‘(‘§J%>&’§'%>n inTi$B1o2¢Jt:i>-7->“J+}—/(B101|7qa)77«r)L=r‘

—’$Il:77-tXl,'C-?—’:“l%f’.‘1E<7+tl.‘d‘l:|1. id’. fifi3EB102fJ‘97".l"J>9'l:J:‘J:II/-TI/‘V*:l'

tenninal B102 which reads out data inside contents server B101 and contents server Bl0l which it has done is

connected by ATM switch B103 of l, respective interface speed makes different ones. As for interface speed of

namely, contents server B101 and ATM switch B103 with 155 Mbps (Megabitspersecond), as for interface speed of
ATM switch B103 and terminal B 102 we assume that they are 25 Mbps . terminal B102 access doing in file data inside
contents server B101, to read out data , first, terminal B 102 with Signa ring [kontentsusa]

—/§B101t0)ATM'J‘J7§§9E§3§b. ATMX'f“J9"B1O3b‘:‘/7"

Page 18 Paterra® lnstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1259

WO1997033227A1

setting request to do ATM link of [be] B101, ATM switch B103 [konte]

‘/W7‘-/\’ B101 tnatsx B102 F610) ATM UM)
ééitiféa

:0)61flEli=P0) C 7’lz—‘/(I517-5lill1%l1i§='%$1':i£
71/—‘/)§R§l.\‘C7.;Ié‘h%:o

awe. ATM Uyafififi. II‘/‘/"‘/“/‘li-/(B
101 zhvsfifisti B102 vs ATM izMI::—3h.7‘:7-M
/L-?—@ii<§2‘:i£$irL. ::hI1l§I=1=0) U '71/-—>

(1-*fi§fi$ii£7°I/—‘/)§FP1l.\‘Ctié1’Lé..

&.:7:a!><. :0)é:§ ATM X499’-BI03 tat AAL(A
TM 75i’77'—°/3‘:-lx4“t')1>JJ:0)J:li7.lzv{‘\"
maize-‘rm’. tiL«o)~y5I’t§fi0)a+(vci,vP
1)E%P35.L'c. Jami-75(1):!-i’-—I~1Ju‘o+tiafio>r1-I’
—|~~Z«f'y=:"->’J'?’%>7‘:'l‘r‘C‘§:é..

it. ATM x4’-y=)’- B103 a>ma1s«:i1. aea
1&1:T2-¥ta=7rL?od<ifit§72§Bt§t£l>k1:<?z=i'£L'c
L\f;;L\.

:a>f:a'>. ATM 1493- B103 a)%2h.€:ha)rtf
—l'~0)*f‘/’i7:i:—Xi$l§.fJ‘. .tiflEl.‘/':§l1(155M

bps t’: 25Mbps é:L‘5$5l:E7J-%>1%‘i'§‘l:l3i. X4
-fiméiiiiifibtlfiiifiulzmififitzt 25Mbps)
tzfifillén. EE»{>$=7x—7~(::>-7->“J*f—

;\'B101-ATM X4'y-')'- B103 F.§1)ht;{yi‘§tb#1JJ3a‘c'=é_-°JL‘. -

3512.3‘/‘_r‘J‘7'U'~/\' B101 IMJ774/L-‘r’
—9I:§dLr. °/—’7‘J’/‘*Jb77tZ?'50)'G
l:J:f.:<. B9ti§F-’5¢0)fiEEfl¥‘r0)J:5I:i§=.l_*EL,,
$52‘),-B3f$.lJ:&L\:>f:5>9'.A77tX’.£i:r
-Bififilst. 3‘/7"J‘V'*f—/iB101l:i@7C7§3fii51
fJ‘f5\75\/5.1:. ?_“Bl:¥§%Sl0)fia“i3EfJ\Bfi1B‘v*rl:-Ivy
’;?'A70tX3»’rLf:f%€f£&'l1. l.\o‘?‘3§ii?§i$
r§25‘1liT=l.'cl,$-Iv.

L3t.l:§izflHL.r:.;:5t:. I21 22 i:=T<'a'J:5>t;fi£5Ea)
ATM 'Jy9I:,tZa7741La>$—9§ié'ci:,h A
TM X4“/=)'- B103 ffi. E>2:%>«r>6r7x—x5$E
0371-i’—I~r’aa>1<€§774';Lo)7‘—‘—’;“r§£i£B~:'rI:
aZ~¥ta=:rL»5£J§‘.§t§a)r:&aa>7:EE§Et§t1£
i*§ir"f?'Cl«‘t-.Cl:‘o

l,1‘:fJ"J'C. $£i.%§i2EiiJ‘lI£5i«r>5z7:—xEE
Iztifllléirt. E§«r:z5r7:—x75<%‘i‘f}ii:$IlJ=‘fi
‘c%7t;L~aL\5Fu'i%i§u'J<fin7‘:.

361:. '1"/9'7:i:—ZE1§'/’JilE.5$l:$|]llE$h.Zo
.:tI:71u:‘t. Hfitiafifii-‘—977»r)l«o)70tx
(DJ15lZ77’fll/\0)5>51'A77tX5§lZ3SL‘
'C:l‘J'7"/‘7'V"'I< 13101 Izilfidctifii-fib*iJ\b\
U. a=Bi:i;t77»rJu+‘—5I0>$ii.-’§zi£§§tE1=3
1t%>¥é:t;o'cL\f:.

1998-8-4

[ntsusaaba] B101 and ATM link between terminal B102 are
set.

You can do this treatment making use of Cplane (Call control
signal transfer plane) of in the diagram .

Next, after ATM link establishing, from contents sewer B101
to ATM-cell isconverted file data which is transferred to

terminal B102, can do thismaking use of Uplane (user data
transfer plane) of in the diagram .

However, at time of this ATM switch B103 upper position
layer not to treat above AAL (ATM [adaputeeshon] * layer),
only header information of cell referring to (VC1 , VP1), the
cell from port of one side switching just is done to port of
other.

In addition, large scale storage media which is needed for rate
conversion does not exist in interior of ATM switch B103 .

Because of this , as though interface speed of respective port
of ATM switch B103 did, description above, way, 155 Mbps
and 25 Mbps , incase of different , when forwarding rate of
switch is on low speed side, the governing it is done in 25
Mbps) , high speed interface (Between contents server
B101-ATM switch B103) effective use is not possible.

Furthennore, it is not [shiikensharuakusesu] vis-a-vis file
data inside contents server B101, liketime of regeneration of
image data when random access such as rewinding , rapid
feed , haltis done, in addition to fact that excessive load
depends on contents server Bl0l,when furthermore
simultaneously random access it is done from terminal of
plural etc, forwarding rate decreases more.

As above explained, with data transfer of file , ATM switch
B103 , does nothave large capacity storage media for rate
conversion which is needed at time of data transfer of large
capacity file between port of different interface speed with
kind of conventional ATM link which is shown in Figure 22 .

Therefore, there was a problem that forwarding rate

governing is done in the low speed interface speed , cannot
utilize high speed interface effectively.

Furthennore, in addition to interface speed being restricted to
low speed ,like access of image , voice data file excessive
load depended on contents server B10] in thetirne of random
access to file , furthermore forwarding rate of file data
hadbecome factor which decreases.

Page 19 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1260

W01997033227A1

:m:. 77»fIL«5-‘-’;“'§z3i£0)7E1l~:i)b0)%%?i
til-Tl:oL\'CfiB)i'§'6.

TCP(Transmission Control Protocol:$1':S£‘rfill§fl
713 l~:Ill«)l1. ‘5"l'§¥l2l’aEl5§iE‘C‘5fiEfi<l5lil.\|5
11.'CL‘%)l~5‘/Z7l'\°—l*l§7D|~:lIl/C*E?oo

TCP l2tlE§Et$0>F:-.a‘L\iElE='¢'%IE*J”ZoT:&>. DJ.
'F0)¢t5l:i£/§l§Fa‘l‘C'I \>F~‘/147EfiL\. ¥
—’>’l:I5—-‘\59l§§0)7i)'.>T:i%‘:%‘§i£€?"r'3‘C
U6,

i+‘a”a‘l3J.T'C'FFlL\%>‘lz9’2“Jl~tl:l: TCP ‘c0)$z‘-.533
Sitfiiib. lii’.U)7El|~:lll«l.”.3:§l‘l'%/(’7‘Vl*dZ'n
*5L\l:l:7|/—1al:$t=ll7t“.~‘§'6.

iilglfilllit C#‘l.75"5i§f§'§'6‘l’_'7)“/l~0)“/—’7'

‘JX§'E7'(SEQ:Sequence Number)’E TCP ’\“J5l'
l:7“Jl:°‘/7L‘Ci§i§'§'5o

~‘/-’7>X§'r':%li. %5"—9Xl~'J—A¢'l:2F$l‘)‘
%>%0)-I273“/l~0)§$}J0)*'1"-5'1.-‘ZE”¢"I \'*fl~$
L\‘L'C*§L,f:i50)‘L‘. 5El§li’E_\"LB$rlZ1‘JJ%§ll:é#'L.

l<«Jll§:§i:i£3?rt.f:7"'—5Y0)/\'—(l~§lEflD§l..‘Cl<l>
§f§.‘lEIll1J;EE‘|z’72t‘/l~€—IEL,<§élE?’*..’-:.»‘:. W
’.§$E£l§v'3—E TCP A-ya‘l:7"/E2/'1' lxc. DH.

5' ACK(Acknowledgement:‘t§EW§)tL"GE
l'§l§'ll:5E?'a

EQE-'*$§§§‘4'%l3£. ;i£i§'l§|l7‘J‘3fil:i£i§?"{§"‘/
—"7"/X§%€'il.. ‘7’—5‘Efl%7Zf<IELl.\l|fi
l$'C'§i§'lC"é’f:Ct’_"&i£l§l§'llZiE§ll3‘%> E l3“J'G
iibhéo

iitamllliza) ACK sets. ACK E§fELT:i&
1)J&5t:fiza>-tz7‘x>l~E5£t§i”6.,

-Ea)5I»fA7'> |~f§1>JPil: ACK E§f§L.f.;l1‘
1'I.l;f. %0)‘lz’7'X‘/l~lal:§E’§'§>a

rcr antes. .1:'.=:aa> ACK 0)514J..7")l-EDJ.
W035‘:-s'%.t.E;I:..t<E>ie.a>i:<. Ei£f;&>cDIIE~a>
attache.

23 l: TCP I:J:%>§i£mE%_'—7‘i‘<?'a

lit 23 4:. i£f§£flIl&U§t§@IJ%+§fiFa'1l:3=3H6
TCP a>7:i—:i‘/I~u—)l«E7T='~§‘5I4J.t=H~—I~
‘G560

23 ii. i£l§tfiIIbus§f.%EIJ« 10 /<»fl~xs t
7‘2!yl~0Jv'-‘—5r§§ii£‘§'?ul§1JE>‘nL,'ct.~z~».,

it. 131 23 I1. l IE E 0)$Z:i£B$rl:é':3l‘H.'>°/—’7

'/x§% SEQ=40 0)-l:’7':‘>|~7‘J‘. §l§fiIl‘c~IEl,
<§t§a!=drLr:.tL\1%a%»_“—:T=t.-ct.~%>.

gtamllii. steam/7‘:t>I~a>' TCP A-/;ti:%h
. _w..—n..._

1998-8-4

Next, you explain concerning background technology of
protocol of file data transfer .

TCP (Transmissioncontrol protocol :forwarding control
protocol) is transport layer protocol which presently is widely
usedwith communication between computer .

TCP in order to actualize communication where reliability is
high,like below does [handosheiku] between sendingl
reception, when there isa error and a omission in data ,
resends.

Furthermore segment which is used at below you display
transfer unit with TCP , you correspond to packet or frame in
theother protocol .

mapping doing sequence number (SEQ:SequenceNumber) of
segment which is transmitted fromnow on in TCP header it
transmits transmitting side .

As for sequence number , being something which displays
initial data position of the segment in in all data stream with
byte unit, at time of communication establishment
initialization it is done, later it adds number ofbytes of the
data which was transferred. ‘

When above-mentioned segment is received correctly,
mapping doingresponse verification number in TCP header ,
it returns called side to transmitting side ACK
(Acknowledgementzaffinnative response) as this.

Response verification number displays sequence number
which transmitting side should transmit next, without
omission is used data with the objective which notifies fact
that with correct order it canreceive to transmitting side .

transmitting side waits for this ACK, after receiving ACK,
transmitsfollowing segment for first time.

If ACK is not received within fixed timeout value, it resends

the segment.

In case of TCP , thing, is mechanism of only one because
ofretransmission with not yet reception which is within
timeout valueof above-mentioned ACK.

In Figure 23 retransmission treatment is shown with TCP .

As for Figure 23 , it is a time chart which shows flow control
of the TCP in between transmitting side and called side
computer .

Figure 23 has shown example which from transmitting side
transfers the data of 10 byte X Ssegment to called side .

In addition, as for Figure 23 , segment of sequence number
SEQ=40 at timeoftransfer of first , has shown case where it is
not correctlyreceived with called side .

mapping doing sequence number of respective SEQ=l0, 20,

Page 20 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1261

WO1997033227A1

-€11. SEQ=l0,20,30,40,50 0)->——'r>x§=‘%E7
~yi:°y7’L‘C5£fE;?'%:.

fiiétfilllat. SEQ=l0,20,30 a>§1:7xpI~€-IEL
<§t§L.. %a>%‘N§. ACK=20,30,4O 5 Tc? Av
9'i:7\yI:°>7L'cii1Es'%>..

iiiefiiliat. §t7'fi‘2|~0)FliE0)’;bfA7")l~E
awe ACK=20,30,40 éfiiéié.

zwifllcia 1 IE] E wiiiiéfielz SEQ=40 0)-I273!
A~25<§lEfiIl'GiEL<§f.E;é:ru::L~o)'c~. iéféifill

‘Eli SEQ=40 0>t7’>‘>|~€i£i§L‘CfJ\I‘ofliE
a)’$M’1..7'7l~lEDJPst* ACK=50 "é§i§‘§'?a:
tb<té°t;L\a

ssisauiz. '3r41..7'7i~1ii:fii§B=*rr.€i‘6 SEQ=40
0312*/"slyI~I:I5—25<§’é$L,f:t.a)t$IlfiL. s

EQ=40 0)-1:47‘xybéfiiivéa

it. SEQ=50 0)-tz7'2‘>I~l:3‘c‘=l*d'?o ACK {Eli
EoJ5'4A7'7I~fL€.1:1i1s'ci£s3irLt:7:L\:.|_—i:

f::€a0>'C~. iitetillli SEQ=50 i£’r;;B%2b\=36M’A
7'7I~féb<t§i@l,f:B3n.*—Ti'c SEQ=50 a)t7‘x‘/I~
éfiiiaé.

_I-.56 TCP 03:51: ACK a)J+t*E‘c:§w%€—t-":5
fi;'£'C~Ii. fii£Ei%éH6f:&>l:i:*é.‘i:i£{E‘lHfl
0J6147¥§T’¢‘t¥'rf:7;ti+:rLlif:I57f.tL\.

$1’; I5—0)$L',T:t7'2‘:/|~7‘.i‘ 1 iEf:'l‘H:'o
f:1%%'64-J. %1‘Ll£LK§0)‘|z7'X‘/l~"¢"?"<'Cfi
i3EL72;:l'HLli7§U379IL‘o '

.‘_0)7‘:&‘)—EI5—7'J‘¥€$§'6¢‘:. §5£‘lz7';-4
:2l~25‘$=%E<Jl:i‘£1JI1L'Cl,$5<’;L\5F=fiEiJ‘?'i:
69

.’J(L|Sl:t. $v*fl:X§§0)/\'}|/7'7‘-5'E§<0)
‘lZ7'J“/l~lZ5i%lL'C§i$'§'6J=57'£i77'J’7'—
~>a>o>1%%. ifilliii. fifétfillfsus NAK(Negati
ve Acknowledgement:§El$§)’E5£L,'C1§i
129')‘:/l~0J§§$llEl‘J7§I§i£€fi57:T5£l:?=l'L'C.
§i£§ll$7fI‘§l.<lE'FL‘CL3E5l§<’:7.‘£%'>..

ééli TCP %‘”'r0)l4".'~“§K§.’?.li. IP(Intemet Protoc
ol:'f‘J93i’~‘7|*7IIl i-:1/L)!/»r’r'$'ea)'FLtL»»r
‘\"i§ifl"i’&i?’§7'L'C75\'7_r’f‘—r‘3‘J7l~5lE§E‘C'$>6T:U>.
EfiN1l§iJ‘$¥§‘C*§)%>.

2i§%B}il;l:J:'.5:E.'0):.‘—.‘il:fi«?‘;’Cf.it‘a=11.T:£.0)‘C*fi2
U. Iliiéflfili. ’0f5lEiii?filZa*sL\'C. §<a)7nI~
:1». 55429335 CPU 2b<5u1EL,ri.\f::,1;I:J:
677'fIl«fii£|l§U)JU|.«—7‘y|~lff.'F’E35I§L..
E1’5zt.t‘§+§1§§:?~-yI~U—7§+$ii:Féb\s‘Ez
11«—7‘yI~r:.c‘r-s1'fi—t%77«r)L§z‘:i£75;~£L'zU§
fi3tUi:§£i£7i%£€é'%fis‘¥a7‘;&>a>7n7‘3J..

1998-8-4

30, 40, 50 in TCP header of 5 segment , it transmits
' transmitting side .

called side receives each segment of SEQ=l0, 20, 30
correctly, every time, the mapping does ACK=20, 30, 40 in
TCP header and transmits.

transmitting side receives ACK=20, 30, 40 within
predetermined timeout value of each segment .

With this example segment of SEQ=4O being called side
whentransfening first , because it is not received correctly,
afierwith transmitting side transmitting segment of SEQ=40,
it is not possibleto receive AC1-(=50 within predetermined
timeout value.

As for transmitting side , it judges as thing where with
timeout value passage time point error occurs in segment of
SEQ=40, resends segment of SEQ=40.

In addition, because it means that either ACK for segment of
SEQ=50 is not sent within predetermined timeout value,
transmitting side from at timeof SEQ=50 transmission
timeout value resends segment of SEQ=50 with time point
which passage is done.

Like above-mentioned _TCP with method where does
responseverification with only ACK, in order toireceive
retransmission,you must wait for timer end of normally
transmitting side .

In addition, segment afler that must be resent entirely even
withwhen segment which error occurs is just 1.

Because of this when error occurs once, there is a problem
. thatretransmission segment increases in cumulative .

These, dividing bulk data of especially large capacity into
many segment ,in case of application which it transfers,
returning NAK (NegativeAclcnowledgementznegative
response) from for example called side , become cause where
transport efficiency decreases considerablyvis-a-vis method
which resends specific segment forcible .

Furthermore afier as for TCP or other response verification,
finishing the lower position layer terminal to IP (intemet
protocol zlntemet protocol) layer , because it is a software
treatment which itdoes, fast processing is difficult.

As for this invention considering to above-mentioned point,
beingsomething which it is possible, this invention improves
throughput decreaseat time of file transfer by fact that CPU
treated many protocol , communication treatments in Prior
Art , It designates that storage media which high
[suruuputsuto] high speed collective file transfer method and
program utilizes high speed computer network to fully in

Page 2] Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1262

WO1997033227A1

€'§’B1“e‘l.T:§E‘|‘§§%l7$EI:%9$"9"%>.:t§E E‘Jé:‘4'
60

it. Ilifififimltaa) E 9411:. «r/5171—zs$J§

mitt?» ATM')‘/7(7)i$l?.§i§iJi3I1‘€1‘§‘C'fi.>"J.
Lox-is. 7<§§774;L0J5>5’1.7’Jtxri;E
a‘—; \'1:r;\25~%>1c'a=t.ca?=-T1Et.6t§i‘tL,rEL\§i:
i£Z)l«—7’~yl~§%¥fi’-3‘%>Z&I:E%>.

it. ilififlfiaaltta) E 34113:‘. §/i‘7"‘J|~§0)‘J
7I~41AEI:¢1:»5m§t5§?.%”.l:..’£i'9“/3§i:5£3‘c11$a)
IEFEEIEL. "1"-Gléififilz/<’7“Jl~l:$:‘§JL.'C
§Ei$§§”%>i%‘.=*.‘Gt»’1';%‘L\;UL—7-yI~b<i§rEa:tL6
5-'—’;!§i':i.%§7‘:‘;‘2E€-¥:.E='l§t'6"5:11:t:fi;%>..

fi3Ji0)§fi7T=

t;%aaa=2s4swar;u>. 2s5ea;1a>§1 aafiti
1:. 77«r;La)§£i£:‘1:L‘zzJ?77»r)La>§ii£'9E'G
men. ?‘—9§i1?£’.«_?fi5f:d>0)z‘Rfii%‘—9
/<1. $1 aasatahibk. auaas1a>§araau<
.,UJA.*fl7Ji$1§io<i$L\% 2 aasataiaamusrza

z‘flFfi§’+fi%7—=\‘--7-7¥’vé‘:FHI.\'C. (a)77'f
)W)$Ei£7_1:‘Ca iat§'J‘/7%:-§£i‘«3'%>fifi1:. % 1
aJ'E:Et“et¥l7t:Pia>77%;L1’——511:311L'c. M;<
ttafim. 71:11~:1Mafia“a. &v?71/-5/70>
=l=a)L\fl‘L75\ 1 oa)5l11E=£fi1.v:m<fo.§!z77
*fIl«-’;"—’2"E2‘.flfi5l"r’—-'3lI\'7~’&’J"t‘L,‘C§E 2 o)§E

t§tI%l7k’\llE>fiE§ii£‘4'%>$lIlEé:. (b)ii?IEE77«(/L
a)$z'si£7‘1:‘E. fi?I‘.%‘E77»r)l»€-‘—51I:$<#7a“%>4111E
0)%T&. iE’r5;'J>’JE§EEL. fifiéafi 2 OJEE
ten:t2::v=1a>77»r:1,%—9z. {'=l1.l:$dL'C&Il
Eabfiéftz. ‘sttxaaillfi-7-‘—5z:t;<€1tLr1‘E
ta. §§ili.fi5l7'?—'S¢I\’7\lZ?§fi31f1.'CL\%.>E+fil§%
5El§Ffi0)rt~-y|~'7—’77$I'7’@7J—F’\—¥S§2E5£
L. §»‘t~‘y|~'7-076Y'7’;?7J-|~'fJ\E»=l"~~;rl~'7—

9«4asz=r»s¥11aa. (c)77'fJL«(Dfii£9E'C‘.
fiI‘I§E?~-yl~'7—'77‘J\I‘a§§§1':i’é9':‘:0)§J‘|.FFH"-Gui
x1:t§é%:*ez*:rL'cL\?.u?~-yl~'7—’J75f797J—F
«+z':i£a=:rLr:fiiI§e77»r2Lv‘-—’;I*¢“. 7‘-‘—51a>fi?£
;i. 71:11~:1M1§fi1*a. &U71/—sy7é$~t:L\

' '§’h036?llE£l)‘§3’J’I:. ‘5.‘a*:'Ji.Ffi'7"—$!1<7k"¢«33’l‘
l.'C¥ 2 a)%atat£l$«-tfifiiiéb. fi7I§'B5ElE'J

>7§fi¥fitI'9"%>¥lE&(d). '1ifi:=:a77»f)La)$ii£
9&1‘. atsaiaeu >7’&m‘5tl,1:€é . rrisaa 2 0)
E'EE!§l$l790)-7-‘—Gll:i=lL‘C. ¢~7::<t£fit€>§
6lJlE.5Et§91lE0)=P0)L\'9“=l1b\ 1 oaamaa

fitv:;1h<«3. Iiazazmaanrzatsaa 2 ansaraaa
l$1>§0>-?—9§1’a‘fi:%’ai1tFfi-1“-—5v:<;<§frL'C%
1 0)§EEfi¥i1l§’\E5£*J'/5¥IIEt€'fi*§'/5C¢‘:€'
t%Ez.Lva'»‘&17741L§z':i.%§fi&'c~a5?.>.,

1998-8-4

orderwhich to execute device and transfer method storage is
done isoffered as objective .

In addition, as for other objective of this invention , rate
conversion of the different ATM link of interface speed being
possible, dispersing also large load where furthermore, it
depends on server such as random access of large capacity
file , itis to actualize high transfer throughput.

In addition, it is to offer data transfer method where high
throughput is acquiredeven with when other objective of this
invention evades decrease of the transport efficiency which
originates in response verification in sofiware treatment
ofeach every packet , divides data into plural packet and
transfers.

Disclosure of Invention

In order to solve above—mentioned problem , as for first
embodiment of the this invention , respectively, making use
of general purpose computer architecture which consists of
the second storage media where input-output speed is faster
than general purpose data bus , first storage media , and said
first storage media in orderto do data transfer with transfer
origin of file and forwarding destination of the file , in
transfer origin of (a) file , before setting communication
link ,vis-a-vis file data inside first storage media , At least,
while treating any one in midst ofcompression, the protocol
terminal , and flaming , in transfer origin of protocol and
(b)af'orementioned file which through general purpose data
bus , sequential transfer the said file data to second
description 100,000,000 media , after completing thetreatment
for aforementioned file data , to set communication link , file
data inside aforementioned second storage media , Without
administering treatment vis-a-vis that, through
theaforementioned general purpose data bus , with forwarding
destination ofprotocol and (c) file which it lumps together
transfers to network adapter card -for computer

communication ,directly, is connected to said ‘general purpose
data bus from said network adapter card to network the
transmission it does, to network adapter card which from
aforementioned network isconnected to general purpose data
bus of said forwarding destination transmission
aforementioned file data which is done, Without
administering thawing , protocol tenninal , of data or each
treatment whichincludes flaming , through said general
purpose data bus , protocol which it lumpstogether transfers to
second storage media , releases aforementioned
communication link (d),with forwarding destination of

aforementioned file , afler releasing theaforementioned
communication link , at least vis-a-vis data inside
theaforementioned second storage media , thawing treatment,
While treating any one in midst of communication treatment,
sequential itis a file transfer method which designates that it
possesses protocol which through aforementioned general

Page 22 Paterra® InstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1263

WO1997033227A1

it. 7$1%flH0),7'-‘—6¢§z':i£7:‘3£’&¥*’r"rT6f:6f)
0)7’I:l7'5.L-l:l:. Efllfitlfiiililzéaf-%E=12“Clf?!E'(‘
EH3???’/5C¢‘:iJ"C%/5°

it. 2l:5éIiJi0>l1i_10J!§m:::.(a)-'r‘—t~i$z‘:i3§€?-‘r
5f:&><7)% 1 a>iFifliF—’5'/t7té:.% 1 03561?
tfilitt. arises 1 0)§'Ef§3l§i7l5JiU}Ktl:‘:7Ji$lE‘{75‘
EL\'§:' 2 aaieatsmkt. arises: 1 t1);‘}‘lFfi'7"—5~'

' I iXl:¥§fi3#L‘Cl.\6'E§‘|'§%iEi§lfi0)% 1 0*
~y1~'7—779‘7’5m—I~'t. S§fE'J:/Jéifiicr
Zafiilli. areas: 1 a)§E1§ti£b$1x1a>77»r;i«-?—
9l:$<‘~iL'C. 'J>t.t<H=..Efi. 71:1 |~=I)|»¥‘=‘ir1“'1i. XL
U71/—sy7’0>4=a>1,\?‘=l'Lio~ 1 oamuflirfi
L\t.:2bh3. §277~{)l«-7-‘—’;1E‘§?I%’E¥ 1 0>;‘flFfi7'-'
-51/<xé1‘rL'Cfi‘1I§E%' 2 0)§ElE9:‘ii$'\lllE>fl$z_:
i£a“.43f:aba>% 1 0)§i5£¥E§e‘_’.fi?I‘F§E7741_L
-1'-'-5*l:‘;1*~i?'%>5l!1E0)%Ti£. i§fé‘.'J>7EE’£

EL.fi‘IJ‘§B’£ ,2 w'E:E1fJ§£l7Ws0J7742L?—9
l:$6lL,‘C&.I1E€—liE$‘§‘l:. §§'77'fll«"r'-9%.".
‘fi1IEE% 1 o>;‘MFfi’—9n'x=&1‘rL‘c1Et&. ma
% 1 a>#~vI~'7—77',¢’7’517J—I~’«—ti$I-.5£
l..E§’i-5 1 0)?~v|~'7—775!'7’5U3—l~’fi\I‘:.>?«y
I~'7—'7«lz‘:i£#'<5f:«v>a>{£i£¥E52&:*&1fei?'6

sass:-cs+ee2a. (b)?—@§ii£§fi5r:a1>a2%'
2 a>;‘)1rfi%'—su\';<t. %' 3 anaarsnsbtt. EHEB
% 3 0).-E.E‘|§9»¥i7l§J:UJk.‘.i.‘17JEEfJ‘i$L\§;' 4 <7)
-saranstsa. areas: 2 0);‘flF?H-'—’i/{;<l:f&l$
$h'cL\»§E+%fi5E1%‘Ffi0)’£ 2 a)#«yI~v—’J

7/,=r1a1:—F.2. fitsa2««y1~o—/:11‘-satisaa 2
0)=?~'yI~'7-775-"7”5¢7J-F/\li:i£éJtL1‘:'1i?I‘EE
774»-7-‘—6"&. -7-‘—5I0>fi7§. 71:1I~:)l»$§
as. L‘zU7i»—s>7'Eé*t:L\i’irLo>a&Etit'i§
3'4‘1:.fi1‘IEE¥ 2 0);'RFB'7"—’5l/\’X’E2"rL‘CfiiI
23% 4 a)‘.=:Et§!1¥l$~-liiiiitn §iI§EiEl§'J>
7Efi1iSi¢%:r;a'>o>fl1rSt$E£t. fiilsaialéuy
’JEm5IL7‘:£%. §iI§E§=§ 4 a)§El§b£t$1t1a>-T-—
’21l:i=ll.‘C. 'J>t.z<tt.fiEi§mE. 5E{§mEa)c1=
0)L\’f1’I.75\ 1 o0)lI&E’a'-fiL\t;fJ<I3. llfifltflfl
$nr:au‘r.=:ae 4 U)‘E’.E'|§fi£i>¥<P‘10)-7-‘—’;‘PEfiTI‘.3§E¥
2 0>mFfi-'1-‘-51/<xéa’rL.'cfitJ‘.%a¥ 3 aasarans
l7$~§ii£?'%>r:&>0)¥ 2 wfiiififita-JET6
éiiiéaeffimtifififiatéztétefittiév
7»{)L«Ei£$§E'C'i.~.%).,

2l§fi5Ji0)774l|.«§I'ii£75‘ _1at.12£5EE1fil::tsl.\
..-. .g»...-u‘. ._...._n . ..:.»au._....¢_p.

1998-8-4

purpose data bus , transfers data inside theaforementioned
second storage media which was treated to first storage media
as feature.

In addition, program in order to execute data transfer method
of this invention , the storage doing in storage media ,
distribution fabric is possible with the form .

In addition, other embodiment of this invention first network
adapter card for computer communication which is connected
to second storage media and aforementioned first general
purpose data bus where the input-output speed is faster than
first general purpose data bus and first storage media and
aforementioned first storage media in order to do (a) data
transfer and, before setting communication link , atleast
vis—a~vis file data inside aforementioned first storage
media ,compression, While treating any one in protocol
terminal , and flaming , first forwarding means inorder
through aforementioned first general purpose data bus ,
sequential to transfer the said file data to aforementioned
second storage media and after completing treatmentfor
aforementioned file data , it sets communication link , without

administeringtreatment vis-a-vis file data inside
aforementioned second storage media , the said file data ,
through aforementioned first general purpose data bus , direct,
second network adapter card for computer communication
which is connected to storage media and theaforementioned
second general purpose data bus of 4 th where input—output
speed is faster than thetransfer original computer and second
general purpose data bus in order to do (b) data transfer and
storage media of third and storage media of aforementioned
third whichpossess transmission means in order it lumps
together transfers to theaforementioned first network adapter
card , from said first network adapter card to network
transmission to do and, From aforementioned network
aforementioned file data which transmission is done, without
administering thawing , protocol terminal , of data or
eachtreatment which includes flaming to aforementioned
second network adapter card ,through aforementioned second
general purpose data bus , releasing means in order it lumps
togethertransfers to storage media of aforementioned 4 th , to
release theaforementioned communication link and, afier
releasing aforementioned communication link ,vis-a-vis data
inside storage media of aforementioned 4 th , At least while
treating any one in midst of thawing treatment and
communication treatment, sequential it is a file transfer device
whichdesignates that forwarding destination computer which
possesses second forwarding means in order
throughaforementioned second general purpose _data bus , to
transfer data inside storage media ofaforementioned 4 th
which were treated to storage media of theaforementioned
third is possessed as feature.

file transfer method of this invention designates that protocol

Page 23 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1264

WOl997033227A]

‘C CPU #511‘.-EL,‘Cl.\f:7’EI I~::/lAr§fia?:f£E0)§
(0)5111-E§5"—’3‘lz_:i£lfilZl3Ii"l'7l’)7iL\.‘_¢‘:’a_"?3f
fitiéa

77«r)L-?—@Iarl=xt~;<s':'J1:;E0>%‘5$]\tli1:
EIfiEt;2¢=eIJas-yI~'7—77$v‘7’5v7a—Fé;0)Fa‘i
'G—¥El.'cJt.'flfiJ$n§n‘:&‘>. 77~r;v§z':i£a>
:uL—7°-yI~a<.ti2<%>.

:#‘LlIJ:‘J\ 3i’~“J|~'7—0ld:‘x.§L\El?iFsfi‘C'fili5I31‘L
éfzd). T%1'5i7ZE‘E§‘l’E&«‘r'~“Jl~'7—’7"¢"7fi'3i’7J¥|ll5fi
féé.

at. —g. x=EIJI:§7‘u5:nza77»r;Lv‘--51
I:5£tEfiIJ'eI1=t~~ul~'7—7a>5EE'J:/JEZQEETI
1:. /\—F-'r'«rX7<7)J:5?2il&5$0)j<§§E'.B%
asttsybnsllfiifizéfiéalm. 77«nL<r>§ErE;mu'e
Ii. if»-yl~'7—0Efi%£1BtLT:&t 5-‘»rX’7l:JlWE
I:§f§$n%>.

:0)24£'Jt /\—F¥4z/7ra'1a>¥-—svo>&s.e§as i
4:. ;‘fl.Fl5H‘—5'I<X(I)§Ei£i$l§‘.l:|;l:’<. /\—F
7"'«fX90)ltH7JfJ*+5i‘lEsi§'C'3Z1§>T:&(). :0)
Eéiilfifitxc. 7I:II~:ul«6tJl§%f0>&l1E75*EI’fi‘.1:
ttzét.

Ilsa-:BJiaJ774;u§.=.i£755z’2'c~lst. .‘%5i$«1*~~yw
—7&fii8i¥IIm?'f:a!>. 7r~-yI~'7—075!7'sr12
—I~'a)$ii£i$E§%fiIlI5EL1:.cL\J:5. 7741!»-7-'-
51??? 1 113% 3 o)§El§h§l>l:aUJP.'Ea)§‘:' 2 1
41% 4 0)§Ef§l!§l7l<.1:d)Fa‘l'C'-l%$1‘:i£l,. :0)
Fa. rt=§;fi§§El:.x%>a&E§fi=r>7:.tL\.

% 2 Suifi 4 wéalfenfibttfi 1 211% 3 wee
f§l:£l>¥<fia‘1a)-;‘-—’;?§$i£l;t4'~-yI~'7—0§fi1fitL.
'CL\Z~»Fsfi. ‘~i'72i70*5. 774’)L«0)$z‘:i£7‘t:‘C*ld:77
»r1ua)lz‘:i£fi?I, 77'f)l«0)§i5£5Y:‘L‘l3:77'f)l«
0)t1‘:i£'&l:fi5.

:a>t=é. ¥ 1 Suztfi 3 ansatemxaaeezaa
i§f§it;‘Rfi3'7‘-9/ <zta)E§%E$1J3$IL:c-‘r‘
—@a)Efi-$3. 7n|~::;Ls<§na“a%a>me=&fi
t.\7§t7b‘I3. % 2 Sllifi 4 0)‘EiE‘l‘§.9£l$¢‘:% 1 El:
% 3 a>'.3;al§!§l7!=0>Fei1'c'iz>5z-J‘-—'»IE$z':i£s'%:.

.:in.l:.;:U. 77~r1I«§i5§o)B.§. 7~»yt~'7—'7o)
'§x;L—7’~yI~E%1fi‘C*=ér. 7:§§0>77»r)L§£
s£a>m§r:e.e:ar:2~-yr-7—a2ms:aazw
‘G36.

E0)F£$t£§§i|3J5l I21 1 I1. .‘_0)%E}5l0)—¥lr§
ifzfilzoté ATM r?~~yI~'7—7I:$§£a*c$h.%>'Es+§
wa>t§ti!tl§1J&774;L-?—9a>;3‘.~:irL’&n‘=<a‘7‘u
‘y’7E'L”°3i%>a

2 1:. :.b>seaJ1a>«2o>—%rwe«:;za AT
M :r~~yl~'7—'JI:?§$;%a=tLes+§&a>1%ri1i16I1t

1998-8-4

terminal or other manytreatment where CPU treated in Prior
Art is not done at timeof data transmission as feature.

As for file data lumping together host memory or other high
speed input-output possible memory , andbetween network
adapter card because input-output it is done, throughput of file
transfer rises.

Because of this, network because in a short time it is released,
the effective use can do high speed computer network .

In addition, file data which once, is stored in memory with the
transmitting side before communication link setting of
network , sequential compilation is done from the large
capacity storage media of low speed , like hard disk with
called side of file , afierreleasing network , in disk
compilation is done in sequential .

Because when transferring data between this memory , hard
disk , input-output of hard disk is fully low speed in
comparison with forwarding rate of general purpose data
bus ,making use of this difference, protocol treatment or other
treatmentbecomes possible.

With file transfer method of this invention , in order efiective

use to do high speed network , in order not to restrict
forwarding rate ofnetwork adapter card , from the storage
media of first or third it lumps together transfers file data
second of high speed , or between storage media of4 th at this
time,does not treat with central processing unit .

second or storage media and first or third of4 th data transfer
between storage media while releasing network , in transfer '
origin of the namely, file before transmission of file , with
forwarding destination of file doesafler transmission of file .

Compressing at time of this , making use of speed difference
of the writing speed and general purpose data bus of storage
media of first or third while &treating data thawing , protocol
terminal or other , second or storage media and it transfers
thesequential data first or third of4 th between storage
media .

Because of this, at time of file transfer, be able to
actualizehigh throughput of network , network can be released
to early stage even case of file transfer of large capacity .

simple explanation Figure 1 of drawing is configuration
example of computer which is connected to ATM network
with one embodiment of this invention and block diagram
which showsflow of file data .

Figure 2 is configuration example of computer‘ which is
connected to ATM network with other one embodiment of

Page 24 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1265

WO1997033227A1

7741b?-90);'iif.1‘LE7T<§'7E|‘y7l§l'C*£Es%>.

E 3 I1. .:0>ie!iJi0>lm0>—%)‘féif2%I:J:%> AT

M 7r~~yr~'7—7I:t&fi$h%>:#§&0>t§fiJz46TJt
77»f)l«5-‘—’;‘lU);3‘iE=l1.éfi'=?'7'D‘y7‘G§;5.

. 411. 1t:7T=9“t§fi,ti:tsI1zs774JL-'r‘—9
0)§Ei£5'E‘G0)5lflE0)¥llEE7T<'§’;:‘iEifLlZl‘EfiJ
60

E511. E 1 l:7T<’f%fiil:#$t‘f6774’)L-?—5'
a>§i;i£2T:'»:-a)5Il1Ea>$IIfiE:E-a".,=tE#rrE'c~fi;
60

at. E 1 i:fi='9*t%fi;‘Zt:2l=st1Za77»r)b-‘r‘—5r
0)i£fE:7‘J\I‘o§f;;¥‘C*t1J4I1lEcT)—‘3'=lIfi"a'-7T<?'Bi‘Ei'L
Echo.

7 13:. :<t:%fiJia>—%I:Efi3%i:J:%» ATM 77
»nI«fii£75i£a)$li[a’&é$tBfiLr:Ee5:6.

E 8 let. 7 i:7T<s“ ATM 774’;Lfii£75;‘£E
¥fi*4'6f:6f)0)"z§E0)#§fiEE7'1'<’4'7'D'y7l§l'C‘
56»

E 9 4:. ATM x»f‘y=f&2 :fiE*i~~n‘ Dl00,:L—
+fia“a3E D200,Zl‘/7"/‘7"f~/\' D300,ATM X4
"J? D400 =8 ATM 1?§§fil,f:t%‘.=‘.0>t§fiJZ1b1J"c'7T<
?’E‘G5;%u.

10 I1. :iy7'->“J+2“—/ \' D300 ms ATM X4
v%&2 aw—,< D100 l:7C§§77’fIl«-73-5’
’¢“—t%§»E%§’6ll.%0):fuI~:i1Lx9-yak-'r‘—@
0)f‘iE7l'LEfi'<*-1'l§l‘C'7i)%>.

E 11 la. 2|-—*ffii"i3E D200 bus ATM Z499‘ '
&2 &+2‘—/t moo l:i'=lL,'C5>£!'A70-|z1’4‘

z»m>:’ni~=;»zsz;yaa¥—aa>3=izmam*
‘C256.

12 I1. zkiéfiflé. /\—I~‘i-‘«r:<7I:EEa=h
r;7:§§77~rM:fiIIfiH:79-tz:v'25%eI:
fiH5lLf:¥HiEil?§"&§R5}3‘9"6T:&) WEI ‘C'E?>..

13 ii. 7i>‘~§§5fi0)i-"—51$i':i£755iEl:J:%':?-9
0)§1’:i£$llEE§ii|1}i7$'6T:¢Y>0)l§l‘C*§:3.').,

141:. UDP /<’7‘yI~o>7:r—v~yI~€—7T=§'E'C*
E60

E I5 l1.ATM/AAL—s CPCS-PDU a>7>r—7
“/l~€'7T=?"Gfi%>o

:21 16 l:i:.1li§€3}il:J:Za1"’—51Ei£“/—’r>7~E
aravaa.

E 17 i¢.'2i:5ewai::s«+a+'—aa;a§Ea>e_Alru4. _ 4.;-u_.;_ w

1998-8-4

this invention and block diagram which shows theflow of file
data .

Figure 3 is configuration example of computer which is
connected to ATM network with other one embodiment of

this invention and block diagram which shows theflow of file
data .

As for Figure 4 , it is a flowchart which shows protocol of
treatmentwith forwarding destination of file data in
configuration which is shown in Figure l .

As for Figure 5 , it is a flowchart which shows protocol of
treatment intransfer origin of file data in configuration which
is shown in Figure 1 .

As for Figure 6 , it is a flowchart which shows protocol of
treatment torcception from transmission of file data in
configuration which is shownin Figure l .

Figure 7 is figure which explains protocol of ATM file
transfer method with one embodiment of this invention .

Figure 8 is block diagram which shows configuration of
device in order toactualize ATM file transfer method which is

shown in Figure 7 .

Figure 9 is figure which shows configuration example when
ATM switch &secondary server D100, user terminal D200,
contents server D300, ATM switch D400 isconnected with
ATM .

Figure 10 , when from contents server D300 lumping together
transferring large capacity file data in ATM switch
&secondary server D100 is figure which shows flow of
protocol stack and the data . t

‘Figure 11 when random access doing from user terminal
D200 vis-a-vis ATM switch &secondary server D100,
isfigure which shows flow of protocol stack and data .

Figure 12 , when this invention , simultaneously to large
capacity file which compilation is done access it does in hard
disk , is figure in order toexplain embodiment which is
applied.

Figure 13 is figure in order to explain transfer protocol of the
data with data transfer method of this invention .

Figure 14 is figure which shows format of UDP packet .

Figure 15 is figure which shows fonnat of ATM
/AAL-5CPCS*PDU .

Figure 16 is figure which shows data transfer sequence with
this invention .

As for Figure 17 , it is a figure which shows configuration

Page 25 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1266

WO1997033227A1

I:3Zi§‘l€'n_<'§'l5_7l‘C*372%>.

18 ii. 2l:#BJir:J:%>7l~’L/xfi2%a>—{6Iléi~
'9“l'a‘1c&;%>.

E 1911. :4sI%B.fiI:J:67Fuxfi2fi§o)~91J’&a‘=
Tciaé.

20A I; ATM #~~yl~'7—77@’7’5U:—FE§
t§L,f:s)1r¥i§+$w7—=\'—€-73fi4r€=T=?'7n‘y
0‘:-BU. 2013 Iiti£5lE0>77»f)L§ii£7uI~
:ul«€FfiL\t7<$§7741LE§t§#'6IE%0>+‘
—$I0>fifitLé7T='9“;7‘.E1'LEct>%>.

[Z 21 It. ATM 'Jy7€mL\r;774/Leiiiju
l~:1/L«0)71:1 l~:i)L«x5!'y7t-'HrI.’.a_'—¥Fr#’ZaI\
—I‘~"7I7€$é:Ai>T:'ca5Z.>.,

1 998-8-4

example of data transfer device in this invention .

Figure 18 is figure which shows one example of address form
with the this invention .

Figure 19 is figure which shows one example of address form
with the this invention .

As for Figure 20 A with block diagram which shows general
purpose computer architecture which equips the ATM
network adapter card , Figure 20 B" when receiving large
capacity file making use of conventional file transfer
protocol , is flowchart which shows flow of data .

Figure 2] protocol stack of file transfer protocol which uses
ATM link is figurewhich collected hardware which executes
that.

L] 22 I1. ifE5lE0)ATM'J‘/7ERil.\7‘:1%‘r%0)?—9$zEi£0)5l3lllE<’:. fhéfilfi.

Figure 22 , actualizes protocol of data transfer when conventional ATM link is usedand, that

3'/5T:&')(7)§%%fi20)t%&ll§lE'Efi:?a.

It is a conceptual diagram of equipment configuration in order to do.

I21 23 I1. 1i££E0)i’¢‘t§tE.Il&U§f§fi|J§’+Et’&Fa‘1I::sh‘%>TcPo):n:I—:i>I~I:i—

As for Figure 23 , conventional transmitting side and TCP in between called side computer [furookontoroo]

l|«’&'7T=§”5"fA=)’--\"—|~’¢"7T=’J’l§l'G5%>.

It is a figure whichshows time chart which shows jp ll .

§5fl’&¥EE‘§'6f:d)d)§Ed)ité%

preferred embodiment in order to execute invention

1 ti. $1xli%3aJ%at§9§t2k.*;L‘ca)z\—F-F4:<’J. ¥2ll3I§§40)§’E

As for Figure 1 , hard disk , second as storage media of first or third ordescription of 4 th

letitzttt,-ca)¥§4=t:><£'J (DRAM : 5r’f')'E“J75:/9.1-\77‘l'.'X)‘£')

<seq>DRAM :dynarnic random access memory semiconductor memory as * media

:Dynamic Random Access Memory) /J“‘9lilZ§>7l'\Xl*}‘E'}Eml.‘7':§E$l§E§L. 7l§§§3Hl:J:577’lJlI§Z_ii£7J'
$£€%I:fi§'?sATM»”r~-yI~'7—’JI:t§¥?c$#L%:'§+fi&o)Il%:iIZ1§I1t77»f/L-?‘—5!0)5ff:tL€—i=?”F56. 11:77:?‘
éfifilili. 7l<Xl~CPU-F1, DRAM%"rC~%fi'Za=n%>«1=xI~x£I}F2. Efiajiflffi/\'Z‘C'i)?oPCI/<ZF3. CPUtP
cl/<7.§t%.,s:r1=xI~—Pcr7 ‘J-1°/‘F4. MEU4‘\"7‘J\E>AALl/*f‘V'$'t"'¢£'¥§9i"li"3'6ATM$‘7l~'7--779'75?1J-F
(545!»I1z‘yI~0—7»r>5r—71—;<7:—F)F5. I\~I~°-7—‘4x7F6. &I.$ATM#~ryI~'7—/JF1 or-£6. 321::
EEa>t%E£i::sI.~'c. ATM—LAN5i“'r¢7JATM»7~“Jl~'7—9F1 onus

Page 26 Paterra® InstantM'l‘® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1267

WO1997033227A1 1998-8-4

It is a configuration example of computer which is connected to ATM network which;possesses equipment
configuration which uses host memory which consists of Dynamicrandom access memory) executes file transfer
method with this invention and a figure whichshows flow of file data . Each configuration which is shown in Figure 1
is ATM network adapter card (Or network interface face card) F5, hard disk F6, and ATM network F10 which to
AALlayer tenninal are done with such as host CPU ‘F l, DRAM from the host - PCI bridge F4, physical layer which
ties PCI bus F3, CPU and PCI bus which are a general purpose bus of the host memory F2, high speed which
configuration is done. Next in above-mentioned configuration , from ATM - LAN or other ATM network F10

7<4"§§77*fll«fM7'ii£$Jl1.%a1%%0)§i§{fifl0)¥l|lEl:’Jl.\‘C. 1 Z‘LUlE4€'§l’.l3. '

You refer to Figure 1 and Figure 4 large capacity file concerning protocol of called side when transmission it is done

Lr§itliJi3‘%>. 72:15. 12:41:. IE1t:7T=§“77»fIl»0)-&l§$IIlE"é2?iE:tL§7T='§‘5fiE2fI.|§l‘Ei3i;?o., fi‘Ez‘:i£a=n'c5Er:77
«Hui. ATMr?~~yI~'7—’JF1ofJusATM$~yI~'7-’779'7’97J—FF5|:{£i£$#1.é<4a)x-?-9731 -32).. AT
M:?~-yI~'7—7751‘7’4«i:—FF5Vq1EI1H‘a'tt§v‘%a>$§fiaTslbs/Patti. tlbfil

Doing, you explain. Furthermore, Figure 4 reception protocol of file which is shownin Figure l is flowchart which
shows flow. First file which is transferred from ATM network F10 transmission is donein ATM network adapter card
F5, (step Bl~B2 of Figure 4).Inside ATM network adapter card F5 first temtinal and SIP conversion and cell of light
signal same

muar;=1mw‘\”(PHY) a)$§fia“xs’£—’r'rL\. ATMlxrf’t'. AAL/~tJE>m:L11lz»f—'r'{fiul:=:-‘—@2‘a*$fi5£$irL%>. AT
Mi/«r—t"EIat$I:vc1/vP1I:J:6-mLo)§-Efififibtfibn. AALl««r’v'c«t;t1z;La)48/<»rI~0>r<4I:I—F§#§‘.%
L.'ccPcs—PDu€1%fi£L. CRC’(5E$0)=)’-:i:‘77€?“r’3‘C75‘|SC

terminal of physical layer (PHY) such as period is done, to ATM layer , AAL the ‘data is transferred to upper position
layer side in sequential . With ATM layer demultiplexing of cell to be done mainly with the VCI NPI , with AALlayer
connecting payload of 48 byte of cell ,confignrration to do CPCS— PDU , after doing check of CRC and the length , C

Pos-Poua)/<4u—Fé:L—-+2°71—5I.1;L'CHxtU7H'.,

You remove payload of PCS — PDU as user data.

ATM. AAL I/«r-*E—.’t§fifiL‘cHszt)tr:‘¢*=?rLr:77

»f;va)7‘--5111 PCI xtxa)/fix I/F 3"“J7(Bus
I/F)fJ‘B PCI /ix F3 Afiiiéhé.

zmté. ATM 79’:f6dJ—I~'1=s 0)/ix I/F ¥-y
7’I:t77«r1L=;-’—’;I0)$,=.i£9etL'CrI-\:<I~ PCI 7‘
'J F4 Efifiié.

=f~-yI~'7—975«*’76«*7‘J—F F5 iJv3fii£a=#Lf:¥
-’;?l¢7l=X|~-PCI 7'} F4 ’&1‘rl..‘C7l=Xl~2lE

U F2 AF:‘1'i$l2§z'si€?."1’L6(X7"‘J7’ B2~B3).,

rt=XI~2<=E'J F2 i:~tE'C-Eiémfz-F—@l1 CP
CS-PDU /<4n—I~’0>§§‘c‘ia%>.

cpcs ifl17'5f:'9iJ—r~' F5 W03/\——I~’-‘J1
7f$§fifiia=11.6f:&>. Ei$9llEfJ‘EIfi%‘C'i:‘-J. P

CI /ix F3. 7t=zI~-rfci 7Uv~>’ F4. DRAM-F2
0)"F—5'§i£l;t'§"\"CI\—_|~"§I7‘G§)6f:

terminal doing ATM , AAL1ayer , data of file which is
removed istransferred from bus I/Fchip (Busl/F) of PCI bus
to PCI bus F3.

At time of this , bus I/Fchip of ATM adapter card F5 selects
host PCI bridge F4 as forwarding destination of file data .

data which was transferred from network adapter card F5
through host -PCI bridge F4, istransferred to high speed to
host memory F2 (step B2~B3).

data which in host memory F2 is stored with bundle it
continues to bea CPCS-PDU payload .

Because to CPCS terminal it is done with hardware inside the

adapter card F5, fast processing being possible, as for data
transfer of PCI bus F3, host -PCI bridge F4, DRAM -F2
becauseit is a hardware entirely, there is not restriction of

Page 27 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1268

W01997033227A1

m\ ‘/7r~r7I75mEI:°té§ii£§f§0>fiuIIEb<
7:L‘n

7741»-'r‘—5I0>$zEi£1J<tv§TLT:&. ATM I: A
TM 'J>7€t=%TL,.:?~-yt~'7—0 F10 Efifik?”
A a

71=Z|~2‘E'J F2 I:——tfi'c~§;Tt-stir:-'r‘-7!: CP
CS-PDU ~°»fI:I—t~’a>=lfti§'C'?i.»'-J. I;T;fi77»r;L
cab%>i%‘é.a>fl;§mE%t2ttt§e1ttL\7::L\.

::tu‘:0)61&EI;t CPU i:ot6‘J7I~'b:i:7wE‘c~
taérzm. fi3lE0)7‘J‘}*£t:ata‘C-?—’l1':5£|‘-Pl:
ElB#t:5ll1E'§'%>t774)l«§i:i£0)Z)l»-77|~’&
¥L<tE?$1t'ct,$5°

%:'c'. zsseaarc-:1. —§E:'i$'C'7l=Xl~2¢%'J F2
i:I:’:tfi&=#i.f:taE*‘=:i§o)§§774’1L$ii£t,'ct,§
L‘. »7-~yI~'7—7 F10 E#£7i5zt,f:f&'C- CPU-F1 /:<
fi¥2§t.:£a)aJ1E’Et-‘:5.

#~‘yI~'7—0 F10 £fi?%EtLr:fZ2.cPu-F1 11. 7k
xt~x«=.U F2 i:—#E'c§71n3in.r: CPCS-PDU «<
«ru—FOJ=Ut%+‘—ai:3ca‘LriatE'J>'7é$fi..

Tax-?*y7° B4).

‘ELI. CPU-Fl I1. CPCS-PDU ’\°«ft:—|-‘amt

!§~'r‘—5rI:$dL'C. 7l2—E‘/7'(X-7“‘J7 B5). 7“
nI~:;v!t6§fi&“a(z-‘r-37-Be). &U!Z~¥l:l7i'.~lL'C'"r'
—5'fi¥}§(Z'7"‘J7 B7)0)¥E§EfiL‘. Ei£'§'v<
é"7"—’5I0)Fl3§"é'H3lUl£nL. HIUtHl.T:?—9é

/\—I~'-‘r'4x0 F6 r~t§tfi?'é(x-7-\y7° 138).,

.:a)J:-31:. Et=§fi4Jt:. i£B#'L'C§’T:77'f}lz
I:.t. I\—F-741’). 5'ét£fi-7-‘4x7. Ia*sa+—

7%"%0)i<fi§§ET§§='ii$(C03i51l‘Gld:/\——F?»f
X7 F6)I:%tfia=in.zo2b<. /x—|~‘-‘r’47«7 F6 $0)
§¥F§=é3AJ+. §"~%J+Hi.L0)%7:5$f:“é.l3:2‘J3.l%/(
1 F3 0)%fi§Efi§§i:H:’{; +5a‘iE.i$'C'§)
éo

L,r:a<:>r. r'l'\Xt~><=E') F2 i:\-=_.n—I~‘v‘-417 F
6 vxaafiiiti. PCI /\’7. F3 tnfidcaiiifitfié
§fit.'ct§flit,f:§fii£tI17::Is?‘. /\—t~‘-‘r‘4x
7F6a)§H§§El§!«¥t=l:«a)tEi$a)%=é-‘5AJ+Ef§r‘.
l:€:‘4’t')'t=_tf:~ /\—F?»{X’775‘fii?o/<14‘/’$~'
—7:4XP90)/i-y77:¢%'J’\0)fi¥§B‘J7E§i:i£
.L—Lr¥t*'réh»5:&I:t.:%>.

7t=7d~;¢=&'J F2'7'J\n5: \—F?47~€7 F6 AUJ7"-’-'3
U)§$iA3+0)i7l<.I.tfiFa‘1l: CPU-Fl l:l:7l<Xt~2‘-"E
U F2 P103774)»-7-‘-$It:?#'9“%>fi}§f£E0)£l&
Eéfi-).:.‘;2fir-§»6a)r*. :iru3a>w1Et:J:%>
/\—F-F417 F6 0)%€=:‘Ao"+EEO)tJiTl:l:§=E

1998-8-4

forwarding rate in sofiware treatment.

Afier transfer of file data ends, ATM ends ATM link ,
releases network F10.

As for data which in host memory F2 is stored with bundle
with the state of CPCS-PDU payload , as for thawing
treatment etc when it is a compressed file it is not
administered.

These treatments decrease because it is a soflware treatment

with the CPU , when it treats simultaneously in data transfer
with conventional method , the throughput of file transfer
considerably. '

Then, with this invention , while it is a state which once was

compressed to host memory F2 with high speed file it
transfers, after releasing the network F10, CPU ‘Fl treats
thawing or other .

After releasing network F10, as for CPU "‘Fl, communication
link is establishedvis-a-vis state data of CPCS-PDU payload
which in host memory F2 is stored withbundle (step B4).

And, CPU *Fl, flaming (step B5), protocol terminal (step
B6), and treats according to need data thawing (step
B7)vis-a-vis state data of CPCS-PDU payload, removes
contents of data whichit should transfer, houses data which is
removed to hard disk F6 (step B8).

this way, finally , file which is sent compilation is done in
hard disk , magneto—optica1 disk , magnetic tape or other large
capacity storage media (With this example hard disk F6), but
maximum speed of hard disk F6or other continuous writing ,
reading is fully low speed in comparisonwith maximum
forwarding rate of general purpose bus F3.

Therefore, from host memory F2 as for transfer to hard disk
F6, continuing the maximum fonavarding rate of PCI bus F3, it
did not become with transfer which you use,adjusted to
writing speed of low speed to magnetic memory media of
hard disk F6, it meansto be executed as discontinuous transfer
to buffer memory inside bus interface which hard disk has.

Because to do thawing or other treatment for file data inside
host memory F2 it ispossible CPU ‘F1 to respiratory pause of
writing of data to hard disk F6 from host memory F2,
decrease of writing speed of hard disk F6 does not occur
inthese treatments.

Page 28 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1269

WO1997033227A1

321:1 I:7T<a°t§fi£I::sL\r. 7t=1I~c1>Ui an;
ATM :?~vI~'7—0 F10 ~7<§§774’IbEl2':i£
'«3'Zai§fF;(§|J0)$JEl:9L\'C 1 &U5"&%l’.‘.3.
L'C§fl9E?'%.~a

7235. i£lEfill0)¥lllEld:. §{l§lE|J0)$l|l§tfi|?l§‘
0);3‘E:lL<‘:fJ%'>£0)‘EEl?:"Jt :0)i%‘é. El 1 l:7’fi3'
$EEll€’i71‘l'I’7’:§lI;§i§'l0)3‘-lll§c’_'iEl7=l30)fiht7§i
6.

is’. §iii£'§"<§'77‘I'll«’&I \—l~'-7"-{X0 F6 I:

1=§m'9"/5(z-7~y7 A1)‘,

CPU-Fl lzt. /\—t~‘-‘r’—r17 F6I:1%t=4*1$h.‘cL~i.5

=:-‘—9*affia=;thLt;1a(a5. 7—9lJ_:5fl§(Z-797A
2). 7Ell*:l}lu§§9'fi"ui(Z'—r“J7 A3)&U7lz—E‘J
7'(X-Ta?’ A4)Efior. CPCS-PDU ’<—{E1—l~'
0)=lfi%‘E¥—’:'E7l=XI~24T:'J F2 I:%a1E'9”%>(x
-T"y7’ A5)..

am; CPU-Fl (1 ATM '1‘/7’¢"FEflL(Z'7"‘/7’
A6). >i'~vr~'7—77’;1’7°97J—I~' F5 l:i’=lL'C77
4)L0)$ii.’§’¢"Fé“%‘§"6(Z'T“J7' A7).

»’r«yt~'7—07’;1'7’;17J—I~‘ F5 I1. PCI /fix F3 =5

m.'crI<xI~x%'J F2 |:§El§$:h_.'cI.\5 CPCS-P
DU '\“«rn—F0>=Ut%a>7‘——5I’.«3Et§’.€%;a7+ti:L
‘C. AAL l/4"\"‘C* SAR—PDU l:$}%JL,. ATM l/
4’v'c ATM 1zM:l,'C. ’/flElx4‘\'l:J:a‘C AT

M #~‘yl~'7—7 F10 ’\l7T:iX?’é(1-7-"J7 As)..

1’.-Lt. 7-M1i,a)lz7-.i.%§iJ<.’s~§'rL.7‘:t.:7;c CP
U-F1 l:iE1§'J>7Efi€%ESt*s‘%>.

.'_0).J;5l:774)l«0)§ii£ll§l:ld:. -7-‘-5-'l;T;t1S.
7uI~:;u$4§fia“r$tU7u—:y0‘wa&EEfiar:
’&0)-'r'—9’£n%7.I~><=E') F2 |::.%‘EfiL,.7t=xI~x
=E') F2 l2‘§ET§3hT:‘7—’5'€‘?~“Jl~'7—775f7
5! F5 au3Et&e%J+H:l:c. a-yi~-7—a F10 A
li'zi.9§‘§‘6.l:5l:l,1’:0)'E. /\—I~'¥—rx0 F6 7N:
wfiatflcflafltbrhxh CPU-Fl |:.k»§n'-‘—'3r
£5325‘. »‘t~-yI~U—779'7’5v F5 wfiizfirié
tI.*.'Fa*'Ia‘?a:tld:t,tL.‘.

lit 6 l;l:. El 4 I:7T<?'!l:§’éBJio)77»f/L§ii£7a';‘£

l:.l:/I>$iié%‘C'0)$lllEé:. IE 5 1:71’-d'2li%BJi0)
77»(1l«E£§753zH:.t%>$ii£7:'ca)¥IIEé°&. —
E0>lI&Etl,‘C?"I'3i%%0)5tllE0);‘fi#‘l.€—n'=L7‘:
t.0>‘c~fi:»5.,

5 lzztsur. X-7~y7’c1~c8 HIE 5 i:7T<‘9‘z
-7--47 Al~A8 tnmfilz. 7.-7-vi’ C8~C15 Iztlil
4 lZ77<7X’7“‘J'7 B1~B8 a>5uLEl:. earns;
5r7LrL\Z.>.

1998-8-4

Referring to Figure l and Figure 5 is done concerning
protocol of transmitting side whichto ATM network F10 in
configuration which is shown next in Figure l , from the host
CPU 1 large capacity file transmission , you explain‘

Furthermore, protocol of transmitting side being something
which becomes the protocol of called side and flow of reverse
direction , in case of this ,becomes protocol of called side
which attaches arrow which it showsin Figure l and flow of
reverse direction .

First, file which it should transfer is housed in hard disk F6
(step Al).

CPU *Fl data which is housed in hard disk F6 reading , data
compression (step A2), protocol terminal (step A3) and
doing flaming (step A4), with state of CPCS-PDU payload
remembers data in host memory F2 (step A5).

Next, CPU *Fl establishes ATM link and (step A6), transfers
file vis-a-vis network adapter card F5 command , (step A7).

network adapter card F5, through PCI bus F3, reading *,
divides data of the state of CPCS-PDU payload which is
remembered in host memory F2 into SAR-PDU directly with
AALlayer , with ATM layer with physical layer transmission
doesto ATM network F10 as ATM-cell , (step A8).

And, being at point where transmission of file ends, CPU *F l
releases communication link .

this way when transferring file , afier treating data
compression , protocol terminal and flaming , storage to do
data in host memory F2, data whichis remembered in host
memory F2 from network adapter F5 reading *, transmission
isdone directly to network F10, because it required, with
reading treatmentand host CPU ‘Fl from hard disk F6 data
processing , transmission speed of [nettowaakuadabuta] F5
there are not times when it decreases.

Figure 6 with file transfer method of this invention which is
shown in Figure 4 in transfer origin is something which shows
flow ofireatment when it does protocol , as consecutive
treatment with the protocol with forwarding destination and
file transfer method of this invention whichis shown in Figure
5 .

In Figure 6 , as for step Cl ~C8 in treatment of step Al~A8
which isshown in Figure 5 , step C8~C15 corresponds to
treatment of the step Bl~B8 which is shown in Figure 4 ,
respectively.

Page 29 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1270

WOl997033227Al

El 5 l:7T=3'.l:5I:7741La)§Ei£:‘i:&U§E5£5*E
0)m7‘5'C*. rt-xI~ CPU-Fl =£—7’T$7‘.;L\7t<zI~x=E
U F2 é:1’~“J|'~'7—77’;7'75UJ'-l~' F5 Fafia)-'r‘—@
o>§Ei£é?-'r5:t'c~. 774)l«0)§z':i£0_)XIl«—7’
~yI~EJ:U7c$<'4'6:tb<'e%Z>.

FMS. El 2 €«‘5l*.§l.‘C. I21 I €-%?.€L‘C§Rfl}iL,7‘:
¥fi‘éif2%0)*£il3l§|ll:’)L\'C?.§l5}l?'/E>.

El 2 i::T<1'1<§’éHHo)¥bfifi2%l:t. 5% 1 xlafi 3
a)§a%h%l7l:tL‘c/\—F-7-‘+17. % 2 Xlstfi 4
0)§El§9§i$z’_-l,‘C7l'\7<l~><E'J0)i’€=l"3'-Jl:$vl~
'7—779'75UJ—l~'é:|€JL1Hl.Fl='i"7"—5n\'xJ:l:
E5$)k$77EIfi'.2:>f.tél‘-§t>t<:t£'Jt:.1:r5;<«E'J7l'?
—I~’EaEtfiL,r:¥t.o>t-55%».

IE 2 l:7T=3'%l"fifi£li. 11:2» CPU-G1. DRAM
%'a=‘C'%fi2$7l’L%>7l<1l~2¢=E'J G2. 'r§':':$0)i}l.F§/<
xt-56 PCI I <1 G3, CPU a PCI ; \‘;L€—$§,5:,-t=
xI~—1>c1 7'1‘-2°/‘ G4. WEI/4‘\'75\I3 AAL I/4’
registrars ATM z~-yr~U—’J7’;?‘7';77:—
I~' G5. n—I~‘-Hz’) G6. DRAM fiftfiritén
<5 PCI /<xJ;a);<EU7l<—l~' G7. ATM :?~\yl~'7
"7 -E560

tits. 1 i::E's“t.a)tIEI—a>%flz$€=fa‘=f%>?¥t
%§¥§0$§i53Zl;t. l lzfixfiifitiéfifittfil
tmtweaséa

was 2 t:a‘<©“taraJti::sI.\r. ATM-LAN an
ATM =r~-yI~'7—’225\Eaj<§§77—r)Lf:*§ii%_E
9rL6%%0>$lIE€~'=.';i2flE'-,3'»§.

774/IA: ATM »1'~-yl~'7—’J G10 bus ATM :?~
~yI~U—779‘7’97:—I~' G5 lzliiiéhé.

ATM 3»-yI~'7—7'75‘7’6v7:—I~' G5 Pwliilwfi
lwfl’. ATM Lx4‘t'. AAL *\£:l|lE3fi2l2¥§fia"iZ‘
zh. J:fiu»f-\"£&IlI:%‘—’;1&$ii£‘«.1'%>.

AAL Lz»f’t'€-£*§:’1a“r&LrHxtJ:i1$irLf:774;La)

-‘r’—7I: PCI /\‘7L0)/(X l/F 9'-‘y7(PCI Ax:
‘/I~u—5)75\u3 PCI /ix G3 Aiiaiiéhéo

cote. ATM 7"5f7’37:—I~‘ GS cm <1 I/F =r~y
7111311 a)i%%.1_—lii7.‘;LJ. l'a'J—0) PCI ztx G
3 J;a>xwEUrl-<—I~‘ G7 €774/L%—50)§£i£
9E’;'—’7’“Jl~«*;L‘C¥E$?'v5.

»1'~vI~'7—775f7’97:—F G5 L-:<T:'J7l*€—I~‘ G7
lz-ti?!-PCI /{X G3 a)::—~);:yl~‘G5;U . ATM z
vl~'7—9 G10 1.w3’éEl£i£a=2rtr:77«r;i»-?—
5"'c'7\)l»—7'yl~%&é?’l:;<E'J7l'?—|~' G7 I:§
éiétctbtféé.

‘it’. l 0)i§fi2l:bl:’<. 7l<Zl~)“EU G2 E11151
u .4.a=.._ ..4._.u.._4_..-.A«_n.

1998-8-4

As shown in Figure~6 , with transfer origin of file and both of
forwarding destination , by fact that it transfers data between
the host memory F2 and network adapter card F5 which do
not mind host CPU *F1, throughput of transferof file can be
made larger.

Next, referring to Figure 2 , referring to Figure l , you
explainconceming modified example of embodiment which
you explain.

embodiment of this invention which is shown in Figure 2 as
network adapter card isactual ones which on same general
purpose data bus dispose memory board with high speed
input-output possible semiconductor memory in place of host
memory hard disk , second or as storage media of4 th as
storage media of first or third .

Each configuration showing in Figire 2 is with such as host
CPU *0], DRAM memory board G7,>ATM network G10 on
the PCI bus which configuration is done with such as PCI bus
G3, CPU which is a general purpose bus of host memory G2,
high speed which configuration is done and from host -PCI
bridge G4, physical layer which ties the PCI bus to AALlayer
ATM network adapter card G5, hard disk G6, DRAM which
terminal is done.

Furthermore, it is something which is similar to configuration
which asthose which are shown in Figure 1 shows
configuration which has code which possesses same numeral ,
in Figure l and corresponds.

protocol when large capacity file is transferred from ATM
-LAN or other ATM network in configuration which is shown
next in Figure 2 , is explained.

file from ATM network G10 transmission is done in ATM

network adapter card GS.

Inside ATM network adapter card G5 to physical layer , ATM
layer , AAL terminal it is done in sequential ,transfers data to
upper position layer side.

terminal doing AALlayer , data of file which is removed
istransferred from bus I/Fchip (PCI bus controller) of PCI bus
to PCI bus G3. -

Appoints memory board G7 on same PCI bus G3 at time of
this , the bus I/Fchip of ATM adapter card G5 unlike case of
Figure 1 , as forwarding destination target of the file data.

With same -PC] bus G3 agent , throughput without dropping
file data which high speed transmission is done from ‘ATM
network G10, can network adapter card G5 and memory
board G7 write to memory board G7.

In addition, you can call configuration which faces to file

Page 30 Paterra® lnstantMT® Machine Translation (U .S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1271

WO1997033227A1

Ltatnsa‘. 7<§§0>774'»§z‘:i£l:raTL\f:l%fi.t
téiéo

\-——-a)§ml‘—-fiil\T\ 774;»-?/'vh0J$ii.%§2b<$£‘
TL7‘:i£.ATM lzl: ATM 'J/7§t€TL.#~vl~

PCI /tz G3 .120)!-‘E'J7l'I-F G7 l:%7"t.13:l1.T:
5-‘—51I: CPCS-PDU /\"»ri:r——|-‘0)=Ut%'c~&;U.
Ea‘§77»r;u'Gfi;%a%‘=%~mfiR7£0LlE%Iattfi$#L
'cLv:;L~.,

IE I a)%%tI%1tfil:. :1v50)77»r;L-'r’—';1I:
ifiémflli. I\—l~'?—r7~a«a)§=é-°5AJ+E
IE2:/\'za)§£i.%§i$r§l:%E*IlfiiL,‘C. /\—I~’-‘r’

fxalziiiiiéfitlzfizx CPU-G1 camera70

I2! 3 lat. 2 0);‘)1fi~‘r‘—9/<;L_l:l:7'J“J*‘/'-‘I-‘y
7”é-§S{l‘f§>:2:'C'. ;‘F|.l-’l3l—"r'—5U <XE%§EL,‘C;‘)l.
Ffi-7-‘~51/(12%-3-’:-¥fi£l.. ?~‘yl~'7—'77
5~"7”5UJ—-I~'.J_—;<=E'J:1'I—I~’E:0)¥J’r?.’:t:«_*:lL7‘:;‘fl
F13!-‘r‘—’;?/<:<l:f§!l:%t,f:ltt30)%t’ir'.-if2%€—7T<fi"
F56.

IZI 3 _l:fi=‘~5'§l‘§fiJEl2t. 7l=7\l~ CPU-H1. DRAMA
%‘C*%li'Z311.67l<Xl~:l=E'J H2. Efimsflm/<
xr-336 PCI /<1 H3a,H3b. CPU é: PCI /<15
#e,s1rl<zI~—1>cr 7U~y~>' H4. WEI/»f—v2'J~»3 AA
Llwf‘\"$'C‘¥‘§9a"i"§'%> ATM ?~~yl~'7—779’7"’;=
7J—l~' H5. /\‘X4>’:1—7:i:»fXEl7ifiLf:/ \-
F-H17 H6. DRAM %‘Gt§fi,tén4Ia PCI /<X
.ta>;t=e-J:-l'2—I~‘H7. 2 90) PCI/ txétfitfiré
PCI-PCI 7'»-;~> H8‘ 7'J~y~>’l:J:U¥r’rf:l:mE
aw: PCI /\‘x H9. %L'c ATM «1'~‘yI~'7—7 H
10 ‘C536.

5521:. 3 E%lt!=’.L,t\ .:cDl:7fi3‘l%m:efs
LVC ATM-LAN $0) ATM I?-‘yl~'7-7 H10 2!»
E.x—§§77»r1wJ<§ii£a=n6%€.0)¥lIEI:o
L\‘C§§tflE‘d‘%>. '

77«rM:,t ATM aw:-9 H10 bu‘: ATM rt
~yI~'7—779’7’91J—F H5 l:li:i2‘§$2h.6.

ATM 2'~vl~'7—77’$!‘7’6UJ—F H5 mrmm
l/4‘\". ATM 1/4-V. AAL /\¢‘:llE2fll:.’r§fia“i$
#1.. .l:l:‘rI/«r“r'l§Ill:-;‘-‘—’3E$:=.i£'<3”Za.

AAL I/»r’r'€%§fifiL'Cm1tJH:a=:l'Lf:774/Lo)

i"’—9li PCI /rad)/<1 I/F +~y7(1>cr /<7‘:
>I~I:1—5)b\s‘= PCI /<7‘ H3b dfiiiiéhzao

cote. :0) PCI /<7‘ H3bliEl1. 2 a)i%1a*t
taint). rt-xxha) PCI 7'J“/“/"6 CPU £071-7tl~
xiu lztifiéhéfcbxefiitL-ctvs PCI I (X
H3a'c~l;tt;<. ZdJlZll:i2?>J:’3l:PCI-PCI7‘J“J

1998-8-4

transferof amount and large capacity which do not utilize host
memory G2 in comparisonwith configuration of Figure l .

In this configuration , after transfer of file data ends, ATM
ends the ATM link , releases network .

As for data which is stored in memory board G7 on PCI bus
G3 with the state ofCPCS-PDU payload , as for thawing
treatment etc when it is a compressed file it is not
administered.

In same way as case of Figure l , treatment for these file data
in writing speed to hard disk and forwarding rate of bus
making useof difference, before transferring to hard disk ,
treats with thesequential CPU ‘GI.

By fact that bridge chip is provided on general purpose data
bus of Figrre 2 ,expanding general purpose data bus , general
purpose data bus another new construction it does Figure 3 , it
is afigure which shows other embodiment which is connected
to general purpose data bus which network adapter card and
memory board this new construction is done.

Each configuration which is shown in Figure 3 is PCI bus H9,
and ATM network H10 which are expanded anew by PCI
-PCI bridge H8, bridge which memory board H7, 2 PCI bus
on PCI bus which configuration is done with such as PCI bus
H3a, H3b, CPU which is a general purpose bus of the host
memory H2, high speed which configuration is done and from
host —PCI bridge H4, physical layer which ties PCI bus to
AALlayer hard disk H6, DRAM which builds in ATM
network adapter card H5, bus interface which terminal isdone
connects with such as host CPU ‘Hi, DRAM .

Next, referring to Figure 3 , you explain concerning protocol
when large capacity file is transferred from ATM -LAN or
other ATM network H10 in configuration which it shows in
this figure.

file from ATM network H10 transmission is done in ATM

network adapter card H5.

Inside ATM network adapter card H5 to physical layer , ATM
layer , AAL terminal it is done in sequential ,transfers data to
upper position layer side.

tenninal doing AALlayer , data of file which is removed the
PCI bus H3b * is transferred from bus I/Fchip (PCI bus
controller) of PCI bus .

In order at time of this , this PCI bus H3b is not PCI bus H3a
whichexists from cause of being connected to CPU and host
memory with PCI bridge of host unlike case of Figure 1 , 2,
for there tobe a this figure, anew it is a PCI bus H3b which

Page 31 Paterra® lnstantMT® Machine Translation (US Pat. Ser. No4 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1272

WO1997033227A1

H8 ezfir;«:te;s2a=m; PCI I (X H3b ‘ffiéo

.:o)¥;fiE’£ém‘: PCI ztz H3b l:l:7_c75‘B37:'I§ PCI
/{Z H3a c‘:li1‘i1l'Z'C‘55.

fifiéfiéhfz PCI /ix H3b 1:11 r\TM 7517511:
--F H5 H2! 21:77:‘-i‘x«E'J#r<—F G7 tfiltfifatzl
%')=l'¥—F H7 btlfitfién. 7’5f7’6UJ—t~‘ H5 0)
/ix I/F =Fy7’l:lE 2 a)i%’.a*..1_-tilts. fil—0) PCI
/ix H3b J:0)2‘=t':')7l’3-F H7 E77«r2L—'r'—5r
03§E5£5E5'*’7=“Jl"<’:L'C?§'Ej'5o

3i'~“Jl~'7-77’$1'7’5i‘/‘J--l~’ H5 &2<=E'J7l'?—F H7 '
Iifiifiéhfztfi-PCI /ix H3b 0)I-—*‘/'1‘/|~‘C'
aw. ATM -?~~yl~'7—’7 H5 rhusafilziiééttr:
7741b-7-'—@’é~7\/L—7"yl~€§.’:2.“§“l:;¢=E')
71-3-K H7 I:%%‘A2£::t;5<'G'a%%».

3-IT:. 2 0)i§€tl:t'<%>t7@‘7’97J—l~’ H3.
2“E'J7l'?—l~‘ H7 meatane PCI 1 <1 H3b «:1:

«mi: PCI 7l'C—F(1—*):yI~)fJ‘l;‘é$%E=7rLt;L\f:
A0. /<x€r!5::5'c%/15..

age. it?) PCI/<1 H3al:l17‘57»f“J717l':—
I~’t5:\'——7l*<—I~‘. ’&a)ltfla)lfii21&%§0)«r‘/93*:
—:Lrt-2-F?¥b<t§fi$11.%>:.1;iot?i:L)t ATM ?~
‘yI~'7—’77’;‘I‘7”;UJ—-Ft:<=&'J7l€~F25</ <15
5=':$l:n5€‘G§’7§:l.‘*%%7b‘8i:6(El 20A 61%).

:a>1%é\ fur!) PCI ':r.—~>'1yl~I:.t?.m';UJ0
IxI~I:J:U. PCI /<Z0)"r'—5'$ii£0)XIl»—7
‘yl~fJ‘{E'F‘~i‘»5.*:§7‘JW;%>7'J‘. El 3 a)J:5l:7’31'
7973-}: HS t2<E'J7l‘C—F H7 75‘i§fi31't.é/\’
Xéluoa PCI 1——~>‘1yI~tI:SIJa>/ (Xl:‘9“6:
tl:J:U. 7’;1'7’5«7J—F H5 tx£U#I—I-' H7 L-

:3Paid)EiL\7t/v—7’~yl~§t>‘%§E§"?.>:ab<'G€=
t=*H:;\';<Et5€?6:t2*:_<t%%>0>I*7<§§7
74)l«0)§ii£l:.=l'$L\‘C¥fr%i7~ll»—7'yl~7'J‘%1§.
vase.

J:§Ea)t§5lzi:2tsL~t. 77»r2L-7=—’,¢tIJ$2':i£25<
!t§Tl,f:f&. ATM 1: ATM IJ‘//7E#:§TL. $9
I~'7——’7E§$7:'5z*4'Zo.

PCI J:0);H':'}7fi—F H7 tzfiivsm‘:-'r‘—’;1I1
CPCS-PDU '<»rn—I~‘0)=I9E%T*$aU. l:T:lfi3774
Jb'c&;?.£a%%0)fifi;§9&E=;r“rIat1lfi$21.‘CL\f.;tl.\.

1 wffifitfilfilz. ::h.B0)77»{Jt»-'r‘—’:'l:
fitiémfili. I\~F—7-‘-r7«7«0)§A*:‘AJ+:E
lift/\':<0)$z':i£5$f§l:§E$|J}fiL'C. /\—I~'¥
4x7 H6 Izeiifréfifilzfiaz CPU-H1 WEE
=&fi5.

:0)ti x=E'Jn“<—I~' H7 W0)-?—’;=!1 PCI-PCI
7U H8 émx CPU-H1 25<?é.fié#L<BtfiIIa>

1998-8-4

configuration is done with the PCI -PCI bridge H8.

As for PCI bus H3b which this new construction is done PCI

bus H3a which is fromorigin is independence.

memory board H7 which is similar to memory board G7
which is shown in ATM adapter card H5 and Figure 2 is
connected by PCI bus H3b which new construction is done,
the bus I/Fchip of adapter card H5 similarity to case where it
is a Figure 2 ,appoints memory board H7 on same PCI bus
H3b as forwarding destination target of file data .

network adapter card H5 and memory board H7 with same
-PCI bus H3b agent which new constniction isdone,
throughput without dropping, it can write file data which the
high speed transmission is done to memory board H7 from
ATM network H5.

In addition, when you compare with case of Figure 2 ,
because the PCI board (agent) is not connected to other
things in PCI bus H3b where adapter card H3, memory board
H7 is installed, bus can be monopolized.

Usually, there are times when graphics board and interface
board etc of keyboard , other peripheral equipment are
connected in original PCI bus H3a, there are times when
ATM network adapter card and memory board cannot possess
bus completely, (Figure 20 A reference).

In case of this , when throughput of data transfer of PCI bus
decreases with other PCI agent with bus request, it is, but like
the Figure 3 adapter card H5 and throughput whose between
of memory board H7 is high canbe guaranteed from adapter
card H5 and bus where memory board H7 isinstalled other
PCI agent by making another bus .

Especially, because it is possible to possess bus , it
canactualize high throughput at time of transferring large
capacity file .

In above-mentioned configuration , after transfer of file data

ends, the ATM ends ATM link , releases network .

As for data which is stored in memory board H7 on PCI with
the state of CPCS-PDU payload , as for thawing treatment etc
when it is a compressed file it is not administered.

In same way as case of Figure 1 , treatment for these file data
in writing speed to hard disk and forwarding rate of bus
making useof difference, before transferring to hard disk H6,
treats with thesequential CPU ‘H1.

At time of this , data inside memory board H7 through the
PCI -PCI bridge H8, is transferred to PCI bus H3a side where

Page 32 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1273

WOl997033227A1

PCI Ax H3a lzfiiiéhéa

PCI /tx H3a l:fii£$1l'LT:-‘r"—5ll2t CPU-HI i:
ifiormfléhfzté. CPU-H1 hififiénéfill
0) PCI /\‘x H3a lZ§§$;*7,3:f1,%;/\—F7"»fX9 H6
I:§l%a=#L%>.

:a).J:5I:IZI 1~3 a>L\fha)t§fiJzl:a‘sL\t«’e’.%3
iiiélea) ATM 4'~~yl~'7.—77’Y751J—F7h\t5
0J".e3l.\§z':i£:$E€$1ll3EL7.';L\..t5l:. CPU 1:;
émflétfiéftz DRAM %'6l%fiJZé<n5x£'J
l:$z‘;i£*J”6.,

zmzw. ?~-yI~'7—'7é$m:#%7Bz'c~§. E
fit; ATM »‘r~-yI~'7—’7%-:—fi3‘¢J1#!JJfi'C-%%>.

¥§B‘]72i5;'3§5*&‘C*5.1é/\—F1"—rX7?r0)£K‘;°-i
'§Ei§§§i7$l‘elI§fi§§iAc7+i$E 75‘iEl.‘1‘:U) . Pi
iiwiflfiilfizéfififlfilzlioffiiiifiéééigr
fd:lI\o

‘f'C'C'I\—F'?*fX7’\0)?—9§§i£f.)‘i${'].i3iL
'CL\%>l*¥‘ff'a‘l’¢"iF1ll¥lL’Cfi;¥}§%”%0)5!l1§"¢<E?'_r50

sxlz. .|:§ao>I§.1~EI 6 £é>‘P.€L.‘cE5tBJiLr;$%
~ 5ElZ$6§§fiEil3§"¢E.ATM ?~‘yl~'7—9V§‘C'

i§tE5i§25<£7::é?—9§£i£2‘:<a'rI£a'%>%'a
l:1:‘r;Fl5l*d”'.‘.a.l:€—.<'0)¥li£rEll3%l:'JL\‘C'E;3t|3}H'»E>.

IE! 7 l:3'-3l.\'C. ;‘N.m%+fiEt GPC lat. CPU(FF§&
ififififi), /\—F-‘r‘4X’J\’->=t=xl~:i=E'J%0)x
eesarenm MsD,1E§Sta) ATM 75«*'7‘9,::h
|B0)Fa'70)'7—9§l_ii£E"I‘l':)5H.Ffi7_‘—’fiI <7. GPD
B €E‘é'%>=t.a>t*&LJ. fillili 1 i:7‘m‘%1ifi
il?%'C'li'§:‘.'l§{E|l‘C'lfil.\%>7l<Z|~ CPU-Fl t-fa)
l§lfl"a§El:i‘\lf5'4'%>=b0)‘Gfi>%>o

C0>i%%. meagre GPC It ATM x»r-y=)’-&2
>x+>*—/< SVR é:L‘Cfifi’éL. ATM 07775 A

21;: ,ADP2 éfrlxc‘H’L‘F1’Lii1"i'3iE T1,T2 bflfifi66

zwaax T2 is‘. IE! 1 t:a‘<'a‘%Iit§fi2%'c-I1. is
i§{fi'l'EfiiL\%>r1=X|~ CPU-Fl tewfiliuéfifitz
i~1m‘é.£a)‘c-56°

L7‘:fJ‘o'C. El 7 l:;T=‘e1'¥fi{§lf3%I3:. IE 1 I:7T<
?§i§fi'l‘C'FFll.\67lVZl~ CPU-Fl tecolfiiflfi
Eli. $E>l:7~“Jl~'7'—779'75l7J—F’£'5TL’C

lfl1.0)fia“é3lE(::‘C*l;l:9ii‘73lE T1)’£t§#>=.l,r:1%fiJzi:$<=r‘
I6L'cL\%>.,

7 I:rT=?'¥frEJI3.&§'c-I;t.191J;’LIiL;L1=I::T=#'
era 1~9 l:°to1‘5El§’a“:%i*'r's“4Iu:t25<I*‘a%.

1998-8-4

CPU ‘Hl isinstalled.

data which was transferred to PCI bus H3a afler being treated
over CPU ‘HI, compilation is done in hard disk H6 which is
connected to the PCI bus H3-a side where CPU ‘H1 is
installed.

this way in order not to restrict fonavarding rate where is high
from ATM network adapter card of high speed
communication regarding whichever configuration of Figure
l ~3, withoutadministering treatment with CPU , it transfers
to memory which with such as DRAM configuration is done.

Because of this, be able to release network to early stage ,
effective use is possible high speed ATM network .

Because continuous writing speed is slow, using general
purpose bus of high speed in discontinuous ,you must transfer
hard disk or other magnetic memory media which is ahead
final compilation .

It treats thawing or other then making use of time when data
transfer to the hard disk has broken off.

Next, referring to above-mentioned Figure l ~Figure 6‘, when
with this invention which you explain each embodiment ,
communication speed different data transfer lies between
inside ATM network when applying, you explain concerning
embodiment . '

In Figure 7 , general purpose computer GPC , CPU (central
processing unit), being something which possesses general
purpose data bus GPDB which does data transfer ATM
adapter , at these of hard disk and the host memory or other
large capacity storage media MSD , plural time, with
embodiment which it shows in for example Figure 1 is
somethingwhich corresponds to host CPU ‘F1 and peripheral
which are used with the called side .

In case of this , general purpose computer GPC functions as
ATM switch &secondary server SVR, through the adapter
ADP], ADP2 ofATM , terminal T1, T2 is connected
respectively.

this terminal T2, with embodiment which is shown in Figure
1 , is somethingwhich corresponds to host CPU ‘F1 and
peripheral which are used with the transmitting side .

Therefore, as for embodiment which is shown in Figure 7 ,
furthermorethrough network adapter card to host CPU "T1
and peripheral which are used with the called side which is
shown in Figure 1 ,‘it corresponds to configuration
whichconnects other. terminal (Here terminal T1).

With embodiment which is shown in Figure 7 ,
communication can be executedwith protocol l~9 which is
shown below for example .

Page 33 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1274

WO1997033227Al

(¥lIE 1) ATM two) vc1,v1>1t;‘RFfi-7-‘—’,~1/<
1 GPDB 1t10)7Fb;t§_i=tmaHa*%>:t1:J:o
‘C. iftfifi-‘r‘—@:<x GPDB i—1‘rL'C+Ei'>3Ia) AT
M 7’5I‘7”;1Fa‘1'G ATM til/é§fii§'§’?9&t£l:.

7779 ADP1,ADP2 b\-30)-‘r’—9E7<§§§E
tam: MSD 1:§1%3*e*»'5:t1:.tt), fl1m‘%;+$
& GPC 5 ATM X4-ya’-&2 :1w—)< SVR tl.
Tfifififiéfiéa

(HE 2) fia“a3E T1 iJ<fia”s$ T2 ;sus7<§§77»r
JIHEE-1*r.<7+tH’J‘f:H>0)77*f)l»§i5£E?"r‘3%. fiiii
BE T1 75\I3fia"fi5E T2 l:3‘61‘*J‘§:'J>7§§E0Jf:&>0)
~‘/71-U>7‘t)Ll:€$IrL%afi§fi§§%I7s§l:J:
U . ATM X4v9’-&2 :5w—» < SVR b<7<€‘$§7
7»i’)L§z‘:i£a)1‘:&)a> ATM 'J>7‘Gfia%>:.1;E§£
za-9*z».. ‘

(He 3) ATM 14-y5=&2 :5w—) < SVR we
3ET21:fJw»1oU. fiaiiili T1 ¢’:0)Fa‘l'G“/7'J")>
’7d'?s.:t1:J:U. fix T1 tjcisfiaetfitfibt M
so t0)fta'1‘EU>’J 1 =&§E$'4'/6.,

<$l1E 4) Up’) 1 1:J:U. it-EX T1 /2\-57:$§7
7411,1:i=1‘9“%>fi>@’J.7'7tz:7yF75<. fi
3ET12h\-3 ATM X4~y=)’-&2 l5Z*2‘—/\‘ SVR «ii
amt. xfifisatstfiit MSD co I/F 3‘/H3-
EWOJ FIFO I::<$I«y’7é=2h%>o .

(EFJIE 5) ATM 7«f‘y=1'-&2 :1w—;< SVR W.-t
FE Tl l:7T£'—JfJ‘?0'-J. fiiiii T2 .5;0)Fa'i‘C"‘/’7"}"J>
’J"9”Za:tI:J:U. jtfifiéelfitibk MSD .J:fii-Tax
T2 t0)Fafi1:'J>b 2 £%E*d'%>.

(HE 6) ‘J/72 cnfififi. 9iI"li3E Tl i1<7’7+zx
?'%>IlC€§77*f}b"é‘J‘/7 2 %_Fl§9‘Cfia"1i3lE T2
iw=.»~>—'r>~>«-11A:fiJ+1flL. fiiiiili T1 l:$E.5£
'<.a"?afEb'-Jl:.;‘RFFI-'2-‘-61/ix GPDB 5111,:
xaéaaetatzs MSD 1:—§%§z‘:i£‘4'%>.,

<¥lIE 7) 7<3E§E1§11§t$ MSD «c3774214:‘:
i£75<%‘—.‘rL7‘:&. °/9"}"J‘/0'l:J:o’Cfifi3E T2
t ATM Z»f‘y9'-&2 15E+y“—/< SVR t0)Fa'10)'J>
'7 2 =&fiii5r?‘6°

(ME 8) U99 2 wfiififfitia. 7:@§:=:Et§t1§12l<M
so 0) HF 2‘/I~1:1—5a) 1=11=o1:§$§2==hr1.v3
7C@§774)l/\0)3>9'.L\77‘lzX:I7‘/FE
lIEm%fiL.. Up’) 1 E1'rLr. d<a*§§77»r11,
-'r‘—5=& ATM x+ya=&2 aw—/ t SVR ibwsfifi
SE Tl A5/5fA1:§i$§'4'Za..

(¥lI[fi9) fifi:1'aT11w377»f1L~0>5>5'A7’J
-Iz7dJ‘t~§T1£l:. ATM z»r\y=1=&2 25211-—/\' sv
R tfifiifi T1 t0)f’a‘1'G'J‘/7fi1iSr0)1':6b0)~‘/7'1’
-Jydafiu. 7<§§‘F§77vf)l«0)5‘45Ua72i‘7"—
9§ii£€£4éT'4"%>. ‘

1998-8-4

VCl , VPI of {protocol 1 } ATM-cell and address inside
general purpose data bus GPDB by factthat it corresponds,
through general purpose data bus GPDB, as ATM-cell is
transferredbetween ATM adapter of plural , it functions data
from adapter ADP], ADP2 by compilation doing, with
general purpose computer GPC as ATM switch &secondary
server SVR in large capacity storage media MSD .

When transferring because {protocol 2 } terminal Tl reads
out large capacity file from the terminal T2 file , fact that
ATM switch &secondary server SVR is ATM link for large
capacity file transferwith data element content which is
included in Signa ring cell for link settingfrom terminal T1 for
terminal T2, is recognized-

{protocol 3 } ATM switch &secondary sewer SVR becomes
terminal T2 and changes, sets link 1 between the terminal T1
and large capacity storage media MSD by Signa ring doing
between terminal T 1.

With {protocol 4 } link I, random access command from
terminal T1 for large capacity file , being sentto ATM switch
&secondary sewer SVR from terminal T1, stack it is done in
FIFO inside I/Fcontroller of large capacity storage media
MSD .

{protocol 5 } ATM switch &secondary server SVR becomes
tenninal T1 and changes, sets link 2 between the large
capacity storage media MSD and terminal T2 by Signa ring
doing between terminal T2.

After establishing {protocol 6 } link 2, terminal T1 using link
2, through general purpose data bus GPDB-instead of from
terminal T2 transferring to reading , terminal T1 in the
sequential , lumps together transfers large capacity file which
access is done in large capacity storage media MSD .

Afier file transfer to {protocol 7 } large capacity storage
media MSD completes, link 2 between the terminal T2 and
ATM switch &secondary server SVR is released with Signa
ring .

After releasing {protocol 8 } link 2, random access command
to large capacity file which compilation is done sequential is
executed in FIFO of I/Fcontroller of large capacity storage
media MSD ,through link I, large capacity file data from
ATM switch &secondary server SVR is transferred to the
random to terminal Tl.

From {protocol 9 } terminal Tl random access to file after
ending, does Signa ring for link release between ATM switch
&secondary server SVR and terminal Tl , ends random data '
transfer of large capacity file .

Page 34 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1275

WO1997033227A1

W12. J:‘.3§E$l|lE’&¥1E*€"5T:&)0)F<i*i5lJl:'J
l.\‘C§§1'!5B?"?a.

3 ialfilfitlifiafilzoté ATM 77»r1v§ii£7a'
;‘.*:§¥Ifi'4'«5r:«v>a>§fi0>#%fi£éa‘<3'7‘u~y7
lileaw. l%l§&‘EI;tfl1Ffi§f§lt§I:.J:43 ATM 1
4-y-7~&2 :5w—/x‘ D100 ‘fifiéo

lfi['.'§II:7T=T%t§n3ZI;t.=I=:<1~ CPU-C101tDRA

M(5'4‘fE"/7 RAM)=:§'Et£fi2$n%v1=z1~x£
U C102 . ?e.'i$a);:RHi/<;<r'zl0%> PCI /(X C10
3. 7l<Xl~ CPU-C101 .1; PC1I\'X C103 Efisirk

:<I~-PC1 7'J‘y“/' C104, :1y-“ryv+:*——/\‘(&5ZE)
tl1I:t&ts’E1‘431s5Mbps 0) ATM 79'?’/3 C105.
/\—F-‘H17 C106. :t—+;‘an”asE(iieiZi)tHIII:t§
$36 25Mbps 0) ATM 7779 C107 F536.

-75. 911. I2! 8127??" ATM X«fv=)'-&2 :5!
0-K D100 .I_—:t—+ffia*sX,:iy-'r>‘y+r—/\’,A
TM X4‘y9"’E ATM ‘Et§fiLf:i%‘é.a>t§1i£l§I1€—
7T=L‘Cl.\%>.

91:7m‘d'%%fiJz1at. IE! 8 1:a‘=1.r:fl=lfii§+§&

I:J:%a ATM Z4"/=f&2 :fiw—n‘ D100. Pcm‘
—‘/-I-112:1‘/1:°:t—51)7:;Ea>:L—*fia"'i‘s5lE D200.
:1>?‘/‘y*:*—: < D300. :1‘/-7‘/‘y*2*—/t D300
t ATM X4-ya’-&2 :aw—/ i D100 tit-E-3.51 AT
M x4\ya= D400 ‘G5;/5., '

72:33‘ :L—*ffia“iX D200 1;): CPU-D221 t ATM
75179 D222 25‘ PCI /txftfifiéntfimé
:h‘cL\%>.

it. 2‘/-‘r>‘y*2*——/< D300 1: CPU-D331,/\
—I.~‘fi-'-r:UJ D332,ATM 79375! D333 bt%>tL%'
2&1 PCI /<7ce#§fia=n'Cfifi£3h'cL\6.

>5zl:..l:§Etfirfi*&fi=‘1L\r: ATM 77»i'»$£i3§75
ifiééitfifistéa.

.:.'_'ca I21 10 1:121:12] 9 0)1?~“/l~'7—7’&F13ll.\‘C:1
y-7->“J+2‘—/i D300 nus ATM z»f~y9=&2 :5!
0-K D100 1:j<E§77«rIL$—5IE-lfii:
i£’§'6|l§§0)7’E11~:JIl«7<51“J9<‘:?—’;"0)E'1‘s‘.h.€’
7T=Lr#:%>o

tits. IfillEl:a‘sL\'c. SSCF 1: co(:1#~7~‘/a>)
§*>*—I:’:<I:Elfi7f+‘#'£fi'e'c-zV.»»§*:>*~—1:’x+3Si?$:1
—?»r#~-->3 yfifiasscor 11210) CO *2‘-
1:‘ X1:£‘¥iEf+‘fii1‘E"¢"fi$’§'%'>*J"-t'Xlil'<?$:1«?’~
0*‘/a>fl7I:1l~:I)L,SARlit)l«$}$J-i?E1‘L"i‘7
1/»f‘v'e35%>. '

it. 11 I:l;t. :L—+ffifiX D200 bus ATM
:<»r“J=)‘-&2 >5z*2‘~/t D100 I:$«=il,’C5>6I‘A7
’J-H76-l‘?ofi0)7’t:Il~:Il«Z57‘y7t'7-‘—5!0).‘;"E

1 998—8—4

Next, you explain concerning embodiment in order to
actualize theabove-mentioned protocol .

As for Figure 8 with block diagram which shows
configuration of device inorder to actualize ATM file transfer
method with same embodiment , the same equipment is ATM
switch &secondary server D100 with general purpose
computer .

Each configuration which is shown in same Figure is ATM

adapter C107 of 25Mbps whichconnect PCI bus C103 , host
CPU ‘C101 and PCI bus C103 which are a general purpose
bus of host memory C102, high speed which configuration is
done joining " on ATM adapter C105, hard disk C106, user
terminal (Later description) side of 155 Mbps which withsuch
as host CPU *Cl0l, DRAM (dynamic RAM) are connected
on host -PCI bridge C104, contents sewer (Later description)
side.

configuration example when ATM switch &secondary server
D100 and user terminal , contents sewer , ATM switch which
on one hand, as for the Figure 9 , are shown in Figure 8 are
connected with ATM has beenshown.

Each configuration which is shown in Figure 9 is ATM switch
&secondary server D100, PC ([paasonarukonpyuuta]) or
other user terminal D200, contents server D300, contents
server D300 and the ATM switch D400 which ties ATM

switch &secondary server D100 with general purpose
computer which is shown in Figure 8 .

Furthermore, user terminal D200 is done CPU ‘D221 and
ATM adapter D222 being connectedwith PCI bus ,
configuration .

In addition, contents server D300 is done CPU ‘D33 1, hard
disk D332, ATM adapter D333 being connected
respectivelywith PCI bus , configuration .

Next, ATM file transfer method which uses above-mentioned
configuration isexplained.

When here, in Figure 10 from contents server D300 lumping
together transferring large capacity file data in ATM switch
&secondary server D100 making use ofnetwork of Figure 9
flowof protocol stack and data is shown.

Furthermore, as for-SSCF peculiar service dependence
coordination function which is a function, as for SSCOP as

for service dependence connection type protocol , SAR which
stipulates common function in the all COservice it is a cell
portion percentage & an assembly sub layer in CO
(connection)type service in same Figure .

In addition, when random access doing from user terminal
D200 vis-a-vis ATM switch &secondary server

Dl00,protocol stack and data flow is shown to Figure 11 .

Page 35 Paterra® InstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1276

WO1997033227A1

1‘I.’¢"7'1'=L,‘Ci;%1a

5-9“, :t—+fna“asta D200 1a~/7‘-1-U>’7‘(1611:‘t1i
Q2931 ¢‘:1.\oT:7’1:1l~:1;1«)1:J:af:1y-7-99*?’
——/< D300 0) ATM 71:1/zrx ATM '1‘/0&5’;
EL;5tj.60

zazté, ATM x»r~y$&2 :5w—,<o1oo1:4$

Ea) vC1,v1>1(vC1=5,v1>1=0)E9/7+‘)>7’-1:
II/tfiflfitb. $51: Q.293l 0)’/7"}")‘J7"|z)L»
t~El:JfirL6'l§fi§i1*1§1:J:t). :L—*ffiX D
200 at: y-‘r>~y+#—:t D300 a>1<E§77«r;1..

(/\—1~’?—rx9 D332)«7’JtxLJ:5.J:L‘cL\
«?a:tEi116.

‘Ear. ATM x4-y=1=&2 :5w—;< D100 11:1>
?>‘y*>‘—/t D300 Esiltlb. :L—+ft.-76$ D200
.1_—mFa‘1'c~~/7'1-'J>'7’=&fiL\. 1—*2°fi?:3E D200
t ATM X4-yi‘-&2 mw—/< D100 0); \—y1~'1’-‘4
x7 C106 c‘:0)laaTC"}I/7(25MbpS)€'¢§:§E'§'5o

's“7:i*>152l:%flJE1'c~11. :L—*ffia”t3ED2oo ¢’::1‘/-7'
‘/'y+2*—/t D300 Fail: ATM 1)‘//7*&§£Ea'%;0>

%L'c.:a)'J>91:.to'c.1—*ffifi31E D200 1»
Bfiét. ATM 5&4-y=,1‘-&2 :5tb‘—/t D100 25%?
EB¢J1::1‘/-7>“J*2‘—/<r‘;17‘.:?>.,

$72. :L—+ffia“s3E D200 b~>3:1y?>v*:t—/ t D
300 1:fi=11*rri£f:.:h.7‘:7<§§77»r/1.a)5y5¢'
A7’)-|zZ0>1‘:&)d):17>|~'l;l:. /\—|~'-F47»?
C106 0) UP :1yl~1:1—5(PC1 /\‘x:1>1~1:I—5)
W0) FIFO(First In First Out memoryzfifllll
JUJ$1'Lf:l§$fi"é§l9J1:tfl7J’d'%>9'&A7rL9Etli
1,§a>:¢{—'JC7E=£=5$§Lr&3»;5)1:z9-yoé
11.6..

ml: 10 lZ7E'§'J=’3l:. ATM x_«{v-7&2 aw
—/t D1oo1i:L—*flfi3tE D200 1:f.tUf1~bU. 9

7‘J"J>7(Q.293l)l:J:1'C. ATM :<«r‘ya‘- D40
0 §:ftL'c:1y-T‘/‘y+#~n' D300 t 15SMbPs

0) ATM Uy0E%E1'é(1§I 10 0) C 71/—~/0)
?—s=a>;i1:n§§t.§).

'J>7EE_=z&1;t. ATM 14-yr D400 émxc.
1—+ffifi3E D200 fJ*70tZ‘4‘*5:1‘/-7->“J‘l1'—
It D300 I7<l0)7<§§774}l»E-“/-'7')"/-\')L

L.-fiflwtls ATM 7779 C105 We 1>HY(4=w
E), ATM,AAL5 03%|/’{‘\"E¥§9a"1i3#LT:'T—
$111 CPCS-PDU(CS ;tiE¥.‘I1-71:11~:1/In‘-‘-51:1.
2“Jl~)0)ll3'G PCII\'X C103 tjiiééh. 71=:<r~—
1>C17Uv~>’ C104 Efrt,-c~. —§. 7l=XI~2l=E'J C
1021:§1%a=h.7a°

zwté. ATM 7&7? C105 1790) AAL5 l=J.‘F
a)1z»f’t'm5I1lE1at3t€‘cn——I~"bI7'G¥EiIfi‘é-r.-1:1 .

1998-8-4

D100,protocol stack and data flow is shown to Figure 11 .

First, it tries user tenninal D200 to set ATM link to ATM

address of contents server D300 with Signa ring (protocol
such as for example Q.293l).

At time of this , ATM switch &secondary server D100 Signa
ring cell will recognize thespecific VCI , VPI (VCI =5, VPI
=0), you infonn that it has been about that user terminal
D200 access will do to large capacity file (hard disk D332) of
contents sewer D300, furthermore by the data element
content which is carried with Signa ring cell of Q.293 1.

Then, contents server D300 imitation it does ATM switch
&secondary server D100, does Signa ring between user
terminal D200, sets link (25 Mbps) between hard disk C106
of user terminal D200 and ATM switch &secondary server
D100.

Namely with this invention , it is not to set ATM link between
user terminal D200 and contents server D300.

When and with this link , you see from user terminal D200,
ATM switch &secondary server D100 hypothetically
becomes contents ‘server .

In addition, command for random access of large capacity file
which is sent from user terminal D200 destined for contents

server D300 stack is done in FIFO (Illustration is abbreviated
with memory of first-in, first-out type whichoutputs data
which FirstIn Firstoutmemory: first is inputted first.)inside
I/Fcontroller (PCI bus controller) of hard disk C106.

As shown next in Figure 10 , ATM switch &secondary server
D100 becomes user terminal D200 and changes,with Signa
ring (Q.2931), through ATM switch D400, sets ATM link of
contents server D300 a.ndl55 MbPs (You refer to flow of data
of Cplane of Figure 10). '

Afier link establishment, through ATM switch D400, user
terminal D200 large capacity file inside contents server D300
which access is done in sequential PHY (physical), asfor data
which each layer of ATM , AAL5 tenninal is done
istransferred by PCI bus C103 in fonn of CPCS-PDU (cs
common section -protocol data unit) inside reading , ATM
adapter C105,through host —PCI bridge C104, once,
compilation is done in host memory C102. '

At time of this , treatment of layer of AAL5 or less inside
ATM adapter C105 _is realizable with all hardware .

Page 36 Paterra®InstantM'1‘® Machine Translation (US. Pat. Ser. No. 6,400,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1277

WOl997033227A1

‘E56.

351:, 7l<X|~2‘=E'J c102,1>c1/tz C103,rh11~—
PCI 7')"/~>' C104 weiiiiiffili ATM U‘/70>

iiiiiim1s5Mbps)1:u:»<r+51'.%"§5$'efia%>f: ‘
21>. l55Mbps 0) ATM U>oa>z)L—7’-yI~§$IJ
E’-a‘<s:tt:<. j<§§77*fJl«€'7l=Zl~>‘E'J Cl
02 lC—l%§Ei£§'ZoC.’:fJ‘5Ifi%'E3i:%>o

n-7tI~x%U C102 ~a)77:41L§2‘:i£b<%TLr:
tat. ~‘/7‘-I-'J>7‘I:J:or:1y?x‘J+d~—/t D30
0 1: ATM x+y=:'-&2 $w—/t moo to) ATM
1)‘/7='.«_‘-fl1$1iSt#’%>.

ATM ')>70)§ie’1i$t&. 7l=zI~2<-EU C102 No?
-911, EU. rt=:<I~-1=C17"Jv~>‘c1o4,1=C1/tx
C103 Ea’tL'c/\-1~'-‘r’4z7 C106 Afiiiéah.
60

::c. ‘é1I:2BLf:.I:51:n—1~‘-?4x0 C106 1190)
UP :1‘/I~u—50) 1=11=o 1:11, :L—+faa“a3E 1:-zoo
b\50>2c§E77»r1b«0>5:z5’A7’7tx:17
y1=n<x9-yaanrtxa.

:#L='&lIEI:¥t-‘r*~l'»§.:&t'. ATM U/7l:.,ta'c
7<<'§§77«r)1,-?—9i:< ATM 14v-:F&2 aw

—;t 13100 bus ATM 7&7? Cl07(25Mbps)€‘
1‘r1,'c:L—+fia"13IE D200 Aizmiiaiiéhéu

:L—*ffi3E D200 fa‘-a77411,1:$d*J'é$>5fA
7'J+zx2b<$%Tt§z. 1—+fla“aaz D200 ta2Fa'ir-
ATM U>7fi1i5r0>r:a1>0>~‘/7'1-I197btfibn
‘C. 2<E§77»r11,a)fi>£~"At.:-‘r'—@Ei£b<
%'r’?'»5.

1a.l:§iEBJiL,T:J:5l:, 1lR¥fi‘tE1i2§§l:J::l1.li. 7k
xI~x%Uto/\—F¥4x7$a>7<§§§*Et§9i17l:
ti-‘—5u <x%_'-=51’/z>E+EIt%£=&!a“fiKFafiI:!fa3+5A

/we ATM ,X’f“J=)"L'LU"i'—-IitL‘C&fi€$'tt.
¥ 1 wfififiabxefi 2 a>iaTa$«<D70tza>&%
I:.% 2 0)fia"§5EfJ‘I31<5§774’Il«E1<§§‘§7E
1E#l$I:—1%$z‘:5£L. {-03% § 1 wfifiietxe
%+aea>x$§§a1aas4a:«5>erA79tx
FIfi€tLT:£0)‘C*. %10)fia“1i$lH|l2b\B*J'%u’_-Eifi
w2&<(IiE&<J1:¥ 2 d)fia”1i3Eé:tiU. ¥ 2 onaaar»
-s1;t%+fi&b<°sfi 1 wifixizfiié.

.:a>;51:. dtififiiatfibfitilit ATM z»f‘y¥".«_'~
!tHJ+‘.%b12*%::t1:.,t'-J. 49371-15230
E726 ATM 'J/70>3§£¥§fJ<?-‘r;‘vI>r:‘I+t-
7';:<.1<$§§Ei‘§!1§l$i:< 2 552+)‘-/\'tLr$IlFfi
‘C'.’;%7‘:&>. 1<fi§774/L0)?‘/5U.x77tx
¢‘_'l.\o1':7E‘rl“’.=1Ifil'57‘¢'9}fi5I‘C'é'. F‘-Z%‘L\fi5§X)l«
—7‘y|~iJ‘%§.‘C*€=6tL\5§lJ§b‘i§rI5i(LZn.

it. %EE PC t.:£a);‘HFfi'.#fi&I:J:Ut%fi2_.:...u u .___.4..;_......_. 1.. o_._;_1—u

1 998-8-4

Furthermore, as for forwarding rate of host memory C102,
PCI bus C103 , host -PCI bridge C104 because it is a fully
high speed incomparison with forwarding rate (155 Mbps) of
ATM link , large capacity file it is possiblewithout restricting -
throughput of ATM link of 155 Mbps , to lumptogether to
transfer in host memory C102.

After file transfer to host memory C102 completes, ATM link
of contents server D300 and ATM switch &secondary server
D100 is released with Signa ring .

data after releasing ATM link and inside host memory C 102,
again,through host -PCI bridge C104, PCI bus C103 , is
transferred to hard disk C106.

As here, mentioned earlier, random access command to large
capacity file from user tenninal D200 the stack is done, to
FIFO of I/Fcontroller inside hard disk C106.

By fact that this is executed in order, with ATM link large
capacity file data through ATM adapter C107 (25 Mbps)
from ATM switch &secondary server D100, sequential it is
transferredto user terminal D200.

random access from user terminal D200 for file Signa ring for
ATM link releasebeing done afier ending and between user
terminal D200, random data transfer of large capacity file
ends.

As above explained, according to this embodiment , installing
computer whichpossesses host memory and hard disk or other
large capacity storage media and data bus between
terminal ,fi1nctioning as ATM switch and server , from first
terminal case of the access to second terminal , from second

terminal to lump together transfer large capacity file in large
capacity storage media , after that, from first terminal being
something which is made random accessible to large capacity
storage media of computer , From point of view of first
terminal side computer becomes second terminal
hypothetically, from second terminal computer is visible in
first terminal .

this way, not only being able to do rate conversion of different
ATM link of the interface speed , due to especially combining
large capacity storage media and ATM switch , because large
capacity storage media it can utilize, as secondary server be
able to disperse large load such as random access of large
capacity file , effect that is acquired itcan be actualized high
transfer throughput .

In addition, as device is designated as configurable with PC or

Page 37 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1278

WO1997033227A1

'5lfiEt’4‘61’:t£l:%'i§t£iRfi?—’5/§7K€‘i>‘Té
Ffil,f:0)'C'. _l:§E3‘dJ%l:71l1i. .l:i?‘1:LT:2lS§é5E
0)l§§fiEE2'H.Fl5l‘1‘i+§fi..l:‘C'§lfll.il:%1§'C'%6t
L\‘3i‘IJ%fJ‘i§‘r|‘::h%)o

tits. .t:§E%tfiil3%1:;tsL\rl1. :L—*ffi.-ESE D
200 E 1 étaaas ATM 14-y-‘I-&2 1Jw—/< D10
0 |1l§fiT%>fiTl’En—=L‘CL\%>fJ‘. :L—+ffia“i3E D2
00 meals. 2 ¢‘:i‘1£l.l:0J4’§§l'C'i.o-.>‘CtJ:l.\.

12 1:. wanna. I\—F'?»fX7|.‘_§*?iE§#L
r:;ms§77»r1u:eJas1:77txt»5%e1:
fiml,1‘:¥tE1Ie%éE:itBE=.:"«§>r:<sf>0)‘c+&%>.,

IE 12 1:21:§*ea,so>~¥1sr21s1::s11/2.7741»
§Ei£§§E0)fifi3il§l‘C'. .:o>§z1i£~>x-7-A11. 1511
711::<—v+11«::y1:°;t—'sr25\-51s.t%»i£1§‘§+§
e 1 é:. seesaw 1 0)/\—I~‘7‘-‘4:UJ 2 t. £511
iii;r—v-J-11,:1yt°:t—9i1\»31i!Z%>§lE%+§
as 3l~3n 2:. fiiééffififi 31~3n 0)/\—1~'-F
417% 41-4n t.i£fF;E-lfitfit 1 tfiféarfififi
at 3l~3n t='&t%’€?”6*-y1~'7—’J s télfifir
L\%:.,

321:1:sE77»r;1»§ii&>:<-?Aa)$z3ia§§J1’£I:'3
L\T.E‘;tliJWé.

§l§§+§fi¥ 3l~3n 75u5i£f§%+fifi 1 I:$dL,
‘L’. 77’I’)l/\0)5/5"1.t7’7-tzXd)§3R75‘37:-_>
T:t?'5o

Chli. l§‘l7t.liJ:§E¥<§VOD ~>z-Htlzfififil,
7‘:i'%$. i£t§tRI1'Ei+§&1;J:t‘-7-’7J'*2‘—/<1:. -are
a1a=1eea¢1:.+aa47>H:. 77~r11,1¢B9e1E1'7::
.Ea>1:‘7'-‘:r‘J71~I:. S>9'.LJ'9tx1;t.:a>E
+’7J"J71~»~a>—B§f-$-1t«’=>‘.é_i'=%»’s,t‘L«‘=$5£LJ
Iztafisté.

iiléflfifi 1 Itfifimfitfistfiwfi 31~3n bx
-5I%lI1#1:§3R3n%:§&0)5>6t.I.t77tx1:
u711.a41t1:m§-9*z>+\:m1:. {—=l'L%‘11.0>
§f§§+fi#§I:§I}Zé'~'#Lr:-7-’—9’¢‘*.‘a.*i:77»f 11,
E77*I’)b:'2:‘f§l.‘C§1':iiL.. §l¢'§"E‘l'§&0)/\
—F‘F»fX7§¥ 41411 «\:11:"—‘«.-"'5.

zam. lbllilifilfiéffifi 31 1:§:i£25<fi:b:h.
‘Cl.\6Fsfili. eweeaema 32~3n /JVBUJT
0-tz:LE3kI1-—§5$§l§‘§'+§& 1 ‘C'X6"yOL'C
I-5%. §f.%‘.§+§§ 31 «0)Ei£iJ<£§T*4'z>¥‘C'
l1:1'L»30>¥3RI:I¢1vT»§L7::L\.

it. ~'.>0)§l§%f$&§l:$<=l3"ZoI:?»9.;'$l3:. —o
a>77«r;1.aJI4=a>1bt..:*»:.a)*&1I$i*~a)5>6I’1t

1998-8-4

other general purpose computer ,because high speed general
purpose data bus was adopted, effect that is acquired on the
general purpose computer it can actualize function of this
invention which descriptionabove is done in inexpensive in
addition to above-mentioned effect.

Furthermore, user terminal D200 only 1 example which
connects to ATM switch &secondary server D100 has been
shown regarding above-mentioned embodiment ,, but number
of devices of user terminal D200 is good even with plural of
two or more .

Figure l2 , when this invention , simultaneously to large
capacity file which compilation is done access it does in hard
disk , is figure in order toexplain embodiment which is
applied.

As for Figure l2 with configuration diagram of file transfer
device in the one embodiment of this invention , as for this

transfer system , hard disk group4l — 4 n ofhard disk 2 of
transmission computer 1 and thetransmission computer 1
which consist of for example [paasonanikonpyuuta] and‘
reception computer group 31 - 3 n and reception computer
group 31 - 3 n which consist of for example
[paasonarukonpyuuta] and, It has transmission computer 1
and network 5 which connects thereception computer group
31 - 3 n.

Next you explain concerning transfer operation of
theabove-mentioned file transfer system .

From reception computer group 31 - 3 n vis-a-vis
transmission computer 1, we assume that there was demand
for random access to file .

As for this, when for example above-mentioned system is
applied to the VODsystem , as for transmitting side computer
in video server , as for calleclside computer group in the
client , as for file in motion picture or other video software ,
as for random access it is suitableto halt and rewind and rapid
feed to this video sofiware .

Transmission computer 1 transfers, instead of responding to
real time in random access of plural which is required
simultaneously from thereception computer group 3] - 3 n of

V plural , every file lumpingtogether file which includes data
which is required to therespective reception computer , copy
does to hard disk group 41 - 4 n of reception computer .

Until at time of this , while transfer is done in for example
reception computer 31 , access request from other reception
computer group 32- 3 n stack does once'with transmission
computer 1, transfer toreception computer 3] ends, you do not
respond to these requests.

In addition, response for reception computer of one is notto
respond to random access to portion of here and there in file

Page 38 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1279

WO1997033227A1

t;79tx1:1EFt§1E*.=$'9‘%1a>r-I;tfr;<. 774/1,
0)9Efi7'J‘I‘oE‘C'(7)“/-’7‘2“/-t'Il«f.€‘=:‘.'?c3+.‘i‘3'
l..0)a‘9Efi'3.

774/L«a)5>61‘A77tX1at. é-Etéétfi
#30)/\—I~‘+‘4X7.I:1::1E—-$#LT:77«f)L
1:. %§%FéE+§mh<n—h;Lcfi5.

—fi£lZ§§I’754’7>|-é1ll§‘9“/IE-*2“—Ii*/X
-7-Al:2l=$L\'Cl1. ')5»r7>1~/3u5a>5>5v'1.7
’JtxI:L€i§I»f~‘§l,J:5t#”Znt. ‘J7t~cD%lU5A
a?fll3'fl’a‘l&"3'—/\'7'C|t‘y"i‘U)EfifJ"§L“€130
L. +2*—z \'1:§+Et:iEE1$fie1tl.-c£Il1z$'4'é
7547>l~0)fi€'i‘é"<>'9":é:l¢$§§'G2lb%».

$12. I\—-F?‘4x7«a)7’Jtx1:t. E7=LJ+%%
'\"JI~’b<f§§JL,‘C-'r‘»rX’Ja)~‘/'J>51'l:{fiEi=tl‘f
€'ér:&>0)~>—7E1t’EEE2£1<1t§1r&&411:Et1iE
Lu

:0)‘/—75v*fl’a'1fJ‘»‘1'~“J0t7§?o’C. 5‘/5l".Lx77
tzli9—’7'>9Jt'll«7§£§;-*c-7+§§'l:l:t’<‘C§L
<7x)l«-7“/l~7b‘iE.T'=3'%ao

.‘_#'t.Bl:l:.’f-'?:‘E. 5‘—90)§%EJ+lflL¢‘:L‘5E|l§0)
5lllE75‘i’fl*Jla‘1.lZ?"ril9*L. 9&E1’:5lE§0)Fa‘l0)f3

- ’f'rB#Fai7h‘$i7li¢7)6I&El:1i?,\¥7iB§Fa‘i’&fi<%‘B$J"&
:560%>Ct’:l.’.E?'%>.

.t§a%BE113%'C~:213«‘f:J:51::t:fi;‘£'GI:t. Sit?
’E;+§&t:.ttH31€%>BEU%lU5Ae7+B?rFa‘1«<=v7I~91lE
EHBL. $f:n—I~'¥4x’7l1~'/—'r>~‘/wb

1::.%«7+tt:L1:E€$'d'é:tI:a:bJ. magma:
a)Fafi0Jf$fiB#Fsfi’é%IJ~BEl:§”r§»:¢*:I:.tU. t~~
’5')b0)X)l«—7"‘J|~E'W_l:ét*‘Cl.\%>e

35Zl~‘.t 1l§’$“é|i1it7)'7*'-’2"$z'1'.5£7:';‘z1§l:.J,:%>-'I'"—’3t7)
$ii£¥lE0)itl.1.0)¥EliZ%l:'Jl.\‘C§i15B?”Za.,

13 1:. ssieauauareauaeramwaiea
t&fia=2Lr:#~-y1~'7—’21:rs1-re-?—@$£i£$
lll§€‘7T<’i"2'*(.Lu=}'--‘c'—|~‘C'§>%>o

i£f;;fi|lL'LU§lEfill%l§fil3:. ‘H’l.?1‘Li£lE5."-3'
’<2a*‘-‘r‘-5'E§fi‘§'éf:&)0)i£’fE{§|lJ¢=E'J<‘:. §
i§¥—’2"‘¢'—§fi?’67‘:d)0>§'¥:f§‘.£§IJ:‘-'E'J4‘:‘§f§
ll-*r§1lEE3:"r|l?r’4'%>1’:li’)t7)’,4vf'«'€'Ffii‘Ct.\Zo.

E 1 1:r<¢$ts11zraa1:1:aLr:ee. E 13 l:7T<
Tiitéfillétfififili. E 1 1::T=?'i5§f;;fiIl'c~FfiL\6
/-kzl‘ CPU-F1 .a%a>%1a§fi1:am1.. E 13
l:7T=?'§i'EiRl§’rE&l1. 1 l:7T=’i‘3‘%fe‘.fiIl‘C*
fiiL\%>7l=zI~ CPU-F1 ti-c7)lfifl§EI:i=llrtL,
'cI.\%>.

7:35. E 13 I1. —fiIItt,'c. SEQ=4O am’/7-yI~nna_-no._a L_.--_ .p;...u .4.

1998-8-4

of one directly, sequential to tail only reading is done from
head of file .

As for random access to file , on hard disk of each reception
computer in file which copy is done, each reception computer
does with the local 1

When directly it tries to respond to random access from client
regarding server system which accommodates plural client
generally,, it isdifficult to increase quantity of client where
interrupt time of the sofiware and load of server processor
increase considerably, high efficiency do computer in server
and accommodate.

ln addition, as for access to hard disk , read-write head
moving, the seek operation speed in order position to attach in
cylinder of disk isslowest in mechanical .

this seek time becoming neck , as for random access
throughput decreasesconsiderably sequential in comparison
with read—write .

These are done afier all true case, reading of data
treatmentchopping *, transfer time during treatment and
treatment required time originates in occupying major portion
in treatment of entirety .

As expressed with above-mentioned embodiment , with this
method , as fortransmission computer as much as possible
interrupt time and software treatment is decreased, in addition
hard disk throughput of total has improved by designating
transfer time during treatment and treatmentas minimum
sequential by devoting to reading .

Next, you explain with data transfer method of this invention
concerning other embodiment of transfer protocol of data .

As for Figure 13 , it is a time chart which shows data transfer
protocol in network where transmitting side and called side
computer are respectively connected.

transmitting side and called side computer , have timer in
order timer to do the called side memory and reception time
in order compilation to do transmitting side memory and
received information in order compilation to do data which it
should transmitrespectively.

When it compares with embodiment which is shown in Figure
1 , transmitting side computer which is shown in Figure 13
corresponds to host CPU ‘F1 and peripheral which are used
with transmitting side which is shown in Figure l , called side
computer which is shown in Figure 13 corresponds to host
CPU ‘Fl and peripheral which are used with called side
which is shown in Figure l . ‘

Furthermore, packet of SEQ=40 omission does Figure I3 , as

Page 39 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1280

‘ WO1997033227A1

IMt%l,. SEQ=60 an-7—‘—6«l::L5—2h<%s£d'
6i51fi{'5=l.'Cl.\%u

i£l.Ea'fill§’r§filii£i'§l.3.'l)“E'JfJ\I5?—9§fi¢?}~
lflb. %0)B¥‘r0JiEf.;;7’I:Il~:ul«. fitliljf. UDP/IP

(User Datagram Protocol::l.—‘*f—'7"—5l75
.L\7|3|'~Z|}|.«/lnternet Protocol:’f‘/5‘—5i'~“J|*j

E1l~:UL)“t5 ATM/AAL-5 I:m:t..§..—*::7+tt1Lf:
-?'—’;"¢“—I§’7‘yl~l:9:‘%JL‘C3'r='yl~'7—7l:i£lE
T6.

i3§l§?'%>Ii”7‘yI~l:li. ‘E-U)/<’r~yl~U)i£lElfl|l>‘
-‘EUl:#$l'7‘%)5'&fi7Fl/1&1\”7'yl~§§§EfiiL;
'C#$<..

i£lEflIJlat§lE£fiIJb\5a)tr:%.“$§(AcK)€t#—2
:a1::<. iEf.%'ll%a>%!a2l:rc:l;r:fi5£Ef§'G-7-‘

—'sr(sEQ=1o,2o,---,1 10)>&i£%».,

Ii’7“Jl~&‘§‘L"i§'L,f:§l§fi'l§’r§fll:«l:. /€’7“Jl~0)
kfil’-’I5—75‘t;l‘HrLlii£l§fi']l: ACK E512?’
.’_tl:'rf;1(§l‘§5"-~5'{—2<-‘E'Jl:J|lE&¥?§L.’Cld><.

fiefillfitfifili. A’/7\yI~0>k%b%$Lf:i%

‘aI:l1(sEQ=4o a)/<'rvl~). FfiEOJB=*rFsfib<%§
:‘@Lr:t&. %0)/{,7-“/i‘a)%r;:{§[]iE§7i:i/Kt
Ii’7"7l~E’E‘lTl5rL'Ci?él‘§l§ll|Z§i£¥3l€?'6(N
AK=4o).

$12. §i'§l,T:Ii”7"7|~l::t:"3--25‘5o1':f%’.%l:

I:(sr«:Q=6o a)/<*;'vl~). ‘E03/\"r‘yl~EE*I>l:
fifiiétttlz. %a)/V7-yI~a)%lEfiIl5t:E§7
FUXEI{’}"Yl‘§:’£‘i‘i’5-L'Ci§i§i§[ll:§i£§3z

'§‘6(NAK=60).

fiféfilfillidfifili. 5E%‘t5I5—75W:'.>f:f%%
l:l1. fiE%§;%'>l.\la"fi§LT:I<’7'yl~75‘i§¥l’lZ‘
1'L%>’<§§i§fi'lJ“E'JiiEfiE‘f0)¥$§El:L,
‘U53. lJ%§l§’§'%>I5—0)72i‘.l.\/<’7“Jl~"¢'r:
.0J§EfiEfi1;lK0)fiEfil:§l§L'Cfi<.

tits. ::‘Eli. §lEfi1l'C*/§’7vl~0)9E§75‘%$
Lf:i%él:l2t. EiEB«*rFa‘l!l°§i@&l:i£l%lfi|ll:fi
i£¥3R'-$'«§Ct&L‘Cl.\%n‘J‘. X%7‘J‘§%££L,f:1‘%

EI:[i‘:*5l:i£l§fllI:fii%E2%*4'Za.:t£fiIfi‘é'c60

it. fiE%fi>Zal.\l:J:I5-l:.J:r>‘CI<‘7‘yl~§E
i%%::t;b<t-%f;b\or:z<‘7vI~i:<1%t1h$1Lzv<
§§l§fiIl2<=e'J€EHa>té%§l¢. >m:1rL,<5%1eL,

7‘:/<’r~yl~(.:a)%’a. SEQ=50 0)/V7“/I~)|:ld
l~;é:rL‘Cl.v..*>5;’£l§fiIJ>H‘:-'J1:35!-r%>$*efi7I<t/X
®fLi:I:1to'CF;'tE?'6:tb<‘C~§%>.

§i£§3Ré'§z’-ltf:i£l§li|ll:J:. i§%£l(NAK=60 EL
U NAK=40)$1’LT:5’¢':§E7|~'lzX¢’:I(’f‘y|'~E’é

1998-8-4

the one example , case where error occurs in data of SEQ=60
hasbeen shown.

transmitting side computer reading it is data according to
communication protocol , for example UDP /[P of thattime of
reading , (UserDatagramprotocol :user data grarn protocol
/intemet protocol zlntemet protocol) and ATM /AAL-5 from
transmitting side memory , dividing data to packet , transmits
to network .

In packet which it transmits, start address and packet length in
transmitting side memory of packet are recorded.

transmitting side data (SEQ=l0, 20, "‘, 110) with forwarding
rate which responds to domain of communications line
without waiting for response verification (ACK) from the
called side , sends.

called side computer which receives packet , if there is not a
omission and a error of packet , sequential compilation does
received information in memory withoutretuming ACK to
transmitting side .

called side computer , when omission of packet occurs,
(packet of SEQ=40), predetermined time passage after doing,
granting transmitting side start address and packet length of
packet , resendsrequires to transmitting side (NAK==40).

In addition, when there is a error in packet which is received
(packet of SEQ%0),as packet is abolished at once, granting
transmitting side start address and packet length of packet , it
resends requires to transmitting side (_NAK=60).

receiver side computer , when there is a omission and a error ,
omission ordesignates called side memory area which packet
which is abolished should housethat way as white space , later
compilation does packet which does nothave error which is
received in region after this white space region .

Furthermore, here, when omission ofpacket occurs with
called side ,it resends requires to transmitting side after
specified time , but when omission occurs, also it is possible
at once to resend to require to transmitting side .

In addition, as for capacity of called side memory area which

packet whichcannot acquire packet length with omission or
error should house,following to value of start address in
transmitting side memory which is granted to packet (In case
of this , packet of SEQ=50) which is received next correctly
it can decide.

transmitting side which receives retransmission request
reading * reconstruction does retransmission packet from

Page 40 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1281

WO1997033227A1

R3l.\'Cfii.§Ii’7‘ul~€'§lRB‘Jl:5£f§t§U>“E'J 7'3‘
BE-?HHiL,‘C§l‘§fiEL. §f§lE'l’\§i£'§'é».,

‘ELI. fiifi/V7"/|~’&'El'fEIlo7”:§l‘.;;£fi'lli. ‘F
0)§i£I<’7“Jl~€'ttZ\¥l2l$lL‘C§%§L. ":‘—3El
0)i$§§L‘C?5L\T:7=ll7tT-'d'6§l§lEll><-‘EUfifilfi
lZ§fii'%>.

Z0153. §iE'fi'l7‘J\t30)§i£¥3Rl:l¢. fiii?
’\'%i$£f§l§'l5'E!_L§7Fl/X<’;/§If‘yl~E7‘J‘i=i'—5-3
1'L‘CL‘%s0)‘C. i£f;§fi'l'C*li. §5ilZ§i£I‘°‘7“y
l~§§$fi2*i’*5.‘_UJ"C'§'%>.

$12. <§i£§3R0)3)DT:Ii’7"‘Jl'~0)9fi§.E7l*'l/Z
t/{'7-‘2|~E0Jf§".£—1’;1-y7L.'Cd=.§h‘l:f. iEE=l=‘C'
i£i§’&1l-.&)'9“l:2-7-—’;10)i£fE‘.L'CL$L\. E
fie);V7-yI~o)§i£§%&l:$t&>1:fi5:t£
‘Garb.

m: 14 E%F.7.3.L‘C. 74:¥eHHa)-‘r’-—9$ii£75
iisé UDP/IP Em\f:E-tfififi-‘r‘—5I$i:iéI:fi
FE*§‘%>%‘u*l:'JL\‘C%itliJ3?‘%>.

zmfibfifiafifli. UDP N7-yI~25<¥—9$z‘:5£
l:&'$l'H5/V7-yl~l:1=E§?‘6£0)‘C*§2%>.,

1i£§lE.IP l:l::t?~7“/a>l27<iEi‘.%.‘0)1i'~'yl~'7—7
E71: l~:l)|z&L,'CfE<’é‘RL'CL‘%>fJ‘. -'r‘—5I
5EfE;%EL\t§iEt$b<¥sRé:tL%>1%€. _tifi0)l~
5‘JX71<’—l~E7Ell~:II|.«l:l1fiI'liZE0) TCP Eli!
L\»'.sa)i:<-*a*i§'6fi2/.’.>..

LfJ\L. iEiEBI:§LL\§E§fJ‘7f;<§i§l§'lI<‘y7
'7§fJ‘+$:"6367|'Ll£. $%5Jil:.J:%>-‘r'—’$-Yfiii
7‘J'3£€*Ffil.\1’:J:'C*l~5>7x7l=°—l~El: UDP Efi
iii. ‘i'$}7‘Jf§§H'|$&3't'IJ$|3‘J7.iI5"-élfiiiibifi
_\"£‘!.‘3/3.

1998-8-4

selectively transmitting side memory making use of start
address and packet length it is notified (NAK=60 and
NAK=40), resends to called side .

compilation it does in called side memory area where and,
called side which receives theretransmission packet according
to need reconstruction did retransmission packet , while itwas
a white space left and corresponded.

In case of this , because transmitting side start address and
packet length which it shouldresend are granted to
retransmission request from called side , with transmitting
side , reconstnrction is possible retransmission packet easily.

In addition, if start address of packet which has
retransmissionrequest and value of packet length stack are
done, midway transmissionnot stopping, all data transmitting
it finishes, collecting theretransmission of packet of plural
lastly, it is possible alsoto do.

Referring to Figure 14 next, when data transfer method of this
invention it applies to data transfer between computer which
uses UDP /IP , being attached, youexplain.

With this embodiment , it is something which is suitable to
packet the UDP packet in data transfer .

Until recently, [P has spread widely as network layer protocol
of [konekushonresu] communication , but data
communication isometry it is and when reliability is required,
it isnorrnal in transport layer protocol of upper position to use
aforementioned TCP .

But, if not to be considerable congestion called side buffer
quantity is the fully in communications line , afier if using
data transfer methodwith this invention , UDP is used in

transport layer, sufficient reliability and efficient data transfer
both achievements is possible.

14 t1UDP/t"7vI~0>7;r—7~yI~E7T='§'. UDPI §"7'vy|~0)'tj-v{Xl;i:§j{

Figure 14 shows format of UDP packet . As for size of UDP packet maximum

fJ‘64kB0)3l'§§'G§)6o C0)%€:‘. iii?! i’7"yl*lZlTf5‘§'?>I i’7"‘Jl-EIIU

Is variable length of 64 kB. In case of this , as for packet length which is granted to thetransmission packet U

DP~y’;?‘0) Length 74—IbI~’l :7‘yi:"‘/7'311.1 I. \%:. i£f§t9Jl9f:§E7 Fl/Xli

mapping it is done in Lengthfield of DPheader . As for transmitting side start address

lP’\"J’>"t7)5Ei§l5l30)74—}l«l~'(i5‘lil35§7C32E'y l~0)lP Option 74-"

<seq>IP Optionfee of for example maximum 32bit unused field of IP header

Page 41 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1282

W01997033227A1 1998-8-4

)l«F)lZ7‘yl:°‘/’7'L'C3:3(o UDP‘C'lalC. i£i§7_t‘.ZiU5l?.§'E0)IP7FlzX’é':T?

[rudo]) mapping it does. With UDP , transmission origin and IP address of addrcsee [ma]

‘7t°>7'LT:§ill)l’\‘y5"’£l‘HJDLf:_t'C'. ’\“J5-"t2‘?—5'0)")"I‘y0*:l'.Lsé?‘—I

After adding false header [ppingu], header and checksum of all data line

50

C039’-I“J7*fL».’&Fli L\ZaZt’C‘iEi§‘P 0)/ Vi‘)
|~0)iél§”ét§tl'.‘.?'%>:&fJ<'C°é%:°

$7‘:Ii’7*yl~0>fiE%ld:. §éEfiIJa>£-rA7'7I~f:§
l3.l|NlZ?v’fE0)9E§E7FlzX0)/{”7‘y|~0)5E¥|l5§
'E¥|Jfi‘4’%>°

;:|'u5€fiiL\'C. fi‘nIa‘t"ua>7:'i£'c'-'r‘—90>é£i£JSz
Ufiiifiatéfii.

:fitI:. :4:£HJi0>—'r‘—$v§i5£75;~1i>& ATM/AAL-5
ER?l.\1“:'§+%wFa'i-7-’-—9§fi5£l:fiFfi*J'%>i%.‘£r
l:0L\'C%3£H)i?'%>.

:aJ%t‘éfi2&1i'El¢cPcs—PDU(common Part c
onvergence Sublayer-Protocol Data Unit:CS ‘FE
iE‘&l37EIl~:)l»‘;"'—$’:I.:‘yl~)iJ‘-F—’5'§fii£l:.
a‘sl+Za/ V7‘-;H:1€ it L. ATM—t)wb<-‘r‘—51§i-.
i£l:3‘:3l‘h5-lz)Ll:$fi§*4'%>o

AAL-5 Ii-1‘-'—51§fii3£0)§IJ$1l:€—§+é E EI4J‘G. S

AR-PDU(Segmentation And Reassembly—PDU:
-i211»$?%l-%%fifi.+2‘7I/r’r')l:~y5I"t=>t~Lz«r€v€—
Efitfi‘. CPCS-PDU fiI:dm:n5—9'-:~y’7=&
fi-50

El 15 I1 AAL-5 CPCS-PDU 0)7a—7-yI~£-77:
LT:‘b0)'(‘5é.

CPCS-PDU m+:+4:<«:%7<n< 64kB UJEIEEE
‘G325,

Cwififi. i:§.l§Ii’7-yl~l:l=li’}?'?a/V7") FE-(:1:

CPCS-PDU I~u«r5aJ LI(Length lndicator)74
—ll»|-'l:7“Jt°>735lL'C(.\6o

i£tEflIJ5*r:E7I~'l/X11 CPCS-PDU r~u»r50>sk

lifi0>74—/L+'(1fl1;‘u:£ 8 E-y|~0) CPCS—UU(C
PCS :t—+f—-1-9‘-Fé1t%fi)74—1LFr= cm
(Common Part Identifier:3¥5E‘c’:‘B§§5i|J¥)74—
M~')l:7-yt:"y0'l.‘c#s<.,

crcs matfifizo) SAR—PDU Eiamt CRC-3
2(Cyclic Redundancy Check-32:32 I:‘-yI~0>i<£I§J
:TE’+'.=fv‘%)a):c5—a=:-y'J€’fi5.

éiiifitzhilazm SAR-PDU I: ATM ~y9’€—h‘
I17‘: ATM t)|.«'C'&%:iJ‘I5. tzboxfittfitfi

1|

injury of packet in communication can be detected by fact that
this checksum is used.

In addition within timeout value of called side it judges
omission of the packet , with not yet arrival of packet of
specific start address .

Making use of these, transfer and retransmission request of
data are done with aforementioned method .

When next, data transfer method of this invention it applies to
data transfer between the computer which uses ATM /AAL—5,
being attached, you explain.

With this embodiment it is suitable to packet CPCS-PDU
(common PartConvergenceSublayer-protoco1 data Unit:CS
common section protocol data unit) in data transfer ,it is
suitable to cell ATM —cell in data transfer .

AAL-S with objective which measures making efficient of
data transfer , doesnot provide header and trailer in SAR-PDU
(SegmentationAndReassembly-PDU :cell portion percentage
& assembly sub layer), does error check inevery only
CPCS“‘PDU .

Figure 15 is something which shows format of
AAL-5CPCS*PDU .

size of CPCS-PDU maximum is variable length of 64 KB.

In case of this , packet length which is granted to transmission
packet mapping is done in LI (Lengthindicator) field of
CPCS*PDU trailer .

transmitting side start address mapping does in unused field
(CPCS"'UU (data between CPCSuser ‘user) field and CPI
(common PartIdentifier:common section identifier) field of
for example 8bit) of CPCS-PDU trailer .

With CPCS collecting SAR"‘PDU of plural , it does error
check of CRC *32 (Round redundant code of
CyclicRedundancyCheck-32 :32bit).

Because transfer unit is ATM-cell which attaches ATM

header to this SAR*PDU , omission and injury of cell being

Page 42 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1283

WOl997033227A1

7'J‘.'Z0) CRC-32 9"I“J7'Gl§lB3rl:1§i'.'l:'.‘C*§§>o

:it1.|BEFfiL\‘Ct fiiIi7lE0)7‘J'$2*i'G?—’;V0)§1':i.§E.
Ufiiifiiiiéfii.

ilifihfiliéfilzézhli. fi£5EOJJ:5l:D5’é.‘$f=.‘2é
I\”7-yl~§l:.1""r5:¢‘:E1i"9“l:. i£fE:Ii”7'-yl~0)
fiEfi7Fl/xtééfiii-§%i'é‘.Fafi‘C*iEiE'4'4B:t
'6. Ei£0)%‘z'Eil:tI5—t§.‘:lfi$#Lf:/ Vrvl-0)
§i5§tD§IJ$4l:El?lB§i:§fi‘C*%_*%>.,

BJLESEHJ3l.1‘:.t5i:2i:¥ttv3ii2%a>-7-‘—5i§Ei£75
iiiat. -‘i-‘—’:1E1E&/<'7\yI~i:$}%%ll.'caz‘:i,§d'%>
Wat; /V7-yI~§I:m?§$%£1€—fi5:&>t:<—
tEL‘ci£1E'4'%>r:&>. tit£&J:'-)‘%L<§ii.§i‘Ji$€—
l5lJ:$'li'6Ct/J('C‘é'5a

$72. ifif§CPCF)I3—fJ‘l3§|il‘Gfii£75‘LZ\§l2fi
ofzififi. IV7“Jl~0)5‘i':£'iE7Flx7u’_'/ \°’7"‘Jl~E’E
i£'§f§l‘a'l‘C°iEiT§'LT:.t'G. §f3§£H|Jb\6$§E/V7
“Jl~EElRB4]l:fii£¥3l?‘§'%>7:'2’£"&<’:6o

.::m:otU. Eiififitzé.-0>r:at>i:5£f.§fiu4H7a)
$§T’a_'~?%‘r9uZ\§bt>t;<. iavafisrt;/t'7\yI~E§
$£’sa*Za:é:%..t.z<t;<6.

anslzfiiiz<'7vI~Ei3§tEfiIJ’6fi%ii'z'a'%:B#0>
‘J7i~aI.1E.b<£')‘é‘E§%IJ\I!Ei:€'%>:é;b<’6
Er/57‘:&>, TCP ¢;r”r.tttfiL,'ci15b~i:F.a§':‘G3‘di
$B<Jf;t§i£6z&Eiat%Ifi'G:§»5..

it. $v*rl:. $§%5fi0)"r’—§'fii£7:T;‘i{-ld:/ U110
‘r’-—510)$z’:i’e‘l:FfiL\Z.>0)l:£!?iE‘C*zl5%>o

M2. 13421 15 ’E$)‘ll§L.‘C§i§BJ5lLf:¥liEit2%
E. i£5"z".i§§‘l§%Fa‘il:)l«—’5'tL,'C0)fifi‘é£‘iE
i#'§'§>EF:fiFl5l‘E§‘l§l§”.«_"iE1JDL1’:i%%0)%Ii*Zl:
iE}fi‘J'?9*%%0)%ifill2%l:’JL\‘C%$lBfil'§"5..

Zwfifiiféfifili. =l=$‘fi§+§w7b‘. 1 mi?‘
1 l:7T<’J‘7l<X|~ CPU-F1 t-%o>)%3iZJ.’a§Ea>5£

1§m1Ji':§f§fiII0J717:'0>t§fi€§tz‘%l§t'é'%>%.a>i:
it-’iI»?r9“%>.

if. AAL-5/ATM *&fi5IL\f:§+§wFa‘i5-‘—~5'$z':
iil:fiFHT/B1%f:‘.l:9l,\'C1;l'Fl:.%i15J5H'é.

El 16 l:1l:fiB}3ll:3s|7‘»5§ii£*/—’7‘/7x{§|l€’7T=
'9“,

:a>¥tfiii2%'c~i:t. CPCS-PDU fJ"?—5~'§z':i£
l:3‘a‘I*f/E>Ii’7~yI~I:$§éti7;”%>.

CPCS-PDU a)+;r—rz‘i:c%dc25< 64kByte UJEIE
E‘:-357.5,,

1998-8-4

this CRC "32check , itcan detect simultaneously.

Making use of these, transfer and retransmission request of
data are done with aforementioned method .

According to this embodiment , conventional way doing
response verification inevery packet do, start address and
length of transmission packet byfact that communication it
does, acceleration and error of transfer making efficient of
retransmission of packet which is detected can beactualized
simultaneously between transmission and reception .

As above explained, dividing data into plural packet , when
ittransfers, lumping together without doing response
verification inevery packet , in order to transmit, transport
efficiency it can improve data transfer method of this
embodiment , from until recently considerably.

In addition, when error in communication with cause
retransmissionbecomes necessary, start address and packet
length ofpacket between the transmission and reception
communication afier doing, method which selectively it
resends requiresspecific packet is taken from called side .

Because of this, it is not necessary to wait for end of
transmitting side timer for starting retransmission, it becomes
without either at sametime resending excess packet .

Furthermore when _reconstruction doing retransmission packet
with the transmitting side , software treatment and because
memory managing can be designated as the minimum , being
much simple by comparison with TCP etc, it canactualize
efficient retransmission treatment.

In addition, especially, data transfer method of this invention
is ideal in order touse for transfer ofbulk data .

Next, referring to Figure 13 ~Figure 15 , you explain
concerning embodiment when itapplies to configuration when
it adds computer for relay which offersfunction embodiment
which you explain, as router between transmission and
reception computer .

With this embodiment , relay computer , corresponds to
transmitting side of host CPU *Fl and-peripheral which are
shown in Figtre 1 which is shown in Figure l and those
which offer both functions of called side .

First, when it applies to data transfer between computer which
uses the AAL*5/ATM being attached, you explain below.

Transfer sequence example in this invention in Figure 16 is
shown.

With this embodiment, it is suitable to packet CPCS*PDU in
data transfer.

size of CPCS-PDU maximum is variable length of 64 kByte.

Page 43 Paterra® InstantMT® Machine Translation (US. Pat. Ser, No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1284

WO1997033227Al 1998-8-4

i£l'.;='.flll§‘|'§l§§l2lC. X-EU iJ\I'o?-’iE7D‘y7$l;‘£'G§fiJ~I-H‘lL. CPCS-P

As for transmitting side computer , from memory data with block unit reading , CPCS“P

ou»\°»rn—I=l:7:7’t;L4ta'?a. {—a)B§éI:. 32“E'J7El‘y70J$z':i£E¥"r'37

encapsulation it does in DUpayload . At that occasion, it transfers said memory block , [fu]

74)La)9Ea’.'af:\r30)7l'7+z-yI~7FL»z=£cPCs—PDUI~I/«(5i§i!0)cPC

offset address from head of [airu] CPC of CPCS— PDU trailer section

S—UUé:CPl0) 16bit =&I1$}I:7vI:°y9’3‘%> (El 15 #1335.) . fix. ATM

mapping it does in I6 bitpoxtion of S- UU and CPI, (Figure 15 reference).And, ATM

tllxlt. ffllfil/*{‘\"¥§9i“'fil£~ 5I'!5'ElZl?=]l'5"C"I"—’5'l’.a_“5§l‘§-1'5) (SEG= 1 0. 2

<seq>SEQ=l0, 2 After cell converting and physical layer terminal , data is transmitteddestined for addresee

Or ---100).

0...l00). .

-7-‘—5IE=l=.’r&?'%:§~f§l§'c'l1. %Elx»f‘\". ATMLz4‘t'. AALlx*I"‘t’$§flfl"'i

With computer which relays data , physical layer , ATM layer , AALlayer terminal

Efifi. AALlz’f‘\”fi'€i’a"'aiE=*rl:CPCS-UUtCPIl:7‘yE>9'$2l'LT:7F

It does. At time of AALlayer terminal mapping it was done in CPCS*UU and the CPI, [ado]

pzrasazmzu tHL. €zz*7I~’L»xtPDua)*f«r;<‘6#i;%>ua)t%$fiEt;J;|:§§

[resu] data is removed, on basis of data of LI whichis a size of said address and PDU said

§‘l'§fil:}j’$'(?—’;1§£;i£filZEl%L7':)“E'}§E@l:'7"—5"&CPCS—PDU$ifi'EDMA(Direct Memory Access:
5-"*{l27l~>“E'J77‘l'_'1)§I_ii£L. '7"-5‘E¥?§'§’6.. ‘7"-’3§°P$'§"?a§+§fi0)7C$§)‘-'-E‘)l:—fl3'f|34Jl:§fi?'§>
Cc’:

Regarding to computer , in memory area which it guarantees in onefor data transfer DMA (direct memory access zdirect
memory access) it transfers data with CPCS— PDU unit , the compilation does data . In large capacity memory of
computer which relays data compilation do in the temporary

l:J:o‘C'J>0FefiOiiiiiilil:l6lL‘C%l§‘i§ifiEfi'5CtiJ‘3Ifi‘ét7§I?aa

It becomes possible to do rate conversion , so according to forwarding rate between link.

Page 44 Paterra® InstantM'I‘® Machine Translation (U.S_. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1285

WO1997033227Al

-'r‘-’2"&§E5'c':2:f£6E’r§&§l:rF:]|'r‘C§i:i$§’J'6i%

‘3. §l§L,f:7_Flx7u’:E$0)i%$fi’é~S&l:§fi>¢
¥'J$E1&"75\I‘o DMA §i:i£l:J:U. ¥—’3’&§a’-f:=7+tl.‘.
‘J’.

.:zhI:J:U. fifivson‘-—'3§z‘;i£l::sL\'c.:irL
$'c°$ii£mE’<bx%U‘é‘§E$rl=a<JI:aI1&L.'c
L\f:7t=xI~ CPU 0JEl'é“riJ*%fia=1tt%>c‘:§tI:. $2":
i£9&El:‘J7l~6IIL¥b‘B5'5L1:iL\f:1¢)?%:'5§ll:?'
ezabwee.

;<eIJfiEetia\us—F—5~'EE.~’~:J+H:Lr:t&. fit)? cp
CS-PDU /<»rI:I—I~‘I:-‘r‘—9é7J7’tMt:l,. cp
CS-UU. CPI l:7FlzX’aEl§$'1’i*§'/5Cé:l:J:o'C
i£i'§i§'l§‘l'§fil‘:J::>‘Ci‘l5}$*LT:7FlzXl‘§$fi
a>l§‘=?%éfi5.,

:2hI:.,U). i3§fE.‘tEIlE+fi&£bN‘a§f.;;E‘+§fii
‘E. I‘/F-1>Fe§+Et&Fafia>;<aeIJFafi§7Fu
7tt+J“»r:(t§$fi’a'—.'“Efli Lf:Fe‘3£¥?fiEii£75*EIfi‘é:
l:r2:%:..

35zl::L5—-‘r’-5l§i£¥J|fi0)$li‘éllé%l:oL\
'C§§l8J5l*d'6.,

IVrvhéFl=¥vE#'6E+%#§é:§$§H4Jl:/t/7'y|~’&
’>%t§‘9*%>E+fi&'c'I:. "I"—$«'€'Ef§L4MElz4
tn ATM l/»{‘\’. AAL I/»1"<'ts§§a”a£—fi5°

AAL l/4“t'§§i'a"fiB§l: CRC-32 ‘§‘l'§l:J:L)I§—
slam L,r:-‘r‘—5(ssQ=1o,6o)|:oL\-C11. cpc
S-PDU slfilrcifitsizi-‘—5I*&fi¥L. §a.’E.+§'&
I:?-—6~'§i£1§Lf:§+§wI:$n‘l,'C7Fl/7»t P

go fies/urifiiiiatmt/L(NAKu: 0,60)£6.

§5£§a2=&§Irr:§+§'&I1. 7FlzX.L‘ PDU E
’¢=:‘ct:;t4':'J’i%Eia“2&\-‘o§5£=d'/<a*-‘i-'—5!€r?fi.7+
tub. EU CPCS-PDU 1:727-tzMl:L,'C§5£?'
6°

:tDJ:5l:. 7F!/Z¢l:‘*f'fZ‘0)‘li§fi’£l=li:‘+L‘C
?-9E§i£?"%>t-;*¥l:-T'—90)Fl='%Efi5§+
§fiFél‘C'§fil,7'.‘ifJ‘I‘a§z':i£T%’>:tl:J:'J‘Ci£
f;§l§'l§‘lE&.‘:§lElfi'J§’rEl§§Fa‘lf£t't‘E72<. 433%
§+§&Fa'll:ii$L\‘C%:'Flfi|.z»f‘\"l:J:§>I\—F'7
:r.7lll1E’.a3$l2lE&L.‘C3?JJ3§BL\fii£75‘T='Ifi'é:‘:72i
U. 51"~‘yl~'7—7lfJ‘Bo7~I-'C=b§i£l:2‘J\iJ\7l')%>
fifibififiilififiéhéo

ml. iflfifi-7-‘~’3/\‘7L. 7t§§2‘=E'J. =i'vyl~'7
-9751I~:1t{—#§9fi’é“6=MI~'7—74y6I7:
—z79'7’9i:.J:o'ct%ifi37rL6infifi%'r§w7
-59-?’J9==<rfJ_-5fi,t%>+‘—5!$ii§§§€E0>$afiJzl§IJ
l:1l.\'C§$i".Bfi?’6o

1998-8-4

When it transfers data destined for computer which becomes
the addresee , data is read out on basis of data of address and

length which are received from said memory area with DMA
transfer.

Because of this, as load of host CPU which so far

treatedtransfer treatment and memory managing intensively in
data transfer inside the device is lightened, because software
treatment does not participate intransfer treatment,
acceleration it is possible.

From memory area data reading it is after, again in
CPCS-PDU payload the encapsulation to do data , it retains
address data which by fact that the address is housed in
CPCS-UU, CPI is granted with transmitting side computer .

Because of this, from transmitting side computer to reception
computer , with endo *endo between memory between
computer high speed compilation transfer which utilizes
address and size data becomes possible.

Next you explain concerning embodiment of error data
retransmission protocol .

With computer which receives computer and finally packet
which relay the packet, data is received and physical layer ,
ATM layer , AALlayer terminal is done.

At time of AALlayer terminal data is abolished at once with
CPCS-PDU unit concerning data (SEQ=40, 60) which
detects error with CRC -32 calculation, cell (NAK=40, 60)
for retransmission request which includes address and PDU
length vis-a-vis computer which transmitted the data to said
computer is sent.

reading , encapsulation doing data which it should resend
from the memory area on basis of address and PDU length
again in CPCS-PDU itresends computer which receives
retransmission request.

this way, granting data of address and size , as ittransfers
data , while compilation doing between computer whichrelays
data efficient retransmission becomes possible with the lower
position layer with hardware treatment as main component by
fact that it transfersnot only between transmitting side
computer and called side computer , in between relay
computer , load which relates to retransmission considered as
network entirety islightened greatly .

Next, you explain concerning configuration example of data
transfer device which consists of general purpose computer
architecture which configuration is done with
[nettowaakuintafeesuadaputa] which general purpose data
bus , large capacity memory , network protocol the terminal is
done.

Page 45 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1286

W01997033227Al

17 1:§§fii§fi2i91l€rT=‘4‘.,

CUJIEI:-T—Ja*%1%fi£1:. /<'rvI~€§1§L,. ME
l/*{‘\".ATM l/f‘\".AAL 1x»f*t'5lILEE?-'r5»‘?~

'yl~'7-7495!-71—7~76"7’5'(?i5?'9L\l1$
vt~U—’J7'9'7’5UJ—I~‘)C508. C509. C510. 31
UC511. ‘rr§'3$if::2‘HFfi-'r’—9/<xt*#i5%> PCI /<7.
C506 aw? C507. PC1 n‘xtrI<:<I-;<7.§«r>a
'J:—7W/57k1I~-PC1 /\‘z7")v~‘/‘ElE§ C504

mi C505. 7l<7.|~/\’;'L C503. nut» CPU(¢'9&
;fifi£§E)C5o2. DRAM 'c+1%1a1‘za=:n»‘.§:-I<x1~x¥
U C501 r-356.,

=r~~yI~'7—’J«ry5D:—:<75~"7’9 C508 l:J::~
‘C-?-@é§1El,. 4>mu»r—v. ATM 1/4-t'¥§
fififi. t}l»’\“J5’0) vP1/vC1 Elzscl). $z‘:i3§9l':
0)§’r§flé:i§¥7*r.$#’l.'CL\%:3?~‘y|~'7-742/5'7
1—7.75f7’5v'.a:-fifiIJ5*%>.

-flxc. til-vP1NCI i1'§0)‘i'_')|zE/{‘y77'J‘/UL,
‘C AAL lz4*r'$'67J—F17t1‘C*!Péfia“a*J'%>.

AAL lwf‘V'fi§fi|¥§l: CRC—32 ‘.3:-r$I:°t'-J-7-‘-9
15-03:)’-1*77’éi“-.r5<’_‘?Sl: CPCS—PDU Hwf
5*&111:-z-y1:“>*7’3#1.'CL\Zo7I~’l/11%$Et+f»f
:<EH11UwL. E1—i:Ul« CPU 25<71<z1~2<=E') C50
1 1:3?-ILI CPCS—PDU $fir- DMA iiifiit-y
I~<d'?.>.

7kXI~x=E')l:eFsl.\‘C§ii£l:{ElfiFI§§7tit-‘EH13:
36~3b~C&>r1=z1~ CPU fJ‘E>EI—7J)L CPU 1:$e‘L
’C%<7)’<—Z7|~'Lzxt*f«rX'€—5E9E£lL‘C2ts<.

CPCS—PDU l~lx»f5f:‘l3J:‘-JHSl“Jti'4'L,7‘:7l*~'lz?K‘i"1é"
fl. LI 1:1I%$1*1a=1t'cL\»'.5 PDU E. duh CPU 1:
J:'JiEiIl§§l‘fT:7"—5*§fiFfi7i=Xl~2‘=E'J§E1<i
0)/<—z7l~‘I/X. *f»f7<d)i€fi’a“—=Eutl:1:1—1:1
lb CPU l2l:7l'\7~l~2¢-‘E'Jl:1%51*l'§"?1'7FluZ0)§

§+§=&fiu. ¥Jir:t;7FUxE_3iw>z;:e:%1EIfit::‘E 6.

:1Ll:J:'-J.rl=Zl~2<%'J’&'J>0‘/<-y77:‘:L,'Cfi
FFJ'§'r5:é:#5EI’§%l:f.;U. $£5£=r4577»r;w«r
X$}0)2¢=E'J‘i?E1?.’cE7l=Xl~;¢£'J=l=l:EEfi'6€=t£
wasI:a‘sL\rt,§bE6iEEf;t5:¢t7t;<1'=—5r$i:
i£Efi5.:2:25<'Ga%.,

fL'C>i'~‘yl~'7-’77’,‘~’7”;713—I~' C508 0)El—7J
11. CPU 1:k.vP1/vC1 r§75\«‘a>‘;’&i$:tLf:$z‘;i£9E
a>#«yI~'7—*7»r‘/5D1—;<7/5f7”5v C511 0)::
-75)» CPU 1:5dL'C§?I§a7F1z7.£:*2‘»r:<t%fi
éiémté. - '

same1+r;:-~ym—a4ua:1—x7sr7
5' C511 03121-1111. CPU 1:. DMA §i:i£’2‘l!“Jl~
L7i'\xi‘)‘EU C501 2a~«s¥—¢«§f.~,=.a+11:a‘.

1998-8-4

equipment configuration example is shown in Figure 17 .

It is a host memory C50] which configuration is done with
host -PCI bus bridge circuit C504 and C505, host bus C503,
host CPU (central processing unit) C502, DRAM which PCI
bus C506 and C507, PCI bus and host bus which are a

network interface face adapter (Or network adapter card)
C508, C509, C510, and a C51 1, high speed general purpose
data bus where each configuration which is shown in this
figurereceives packet , treats physical layer , ATM layer ,
AALlayer interface are done. '

data is received with [nettowaalcuintafeesuadaputa] C508,
[nettowaakuintafeesuadaputa] which computer of the
forwarding destination is connected is identified after physical
layer , ATM layer tenninal , due to VPI /VCI value of cell
header .

And, [baffuaringu], to AALlayer terminal it does cell of same
—VPI NCI value inside card .

As check of data error is done at time of AALlayer terminal
with CRC -32 calculation, it removes address data and size

which mapping aredone to CPCS—PDU trailer section, local
CPU it transfers DMA with CPCS—PDU unit vis—a—vis host
memory C501 set .

In host memory useable region notifies base address and size
to transferbeforehand from host CPU vis—a—vis local CPU .

Also it is possible local CPU re-to calculate address which
ishoused in host memory on basis of data of base address ,
size of the host memory area for data storage , which receives
notification PDU lengthwhich is housed in address data , LI
which is removed from CPCS—PDU trailer section,with host
CPU to seek -new address .

Because of this as ring buffer , it becomes possible, to use
host memory when memory area of file size amount which is
transferred cannot beguaranteed in host memory putting,
efficiency without impairing also itis possible to do data
transfer".

And local CPU of network adapter card C508 notifies
aforementioned address and the size data vis~a-vis local CPU

of [nettowaakuintafeesuadaputa] C511 of forwarding»
destination which isdecided from VPI NCI value.

local CPU of [nettowaakuintafeesuadaputa] C51l which
receives notification transfers DMA and set reads out data

from host memory C50].

Page 46 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1287

WO1997033227A1

-‘r’—5vE§-.%J+tl:l.r:&. AAL Iwf“t'91l~EB=*il: C

PCS-PDU l~lz*f5‘El1(CPCS—UU. CP1)l:§11.==;a5§
ifl€'§lh‘:7|~'|/Jk’E'~?‘yt"‘/7"§'%>.

:nl:;L)7Fi/zt%$fi0>£%fiEfi5a

—t—a>&. ATM Iw1"\"5lIlE’£*ill'C't)l«l|:.$7l’I.5E5'i':&
v:;%a%+fimI:IE-iirciiléézhaa.

cmfi. PCI ztz C506 t C507 lil§u"£l:§1i’E’§'
/Eictbtfirfier-fit). 7l<Xl~I<x0)"r'—5'§E5£5$
551: PCI I<x(32bi:/33MHz=132MB/s)J:LJEE
(64bitJ66MHz=528MB/s)'C'56T:¢V) PCI ztxail
75\E»|i71<X|~}-'E'Jl:$6lL‘C¥—@§5Atf1%htt1
l,7‘fifilB§(:fii%>J:5l:i+7‘L%u

Wlili. #~wt~'7—7»r>5U:~;<74¢‘7’5w:—
F C508 ’G§IiEl,f:/€’7'vl~li PCI /\‘7. C507 an
l~5t\y7=I7"<$I:F;§£%t.t<:-I=7tI~2<=e')l:§€riAit;
L—_tfi<E.l'fig_E'&6o

%L'C7|<Z|'~>“E'JlC§¥§L.7‘:"1"-9l:l: PCI /\'7~
C507 0)l~5t-y71i%l:I$lL’C§%5‘+tlfi3'Ztl:J:
U. fi§ifi¥l:li7‘-’—’5>"&§l%L.. l~5l:‘:I’J,%75i

d«‘7f.tl.\&%l;t:E*5l:f.-%c7+tli?'tL\cT:'é‘:'EiJ\'J
%a<>*fi—a$is.§n<aIatat;a.

IUKl*5l:“J90)'_'l‘/l*E|—)lzli7l‘Xl~ PCI /U47
'J'y')0)/UK?-E|~lx—>a>&fi€l:J:o'C/\
—F'7::7l:J:UF%‘§l:6LILE$irI/5.

1998-8-4

data reading is afler, at time of AALlayer treatment address
which receives aforementioned notification to CPCS-PDU

trailer section (CPCS-UU, CPI) the mapping is done.
Because of this it retains address data .

Alter that, to cell it is converted with ATM layer processing
unit and it istransmitted destined for computer which becomes
addresee .

At- time of this , as for PCI bus C506 and C507 beingpossible
to operate in independence, as for data transfer speed of host
bus because PCI bus (32 bit/33MHz =l32MB ls) from it is a
high speed (64 bit/66MHz =528MB /s), in order to be able to
do data writing and reading simultaneously, vis-a-vis host
memory from PCI bus side it is visible.

As for packet which is received with for example
[nettowaakuintafeesuadaputakaado] C508 it ispossible to
write to host memory , regardless of traffic state of PCI bus
C507.

high speed and flexible data transfer that become possible and
in host memory the data compilation it does data which
compilation is done to whencongesting by reading out
according to traffic state of PCI bus C507, when amount of
traffic is little, it reads out at once.

Control of bus trafiic is treated to high speed with bus
arbitration fiinction of host PCI bus bridge by hardware .

l;lJ:§REHL,f:J:5lZ. llifilifilléfilzélhléf. /{"7"‘J|~l2i=f5JL$#‘L'CL\%>7l~'lz

As above explained, according to this embodiment , it is granted to—the packet , [adore]

1l§fit*:*4Xl§fi€'fiFFl’i'6:é:I:J="J. ‘/7}-'§:r.7l:J:%v<-‘E') %EfJ‘F§l$1l:é#L2.5"r§fiF-afi0)5El§l:?$L“C§
l§§5£5lllE"&%‘:E{l:'C'%5. EWBIZ. 15-5-‘-5!0)fiiié-iiféfill§+§l¥§¢l:§f§l§U§fHfiFr§lf£l'f‘G79I<'=l=fiEfi5
‘§‘l'§fil3a'l'C‘

memory managing simplification is done with soflware by [su] data andutilizing size data , acceleration is possible
compilation transfer treatment in communication between computer . Furthermore, between computer which relays
retransmission of the error data not only between transmitting side computer and called side computer

§#i‘a¢il:fi-3:tn<'c*=é. TcPé:1:t&L,‘C3?31$fi‘)7T.:fii£9JlEfJ‘%fi'E$%')., t$I:. 2l>‘-%5Ji0)'7"-5~'fii£7:'§£ld:/ \')b
7-‘r‘—90>$z‘:iw§I:§¥E'C-25%;, ma 13~ 17’&%R€ib'C§ltlviL.T:%I:‘Elf2%l:a‘sL\‘C/<'7~yl~l:h‘E.+‘§‘67Ft/
za)flha)fi2%I:'2L\'c§itflJi1"Za. 1311. Ilifififil:J:6'7F|aXi=l50)%lilEll3%‘E$3Za64E'y|~0)7FlzZ

selectively it is possible, to do, it can actualize efficient retransmissiontreatment by comparison with TCP . Especially,
data transfer method of this invention is ideal in transfer ofbulk data . Next, referring to Figure 13 ~Figure 17 , you
explain concerning other form of address which it grants to packet in embodiment which youexplain. As for Figure 18 ,
address of 64 bit which are a embodiment of address grant with this invention

l$:7:0)—i9ll’&7T=T'C'§y§o 9EE§ 32 l:"yl~l2l:lP7Fl/X‘E. TCP/IPJEE

Page 47 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1288

WO1997033227A1 1998-8-4

It is a figure which shows one example of system . As for head 32bit with IP'address , TCP/IP communication

Tiaras¥’&t§t§'»?af:&>a>§fiE7FI»x‘ci;Zo., 2§Ea> 24 t:‘~yH1. E+fi%BI7sI:§fi‘c‘==tLf:7”-‘—£«a)t§$=¢1t%F)’r
’£—7'f=‘9”x£'J7Fuxf&»%>. f:f:‘L. cm:

So it is a logic address in order special running to do communication counterpart . 24 bit of 2 nd are memory address
which shows storage site of data which compilation is done inside computer . However, as for this

in?)mofiieéfial:L,r:%&i=t7Fux'cI;tr;t<. fii£‘9‘677»1';I.a)5*afibiEEE:§ti‘é7r7t-yI~7FI/:<‘Ea3
5.. 3§Ea)3i:'~yI~l;t%+§¥§a>scs

It is not an absolute address which designates 0 of memory as the source , it is a offset address which designates head
position of file which istransiferred as source . As for 3 bit of 3 rd SCS of computer

I(Small Computer System Inerface)I<xI:¥§fi$:tm6scsr=;‘/(«(15-%fi§"6scs1—1o'c&:6., %i£0)5|:"‘J|~
'c5at%7’I:II~:uL€#EE'<.a“%>. iEf§I:&§L'ci1. :L—-+fI1t:E31EiéUIP7Fl«1’&fi5:t75<iflatE%>. iE4§t:fi:b2h%>
7:: b:i;wJ*1i£5lEa)1PiEt§‘c-mtli. 2¢=E')7F|/Z1D.'FE§-3-'f:§"3‘l:lP/ (Ir-yr~I:7J7’-tzMt:'§'1'LIiIP;L—5IE1‘rt,
1’:iEE7‘J<-E0)$¥fi’§€‘Efi;6

It is a SCSI - ID which recognizes SCSI device which is connected to the I (Smallcomputer system Inerface) bus .
communication protocol is appointed with last 5 bit . In case of communication , user until recently sort can use IP
address . If protocol which is used in communication is conventional IP communication , without readingbelow
memory address , encapsulation does in IP packet , is through IP router the communication that way being possible, itIS

$2':i£XT:'J7D‘y’7l:x=E')7’FtxX’&l=f5l,'CiE
tE‘a“457’ur~:uVC~Id:. 2 § E o)x%U7Ft/2

(2r71z~yh7 FbZ)’&§*fi.i+:‘éa't:Ji5l:?'%>.

its EEO) SCSI-ID €'i§R3‘§‘%>-.'.tl:Jt"). at
amino) SCSI +‘:<»rx§Et§t‘ai§“é.:an<
1536.,

_t§E0).J:'37£ifi%7l~'lx7li1iizTfe€'¢kZa.‘_é:l:.-J:
U. ififfijlil l~:1)b‘\‘-".5§+§l%I7Wl«€'F:fi7i‘972a?L\5"
—.@iEi§#§fiE$1‘L*i‘*I§:¢‘:fJ“C*$%>.

35T:.5i’~‘y|~'7—7E0)7’D|-:lll»tl.‘C IP 5%
lnéfié. 19 l:.7'I'T’§'JC5iZIV7“J|‘lZ7i’:l/X
EHEFJ‘/5:tb*r'€r%>.

l§ll::T=‘d'J:5l:. as". up 5El§I:{§=bh/5 11> 0)
Tfifilzt IP ~y’;"0)I1=l:Il1§31l*L?a.,

IP flflfléifl/£>7"’—5'l:l2i: IP ’\"J6ffJ‘h‘t‘I'|3ii’L.
_l:ii'il§7‘J‘|3Ef—.“il'L7‘:'F—5’& IP ’\‘y5’lZJ:o‘C
ii?’-tzILr1l:L. TifiEl:§'§’.,

Granting memory address to transfer memory block , with
protocol which the communication is done, it reads memory
address (offset address) of 2 nd , it requires.

In addition SCSI device inside computer can be appointed
directly byusing SCSI -ID of 3 rd .

data communication mechanism which does not question
communication protocol and computer inside and outside
asdescription above by taking integrated address system , can
be established.

In addition, when [P is used as protocol of network layer ,
asshown in Figure 19 , address can be granted to packet .

As shown in figure, data of IP which usually, is usedin IP
communication is accommodated in IP header.

encapsulation it does data where IP IP header is attached by
data which is treated, is transferred from upper position layer
with the IP header , transfers to lower position layer.

Page 48 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1289

WO1997033227Al

itl:1=4.-*Ll§>‘J\+‘;3lET:-7-‘——9I¢ 11> ~y$'a>v~1$’&
WEL. uZ~¥I:I$L':c_tb*LEl:fis“°

n9 ~y9'a>=P0)7r:f-‘/a>74—;LFI1EI§§0>
E3:-33:5. 'lZ=\'-:.')'T'4lu’{)l«‘\’-"J—Xll«—-|~
7::é:'t=‘r%IJa)Ea<JEB$L\riE*$-.‘I1{§Ffi$=lv:;L\.,

.:a)>r7’°/a>74—»FI:$i:i3§»<£'J7‘u~y’Ja)
%=E'J7FlzX’&7~‘Jt°‘/9"§”6Ctl:J=U . see
0) IP ;L—9£-irbrzzlifififll:J:i£fi-'—'3§Ei3§iJ‘
firfiattxaa

7:35. J:§E§¥l‘lElfz%E'§ll¥iL‘C¥lHfll.T:2li%
BB1:;é77«ru»§ii£75i£é$fi'9"%»r:&>cr)o)
70751.11. 7EI‘yl:"—-?»(X7. 5%‘:-'r‘47~0.
mfi9é¥4x7%a)'.§'Bt§h§42sl:maiaL-caaaarat
1:‘/5:¢‘:fJ<EIfi"é:'Gfi:%>..

$13. If‘/'21-i‘r'~‘yl~72té:'(7)=l'~‘yl~"J—7‘¢EliFfil.
'CBE*l1"§'%;Ct£3Ifi§‘G5J%>a

l>J.J:l§lE"¢'-§l’.7.=iL'C1li%|3E0)%Mll?%i6Tl"¢"§3£
5filL7‘:fJ‘. Jlififlflli. ‘I-0)%i‘|lU'{l:l:i¥7f+‘4$fifi
75\t3i2llF:"3"?.>.'_.’_'t£(. llt0)|.\6l,\67a‘.ll3‘C*¥b‘l§
§'%)C&75"G§?oo

%0)f:&). fi?Iili0)¥lz*éll?%i9lll;l:i_;Bf’J>6;.5.'1'Efi
t;él&1l=T=|:?'§‘<3‘. l3EEE<Jl:fi$RL'Cl:l:7:;Bt;
L‘. e

Hifififiwfili. 4‘~«*i§‘F.§.§3R0)fil:=T=?’=E»0)
‘E3231. EH-‘Flll%7liXl:l;l:lEl*3ll='Jfi$ilLfa:L‘.

3-2.4:. ¥€=E4§§3R0)fi0)i$J%%‘fil:fi'§‘é§ll?
lbfifili. ’4"\"C1l§%5JicT)fi%l7§tf$%>‘.

Drawings

(1)

1998-8-4

data which comes from lower position layer conversely
analyzes content of IP header , transfers to according to need
upper position layer.

Usually option field in IP header is not used with length of the
variable length , excluding special objective such as security
level and source root .

Is through conventional IP router data transfer becomes
possible with this invention by the mapping doing memory
address of transfer memory block in this option field .

Furthermore, referring to above-mentioned each
embodiment , in order toexecute file transfer method with this
invention which you explain asfor program , housing in
floppy disk , optical disk , magnetic optical disk or other
storage media , distribution fabric it ispossible to do.

In addition, using Internet or other network , distribution
fabric also it ispossible to do.

From here, referring to upper drawing aspect, you explained
embodiment of this invention , but it can execute this
invention, in other various shapewithout deviating from
emotion or principal feature.

Because of that, in all respects interpretation you do not have
to do theaforementioned embodiment in limited to be no more
than a mereillustration.

Range of this invention being something which is shown in
Claims , thewhat restraint is not done to specification main
text . i '

Furthermore, defonnation and modification which belong to
theequivalent theory of Claims are inside range of all this
invention .

[Figure 1]

Page 49 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No, 10/367,296)

NetApp Ex. 1002, pg. 1290

Pat. Pending Ser. No. 10/367,296)o.o..45!094760.Nr.CSm.P5U(
n.mMmTe.mhC3M®M

..|.m...
mE3P05WeaP

WO1997033227Al

NetApp Ex. 1002, pg. 1291

WOl997033227A1 1998-8-4

1"‘F7’vf7~¢
an.

1

‘E5

H-'
‘vs

Page 51 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1292

WO1997033227A1 1998-8-4

(3)

Page 52 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1293

1998-8-41A7223307991W

NetApp Ex. 1002, pg. 1294

WO1997033227A1 1998-8-4

[E14]

Page 54 Paterra® InstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1295

NetApp Ex. 1002, pg. 1296

WO1997033227A1 1998—8—4

{[215]

Page 56 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1297

l‘*"'AF'}"'4'/15'

(%%fi¢1)

?é9Efi

A3

NetApp Ex. 1002, pg. 1298

W01997033227A1 1998-8-4

(I216)

Page 58 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. l0/367,296)

NetApp Ex. 1002, pg. 1299

w01§97033227A1 ’ 1998-8-4

NetApp Ex. 1002, pg. 1300

WO1997033227A1 . 1998-8-4

(7)

Page 60 Pater1'a® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1301

WO1997033227A1 1998-8-4

ATM24 -7-7-&2Jk*r-n‘ SVR 4- mm_.-*,; ($351)

ATM14 7 -1-& 2 3('U"‘-’Nt‘1t3i7 1 -r wgfio
A’lM'}‘/9't‘1')3C.¢‘_' ($52)

U771&1($fl3)--no-ca--———-—-A
U792$1(¥fi5)

k$i7f%W‘%fifi

Uuazmk (1-RG7)

‘J 3/9 NEH ($1159)

El
, Page 6.1 Paterra® lnsta_ntM'l'® Machine Translation (U.S. Pat. Ser. N 0. 6,490,548; Pat. Pending Ser. No. IU/367,296)

NetApp Ex. 1002, pg. 1302

WO1§97033227A1 1998-8-4

(8)

Page 62 Paterra® InstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1303

1998-8-4

(Kl#AA$AnapzmflKmA.VKSE.<
«baa.2._.<

Name

1A7223307991.1W

.<.J£»3.+..‘.T.§c.<

NetApp Ex. 1002, pg. 1304

WO1997033227A1 1998-8-4

(9)

Page 64 Paterra® lnstantMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1305

V.D.0CEb.|...mVAtseB

NetApp Ex. 1002, pg. 1306

VV()1997033227l\1 1998-8«4

[E110]

Page 66 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1307

u:.£n..D

1
3 om
G

D

E
m

U)

C

Aman2mm_V

_
_.
..

Q

moumm\momm.D
.Hmmm.a

T <i..smw.»\.»KE._..¢.$1.._..KE.r<<1.m§.\;m\.n

NetApp Ex. 1002, pg. 1308

W01 997033227Al _ 1998-8-4

(11)

Page 68 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1309

HHE

u:wE...Dfi.lIIIl*I‘!IllI'|l'lt’lfnl,I}.‘t7fi‘lIilI2.Itvt..I'lI.ll
%.

hmapzmmv.

.z<mmV

Am4<<.momuamm

 moumm>mumm %; oamumumu

Best Available Copy

fiI¢xwe$av«Eh<

NetApp Ex. 1002, pg. 1310

W01997033227A1 1998-8-4

[[2112]

Page 70 Paterra® InstanLMT® Machine Translation (US. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1311

1998-841A7223307991W

NetApp Ex. 1002, pg. 1312

WO1997033227A1 1998-8-4

([2113)

Page 72 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1313

NetApp Ex. 1002, pg. 1314

W01997033227A1 1998-8-4

([2114]

Page 74 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1315

WOl997033227Al 1998-8-4

Ev Fa 0 16 31

UDP Source Port UDP Destination Port

UDP Massage Length UDP Checksum

‘>‘<14

Page 75 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1316

WO1997033227A1 ' 1998-8-4

[@151

Page 76 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1317

V.PoCEbH.mvAtseB

NetApp Ex. 1002, pg. 1318

WOl997033227A1 1998-8-4

[@161

Page 78 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1319

WO1997033227A1 1998-8-4

iifififl . iffifill

90

SEQ=l00

SQ=60

SO=4 0

NetApp Ex. 1002, pg. 1320

WO1997033227Al 1998-8-4

([2117]

Page 80 Paterra® lnstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1321

./fiazaum

NetApp Ex. 1002, pg. 1322

WO1997033227A1 1998-8-4

(18)

Page 82 Paterra® InstantMT® Machine Tmnslafion (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1323

NetApp Ex. 1002, pg. 1324

WO1997033227A1 199's—s—4

[E19]

..L.

=\

-$1
l\

12
.L.

,\

‘K

1*»

.. an

IN

3L\

. I[‘\

1'\

n°—=}*a>«WEv——'n.=.;w47
sA:i3§{§7‘c1P7Fuz nA:i:35*e1P7FI/X 0PTION:7J“7‘~‘/a~/(E3752)

Page 84 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

I-lfl..¢('-.\1z\

NetApp Ex. 1002, pg. 1325

WO1997033227A1 1998-8-4

[[52120]

Page 85 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1326

WO1997033227A1 A 1 998-8-4

am 7 7::-.: an-— I-"7 :.79z5¥_

I

[Z1203

Page 86 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1327

W01997033227A1 1998-8-4

(E121)

Tflinwxfivfi

Page 87 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1328

WOl997033227A1 1998-8-4

:1‘/'7“/‘7 ATM7v('77'B103
*2‘-P‘ B101 fififi B103

AIM’)?/fifili

ATM‘! Vflfifi

NetApp Ex. 1002, pg. 1329

WO1997033227A1 1998-8-4

[23]

Page 89 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1330

NetApp Ex. 1002, pg. 1331

WO1997033227Al - 1998-8-4

[El%§lfi§$fi‘é."]

Page 91 Paterra® Ins!antMT® Machine Translation (U.S. Pat. Scr. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

NetApp Ex. 1002, pg. 1332

L5 as

IlllllllIllIllllllllllllllllilllllllldllllllllllllllllll
Au9oe«25'

(12) PATENT ABFIIDGMENT (1 1) Document No. AU-B-64125/90
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No." 647414

(54) Title
PARALLEL IIO NETWORK FILE SERVER ARCHITECTURE

International Patent CIasst1lcation(s)
(51)5 G06!-‘ 015/18

(21) Application No. 264125190 (22) Application Date : 20.08.90

(87) PCT Publlcation Number :w091Io3181!

(30) Prlorlty Data

(31) Number (32) Date (33) Country
404959 08.09.89 US UNITED STATESOF AMERICA

(43) Publication Date : 08.04.91

(44) Pu blicatlon Date of Accepted Application : 24.03.94

AppIIcant(s)
AUSPEX SYSTEMS, INC.

Inventor(s) _
EDWARD JOHN ROW; LAURENCE B. BOUCHER; WTLLIAM M. FITTS; STEPHEN E. BLIGHTMAN

Attorney 0|’ Agent ‘
DAVIES COLLISON CAVE , 1 Llttle Collins street. MELBOURNE VIC 3000

Prior An Documents V
Au 619806 53068/86 G061-'13/12

Claim

1. Network server apparatus ‘for use with a data

network and a mass: storage device. comprising:

_an interface processor unit coupleable to said

network and to said mass storage device:

a ‘host processor -unit capable of running remote

procedures defined. by a client node on said network;

means in said interface processor unit for

satisfying requests from said network to store data

from said network on said mass storage device;

means in said interface processor unit for

satisfying requests from said network to retrieve data

from saidtnass storage device to said network: and

means in said interface processor unit for

transmitting predefined categories of messages from

said network to said host processor unit for processing

in said host processor unit, said transmitted messages

NetApp Ex. 1002, pg. 1333

(1 1) AU-B-64125/90 -2»
(10) 647414

including all requests by a network client to run

client-defined procedures on said network server

apparatus.

NetApp Ex. 1002, pg. 1334

VI’! Uflll: Uur\.I'll UL r\I'f’I.II' II-I v‘t.t.a.J I JV

PCT ADJP DATE 16/05/91 PCT NUMBER PCT/U390/04711

INTERNATIONAL Arrm.-A nun PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Oasiflwion 5 = (II) International Publication Number: W0 91103788

5057 15/‘5 ' (43) international Publication Date: 2: March I991 (21.os.91)

_(2l) International Application Number: PCT/U590/047ll (74) Agents: FLIESLER, Martin. C. et a'..; Fliesler, Dubb.
Meyer & Lovejoy, 4 Embarcadero Center, Suite 400, San

(22) International Filing Date: 20 August 1990 (20.08.90) Francisco, CA 94l I 1 (US).

(30) Priority data: (81) Designated States: AT (European patent), AU, BE (Euro-
404.959 8September 1989 (08.09.89) US pean patent), CA. CH (European patent), DE (Euro-

pean patent)‘, DK (European patent). ES (European pa-
tent), FR (European patent). GB (European patent). IT

(71) Applimnt: AUSPEX SYSTEMS. INC. [US/US]; 2952 (European patent), JP. KR. LU (European patent), NL
Bunker Hill Lane. Santa Clara. CA 95054 (US). (European patent). SE (European patent).

(72) Inventors: ROW, Edward, John ; 468 Mountain Laurel
Court, Moutain View, CA 94064 (US). BOUCHER. Published
Laurence, B. ; 20605 Montalvo Heights Drive. Saratoga, Wuh international search report.
CA 95070 (US). PlTl'S, William, M. ', 780 Mora Drive, Before the expiration of the time) limit for amending the
Los Altos, CA 94022 (US). BLIGHTMAN, Stephen. E. ; claim: and (0 be republished in (he even! of the receipt of
775 Salt Lake Drive, San Jose, CA 95133 (US). amendments.

647&i4

(54)'l'itle: PARALLEL l/0 NETWORK FlLE SERVER ARCHITECTURE

CONTROLLER

(57) Abstract

A file server architecture is disclosed. comprising as separate processors. a network controller unit (I ID), a file controller
unit (I I2) and a storage processor unit (I I4). These units incorporate their own processors. and operate in parallel with a local
Unix host processor (I I8). All networks are connected to the network controller unit (I I0). which performs all protocol process- .
ing up through the NFS layer. The virtual file system is implemented in the tile controller unit (I I2) and the storage processor
(I I4) provides high-speed multiplexed access to an array of mass storage devices. The file controller unit (I I2) controls file infor-
mation caching through its own local cache bul'l'er. and controls disk data caching through a large system memory which is acces-
sible on a bus by any of the processors.

NetApp Ex. 1002, pg. 1335

The present application is related to the

following published International Patent Applications:

1. MULTIPLE’ FACILITY OPERATING SYSTEM

ARCHITECTURE, invented by David Hitz, Allan Schwartz,

James Lau and Guy Harris, PCT Publication No.

W091/04540, international filing date April 4, 1991;

2.A _ ENHANCED VMEBUS PROTOCOL UTILIZING
PSEUDOSYNCHRONOUS HANDSHAKING AND BLOCK MODE DATA

TRANSFER, invented by Daryl Starr, PCT Publication No.

W091/03786, international filing date March 21, 1991;

and

3. BUS LOCKING FIFO MULTI-PROCESSOR.COMMUNICATIONS

SYSTEM UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND

BLOCK MODE DATA TRANSFER invented by Daryl D. Starr,

William Pitts and Stephen Blightman, PCT Publication

No.WO91/11768, international filing date August 8,
1991.

The above applications are all assigned to the

assignee of the present invention and are all expressly

incorporated herein by reference.

NetApp Ex. 1002, pg. 1336

W0 9lI03788 PCTIUS90/0471 I

The invention relates to computer data networks,

and more network fileparticularly, to server

architectures for computer networks.

Des2rintinn_nf_the_Bela:sd_Art

Over the past ten years, remarkable increases in

hardware price/performance ratios have —caused .a

startling shift in both technical and office computing

environments. Distributed workstation-server'networks

dumb terminal

To date;

however, network I/O limitations have constrained the

potential performance available to workstation users.

are displacing the once pervasive

attached to mainframe or minicomputer.

This situation has developed in part because dramatic

jumps in microprocessor performance have exceeded

increases in network I/O performance.

.In a computer network, individual user workstations '

are referred to as clients, and shared resources for

filing, data

communications are referred to as servers.

printing; storage and wide-area
Clients

and servers are all considered nodes of a network.

Client nodes use standard communications protocols to

exchange service requests.and responses with server

nodes. I

Present—day network clients and servers usually run
the DOS. Maclntosh OS, OS/2,

systems. Local networks are usually Ethernet or Token

Ring at the high end, Arcnet in the midrange, or

LocalTa1k or StarLAN at the low end. The client-

server communication protocols are fairly strictly

dictated by the operating

or Unix operating

system environment --

usually one of several proprietary schemes for Ecs

(NetWare, 3Plus, Vines, LANManager, LANserver);

AppleTalk for Maclntoshes; and TCP/IP with was or ass

SII_B_S]lT|JTE SHEET

NetApp Ex. 1002, pg. 1337

WO 91103788 PCT/U590/04711

-3-

for Unix. These protocols are all well-known in the

industry.

Unix client nodes typically feature a 16- or 32-

bit microprocessor with 1-8 MB of primary memory, a

640 x 1024 pixel display, and a built-in network

A 40-100 MB local disk is often optional.

Low-end examples are 80286-based PCs or 6BO00—based
Maclntosh I's; mid-range machines include 80386 PCs,

Macrntosh II's, and 680x0-based Unix workstations;
high—end machines include RISC-based DEC, HP, and Sun
Unix workstations.

than repackaged client nodes,

interface.

Servers are typically nothing more

configured in 19-inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

disk or tape drives, and power supplies.
RISC CISC

client workstation

Driven by and

developments, performance has

increased by more than a factor of ten in the last few

years. Concurrently, these extremely fast clients

have also gained an appetite for data that remote

Because the 1/0

shortfall is most dramatic in the Unix environment,

servers are unable to satisfy.

-the description of the preferred embodiment of the

present invention will focus on Unix file servers.

The architectural principles that solve the Unix’

server I/O problem, however, extend easily to server

performance bottlenecks in other operating

Similarly,

the preferred embodiment will

system

environments as well. the description of

focus on Ethernet

implementations, though the principles extend easily

to other types of networks. V

In most Unix environments, cli nts and servers

exchange file data using the Network File System

("RPS"), a standard promulgated by sun Microsystems
and now widely adopted by the Unix community. NFS is

defined in a document entitled, 'N1='s: Network File

SU3_3.T_lTUIE 33:57

microprocessor

NetApp Ex. 1002, pg. 1338

W0 91103788 PCT/"U590/0471 1

-4-

system Protocol Specification,“ Request For comments
(RFC) 1094; (March 1989).

This document is incorporated herein by reference in

its entirety.

While simple and reliable, NFS is not optimal.

Clients using NFS place considerable demands upon both

networks and NPS servers supplying clients with NFS

data. This demand is particularly acute for so-
called diskless clients that have no local disks and

therefore depend on a file server for application

by Sun Microsystems, Inc.

binaries and virtual memory paging as well as data.

For these Unix client-server configurations, the ten-

to-one increase in client power has not been-matched

by a ten-to-one increase in Ethernet capacity, in disk

speed. or server disk-to—network I/0 throughput.

The result is that the number of diskless clients

that a single modern high—end server can adequately

support has dropped to between 5-10, depending on
For clients

containing small local disks for applications and

paging; referred to as dataless clients. the client-

to-server ratio is about twice this,

20.

Such low

client power and application workload.

or between 10-

client/server ratios

network configurations in which each local Ethernet

contains isolated traffic for its own 5-10 (diskless)

and dedicated

connectivity, these local networks are usually joined

together with an Ethernet backbone or, in the future,

with an FDDI backbone. These backbones are typically

connected to the local networks either by IP routers

or MAC-level bridges, coupling the local networks

together directly, or by a second server functioning

as a network interface, coupling servers for all the

local networks together.

cause piecewise

clients server. For overall

L SUBSTITUTE sum

NetApp Ex. 1002, pg. 1339

WO 91103788 PCT/U590/0471 I

-5-

In addition to performance considerations, the low

client-to—server ratio creates computing problems in
several additional ways:

1, fihnzing. Development groups of more than 5-

10 people cannot share the same server, and thus

cannot easily share files without file replication and

manual, multi—server updates. Bridges or routers are

a partial solution but inflict a performance penalty

due to more network hops.

2. Administration. System administrators must

maintain many limited-capacity servers rather than a

few more substantial servers. This burden includes

network administration, hardware maintenance, and user
account administration.

3. £1le_§xs1§m_EaQknn; system administrators or

operators must conduct multiple file system backups,

which can be onerously time consuming tasks. It is

also expensive to duplicate backup peripherals on each

server (or every few servers if slower network backup

is used). V

4. 2;igg;Eg;_§gg;. with only 5-10 clients per

server, the cost oi the server must be shared by only

a small number of users. The real cost of an entry-

level Unix workstation is therefore significantly

greater, often as much as 140% greater, than the cost

of the workstation alone. _ ‘

The widening I/0 gap, as well as administrative and

economic considerations, demonstrates a need for

higher-performance. larger-capacity Unix file servers.

Conversion of a display-less workstation into a server
may address disk capacity issues, but does nothing to

address fundamental I/O limitations. As an NFS

server, the one-time workstation must sustain 5-10 or

more times the network, disk, backplane, and file

system throughput than it was designed to support as

a client. Adding larger disks, more network adaptors,

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1340

wo 91103788 PC!‘IUS90/047 I I

-5-

extra primary memory, or even a faster processor do

not resolve basic architectural I/O constraints;

throughput does not increase sufficiently.

Other prior art computer architectures,

I/O

while not

specifically designed as file servers, may potentially
be used as such. In one such well-known architecture,

a CPU, a memory unit, and two I/0 processors are

connected to a single bus. One of the I/O processors

operates a set of disk drives, and if the architecture

is to be used as a server, the other I/O processor

would be connected to a network. This architecture is

not, optimal as a file server, however, at ‘least

‘because the two I/O processors cannot handle network

file requests without involving the CPU. All network

file requests that are received by the network I/O

processor are first transmitted to the CPU, which

makes appropriate requests to the disk-I/O processor

.ror satisfaction of the network request.

In another such computer architecture, a disk

controller CPU manages access to disk drives, and

other CPUs, for example,

clustered around the disk controller CPU. Each of the

other CPUs can be connected to its own network. The

several three may be

network CPUs are each connected to the disk controller
CPU‘ as well as to each other for interprocessor

communication. one of the disadvantages of this

computer architecture is that each CPU in the system

runs its own complete operating system. Thus, network

file server requests must be handled by an operating

system which is also heavily loaded with facilities

and processes for performing a large number of other,

non tasks._ Additionally, the

interprocessor communication is not optimized for file

server type requests.

file—server

In yet another computer architecture, a plurality

of CPUs, each having its own cache memory for data and

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1341

. 7 .

instruction, storage, are connected to a common bus with a system memory and a

disk controller. The disk controller and each of the CPUs have direct memory

access to the system memory, and one or more of the CPUs can be connected, to a

network. This architecture is disadvantageous as a file server because, among other

things, both file data and the instructions for the CPUs reside in the same system

memory. There will be instances, therefore, in which the CPUs must stop running

while they wait for large blocks of file data to be transferred between system

memory and the network CPU. Additionally, as with both of the previously

described computer architectures, the entire operating system runs on each of the

CPUs, including the network CPU. '

in yet another type of computer architecture, a large number of CPUs are

connected together in a hypercube topology. One of more of these CPUs can be

connected to networks, while another can. be connected toidisk drives. This

architecture is also disadvantageous as a file server because, among other things each

processor runs the entire operating system. Interprocessor communication is also not

optimal for file server‘ applications.

SUMMARY OF THE INVE-.'N’I‘IO.N

In accordance with the present invention there is provided a network server

apparatus for use with a data network and a mass storage device, comprising:

an interface processor unit coupfeable to said network and to said mass

storage device;

a host processor unit capable of runningremote procedures defined by a

client node on said network;

’ means in said interface processor unit for satisfying requests from said

network to store data from said network on said mass storage device;

means in said interface processor unit for satisfying requests from said

9303lD.l1:\0Per\j'm‘L64 l3.SFE.7

NetApp Ex. 1002, pg. 1342

.3.

network to retrieve data from said mass storage device to said network; and

means in said interface processor unit for transmitting predefined categories

of messages from said network to said host processor unit for processing in said host

processor unit, said transmitted messages including all requests by a network client

to run client-defined procedures on said network server apparatus.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular embodiments

10 thereof, and reference will be made to the drawings, in which:

Fig. 1. is a block diagram of a prior art file server architecture;

oanun on-\nau-v\BVvI A£I')K§PF.R

NetApp Ex. 1002, pg. 1343

WO 91103788 PC!‘IU590!0471 I

-9-

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network
controllers shown in Fig. 2;

Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig.

processors shown in Pig. 2;

Fig.

memory cards shown in Fig. 2;

7A—C

operation of a fast

cycle; and

6 is a block diagram of one of the system

Figs. are a flowchart illustrating the

transfer protocol BLOCK WRITE

Pigs. 8A-C flowchart the

operation of a fast transfer protocol BLOCK READ

cycle.

are a illustrating

DEIA1LEQ_DE§§BI2IIQH

For comparison purposes and background, an

illustrative prior-art file server architecture will

first be described with respect to Fig. 1.

an overall block diagram of a conventional prior—art

Unir-based file server for- Ethernet networks. It

a host CPU "card 10 with a

microprocessor on .board. The host CPU

connects to an Ethernet #1 12, and it connects via a

memory management unit (MMU) 11 to a large memory
The host CPU card 10 also drives a

keyboard, a video display, and two RS232 ports (not

shown). It also connects via the MMU 11

standard 32-bit VME bus

devices,

consists of single

array 16.

and a

20 to various

including an SMD disk controller 22

controlling one or two disk drives 24, a SCSI host

adapter 26 connected to a SCSI bus 28, a tape

controller 30 connected to a quarter-inch tape drive

32, and possibly a network #2 controller 34 connected

. suasrrru-rs SHEET

peripheral

.5 is a block diagram of one of the storage_

Fig. 1 is;

card 10'

NetApp Ex. 1002, pg. 1344

“K)9UW3fl

' in Tanenhaum,

PC!"IUS90/047] I

-10-

to a second Ethernet 36. The SMD disk controller 22

can communicate with memory array 16 by direct memory

access via bus 20 and MMU 11, with either the disk

controller or the MMU acting as a bus master.

configuration is illustrative; many variations are
available.

The system communicates over the Ethernets using

industry standard TCP/IP and NFS protocol stacks. A

description of protocol stacks in general can be found

"Computer' Networks“ (Second Edition,

Prentice Hall: 1988). File server protocol stacks are

described at pages 535-546.

is incorporated herein by reference.

the

implemented in the apparatus of Fig. 1:

 - The

packets between a formal specific to Ethernets and a

The Tanenbaum reference

Basically, following protocol layers are

network layer converts

format which is independent of the particular type of

network used. the Ethernet-specific format which is

used in the apparatus of Fig. 1 is "described in

“A Standard For ;The

Datagrams Over Ethernet Networks,"

Hornig, Transmission of IP

RFC 894 (April

1984), which is incorporated herein by reference.

 . This

provides the functions necessary to deliver a package
of bits (an internet datagram) from a source to a

destination over an interconnected system of networks.

For messages to be sent from the file server to a
client,

module,

layer

a higher level in the server calls the IP

providing the the

destination client and the message to transmit. The

IP module performs any required fragmentation of the

internet address of

message to accommodate packet size limitations of any

intervening gateway, adds internet headers to each

fragment, and calls on the network layer to transmit

the resulting internet datagrams. The internet header

3i§B_SIlTlJTE SHEET

This.

datav

NetApp Ex. 1002, pg. 1345

PCTI US90/0471 I

-11-

includes a local network destination address

(translated from the internet address) as well as

other parameters.

For messages received by the IP layer from the

network layer, the IP ‘module determines from the
internet address whether the datagram is to be

forwarded to another host on another network, for

example on a second Ethernet such as 36 in Fig. 1, or
whether it is intended for the server itself. If it

is intended for another host on the second network,

the IP module determines a local net address for the

destination and calls on the local network layer for

that network to send the datagram. If the datagram is

intended for an application program within the server,

the IP layer strips off the header and passes the

remaining portion of the message to the appropriate

next higher layer. The internet protocol standard

used in the illustrativevapparatus of Fig. 1 is

specified in Infcrmation Sciences Institute, "Internet

Protocol, DARPA Internet Program Protocol

Specification,” RFC 791 (September 1981), which is

incorporated herein by reference. I

§E3uQH3_L§ygz. This layer is a datagram service

with pore elaborate packaging and addressing options

' than the IP layer. For example, lwhereas an IP

datagram can hold about 1,500 bytes and be addressed

to hosts. flDP datagrams can hold about 64KB and be

addressed to a particular port within a host. TCP and

UDP are alternative protocols at this layer;

applications requiring ordered reliable delivery of

streams of data may use TCP, whereas applications

(such as MP5) which do not require ordered and

reliable delivery may use UDP.

The prior art file server of Fig. 1 uses both TCP

and UDP. It uses UDP for file server—related

services, and uses TCP for certain other services

§UB_STlTii§ E SHEET

NetApp Ex. 1002, pg. 1346

VWD9UW3fl

"Protocol Specification,

PCTIUS90/0471 I

-1z-

which the server provides to network clients. The UDP

is specified in Postal, “User Datagram Protocol,“ RFC

768 (August 28, 1980), which is incorporated herein by

TCP is specified in Postel, “Transmission

Control Protocol," RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein by

reference.

reference.

XDB1B2Q_Lfl¥fi£- This

callable higher programs to

designated procedure onia remote machine.

layer provides functions

from level run a

It also

provides the decoding necessary to permit a client

machine to execute a procedure on the server. For

example, a caller process in a client node may send a

call message to the server of Fig. 1. The call
desiredmessage includes a specification of the

procedure, and its parameters. The message is passed

up the stack to the RFC layer, which calls the

appropriate procedure within the server. when the

procedure is complete, a reply message is generated

and RPC passes it back down the stack and.over the

network to the caller client.

Microsystems, "RPC:

RPC is described in Sun

Remote Procedure call

Version 2.“ RFC 1057 (June

1988), which is incorporated herein by reference.

RPC uses the XDR exterel -data representation

136..

standard to represent information passed to and from '

the underlying UDP layer. XDR is merely a data

encoding useful for transferring datastandard.

between different computer architectures. Thus, on

the network side of the XDR/RPC layer, information is

machine—independent; on the host application side, it

may not be.

Inc.,

XDR is described in sun Microsystems,

"XDR: External Data Representation Standard,“

RFC 1014 (June 1987), which is incorporated herein by
‘reference.

3.6.5.81IIUTE sum

NetApp Ex. 1002, pg. 1347

W0 9!/03788 Pcr/us9o/04m

-13-

n£§_La1gr. The NPS ("network file system")

layer is one of the programs available on the server

which an RPC request can call. The combination of

host address, program number. and procedure number in

an RPC request can specify one remote NFS procedure to
be called.

Remote procedure calls to NFS on the file server of

Fig. 1 provide transparent, stateless, remote access

to shared files on the disks 24. NFS assumes a file

system that is hierarchical, with directories as all

but the bottom level of files. Client hosts can call

any of about 20 .NFs procedures including such

procedures as reading a specified number of bytes from

a specified file; writing a specified number of bytes

to a specified file; creating, renaming and removing

specified files; parsing directory trees; creating and

removing directories; and reading and setting file

attributes; The location on disk to which and from

which data is stored and retrieved is always specified

"in logical terms, such as by a file handle or Inode

designation and a byte offset. The details of the

actual data storage are hidden from the client. The

NFS procedures, together with possible higher_level

modules such as Unix VTS and UPS, perform all

conversion of logical data addresses to physical data

addresses such as drive, head, track and sector

identification. NFS is specified in sun Microsystems,

Inc., ‘NFS: Network File System Protocol

-specification," RFC 1094.(March 1989), incorporated

herein by reference.
with the possible exception of the network layer.

all the protocol processing described above is done in

software, by a single processor in the host CPU card

10. That is, when an Ethernet packet arrives on _

Ethernet 12, the host CPU 10 performs all the protocol

processing in the NFS stack, as well as the protocol

suasrrrurs snag-r

NetApp Ex. 1002, pg. 1348

W0 9|/03788 PCT/U590/0471 I

-14-

processing for any other application which may be

running on the host 10. NFS procedures are run on the

host CPU 10, with access to memory 16 for both data

and program code being provided via MMU 11. Logically

specified data addresses are converted to a much more

‘physically specified form and communicated to the SMD

disk controller 22 or the SCSI bus 28, via the VME bus

20, and all disk caching is done by the host CPU 10

through the memory 16. The host CPU card 10 also runs

procedures for performing various other functions of

the file server, communicating with tape controller 30

via the VME bus 20.

remote procedures requested by client workstations.

Among these are client-defined

VIf the server serves a second Ethernet 36, packets

from that Ethernet are transmitted to the host CPU 10

over the same VME bus 20 in the form of IP datagrams.

Again, all protocol processing except for the network

layer is performed by software processes running on

the host CPU 10;

for any message that is to be sent from the server out

on either of the Ethernets 12 or 36 is also done by

processes running on the host CPU 10.

' It can be seen that the host CPU_10 performs an

enormous amount of processing of data. especially if

S-10 clients on each of the two Ethernets are making

file server requests and need to be sent responses on

a frequent basis. The host CPU 10 runs a multitasking

Unix operating system, so each incoming request need

.not wait for the previous request to be completely

processed and returned before being processed.

Multiple processes are activated on the host CPU 10

for performing different stages of the processing of

different requests, so many requests may be in process

at the same time.

card 19, so the processing of these requests is not

accomplished in a The

But there is only one CPU on the

truly parallel manner.

In addition, the protocol processing

NetApp Ex. 1002, pg. 1349

WO 91103788 PCT/US90/0471 I

-15-

processes are instead merely time sliced. The CPU 10

therefore represents a bottleneck in the

processing of file server requests.

Another bottleneck occurs in MMU 11, which must

transmit both instructions and data between the CPU

card 10 and the memory 16. All data flowing between

the disk drives and the network passes through this

interface at least twice, A
Yet another bottleneck can occur on the VHS bus 20,

which must transmit data among the SMD disk controller

22, the SCSI host adaptor 26, the host CPU card 10,

and possibly the network #2 controller 24. A

major

2BE£EBBED_EMBQDIMENI:Q!EBLLLBBBDHAB£_AB£HII£§IflBE

In Fig. 2 there is shown a block diagram of a

network file server 100 according to the invention.

It can include multiple network controller (NC)

boards, one or more file controller (FC) boards, one
or more storage processor (SP) boards, multiple system

memory boards, and one or more host processors. The

particular embodiment shown in Fig; 2 includes four

boards 110a—110d, two file

controller boards 112a-112b, two storage processors

1l4a41l4b, four system memory cards 116a-116d for a

total of 192MB of memory, and one local host processor

118. The boards I10, 112, 114, 116 and 118 are

connected together over a VME bus 120 on which an
enhanced block transfer mode as~ described in the

ENHANCED VMEBUS PROTOCOL application identified above

may be used. Each of the four network controllers 110

shown in Fig. 2 can. be _connected' to up to two

network controller

.Ethernets 122; for a total capacity of 8 Ethernets

122a-122h. Each of the storage processors 114

operates ten parallel SCSI busses, nine of which can

each support up to three. SCSI disk drives each.

tenth SCSI channel on each of the storage processors

_S_U_B_S_TlTUTE SHEET

The-

NetApp Ex. 1002, pg. 1350

W0 9lIOJ788 ‘ _ PCTIUS90/0471 I

-15-

114 is used for tape drives and other SCSI
peripherals.

The host 118 is essentially a standard Sunos Unix

processor, providing all the standard Sun Open Network

Computing (ONC) services except NFS and IP routing.

Importantly. all network requests to run a user-

defined procedure are passed to the host for

execution. Each of the NC boards 110, the FC boards

112 and the SP boards 114 includes its own independent

32-bit microprocessor. These boards essentially off-

load from the host processor 118 virtually all of the

NFS and disk processing. Since the vast majority of

messages to and from clients over the Ethernets 122

involve NFS requests and responses, the processing of

these requests in parallel by the NC, PC and SP

'processors, with minimal involvement by the local host

118, vastly improves file server performance. Unix

is explicitly eliminated from virtually all network,

£ile,.and storage processing.
I

Q2EBALL_§QEIHAEE_QE§BE1ZbI1QE_AE2_DAIA_ELQfl

Prior to. a detailed. discussion of the hardware

subsystems shown in Fig. 2, an overview of the

software structure will .now be undertaken. The

software organisation is described in more detail in«

the above—identi£ied application entitled MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE.

Most of the elements of the software are well known

in the field and are found in most networked Unix

systems, but there are two components which are not:

Local NPS ('LNF5*) and the messaging kernel ("MK")

I operating system kernel. These two components will be

explained first.

Ihe.M§sag1ng_Ke:nel. The various processors in

file server 100 communicate with each other through

‘the use of a messaging kernel running on each of the

S§llllCrrI1uaq__....._

NetApp Ex. 1002, pg. 1351

W0 91/03788 PCT/U590/04711 ‘

-11-

processors 110, 112, 114 and 118. These processors do

not share any instruction memory, so task-level

communication cannot occur via straightforward

procedure calls as it does in conventional Unix.

Instead, the messaging kernel passes messages over VME

bus 120 to accomplish all necessary inter-processor

communication. Message passing is preferred over

remote procedure calls for reasons of simplicity and

_speed.

Messages passed by the messaging kernel have a
fixed 128—byte length. Within a single processor,

messages are sent by reference; between processors,

they are copied by the messaging kernel and then

delivered to the destination process by reference.

The processors of Fig. 2 have special hardware,

discussed below, that can expediently exchange and

buffer inter-processor messaging kernel messages.

 -The. 22-function NFS

standard was specifically designed for stateless

operation using unreliable communication. This means

that neither clients nor server can be sure if they

hear each other when they talk (unreliability). In

practice, an in an Ethernet environment, this works
well.

within the server 100, however, NFS level datagrams

are also used for communication between_processors, in

particular between the network controllers 116 and_the

pfile controller 112, and between the host processor

118 and the file controller 112. For this internal

communication to be both efficient and convenient, it

is undesirable and impractical to have complete

statelessness or unreliable communications.

Consequently, a modified form of NFS, namely LNFS, is

used for internal communication of NFS requests and

responses. LNPS is used only uiihin the file server

100; the external network protocol supported by the

§UBSflTUTESHEET

NetApp Ex. 1002, pg. 1352

W0 9]/03788 PCTIUS90I047l I

-18-

server is precisely standard. Iicensed NFS.
described in more detail below.

The Network Controllers 110 each run an NFS server

which, after all protocol processing is done up to the

NFS layer, converts between external NFS requests and

responses and internal LNFS requests and responses.

For example,-NFS requests arrive as RPC requests with

XDR and enclosed in a UDP datagram. After protocol

processing, the NPS server translates the NFS request

into LNFS form and uses the messaging kernel to send

the request to the file controller 112.

The file controller runs

LNFS is

an LNFS server which

handles LNPS requests both from network controllers

and from the host 118.

LNFS requests to'a form appropriate»for a file system

server, also running on the file controller, which
manages the system memory file data cache through a

block I/O layer.

An. overview of the

The LNFS server translates

software in

processors will now be set forth;

each of the

lle.t:aL9.r.k_C.o.n:t.r.12ll.er..JJ_Q

The optimized dataflow of the server 100 begins

with the intelligent network controller 110. This

processor Ethernet packets from client

It quickly identifies. NFS-destined

packets and then performs full protocol processing on

them to the NFS level, passing the resulting LNFS

requests directly to the file controller 112. This

protocol processing routing and

reassembly, UDP demultiplexing, XDR decoding, and NFS

request dispatching. The reverse steps are used to

send an NPS reply back to a client. Importantly,

these time-consuming activities are performed directly
in the Network Controller 110, not in the host 1183

receives

workstations.

includes IP

§_llB§.TlTl!IE 32:59:

NetApp Ex. 1002, pg. 1353

W0 91/03788 PCT/US90/04711

-19-

The server 100 uses conventional NPS ported from
sun Microsystems, Inc., Mountain View, CA, and is NFS

protocol compatible.

Non—NFs network traffic is passed directly to its

destination host processor 118.

The Ncs 110 also perform their own IP routing.

Each 110 fully

parallel There network
controllers in the embodiment of the server 100 shown

in Fig. 2, so that server can support up to eight

Ethernets. For the two Ethernets on the same network

controller 110, IP routing occurs completely within
the network controller and generates no backplane

traffic. Thus attaching two mutually active Ethernets

to the same controller not only minimizes their inter-

net transit time, but also significantly reduces

backplane contention on the VME bus 120.

table distributed to the network

controllers from the host processor 118, which runs

either the gated or routed Unix demon.

While the network controller described here is

designed for Ethernet LANs, it will be understood that

the invention can be used just as readily with other

network types, including FDDI.

network controller

Ethernets.

tWOsupports

are four

Routing

updates are‘

EilE_£on:r9llsr_llZ

In addition to dedicating a separate processor for

NFS protocol processing and IP routing, the server 100

also dedicates a separate processor, the intelligent

file controller 112, to be responsible for all file

system processing. It uses conventional Berkeley Unix

4.3 file system code and uses a binaryecompatible data

representation on disk. These two choices allow all

standard file system utilities (particularly block-

level tools) to run unchanged.

sussrrrwrs st-user

NetApp Ex. 1002, pg. 1354

\V()9lI0378 PCUUS90/0471 I

-20-

The file controller 112 runs the shared file system

used by all Ncs 110 and the host processor 118. Both

the Ncs and the host processor communicate with the

file controller 112 using the LNFS interface. The Ncs

110 use LNFS as described above, while the host

processor 118 uses LNFS as a plug-in module to SunOs's
standard Virtual File System (“VFS') interface.

when an NC receives an NFS read request from a

client workstation, the resulting LNFS request passes

to the PC 112. The PC 112 first searches the system

memory 116 buffer cache for the requested data. If

found, a reference to the_buffer is returned to the NC

110. If not found, the LRU (least recently used)
cache buffer in 116 is

reassigned for the requested block. The PC then

directs the SP 114 to read the block into the cache

When complete, the SP

so notifies the PC, which in turn notifies the NC 100.

The NC 110 then sends an NFS reply, with the data from

the buffer, back to the NFS client workstation out on
the network. Note that the SP 114 transfers the data

into system memory 116, if necessary, and the NC 110

transferred the data from system memory 116 to the

networks. The process -takes

involvement of the host 118.

system memory freed and

buffer from a disk drive array.

place without any

§I2rass_2rsssssnr

The intelligent storage processor 114 manages all

disk and tape storage operations. While autonomous,

storage processors are primarily directed by the file

controller 112 to move file data between system memory

116 and the disk subsystem. The exclusion of both the

host 118 and the PC 112 from the actual data path

helps to supply the performance needed to service many

remote clients.

§ljB§IITUTE sues

NetApp Ex. 1002, pg. 1355

WO 91103788 PCI'IUS90I047ll

-21-

Additionally, coordinated by a Server Manager in

the host 116, storage processor 114 can execute server

backup by moving data between the disk subsystem and

or other archival peripherals SCSI

if directly accessed by host

tape on the

channels. Further,

processor 118, SP 114 can provide a much higher

performance conventional disk interface for Unix,

virtual memory, and databases. In Unix nomenclature,

the host.processor 118 can mount boot, storage swap,

-and raw partitions via the storage processors 114.

Each storage processor 114 operates ten parallel,

rully SCSI (busses)

simultaneously. Nine of these,channe1s support three

synchronous channels

arrays of nine SCSI disk drives each, each drive in an

array being assigned-to a different SCSI channel. The

tenth SCSI channel hosts up to seven tape and other

SCSI peripherals. In addition to performing reads and

writes, SP 114 performs device—level optimizations

such as disk seek queue sorting, directs device error

and_ controls Dmh transfers between the

devices and system-memory 116.

recovery,

m

The local host 118 has three main purposes: to run

Unix, to provide standard ONC netfiork services for

clients, and to run a server Manager. Since Unix and

ONC are ported from the standard Sunos Release 4 and

ONC Services Release 2, the server 100 can provide

identically compatible high-level ONC services such as

the Yellow Pages, Lock Manager, DES Key huthenticator,
Auto Mounter. Sun/2 Network disk

booting and more general IP internet services such as

Telnet, FTP, SMTP, SNMP, and reverse ARP are also

supported. Finally, print spoolers and similar Unix

demons operate transparently.

and Port Mapper.

sarssrnurs man

NetApp Ex. 1002, pg. 1356

VWD9UD3flfi

“Protocol ('TCP"),

PC!‘IU590!0471 I

-22-

The host processor 118 runs the following software
modules: ,

 . The

which is used for certain server

functions other than NFS, provides reliable bytestream

communication between two processors.

Transport Control

Socket are used

to establish TCP connections.

!£§_intgz£agg. The Virtual File system ("VFS")

interface is a standard Sunos file system interface.

It paints a uniform filebsystem picture for both users

and the non-file parts of the Unix operating-system,

hiding the details of the specific file system. Thus

standard NFS, LNFS, and any local Unix file system can

coexist harmoniously.

fl£§;inLg;£ag§. The File (”UP5“)

interface is the traditional and well-known Unix

interface for with local—to-the-

In the server 100, it is used

Unix System

communication

processor disk drives.

to occasionally mount

directly, without going through the file controller

112. Normally, the host

through the file controller.

Dexige_lax§r. The device; layer is a standard

software interface between the Unix device model and

different physical device implementations. In the

disk devices are not attached to host

storage processor volumes

118 uses LNFS and goes

server 100,

processors directly, so the disk driver in the host's

device layer uses the messaging kernel to communicate

.with the storage processor 114.

 -The Route and Port

Mapper demons are Unix user-level background processes

that maintain the Route and Port databases for packet

routing. They are mostly inactive and not in any

performance path.

 -The Yellow

Pages and Authentication services are sun-ONC standard

§i!_B_S_TlTUT£ SHEET

NetApp Ex. 1002, pg. 1357

VW)9UOIfl$ PCTIUS90/0471 1

-23-

network services. Yellow Pages is a widely used

multipurpose name—to-name directory lockup service.

The Authentication service uses cryptographic keys to

authenticate, or validate, requests to insure that

requestors have the proper privileges for any actions

or data they desire.

§erxer_Manaaer. The

administrative application

Server Manager is an

that

configuration, logs error and performance reports, and

suite controls

provides a monitoring and tuning interface for the

system administrator. These functions can be

exercised from either system console connected to the

host" 118, or

workstation.

from a system administrator's

The host processor 11a is a conventional GEM Sun

central processor card, Model 3E/120. It incorporates

a Motorola 68020 microprocessor and 4MB of on-board

.memory. other processors, such as a SBARC-based

processor, are also possible.

The structure and operation of each of the hardware

components of server 100 will now be described in

detail.

HEIHQB§_§QEIBQLLEB;BABDHAEE_ABQfllIE£I!BE

Pig. 3 is a block diagram showing the data path and

some control paths for an illustrative one of the

It comprises a 20 MHz 68020

210 32-bit

microprocessor data bus 212$ the

microprocessor data bus 212 is a 256K byte CPU memory

214. The low order 8 hits of the microprocessor data

bus 212 are connected through a, bidirectional buffer

216 to an 8-bit slow-speed data.bus 218. on the slow~

speed data bus 218 is a 128K byte EPROM 220, a 32 byte

PROM 222, and a multi-function peripheral (MFP) 224.

The EPRUM 220 contains boot code for the network

sues-nru-rs SHE,”

network controllers 110a.

microprocessor connected to 3
Also connected to

NetApp Ex. 1002, pg. 1358

“K)9UW3fl PC!‘IUS9D/047 I I

-24-

controller 1103, while the PROM 222 stores various

operating parameters such as the Ethernet addresses

assigned to each of the two Ethernet interfaces on the

board. Ethernet address information is read into the

in the cpu

The MFP 224 is a

corresponding interface control block

memory 214 during initialization.

Motorola 68901,

such as timing, interrupts, and general purpose 1/0.

The MFP 224 also includes a UART for interfacing to an

RS232 port 226.

the invention and will not be further described

herein.

The low order 16 bits of the microprocessor data

bus 212 are also coupled through a bidirectional

buffer 230 to a 16-bit LAN data bus 232. A LAN

controller chip 234. such as the Am7990 LANCE Ethernet"

controller manufactured by Advanced Micro Devices,

Inc. Sunnyvale, CA., interfaces the LAN data bus 232

with the first Ethernet 122a shown in Fig. 2, Control
and data for the LAN controller 234 are stored in a

512K byte LAN memory 236, which is also connected to

the LAN data bus 232. A specialized 16 to 32 bit FIFO

chip 240, referred to herein as a parity FIFO chip and

described below, is also connected to the LAN data bus ‘

232. Also connected to the LAN data bus 232 is a LAN

DMA controller 242, controls movements of

packets of data between the LAN memory 236 and the

FIFO chip 240. The LAN DMA controller 242 may be a

Motorola M68440 DMA controller using channel

only.

The second Ethernet 122b shown in Fig. 2 connects

to a second LAN data bus 252 on the network controller

card 110a shown in Pig. 3. The LAN data bus 252

the order 16 bits of the

microprocessor data bus 212 via a bidirectional buffer

250, and has similar components to those appearing on

which

ZEIO

connects to low

SUBSHTUTESHEET

and performs various local functions_

These functions are not critical to

NetApp Ex. 1002, pg. 1359

W0 9II03'l88 PCUUS90/04711

-35-

the LAN data bus 232. In particular, a LAN controller

254 interfaces the LAN data bus 252 with the Ethernet

A122b, using LAN memory 256 for data and control, and

a LAN DMA controller 262 controls DMA transfer of data

between the mm memory 256 and the 16-bit wide data

port A of the parity FIFO 260.

The low order 16 bits of microprocessor data bus

212 are also connected directly to another parity FIFO

270, and also to a control port of a VMEZFIFO DMA
controller 272. The FIFO 270 is used for passing

messages between the CPU memory 214 and one of the

remote boards 110, 112, 114, 116 or 118 (Fig. 2) in a

manner described below. The VME/FIFO DMA controller

272, which supports three round-robin non—prioritized

channels for-copying data, controls all data transfers

between one of the remote boards and any of the FIFOs

240, 260 or 270, as well as between the FIFOS 240 and

250. A a

32-bit data bus 274, which is connected to the 32-

bit port B of each of the FIFOs 240, 260 and 270, is

the data bus over which these transfers take place.

Data bus 274 communicates with a local 32-bit bus 276

via. a bidirectional p.ipe1ining latch 278, which is

also controlled by VME/FIFO ‘om controller 727, which
in turn communicates with the VHF bus

bidirectional buffer 280,

The local data bus 276 is also connected to a set

of control rregisters 282, which

addressable across the VME bus 120. The registers 282

system initialization

120 via a

are directly

are used mostly for and

diagnostics.

The local data bus 276 is also coupled to the

microprocessor data bus 2&2 via a bidirectional buffer

284. When the NC 110a operates in slave node, the CPU

memory 214 is directly addressable from VME bus 120.

one of the remote boards can copy data directly from

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1360

'WO9LKBflN PC!‘IUS90/0471 I

-25-

the C§U memory 214 via the bidirectional buffer 284.
LAM memories 236 and 256 are not directly addressed

over VME bus 120.

The parity FIFO8 240, 260 and 270 each consist of

an ASIC, the functions and operation of which are

described in the Appendix. The FIPOS 240 and 260 are

configured for packet data transfer and the FIFO 270

is configured for massage passing.

Appendix,

Referring to the

the FIFOs 240 and 26Q are programmed with

the following bit settings in the Data Transfer

Configuration Register: 1
£1: E Eu III

WD Mode

Parity Chip N/A

Parity Correct Mode N/A

8/16 bits CPU & Porth interface 16 bits(1)

Invert Port A address 0 no (0)

yes (1)

yes (1)

no (0)

The Data Transfer Control Register is programmed as

setting

N/A

Invert Port A address 1

Checksum Carry Wrap

Reset '

O

1

2

3

4

5

6

7

follows:

21: Deiiniiinn

Enable Perth Req/Aek

Enable Porta Req/Ack

Data Transfer Direction

CPU parity enable

Perth parity enable

aetiine

yes (1)

yes (13

_(as desired)

no (0)

no (0)

no (0)

yes'(1)

Ports parity enable

Checksun Enable

Porth Master yes (1)

Unlike the configuration used on FIFOs 240 and

260, the microprocessor 210 is responsib1e_£or loading
and unloading Port.A directly. The microprocessor 210

reads an entire 32-bit word from port A with a single

instruction using two port A access cycles. Port A

SUBSHTUTESHEET

-:onuvn.ornato:3

NetApp Ex. 1002, pg. 1361

W0 9lI03788 PCTIUS90/0471 I

-27-

data transfer is disabled by unsetting bits 0 (Enable

Perth‘ Reg/Ack) and 7 (PortA Master) of the Data

Transfer Control Register.

The remainder of the control settings in FIFO 270

are the same as those in FIFOs 240 and 260 described

above.

The NC 110a also includes a command FIFO 290. The

command'FIFO 290 includes an input port coupled to the

local data bus 276,_and which is directly addressable

across the VME bus 120,

connected to the microprocessor data bus 212. As

explained in more detail below, when one of the remote

boards issues a command or response to the NC 110a, it

does so by directly writing a 1—word (32-bit) message

descriptor into RC 110a's command FIFO 290.

FIFO 290 generates a “FIFO not empty"

microprocessor 210;

and includes an output port

Command

status to the

which then reads the message

descriptor ofif the top of FIFO 290 and processes it.

If the message is a command, then it includes a VME

address at which the message is located (presumably an

address in a shared memory‘simiIar to 214 on one of

the remote boards),

programs the FIFO 270 and the VME/FIFO DMA controller

272 to copy the message from the remote location into

the CPU memory 214.

Command FIFO 290 is a conventional two-port FIFO,

except that additional circuitry is .included for

generating a Bus Error signal on VME bus 120 if an,

attempt is made to write to the data input port while

the FIFO is full. Command FIFO 290 has space for 256
entries.

A noteworthy feature of the architecture of NC 110a

is that the LAN buses 232 and 252 are independent of

the microprocessor data bus 212. Data packets being

routed to or from an Ethernet are stored in LAN memory

236 on the LAN data bus 232 (or 256 on the LAN data

SUBSHTUTESHEET

The microprocessor 210 then"

NetApp Ex. 1002, pg. 1362

“K)9hM3flN PC!‘/US90/04711

-23-

bus 252), and not in the CPU memory 214. Data
transfer between the LAN memories 236 and 256 and the

Ethernets 122a 122b, controlled by LAN

controllers 234 and 254, respectively, while most data

transfer between LAN memory 236 or 256 and a remote

port on the VHS bus 120 are controlled by LAN DMA

controllers‘ 242 and A262, FIFOS 240 "and 260,

VNE/FIFO DMA controller 272. An exception to this

rule occurs when the size of the data transfer is

small, e.g., less than 64 bytes,‘ in which case
microprocessor 210 copies it directly without using

DMA.

transfers except in initiating them and in receiving

and are

and

The microprocessor 210 is not involved in larger

notification when they are complete.

The CPU memory 214 contains mostly instructions for

microprocessor 210, messages being transmitted to or
from a remote board via FIFO 270,

blocks for controlling the FIFOs, the DMA controllers

and the LAN controllers. The microprocessor 210

-accesses the data packets in the LAN memories 236 and

256 by addressing them through the

bidirectional buffers 230 and 250, respectively, for

The local high—speed static RAM

in CPU memory 214 can therefore provide zero wait

‘directly

protocol processing.

state memory access for microprocessor 210 independent_

of network traffic. This is in sharp contrast to the

in which all

data and data packets, as well as microprocessor

instructions for host CPU card 10,

memory 16 and must communicate with the host CPU card

10 via the MMU 11. .

While the LAN data buses 232 and 252 are shown as

separate buses in Fig. 3, it will be understood that

they may instead be implemented as a single combined
bus.

prior art architecture shown in Fig. 1,

reside in the

SUBSTITUTE SHEET

and various data.

NetApp Ex. 1002, pg. 1363

VWDDUQBNW - PC!’IUS90/04711

-29..

NEIHQBK_£QNBQLLBB_Q2EB3I1QN

In operation, when one of the LAN controllers (such

as 234) receives a packet of information over its

Ethernet 122a, it reads in _the entire packet and

stores it in corresponding LAN memory 236. The LAN

234 then issues an interrupt to

microprocessor 210 via MP? 224, and the microprocessor

210 examines the status register on LAN controller 234

(via bidirectional buffer 230) to determine that the

event causing the interrupt .was a

completed."

controller

"receive packet

In order to avoid a potential lockout of

the second Ethernet l22b caused by the prioritized

interrupt handling characteristic of MFP 224, the

microprocessor 210 does not at this time immediately"

process the received packet; instead, such processing

is scheduled for a polling function.

when the polling function reaches the processing of

.the received packet, control over the packet is passed

to a software link level receive module. The link

level receive module then decodes the packet according

to either of two different frame formats: standard

Ethernet format or SNAP (IEEE B02_LCC) format. An

entry in the header in the packet specifies which

frame format was used. The link level driver then

which of three types of messages is

contained in the received packet: (1) 11>, (zj up

packets which can be handled by a local ARP module, or

determines

<i(3) ARP packets and other packet types which must be

forwarded to the local host "118 (Fig. 2) for

If the—packet is an AR? packet which can

be handled by the NC 110a, such as a request for the

address of server 100, then the microprocessor 210

assembles a response packet in LAN memory 236 and, in

a conventional manner, causes LAN controller 234 to

transmit that packet back over Ethernet 122a. It is

noteworthy that the data for

processing.

manipulation

suasrnrurs SH:27

NetApp Ex. 1002, pg. 1364

\NT)9l/03788 PC!‘IUS90I04'l1 I

r30-

accomplishing this task is performed almost completely

in LAN memory 236, directly addressed by

microprocessor 210 as controlled by instructions in

CPU memory 214. The function is accomplished also

without generating any traffic on the VME backplane

120 at all, and without disturbing the local host 118.

If-the received packet is either an ARP packet

which cannot be processed completely in the NC 110a,

or is another type of packet which requires delivery

to the local host 118 (such as a client request for

the server 100 to execute a client-defined procedure),

then the 210 programs LAN DMA

controller 242 to load the packet from LAN memory 236

into FIFO 240, programs FIFO 240 with the direction of

data transfer, and programs DMA controller 272 to read

microprocessor

the packet out of FIFO 240 and across_the VME bus 120_
inté

microprocessor

system memory 116. In particular, the

210 first programs the LAN DMA

controller 242 with the starting address and length of

the packet in LAN memory 236, and programs the

controller to begin transferring data from the LAN

memory 236 to port A.of parity FIFO 240 as soon as the

FIFO is ready to receive data. Second, microprocessor

210 programs the VMB/FIFO DMA controller 272 with the
destination address in system ‘memory 116 and the

length of the data packet. the

controller to begin transferring data from port B of

the FIFO 260 onto VME- bus _l20. Finally, the

microprocessor 210 programs FIFO 246 with the

direction of the-transfer to take place. The transfer

then proceeds entirely under the control of DMA

controllers 242 and 272, ‘without further

involvement by microprocessor 210.

and instructs

any

The microprocessor 210 then sends a message to host

118 that a packet is available at.a specified system

memory address. The microprocessor 210 sends such a_

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1365

“K)9UU3flN PC!‘IUS90/0471 I

-31..

message by writing a message descriptor to a software—

emulated command FIFO on the host, which copies the

message from CPU memory 214 on the NC via buffer 284

and into the host's local memory, in ordinary VME

block transfer mode. The host then copies the packet

from system memory 116 into the host's own local

memory using ordinary VME transfers.

If the packet received by NC 110a from the network

is an IP then the microprocessor 210

determines whether it is (1) an IP packet for the

server 100 which is not an NFS packet; (2) an IP

packet to be routed to a different network; or (3) an

NFS packet. If it is an IP packet for the server 100,

but not an NFS packet, then the microprocessor 210

causes the packet to be transmitted from the LAN

memory 236 to the host 118 same manner

described above with respect to certain ARP packets.

If the IP packet is not intended for the server

100, but rather is to be routed to a client on a

different network, then the packet is copied into the

LAN memory associated with the Ethernet to which the

destination client is connected. If the destination

client is on the Ethernet 122b, which is on the same

NC board as the 122a, then the

microprocessor 210 causes the packet to be copied from

packet,

in the

source Ethernet

'LAN memory 236 into LAN 256 and then causes LAN

controller 254 to transmit it over Ethernet 122b. (bf

if the two LAN data buses 232 and 252 are

combined, then copying would be unnecessary; the

210 would simply the LAN

controller 254 to read the packet out of the same

locations in LAN memory to which the packet was

written by LAN controller 234.)

The copying of a packet from LAN memory 236 to LAN

memory 256 takes place similarly to the copying

described above from LAN memory to system memory. For

course,

microprocessor cause

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1366

“K)9NU3fl PCTIUS90/0471 I

-32-

transfer sizes of 64 bytes or more, the microprocessor
210 first programs the LAN DMA controller 242 with the

starting address and length of the packet in LAN

memory 236, and programs the controller to begin
transferring data from the LAN memory 236 into port A

of parity FIFO 240 as-soon as the FIFO is ready to

receive data. Second, microprocessor 210 programs the

LAN DMA controller 262 with a destination address in

LAN memory 256 and the length of the data packet, and

instructs that controller to transfer data from parity

FIFO 260 into the LAN memory 256. Third,

microprocessor 210 programs the VME/FIFO DMA

controller 272 to clock words of data out of port 8 of

the FIFO 240, over the data bus 274,

of FIFO 260; "Finally, the microprocessor 210 programs

the two FIFOS 240 and 260 with the direction of the

transfer to take place.

and into port B

The transfer then proceeds

entirely under the control of DMA controllers 242, 262

and 272, without any further‘ involvement by the

microprocessor 210. Like the copying from LAN memory

to system memory, if the transfer size is smaller than

64 bytes, the microprocessor 210 performs the transfer

directly, without DHA,

When each of the.LAN DMA controllers 242 and 262

complete their work, they so notify microprocessor 210

by a respective interrupt provided through MFP 224.’

When the 210 both

interrupts, it programs LAN controller 254 to transmit

the packet on the Ethernet 122b in a conventional
manner.

A Thus,

single network controller 110 takes place over data

microprocessor has received

IP routing between the two Ethernets in a

bus 274, generating no traffic over VME bus 120. Nor

is the host processor 118 disturbed for such routing,

in contrast to the prior art architecture of Fig. 1.

Moreover, all but .the shortest copying ‘work is

suss'rrru.'rI'=‘ SHEET

NetApp Ex. 1002, pg. 1367

WO 91103788 PCT/US90/04711

..33—

performed by controllers outside microprocessor 210,

requiring the involvement of the microprocessor 210,

and bus traffic on microprocessor data bus 212, only

for the supervisory functions of programming the DMA

controllers and the parity FIPOs and instructing them

The VME/FIFO DMA controller 272 is

programmed by loading control registersg

microprocessor data bus 212; the LAN DMA controllers
242 and 262

registers

to begin.

via

control

the

microprocessor data bus 212, respective bidirectional

buffers 230 and 250, and respective LAN data buses 232

and 252, and the parity mos 240 and 250

programmed as set forth in the Appendix.

If the destination workstation of the IP packet to

be routed is on an Ethernet connected to a different

are programmed by loading

on the respective controllers via

are

one of the network controllers 110, then the packet is

copied into the appropriate LAN memory on the NC 110

to which that Ethernet is connected. Such copying is

accomplished by first copying the packet into system_

memory 116, in the manner described above with respect

to certain ARP packets, and then notifying the

destination NC that a packet is available. When an NC

is so notified, it programs its own parity FIFO and

DMA.control1ers to copy the packet from system memory

116 into the appropriate LAN memory. It is noteworthy

that though this type of IP routing does create VHE

bus traffic, it still does not involve the host CPU

118.

If the IP packet received over the Ethernet 122a

and now stored in LAN memory 236 is an NFS packet

intended for the server 100, then the microprocessor

210 performs all necessary protocol preprocessing to

extract the NFS message and convert it to the local
NFS (LNFS) format. This may well involve the logical

concatenation of data extracted from a large number of

SUBSTITUTE SHEET.

NetApp Ex. 1002, pg. 1368

“K)9HW3flB

‘important for an understanding of the

PC!‘/U590/047 I I

-34-

individual IP packets stored‘ in LAN memory 236,

resulting in a linked list, in CPU memory 214,

pointing to the different blocks of data in LAN memory

236 in the correct sequence.

The exact» details of the LNFS format are not

I invention,

except to note that it includes commands to maintain

a directory of files which are stored on the disks

attached to the storage processors 114, commands for

reading and writing data to and from a file on the

disks,

diagnostics

and various configuration management

The directory

supported by LNFS

include the following messages based on conventional

NFS: "attributes of a file (GETATTR);

attributes of a file (SETATTR); look up a

TLOOKUP); (CREATE):

‘and

control messages.

maintenance commands- which are

get set
file

created a file remove a file

-(REMOVE); rename a file (RENAME); created a new linked

file (LINK); create a symlink (SYMLINK);

directory (RMDIR);

(STATFS). The data transfer commands supported by

LNFS include read from a.file (READ); write to a file

('WRI'1'E).,- read from a directory (READDIR),-' and read a

link (READLINK).

command (RELEASE), for notifying the file controller

that an we is finished using a specified buffer in

remove a

and return_file system statistics

LNFS also.supports a buffer release

system memory. It also supports a VOP-derived access

command, for determining whether a given type access

is legal for specified credential on a specified file.

I If the LNFS request includes the writing of file

data from the LAN memory 236 to disk, the NC 110a

first requests a buffer in system memory 116 to be

allocated by the appropriate FC 112$ when a pointer

to the buffer is returned, microprocessor 210 programs

LAN DMA controller 242, parity FIFO 240 and VMB/FIFO

‘DMA controller 272 to transmit the entire block of

RHRRTITIITF SHEET

NetApp Ex. 1002, pg. 1369

VWD9UB3fl PCTIUS90/04711

-35-

The only difference
between this transfer and the transfer described above

for transmitting IP packets and ARP packets to system

file data to system memory 116,

memory 116 is that these data blocks will typically’

have portions scattered throughout LAN memory 236.

The microprocessor 210 accommodates that situation by

programming LAN DMA controller 242 successively fore

in accordance with the

after receiving notification that the

each portion of the data,

linked list, A
previous portion is complete. The microprocessor 210

can program the parity FIFO 240 and the VME/FIFO.DMA

controller 272 once for the entire message, as long as

the entire data block is to be placed contiguously in

116. If it is not, then the

microprocessor 210.can program the DMA controller 272

for ‘successive blocks in the same manner LAN DMA
controller 242.'

If the network controller 110a receives a message

system memory

from another processor in server 100; usually from

file controller 112, that file data is available in

system memory 116 for transmission on one of the

Ethernets, for example Ethernet 122a, then the network

controller 110a copies the file data into LAN memory

236 in a manner similar to the copying of file data in

the opposite direction. In particular, the

microprocessor 210 first VME/FIFO DMA

controller 272 with the starting address and length of

116, and programs the

controller to begin transferring data over the VMB bus

120 into port B of parity FIFO 240 as soon as the FIFO

is ready to receive data. The microprocessor 210 then

programs the LAN DMA controller 242 with a destination

address in LAN memory 236 and then length of the file

data, and instructs that controller to transfer data

from the parity FIFO 240 into the LAN memory 236.

Third, microprocessor‘210 programs the parity FIFO 240

SUBSHTUTESHEET

programs

the data in system memory

NetApp Ex. 1002, pg. 1370

W0 91/03788 PC!‘IUS90/0471 I

-35-

The

transfer than proceeds entirely under the control of

DNA controllers 242 and 272,

involvement by the microprocessor 210.

with the direction of the transfer to take place.

without any further

Again, if the

file data is scattered in multiple blocks in system

memory 116, the microprocessor 210 programs the

AVME/FIFO DMA controller 272 with a linked list of the

blocks to transfer in the proper order.

When each of <the DMA controllers 242 ‘and 212

complete their work, they so notify microprocessor 210

through MFP 224.

all necessary protocol processing on the LNFS message

The microprocessor 210 then performs

in LAN memory 236 in order to prepare the message for

transmission over the Ethernet 122a in the form of

Ethernet IP packets. As this

protocol processing is performed entirely in network

set forth above,

controller 110a, without any involvement of the local
host 118.

It should be noted that the parity FIFOS are

designed to move .multip1e.s of 128-byte blocks most

efficiently, The data transfer size through port 8 is
always 32-bits wide, and the VME‘address corresponding

to the 32-bit data must be quad-byte aligned. ‘The

data transfer size for port A can be either 8 or 16

hits. it is set to 16

hits when the corresponding local start address is

double—hyte aligned, and is set at 8 bits otherwise.

The TCP/JP checksum is always eomputed in the 16 bit

mode. Therefore, the checksum word requires byte

swapping if the local start address is not double-

hyte aligned. _

Accordingly, for transfer from port B to port A of

any of the FIFOs 240, 260 or 270, the microprocessor

210 programs the VME/FIFO DMA controller to pad the

transfer count to the next 12a~byte boundary. The

extra 32-bit word transfers do not involve the VHS

SUBSTITUTE SHEET

For bus utilization reasons,

NetApp Ex. 1002, pg. 1371

W0 914703788 PCT/US90/0471 1

l -37-

bus, and only the desired number of 32-bit words will

be unloaded from port A.

For transfers from port A to port 3 of the parity

FIFO 270, the microprocessor 210 loads port A word-

by-word and forces a FIFO full indication when it is

finished. The FIFO full indication enables unloading

from port 3. The same procedure also takes place for

transfers from port A to part B of either of the

parity FIFOs 240 or 260, since transfers_of fewer than

.128 bytes are performed under local microprocessor

control rather than under the control of LAN DMA

controller 242 or 262. For all of the FIFOS, the

VME/FIFO DMA controller is programmed to unload only

the desired number of 32-bit words.

EILE_EQEIBQLLBB_flARDHABE_AB£HlIEQIflBE

The file controllers (PC) 112 may «each be a

standard off-the-shelf microprocessor board, such as
one Inc .-

manufactured by Motorola A Preferably,

however, a more specialized board is used such as that

shown in block diagram form in Fig. 4.

Fig. 4 shows one of the Fcs 112a, and it will be

understood that the other PC can be identical. ~In

many aspects it is simply a scaled—down version of the

NC 110a shown in Fig. 3, and in some respects it is

Like the NC 110a, FC 112a comprises a

20MHz 68020 microprocessor 310 connected to a 32-bit

microprocessor data bus 312. Also connected to the

microprocessor data bus 312 is a 256K byte shared CPU

314. The bits of the

microprocessor data bus 312 are connected through a

bidirectional buffer 316 to an 8-bit slow-speed data

bus 318. On slow-speed data bus 318 are a 128K byte

PROM 320, and a multifunction peripheral (MFP) 324.

The functions of the PROM 320 and MFP 324 are the same

scaled up.

memory. low order 8

as those described above with respect to EPROM 220 and‘

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1372

W0 9lI03788 PCT/US90/047] I

.33.

MP? 224 on NC 110a. PC 1123 does not include PROM

like the PROM 222 on NC 110a, but does include a

parallel port 392. The parallel port 392 is mainly

for testing and diaonostics.
Like the NC 110a, the PC 112a is connected to the

VME bus 120 via a bidirectional buffer 380 and a-32-

bit local data bus 376. A set of control registers

382 are connected to the local data bus 376,

directly addressable across the VME bus 120. The

data 375 is the

microprocessor data bus 312 via a bidirectional buffer

384. This permits the direct addressability of CPU

memory 3111 from vur: bus 120.
PC 112a also includes a command FIFO 390, which

includes an input port coupled to the local data bus

376 and which is directly addressable across the VME

bus 120. 4

port connected to the microprocessor data bus 312.

and

local bus also coupled to

The command FIFO 390 also includes an output

The structure, operation and purpose of command FIFO

390 are the same as those described above with respect

to command FIFO 290,on NC 110a.
The PC 112a omits the LAN data buses 323 and 352

which are present in NC 110a, but instead includes a

4 megabyte 32-bit wide PC memory 396 coupled to the

microprocessor data hus 312 via a bidirectional buffer

394. As will be seen, FC memory 396 is used as'a

cache memory for file control information, separate

from the file data information cached in system memory

116.

The file controller embodiment shown in Fig. 4 does

not include any DMA controllers, and hence cannot act

as a master for transmitting or receiving data in any

over the VME bus 120. ' Block

transfers do occur with the CPU memory 314 and the EC

memory 396, however, with the PC 112a acting as an VME

bus slave. In such transfers,

block transfer mode,

the remote master

sues'rrru'rs SHEET

NetApp Ex. 1002, pg. 1373

W0 9|/03733 PCT!US90/D471!

-39-

addresses the CPU memory 314 or the FC memory 396

directly over the VHS bus 120 through the

bidirectional buffers 384 and, if appropriate, 394.

EILB.SKflUHEHJJHL£EEBAIIQH

The purpose of the FC 112a is basically to provide

yirtual file system services in response to requests

provided in LNFS format by remote processors on the

VHS bus 120. Most requests will come from a network

controller 110, but requests may also come from the
local host 118.

The file related commands supported by LNPS are

identified above. They are all specified to the PC

112a in terms [of logically identified disk data

-blocks. For example, the LNFS command for reading

data from a file includes a specification of the file

from which to read (file system ID (FSID) and file ID

(inode)), a byte offset, and a count of the number of

bytes to read. The PC 112a converts that

identification into physical form, namely disk and
sector numbers, in-order to satisfy the command.

The PC 112a rhns a conventional Fast File System

‘(FPS or UPS), which is based on the Berkeley 4.3 VAX

release. This code performs the conversion and also

performs all disk. data caching and control data

cashing. However} as previously mentioned, control

data cgphing is performed using the FC memory 396 on
PC Ilia, whereas disk data caching is performed using

the system memory 116 CF19. 2). Caching this file

control information within the PC 112a avoids the VME

bus congestion and speed degradation which would

result "if file control information was cached in

system memory 116. The memory on the PC 1123 is

directly accessed over the VME bus 120 for three main

purposes. First, and by far the most frequent, are

accesses to PC memory 396 by an SP 114 to read or

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1374

“K)9Ufi3flN

.memory 116.

PC!‘/US90/047] I

-40-

write. cached file control information. These are

accesses requested by PC 112a to write locally

modified file control structures through to disk, or

to read file control structures from disk. Second.

the FC's CPU memory 314 is accessed directly by other

.processors for message transmissions from the PC 112a

to such other processors. if a data

block in system memory is to be transferred to an SP

_114 for writing to disk, the so 11_2a first assembles

a message in its local memory 314 requesting such a

transfer. The FC 112a then notifies the SP 114, which

copies the message directly from the CPU memory 314

and executes the requested transfer.

‘For example,

A third type of direct access to the FC's local

memory occurs when an LNFS client reads directory

entries. When FC 112a receives an LNFS request to
the PC the

requested directory entries in PC memory .396 and

notifies the requester of their location. -The

requester then directly accesses PC memory 396 to read

the entries,

The version of the UFS code on PC 112a includes

some modifications in order to

read’ directory entries, 112a formats

separate the two

In particular, two sets of buffer headers are

maintained, one for the FC memory 396 and one for the

system memory 116..

caches,

system buf£er_routines (GETBLK(), BRBLsE(), BREAD()}

BWRITB(), and EREAQA()) exist, one for buffer accesses

to FC Men 396 and one for buffer accesses to system

The UPS code is further modified to call

the appropriate buffer routines for FC memory 396 for

.accesses to file control information, and to call the

appropriate buffer routines for the system memory 116

for the caching of disk data. A description of UPS

may be found in chapters 2. 6, 7 and 8 of ‘Kernel

Structure and r1ow,-' by Rieken and Webb of .sh

SUBSNTUTESHEET

Additionally; a second set of the 1

NetApp Ex. 1002, pg. 1375

WO 91103788

‘write to (instead of read from)

PC!'IUS90/04.7I I

-41-

consulting (Santa Clara, California:

incorporated herein by reference.

sent to the so by‘ a

requester such as a network controller, the PC first

converts the file, offset and count information into

disk and sector information. It then locks the system

which contain that information,

instructing the storage processor 114 to read them

When the buffer is ready, the

1988).

when a read command is

memory buffers

from disk if necessary.

‘PC returns a message to the requestor containing both

the attributes of the designated file and an array of

buffer descriptors that identify the locations in

system memory 116 holding the data.

After the requester has read the data out of the

buffers, it sends a release request back to the PC.

The release request is the same message that was

returned by the_£C in response to the read request;

the FC 112a uses the information contained therein to

determine which buffers to free.

A write command is processed by PC 112a similarly

to the read command, but the caller is expected to

the ‘locations in

system memory 116 identified by the buffer descriptors

returned by the PC 112a. Since FC 112a employs write-

through caching, when it receives the release command-

from the requestor, it instructs storage processor 114

to copy the data from system memory 116 onto the

»appropriate disk sectors before freeing the system

memory buffers for possible reallocation.

The READDIR transaction is similar to read and

write, but the request is satisfied by the PC 112a

directly out of its own FC memory 396 after formatting

the requested directory information specifically for

The PC 112a the storage

processor read the requested directory information

from disk if it is not already locally cached. Also,

this purpose. causes

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1376

W0 91/03788

a release request,

,specified

PCT/US90/0471 I

-42-

the specified offset is a “magic cookie" instead of a

byte offset, identifying directory entries instead of

an absolute byte offset into the file. No file

attributes are returned.

The‘ RBADLINK_ transaction also returns no file

attributes,

entirety, it does not require any offset or count.

and since links are always read in their

For all of the disk data caching performed through‘

system memory 116, the PC 112a acts as a central

authority for dynamically allocating, deallocating and

keeping track of buffers.

PCS 112,

assigned portion of system memory 116.

If there are two or more

each has exclusive control over its own

In all of

these transactions, the requested buffers are locked

during the period between the initial request and the

by other clients,

Also in the situation where there are two or more

Fcs, each file system on the disks is assigned to a

particular one of the PCs, PC #0 runs a process

called FC_VICE_PRESIDENT, which maintains a list of

which file systems are assigned to which PC. when a

client processor (for example an NC 110) is about to

make an LNFS request designating a particular file

system, it first sends the fsid in a message to the

FC_VICE_PREsIDENT asking ,which FC controls the

-file The I-‘C_VICE_PRESIDENT

and the'client processor sends the LNPS

request to the designated PC. The client processor

also maintains its own list of fsid/PC pairs as it

discovers them,

system.

responds,

so as to minimize the number of such

requests to the FQ_VICE_PRESIDENT.

SIQRAEE_2BQEE5§QB_HABDflARB_AEEHIIB£IHB£

In the file server 10D, each of the" storage

processors 11-! can interface the VME bus 120 with up

SUBSTITUTE SHEET

This prevents corruption of the data ..

NetApp Ex. 1002, pg. 1377

WO 91103788

‘ provides

PC!‘IU590/047 I I

-43-

to 10 different SCSI buses. Additionally, it can do

so at the full usage rate of an enhanced block

transfer protocol of 55MB per second.

Fig. 5 is a block diagram of one of the SP5 114a.

SP 114b is identical. SP 114a comprises a

microprocessor 510, which may be a Motorola 68020

microprocessor operating at 20MHz. The microprocessor

510 is coupled over a 32-bit microprocessor data bus

512 with CPU memory 514, which may include up to 1MB

of static RAM.

instructions,

512,

microprocessor S10 is the only master of bus 512.

The microprocessor 510 accesses

data.and status on its own private bus

with no contention from any other source. The

The low order 16 bits of the microprocessor data

bus 516 via a
512 interface with a control bus

‘bidirectional buffer 518. The low order 8 bits of the

control bus 516 interface with a slow speed bus 520

via another bidirectional buffer 522. The slow speed

bus 520 connects to an MP? 524, similar to the MFP 224

in NC 110a (Fig. 3), and with a PROM 526, similar to

PROM 220 on NC 110a; The PROM 526 comprises 128K

bytes of EPROM which contains the functional code for

s9 1.1-ta. Due to the width and speed of the ssaou 526,

the functional code is copied to CPU memory 5,14 upon
reset for faster execution.

MP? 524, like the MFP 224 on NC t10a, comprises a

Motorola 68901 multifunction peripheral device. It

the

controller, individually programmable I/O pins,

timers and a UART. The UART functions provide serial

communications across an as 232 bus (not shown in Fig.

5) for debug monitors and diagnostics. Two of the

four timing functions may be used as general-purpose

timers by the.microprocessor 510, either independently
or‘ in cascaded fashion. A third timer function

DMA controller

provides functions of. a vectored interrupt
four

the refresh clock for a

NetApp Ex. 1002, pg. 1378

WO 91103788 rcr/U590/om 1

-44-

described below, and the fourth timer generates the
UART clock. Additional information on the MFP 524 can

be found in “MC 68901 Mu1ti—Function Peripheral

Specification,“ by Inc., which is

The eight

general-purpose I/0 bits provided by MFP 524 are

configured according to the following table:

Motorola,

incorporated herein by reference.

E.l D. I. D E. il.

7 input Power Failure is Imminent — This

functions as an early warning.

input SCSI Attention — A composite of the SCSI.
Attentions from all 10 SCSI channels.

Channel Operation Done - A composite of
the channel done bits from all 13

channels of the DMA controller, described
below.

input

output DHA Controller Enable. Enables the DMA

Controller to run. '

input VMEbus Interrupt Done - Indicates the
completion of h VMEbus Interrupt.

Command Available - Indicates that_the
sP'S Command Fife, described .below,
contains one.or more command pointers.

input

output External Interrupts Disable. Disables
externally generated interrupts to the
microprocessor 510.

output Command Fifo Enable. Enables operation of
the SP'S Command Fife. Clears the Command

Fifo when reset.

Commands are provided to the SP 114a from the VME
bus 120 via a bidirectional buffer 530, a local data

bus 532, and a command FIFO 534. The command FIFO 534

is similar to.the command Plros 290 and 390 on NC 1103

and PC 112a, respectively. and has a depth of 256 32-

bit entries. The command FIFO 534 is a write-only

register as seen on the VME bus 120, and as a read-
If the

SUBSTITUTE SHEET

only register as seen by microprocessor 510.

NetApp Ex. 1002, pg. 1379

“K)9UMB788 PC!‘IUS90/047! I

-45.-

FIFO is full at the beginning of a write from the VME

bus, a VHS bus error is generated. Pointers are

removed from the command FIFO 534 in the order

received, and only by the microprocessor 510. Command

available status is provided through 1/0 bit 4 of the

MFP 524, and as a long as one or more command pointers

are still within the command FIFO 534,

available status remains asserted.

As previously mentioned, the SP 114a supports up to

10 SCSI buses or channels 540a—540j.

configuration,

the command

In the typical

buses 5403-5401 support up to 3 SCSI

disk drives each, and channel 540j supports other SCSI‘

peripherals such as tape drives, optical disks, and so

on. Physically, the SP 114a connects to each of the

SCSI buses with an ultra-miniature D sub connector and

round shielded cables. Six 50-pin cables provide 300

conductors which carry 18 signals per bus and 12

grounds. The cables attach at the front panel of the

SP 114a and to a commutator board at the disk drive

array. standard 50-pin cables connect each SCSI

device to the commutator board.

are installed on the SP 114a.

The SP 114a supports .synchronous parallel data

transfers up to SMB per second on each of the SCSI

buses 540, arbitration,

services. Each SCSI bus 540 is connected to- a

respective SCSI adaptor 542, which in the present

embodiment is an AIC 6250 controller IC manufactured

by Adaptec Inc.. Milpitas, California, operating in

the non-multiplexed address bus mode. The AIC 6250 is

described ‘in detail in "AIC-6250 Functional

Specification," by Adaptec Inc., which is incorporated

The SCSI adaptors 542 each

provide the necessary hardware interface and low-

level electrical protocol to implement its respective
SCSI channel. I '

Termination resistors

and disconnect/reconnect

herein by reference.

8UB§_TlTliTE SHEET

NetApp Ex. 1002, pg. 1380

“K)9Hfi3NW PC!"IUS90/047] I

-45-

The 8-bit data port of each'of the SCSI adaptors
542 is connected to port A of a respective one of a

set of ten parity FIFOs 544a-544j. The FIPOs 544 are

the same as FIFOs 240, 260 and 270 on NC 110a, and are

connected and configured to provide parity covered

data transfers between the 8-bit data port of the

respective SCSI adaptors 542 and a 36-bit (32—bit plus

4 bits of parity) common data bus 550. The FIFOs 544

provide handshake, status, word assembly/disassembly

and speed matching FIFO buffering for this purpose.

The PIPos 544 also generate and check parity for the

32-bit bus, and for RAID 5 implementations they

accumulate and check redundant data and accumulate

recovered data. _ .

All of the SCSI adaptors 542 reside at a single

location of the address space of the microprocessor

510, as do all of the parity FIPos 544. The

"microprocessor 510 selects individual controllers and

FIFos for access in pairs, by first programming a pair

select register (not shown) to point to the desired

pair and than reading from or writing to the control

register address of the~desired chip in the pair. The

510 communicates with the control

registers on the SCSI adaptors 542 via the control bus

515 and an additional bidirectional buffer 546, and

communicates with the control registers on PIPOs 544

via the control bus 516 and a bidirectional buffer

552. Both the SCSI adaptors 542 and FIFOS 544 employ

8-bit control registers, and register addressing of

the FIFOs 54¢ is arranged such that such registers

alias in consecutive byte locations. This-allows the

microprocessor 510 to write to the registers as a

single 32-bit register, thereby reducing instruction

overhead.

The parity FIPos 544 are each configured in their

Adaptec 6250 mode. Referring to the Appendix, the

3.lifl_3_T.!.TilTE S_HE£,?

microprocessor

NetApp Ex. 1002, pg. 1381

WO 91103788 PCTIUS90I0471 I

-47-

FIPos 544 are programmed with the following bit

settings in the Data Transfer Configuration Register:

Bil nsiinitinn setting

WD Mode (0)

Parity Chip (1)

Parity Correct Mode (0)

8/16 bits CPU & PortA interface (0)

Invert Port A address 0 (1)

Invert Port A address 1 (1)

Checksum Carry Wrap (0)

Reset .(0)

The Data Transfer Control Register is programmed as

\lO\U|uhL:Il0>-IO
follows:

E Setting

(1)

(1)

as desired

(0)

(1)

(1)

Enable PortA Req/Ack

Enable PortB Req/Ask

Data Transfer Direction

CPU parity enable

Porta parity enable

Ports parity enable

Checksum Enable (0)

Porta Master (0)

In addition, Vbit 4 of the RAM Access Control

Register (Long Burst) is programmed for 8-byte bursts.
SCSI 542 respective

interrupt signal, the status of which are provided to

microprocessor 510 as 10 bits 16-bit SCSI

interrupt register 556. The SCSI interrupt register

556 is connected to the control bus 516.

Additionally, a composite SCSI interrupt is provided

through the MFP 524 whenever any one of the SCSI

adaptors 542 needs servicing.
An additional parity FIFO S54 is also provided in

the SP 114a, for message passing. Again referring to

the Appendix, the parity FIFO 554 is programmed with

0

1

2

3

4

5

6

7

adaptors each generate a

of a

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1382

WO 91/021788 Pcr/U590/om 1

-48-

the following bit settings

Configuration Register:

Bit Daiinitien setting

0 WD Mode (0)

Parity Chip _ (1)

Parity Correct Mode (0)
8/16 bits CPU & Perth interface (1)

Invert Port A address 0 . (1)

Invert Port A address 1 (1)

Checksum Carry Wrap (0)

Reset (0)

The Data Transfer Control Register is programmed as

follows: '

Enable.PortA Req/Ask (0)

Enable PortB Req/Ack (1)

Data Transfer Direction as desired

CPD parity enable (0)

PortA parity enable (0)

'PortB parity enable (1)

Checksum Enable (0)

PortA Master (0)

In addition,- bit. 4 of the RAM Access Control

Register (Long Burst) is programmed for 8-byte bursts.
Port A of FIFO 554 is connected to the 16-bit

control bus 516. and port 8 is connected to the common

data bus 550, FIFO 554 provides one means by which

the microprocessor 510 can communicate directly with

the VHS bus 120, as is described in more detail below.

in the Data Transfer

0

1

2

3

4

5

6

7

The microprocessor 510 manages data movement using

a set of 15 channels, each of which has an unique

status which indicates its current state. Channels

are implemented using a channel enable register 560

and a channel status register 562, both connected to

the control bus 516. The channel enable register 560

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1383

W0 9|I03788 PCIIUS90I047l I

-49-

is a 16-bit write—only register. whereas the channel

status register S62 is a 16-bit read—on1y register.

The two registers reside at the same address to

microprocessor 510. ‘The microprocessor 510 enables a

particular channel by setting its respective bit in

channel enable register 560, and recognizes completion

of the specified operation by testing for a “done” bit

in the. status register 562. The

microprocessor 510 then resets the enable bit, which

channel

causes the respective "done" bit in the channel status

register 562 to be cleared.

The channels are defined as follows:

QBAHHEL EEHQILQN

6:9 These channels control data movement to
and from the respective FIFOs 544 via the
common data bus 550. when a FIFO is
enabled and a request is received from
.it, the channel becomes ready. Once the
channel has been serviced a status of
done is generated.

These channels control data movement between
a local data buffer 564, described below, and
the VME bus 120. when enabled the channel

becomes ready. Once the channel has been
serviced a status of done is generated.

when enabled, this channel causes the DRAM in
local data buffer 564 to be refreshed based on

a clock which is generated by the MFP 524.
The refresh consists of a burst of 15 rows.

This channel does not generate a status of
done.

The microprocessor's communication FIFO 554 is
serviced by-this channel. when enable is set‘
and the FIFO 554 asserts a request then the
‘channel becomes ready. This channel generates
a status of acne.

Low latency' writes from microprocessor 510
onto the VME bus 120 are controlled by this
channel. when this channel is enabled data is

moved from a special 32 bit register,
described below, onto the VME bus 120. This
channel generates a done status.

ammnrurs sum

NetApp Ex. 1002, pg. 1384

VWD9U03flW PC!‘IUS90I047| I

. -50-

15. This is a null channel for which neither a
ready status nor done status is generated.

Channels are prioritized to allow servicing of the

more critical requests first. Channel priority is

assigned in a descending order starting at channel 14.

That is, in the event that all channels are requesting

service, channel 14 will be the first one served.

The data 550 is coupled

bidirectional register 570 to a 36-bit junction bus

572. A second bidirectional register S14 connects the
junction bus 572 with the local data bus 532.

data buffer 566, which comprises 1MB of DRAM.

common bus via a

Local

with

_ parity. is coupled bidirectionally to the junction bus

572. It is organized to provide 256K 32-bit words

with byte parity. The SP 1143 operates the DRAMs in

page mode to support a very high data rate, which

requires bursting of data instead of random single-

It will be seen that the local data

buffer 564 is used to implement a RAID (redundant

array of inexpensive disks) algorithm. and is not used

for direct reading and writing between the VHS bus 120

and a peripheral on one of the SCSI buses 540.

A read-only register 576, containing all zeros, is

also connected to the junction bus 572.

is used mostly for diagnostics, initialization, and

clearing of large blocks of data in system memory 116.

The movement of data between the PIPOs $44 and 554,

the-local data buffer 564, and a remote entity such as

the system memory 116 on the VME bus 120, is all

controlled by a VME/FIFO DMA controller 580. The

VMB/FIFO DNA controller 580 is similar to the VME/FIFO

DMA controller 272 on network controller 110a (Fig.

3), and is described in the Appendix. ‘Briefly, it

includes a bit slice engine 582 and a dual—port static

RAM 584. one port of the dual—port static RAM 584

word accesses.

This register

communicates over the 32-bit microprocessor data bus

NetApp Ex. 1002, pg. 1385

WO 91103788 PC!‘/US90I047l I

_51l

512 with microprocessor 510, and the other port

communicates over a separate 16-bit bus with the bit

slice engine 582. The microprocessor 510 places

command parameters in the dual-port RAM 584, and uses

the-channel enables 560 to signal the VMB/FIFO DMA

controller 580 to proceed with the command. The

VM/FIFO DMA controller is responsible for scanning
the and

returning ending-status in the dual-port RAM 584. The

dual-port RAM 584 is organized as 1K x 32 hits at the

32-bit port and as 2K x 16 bits at the 16-bit port. 1

example showing the method by which the microprocessor

510 controls the VMB/FIFO DMA controller 580 is as

follows. First, the microprocessor S10 writes into

the dual-port RAM 584 the

associated parameters for the desired channel.

channel status and servicing requests,

desired command and

For

example, the command might be, "copy a block of data

from FIFO 544h out into a block of system memory 116

Second, the

microprocessor sets the channel enable bit in channel

enable register 560 for the desired channel,

At the time the channel enable bit is set, the

appropriate FIFO may not yet be ready to send data.

beginning at a specified VME address."

Only when the-VME/FIFO DMA controller 580 does receive

a "ready" status from the channel, will the controller

.580 execute the command. In the meantime, the DMA

controller 580 is free to execute commands and move

data to or from other channels.

When the DMA controller 580 does receive a status

of fready" from the specified channel. the controller‘

fetches the channel command and parameters from the

dual—ported RAH 584 and‘executes.' when the command is

complete, for example all the requested data has been

copied, the DHA controller writes status back into the

dual-port RAM 584 and asserts "done" for the channel

in channel status register 562.

SUBSTITUTE SHEET

The microprocessor

NetApp Ex. 1002, pg. 1386

W0 9!/03788 PC!‘IUS90/047! I

-52-

510 is then interrupted, at which time- it reads

channel status register 562 to determine which channel

interrupted. The microprocessor 510 then clears the

channel enable for the appropriate channel and checks

the ending channel status in the dual-port RAM 584.

In this way a high-speed data transfer can take

place under the control of DHA controller 580, fully

in parallel with other activities being performed by

microprocessor 510. The data transfer takes place

‘over busses different from microprocessor data bus

512,

microprocessor instruction fetches;

thereby withavoiding any interference

The SP 114a also includes a high-speed register

590, which is coupled between the microprocessor data

bus 512 and the local data bus 532. The high-speed

register 590 is used to write a single 32-bit word to

an VME bus target with a minimum of overhead. The

register is the

In order tc.write a word onto the

VME bus 120, the microprocessor 510 first writes the

word into the register 590, and the desired VMB target

into RAM 584. When the

microprocessor 510 enables the appropriate channel in

channel enable register 560, the DNA controller 580

transfers the data from the register 590 into the VHS

bus address specified in the dual-port RAM 584, The

DNA controller 580 then writes the ending status to

the dual-port RAM and sets the channel ‘done“ bit in

channel status register 562.

This procedure is very efficient for transfer of a

single word of data, but becomes inefficient for large

blocks of data. Transfers of greater than one word of

data, typically ‘for message passing, are usually

write only as viewed from

microprocessor 510.

address dual-port

-performed using the FIFO 554.

The SP 114a also includes a series of registers

592, similar to the registers 282 on NC 110a (Fig. 3)

suas'rrru1'e SHEET

NetApp Ex. 1002, pg. 1387

W0 9ll03788

_ 8K of data involves two drives:

Pffl7US90KM7H

-53-

and the registers 382 on PC 112a (Pig. 4). The

details of these registers are not important for an

understanding of the present invention.

§IQBA§E_2RQQE§§QE_Q2EBIIQH

The 30 SCSI disk drives supported by each of the

SP5 114 are visible to a client processor, for example

one of the file controllers 112, either as three

large, logical disks or as 30 independent SCSI drives,

depending on configuration. when the drives are

visible as three logical disks, the SP uses RAID 5

design algorithms to distribute data for each logical

drive on nine physical drives to minimize disk arm

contention. The tenth drive is left as a spare. The

RAID 5 algorithm inexpensive

drives,

(redundant array of

revision 5) is described in

Redundant Arrays of Inexpensive Disks

"A Case For a

(RAID)". by

Patterson et a1., published at ACM SIGMOD Conference,

Chicago, 111., June 1-3, 1988, incorporated herein by
reference.

In the RAID 5 design, disk data are divided into

stripes. Data stripes are recorded sequentially on

eight different disk drives. A ninth parity stripe,

the exclusive-or of eight data stripes, is recorded on

a ninth drive. If a stripe size is set to BK bytes, a

read of 8K of data involves only one drive. A write of

parity drive. Since a write requires the reading back

of old data to generate a new parity stripe,

are also referred to as modify writes. The SP 114a

supports small *reads to SCSI

concurrently. when stripe size is set to BK, a read of

64K of data starts all eight SCSI drives, with each
The

caller

writes

nine nine drives

drive reading one BK

parallel operation is

client. '

stripe worth of data.

the

SUBSTITUTE SHEET

transparent to

a data drive and at

NetApp Ex. 1002, pg. 1388

‘VWD9U03flW PC!‘IUS90/0471 I

-54-

The. parity stripes are rotated among the nine

drives in order to avoid drive contention during write

operations. The parity stripe is usedi to improve

availability of data._ When one drive is down, the SP

114a can reconstruct the missing data from a parity

stripe. In such case, the SP 114a is running in error

when a bad drive is repaired, the SP

1143 can be instructed to restore data on the repaired

recovery mode.

drive while the system is on—line.

When the SP 114a is attach thirty

independent SCSI drives. no parity stripe is created

and the client addresses each drive directly.

The SP 114a messages

(transactions, commands) up to 200

messages per second. The SP 114a does not initiate any

after initial The

following SP 114a operations are defined:

01 No Op

02 Send Configuration Data

03 Receive Configuratied Data

05 Read and Write Sectors

06 Read and Write Cache Pages

07 IOCTL Operation

08 Dump SP 114a Local Data Buffer

09 Start/Stop A scsr Drive

OC Inquiry ‘

used to

processes multiple

at one time,

messages system configuration.

OE Read Message_Log Buffer
0? Set SP 114a Interrupt

The above transactions are described in detail in

the above—identi£ied application entitled MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE. For and

understanding of the invention, it will be useful to

describe the function and operation of only two of

these commands: read and write sectors, and read and

write cache pages.

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1389

W0 91/113788 PCT/US90I047l I

This command, issued usually by an PC 112, causes

the SP 114a to transfer data between a specified block

of system memory and a specified series of contiguous

sectors on the SCSI disks. As previously described in

with the file controller 112, the

particular sectors are identified in physical terms.

In particular, the particular disk sectors are

identified by SCSI channel number (0-9), SCSI IE on

that channel number (0-2), starting sector address on

the specified drive,

sectors to read or write.

connection

and a count of the number of

The SCSI channel number is

‘zero if the SP 114a is operating under RAID 5.

The SP 1143 can execute up to 30 messages on the 30

SCSI drives simultaneously. Unlike most of the

commands to an SP 114, which are processed by

‘microprocessor ‘$10 as- soon as they appear on the

command FIFO 534, read and write sectors commands (as

well as read and write cache memory commands) are

first sorted and queued. Hence, they are not served

in the order of arrival,

When a "disk the

microprocessor 510 determines which disk drive is

targeted and inserts the message in a queue for that

disk drive sorted by the target sector address.

access command arrives,

microprocessor 510 executes-commands on all the queues

simultaneously, in the.order present in the queue for

each disk drive. In order to minimize disk arm

movements, the microprocessor 510 moves back and forth

among queue entries in an elevator fashion.

If no error conditions are detected from the SCSI
When

a data check error condition occurs and the SP 114a is

disk drives, the'command is completed normally.

configured for RAID 5, recovery actions using

redundant data begin automatically. when a drive is

down while the SP 114a is configured for RAID 5,

SUBSTITUTE SHEET

The.

NetApp Ex. 1002, pg. 1390

WO 91103788 PCT]U590/047 I I

-55-

recovery actions similar to data check recovery take
place.

This command is similar to read and write sectors,

except that multiple VME addresses are provided for

transferring disk data to and from system memory 116.

Each VME address points to a cache page in system

memory 116, the size of which is also specified in the

command. when transferring data from a disk to system

memory 116, data are. scattered. to different cache

pages; when writing data to a disk, data are gathered

from different cache pages in system memory 116.

Hence, scatter-this operation is referred to as a

gather-function.

The target sectors on the SCSI disks are specified’
in the command in physical terms, in the same manner

that they are specified for the read and write sectors

command. Termination of the command with or without
error conditions is the same as for the read and write

sectors command. _ .

The dual—port’RhM.§84 in the bum controller 580
maintains a separate set of commands for each channel

controlled by the bit slice engine 582.

channel.

As each

completes its previous operation.

dual-port RAM 584 for that channel in order to satisfy

the next operation on a disk elevator qgeue.

The commands written to the DMA controller 580

include an operation code and a code indicating

whether the operation is to be performed in non-block

mode, in standard VME block mode, or in enhanced block

mode. The operation codes supported by DNA controller

580 are as follows:

. SUBSTITUTE SHEET

the_

’ microprocessor 510 writes a new'DMA operation into the

NetApp Ex. 1002, pg. 1391

W0 9|/03788 PCT/U590/04711

Q£_£QDE QEEBAIIQH

NO- OP

ZEROES -> BUFFER Move zeros from zeros

register 576 to local
data buffer 564.

ZEROES -> Move zeros fronxzeros
register 576 to the
currently selected
FIFO on common data
bus 550. T

ZBROES -> Move zeros from zeros

register 576 out onto
the VME bus 120.

Used for initializing
cache buffers in

system memory 116.

VMEbus —> BUFFER Move data from the
VME bus 120 to the
local data buffer

564. This operation
is used during a
write, to move target
data intended for a

down drive into the
b u f f e r f o r

participation in
‘r e d u n d a n c y
generation. Used
only for RAID 5
application.

VMEbus -> FIFO New data to be
written from VME bus
onto a drive. Since

RAID 5 requires
redundancy data to be
generated from data
that is buffered in
local data buffer

564, this operation
will be used only if
the SP 114a is not
configured for RAID
5.

vmabus -> BUFFER & FIFO .
Target data is moved from
VHS bus 120 to a SCSI

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1392

WO 91103188 PCT/US90/047]!

-53-

device and is also

captured in the local data
buffer 564 for

participation _in
redundancy generation.
Used only if SP 1143 is
configured for .RAID 5
operation.

BUFFER -> VMEbus. This operation is not
used.

BUFFER -> FIFO Participating data is
transferred to create
redundant data or
recovered data on a
disk drive. Used

only in RAID 5
applications.

FIFO‘ -> VMEbus This operation is
used to move target
data directly from a
disk drive onto the
VME bus 120.

—> BUFFER Used to

participating
for recovery and
modify operations.
Used only in RAID 5

applications.

move

data
"FIFO T

FIFO -> VMEbus & BUFFER
This operation is used to
save target data for
participation in
recovery. Used only in
RAID 5 applications.

§X§IEM_M§MQBI

Fig. 6 provides a simplified block diagram of the

preferred architecture of one of the system memory

cards 116a.

the same. Each memory card 116 operates as a slave on

the enhanced VME bus 120 and therefore requires no on-

board cps. Rather, a timing control block 610 is

sufficient to provide the necessary slave control

In particular, the timing control block

SUBSTITUTE SHEET

Each of the other system memory cards are

operations.

data‘

NetApp Ex. 1002, pg. 1393

wo 91103788, ' . rcr/us9u/o4m

-59-

610, in response to control signals from the control

portion of the enhanced VME bus 120, enables a 32-bit

wide buffer 612 for an appropriate direction transfer

of 32-bit data between the enhanced VME bus 120 and a

multiplexer unit 614. AThe multiplexer 614 provides a

multiplexing and demultiplexing function, depending on

data transfer direction, for a six megabit by seventy-

two bit word memory array 620. An error correction

code (ECC) generation and testing unit 622 is also

connected ‘to the multiplexer 614 to generate or

verify, again depending on transfer direction, eight

bits of ECG data. The status of sec verification is

provided back to the timing control block 610.

EEBAE£ED_!ME_Efl§_£BQIQ£QL

VME bus 120 is physically the same as an ordinary

VME bus, but each of the Ncs and SP5 include

additional circuitry and firmware for transmitting

data using an enhanced VH2 block transfer protocol.

The enhanced protocol is described in detail in the

above—identified application entitled ENHANCED VMEBUS
PROTOCOL UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND

BLOCK MODE DATA TRANSFER, and summarized in the

Appendix hereto. Typically transfers of LNFS file

data between Ncs and system memory, or between SP5 and

. system memory, and transfers of packets being routed

from one NC to another through system memory, are the

only types of transfers that use the enhanced protocol
in server 100. All other data transfers on VME bus

120 use either conventional VME block vtransfer
protocols or ordinary non-block transfer protocols.

ME§£AQE_£A§§1N§

As is evident from the above description, the

different processors in.the server 100 communicate

with each other via certain types of messages. In

sussrrrurs sues?

NetApp Ex. 1002, pg. 1394

VWO9lMBfl&B PCT!U590]0471 l

-50-

software. these messages are all handled by the

messaging kernel, described in detail in the MULTIPLE

FACILITY OPERATING SYSTEM ARCHITECTURE application

cited above. In hardware, they are implemented as

follows.

Each of the M25 110, each of the PCs 112, and each

of the SP3 114 includes a command or communication

FIFO such as 290 on NC 110a. The host 118 also

includes a command FIFO. but since the host is an
the FIFO is

Who write port of the command

unmodifiied purchased processor board,
emulated in software.

FIFO in each of the processors is directly addressable

from any of the other processors over VME bus 120.

similarly, each of the processors except SP5 114

also includes shared memory such as CPU memory 214 on

NC 110a. This shared memory is

addressable by any of the other processors in the

server 100.

also directly

If one processor, for example network controller

110a, is tofgend a message or command to a second
processor. for example file controller 112a, then it

First,

its own shared memory (e.g., in CPU memory 214 on NC

110a). Second,

processor directly writes a message descriptor into

does so as follows. it forms the message in

the microprocessor in the sending

the command-FIFO in the receiving processor. For a

command being sent from network controller 110a to

file controller Iléa, the microprocessor 210 would

perform the write via buffer 284 on NC 110a, VME bus

"120. and buffer 384 on file controller 112a.

The command descriptor is adsingle 32-bit word

containing in its high order 30 hits a VME address

indicating the start of a quad-aligned message in the

The low order two bits

indicate the message type as follows:

sender's shared memory.

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1395

\NT)9l/03788 PC!‘IUS90/0471 I

-51-

nsscrintion

Pointer to a new message heing sent
Pointer to a reply message

Pointer to message to be forwarded

Pointer to message to be freed; also
message acknowledgment

All messages are 128—bytes long.

"When the receiving proccssor reaches the command

descriptor on its command FIFO, it directly accesses

the sender's shared memoryfiand copies it into the
For a command issued

from network controller 110a to file controller 112a,

this would be an ordinary VME block or non-block mode

transfer from NC CPU memory 214; via buffer 284, VME

bus 120 and buffer 384, into FC CPU memory 314, The

PC microprocessor 310 directly accesses NC CPU memory

214 for this purpose over the VME bus 120.

When the’ receiving processor has received the

command and has completed its work,

back to the sending processor.

receiver's own local memory.

it sends a reply

message The reply

message may he. no more than the original command

unaltered, or it may be a modified version of

that message or a completely new message. If the

reply message is not identical to the_original command
then the

accesses the original sender's shared memory to modify

the A message or it

completely. For replies from the PC 1123 to the NC

1103, this involves an ordinary VME block or non-

message

message, receiving processor directly

A commandoriginal_ overwrite

block mode transfer from the PC 112a, via buffer 384;

vns bus 120. buffer 284 and into NC cpb memory 214.

Again, the PC microprocessor 310 directly accesses NC

CPU memory 214 for this purpose over the VME bus 120.

Whether or not the original command message has

been changed, the receiving processor then writes a

reply message descriptor directly into the original

sender's command FIFO. The.reply-message descriptor

smsI\ma SHEET

NetApp Ex. 1002, pg. 1396

W0 91/03788 PCT/US90I04‘Il I

-52-

contains the same VME address as the original command

message descriptor, and the low order two bits of the

word are modified to indicate that this is a reply

For replies from the FC 112a to the NC 110a,

the message descriptor write

message.

is accomplished by

microprocessor 310 directly accessing command FIFO 290

via buffer 384, VME bus 120 and buffer 280 on the NC.

Once this is done,

the buffer in its local memory containing the copy of

the receiving processor can free

the command message. A

when the original sending processor reaches the

reply message descriptor on its command FIFO, it wakes

up the process that originally sent the message and

permits it to continue. After examining the reply

message, the original sending processor can free the

original command message buffer in its. own local

shared memory.

As mentioned above, network controller 110a uses

the buffer 284 data path in order to write message

descriptors onto the VHF bus 120, and uses VME/FIFO

DMA controller 272 together with parity FIFO 270 in

order to copy messages from the VME bus 120 into CPU

memory 214. Cther processors read from CPU memory 214
using the buffer 284 data path. I ‘

File controller 112a writes message descriptors

onto the VHS bus 120 using the buffer 384 data path,

and' copies messages from other processors’ shared

memory via the same data path. Both take place under

the control of microprocessor 310. other processors

copy messages from CPU memory 314 also via the buffer

384 data path.

‘Storage processor 114a writes message descriptors
onto the VHF bus using high-speed register 590 in the

manner described above, and copies messages from other

processors using DMA controller 580 and FIFO 554. The

SP 114a has no shared memory, however, so it uses a

« SUBSTITIITE SHEET

NetApp Ex. 1002, pg. 1397

. 63 .

buffer in system memory 116 to emulate that function. That is, before it writes a

message descriptor into another processor‘s command FIFO, the SP 114a'first copies

the message into its own previously allocated buffer in system memory 116 using

DMA controller 580 and FIFO 554. The VME address included in the message

descriptor then reflects the VME address of the message in system memory 116.

In summary, the embodiments of the present invention involve a new, server-

specific 1_/o architecture that is optimised for a Unix file server’s most common

actions - file operations. Roughlystated, a file server architecture is provided which

comprises one or more network controllers, one or more file controllers, one or

more storage processors, and a system or buffer memory, all connected over a

message passing bus and operating in parallel with the Unix host processor. The

network controllers each connect to one or more network, and provide all protocol

processing between the network layer data format and an internal file server format v

for communicating client requests to other processors in the server. Only those data

packets which cannot be interpreted by the network controllers, for example client

requests to run a. client-defined program on the server, are transmitted to the Unix

host for processing. Thus the network controllers, file controllers and storage

processors contain only small parts of an overall operating system, and each is

optimised for the particular type of work to which it is dedicated.

Client requests for file operations are transmitted to one of the file controllers

which, independently ofthe Unix host, manages the file system of a mass

storage device which is coupled to the storage processors. The file controllers may

also control data buffering between the storage processors and the network

controllers, through the system memory. The file controllers preferably each include

a local buffer memory for caching file control information, separate from

owmm n-\mnr\i1n.fld l2S.§PF.fi3

NetApp Ex. 1002, pg. 1398

. 633 .

the system memory for caching file data. Additionally, the network controllers, file

processors and storage processors are all designed to avoid any instruction fetches

from the system memory, instead keeping all instruction memory separate and locaL

‘Ibis arrangement eliminates contention on the backplane between microprocessor

instruction fetches and transmissions of message and file data.

The invention has been described with respect to particular embodiments

thereof, and it will be understood that numerous modifications and variations are

possible within the scope of the invention‘.

_ . ._I :_ (nonfat!!! xn

NetApp Ex. 1002, pg. 1399

VWD9hM3M PC!‘/US90/047! I

A£2ENDIX_A

 uu

In storage processor llda, DMA controller 580

manages the ,data path under the direction of the

The DMA controller 580

microcoded 16-bit bit-slice implementation executing

microprocessor 510. is a

pipelined instructions at a rate of one each 62.5ns-

It is responsible for scanning the channel status 562

and servicing request with parameters stored in the

dual-ported ram 584 by the microprocessor 510. Ending

status is returned in the ram 584 and interrupts are

generated for the microprocessor 510.

 . The

microcoded instructions

‘ the

DMA

contains

the

control store

which control

controller 580. The control store consists of 6 1K x

8 proms configured to yield a ix x 48 bit microword.

Locations within the control store are addressed by

the sequencer and data is presented at the input of

the pipeline registers.

§§Q2§E£2£-

generating control store addresses based upon pipeline

The sequencer controls program flow by

data and various status bits. The control store

address consists of 10 bits. Bits 8:0 of the control

store address-derive from a multiplexer having as its

inputs either an ALU output or the output of an

incrementert The incrementer can be preloaded with

pipeline register bits 8:0, or it can be incremented

as a result of a test condition. The 1K address range

is divided into two pages by a latched flag such that

the page.

Branches, however remain within the selected page.

microprogram can execute from either

‘Conditional sequencing is performed by having the test

condition increment the pipeline provided address. A

false condition allows execution from the pipeline

address while a true condition causes execution from
\

SUBSIIIHTE SHEET

NetApp Ex. 1002, pg. 1400

“K)9U03flW PC!’IUS90/047l I

-55-

the address + 1. The alu output is selected as an

address source in order to directly vector to a

routine or in order to return to a calling routine.

Note that when calling a subroutine the calling

routine must reside within the same page as the

subroutine or the wrong page will be selected on the
return.

ALH. The

integrated circuit.

alu IDT49C402A

It is 16 bits in width and most

The

alu is used_primarily for incrementing, decrementing,

comprises a single

closely resembles four 2901s with 64 registers.

addition and bit manipulation. All necessary control

signals originate in the control store. The IDT HIGH

PERFORMANCE CMOS 1988 DATA BOOK, incorporated by

reference herein, contains

about the‘alu., I

Micrgxerd.

fields which control various functions of the DMA

controller 580. The format of the microword is defined

below along with mnemonics and a description of each

additional information

The 48 bit microword comprises several

function.

AI<8:0> 47:39 (Alu Instruction bits 8:0) The AI
bits provide the instruction for the
'49C402A alu. Refer to the IDT data

book for a complete definition of
the alu instructions. Note that the
19 signal input of the 49C402A is
always low.

CIN 38 (Carry INput) This bit forces the
carry input to the alu.

RA<5:0> 37:32 (Register A address bits 5:0) These
bits select one of 64 registers as
the “A” operand for the alu. These
bits also provide literal bits 15:10
for the alu bus.

RB<5:0> 31:26 (Register 8 address bits 5:0) These
bits select one of 64 registers as
the "B" operand for the alu. These
bits also provide literal bits 9:4
for the alu bus.

suasmlflfi SREET

NetApp Ex. 1002, pg. 1401

“/0 9|I03788 — PCl‘IUS9oI047ll

-55-

25 (Latched Flag Data) when set this bit
causes the selected latched flag to be
set. When reset this bit causes the

selected latched flag to be cleared. This
bits also functions as literal bit 3 for
the alu bus.

LPs<2:0> 24:22 (Latched Flag.se1ect bits 2:0) The
meaning of these bits is dependent
upon the selected source for the alu
bus. In the event that the literal
field is selected as the bus source
then LFS<2:0> function as literal
bits <2:O> otherwise the bits are
used to select one of the latched

flags.

Lfifisliflz §ELEQIEQ_ELA§

0 This value selects a null flag.

when set this bit enables the
buffer clock. When reset this
bit disables the buffer clock.

When this'bit is cleared VME
bus transfers, buffer
operations and RAS are all
disabled.

NOT USED

When set this bit enables VME
bus transfers.

"When set this bit enables
buffer'operations.

when set this bit asserts the
row address strobe to the dram
buffer,

When set this bit selects page
0 of the control store.

sac<1,o> 20,21 (alu bus SouRCe select bits 1,0)
These bits select the data source to
be enabled onto the alu bus.

suasrnurz sum

NetApp Ex. 1002, pg. 1402

W0 9|/03788 PCl'/us9o/om I

-57-

alu

dual ported ram
literal

. reserved-not defined

£F<2:0> 19:17 (Pulsed Flag select bits 2:0) These
bits select a flag/signal to be
pulsed. ~ '

EESKLQZ Elflg

' 0 null

1 SGL_CLK
generates a single transition
of buffer clock.

SET_VB

fqries vme and buffer enable to
be set.

CL PERR

clears buffer parity error
status.

sET_DN
set channel done status for the
currently selected channel.

INC_ADR
increment dual ported ram
address.

6:7 RESERVED 6 NOT DEFINED

DEST<3:O> 16;13 (DESTination select bits 3:0) These
bits select pne of.10 destinations
to be leaded from the alu bus.

DE§I$1LQ2 Defitinatinn

0 null

1 wR_RAM
causes the data on the alu bus
to be written to the dual

ported ram.
D<15:0> —> ram<15:0>

WR_BADD

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1403

W0 9|/03788 PC!‘IUS90I047I I

-58-

loads the data from the alu bus
into the dram address counters.

D<14:7> —> mux addr<8:0>

wR_VADL
loads the data from the alu bus

into the least significant 2
bytes of ‘the VME address
register.
D<15:2> -> VME addr<15:2>

D1 -> ENB_tiona1 registers
D<1S;2> -> VME addr<1S:2>

D1 -> ENB_EuH
no -> ENB_BLK

WR__VADH
loads the most significant 2
bytes of the VME address
register.
D<15:0> -> VME addr<31:16>

WR_RADD.
loads the dual ported ram
address counters.
D<10:0> -> ram addr <10:0>

WR_WCNT
loads the word counters.

D15 ' —> count enable*
D<14:8> -> count <6:O>

WR__CO
loads thexco—channe1 select

register,
D<1:4>'—> co<3:o>

WR_NXT
loads the next-channel select

register.
D<3:0> ~>‘NExT<3:0>

WR_CUR
loads the current-channel

V select register.
D<3:0> -> CURR <3:O>

RESERVED ~ NOT DEFINED

JUMP

causes the control store

‘sequencer to select the alu
data bus. -

‘D<8:0> -> CS_A<8:0>

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1404

W0 9lI03788 PC!‘IU590/047! I

-59-

TEST<3:0> 12:9 (TEST condition select bits 3:0)
Select one of 16 inputs to the test
multiplexor to be used as the carry
input to the incrementer.

0 FALSE -always false

TRUE -always true"

ALU_COUT —carry output of alu
ALU__EQ -equals output of alu

ALU_pVR —alu overflow

ALU_fiBG -alu negative

XER_DONE —transfer complete

PAR_£RR -buffer parity error
TIMOUT —bus operation

timeout

9 ANY_ERR aany error status

414:10 RESERVED -NOT DEFINED

15 CH_BDY -next channel ready

NExT_A<8:0> 8:0 (NEXT Address bits 8:0) selects an
instructions from the~current page of the
control store for execution.

Qual_£9r;gfl_gam. The dual ported ram is the
medium by which command. parameters and status are

communicated between the BMA controller 580 and the

microprocessor 510. The ram is organized as 1K x 32 at

the master port and as 2K x 16 at the DMA port. The

ram may be both written and read at either port. I
The ram is addressed by the DMA controller 580 by

loading an 11 bit address into the address counters.

Data is then read into bidirectional registers and the

address counter is incremented to allow read of the

next location.

8_UB_S__T|TllTE SHEEI

NetApp Ex. 1002, pg. 1405

W0 91103788 PCTIUS90/M7] I

-70-

Writing the ram is accomplished by loading data
from the processor into the registers after loading

the ram address. Successive writes may be performed

on every other processor cycle.

The ram contains current block pointers, ending

status, high speed bus address and parameter blocks.

The following is the format of the ram:

orrssr..-__-—...———-- _...-..—__-——..-....——__-

0 :EURR POINTER 0 | STATUS O

4 E INITIAL POINTEE 0-

_ — _ _ — -.~___-. __-__.a.-————-——.-—V—_—

{CURR POINTER E 3 STATUS B——-.-¢--—--———_._q-,____ . _ _ . _ --__..

{ INITIAL POINTER B

not used—a-—.-— — —¢ — — - —. — — — — _—‘.

f not-used . not used-_..._..—._ _ _ _ w . . — . .—-a . — — _ _ _ . _ —_~..-—

{CORR POINTER 0.: STATUS D.-..q__,—-...__-H_-—————y——-——...—-—-_-

INITIAL EOINTER D—_,---...__.._.__.---...._n_._..._....-—-.._-

: not used } STATUS E I__,_....---—-.-....———r—-— -c--——_———

{HIGH SPEED BUS ADDRESS §1:2{0:0}---—a-—--_-_--_--__-____..__...a.....—

1 PARkMETER:BLOCK 0 1--_-;-___,____-__.__-----_g__--

-_--.._----_-_-_-._a_ __,;_--_-

I PARAMETER BLOCK n I_-—_a—___-.-4-.-.p..-_.- -—___———I——.--.

The Initial Pointer is a 32 bit value which points
_the first command ‘block of a chain. The current

pointer is a sixteen "bit value used by the DMA

controller 550 to point to the current command block.

The current block pointer should be

initialized to oxoooo by the microprocessor 510 before

enabling the channel. Upon detecting a value of oxoooo

guasmura sum

command

NetApp Ex. 1002, pg. 1406

WO 91103788 PCT!US90/047! I

-71-

in the current block pointer the DMA controller 580

will copy the lower 16 bits from the initial pointer

to the current pointer. Once the DMA controller 580

has completed the specified operations for the

parameter block the current pointer will be updated to

point to the next block. In the event that no further

parameter blocks are available the pointer will be set

to oxoodo.

The status byte indicates the ending status for the

last channel operation performed. The following status

bytes are defined:

.$.'£AE1‘LI§ MEANINS

' no sanoas

ILLEGAL OP CODE

BUS QPERKTION TIMEOUT
BUS OPERATION ERROR

DATA PATH PAR1TY ERROR _

The format of the parameter block is:
OFFSET A 31

0 FORWARD LINK

NOT USED 1 WORD COUNT

VME ADDRESS 31:2, ENH, BLK

TERM 0 { OP 0 I BUF ADDR 0

o

C+(4Xn) { TERM n j OP n. l BUF ADDR n:

FORWARD LINK - The forward link points to the first
It

allows several parameter blocks to be initialized and

chained to create a sequence pof operations

execution. The forward pointer has the following

format:

word of the next parameter block for execution.

SUQSTITUTE SHEET

for"

NetApp Ex. 1002, pg. 1407

WO 91103788 PCT!US90/0471 I

-72-

A31:A2,0,0

The format dictates that the_parameter block must

start on a quad byte boundary. A painter of 0x00000000

is a special case which indicates no forward link

exists. ‘
WORD COUNT — The word count specifies the number of

quad byte words that are to be transferred to or from

each buffer address or to/from the VME address. A word

count of 64K words may be specified by initializing

the word count with the value of 0. The word count has

the following format:

|D15|D14|D13|D12|D11|D10|D9[D8|D7|D6|D51D4lDG|D2|D1|DO|

The word count is updated by the DMA controller 580

at the completion of a transfer to/from the last

specified buffer address» Word count is not updated

after transferring to/from each buffer address and is

therefore not an accurate indicator of the total data

moved to/from the buffer. Word count represents the

amount of data transferred to the VME bus or one of

the uses 544 or 554. ‘

VMB ADDRESS — ‘The VME address specifies the

starting address for -data transfers. Thirty bits

allows the address to start at any quad byte boundary.

ENH a This bit when set selects the enhanced block

transfer protocol described in the above-cited

ENHANCED VMEBUS PROTOCOL UTILIZTNG PSEUDOSYNCHRONOUS

HANDSHAKING AND'BLOCK MODE DATA TRANSFER application,

to be used during the VME bus transfer.

protocol will be disabled automatically when

performing any transfer to or from 24 bit or 16 bit

address space, when the starting address is not 8 byte

aligned or when the word count is not even.

BLK ~ This bit when set selects the conventional

VME block mode protocol to be used during the VMB bus

transfer. Block mode will be disabled automatically

 suasrmna sun-:1

Enhanced

NetApp Ex. 1002, pg. 1408

VW)9UW3fl PC!’IUS90l047lI

-73-

when performing any transfer to or from 16 bit address
space.

BUF ADDR - The buffer address specifies

starting buffer address for the adjacent operation.

only 16 bits are available for a 1M byte buffer and as

a result the starting address always falls on a 16

byte boundary. The programmer must ensure that the

starting address is on a modulo 128 byte boundary. The

buffer address is updated by the DMA controller 580

after completion of each data burst. ,

|A19|A18|A17|A16[A15|A14|A13|A12|A11|A10|A9|AB|A7|A6|A5|A4[

TERM a The last buffer address and operation within

a parameter block is identified by the terminal bit.

The DMA controller 580 continues to ‘fetch. buffer

addresses and operations to perform until this bit is

encountered. Once

parameter block is

updated and

the last operation within the

executed the word

if not equal to

is

of

operations is repeated. Once the word counter reaches

zero the forward link pointer is used to access the

next parameter block.

_ €0I0}0!0l030€0l0}T%

OP f Operations are specified by the op code; The

op code byte has the following format: '

}0:0:0:0LOP3]0P2{OP1{OP0:

The op codes are listed below ("FIFO" refers to any of

the FIFOs 544 or 554):

counter

zero the series

suasmme sum

the

NetApp Ex. 1002, pg. 1409

W0 9!/03788 PC!‘/U590/047] I

Q£_cQD£ QEEBAIIQH
NO-OP

zEROEs BUFFER

zEROEs FIFO

zEROEs vfiahus

VMEbus BUFFER

VMEhus F;Fo
VMBbus BUFFER & FIFO

BUFFER VMEbus

o

1

2

3

4

5

6

7

8 BUFFER FIFO

9 FIFO _ vmabus

A FIFO -> BUFFER

B FIFO «> VMEbus & BUFFER

c RESERVED
D RESERVED

E RESERVED

F RESERVED

5118.81HUm sum

NetApp Ex. 1002, pg. 1410

W0 9|l03788

the data strobe line.

PCT/US90/047 I I

-75-

AP.EElI1lllLE
Enhan22d_EME_Bl92k_Transfer_£r2t2c2l

The enhanced VMI-I block transfer protocol is a

VMEbus compatible pseudo-synchronous fast transfer

handshake protocol for use on a VHS backplane bus’

having a master functional module and a slave

functional module logically interconnected by a data
transfer bus. The data transfer bus includes a data

strobe signal line and a data transfer acknowledge

signal line. To accomplish the handshake, the master

transmits a data strobe signal of a given duration on
The master then awaits the

reception of a data transfer acknowledge signal from

the slave module on the data transfer acknowledge

signal line. The slave then responds by transmitting

data transfer acknowledge signal of a given duration

on the data transfer acknowledge signal line.

Consistent with the pseudo—synchronous nature of
the handshake protocol, the data to be transferred is

referenced to only one signal depending upon whether
the transfer operation is a READ or WRITE operation,

In transferring data from the master functional

unit to the slave, the master broadcasts the data to

be transferred. The master asserts a data strobe

signal and the slave, in response to the data strobe

signal, captures the data broadcast by the master.

Similarly, in transferring data from the slave to the

the broadcasts the data to be

transferred to the master unit.‘ The slave then

asserts a data transfer acknowledge signal and the

master, in response to the data transfer acknowledge

signal, captures the data broadcast by the slave.

The fast transfer protocol, while not essential to

the present invention, facilitates the rapid transfer

of large amounts of data across a VME backplane bus by

substantially increasing the data transfer rate.

master, slave

suns1IIlITE 335-1

NetApp Ex. 1002, pg. 1411

“N)9LflB788 PC!‘IUS90/0471 I

-75-

These data rates are achieved by using a handshake

wherein the data strobe and data transfer acknowledge

signals are functionally decoupled and by specifying

high current drivers for all data and control lines.

The enhanced pseudo—synchronous method of data

transfer (hereinafter referred to as "fast transfer

mode“) so as to’ comply and be

compatible with the IEEE VME backplane bus standard.

The protocol utilizes user-defined address modifiers,

defined in the VMEbus standard, to indicate use of the

fast transfer mode. Conventional VMEbus functional

capable only of implementing standard VMEbus

protocols, will ignore transfers made using the fast

transfer mode and, as a result, are fully compatible

with functional units capable of implementing the fast
transfer mode.

is implemented

units,

The fast transfer mode reduces the number'of bus

propagations required to accomplish a handshake from

four propagations,

VMEbus
as~ required under conventional

to only two bus propagations.

Likewise, the number of bus propagations required to

effect a BLOCK new or BLOCK WRITE data transfer is
reduced.

protocols,

Consequently, by reducing the propagations

across the VMEbus to accomplish handshaking and data

transfer functions, the transfer rate is materially

increased.

The enhanced protocol is described in detail in the

above-cited ENHANCED VMEBUS PROTOCOL application, and

Familiarity with the

conventional VMB bus standards is assumed.

In the fast transfer mode handshake protocol, only

two bus

handshake,

conventional protocol.

will only be summarized here.

propagations are used to accomplish a

rather than four as required by the

At the initiation of a data

the master will assert and deassert

DSO* in the form of a pulse of a given duration. The

SUBSTITUTE SHEET_.._...—. -.

transfer cycle,

NetApp Ex. 1002, pg. 1412

VW)9U@3flN

‘from the slave.

assertion)

PCT‘/US90l047ll

-77-

deassertion of Ds0* is accomplished without regard as

to whether a response has been received from the

slave. The master then waits for an acknowledgement

Subsequent pulsing of DSO* cannot

occur until a responsive DTACK¥ signal is received

from the slave.

of DTACK*,

data strobe.

Upon receiving the slave's assertion

the master can then immediately reassert

if so desired. The fast transfer mode

protocol does not require the master to wait for the

deassertion of DTACK* by the slave

precedent to subsequent assertions of Ds0*.

as a condition

fast transfer mode, only the leading edge (i.e., the

of‘a signal is significant. Thus, the

deassertion of either DsO* or DTACK* is completely

irrelevant for completion of a handshake. The fast
transfer protocol does not employ the DS1* line for

data strobe purposes at all.

The- fast transfer mode protocol may be

characterized. as pseudo-synchronous as it includes
The fast

transfer mode protocol is synchronous in character due
to the fact that DSO*

without regard to a response from the slave.

both synchronous and asynchrbnous aspects.

is asserted- and deasserted

The

asynchronous aspect of the fast transfer mode protocol

is attributable to the fact that the master may not

subsequently assert Ds0* until a response to the prior

strobe is received from the slave. Consequently,

because the protocol includes both synchronous and
it

classified as 'pseudo»synchronous.“

The transfer of data during a BLOCK WRITE cycle in

the fast transfer protocol is referenced only to D80‘.

The master first broadcasts valid data to the slave,

and then asserts Dsd to the slave. The slave is civen
a predetermined period of time after the assertion of

Dso* in which to capture the data. Hence, slave

asynchronous components, is most accurately

SUBSTITUTE SHEET

In the"

NetApp Ex. 1002, pg. 1413

“K)9LKB788

' and the LWORD.*

PC!‘/US90/047]]

-13-

modules must be prepared to capture data at any time,

as DTAcK* is not referenced during the transfer cycle.

Similarly, the transfer of data during a BLOCK READ

cycle in the fast transfer protocol is referenced only

to DThCK*. The master first asserts DSO*. The slave

then broadcasts data to the master and then asserts
DTACK*. The master is given a predetermined period of

timeafter the assertion of DTACK in which to capture
the data.

capture data at any time as DSO is not referenced

during the transfer cycle.

Fig. 7, A through C, flowchart

illustrating the operations involved in accomplishing

the fast transfer_protoco1 BLOCK WRITE cycle. To

initiate a BLOCK WRITE cycle, the master broadcasts

parts is a

the memory address of the data to be transferred andl

the address modifier across the DTB bus. The master

also drives interrupt acknowledge signal (IACK*) high

signal low 701. A special address

modifier, for example “IF,” broadcast by the master

indicates to the slave module that the fast transfer

protocol will he used to accomplish the aLocx.wp.I'rs.

The starting memory address of the data to be

transferred should reside on a 64-bit boundary and the

size of block of data to be transferred should be a

multiple of 64 bits. In order to remain in compliance

with the VMEbus standard, the block must not cross a

256 byte boundary without performing a new address

cycle.

The slave modules connected to the DTB receive the

address and the address modifier broadcast by the

master across the bus and receive LWORD* low and IACK*

high 703. Shortly after broadcasting the address and

address modifier 101, the master drives the AS* signal

low 705. The slave modules receive the As* low signal

797. Each slave individually determines whether it

$_UB_S_T_flllTE SHEET

Hence, master modules must be prepared to

NetApp Ex. 1002, pg. 1414

W0 91103788

' will wait until both DTACK* and BERR‘

PC17USfiM047H

-79..

will participate in the data transfer by determining

whether the broadcasted address is valid for the slave

in question 709. If the address is not valid, the

data transfer does not involve that particular slave

and it ignores the remainder of the data transfer

cycle. A
The master drives WRITE* low to indicate that the

transfer cycle about to occur is a WRITE operation,

711. The slave receives the WRITE* low signal 713

and, knowing that the data transfer operation is a

WRITE operation, -awaits receipt of a high to low

transition on the DS0* signal line 715. The master

are high 718,

which indicates that the previous slave is no longer

driving the ms.’

The master proceeds to place the first segment of

the data to be transferred on data lines D00 through

D31, 719. After placing data on D00 through D31, the

master drives DSO* low 721 and, after a predetermined

interval, drives DSO* high 723.

In response to the transition of DSO* from high to

low, respectively 721 and 723, the slave latches the

data being transmitted by the master over data lines

noo through‘D31, 725.

segment of the data to be transferred on data lines

coo through n3_1. 727, and awaits receipt of a nmcxt
signal in the form of a high to low transition signal,

729 in Fig. 73. '

Referring to Fig. 7B, the slave then drives DTACK*

low, 731, and, after a predetermined period of time,

drives DTACK high, 733. The data latched by _the

725, is written to a device,

selected to store the data 735.

increments the device address 735. The slave then

waits for another transition of DSO* from high to low

a §UB§_TlTllTE sum

The master-places the next

slave, which has been

The slave also

NetApp Ex. 1002, pg. 1415

WO 91193788

’ drive DTACK*

PCT!US90/0471 I

-30-

To commence the transfer of the next segment of the
block of data to he transferred, the master drives

Dsot low 739 and, after a predetermined period of

drives nsor high 741. In response to the

transition of DSO* from high to low. respectively 739

time.

»and 741, the slave latches the data being broadcast by

the master over data lines D00 through D31, 743. The

master places the next segment of the data to be

transferred on data lines D00 through D31, 745,

awaits receipt of a DTACK* signal in the form of a

high to low transition, 747.

The slave then drives DTACK* low, 749, and, after

a predetermined period of time, drives DTACK* high,

751. The data latched by the slave, 743, is written

to the device selected to store the data and the

device address is incremented 753.

and

The slave waits

for another transition of Ds0* from high to low 737.

The transfer of data will continue in the above-

described manner until all of the data has been

transferred from the master to the slave. After all

of the data has been transferred, the master will

release the address lines, address modifier lines,

data lines, IACK* line, LWORD* line and DSO* line,

755. The master will then wait for receipt of a

DTAcK* high to low transition 757. The slave will

low, 759 and, after a predetermined

period of time, drive DTACK* high 761. In response to

the receipt of the DTACK* high to low transition, the

master will drive As* high 763 and then release the

As* line 765.

Fig. 8, A through 6,

illustrating the operations involved in accomplishing

parts is a flowchart

the fast transfer protocol BLOCK READ cycle. To

initiate a BLOCK READ.cycle, the master.broadcasts the
memory address of the data to be transferred and the

address modifier across the DTB bus 801. The master

8'JBST|Tl!TE SHEET

NetApp Ex. 1002, pg. 1416

W0 91/031788

‘in question 809.

PCT‘IUS90/047] I

-31-

drives the LWORD* signal low and the IACK* signal high

801. As noted previously, a special address modifier

indicates to the slave module that the fast transfer

protocol will be used to accomplish the BLOCK READ.

The slave modules connected to the DTB receive the

address and the address modifier broadcast by the

master across the bus and receive LwoRD* low and IACK*

high 803. Shortly after broadcasting the address and

address modifier 801, the master drives the AE* signal
low 805. The slave modules receive the AS* low signal

807. Each slave individually determines whether it

will participate in the data transfer by determining

whether the broadcasted address is valid for the slave
the

data transfer does not involve that particular slave

and it ignores the remainder of the data transfer

cycle.

The master drives WRITE* high to indicate that the

transfer cycle about to occur is a READ operation 811.

The slave receives the WRITE‘ high signal 813 and,

knowing that the data transfer operation is a READ

operation, places the first segment of the data to be

transferred on data lines D00 through D31 819. The

master will wait until both DTACK* and BERR* are high

818, which indicates that the previous slave is no

longer driving the DTB.

The master then drives DSO* low 821 and, after a

drives DSO* high 823. The

master then awaits a high to low transition on the

DTACK* signal line 824. As shown in Fig. 8B, the

slave then drives the DTACK* signal low 825 and; after

a predetermined period of time, drives the DTACK*

signal high 827. '

In response to the transition of DTACK* from high

to low, respectively 825 and 827, the master latches

the data being transmitted by the slave over data

If the address is not valid,

predetermined interval,

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1417

“ND9lflH788 PCTIUS90/0471 I

-32-

lines 600 through D31, e31. The data latched by the
831, is written to a device, which has been

selected to store the data the device address is

incremented 833.

master,

The slave places the next segment of the data to be

transferred on data lines D00 through D31, 829, and

then waits for another transition of Ds0* from high to

low 837.

To commence the transfer of the next segment of the

block of data to be transferred,

DSO* low 839 and, after a predetermined-period of

time, drives DSO* high 841. The master then waits for

the DTACK* line to transition from high to low, 843.

The slave drives DTACK* 845, and, after a

predetermined period of time, drives DTACK* high, 847.

In response to the transition of DTACK* from high to

low, respectively 839 and_841, the master latches the

data being transmitted by the slave over data lines

D00 through D31, 845. The data latched by the master,

845, is written to the devide selected to store the

data, 851 in Fig. -8C, and the device address is

incremented._ The slave-places the next segment of the
data to be transferred on data lines D00 through D31.
849.

The transfer of data will continue in the above-

described manner until all of the data
transferred from the slave to the master has been

written into the device selected to store the data.

After all of the data to be transferred has been

written into the stoage device, the master will

address modifier lines,

low,

release the address lines,

data lines, the IACK*

line 352. The master will then wait for receipt of a

DTACK* high to low transition 853.

line,

The slave will

drive DTAcK* low 855 and, after a predetermined peripd‘

of time, drive DTACK* high 857. In response to the

SUESTITIITE SHEET

the master drives-

to be’

the LWORD line and nsow .'

NetApp Ex. 1002, pg. 1418

Vfl)9UW3WM PCTIUS90/0471]

-83-

receipt of the DTACK* high to low transition, the

master will drive AS* high 859 and release the AS*

line 861. '

To the fast

conventional 64 mn tri-state driver is substituted for

implement‘ transfer protocol, a

the 48 mA open collector driver conventionally used in

VME slave modules to drive DTACK*. Similarly, the

conventional VMEbus data drivers are replaced with 64

The latter

modification reduces the ground lead inductance of the

itself thus,

“ground bounce" effects which- contribute to

between data, D80‘ and DTAcK*.

return inductance along the bus backplane is reduced

mA tri—state drivers in SO-type packages.

actual driver package and, reduces
skew

In addition, signal

by using a connector system having a greater number of

ground pins so as to minimize signal return and mated-

pair pin inductance; one such connector system is the

Model No. 420-8015-

000, manufactured by Teradyne Corporation.

"High Density Plus" connector,

SUBSIITUTE SHEEI

NetApp Ex. 1002, pg. 1419

“K)9LKB788 PC!‘/US90/04711

a2zam21_x_c

£ar.Lty_£1E‘_Q

The parity FIFOS 240, 260 and 270 (on the network

controllers 110), 544 and 554 (on storage

processors 114) are each implemented as an ASIC. All

the parity FIFOs are identical, and are configured on

power—up or during normal operation for the particular

function desired. The parity FIFO is designed to

allow speed matching between buses of different speed,

and to perform the parity generation and correction

for the parallel SCsI drives.

The FIFO comprises two bidirectional data ports,

Port A and Port B, with 36 x 64 bits of RAM buffer
between them. Port A is 8 bits wide and Port 8 is 32

bits wide. The RAM buffer is divided into two parts,

each 36 x 32 bits,.designated RAM X and RAM Y. The

access different halves of the buffer

alternating to the other half when available. when

and

two ports

the chip is configured as a parallel parity chip (e.g.'

one of the FIFOs 544 on SP 114a), all accesses on Port

8 are monitored and parity is accumulated in RAM X

and RAM Y alternately.

The chip also has a CPU interface, which may be 8
or 16 bits wide.

used as the most significant data bits of the CPU

interface and are only actually used when reading or

writing to the Fifo Data Register inside the chip.

A REQ, ACK handshake'is used for data transfer on

both Ports A and B. The chip may be corfigured as

either a master or a slave on Port A in the sense

that, in master mode the Port A ACK / RDY output

signifies that the chip is ready to transfer data on

Port A, and the Port A EEQ input specifies that the

slave is responding. In slave mode, however, the Port

A REQ input specifies that the master requires a data

SUBETITUTE SHEET

In 16 bit mode the Port A pins are.

NetApp Ex. 1002, pg. 1420

WO 91103788

, WD made these

PCT/US90/0471 I

-35-

transfer, and the chip responds with Port A ACK / RDY

when data is available. The chip is a master on Port

8 since it raises Port B REQ and waits for Port B ACK

to indicate completion of the data transfer.

£l£NAL_DR§QB12IIQHE

Port A 0-7, P

Port A is the 8 bit data port. Port A P, if used,

is the odd parity bit for this port.

A Req, A Ack/Rdy

These two signals are used in the data transfer

mode to control the handshake of data on Port A.

uP.Data 0-7, aP Data P, uPAdd 0-2, CS

These signals are used by a microprocessor to

address the programmable registers within the chip.

The odd parity signal uP Data P is only checked when

data is written to the Fife Data or Checksum Registers

"and microprocessor parity is enabled.

clk _

.The clock inpnt is used to generate some of the

chip timing. It is expected to be in the 10-20 Mhz

range.

Read En, Write En .

During microprocessor accesses, while CS is true,
the of the

During data transfers in the

these determine directionsignals

microprocessor accesses.

used insignals are data strobes

conjunction with Port A Ack.

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1421

W0 91/113788 PC!‘IUS90/0471 I

-55-

Port s'oo-07, 10-17, 20-21, 30-37,

Port 3 is a 32 bit data port.

parity bit for each byte.

OP-3P

There is one odd

Port B OP is the parity of

bits 00-O7, PortB 1P is the parity of bits 10-17, Port-

B 2P is the parity of bits 20-27, and Part B 3P is the

parity of bits 30-37.

B Select, 3 Reg, B Ack, Parity Sync, 8 Output Enable

These signals are used in the data transfer mode to

control the handshake of data on Port B.. Port B Reg

and Port 8 Ask are both gated with Port 8 Select.

The Port 8 Ack signal is used to strobe the data on
the Port 8 data lines.

used to indicate to a chip configured as the parity

chip to indicate that the last words of data involved
The Port B

data lines will only be driven by the Fifo chip if all

of the following conditions are met:

-a. the data transfer is from Port A to Port B;

The parity sync signal is

in the parity accumulation are on Port 8.

the Port B select signal is true;

the Part B output enable signal is true; and

the chip is not configured as the parity chip
or it is in parity correct mode and the Parity
sync signal is true.

b.

c.

d.

Reset

This signal resets all the registers within the

chip and causes all bidirectional pins to be in a high

impedance state.

DE§QBI2I1QN_Q£_Q£EB&IIQE

flgzmaL_flnera;1gn. Normally the chip acts as a

simple FIFO chip.’ A FIFO is simulated by using two

RAM buffers in a simple ping-pong mode. It is

intended, but not mandatory, that data is burst into

or out of the FIFO on Port 8. This is done by holding

Port B Sel signal low and pulsing the Port 8 Abk

signal. when transferring data from Port 3 to Port A,

RHRSTITIITF SHFFT

NetApp Ex. 1002, pg. 1422

W0 9 U03788 PCTIUS90l047l I

-37-

data is first written into RAM X and when this is

full, the data paths will be switched such that Port

3 may start writing to RAM Y. Meanwhile the chip will

begin emptying RAM X to Port A. When RAM Y is full

and RAM X empty the data paths will be switched again
such that Port B may reload RAM X and

empty RAM Y.

29ri;JL_§laxe_Mads-

the chip is reset to this condition.

Port A may

This is the default mode and

In this mode the

chip waits for a master such as one of the SCSI

adapter chips 542 to raise Port A Request for data
If data is available the Fifo chip will

respond with Port A Ack/Rdy.

22rLJLE2Jmme.

in the ND or_Western Digital mode.

transfer.

The chip may be configured to run

T In this mode the
It

differs from the default slave mode in that the chip

with Read Enable Write Enable

appropriate together with Port A Ack/Rdy. This mode

is intended to allow the chip to be interfaced to the

Western Digital 33C93A SCSI chip or the NCR S3C9O SCSI

chip must be configured as a slave on Port A.

responds or as

it will raise Port A Ack/Rdy when it is

ready for_data transfer.

be tied to the Request input of a DMA controller which

will respond with Port A Req when data is available.

In order to allow the DMA controller to burst, the

Port A Ack/Rdy signal will only be negated after every

a master,

This signal is expected to

8 or 16 bytes transferred.

£nr£_J_£arallel_Hrite_M9de.

mode, the chip is configured to be the parity chip for
In this

when Port- B Select and Port B Request are

written into RAM X or RAM Y each

For the first

In parallel write

a parallel transfer from Part B to Port A.

mode,

asserted, data is

time the Port a Ack signal is received.

SUBSTITUTE SHEET-._..._

NetApp Ex. 1002, pg. 1423

“K)9Ufl3HE

block of 128 bytes.

PCT/US90/04711

-33-

block as 128 bytes data is simply copied into the

selected RAM. The next 128 bytes driven on Port 3 will‘

be exclusive-ORed with the first 128 bytes. This

procedure will be repeated for all drives such that

the parity is accumulated in this chip. The Parity

sync signal should be asserted to the parallel chip

together with the last block of 128 bytes. This

enables the chip to switch access to the other RAM and

start accumulating a new 128 bytes of parity.

29rt_E_2arall2l_Bead_M9de_;_£henk_nata- This mode

is set if all drives are being read and parity is to

be checked. In'this case the Parity Correct bit in

the Data Transfer Configuration Register is not set.

The parity chip will first read 128 bytes on Port A as

4 in a normal read mode and then raise Port B Request.

While it has’ this signal asserted the chip will

monitor the Port 3 Ack signals and exclusive-or the

data on Port B with the data in its selected RAM. The

Parity Sync should again be asserted with the last

In this mode the chip will not

drive the Port E-data lines but will check the output

of its exclusive—or logic for zero. If any bits are

set at this time a parallel parity error will be

flagged. .

This

mode is set by setting the.Parity Correct bit in the

Data Transfer Configuration Register.

the chip will work exactly as in the check mode except

that when Port B Output Enable, Port B Select and

Parity Sync are true the data is driven onto the Port

In this case

8 data lines and a parallel parity check for zero is

‘not performed.

fixtg_§wap. In the normal mode it is expected that

Port 3 bits 00-07 are the first byte, bits 10-17 the

second byte, bits 20-27 the third byte, and bits 30-37

.the last byte of each word. The order of these bytes

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1424

W0 91 /03788 PCTIUS90/047! I

-39- -

may be changed by writing to the byte swap bits in the

configuration register such that the byte address bits

are inverted. The way the bytes are written and read

also depend on whether the CPU interface is configured
as 16 or 8 bits. The following table shows the byte

alignments for the different possibilities for data

transfer using the Port A Request / Acknowledge

handshake:

CPU _ Invert Invert

VF Addr1 Addro..n._..a_..——......—...~.......——.7.5—_uu«._._.__.._..—.-__._—..-—..........

Porl B Port 8 Port B

True True

False False

False True

True False

’ True True

when the Fifo is accessed by reading or writing the
Fifo Data Register through the microprocessor port in

8 bit mode, the bytes are in'the same order as the

table above but the uProc data ‘port is used instead of

Port A. In 16 hit mode the table above applies.

If the data transfer is not

a multiple of 32‘ 128 bytes, the

microprocessor must manipulate the internal registers

of the chip to ensure all data is ‘transferred. Port

A Ac): and Port B Reg are normally not asserted until

SUBSTITUTE SHEET

words , or

NetApp Ex. 1002, pg. 1425

WO 91103788 PCTI US90/04711

_90-

all 32 nerds of the selected RAM are available. These

signals may be forced by writing to the appropriate

RAM status bits of the Data Transfer Status Register.

When an odd length transfer has taken place the

wait until both ports are

quiescent before manipulating any registers. It

should then reset both of the Enable Data Transfer

bits for Port A and Port 3 in the Data Transfer

Control Register.

their Address Registers and the RAM Access Control

Register whether RAM X or RAM Y holds the odd length

data. It should then set the corresponding Address

Register to a value of 20 hexadecimal, forcing the RAM

full bit and setting the address to the first word.

Finally the microprocessor should set the Enable Data

Transfer bits to allow the chip to complete the

transfer. '_

At this point the Fifo chip will think that there

are now a full 128 bytes of data in the RAM and will

transfer 128 bytes if'allowed to do so. The fact that

128 bytes are not valid must be

recognized externally to the FIFO chip.

.microprocessor must

It must then determine by reading

some of these

-I, ' my

Register Address 0.

the reset signal.

Bit 0- ED_MQ§£-

. .
,*9 \ A

This register is cleared by

Set if data transfers are to

use the Western Digital WD33C93A
protocol, otherwise the Adaptec 6250
protocol will be used.

Set if this chip is to
accumulate Port B parities.

 . Set if the parity
chip is to correct parallel parity on
Port 3.

suasmute sum

NetApp Ex. 1002, pg. 1426

W0 91/03788 PCI‘/U590/047] I

-91-

 . If set. the
microprocessor data bits are combined
with the Port A data bits to effectively
produce a 16 bit Port. All accesses by
the microprocessor as well as all data
transferred using the Port A Request and
Acknowledge handshake will transfer 16
bits.

 . Set to
invert the least significant bit of Port
A byte address.

Invggt Egg; A.hy;g address ;. _Set to
invert the most significant bit of Port
A byte address,

 - Set to enable the
carry out of the 16 bit checksum adder to
carry back into the least significant bit
of the adder.

Egsgt. Writing a 1 to this bit will
reset the other registers. This bit
resets itself afiter a maximum of 2 clock
cycles and will therefore normally be
read as a 0; No other register should be
written for a minimum of 4 clock cycles
after writing to this bit.

n r ' 1

Register Address 1.

I 1‘

This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0 ‘ - Set to
‘ enable the Port A Req/Ack handshake.

Bit 1 . Set to

enable the Port B Reg/Ack handshake.

Egrt_A_tQ_Egrt_B. ‘If set, data transfer
is from Port A to Port 3. If reset, data
transfer is from Port 3 to Port A. In

order to avoid any 'glitches on the

yrequest lines, the state of this bit
should not be altered at the same time as
the enable data transfer bits 0 or 1

above.

Bit 2

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1427

W091/03788 PC!‘/US90/04711

-92-

 . Set if parity
is to be checked on the microprocessor
interface. It will only be checked when
writing to the Fife Data Register or
reading from the Fifo Data or Checksum
Registers, or during a Port A
Request/Acknowledge transfer in 16 bit.
mode. The chip will, however, always
re-generate parity ensuring that correct
parity is written to the RAM or read on
the microprocessor interface.

 . Set if parity is
to be checked on Port A. It is checked

when accessing the Fifo Data Register in
16 bit mode, or during a Port A
Request/Acknowledge transfer. _The chip
will, however, always re-generate parity
ensuring that correct parity is written
to the RAM or read on the Port A
interface.

B r‘ 1 . Set if Port B

data has valid byte parities, If it is
not set, byte parity is generated
internally to the chip when writing to
the RAMs. Byte parity is not checked
when writing from Port 8, but always
checked when reading to Port 3.

§h§gk§um_§nab1e. Set to enable writing
to the 16 bit checksum register. This
register accumulates a 16 bit checksum
for all RAM accesses, including accesses
to the Fifo Data Register, as well as all
writes to the checksum register, This
bit must be reset before reading from the

Checksum_Register. .

 . Set if Port A is to
operate in the master mode on Port A
during the data transfer.

2aLman

Register Address 2. This register is cleared by

the reset signal or by writing to the reset bit.

Bit 0 . set if. ariy bits
are true in the RAM X, RAM Y, or Part A

byte address registers.

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1428

VW)9U03flH PCl'/US90I047I l

-93-

 . Set if the
uProc Parity Enable bit is set and a
parity error is detected on the
microprocessor interface during any RAM
access or write to the Checksum Register
in 16 bit mode.

 . Set if the Port A
Parity Enable bit is set and a parity
error is detected on the Port A interface

during any RAM access or write to the
Checksum Register.

 . Set if
the chip is configured as the parity
chip, is not in parity correct mode, and
a non zero result is detected when the

Parity sync signal is true. It is also
set whenever data is read out onto Port

B and the data being read back through
the bidirectional buffer does not
compare. A i

29:; B gytgs Q-3 Parity Erggg. Set
whenever the data being read out of the
RAMs on the Port B.side has bad parity.

M

Register Address 3.

the reset signal or by.writing to the reset bita

This register is cleared by

The

Enable Data Transfer.bits in the Data Transfer Control

Register must be reset before attembting to write to

this register, else the write will be ignored.
Bit 0

Bit 2

This bit is the
least significant byte address bit. It
is read directly bypassing any inversion

done by the invert bit in the Data
Transfer Configuration Register.

 . This bit is the
most significant byte address bit. It is

read directly bypassing any inversion
done by the invert bit in the Data
Transfer configuration Register.

E2£:_JL_£9_JnL_!-

accessing RAM Y,
accessing RAM X .

Set if Port A is
and reset if it is

sunsmmz sum

NetApp Ex. 1002, pg. 1429

“K)9UHBfl PC!‘IUS90/047! I

-94-

29;; 3 :9 gay x. ' Set if Port 3 is
accessing RAM Y, and reset if it is
accessing RAM x .

Lgng_Eurst. If the chip is configured to
transfer data on Port A as a master, and
this bit is reset, the chip will only
negate Port A Auk/Rdy after every 8
bytes, or 4 words in 16 bit mode, have
been transferred. If this bit is set,
Port A Ack/Rdy will be negated every 16
bytes, or 8 words in 16 bit mode.

Bits 5-7 HQL_H£§§-

Bit. 3

Bit 4

Ea]! K E 3: . E . I [E 1 3! .E 1

Register Address 4. This register is cleared by

the reset signal or by writing to the reset bit. The

Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to_write to

this register, else the write will be ignored.
Bits 0-4 RAM X word address

_Bit 5 RAM X full

Bits 6-7 Net Used

BAM_X.AQdr2ss_£egister_i3sadLKritel

T Register Address 5. This register is cleared by
the reset signal or by writing to the reset bit. The
Enable Data Transfer bits in the Data Transfer Control

Register must be reset before attempting to write to

this register, else the write will be ignored.

Bits 0-4 RAM Y word address

»Bit 5 RAM Y fall

Bits 6-7 Not Used

Ei£2_Dais_Essistsr_iBsadLflritsl

Register Address 6. The Enable Data Transfer bits

in the Data Transfer Control Register must be reset

before attempting to write to this register, else the

write will be ignored. The Port A to Port 3 bit in

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1430

W0 91/023788

_ to

PCl‘/U591.)/047! I

-95-

the Data Transfer Control register must also be set

before writing this register. If it is not, the RAM

controls will be incremented but no» data will be

written to the RAM. the Port A to

Portn should be reset prior to reading this register.

Bits 0-7 are Fife Data.

access the FIFO by reading or writing this register.

For consistency.

The microprocessor may

The RAM control registers are updated as if the access

If the chip is configured with.a 16

bit CPU Interface the most significant byte will use

the Port A 0-7 data lines, and each'Port A access will

increment the Port A byte address by 2.

was using Port A.

E I E :1 1 E . I [E 3:“ . I

Register Address 7. This register is cleared by

the reset signal or by writing to the reset bit. A

Bits 0-7 are Checksum Data. The chip will

accumulate a 16 bit checksum-for all Port A accesses.

If the chip is configured with a 16 bit CPU interface,

the most significant byte is read on the Port A 0-7

If data is written directly to this

register it is added to the current contents rather

It is important to note that

the Checksum Enable bit in the Data Transfer Central

Register must be set to write this register and reset
to read it.

data lines.

than overwriting them.

EBQEBMMlE§_IflE.£IEQ_§flLE

In general the fifo chip is programmed by writing

the »data transfer configuration and control

registers to enable a data transfer, and by reading

the data transfer status register at the end of the

transfer to check the completion status. Usually the

data transfer itself will take place with both the

Port A and the Port 3 handshakes enabled. and in this

case the data transfer itself should be done without

suasmure sum

NetApp Ex. 1002, pg. 1431

WO 91103788 PCTIUS90l047l I

-95-

any other microprocessor interaction. In

applications, however, the Port A handshake may not be

enabled , and it will be the

microprocessor to fill or empty the £120 by repeatedly

BOIIIB

necessary for

writing or reading the Fifo Data Register.

Since the fifo chip has no knowledge of any byte

counts, there is no way of telling when any data

transfer is complete by reading any register within

this chip itself. Determination of whether the data

transfer has been completed must therefore be done by

some other circuitry outside this chip.

[The following C language routines illustrate how

the parity FIFO chip may be programmed. The routines

assume that both Port A.and the microprocessor port

are connected to the system microprocessor, and return

16 bits, hut that the hardware
addresses the Fife chip as long 32 bit registers.

struct FlFO_regs {
unsigned char conflg.a1,a2,a3 ;
unsigned char control,b1,b2.b3;
unsigned char status,c1,c2,c3;
unsigned char ram aocess_contro|,d1,d2.d3;
unsigned char ram:X_addr.e1,e2.e3;
unsigned char ram_Y_addr,f1,t2,f3;
unsigned long data;

unsigned Int checksum.h1;

#define FIFO1 «struct FlF0_regs*) FIFO_BASE_ADDRESS)

#define FlFO_RESEI' 0x80
#define FlFO_16 ans oxoa
#defin's FlFO_CKRRY WRAP ox4o
#define FIFO__PORT K_ENAsLE 0x01
#define FlFO_POR‘|"'B ENABLE 0x02
#deflne I=xFo_Pom‘:ENAsuss 0x03
#define FlFO_PORT A TO 80:04
#define FIFo_cHEcT<§UM“ENAsuE 0x40
#deflne FlFO_DATA IN MM 0x01
#define I=u=o_FoRc'E_fiAM_FuLL oxzo

#define PORT A_TO PORT B(fi1o) ((flfo-> control) a. 0x04)
#define PORT:A_BYTE.ADORES.S(fifo) ((fito->ram_access__controI) 8.

a size code of

0x03)

#define PORT A To RAM Y(fiio) _ _
#deflne POI-'iT:B_"_‘l'O:l-‘¢AM:Y(filo) ((fi1o-> rarn__access_contro|) a 0x08)

«filo->ram access control) 8. 0x04)

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1432

W0 9|/03788 PC!‘IUS90/0471 I

-97-A

_ lfiitittiittiiitiiiflfifitfitlititiIiflifiiiiitiiiifiitfifittiifiiiiti
The following routine initiates a Filo data transler using two

values passed to it.

config_data This is the data to be written to the conllguration register.

contro|__data This is the data to be written to the Data Transfer Control
Register. If the data transfer is to take place
automatically using both the Port Aand Port 8
handshakes, both data transfer enables bits should be
.set in this parameter.

iifitfitfittiiiikifittttiflttiittttiiiItfiififitttifiiiititlliitiitil

FlFO_inItlate_data transier(oonlig data, oontrol_data)
unsigned char corTflg_data, oontr5l_data;

FIFO1->config = oonlig data | FlFO_FlESEl: /*. Set’ - -« ~ "
Configuration value & Reset "/ . ‘

FIFO1->c.ontrol = oontrol_data & (~FlF0_PORT_ENABLES): /* Set
everything but enables */ -

FIFO1->control = oontrol_data;
enables */
}

Iiiitiitttiiifitittfiiiifitittttfiiftfiiiitiiiitttttfififlilfiiifikfiti
The following routine forces the transfer of any odd bytes that

have been left in the Filo at the end of a data transfer.

It first disables both ports. then forces the Ram Full bits. and then
re-enables the appropriate Port..
QCICQQQIIIIIIItftltItft!!!Iii‘?!Ifififtttifiilfifflffiflitflfififittit!

/* Set data transfer

FlFO_force_odd_-length_transter()

FIFO1-> control &= ~FlF0_PORT_ENABLES; /* Disable Ports A 3. a

if (PORT A TO PORT_B(FlFOl)) { -
_ ll"(PDR1"A T0 RAM Y(FlF01)) { a

t

r=T=61.>’ram_>7_addr = FlFO_FOFiCE__FlAM_FULl.; /*
Set RAM Y full -/ «

} .
else FlFO1->ram__X_addr = FlFO_FORCE__RAM_FULL; ./* Set

RAM X lull */
FIFO1->oontrol |= FlFO_PORT_B_ENABLE :

Re-Enable Port 3 '/ ’
}
else {

ll (PORT 3 TCJ_RAM Y(FlF01)) { _ «
FTFG1->ram_?_addr = FlFO_FORCE_RAM_FULL: /-

Set HAM v full -/

else FIFO1->ram__X_addr = FlFO_FOFtCE_RAM_FULL; /' Set
mnxmn -/ A

It

EEBSTITIETE SHEET

NetApp Ex. 1002, pg. 1433

W0 9ll03788 PC!"IUS90/047] I

-93-

FlFO1->oontrol |= FlFO_POlitT_A'_ENABLE; /-
Re-Enable Port A */

}
}

litiitftttfiittfittiiiiiitifitittttlitiiifitifitttfitiitititfiittfii

The following routine returns how many odd bytes have been
left in the Fiio at the end of a data transfer.

itiitttttitittittttiitttiitfittItititttitttttttit#tttIttiitfi[

int FlFO_oount_odd_bytes0
i

Int number odd_bytes:
number_ocTd_bytes=O: _ _
ii (FIFO1->status&FiF0 DATA IN RAM)

if (PORT_A To_Pbr=ir_e'(r=1r‘-’o1)) {
num'ber odd bytes =

(PORT_A_BYTE_Al'.1DRES§(FlFO1)) ;
it (POFlT_A TO_RAM Y(FlFO1))

num'ber_odd_Bytes += (FiFOt->ram_Y_addr) '
4 :

else number_-odd_bytes + = (FlFO1->ram_-X_addr) ' 4.;
} .

else { _ _
it (Por=iT_e, TO_FiAM Y(FlFO1))

nurfiber odd Bytes = (FIFO1->ram Y addr) * 4 ;
else number_o'c'ld__b57tes = (FIFO1->ram_X:ac'ldr) * 4 ;

}
}

return (number_odd__bytes);
it

lfitittilitttIfitfl§tOQttIfiftttiitfififittflfiIfittitfiifiitifititittfiit
_ The tollowlng routine tests the microprocessor interface ot the

chip. It first writes and reads the first 6‘ registers. It then writes ts. Os. and
an address pattern to the RAM, reading the data back and cheeldng it.

The test returns a bit slgnitieant error code where each bit
represents the address of the registers that failed.

Bit O = oontlg register tailed
Bit 1 = control register tailed
Bit 2 = status register tailed;
Bit 3 = ram access control register failed
Bit 4 = ram X address register tailed
Bit 5 = ram Y address register tailed
Bit 6 = data register failed
Bit 7 = checksum register tailed

iiflfitiititititittittfittifitifiittitfiittffiitttitiitflitittttiit!

#deflne RAM_DEP'l’H 64

reg_expect‘ed_data[6] = { 0x7F, Oxl-‘F. 0x00. 0x1F. 0x3F. Ox3F }-,

/" number of long words in Fife Ram */_

SUBSTITUTE SHEET

NetApp Ex. 1002, pg. 1434

WO 91103788 _ PC!‘IUS90l047l I

-99-

<{:har FlFO__uprocessor_Intertacejest0
unsigned long test_data;
char *register_addr;
Int I;

char j,error;

F|FO1->oonfig = F|FO_RESE|’; /" reset the chip “/
error=0;

register_addr = (char *) FIFO1;
'i= 1;

/" first test registers thru 5 */

for (i=0: i<6; i+ +) {
*register_addr = OXFF: /"' wrlte test data */
if (‘register addr l= reg_expected data[i]) error | =];
‘register_a3dr = 0; /* wn't'e Os to register */
If (*register_addr) error |= j:
"'register_addr = OXFF; /" write test data again "/
if (*register__addr l= reg_expected_data[i]) error |= j;
FIVFOI->config = FIFO RESET; . /* reset the chip */
if ("'register_addr) error'| = j; /* register should be 0 */
register_addr+ +; /" go to next register "/
] < < =1;

‘ /" new test Ram data & checksurn registers
test 1s throughout Ram & then test Os */

& ton} (test__data = -1; test_data l= ,1; test_data++) { /" test for 1sOs "'

FlFO‘1->oonfig.= FIFO RESET [FIFO 16_BlTS:
FlFO1—>controi = FIFO. PORT A_T0:B;

/ for (i=O;i<RAM_DEPTH?i+ +) ' ' /* write data to RAM1'

FIFO1->,data = test_data;
FIFO1->.oontro| = 0;

for (u=O;i <RAM_OEPTH;i+ +)'
if (F|FO1->data l= test data) error |= 1; /' read &

check data "/ ' A
If (FIFO1->checksum) error |= 0x80; /* checksum

should = 0 */
}

/* now test Ram data with address pattern
‘uses a different pattern for every byte "/

test data=0x0O010203: /* address pattern start ‘/
FIFO!-‘>oonfig = FlFO_RESET 1 FlFO__16_Bl.TSr|

FIFO CARRY_WRAP;
F—lFO1->¢orItrol = FIFO PORT A TO_B |

FIFO CHECKSUM ENABLE? ‘ ‘
for (i=O:i<RAM_DEPTH;i+ 4-) {

FIFO1->data =- test_data; /* write address pattern" ‘I

SUBSTIIUTE SHEET

NetApp Ex. 1002, pg. 1435

WO MI03788 pct/us9o/0471':

-100-

test_data + = 0x04040404;
} .
test data=0xO0010203: /' address pattern start */
FIFOI->oontrol = FIFO CHECKSUM_l-ZNABLE;
for fl=0;i<RAM DEPTH?i++) {

if (FlF01T> status I= FlFO_DATA_lN RAM)
error |= 0x04;

il (FIFO1->data I== test_data) error |= j; /* read & check
address pattern */

address

‘/

.,/

tesl_data + = 0x04040404;
} ,
if (FIFO1->checksum l= 0x0102) error |= 0x80; /" test checksum of

pattern */
FIFO1->config = FIFO_RESEl' | FlFO_16_BITS; /" inhibit carry wrap

FIFO1->checksum = OxFEFE; ‘ /* writing adds to ohecksum */
ll (FIFO1->checksum) error |=0x80; /* Vchecksum should be 0

it (FIFO1->status) error |= 0x04; /* status should be 0 */
return (error); .

suasrmm: sum

7" should be data ln ram '/-

NetApp Ex. 1002, pg. 1436

101

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1.— Network server apparatus for use with a data

network and.a mass storage device, comprising:

~an interface processor unit coupleable to said

network and to said mass storage device;

a host processor unit capable of running remote

procedures defined by a client node on said_network;

means ~in said’ interface processor unit for

satisfying requests from said network to store data

from said network on said mass storage device;

means in said interface processor unit for

satisfying requests from said network to retrieve data

from said mass storage device to said network; and

means in said interface processor unit for

transmitting predefined categories of messages from

said network to said host processor unit for processing

in said host processor unit, said transmitted messages

including all requests by a network client to run

client—defined procedures on gsaid network server

apparatus.

2. Apparatus according to claim 1, wherein said

interface processor unit comprises:

a network control unit coupleable to said network;

a. data control unit" coupleable to said mass

storage device;

a buffer memory;

NetApp Ex. 1002, pg. 1437

102

means in ‘ said network control unit for

transmitting to said data control unit requests from

said network to store specified storage data from said

network on said mass storage device;

means in said network control unit for

transmitting said specified storage data from said

network to said buffer memory and from said buffer

memory to said data control unit;

means in_ said network control unit for

transmitting to said data control unit requests from

said network to retrieve specified retrieval data from

said mass storage device to said network;

means in said network control unit for

transmitting said specified retrieval data from said

data control unit to said buffer memory and from said

buffer memory to said network: and

means in said network control unit for

transmitting said predefined categories of messages

from said network to said host processing unit for

processing by said host processing unit.

3. Apparatus according to claim 2, wherein said

data control unit comprises:

a storage processor unit coupleable to said mass

storage device;

a file processor unit;

means on said file processor unit; for translating

said file system level storage requests from said

NetApp Ex. 1002, pg. 1438

l03

network into requests to store data at specified

physical storage locations in said mass storage device;

means on said file processor unit for instructing

said storage processor unit to write data from said

buffer memory into said specified physical storage

locations in said mass storage device;

.means on said file processor unit for translating

file system level retrieval requests from said network

into requests to retrieve data from specified physical

retrieval locations in said mass storage device;

means on said file processor unit for instructing

said storage processor unit to retrieve data from said

specified physical retrieval locations in said mass

storage device to-said buffer memory if said data from

said specified physical locations is not already in

said buffer memory; and

means in said storage processor unit for

transmitting data between said buffer memory and said

mass storage device.

4. Network server apparatus for use with a data

network and a mass storage device, comprising:

-a network control unit coupleable to said network;

a data control unit coupleable to said mass

storage device;

a buffer memory;

means for transmitting from said network control

unit to said data control unit requests from said

NetApp Ex. 1002, pg. 1439

104

network to store specifiedl storage data from said

network on said mass storage device;

means for transmitting said specified storage data

by DMA from said network control unit to said buffer

memory and by DMA from said buffer memory to said data

control unit;

means for transmitting from said network control

unit to said data control unit requests from said

network to retrieve specified retrieval data from said

imass storage device to said network; and

means for transmitting said specified retrieval

data by DMA from said data control unit to said buffer

memory and by DMA from, said buffer memory to said

network.contro1 unit.

5. Apparatus according to claim 1, for use

further with a buffer memory; and wherein said requests

from said network to store and retrieve data include

file system level storage ‘and retrieval requests.

respectively, and wherein said interface processor unit

‘comprises:

a storage processor unit coupleable to said mass

storage device;

a file processor unit;

means on said file processor unit for translating

said file system level storage requests into requests

to store data at specified physical storage locations

in said mass storage device;

NetApp Ex. 1002, pg. 1440

105

means on said file processor unit for instructing

said storage processor unit to write data from said

buffer. memory into said specified physical storage

locations in said mass storage device;

means on said file processor unit for translating

said file system level retrieval requests into requests

to retrieve data from specified physical retrieval

locations in said mass storage device;

means on said file processor unit for instructing

said storage processor unit to retrieve data from said

specified physical retrieval locations in said mass

storage device to said buffer memory if said data from

said specified physical locations is not already in

said buffer memory; and

means in~ said storage processor unit for

transmitting data between said buffer memory and said

mass storage device.

6. A data control unit for use with a data

network and a mass storage device, and in response to

file system level storage and retrieval requests from

said data network, comprising:

a data bus different from.said network;

a buffer memory bank coupled to-said bus;

storage processor apparatus coupled to said bus

and coupleablé to said mass storage device;

file processor apparatus coupled to said bus, said

file processor apparatus including a local memory bank;

NetApp Ex. 1002, pg. 1441

106

first means on said file processor unit for

translating said file system level storage requests

A into requests to‘ store data at specified physical

storage locations in said mass storage device; and

second means on said file processor unit for

translating said file system level retrieval requests

into requests to retrieve data from specified physical

retrieval locations in said mass storage device, said

first and second means for translating collectively

including means for caching file control information

through said local memory bank in said file processor

unit,

said data control_unit further comprising means

for caching the file data, to be stored or retrieved

according to said storage and retrieval requests,

through said buffer memory bank. -

7. A network node for use with a data network

and a mass storage device, comprising:

a system buffer memory}

a host processor unit having.direct memory access

to said system buffer memory;

a network control unit coupleable to said network

and having direct memory access to said system buffer

memory;

a data control unit coupleable to said mass

storage device and having direct memory access to said

system buffer memory;

NetApp Ex. 1002, pg. 1442

107

first means for satisfying requests from said

network to store data from said network on said mass

storage device;

second means for satisfying requests from said

network to retrieve data from said mass storage device

to said network; and

third means for transmitting predefined categories

of messages from said network to said host processor

unit for processing in said host processor unit, said

first, second and third means collectively including

means for transmitting from said network

control ‘unit to said system memory bank by direct

memory access file data from said network for storage

on said mass storage device,

means for transmitting fromk said system

memory bank to said data control unit by direct memory

access said file data from said network for storage on

said mass storage device,

means for transmitting from said data control

unit to said system memory bank by-direct memory access

file data for retrieval from said mass storage device

to said network, and

means for transmitting from said system

memory bank to said network control unit said file data

for retrieval from said mass storage device to said

network;

NetApp Ex. 1002, pg. 1443

108

at least said network control unit.including a

microprocessor and local instruction storage means

distinct from said system bdgfer memory, a11i

instructions for said microprocessor residing in said

local instruction storage means.

8. A network file server for use with a data

network and a mass storage device. comprising:

a host processor unit running a Unix operating

system;

an interface processor unit coupleable to said

network and to said mass storage device, said interface

processor unit including means for decoding all NFS

requests from said network, means for performing all

procedures for satisfying said NFS requests, means for

encoding any NFS reply messages for return transmission

on said network, and means for transmitting predefined

non-NFS categories of messages from said network to

’said host processor unit for processing in said host

processor unit.

9; Network server apparatus for use with a data

network. comprising:

a network controller coupleable to said network to

receive incoming information packets over said network,

said incoming information packets including certain

packets which contain part or all of a request to said

server apparatus, said request being in either a first

or a second class of requests to said server apparatus;

NetApp Ex. 1002, pg. 1444

109

a first additional processor;

an interchange bus different from said network and

coupled between said network controller and said first

additional processor;

means in said network controller for detecting and

satisfying requests in said first class of requests

contained in said certain incoming information packets;

said network controller lacking means in said network

controller for satisfying requests in said second class

of requests;

means in said network controller for detecting and

assembling into assembled requests, requests in said

second class of requests contained in. said certain

incoming information packets;

means for delivering said assembled requests from

said network controller to said first additional

processor over said interchange bus; and

means in said first additional processor- for

further processing said assembled requests in ‘said

second class of requests.

10. Apparatus according to claim 9, wherein said

packets each include a. network .node destination

address, and wherein "said means in said network

controller for detecting and assembling into assembled

requests, assembles said assembled requests in a format

which omits said network-node destination addresses.

NetApp Ex. 1002, pg. 1445

110

11. Apparatus according to claim 9, wherein said

means in said network controller for detecting and

satisfying requests in said first class of requests,

assembles said requests in said first class of requests

into assembled requests before satisfying said requests

in said first class of requests.

12. Apparatus according to claim 9, wherein_said

packets .each ‘include a network node destination»

address, wherein said means in said network controller

for detecting and assembling into assembled requests,

assembles said assembled requests in a format which

omits said network node destination addresses, and

wherein said means in said network controller for

detecting and satisfying requests in said first class.

of requests, assembles said requests in said first

class of requests, in a format which emits said network

node destination addresses, before satisfying said

requests in said first class of requests.

13. Apparatus according to claim 9, wherein said

means in said network controller for detecting and

satisfying requests in said first class includes means

for preparing an outgoing message in response to one of

said first class of requests, means for packaging said

outgoing message in outgoing information packets

suitable for transmission over said network, and means

for transmitting said outgoing information packets over

said network.

NetApp Ex. 1002, pg. 1446

111

14. Apparatus according to claim 9, further

comprising a buffer memory coupled to said interchange

bus, and wherein said means for delivering said

assembled requests comprises:

means for transferring the contents of said

assembled requests over said interchange bus into said

buffer memory; and _

means for notifying said first additional

processor of the presence of said contents in said

buffer memory.

15. Apparatus according to claim 9, wherein said

‘means in said first additional processor for further

processing said assembled requests includes means for

preparing an outgoing message in response to one of

said second class_o£ requests, said apparatus further

comprising means for delivering said outgoing message

from said first additional processor to said network‘

controller over said interchange bus, said~ network

controller further comprising means in said network

controller for packaging said outgoing message in

outgoing information packets suitable for transmission

over said network, and means in said network controller

for transmitting said outgoing information packages
over said network.

16. Apparatus according to claim 9, wherein said

first class of requests comprises requests for an

address of said server apparatus, and wherein said

NetApp Ex. 1002, pg. 1447

112

means in said network controller for detecting and

satisfying requests in said first class comprises means

for preparing a response packet to such an address.

request and means for transmitting said response packet

over said network.

17. Apparatus according to claim 9, for use

further with a second data network,_ said network

controller being coupleable further to said second

network, wherein said first class of requests comprises

requests to route a message to a destination reachable

over said second network, and wherein said means in

said network controller for detecting and satisfying

requests in said first class comprises‘ means "for

detecting that one of said certain packets comprises a

request to route a message contained in said one of

said certain packets to a destination reachable over

said second network, and means for transmitting said

message over said second network.

18. Apparatus according to claim 17, for use

further" with .a third data network, said network

controller further comprising means in said network

controller for detecting particular requests in said

incoming information packets to route a message

contained in said particular requests, to a destination

reachable over said third ‘network, said apparatus

further comprising:

NetApp Ex. 1002, pg. 1448

113

a second network controller coupled to said

interchange bus and coupleable to said third data network;

means for delivering said message contained in

said particular requests to said second network

controller over said interchange bus; and

means in said second network controller for

transmitting said message contained in said particular

requests over said third network. ‘

19. Apparatus according to claim 9, for use

further with a third data network. said network

controller further comprising means in said network

controller for detecting particular requests in said

incoming information packets to route a message

contained in said particular requests, to a destination

reachable over said third network, said apparatus

_further comprising:

a second network ‘controller coupled to_ said

interchange bus and coupleable to said third data

network;

means for delivering said message contained in

said particular requests to said second network

controller over said interchange bus; and

means in said second network controller‘ for

transmitting_said message contained in said particular

requests over said third network.

20. Apparatus‘ according to claim 9. for use

further with a mass storage device, wherein said first

NetApp Ex. 1002, pg. 1449

114

additional processor comprises a data control unit

coupleable to said mass storage device. wherein said

second class of requests comprises remote calls to

procedures for managing a file system in said mass

storage device, and wherein said means in said first

additional processor for further processing said

assembled requests-in said second class of requests

comprises means for executing file system procedures on

said mass storage device in response to said assembled

requests.

‘21. Apparatus according to claim 20, wherein said

file system procedures include a read procedure for

reading data'from said mass storage device,

said means in said first additional processor for

further processing said assembled requests including

means for reading data from a specified location in

said mass storage.device in response to a remote call

to said read procedure,

said apparatus further including means for

-delivering said data to said network controller,

said network controller further comprising means

on said network controller for packaging said data in

» outgoing information packets suitable for transmission

over said network, and means for transmitting said

outgoing information packets over said network.

22. Apparatus according to claim 21, wherein said

means for delivering comprises:

NetApp Ex. 1002, pg. 1450

115

a system buffer memory coupled to said interchange

bus;

means in said data control unit for transferring

said data over said interchange bus into said buffer

memory; and

means in said network controller for transferring

said'data over said interchange bus from said system

buffer memory to said network controller.

23. Apparatus according to claim 20, wherein said

file system procedures include a read procedure for

reading a specified number of bytes of data from said

mass storage device beginning at an address specified

in logical terms including a file system ID and a file

ID, said means for executing file system procedures

comprising:

means for converting the logical address specified

in a remote call to said read procedure to a physical

address; and

means for reading data from said physical address

in said mass storage device.

24. Apparatus according to claim 23, wherein said _

mass storage device comprises a disk drive having a

numbered tracks and sectors. wherein said logical

address specifies said file system ID, said file ID,

and a byte offset, and wherein said physical address

specifies A corresponding track and sector number.

NetApp Ex. 1002, pg. 1451

116

25. Apparatus according to claim 20, wherein said

file system procedures include a read procedure for

reading a specified number of bytes of data from said

mass storage device beginning at an address specified

in logical terms including a file system ID and a file

ID,

said data contro1.unit comprising a file processor

coupled to said interchange bus and a storage processor

coupled to said interchange bus and coupleable to said

mass storage device,

said file processor comprising means for

converting the logical address specified in a remote

call to said read procedure to a physical address.

said apparatus further comprising means for

delivering said physical address to- said storage

processor, I

said storage processor comprising means for

reading data from said physical address in said mass

storage device and for transferring said data over said

interchange bus into said buffer memory; and

means in said network controller for transferring

said data over said interchange bus from said system

buffer memory to said network controller.

26. Apparatus according to claim 20, wherein said

file system procedures include a write procedure for

writing data contained in an assembled request, to said

mass storage device.

NetApp Ex. 1002, pg. 1452

117

said means in said first additional processor for

further processing said assembled requests including

means for writing said data to a specified location in

said mass storage device in response to a remote\ca11

to said read procedure.

27. Apparatus according to claim 9, wherein said

Eirst additional processor comprises a host computer

coupled to said interchange bus, wherein said second

class of requests comprises remote calls to procedures

other than procedures for managing a file system, and

-wherein said means in said first additional processor

for further processing said assembled requests in said

second class of requests comprises means for executing

remote procedure calls in response to said assembled

requests.

28. Apparatus according to claim 27, for use

further with a mass storage device and a data control

unit coupleable to said_mass storage device and coupled

to said interchange ‘bus, wherein said network

controller further comprises means in said network

‘controller for detecting and assembling remote calls,

received over said network, to procedures for-managing

la file system in said mass storage device, and wherein

said data control unit comprises means for executing

file system procedures on said mass storage device in

response to said remote calls to procedures for

managing a file system in said mass storage device.

NetApp Ex. 1002, pg. 1453

118

29. Apparatus according to claim 27, further

comprising means for delivering all of said incoming

information packets not recognized by said network

controller to said host computer over said interchange

bus. »

30. Apparatus according to claim 9, wherein said

network controller_comprises:

A a microprocessor;

_a. local instruction memory’ containing local

instruction code;

a local bus coupled between said microprocessor

and aaid.loca1 instruction memory;

bus interface means for interfacing said

microprocessor with said interchange bus -at times

determined by'said microprocessor in response to said

local instruction code; and

network interface means for interfacing said

microprocessor with said data network,

said local instruction memory including all

instruction code necessary for said microprocessor to

perform said function of detecting and ‘satisfying

requests in said. first class of requests, and all

instruction code necessary for said microprocessor to

perform said function of detecting and assembling into

assembled requests, requests in said second class of

requests.

NetApp Ex. 1002, pg. 1454

119

31. Network server apparatus for use with a data

network, comprising:

a network controller coupleable-to said network to

receive incoming information packets over said network,

said incoming _in£ormation packets including certain
packets which contain part or all of a message to said

server apparatus, said message being in either a first

or a second class of messages to said server apparatus,

said messages in said first class of messages including

certain messages containing requests;

a host computer;

an interchange bus different from said network and

coupled between said network controller and said host

computer;

means in said network controller for detecting and

satisfying said requests in said first class of

' messages ;

means for delivering messages in said second class-

of messages from said network controller to said host

computer over said interchange.bus; and

means in said host computer for further processing

said messages in said second class of messages.

32. Apparatus according to claim 31, wherein said

packets each include a network node destination

address, and wherein said means for delivering messages

in said second class of messages comprises means in

said network controller for detecting said messages in

NetApp Ex. 1002, pg. 1455

120

said second class of messages and assembling them into

assembled messages in a format which omits said network

node destination addresses.

33. Apparatus according to claim 31, wherein said

means in said network controller for detecting and

satisfying requests in said first class includes means

for preparing an outgoing message in response to one of

said requests in said first class of messages, means

for packaging said outgoing message in outgoing

information packets suitable for transmission over said

network, and means for transmitting said outgoing

information packets over said network.

34. Apparatus according to claim 31, for use

further with a second data network, said network

controller being coupleahle further to said second_

network, wherein said first class of-messages comprises

messages to be routed to a destination reachable over

said second network, and wherein said means in said

network controller for detecting and satisfying

requests in said first class comprises means for

detecting that one of said certain packets includes a

request to route a message contained in said one of

said certain packets to a destination reachable over

said second network, and means for transmitting said

message over said second network. A

35. Apparatus according to claim 31, for use

further with a third data network, said network

NetApp Ex. 1002, pg. 1456

121

controller further comprising means in said network

controller for detecting particular messages in said

incoming information packets to_ be routed to a

destination reachable over said third network, said

apparatus further comprising:

a second network controller coupled to said

interchange bus and coupleable to said third data

network; — 1

means for delivering said particular messages to

said second network controller over said interchange

bus; substantially without involving said host

computer; and

means in. said second network controller for

transmitting said message contained in-said particular

requests over said third network, substantially without

involving said host computer.

36. Kpparatus according to claim 31, for use

further with a mass storage device, further comprising

a data control unit coupleable to said mass storage

device,

said network controller further comprising means

in said network controller for detecting ones of said

incoming information packets containing remote calls to

procedures for managing a file system in said mass

storage device, and means in said network controller

for assembling said remote calls from said incoming

NetApp Ex. 1002, pg. 1457

122

packets into assembled calls, substantially without

involving said host computer, A

said apparatus further comprising means for

delivering said assembled file system calls to said

data control unit over said interchange- bus

substantially without involving said host computer, ad

said data control unit comprising means in said data

control unit for executing file system procedures on

said mass storage device in response to said assembled

file system calls, substantially without involving said

host computer.

37. Apparatus according to claim 31,_ further

comprising means for delivering all of said incoming

information- packets not recognized by said network

controller to said host computer over said interchange

bus.

38. Apparatus according to claim 31, wherein said

network controller comprises:

a microprocessor;

a local instruction memory containing local

instruction code;

a local bus coupled between said microprocessor

and said local instruction memory;

bus interface means for interfacing said

microprocessor" with said interchange bus at times

determined by said microprocessor in response to said

local instruction code; and

NetApp Ex. 1002, pg. 1458

123

network interface means for interfacing said

microprocessor with said data network,

said ‘local instruction memory including a1l~

instruction code necessary for said microprocessor to

‘ perform said function of detecting and satisfying

requests in said first class of requests.

39. File server apparatus for use with a mass

storage device, comprising:

a requesting unit capable of issuing calls to file

system procedures in a device—independent form;

a file controller including means for converting

said file system procedure calls from said device-

independent form to a device-specific form and means

for issuing device-specific commands in response to at

least a subset of said procedure calls, said file

controller operating in parallel with said requesting

unit; and

a storage processor including means for executing

said device-specific commands on said mass storage.

device, said storage processor operating in parallel

with said requesting unit and said file controller.

40. Apparatus according to claim 39, further A

comprising:

an interchange bus;

first delivery means for delivering said file

system procedure calls from said requesting unit to

said file controller over said interchange bus; and

NetApp Ex. 1002, pg. 1459

124

second delivery means for delivering said device-

specific commands from said file controller to said

storage processor over said interchange bus.

41. Apparatus according to claim 39, further

comprising:

an interchange bus coupled to said requesting wait

and to said file controller;

first memory means in said requesting unit and

addressable over said interchange bus;

second memory means in said file controller;

means in said requesting unit for preparing in

said first memory means-one of said calls to file

system procedures;

means for notifying said file controller of the-

availahility of said one of said calls in said first

memory means; and

means in said file controller for controlling an

access to said first memory means for reading said one

of said calls over said interchange bus into said

second memory means in response to said notification.

42. Apparatus according to claim 41, wherein said

means for notifying said file controller comprises:

a command FIFO in said file controller addressable

over said interchange bus; and V
means in said requesting unit for controlling an

access to said FIFO for writing a.descriptor into said

FIFO over said ‘interchange bus, said descriptor

NetApp Ex. 1002, pg. 1460

125

describing an address in said first memory means of

said one of said calls and an indication that said

address points to a message being sent.

43. Apparatus according to claim 41, further

comprising:

means in said file controller for controlling an

access to said first memory means over said interchange

bus for modifying said one of said calls in said first

memory means to prepare a reply to said one of said

calls; and

means for notifying said requesting unit of the

availability of said reply in said first memory.

44. Apparatus according to claim 41, further

comprising:

a command FIFO in said requesting processor

addressable over said interchange bus; and

means in said file controller for controlling an

access to said FIFO for writing a descriptor into said

FIFO over said interchange bus, said descriptor

describing said address in said-first memory and an

indication that said address points to a reply to said

one of said calls.

,45; Apparatus according to claim 39, further

comprising:

an interchange bus coupled to said file controller

and to said storage processor;

NetApp Ex. 1002, pg. 1461

126

second memory means in said file controller and

addressable over said interchange bus;

means in said file controller for preparing one of

said device-specific commands in said second memory

means;

means for notifying said storage processor of the

availability of said one of said commands in said

second memory means; and

means in said storage processor for controlling an

access to said second memory means for reading said one

of said commands over said interchange bus in response

to said notification.

46. Apparatus according to claim 45, wherein said-

means for notifying said storage processor comprises:

a command FIFO in said storage processor

addressable over said interchange bus; and

means in said file controller for controlling an

access to said FIFO for writing a descriptor into said

. FIFO over said interchange Bus, said descriptor

describing an address in said second memory of said one

of said calls and an indication_ that said address

points to a message being sent.

47. Apparatus according_to claim 39, wherein saidv

means for converting said file system procedure calls

comprises:

NetApp Ex. 1002, pg. 1462

127

a file control cache in said file controller,

storing device-independent to‘ device-specific

conversion information; and

means for performing said conversions in

accordance with said conversion information in said

file control cache.

48. Apparatus according to claim 39, wherein said,

mass storage device includes a disk drive having

numbered sectors, wherein one of saidg file system

procedure calls is a read data procedure call,

.said apparatus further comprising an

interchange bus and a system buffer memory addressable

over said interchange bus,

said means for converting said file system»

procedure calls including means for issuing a read

sectors command in response to one of said read data

procedure calls, said read sectors-command specifying

a starting sector on. said disk drive, a count

indicating the amount of data to read, and a pointer to

a buffer in said system buffer memory, and

said means for executing devicedspeciflc

commands including means for reading data from said

disk drive beginning at said ‘starting sector and

continuing for the number of sectors indicated by said

count, and controlling an access to said system buffer

memory for writing-said data over said interchange bus

' to said buffer in said system buffer memory.

NetApp Ex. 1002, pg. 1463

128

49. Apparatus according to claim 48, wherein said

file controller further includes means for determining

whether the data specified in said one of said read

data procedure calls is already present in said system

buffer memory. said means for converting issuing said

read sectors command only if said data is not already

present in said system buffer memory.

50. Apparatus according to claim 48, further

comprising:

means in said storage processor for controlling a

notification of said file controller when said read

sectors command has been executed:

means in said file controller, responsive to said

notification from said storage processor, for

controlling a notification of said requesting unit that

said read data procedure call has been executed; and

means in said requesting unit, responsive to said

notification from said file controller, for controlling

an access to said system buffer memory for reading said

data over said interchange bus from said buffer in said

system buffer_memory to said.requesting unit.

51. Apparatus according to.c1aim 39, wherein said

mass storage device includes a disk drive having

numbered -sectors, wherein one of said file system

procedure calls is a write data procedure call,

NetApp Ex. 1002, pg. 1464

129

said apparatus further comprising an

interchange bus and a system buffer memory addressable

over said interchange bus,

said means for converting said file system

procedure calls including means for issuing a write

sectors command in response to one of said write data

procedure calls, sa1d_ write data procedure call

including a pointer to a buffer in said system buffer

memory containing data to be written, and said write

~sectors command including a starting sector on said

disk drive, a count indicating the amount of data to

'write, and said pointer to said buffer in said buffer

memory, and

said means for executing devicerspecific

commands including means for controlling an access to

said buffer memory for reading said data over said

interchange bus.from said buffer in said system buffer

memory, and writing said data to said disk drive

beginning at said starting sector and continuing for

the number of sectors indicated by said count."

52. Apparatus according to claim 51, further

comprising:

means in said requesting unit for controlling an

access to said system buffer memory for writing said

data over said interchange bus to said buffer in said

system buffer memory; and

NetApp Ex. 1002, pg. 1465

130

means in said reguesting unit for issuing said one

of said write data procedure calls when said data has

been written to said buffer in said system buffer

memory.

53. Apparatus according to claim 52, further

comprising:

means in said requesting unit for issuing a buffer

"allocation request: and

means in said file controller for allocating said

buffer in said system buffer memory in response to said

buffer allocation request, and for providing said

pointer, before said data is written to said buffer in

said system buffer memory.

54. Network controller apparatus for use with a

first data network carrying signals representing

information packets encoded according to a first

physical layer protocol, comprising:

a first network interface unit, a first packet bus

and first packet. memory addressable by said first

network interface unit over said first packet bus, said

first network ‘interface unit including means for

receiving signals over said first network representing

incoming information packets, extracting said incoming

information packets and writing said incoming

information packets into said first packet memory over

said first packet bus;

' a first packet bus port;

NetApp Ex. 1002, pg. 1466

131

first packet DMA means for reading data over said

first packet bus from said first packet memory to said

first packet bus port; and

a local processor including means for accessing

said incoming information packets in said first packet

memory and, in response to the contents of said

incoming information packets, controlling said first

_packet DMA means to read selected data over said first

packet bus from said first packet memory to said first

packet bus port. said local processor including a CPU,

a CPU bus and CPU memory containing CPU instructions,

said local processor operating in response to said CPU

instructions, said CPU instructions being received by

said CPU over said CPU bus independently of any of said

writing by said first network interface unit of

incoming information packets into said first packet

memory over said first packet bus and independently of

any of said reading by said first packet DMA means of

data over said first packet bus from gaid first packet

memory to said first packet bus port.

55. -Apparatus-according to claim-54, wherein said

first network interface unit further includes means for

‘ reading outgoing information packets from said first

packet memory over said first packet bus; encoding said

outgoing information packets according to said first

physical layer protocol, and transmitting signals over

NetApp Ex. 1002, pg. 1467

132

said first network representing said outgoing

information packets,

said local processor further including means

for preparing said outgoing information packets in said

first packet memory, and for controlling said first

network interface unit to read, encode and transmit

said outgoing information packets,

said receipt of CPU instructions by said CPU

over said CPU bus being independent further of any of

said reading by said first network interface unit of

‘ outgoing information packets from said first packet

memory over said first packet bus.

56. Apparatus "according, to claim 54, further

comprising a first FIFO having first and second ports,

said first port of said first FIEO being said first

packet bus port.

'57. Apparatus according to claim 56, for use

further with an interchange bus, further comprising

interchange bus DMA means for reading data from said

second port of said first FIFO onto said interchange’

bus,

said local processor further including means

for controlling said interchange bus DMA means to read

said data from said second port of said first FIFO onto

said interchange bus.

58. Apparatus vaccording to claim 54, .for use

further with a second data network carrying signals

NetApp Ex. 1002, pg. 1468

133

representing information packets encoded according to

a second physical layer protocol, further comprising:

a second network interface unit, a second packet

‘bus and second packet memory addressable by said second

network interface unit over said second packet bus,

said second network interface unit including means for

reading outgoing information packets from said second

packet memory over said second packet bus, encoding

said outgoing information packets according to said

second physical layer protocol, and transmitting

signals‘ over said second network representing said

outgoing information packets;

a second packet bus port; and

second packet DMA means for reading data over said

second packet bus from said second packet bus port to

said second packet memory,

said local processor further including means

for controlling said second packet DMA means to read

data over said second packet bus from said second

'packet bus port to said second packet memory, and for

controlling said second network interface unit to read,

encode and transmit outgoing information packets from

said data in said second packet memory,

said receipt of CPU instructions by said CPU

‘over said CPU bus being independent further of any of

said reading by said second packet DMA means of data

over said second packet bus from said second packet bus

NetApp Ex. 1002, pg. 1469

134

port to said second packet memory, and independent

further of any of said reading by said second network

interface unit of outgoing information packets from

said second packet memory over said second packet bus,

and all of said accesses to said first packet

memory over said first packet bus being independent of

said accesses to said second packet memory over said

second packet bus.

59. Apparatus according to claim 58, wherein said

second physical layer protocol is the same as said

first physical layer protocol.

60. Apparatus according to claim 58, further

comprising —means, responsive to signals from said

processor, for coupling data from said first packet bus

port to said second packet bus port.

61. Apparatus according to claim 61, further

‘comprising:

first and second PIFOs, each having first and

second ports, said first port of said first FIFO being

said first packet bus port and said first port of said

second FIFO being said second packet bus port;

an interchange bus; and

interchange bus DMA means for transferring data

between said interchange bus and either said second

port of said first FIFO or said second port of said

second FIFO, selectably in response to DMA control

signals from said local processor.

NetApp Ex. 1002, pg. 1470

135

62. Apparatus according to claim 62, wherein said

interchange bus DMK means comprises:

a transfer bus coupled to said second port of said

first FIFO and to said second port of said second FIFO;

coupling means coupled between said transfer bus

and said interchange bus; and

a controller coupled to receive said DMA control

signals from said processor and coupled to said first

and second FIFOs and to said coupling means to control

data transfers over said transfer bus.

63. Storage processing apparatus for use with a

plurality of storage devices on a respective plurality

of channel buses. and an interchange bus, said

interchange bus capable of transferring data at a

higher rate than any of said channel buses, comprising:

-datav transfer means coupled to each of said

channel buses and to said interchange bus, for

transferring data in parallel between said data

transfer means and each of said channel buses at the

data transfer rates of each of said channel buses,

respectively, and for transferring data between said.

data transfer means and said interchange bus at a data

transfer rate higher than said data transfer rates of

any of said channel buses; and

a local processor including transfer control means

for controlling said data transfer means to transfer
data between said data transfer means and specified

NetApp Ex. 1002, pg. 1471

136

ones of said channel buses and for controlling said

data transfer means to transfer data between said data

transfer means and said interchange bus,

said local processor including a CPU, a CPU

bus and CPU memory containing CPU instructions, said

local processor operating in response to said CPU

instructions, said CPU instructions being received by

said CPU over said CPU bus independently of any of said

data transfers between said channel buses and said data

transfer means and independently of any of_said data

transfers between said data transfer means and said

interchange bus.

64. Apparatus according to claim 63, wherein the

highest data transfer rate of said interchange bus is

substantially equal to the sum of the highest data

transfer rates of all of said channel buses.

65. Apparatus according to claim 63, wherein said

data transfer means comprises:-

a FIEO' corresponding to each of said channel

buses, each of said FIFOs having a first port and a

second port;

a channel adapter coupled between the first port

of each of said FIFOs and a respective one of said

channels; and

DMA means coupled to the second port-of each of

said . FIFOs and to said interchange bus, ,for

NetApp Ex. 1002, pg. 1472

137

transferring data between said interchange bus and one

of said FIFOs as specified by said local processor,

said transfer control means in said local

processor comprising means for controlling each of said

channel adapters separately to transfer data between

the channel bus coupled to said channel adapter and the

FIFO coupled to said channel adapter, and for

controlling said DMA controller to transfer data

between separately specified ones of said PIFOS and

said interchange bus, said DMA means performing said

transfers sequentially.

66. Apparatus according to claim 65, wherein said

DMA means comprises a command memory and. a DMA'

processor, said local processor having means for

writing FIFO/interchange bus DMA commands into said

command memory, each of said commands being specific to

a given one said FIPOs and including an indication of

the direction of data transfer between said interchange

bus and said given FJFO, each-of said FIFOs generating

a ready status indication, said DMA processor

controlling the data transfer specified in each of said

commands sequentially after the corresponding FIFO

indicates a -ready status, -and notifying said local

processor upon completion of the data transfer

specified in each of said commands.

67. Apparatus according to claim 65 further

comprising an additional FIFO coupled between said CPU

NetApp Ex. 1002, pg. 1473

138

bus and said DMA memory, said local processor further

having means for transferring data between said CPU and

said additional FIFO, and said DHA means being further

for transferring data between said interchange bus and

said additional FIFO in response to commands issued by

said local processor.

NetApp Ex. 1002, pg. 1474

139

68. Network server apparatus for use with a data

network and a mass storage device. comprising:

an interface processor unit coupleable to said

network and to said mass storage device;

a host processor unit;

means in said interface processor unit for

satisfying requests from said network to store data from

said network on said mass storage device;

means in said interface processor unit for

satisfying requests from said network to retrieve data

from said mass storage device to said network;

means in said interface processor unit for

_satisfying requests from said host processor unit to

store data from said host processor unit on said mass

storage device; and

means in said interface processor unit for

satisfying requests from said host processor unit to

retrieve data from said mass storage device to said host

processor unit.

69. Apparatus according to claim 68, wherein said.

interface processor unit comprises:

a network control unit coupleabie to said network:

a data control unit coupleable to said mass storage

device;

a buffer memory;

NetApp Ex. 1002, pg. 1475

140

means in said network control unit for transmitting

to said data control unit requests from said network to

store specified storage data from said network on said

mass storage device;

means in said network control unit for transmitting

‘said specified storage data from said network to said

buffer memory and from said buffer memory to said data

control unit;

means in said network control unit for transmitting

to said data control unit requests from said network to

retrieve specified retrieval data from said mass storage

device to said network; and

means in said network control unit for transmitting

said specified retrieval data from said data control

unit to said.buffer memory and from said.buffer memory

to said network.

70. Apparatus according to claim 69, wherein said

data control unit comprises:

a storage processor unit coupleable to said mass

storage device;

a file processor unit;

means on said file processor unit for translating

said “file system level storage requests from said

network into requests to store data at specified

physical storage locations in said mass storage device;

NetApp Ex. 1002, pg. 1476

141

means on said file processor unit for instructing

said storage processor unit to write data from said

buffer memory into said specified physical storage

locations in said mass storage device;

means on said file processor unit for translating

file system level retrieval requests from said network

into requests to retrieve data from specified physical

retrieval locations in said mass storage device;

means on said file processor unit for instructing

said storage processor unit to retrieve data from said

specified physical retrieval locations in said mass

storage device to said buffer memory if said data from

said specified physical locations is not already in said

buffer memory; and

Ameans in said storage processor unit for

transmitting data between said buffer memory and said

mass storage device.

71. Apparatus according to claim 68, for use

further with a buffer memory, and wherein said requests

from said network to store and retrieve data include

file system level storage and retrieval requests

respectively, and wherein said interface processor unit

comprises:

a storage processor unit coupleable to said mass

storage device;

a file processor unit;

NetApp Ex. 1002, pg. 1477

means on said file processor unit for translating

said file system level storage requests into requests to

store data at specified physical storage locations in

said mass storage device; '

means on said file processor unit for instructing

said storage processor unit to write data from said

buffer memory into said specified physical storage

locations in said mass storage device;

means on said file processor unit for translating

said file system level retrieval requests into requests

to retrieve data from specified physical retrieval

locations in said mass storage device;

means on_said file processor unit for instructing

said storage processor unit to retrieve data from said

specified physical Aretrieval locationsp in said mass

storage device to said buffer memory if said data from

said specified physical locations is not already in said

buffer memory; and

means- in said storage processor unit for

transmitting data between said buffer memory and said

mass storage.device.

72. A network node for use with a data network and

a mass storage device, comprising:

a system buffer memory;

NetApp Ex. 1002, pg. 1478

143

a network control unit coupleable to said network

_and having direct memory access to said system buffer

memory;

a data control unit coupleable to said mass storage

device and having direct memory access to said system

buffer memory;

first means for satisfying requests from said

network to store data from said network on said mass

storage device; and

second means for satisfiying requests from said

network to retrieve data from said mass storage device

to said network, said first and second means

collectively including

means for transmitting from said, network

control unit to said system memory bank by direct memory

access file data from said network for storage on said

mass storage device.

means for transmitting from said system memory

bank to said data control unit by direct memory access

said file data from said network for storage on said

mass storage device,

means for transmitting from said data control

unit to said system memory bank by direct memory access

file data for retrieval from said mass storage device to

said network. and

NetApp Ex. 1002, pg. 1479

144

means for transmitting from said system memory

. bank to said network control unit said file data for

retrieval from said mass storage device to said network;

at least said network control unit including a

microprocessor and local instruction storage means

distinct from said system buffer memory, all

instructions for said microprocessor residing in said

local instruction storage means.

73. A network file server for use with a data

network and a mass storage device, comprising:

a host processor unit; and

an interface processor unit coupleable to said

network, to said mass storage device and to said host

processor unit, said interface processor unit including

means for decoding all NFS requests from said network,

means for performing all procedures for satisfying said

NFS requests. means for encoding any NFS reply messages

for return transmission on said network, and means for

satisfying file system requests from said host.processor

unit.

74. Network server.apparatus for use with a data

network, comprising:

a network controller coupleable to said network to

.receive incoming information packets over said network,

said incoming information packets including certain

packets which contain part or all of a request to said

NetApp Ex. 1002, pg. 1480

145

server apparatus. said request being in either a first

or a second class of requests to said server apparatus;

a first additional processor;

an interchange bus different from said network and

coupled between said network controller and said first

additional processor;

means in said network controller for detecting and

satisfying requests in said first class of requests

contained in said certain incoming information packets.

‘said network controller lacking means in said network

controller for satisfying requests in said second class

of requests; and I

means in said network controller for satisfying

requests received over said interchange bus from said

first additional processor.

75. Apparatus according to claim 74, wherein said

means in said network controller for detecting and

satisfying requests in said first class of requests,

assembles said requests in said first class of requests

into assembled requests before satisfying said requests

in said first class of requests.

76. Apparatus according to claim 74, wherein.said

packets-each include a network node destination address,

wherein said means in said network controller for

detecting and satisfying requests in said first class of

requests, assembles said requests in said first class of

NetApp Ex. 1002, pg. 1481

146

requests,‘ in a format which omits said network node

destination addresses, before satisfying said requests

in said first class of requests.

77. Apparatus according to claim 74, wherein said

means in. said network controller for detecting and

satisfying requests in said first class includes means

for preparing an outgoing message in response to one of

said first class of requests, means for packaging said

outgoing message in outgoing information packets
suitable for transmission over said network, and means

for transmitting said outgoing information packets over

said network.

78‘ Apparatus according to claim 74, wherein said

Vfirst class of requests comprises requests for an

address of said server apparatus, and wherein said means

in said network controller for detecting and satisfying

requests in said first class comprises means for

preparing a response packet to such an address request ,

and means for transmitting said response packet over

said network.

79. Apparatus according to‘ claim 74, for use».,

further with a second data network, said network

controller being coupleable further to said second

network, wherein said first class of requests comprises

requests to route a message to a destination reachable

over said second network, and wherein said means in said

NetApp Ex. 1002, pg. 1482

147

network controller for detecting and satisfying requests

in said first class comprises means for detecting that

one of said certain packets comprises a request to route

a message contained in said one of said certain packets

to a destination reachable over said second network, and

means for transmitting said message over said second

network. -

80. Apparatus according to claim 79, “for use

further with a third data network, said network

controller further comprising means in said network

controller for detecting particular requests in said

incoming information packets to route 'a message

contained in said particular requests, to a destination

reachable over said third network, said apparatus

further comprising:

a second network controller coupled to said

interchange bus and coupleable to said third data

network;

means for delivering said message contained in said

particular requests to said second network controller

over said interchange bus; and

means in said second network controller for

transmitting said message contained in said particular

requests over said third network.

81. Apparatus according to claim 74, for use

further with a third data network, said network

NetApp Ex. 1002, pg. 1483

148

controller further comprising means in said network

controller for detecting particular requests in said

incoming information packets to route a message

contained in said particular requests, to a destination

reachable over said third network, said apparatus

further comprising:

a second network controller coupled to said

interchange bus and coupleable to said third data

network; I

means for delivering-said message contained in said

particular requests to said second network controller

over said interchange bus; and

means in said second network controller for

transmitting said message contained in said particular

requests over said third network.

I 82. Apparatus according to claim 74, for use

further with a mass storage device, wherein said first

additional processor comprises a data control unit

coupleable to said mass storage device, wherein said

second class of requests comprises remote calls to

procedures for managing a file system in vsaid mass

storage device, and wherein said means in said first

additional processor for further processing said

assembled‘ requests in said second class of requests

comprises means for executing file system procedures on

NetApp Ex. 1002, pg. 1484

149

said mass storage device in response to said assembled

requests. T

83. Apparatus according to claim 82, wherein said

file system procedures include a read procedure for

reading data from said mass storage device,

said means in said first additional processor for

further processing said assembled requests including

means for reading data from a specified location in said

mass storage device in response to a remote call to said

read procedure,

said apparatus further including means for

delivering said data to said network controller,

said network controller further comprising means on.

said network controller for packaging said data‘ in

outgoing information.packets suitable for transmission ‘

over said network. and means for transmitting said

outgoing information packets over said network.

84. Apparatus according to claim 83, wherein said

means for delivering comprises:

a system buffer memory coupled to said interchange

bus; I

means in said data control unit for transferring

said data over said interchange bus into said buffer

memory; and

NetApp Ex. 1002, pg. 1485

150

means in said network controller for transferring

said data over said interchange bus from said system

buffer memory to said network controller.

85. Apparatus according to claim 82, wherein said

file system procedures include a read procedure for

reading a specified number of bytes of data from said

mass storage device beginning at an address specified in

logical terms including a file system ID and a file ID,

said means for executing file system procedures

comprising:

means for converting the logical address specified

in a remote call to said read procedure to a physical

address; and

means for reading data from said physical address

in said mass storage device.

86. Apparatus according to claim 85, wherein said

mass storage device comprises a disk drive having a

numbered tracks and sectors, wherein said logical

address specifies said file system ID, said file ID, and‘

ya byte offset, and wherein said physical address

specifies a corresponding track and sector number.

87. Apparatus according to claim 82, wherein said

file system procedures include a read procedure for

reading a specified number of bytes of data from said

mass storage device beginning at an address specified in

logical terms including a file system ID and a file ID,

NetApp Ex. 1002, pg. 1486

151

said data control unit comprising a file processor

coupled to said interchange bus and a storage processor

coupled to said interchange bus and coupleable to said

mass storage device,

said file processor comprising means for converting

the logical address specified in a remote call to said

read procedure to a physical address, A

said apparatus further comprising means for

delivering said physical address tot said storage

processor,

said storage processor comprising means for reading

data from said physical address in said mass storage
device and for transferring said data over said

interchange bus into said buffer memory; and

means in said network controller for transferring

said data over said interchange bus from said system

buffer memory to said network controller.

88. Apparatus according to claim 82, wherein said

file system procedures include a write procedure for

writing data contained in an assembled request, to said

mass storage device,

said means in said first additional processor for

further processing said assembled requests including

means for writing said data to a specified location in

said mass storage device in response to a remote call to

said read procedure.

NetApp Ex. 1002, pg. 1487

152

89. Apparatus according to claim 74, wherein said

- network controller comprises:

a microprocessor;

a local instruction memory containing local

instruction code;

a local bus coupled between said microprocessor and

said local instruction memory;

bus interface means M f6r- interfacing said

microprocessor with said interchange bus at times

determined by said microprocessor in response to said

local instruction code; and

network interface means for interfacing said»

microprocessor with said data network,

said local instruction memory including all

instruction code necessary for said microprocessor to

perform said function of detecting and satisfying

requests in said first class of requests.

90. Network server apparatus for use with_a data

network, comprising:

a network controller coupleable to said network to

receive incoming information packets over said network,

said incoming information packets including certain

packets which contain part or all of a message to said

server apparatus, said message being in either a first

or a second class of messages to said server apparatus,

NetApp Ex. 1002, pg. 1488

153

said messages in said first class of messages including

certain messages containing reguests;_

a host computer;

an interchange bus different from said network and

coupled between said network controller and said host

computer ;

means in said network controller for detecting and

satisfying said requests in said first class of

messages; and

means for satisfying requests received over said

interchange bus from said host computer.

‘91. Apparatus according to claim 90, wherein said

means in said network controller for detecting- and

satisfying requests in said first class includes means

for preparing an outgoing message in response to one-of

said requests in said first class of messages, means for

packaging said outgoing message in outgoing information

packets suitable for transmission over said network, and

means for transmitting said outgoing information.packets

'over said network.

92- Apparatus according‘ to claim 90, for use

further with a second data network, said network

controller being coupleable further to said second

network, wherein said first class of messages comprises

messages to be routed to a destination reachable over

said second network, and wherein said means in said

NetApp Ex. 1002, pg. 1489

154

network controller for detecting and satisfying requests

’ -in said first class comprises means for detecting that

one of said certain packets includes a request to route

a message contained in said one of said certain packets

to a destination reachable over said second network, and

means for transmitting said message over said second

network.

93: Apparatus according to claim 90, for use

further with a third data network. said network

controller further comprising means in said network

controller for detecting particular messages in said

incoming information packets to be routed to a

destination reachable over said third network, said

apparatus further comprising:

a second network controller coupled to said

interchange bus and coupleable to said third data

network;

means for delivering said particular messages to

said second network controller over said interchange

bus, substantially without involving said host computer;

and

means in said» second .network controller for

transmitting said message contained in said particular

requests over said third network, substantially without

involving said host computer.

NetApp Ex. 1002, pg. 1490

155

94. Apparatus according to claim 90, for use

further with a mass storage device, further comprising

a data control unit coupleable to said mass storage

device,

said network controller further comprising means in

said network controller for detecting ones of said

incoming information packets containing remote calls to

procedures" for managing a file system in said mass

storage device, and means in said network controller for

assembling said remote calls from said incoming packets

into assembled calls, substantially without involving

said host computer,

said apparatus further comprising means for

delivering said assembled file system calls to said data

control unit over said interchange bus substantially

without involving said host computer, and said data

control unit comprising means in said data control unit

for executing file system procedures ‘on said mass

storage device in response to said assembled file system

calls, substantially without involving said host
computer.

95, Apparatus according to claim 90, wherein said

network controller comprises:

a microprocessor;

a local instruction memory containing local

instruction code;

NetApp Ex. 1002, pg. 1491

156

a local bus coupled between said microprocessor and

said local instruction memory;

bus interface means for interfacing said

microprocessor with said interchange bus at times

determined by said microprocessor in response to said

local instruction code; and

network interface means for- interfacing said

microprocessor with said data network,

said local instruction memory .including all

instruction code necessary for said microprocessor to

perform said function of detecting and satisfying

requests in said first class of.requests.

96. A network file server for use with a data

network and a mass storage device, comprising:

means for decoding NBS requests from said network;

means for performing procedures for satisfying said

NFS. requests, including accessing said mass storage

device if required; and

means for encoding any NFS reply messages for

return transmission on said network,

said network file server lacking means in said

‘network file server for satisfying any non-NFS requests

from said network.

Dated this 4th day of March. 1993

AUSPEX SYSTEMS, INC.

By its Patent Attorneys

DAVIES COLLISON CAVE

NetApp Ex. 1002, pg. 1492

n»m¢munmmv

MWm

21I1

[III

«M... vmmam“mummupammm.._ .mu44nm»zuu
Hwow

mmmamuz>tmnmmxm_n

mzmam.1:
mm

mu44nmpzuuxwfinzw

dddd...»mazuznmcu.
Eu:..mz~m.Emzmm.HWDI.

W0 9|/03788

NetApp Ex. 1002, pg. 1493

PC!‘IUS90/047 I I< W0 91/113788

é.'+\'2_sl<=Io

ova“av.“

m...B.._mnwmuuumm.mm44um»znumu¢~.E._..wu..E
=-HII.

.-III>maHz

zu»m»wEmu.uo_H.gm:am."

mu44um»znuxmu>puz

NetApp Ex. 1002, pg. 1494

99.55.28.v_~_u>BzV@|..nI.w%h_
mum

HM/09SUmP.

mamLanaa
ma

WO 91103788

NetApp Ex. 1002, pg. 1495

&m._._n_~:.za.uudb.Vl .@%|._2...”...mam

wmm

vmn._.w=..._n_K E:._u._._.$_§
d.mum.

msmmmmummn
W0 91/0378!

NetApp Ex. 1002, pg. 1496

PCTIUS9lII0471 IW0 91103188

amwmavwm

mummuammw..mI..@___l.._.@.mamSmmam8%5:22HMmmmmz>.SaunamEC..masammm«SufimmmmEmmm.na¢m2«mT...mu»¢¢=<wnmam“58%Emum.guowmununz¢zznu
mm~¢¢=¢

88“5mHatA.UEmgm Em_mumawum..°mm_mavmmgpo<znuu~u\mz>
eamum_mumE

wovmmHmumHmmm.Emavm".SmumGumE;o¢m"
Ennmum_mum_a¢mmHwum_wumTEseemu

mmhmcncmHmuGum

muum<zu.4uzz<xu

NetApp Ex. 1002, pg. 1497

mug... %

n>mnzuz.zu»m>mV

PC!"IUS90/047] I

JumrznuDZEE.

»<mm<>muzu2

WO 91103788

NetApp Ex. 1002, pg. 1498

W0 9lI03788 PCl'IUS90I04'7ll

BROADCAST’ ADDRESS AND

ADDRESS MDDIFIER,
DRIVE LVURD* LUV

AND IACK’ HIGH

RECEIVE ADDRESS.

ADDRESS MEIDIFIER,
DRIVE A3‘ LUV L.wnRn* Lnw AND

IACK" HIGH

RECEIVE AS‘ LUV

. 13'
ADDRESS VALIDFDR

THIS SLAVE

WAIT UNTIL DTAC|<"‘ AND

BERR"‘ ARE Hl’GH- ‘

713 - A
-13

7 l RECEIVE wR1TE"‘.Lnw
715 .

719 I WAIT UNTIL 1130"‘ G1:1Es
PLACE DATA ON 1300-1331 I HIEHATD “W

721

DRIVE 11313! LUV I.

723 I
DRIVE 115:1" HIGH

DRIVE WRITE LUV

PLACE "W W 0"» D00_D31 LATCH DATA FRDM D00 D31

11:1 FIG.-7B | .

FIG.-7A

NetApp Ex. 1002, pg. 1499

PC!‘IUS90l047l l

I

I

MASTER : SLAVE
FRDM FIG-7A FRDM FIG-7A

729 I .731
DRIVE DTACK* LUV

WAIT UNTIL DTACl<‘* | 733

IGH TD LUV TRANSITION’ I DRIVE MACK, HIGH

WRITE DATA INTD

SELECTED DEVICE AND

DRIVE DSD’ LUV INCREMENT DEVICE ADDRESS

DRIVE D1‘
D3 "15" mm FDR 1180'‘

HIGH TD LUV TRANSITIDN

‘PLACE NEXT DATA DN . LATCH DATA FREIM LINES
D0O—D31 Doo—D31 .

' DRIVE DTAcK* LUV
mm UNTIL DTACK“

HIGH TU Lnw TRANSITIDN DRIVE MACK, HIGH -

A WRITE DATA INTI] .
SELECTED DEVICE AND

INCREMENT DEVICE ADDRESS

TD FIG.-7c TD FIG.-7C

 FIG.-7B

2:: Im:'rITuTE SHEET

NetApp Ex. 1002, pg. 1500

W0 91/021788 PC!‘IUS90I047l I

FREIM FIG.-7B I Z FRDM FIG.-7B

CDMPLETE NUMBER

DF CYCLES REQUIRED
TE! TRANSFER ALL DATA

RELEASE ADDRESS LINES.

ADDRESS MEIDIFIER LINES.

DATA LINES, LVDRD"‘.
1130*. AND 1AcK*

757

VAIT FD DTACK"‘ 759 .
HIGH TE! Law TRANSITIDN

. DRIVE DTACK“ LUV -

761

. DRIVE DTACK* HIGH

DRIVE AS‘ HIGH ’

T RELEASE As!-E

FIG.-%7C

4.. ..-.5-5-v-ru n-1: Qt-£=!='F

NetApp Ex. 1002, pg. 1501

PC!‘IUS90/0471 I

BRDADCAST ADDRESS.
ADDRESS MEIDIFIER AND

DRIVE LVURD‘ LEIW

RECEIVE ADDRESS;
ADDRESS MDDIFIER AND

LVDRD“ LUV

RECEIVE AS‘ LDV

IS

ADDRESS VALID FOR

THIS SLAVE ‘

RECEIVE »/RITE" HIGHWAIT UNTIL DTACK"‘ AND
BERR‘ ARE HIGH

' . 884

‘ WAIT UNTIL n'rAcI<"
HIGH TD LUV TRANSITIEIN

TD FIG.-BB
I

819

PLACE DATA UN LINES

D00-D31

A

FIG.-8A

NetApp Ex. 1002, pg. 1502

W0 91/433788 _ PC!"IUS90I0-171!

flASTER - SLAVE

FRDM FIG.-8A FRDM FIG.-8A

DRIVE DTACK* LUV

DRIVE DTACK* HIGH I

SELECTED DEVICE AND “N53 ’3°‘’‘”31
INCREMENT DEv1cE ADDRESS

WAIT FDR 1330*
HIGH TD LUV TRANSITION

DRIVE D‘rAcI<"‘ LUV _

DRIVE D1Acr<"‘ HIGH

LATCH DATA FREIM LINES I PLACE NEXT DATA ON
D00—D31 _ LINES D.00—D3I

TU FIG.-_8C TD FIG.-8.C

FIG.-8B

NetApp Ex. 1002, pg. 1503

woo:/as-iss Pcr_Ius9oIo4m’ _.-

FRDM ‘FIG.-BB 4 FRDM FIG.-BB

WRITE DATA INTD

SELECTED DEVICE AND

CREMENT DEVICE ADDRESS

CIJNTINUE DATA TRANSFER
CYCLES umn. DATA

HAS BEEN TRANSFERRED

RELEASE ADDRESS LINES. asa

. "ADDRESS MDDIFIER LINES. TRANSFER cgMp|_g1'E
DATA LINES. LVURD"‘.

1130* AND IACH"'LINES

B57

DRIVE DTACK’* HIGH

_ . 859

DRIVE AS‘ HIGH

wm I»-"DR DTACKV 955 ,
HIGH TD LD\«/'TRANS.IT1EIN

DRIVE DTACK 3* Law

861

RELEASE , AS‘

FIG.-8C

RI ll‘-IQTITI IT23 RHIIIZT

NetApp Ex. 1002, pg. 1504

INTERNATIONAL SEARCH REPORT
InIImdIonalApaS¢IIhI No

I. cussmcamou or sunuc-r IA'l"l’¢I (II umu cuwameon -moon only. mum an) a
Aewdinotolmuuuonu nmntctuunuuaa menu In oommnnmncuuazaugauuvc

~ IPC (5) G06!‘ 15/16
u.s. c1 354/zoo

 e———————e-e.__.__.__.j_.._.:
Illnuuuna Documentation Searched 0

_‘I.
c""‘“°“‘°"' 51*“ cluuficalion Symon»:

'r.n ‘gill ‘$0 0..
can

i 364/200.900
Documentation Snatched other than Minimum Documoumicn

to use Emu that such Documents are Included In the raids Seuched I

III. DOCIIIENTS CONSIDERED TO BE RELEVANT 5‘

Ca-loaovy ' I Citation ol Dowmeni. I6 with indluuon. where Inproounle. of lhe nlcunl pungn II I Rtleunt to Claim No. In

YP US,A 4,897,781 (OIANG)
See the entire document.

30 January 1990 1-8

4,887,204 (JOHNSON)
See the 'enti.r_e document.

US ,A' 12 Decanber 1989

US,A 4,819,159 (sums!)
See the entire document.

04 April 1989

US,A 6,710,868 (ooa<E)‘ 01 December 1987Y

I See the entire document.

!
' 590:-I! uicocnu 01 mod Ilocumonuz "4 "Y‘ lulu docunuvd oubl-shed not In -nlnvnnineiui mono one
-1- “Run.” ‘.4-mm’ ",. °.,‘.,u ‘nu" n_. M‘ “M”. I. "M or DVIQIII1 call 0714 not In confl-cl will IM Ovblutltuon but
.5.

.1.

command to he of namculu u:ounu
unm ueumonl but cghlnullod on at Illor lho onlomnhanal
lolmq dale
documanl much «my "now doubt: on nmmv dumlu on
much In and to uualaul the ouulnutoon nu cl |nn:hu
um-on or other Inc:-cl unan (Au Inoufacdl

"0' document volume Io In era! daselonuu. nu. o-Nbmon M

-9-
Dlhli‘ IYIIIRO
fiocununl oubhnhoq cum to Ihomlmuluonnl filmy date hmlam nun IN anon-Iy duo cu-moo

IV. CIITISICATION
duo M an Actual comuumm on use Immmzonu scum I

30 IEBER
luutunonal Sonrchmu Authority I

I S

RIHIIPCTSAIIIOIIIGOIIGIDOOGIMIVISOGI

mud Io undénlnnd KM ammplo or llworp undenlymg momum-on
docurncnl cl unmculav nluunu: Iho clumod innm-on
cannot M ecnuaoud non! of urine! be connected to
unvoln In mum-n flop
eocumlnl cl nan-cuhv ulavlncl: lhe clumud mvlmion
cannot be cons-cored to mvohrp a,n munluvo use when the
qocumcnl vs comhuwd mm on! 0! mole other Ivch docu-Monllx was cornumunon Mung ohuouu to n Dillon IlI||O¢tn Inc in.

'6" dgcummt Mambo! cl the um Mlcnl IIMII1

Duo cl Mniluug cl thin Inlemuionu Suleh Rupert '

24 JAN 1991

NetApp Ex. 1002, pg. 1505

ii i.!ililiiii§iiii!ii§liiiii!ililiiiiiéiiiiliiiiiiii
AU9465905

(12) PATENT ABRIDGMENT (1 1) Document No. AU-B-65905/94

(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No, 870378

(54) Title ,
PARALLEL l/0 NETWORK FlLE SERVER ARCHITECTURE

international Patent Classif'icaiion(s)
GOSF 015/I6

Application No. :G5905/94 (22) Application Date :23.06.94

Priority Data

Number (32) Date (33) Country
404959 G8.-09.89 US UNITED STATES OF AMERICA

Publication Date: 01.09.94

Pubiicaiicn Date of Accepted Application : 11.07.96

Related to Division(s) : 64125/90

AppIican1(s)
AUSPEX SYSTEMS, INC.

Inventor(s)
EDWARD JOHN ROW: LAURENCE B BOUCHER; WIUJAMM PITTS; STEPHEN E BLiGH.TMA'N

Attorney or Agent
DAVIES COLLISON CAVE , 1 Little Collins-Street. MELBOURNE VIC 3000
Prior Art Documents
US 4897781
us 4867204
Us 4819159

(57) Claim

1. A network file server for use with a data network and a mass storage device,

comprising:

a host processor unit: and

an interface processor unit coupleable to said network, to said mas storage device

and to said host processor unit, said interface processor unit including means for

decoding all NFS requests from said network, means for performing all procedures for

satisfying said Ni-‘S requests, means for encoding any NFS reply messages for return

transmission on said network, and means for satisfying file system requests from said

host processor unit. and

means for transmitting predefined non-NFS categories of messages from said

network to said host processor unit for processing in said host processor unit.

2. A network file server for use with a data network and a mass storage device

comprising;

a host processor urzir running a UNIX operating system; and

an interface processor unit coupieable to said network. to said mass storage device

and to said host processor unit. said interface processor unit including means for

NetApp Ex. 1002, pg. 1506

(1 1) AU-B-65905/94 -2.
(10) 670376

decoding ail NFS requests from said network. means for performing all procedures for

satisfying said NFS requests. means for encoding any NFS reply messages for return

transmission on said network. and means for satisfying file system requests from said

host processor unit.

3. Apparatus for use with a data network and a mass storage device. comprising -the

combination of first and second processing unirs.

said first processing unit being Coupled to said network and performing

procedures for satisfying requests from said network which are within a predefined non-3

NFS class of requests,

and said second processing unit being coupled to said network and to sa-id mass’ '

storage device and decoding NFS requesrs from said network, perforrnmg procedures for
satisfying said NFS requests, and encoding NFS repiy messages for return transmission

on said network. said second processing unit not satisfying any requests from said"

network ‘which are within said predefined non-NFS class of requests.

NetApp Ex. 1002, pg. 1507

I‘.-lX),‘.'(J1 :$«‘!Saa 59

AUsrRALrA5;‘j3
.3 ‘

. :7 . '; z‘ .-=_.e.
‘E2* .1: .4’ "

Patents Act 1990 H ‘V

PATENT REQUEST 2 STANDARD PATENT

We being the persons identified below as the Applicant, request the grant of a patent to
the person identified klcw as c Naminated Person, for an invention clescribeél in: the
aocompa:n__ying- standard complete specification.

Full application details follow:

[71/70] Applicant/Nominated Person:

Address: Auspex Systems, Inc.
2952 Bunker Hill. Lane

Santa Clara, California, 95054
UNITED STATES OF AMERICA

Invention Title:

"Parallel I/O Network File Server Architecture"

Name(s) of actual inventor(s):

Edward John Row

Laurence B Boucher
William M Pitts

Stephen E Blightman

Address for service in Australia:

DAVIES COLLISON CAVE, Patent Attorneys, of 1 Little Collins Street, 1
Melbourne, Victoria, Australia. Attorney Code: DM

DWESIONAL APPLICATEON DETAILS:

{62] Original Application No. 64125/99

22 June, 1994
(a member of the firm of DAVIES COLLISON CAVE

for and on behalf of the Applicant).

NetApp Ex. 1002, pg. 1508

AUSTRALXA

Patents Act 1990

NOTICE OF ENTITLEMENT

We, Auspex Systems, Inc the applicant/Nominated Person in respect of Application .-N6.
65905/94, state the foliowing:- ‘

The Nominated‘ Person is entitled to the grant of -the patent because the Nom’ina'ted'~"'
Person derives title to the invention from the inventors by assignment. '

The person nominated for the grant of the patent is the applicant and Nominated

Person of the original application No. 64125/90.

8 May. 1996

1 1 t ‘

~“ ; ' E 2'/.' .. ._ f
-2x"~'.;: 5--.-’-'=,‘Q 3}? .-u , ‘.‘,..r-<-. ,- , .-.

(A member of the firm of Davies & Coilison for

and on behalf of the appiica.nt(s))

NetApp Ex. 1002, pg. 1509

AusrRALrA

Patents Aet 19:52 _

COMPLETE SPEClFlCA'F2ION- '

rot: A sTA1$"pA.R1a_PAT1a1~_zT ‘

 A

Name of: Applicant: Auspex Systeméy Inc. '

Address for Service: DAVIES COLLISON- CAVE, Patent Ahogneysgf
1 Little Collins.Street,’Melboume, ‘

Invention Title: "Parallel I/O Network File Server Architectuire“

The following statement is a full description of this invention, including '_
method of performing it known to melusz . A '

-1-

NetApp Ex. 1002, pg. 1510

The present application is related to the

following published International Patent Applications:
1. MULTIPLE FACILITY OPERATING SYSTEM

ARCHITECTURE, invented by David Hitz, Allan Schwartz,

James Lau and Guy Harris, PCT Publication -No-.

W091/04540, international filing date April 4, 1991;

2. ENHANCED VMEBUS PROTOCOL UTILIZING

PSEUDOSYNCRRONOUS HANDSHAKING AND BLOCK MODE DATA

TRANSFER, invented by Daryl Starr, PCT Publication No.

W091/03736, international filing date March 21, 1991;
and

3'. BUS LOCKING FIAI-‘0lMULi'I‘I—PRoCE:Ss0R COMMUNICATIONS

SYSTEM UTILIZING PSEUDOSYNCHRONOUS HANDSHAKING AND

BLOCK MODE DATA TRANSFER invented by Daryl D. Starr,

William Pitts and Stephen Blightman, PCT Publication

No.WO91/11768, international filing date August 8,
1991.

The above applications are all assigned to the

assignee of the present invention and are all expressly

incorporated herein by reference.

NetApp Ex. 1002, pg. 1511

-2-

BACKGROQND OF 'I‘flE TNVEETION

V n '

The invention relates to computer data networks,

and more particularly, to network file server

architectures for computer networks.

llfiitzi'n§L‘ ' ~1.ts=.dJr_t

‘Over the past ten years, remarkable increases.in

hardware price/performance ratios have‘ caused a

startling shift in both technical and office computing

environments. Distributed workstationrserver.networks

are. displacing the once pervasive dumb .terminal

attached to mainframe or minicomputer. To date,

however, network I/O limitations have constrained the?

.potential performance available to workstation users.

This situation has developed in part because dramatic

jumps _in microprocessor performance have exceeded

increases in network I/O performance.

In a computer network, individual user workstations

are referred to as clients,'and shared resources for

filing, printing,‘ data storage and wide-area

communications are referred to as servers. Clients ~
and servers are all considered nodes of a network.

Client nodes use standard communications protocols to

exchange service requests and responses with server

nodes.

Present-day network clients and servers usually run

the. DOS, Macintosh Os, 05/2, or Unix operating

systems. Local networks are usually Ethernet or Token

Ring at the high end, Arcnet in the midrange, or

LocalTa1k or StarLAN at the low end. The client-

server communication protocols are fairly strictly

dictated by the operating system environment --

usually one of several proprietary schemes for PCs

(NetWare, 3Plus, Vines, LANManager, LANServer);

App1eTalk for.MacIntoshes; and TCP/I? with NFS or RPS

NetApp Ex. 1002, pg. 1512

-3-

for Unix. These protocols are all well-known_in the

industry.

Unix client nodes typically feature a 16- or 32-

bit microprocessor with 1-8 MB of primary memory, a.

640 x 1024 pixel display, and a built—in ;aé;uo:x}
interface. A 40-100 MB local disk is often optidnalsim

Low—end examples are 8.0286—ba.sed, ‘PCs or 5-aooo‘-«based

Macrntosh I's; mid—range machines include 30386 PCS,

Maclntosh II's, and 6&DXO—based Unix workstations: “

high-end machines include RISC—based DEC, HP, and;sun'

Unix workstations. Servers are typically nothing more

than repackaged client nodes, configured in l9~inch

racks rather than desk sideboxes. The extra space of

a 19-inch rack is used for additional backplane slots,

disk or'tape drives, and power supplies.

Driven by RISC and CISC microprocessor

developments, client workstation performance has

increased by zore than a factor of ten in the last few

years. Concurrently, these extremely fast clients

have ilso gained an appetite for data that remote.

servers are unable to satisfy. Because the I/O

shortfall is most dramatic in the Unix environment,

the description of the preferred embodiment of the:

present invention will focus on Unix file servers.

The architectural principles that solve the Unix

server I/O problem, however, extend easily to server

performance bottlenecks in other operating system

environments as well. Similarly, the description of

the preferred embodiment will focus on Ethernet‘

implementations, though the principles extend easily

to other types of networks.

In most Unix environments, clients and servers

exchange file data using the Network File System

("NFS"), a standard promulgated by Sun Microsystems

and now widely adopted by the Unix community. NFS is

defined in a document entitled, “MP5: Network File

NetApp Ex. 1002, pg. 1513

-4-

3YStem Protocol Specification,‘ Request For Comments

(RFC) 1094, by sun Microsystems, Inc. {March 1989).

This document is incorporated herein by reference in

its entirety.

While simple and reliable, NFS is not optimal.

Clients using NPS place considerable demands upon*hothf

networks and NFS servers supplying clients with HFS.

data. This demand- is particularly acute for’ Sdf
called diskless clients that have no local disks and

therefore depend on a file server for applicationg

binaries and virtual memory paging as well as datacnl
For these Unix client-server configurations, the ten~

to—one increase in client power has not been matched

by a ten—to-one increase in Ethernet capacity, in disk

speed, or server disk-to—network I/0 throughput.‘

The result is that the number of diskless clients

that a single modern high-end server can adequately

support has dropped to between 5-10, depending on

client power and application workload. For clients

containing small local disks for applications and
paging, referred to as dataless clients, the client-

to-server ratio is about twice this, or between 10-

20.

Such low client/server» ratios cause piecewise,

network configurations in which each local Ethernet

contains isolated traffic for its own 5-10 (diskless)

clients and dedicated server. For overall

connectivity, these local networks are usually joined

together with an Ethernet backbone or, in the future,

with an FDDI backbone. These backbones are typically

connected to the local networks either by IP routers

or MAC—1evel bridges, coupling the local networks

together directly, or by a second serve: functioning

as a network interface, coupling servers for all the

local networks together.

NetApp Ex. 1002, pg. 1514

-5-

In addition to performance considerations, the low

client—to-serve: ratio creates computing problems in

several additional ways:

1. fiharjng- Development groups of more than_54

10 people cannot share the same server, and'd'":

cannot easily share files without file replicat.
manual, multi-server updates. Bridges or routers;

a partial solution but inflict a performance'penélt§.

due to more network hops.

2. Administration. System administrators must‘

maintain many limited—capacity servers rather than£e7

few more substantial servers. This burden includes

network administration, hardware maintenance, and user’
account administration.

3. £iLe_§x§;gm_gag3gg. System administrators or‘

operators must conduct multiple file system backups,‘

which can be onerously time consuming tasks. It is

also expensive to duplicate backup peripherals on each

server (or every few servers if slower network backup

is used).

4. ri 9 * . with only 5-10 clients per

server, the cost of the server must be shared by only

a small number of users. The real cost of an entry~

level Unix workstationd is therefore significantly.
greater. often as much as 140% greater, than the cost»

of the workstation alone.

The widening I/O gap; as well as administrative and

eronomic considerations, demonstrates a need for

higher—performance, larger—capacity Unix file servers.

Conversion of a display-less workstation into a server

may address disk capacity issues, but does nothing to

address fundamental I/O limitations. As an NFS

server, the one~time workstation must sustain 5-10 or

more times the network, disk, backplane, and file

system ;grggchput.than it was designed to support as

a client. Adding larger disks, more network adaptors,

NetApp Ex. 1002, pg. 1515

-5-

extra primary memory, or even a faster processor do

not resolve basic architectural I/O constraints; I/0

throughput does not increase sufficiently.

Other prior art computer architectures, while_not

specifically designed as file servers, may potentially}.

be used as such. In one such well—known architecture,

a CPU, a memory unit, and two I/O processors are

connected to a single bus. One of the I/O processors‘
operates a set of disk drives, and if the architecture

is to be used as a server, the other I/0 processor
would be connected to a network. This architecture is:

not optimal as a file server, however. at Least
because the two I/0 processors cannot handle network"

file requests without involving the CPU. All network‘

file.requests that are received by the network I/O

processor are first transmitted to the CPU, which

makes appropriate requests to the disk-I/O pfocesscr

for satisfaction of the network request.

In another such computer architecture, a disk

controller CPU manages access to disk drives, and

several other CPUs, three for example, may be

clustered around the disk controller CPU. Each of the

other CPUs can be connected to its own network. The

network CPUs are each connected to the disk controller

CPU as well ‘as to each other for interprocessor

communication. One of the disadvantages of this

computer architecture is that each CPU in the system

runs its own complete operating system. Thus, network

file server requests must be handled by an operating

system which is also heavily loaded with facilities

and processes for performing a large number of other,

non file—server tasks. Additionally, the

interprocessor communication is not optimized for file

server type requests.

In yet another computer architecture,

NetApp Ex. 1002, pg. 1516

- 7 _

instruction storage, are connected to a common bus with a system memory and a disk

controller. The disk con-troller and each of the CPUs have direct memory access to the

system memory, and one or more of the CPUS can be connected to a network. This

architecture is disadvantageous as a file server because. among other things. "both file

data and the instructions for the CPUS reside in the. same system memory. There ‘will

instances. therefore, in which the CPUS must stop ru-nning while they wait‘ for large
blocks of file data to be transferred between system memory and the ne.tworic‘i(3_?l3'. ‘
Additionally, as with both of the previously described computer architectures, the-entire

operating system runs on each of the -CPUs, including the network CPU.

in yet another type of computer architecture, a large number of CPliis.~are

connected together in a hypercube topology. One or more of these CPUs canlabe
connected to networks, while another can be connected to disk drives. This architecture

is also disadvar.=tageous as a file server because, among other things each procéssorruns

the entire operating system. lnterprocessor oomrnun-ication is also not optimal for file

server applications.

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided a network file server

for use with a dam network and a mass storage device, comprising:

a host processor unit; and

an interface processor unit ooupleable to said network, to said mass storage device

and to said host processor unit, saic? interface processor unit including means for

decoding all NPS requests from said network, means for performing all procedures for

satisfying said NFS requests, means for encoding any NFS reply messages for return

transmission on said network, and means for satisfying file system requests from said

host processor unit, and

means for n'anstnitting predefined non-NFS catecrories of messages from said

etwork to said host processor unit for processing in said host processor unit.

NetApp Ex. 1002, pg. 1517

In yet another aspect, there is provided a network file server for use with a data

network and a mass storage device comprising;

a host processor unit running a UNIX operating sysrern; and

an interface processor unit coupleable to said network, to said mass Storage d’ev»ice‘

and to said host processor unit. said interface processor uni: including m’eans"for";

decoding all NFS requests from said network, means for performing all procedfires for-:

satisfying said NFS requests. means for encoding any NFS reply messages for return‘: V

transmission on said network, and means for satisf in file svstem requests frome-sai.d‘=
Y , . _

host processor unit.

The invention also provides a network file server for use with a data network and v

NetApp Ex. 1002, pg. 1518

-3-

a mass storage device, said network file server including a first unit comprising:

means for decoding NFS requests from said network:

means for performing procedures for satisfying said NFS requests. ‘including

accessing said mass storage device if required; and

means for encoding any NFS reply messages for return transmission‘ on;-said

network, A

said first unit tacking means in said first uni! for executing any .progran_1's which «

make UNIX operating system call-s.

In accordance m‘th the invention there is also provided a network‘ file sen-er for
use with a data network and a mass storage device, said network file server~including a

first unit comprising: A

means for decoding NI-‘S requests from said network;

means for performing procedures for satisfying said NFS requests, incln-ding

15 accessing said mass storage device if required; and

means for encoding any NFS reply messages for return transmission on said

network,

said first unit lacking any UNIX kernel.

The invention further provides a network file server unit for use with a ‘data

network and a mass storage device, said network file server unit comprising".

means for decoding NI-‘S requests from said network;

means for performing procedures for satisfying said requests, including

accessing said mass storage device if required; and

25 means for encoding any IVES reply messages for return transmission on-said

network,

said firs: lacking any UNIX application programs running on said first unit.

BREE? D$CRiPTiON OF THE DRAWINGS

Tnepiuvenrion is described in geatcr detail hereinafter, by way of example oniy,

with reference to the accompanying drawings, in which:

Fig. 1 is a blx; diagram of a prior art file server architecture;

NetApp Ex. 1002, pg. 1519

-9-

Fig. 2 is a block diagram of a file server

architecture according to the invention;

Fig. 3 is a block diagram of one of the network

controllers shown in Fig. 2;

Fig. 4 is a block diagram of one of the file

controllers shown in Fig. 2;

Fig. 5 is a block diagram of one of the storage

processors shown in Fig. 2;

Fig. 6 is a block diagram of one of the system

memory cards shown in Pig. 2;

Figs. 7A-C are a flowchart illustrating the.‘

operation of a fast transfer protocol BLOCK waI*r’2-7“

cycle; and

Figs. 8A—C are a flowchart illustrating the

operation of a fast transfer protocol BLOCK READ

cycle.

DSTA?7ED RI

For comparison purposes and background, an

illustrative prior-art file server architecture will

first be described with respect to Fig. 1. Fig. 1 is

an overall block diagram of a conventional prior-art

Unix—based file server for Ethernet networks. It

consists of a host CPU card 10 with a single

microprocessor on board. The host CPU card 10

connects to an Ethernet #1 12, and it connects via a

memory management unit (MMU) 11 to a large memory

array 16. The host CPU card 10 also drives a

keyboard, a video display, and two RS232 ports (not

shown). It also connects via the MMU 11 and a

standard 32-bit VME bus 20 to various peripheral

devices, including an SMD disk controller 22

controlling one or two disk drives 24, a SCSI host

adaptor 26 connected to a SCSI bus 28, a tape

controller 30 connected to a quarter—inch tape drive

32, and possibly a network #2 controller 34 connected

NetApp Ex. 1002, pg. 1520

_ 10-

to a second Ethernet 36. The SMD disk controller 22

can communicate with memory array 16 by direct memory

access via bus 20 and MMU 11, with either the disk

controller or the MMU acting as a bus master. This

configuration is illustrative; many variations are

available.

The system communicates over the Ethernets using

industry standard TCP/IP and NFS protocol stacks. A

description of protocol stacks in general can be found

in Tanenbaum, “Computer Networks‘ (Second Edition,.

Prentice Hall: 1988). File server protocol stacks are"

described at gages 535-546. The Tanenbaum reference

is incorporated herein by reference.

Basically, the following protocol layers are

.implemented in the apparatus of Fig. 1:

Nggwgrk Lever. The network layer converts data

packets between a formal specific to Ethernets and a

format which is independent of the particular type of

network used. the Ethernet-specific format which is

used in the apparatus of Fig. 1 is described in

Hornig, ‘A Standard For The Transmission of IP

Datagrams Over Ethernet Networks,‘ RFC 894 (April

1984), which is incorporated herein by reference.

P ‘ c D - P. This layer

provides the functions necessary to deliver a package

of bits (an internet datagram) from a source to a

destination over an interconnected system of networks.

For messages to be sent from the file server to a

client, a higher level in the server calls the IP

module, providing the internet address of the

destination client and the message to transmit. The

IP module performs any required fragmentation of the

message to accommodate packet size limitations of any

intervening gateway, adds internet headers to each

fragment, and calls on the network layer to transmit

the resulting internet datagrams. The internet header

NetApp Ex. 1002, pg. 1521

-1;_

includes a local network destination address

(translated from the internet address) as well as

other parameters.

For messages received by the IP layer from the

network layer, the IP module determines ‘from the

internet address whether the datagram is to be

forwarded to another host on another network, £or

example on a second Ethernet such as 36 in Fig. 1, or

whether it is intended for the server itself. If it

is intended for another host on the second network,

the IP module determines a local net address for the

destination and calls on the local network layer for

that network to send the datagram. If the datagram is

intended for an application program within the server,

the IP layer strips off the header and passes the-

remaining portion of the message to the appropriate

next higher layer. The internet protocol standard

used in the illustrative apparatus of Fig. 1 is

syecified in Information Sciences Institute, “Internet

Protocol, DARPA Internet Program Protocol

Specification," RFC 791 (September 1981), which is

incorporated herein by reference.

EQPAQDE Lever. This layer is a datagram service

with more elaborate packaging and addressing options

than the IP layer. For example, whereas an I?

datagram can hold about 1,500 bytes and be addressed

to.hosts, UDP datagrams can hold about 64KB and he

addressed to a particular part within a host. TCP and

UDP are alternative protocols at this layer;

applications requiring ordered reliable delivery of

streams of data may use TCP, whereas applications

(such as MP5) which do not require ordered and

reliable delivery may use UDP.

The prior art file server of Fig. 1 uses both TC?

and UDP. It uses UDP for file server-related

services, and uses TCP for certain other services

NetApp Ex. 1002, pg. 1522

-12-

which the server provides to network clients. The GOP

is specified in Postel. ‘User Datagram Protocol," RFC

768 (August 28, 1980), which is incorporated herein by

reference. TC? is specified in Postal, ‘Transmission

Control Protocol,‘ RFC 761 (January 1980) and RFC 793

(September 1981), which is also incorporated herein.by

reference.

I xQ3L3£§_Laxe;. This layer provides functions

callable from higher level programs to run a

designated procedure on a remote machine. It also

provides the decoding necessary to permit a client

machine to execute a procedure on the server. For

example, a caller process in a client node may send a

call message to the server of Fig. 1. The call

messagee.inc1udes a specification of the desired

procedure, and its parameters. The message is passed

up the stack to the RFC layer, which calls .the

appropriate procedure within the server. when the

procedure is complete, a reply message is generated

and RFC passes it back down the stack and over the

network to the caller client. RPC is described in sun

Microsystems. Inc., “RPC: Remote Procedure Call

Protocol Specification, Version 2," RFC 1057 (June

1988), which is incorporated herein by reference.

REC uses the XDR external data representation

standard to represent information passed to and from

the underlying UDP layer: XOR is merely a data

encoding standard. useful for transferring data

between different computer architectures. Thus, on

the network side of the XDR/RFC layer. information is

machine—independent; on the host application side, it

may not be. XDR is described in sun Microsystems,

Inc., “XDR: External Data Representation Standard,"

RFC 1014 (June 1987), which is incorporated herein by

reference.

NetApp Ex. 1002, pg. 1523

-13-

flE§_Layg;. The MP5 (‘network file system")

layer is one of the programs available on the server

which an RPC request can call. The combination of

host address, program number, and procedure number in

an RPC request can specify one remote NFS procedure to‘

be called.

Remote procedure calls to NPS on the file server of«

Fig. 1 provide transparent, stateless, remote access‘

to shared files on the disks 24. NFS assumes a file

system that is hierarchical, with directories as all

but the bottom level of files. Client hosts can call

any of about 20 NFS procedures including such

procedures as reading a specified number of bytes.from

a specified file; writing a specified number of bytes

to a specified file; creating, renaming and removing

specified files; parsing directory trees; creating and

removing directories; and reading and setting file

attributes. The location on disk to which and from

which data is stored and retrieved is always specified

in logical terms, such as by a file handle or Inode

designation and a byte offset. The details of the

actual data storage are hidden from the client. The

NFS procedures, together with possible higher level

modules such as Unix VPS and UFS, perform all

conversion of logical data addresses to physical data

addresses such as drive, head, track and sector

‘identification. NFS is specified in sun Hicrosystems,

Inc., "NFS: Network File System Protocol

Specification," RFC 1094 (March 1989), incorporated

herein by reference.

with the possible exception of the network layer,

all the protocol processing described above is done in

software, by a single processor in the host CPU card

10. That is, when an Ethernet packet arrives on

Ethernet 12, the host CPU 10 performs all the protocol

processing in the NFS stack, as well as the protocol

NetApp Ex. 1002, pg. 1524

-14-

processing for any other application which may be

running on the host 10. NFS procedures are run on the

host CPU 10, with access to memory 16 for both data

and program code being provided via HMO 11. Logically

specified data addresses are converted to a much more

physically specified form and communicated to the SMD-

disk controller 22 or the SCSI bus 28, via the VME bus

20, and all disk caching is done by the host CPU 10

through the memory 16. The host CPU card 10 also runs

procedures for performing various other functions of

the file server, communicating with tape controller 30

via the VME bus 20. Among these are clientedefined

remote procedures requested by client workstations.

If the server serves a second Ethernet 35, packets

from that Ethernet are transmitted to the host CPU 10

over the same VME bus 20 in the form of I? datagrems.

Again, all protocol processing except tor the network

layer is performed by software processes running on

the host CPU 10. In addition, the protocol processing

for any message that is to be sent from the server out

on either of the Ethernets 12 or 36 is also done by

processes running on the host CPU 10.

It can be seen that the host CPU 10 performs an

enormous amount of processing of data, especially if

S-10 clients on each of the two Bthernets are making

file server requests and need to be sent responses on

a frequent basis. The host CPU 10 runs a multitasking

Unix operating system, so each incoming request need

not wait for the previous request to be completely

processed and returned before being processed.

Multiple processes are activated on the host CPU 10

for performing different stages of the processing of

di ferent requests, so many requests may be in process

at the same time. But there is only one CPU on the

card 10, so the processing of these requests is not

accomplished in a truly parallel manner. The

NetApp Ex. 1002, pg. 1525

-15-

processes are instead merely time sliced. The CPU 10

therefore represents a major bottleneck in the

processing of file server requests.

Another bottleneck occurs in MMU 11, which must

transmit both instructions and data between the CPU

card 10 and the memory 16. All data flowing between

the disk drives and the network passes through this-

interface at least twice.

Yet another bottleneck can occur on the VHS bus 20,

which must transmit data among the SMD disk controller

22, the SCSI host adaptor 26, the host CPU card 10.

and possibly the network #2 controller 24.

PREFERRED EMQQDIMENE-QVERALL EARQWAEE Aggqgxgggggg

-- In Fig. Zsthere is shown a block diagram of a’

network file server 100 according to the invention.

It can include multiple network controller (NC)

boards, one or more file controller (PC) hoards, one

or more storage processor (SP) boards, multiple system

memory boards, and one or nore host processors. The

particular embodiment shown in Fig. 2 includes four

network controller boards 110a—1l0d, two file

controller boards 112a—ll2b, two storage processors

114a-114b, four system memory cards 116a-116d for a

total of 192MB of memory, and one local host processor

118. The boards 110, 112, 114, 116 and 118 are

connected together over a VME bus 120 on which an

enhanced block transfer mode as described in the

ENHANCED VMEBUS PROTOCOL application identified above

may be used. Each of the four network controllers 110

shown in Fig. 2 cant be connected to up to two

Ethernets 122, for a total capacity of 8 Ethernets

122a—122h. Each of the storage processors 114

operates ten parallel SCSI busses, nine of which can

each support up to three SCSI disk drives each. The

tenth SCSI channel on each of the storage processors

NetApp Ex. 1002, pg. 1526

-15-

l14_ is used for tape ‘drives and other SCSI

peripherals.

The host 118 is essentially a standard Sunos Unix

processor, providing all the standard sun Open Network

Computing (ONC) services except NFS and IP routing.

Importantly, all network requests to run a user-

defined procedure are passed to the host for

execution. Each of the NC boards 110, the PC-boards

ll2 and the SP boards 114 includes its own independent

32-bit microprocessor. These boards essentially off-

load from the host processor 118 virtually all of the

NFS and disk processing. Since the vast majority of

messages to and from clients over the Ethernets 122

involve NPS requests and responses, the processing of

these requests in parallel .hy the NC, PC and 59

processors, with minimal involvement by the local host

118, vastly improves file server performance. Unix

is explicitly eliminated from virtually all network,

file, and storage processing.

OFTWARE ORGANIZATION AND DATA FLOW

Prior to a detailed discussion of the. hardware

subsystems shown in Fig. 2, an overview of the

software structure will now be undertaken. The

software organization is described in more detail in

the above—identified application entitled MULTIPLE

FACILITY'OPERA?ING SYSTEM ARCHITECTURE. I

Most of the elements of the sottware are well known

in the field and are found in most networked Unix

systems, but there are two components which are not:

Local NPS ("LNFS") and the messaging kernel ("MK")

operating system kernel. These two components will be

explained first.

The Mesggggna Kernel. The various processors in

file server 100 communicate with each other through

the use of a messaging kernel running on each of the

NetApp Ex. 1002, pg. 1527

-17-

processors 110, 112, 114 and 118. These processors do

not share any instruction memory, so task~level

communication cannot occur via straightforward

procedure calls as it does in conventional Unix.

Instead, the messaging kernel-passes messages over VH3

bus 120 to accomplish all necessary inter-processor

communication. Message passing is preierred over

remote procedure calls for reasons of simplicity and

speed.

Messages passed by the messaging kernel have a

fixed 128-byte length. Within a single processor,

messages are sent by reference; between processors,

they are copied by the messaging kernel and then

delivered to the destination process by reference.

The..processors of iFig. 2 have special hardware,

discussed below, that can expediently exchange and

buffer inter-processor messaging kernel messages.

The LNF§ Lgcal NF§ interface. The 22-function X?

standard was specifically designed for stateless

operation using unreliable Communication. This means

that neither clients nor server can be sure if they

hear each other when they talk (unreliability). In

practice, an in an Ethernet environment, this works

well.

Within the server 100, however, NFS level datagrans

are also used for communication between processors, in

‘particular between the network controllers 110 and the

file controller 112, and between the host processor

118 and the file controller 112. For this internal

communication to be both efficient and convenient, it

is undesirable and impractical to have complete

statelessness or unreliable communications.

Consequently, a modified form of NFS, namely LNFS, is

used for internal communication of NFS requests and

responses. LNFS is used only 3133;; the file server

100; the external network protocol supported by the

NetApp Ex. 1002, pg. 1528

-18-

server is precisely standard, licensed NPS. LNFS is

described in more detail below.

The Network Controllers 110 each run an RPS server

which. after all protocol processing is done up to the

RPS layer, converts between external NFS requests and

responses and internal LNFS requests and responses.

For example, NFS requests arrive as RPC requests with

XDR and enclosed in a UDP datagran. After protocol

processing, the NFS server translates the NFS request

into LNFS form and uses the messaging kernel to send

the request to the file controller 112.

The file controller runs an LNFS server which

handles LNFS requests both from network controllers

and from the host 113. The LNFS server translates

LNFS requests to a form appropriate for a file system

server, also running on the file controller, which

manages the system memory file data cache through a

block I/O layer.

An overview of the software in each of the

processors will now be set forth.

Nggwgrk Qonfrgllgr 110

The optimized dataflou of the server 100 begins

with the intelligent network controller 110. This

processor receives Ethernet packets from client

workstations. It quickly identifies NPS-destined

packets and then performs full protocol processing on

them to the NFS level, passing the resulting LNFS

requests directly to the file controller 112. This

protocol processing includes IP routing and

reassembly, UDP demultiplexing, XDR decoding, and NFS

request dispatching. The reverse steps are used to

send an NFS reply back to a client. importantly,

these time-consuming activities are performed directly

in the Network Controller 110, not in the host 1181

NetApp Ex. 1002, pg. 1529

-19-

The server 100 uses conventional NFS ported from

Sun Microsystezs, Inc., Mountain View, CA, and is NFS

protocol compatible.

Non-NFS network traffic is passed directly to its

destination host processor 118.

The Ncs 110 also perform their own IP routing.

Each network controller 110 supports two fullya

parallel Ethernets. There are four network

controllers in the embodiment of the server 100 shown=

in Fig. 2, so that server can support up to eight

Ethernets. For the two Ethernets on the same network‘

controller 110, IP routing occurs completely withinl

the network controller and generates no backplaneT

traffic. Thus attaching two mutually active Ethernets

to the same controller not only minimizes their inter--

net transit time, but also significantly reduces

backplane contention on the VHS bus 120. Routing"

table updates are distributed to the network

controllers from the host processor 118, which runs

either the gated or routed Unix demon.

while the network controller described here is

designed for Ethernet LANs, it will be understood thatd

the invention can be used just as readily with other

network types, including FDDI.

F41 n r 11 r 1 2

In addition to dedicating a separate processor for

MP8 protocol processing and IP routing, the server 100

also dedicates a separate processor, the intelligent

file controller 112, to be responsible for all file

system processing. It uses conventional Berkeley Unix

4.3 file system code and uses a binary—compatible data

representation on disk. These two choices allow all

standard file systesr. utilities (particularly block-

level tools) to run unchanged.

NetApp Ex. 1002, pg. 1530

-20-

The file controller 112 runs the shared file system

used by all Ncs 110 and the host processor 118. Both

the Ncs and the host processor communicate with the

file controller 112 using the LNPS interface. The NCs

110 use LNFS as described above, while the--host

processor 118 uses LNFS as a plug-in module to SunOs's

standard Virtual File System ('VFS') interface.

when an NC receives an NFS read request from a

client workstation, the resulting LNFS request passes

to the PC 112. The PC 112 first searches the system

memory 116 buffer cache for the requested data. If

found, a reference to the buffer is returned to the NC

110. If not found, the LRU (least recently used)

cache buffer in system memory 116 is freed and

_reassigned for the. requested block. The PC then

directs the SP 114 to read the block into the cache

buffer from a disk drive array. when complete, the SP

so notifies the PC, which in turn notifies the NC 100.

The NC 110 then sends an NFS reply, with the data from

the buffer, back to the NFS client workstation out on

the network. Note that the SP 114 transfers the-data

into system memory 116, if necessary, and the NC 110

transferred the data from system memory 115 to the

networks. The process takes place without any

involvement of the host 118.

§_;_Qv-Egg D.»-Q.-g§sQ.—

The intelligent storage processor 114 manages all

disk and tape storage operations. while autonomous,

storage processors are primarily directed by the file

controller 112 to move file data between system memory

116 and the disk subsystem. The exclusion of both the

host 118 and the PC 112 from the actual data path

helps to supply the performance needed to service many

remote clients.

NetApp Ex. 1002, pg. 1531

-21-

Additionally, coordinated by a Server Manager in

the host 118, storage processor 114 can execute server

backup by moving data between the disk subsystem and

tape or other archival peripherals on the SCSI

channels. Further, if directly accessed by host

processor 118, SP 114 can provide a much higher

performance conventional disk interface for Unix,

virtual memory, and databases. In Unix nomenclature,

the host processor 118 can mount boot, storage swap,

and raw partitions via the storage processors 114.

Each storage processor 114 operates ten parallel,

fully synchronous SCSI channels (busses)

simultaneously. Nine of these channels support three

arrays of nine SCSI disk drives each, each drive in an

array being assigned to a different SCSI channel. The

tenth SCSI channel hosts up to seven tape and other

SCSI peripherals. In addition to performing reads and

writes, SP 14 performs device-level optimizations

such as disk seek queue sorting, directs device error

recovery, and controls DMA transfers be ween the

devices and system memory 115.

Hos: Pggcgssgr 118

The local host 118 has three main purposes: to run

Unix, to provide standard ONC network services for

clients, and to run a Server Manager. Since Unix and

ONC are ported from the standard Sunos Release 4 and

CNC Services Release 2, the server 100 can provide

identically compatible high-level ONC services such as

the Yellow ?ages, Lock Manager, DES Key Authenticator,

Auto Mounter, and P r: Mapper. Sun/2 Network disk

booting and more general IP internat services such as

Telnet, FTP, SMTP, SNMP, and reverse AR? are also

supported. Finally, print spoolers and similar Unix

demons operate transparently.

NetApp Ex. 1002, pg. 1532

-22-

The host processor 118 runs the following software

modules: ;'

f£§E.on§_sgQ3es layers. The Transport.“Afl

?rotocol (‘TC?'), which is-used for certa n

functions other than NFS, provides reliah "‘
-

communication between two processors. ‘Socfiet

to establish TCP connections. ' ,

~- The Virtual Pi-le -Asy-5.:-e __

interface is a standard SdnQs file syste;m

Et.paints a uniform filessystem picture E

standard N?S, LNFS, and any locaI.Unik-iii.

coexist harmoniously“ 7

‘ P Tn‘ rf =. The‘ Unix File
interface is the traditional ‘and wel

interface for comnunication with~ ’
processor disk drives. In the_server Idla

to occasionally ‘mount storage '§rocessor' Go

directly, without going through the filefcofltr,

112. Normall , the host l1B uses LNFSH and~{
through the file controller. _ ‘

Device lever. The ‘device layer is a standa4‘
software interface between the Unix device model 3‘ V’
different physical device implementations. In‘: er?

server 100, disk devices are not attached to hos

processors directly, so the disk drive: in the host s“

device layer uses the messaging kernel to communicate

with the storage processor 114. e_‘

Route and Port Manger Demons. The Route and ?ortT

Mapper demons are Unix user-level background processes

that maintain the Route and Port databases for packet

routing. They are mostly inactive and not in any

performance path.

v=1 w V=o 13 A- n‘? ‘i n D m n. The Yellow

Pages and Authentication services are Sun-ONC standard

NetApp Ex. 1002, pg. 1533

-23-

network services. Yellow Pages is a_ widely used

multipurpose name-to-name directory lockup service.

The Authentication service uses cryptographic ‘keys to

authenticate, or validate, requests to insure that

requestors have the proper privileges for any actions

or data they desire. I

fiegver Manager. The Server Manager is«Zan;‘”

administrative application suite that controls

configuration, logs error and performance repo:ts,.ando?‘

provides a monitoring and tuning interface'fd: the’

system administrator. These functions can‘ be_

exercised from either system console connected to théf

host 118. or from a system administrator'sQ.?~
workstation.

_ The host processor 118 is a conventional OEM1sun. '

central processor card, Model 3E/120, It incorporatesg;

a Motorola 68020 microprocessor and 4MB of on—board

memory. other processors, such as a SPARC—based

processor, are also possible.

The structure and operation of each of the hardware

components of server 100 will now be described in

detail.

NETW RK C V“ OLLER HARDWARE R HITECT RE

Fig. 3 is a block diagram showing the data path and

"some control paths for an illustrative one of the

network controllers 110a. It comprises a 20 MHz 68020

microprocessor 210 connected to a 32-bit

microprocessor data bus 212. Also connected to the

microprocessor data bus 212 is a 256K byte CPU memory

214. The low order 8 bits of the microprocessor data

bus 212 are connected through a bidirectional buffer

216 to an 8-bit slow-speed data bus 218. On the slow-

speed data bus 218 is a 126K byte EPROH 220, a 32 byte

PROM 222, and a multi-function peripheral (MFP) 224-

The EPROM 220 contains boot code for the network

NetApp Ex. 1002, pg. 1534

-24-

controller 110a. while the PROM 222 stores var:gus:«

operating parameters such as the Ethernet addresse
assigned to each-of the tyo Ethernet-interface?

board. Ethernet address information is read into h
correspondingx interface :control- hlock _""
memory 2lfi=during.initialization,“;
-Motorola 5890i} and performs“various local fuflc
’such-as tining; interrupts; and general fiurpo

ThefRPP‘i24 also inc1udes“a‘U§fiT_for=interfacin
.RS2'§.32:}{por_t 2256. « .‘I‘h-e_'.s"e :1functi:c>n’s'._arejnot crfi" .
the inventionl and will_ not :be -further_?de5c
herein. _4 A‘ ‘ J A ‘d H -1 V _d"

The low order 15 bits of the microprocess r‘da
bus 212, are -also ’Eoupiea hthrough va'*b¢as£e;;;pg
1;.u»r:.e: 230 to ca '1'5gb1: ‘.LAl§!..d_ataZ;b7u's-. 23.2.;
controller chip 234, such as the Am79§O Llfiéfi ft? d
controller manufactured by-AdvanceddMicro.fiey
Inc. Sunnyvale, CA., interfaces the iAN data yfié
with the first Ethernet 122a shown in Fig. 2; Eéaagi
and data for the LAN controller 234.are stored in

312K byte LAN memory 236, which is also connected to

the LAN data bus 232'. A specialized is to 32_- 1523.:-‘. ?,z'~7‘jI_fo
chip 240, referred to-herein as a parity FIFO-thipsifi
described below, is also connected to the LAN datafhusfi“

232. Also connected to the LAN data bus 232 :s_a fiAN“
DMA controller 242, which controls movements of":

packets of data between the LAN memory 236 and the."

FIFO chip 240. The LAN DMA controller 242 may be‘aL 3

Motorola M53440 DMA controller using channel zero

only.

The second Ethernet 122b shown in Fig. 2 connects

to a second LAN data bus 252 on the network controller

card 110a shown in Fig. 3. The LAN data bus 252

connects to the low order 16 bits of the

microprocessor data bus 212 via a bidirectional buffer

250, and has similar components to those appearing on

NetApp Ex. 1002, pg. 1535

>25-

the LAN data bus 232. In particular, a LAN controller

254 interfaces the LAN data bus 252 with the Ethernet

122b, using LAN memory 256 for data and control,-and

a LAN DMA controller 252 controls DNA transfer of data

between the LAN memory 256 and the 16-bit wide data

port A of the parity FIFO 260.

The low order 16 bits of microprocessor data bus

212 are also-connected directly to another parity FIFO;

270, and also to a control port of a VHE/FIFO DMA

controller 272. The FlFO 270 is used for passing

messages between the CPU memory 214 and one of the“;

remote boards 110, 112, 114, 115 or 116 (Fig. 2) in a

manner described below. The VME/FIFO DMA controller

272, which supports three round-robin non—prioritized

channels for copying data, controls all data transfers

between one of the remote boards and any of the FIFOS

240, 260 or 270, as well as between the FZFOS 2¢O and

260.

32-bit data bus 274, which is connected to the 32-

bit port 3 of each of the FEFOS 240, 260 and 270, is

the data bus over-which these transfers take place.

Data bus 274 communicates with a local 32-bit bus 276

via a bidirectional pipelining latch 278, which is

also controlled by VHS/FIFO DMA controller 727, which

in turn communicates with the VME bus 120 via a

bidirectional buffer 280.

The local data bus 276 is also connected to a set

of control registers 282, which are directly

addressable across the VME bus 120. The registers 282

are used mostly for system initialization and

diagnostics.

The local data bus 276 is also coupled to the

microprocessor data bus 212 via a bidirectional buffer

284. when the NC 110a operates in slave mode, the CPU

memory 214 is directly addressable from VME bus 120.

one of the remote boards can copy data directly from

NetApp Ex. 1002, pg. 1536

-25-

the QPU memory 214 via the bidirectional buffer 284.

LAN memories 236 and 256 are not directly addressed
Aover VME bus 120.

The parity FIFOs 240, 260 and 270 each consist of

an ASIC, the functions and operation of which are

described in the Appendix. The FIFOs 240 and 260 are

configured for packet data transfer and the FIFO 270

is configured for massage passing. Referring to the

Appendix, the FIFOs 240 and 260 are programmed with

the following bit settings in the Data ‘Transfer

Configuration Register:

g_1_; . ogsinggigg ¢p -'.m;~

WD Mode N/A

Parity Chip N/A

Parity Correct Mode N/A

8/16 bits CPU & Porth interface 15 bits(1)

Invert Port A address 0 no (0)

Invert Port A address 1 yes (1)

Checksum Carry wrap yes (1)

Reset no (0)

The Data Transfer Control Register is programmed as
follows:

E’- Qgfiinigign Setting

Enable PortA Reg/Ack yes (1)

Enable Porta Req/Ack yes (1)

Data Transfer Direction (as desired)

CPU parity enable no (0)

Porth parity enable no (0)

PortB parity enable no (0)

Checksum Enable yes (1)
\lOlU|-ISUJBJI-C)

PortA Master yes (1)

Unlike the configuration used on FIPOS 240 and

260, the microprocessor 210 is responsible for loading

and unloading Port A directly. The microprocessor 210

reads an entire 32-bit word from port A with a single

instruction using two port A access cycles. Port A

NetApp Ex. 1002, pg. 1537

-27-

data.transfer is disabled by unsetting bits 0 [Enable

PortA' Req/Ack) and 7 (Porth Master) of the Data

Transfer Control Register.

The remainder of the control settings in FIFO 270

are the same as those in FIPOs 240 and 260 described
above.

The NC 110a also includes a command FIFO 290.. The
command FIFO 290 includes an input port coupled to the;

local data bus 276, and which is directly addressable“

across the VHS bus 120, and includes an output portt

connected to the microprocessor data bus 212. As

explained in more detail below, when one of the-remotef

boards issues a command or response to the NC 110a;Iith

does so by directly writing-a 1-word (32-bit) messaged
descriptor.into NC 110a's command.£IFO 290. command.

FIFO 290 generates a ‘FIFO not empty‘ status to the

microprocessor 210, which then reads the message

descriptor off the top of FIFO 290 and processes it.

"If the message is a command, then it includes a VME

address at which the message is located (presumably an

address in a shared memory similar to 214 on one of

the remote boards). The microprocessor 210 then

programs the FIFO 270 and the VME/FIFO DEA controller

272 to copy the message from the remote location into

the CPU memory 214.

command FIFO 290 is a conventional two-port FIFO,

except that additional circuitry is included for

generating a Bus Error signal on VH2 bus 120 if an

attempt is made to write to the data input port while

the FIFO is full. Command FI?O 290 has space for 256
entries.

A noteworthy feature of the architecture of NC 110a

is that the LAN buses 232 and 252 are independent of

the microprocessor data bus 212. Data packets being

routed to or from an Ethernet are stored in LAN memory

235 on the LAN data bus 232 (or 256 on the LAN data

NetApp Ex. 1002, pg. 1538

-23-

_bus 252), and not in the’ CPU memory 214. Data
transfer between the LAN memories 236 and 256 and the

Ethernets 1223 and 122b, are controlled by- LAN

controllers 234 and 254, respectively, while most data

transfer between LAN memory 236 or 256 and a remote

port on the VHS bus 120 are controlled by LAN DMK

controllers 242 and 262, 'FIFO5 240 and 260, "and

VME/FIFO DMA controller 272. An exception to this
rule occurs when the size of the data transfer.is

small, e.g., less than— 64 bytes, in which case”

microprocessor 210 copies it directly without using

DMA. The microprocessor 210 is not involved in larger

transfers except in initiating them and in receiving

notification when they are complete.

.3 , The CPU memory 214 contains mostly instructions for

microprocessor 210, messages being transmitted to or

from a remote board via FIFO 270, and various data

blocks for controlling the FIFOs, the DMA controllers

and the LAN controllers. The microprocessor‘ 210

accesses the data packets in the LAN memories 236 and

256 by directly, addressing them through the

bidirectional buffers 230 and 250, respectively. for

protocol processing. The local high—speed static RAM

in CPU memory 214 can therefore provide zero wait

state memory access for microprocessor 210 independent

of network traffic. This is in sharp contrast to the

prior art architecture shown in Fig. 1, in which all

data and data packets, as well as microprocessor

instructions for host CPU card 10, reside in the

memory 16 and must communicate with the host CPU card

10 via the MMU 11.

While the LAN data buses 232 and 252 are shown as

separate buses in Fig. 3, it will be cnderstood that

they may instead be implemented as a single combined

bus.

NetApp Ex. 1002, pg. 1539

-29-

'r- , 7

In operation, when one of the LAN controllers (such

es 234) teceives a packet of information over its

Ethernet 122a, it reads in the entire packet and

stores it in corresponding LAN memory 235. The LAN

controller 234 then issues an interrupt to

microprocessor 210 via MP? 224, and the microprocessor

210~examines the status register on LAN controller 234

(via bidirectional buffer 230) to determine that-the

event causing’ the interrupt was a “receive packet

completed." In order to avoid a potential lockout of

the second Ethernet 122b caused by the prioritized

interrupt handling characteristic of MP? 224, the

microprocessor 210 does not at this time inmediatelyt

_prqcess the received packet; instead, such processing

is scheduled for a polling function.

When the polling function reaches the processing of

the received packet, control over the packet is passedf

to a software link level receive module. The link

level receive module then decodes the packet according

to either of two different frame formats: standard

Ethernet format or SNAP (IEEE 802 LCC) format. An:

entry in the header in the packet specifies which

frame format was used. The link level driver then

determines which of three types of messages is

contained in the received packet: (ll IP, (2) AR?

packets which can be handled by a local ARP module, or

(3) AR? packets and other packet types which must be

forwarded to the local host 118 (Fig. 2} for

processing- If the packet is an AR? packet which can

be handled by the NC 110a, such as a request for the

address of server 100, then the microprocessor 210

assembles a response packet in LAN memory 236 and, in

a conventional manner, causes LAN controller 234 to

transmit that packet back over Ethernet 1223. It is

noteworthy that the data manipulation for

NetApp Ex. 1002, pg. 1540

-30-

accomplishing this task is performed almost completely

in LAN memory 235, directly addressed ‘by

microprocessor 210 as controlled by instructions in¢

CPU memory 214. ‘The function is accomplished7 5

without generating any traffic on the VME“bacKplgnéf?”v
120 at all, and without disturbing the lgcailhag

:5 she received packet is either an en
which cannot be processed-completely*in tneihj
or is anotner;t§pe~of“packetnwnichfirequirespd
es the Aocal}nost:ll8 ksu¢n[a:~a£¢1ien:=ré§§é5t
the server lbbito execnte ;rqi:eh£4aé£1nea egg éd
tfienl the microprocessor 721o7?§:¢§rems' .‘ Z
conrro1ler:r421to‘loed'the;peckete£ron*LAN§m.mor
:n:¢7rzPon24Q;.p£o§£amsiPrFo;24o§wfcn‘theidigééil
data%trans£er;5andUprograms-bMA«controllerf$1§:tol
the packet ofit of.PlFO 240 and across the Vfié Bus
into system .memory' llsli J"1n‘?partic&ler
microprocessor? 210' first ,P¥°9fé“5 ‘hay

contro1ler‘2i2-witfi3che=starting'address‘andil"ngt:
the packet -ln- LAE memory‘ 236, and programs .

FIFO is ready to receive_deta. second, microprocessor

210 programs the VHS/FIFO DMA controller 272?wrthf£n

destination address in system. memory 1163 and” '

‘length of the data packet, and instructs ftn_
controller to begin transferring data from port ‘“”

the FIFO 25o onto vms bus 120. Finally,

microprocessor 210 programs FIFO 240 with

direction of the transfer to take place. The transfer $3

then proceeds entirely under the control of BN3

controllers 242 and 272, without any fnrtner

involvement by microprocessor 210.

The microprocessor 210 then sends a message to host

118 that a packet is available at a specified system

memory address. The microprocessor 210 sends such a

NetApp Ex. 1002, pg. 1541

-31-

message by writing a message descriptor to a software-

emulated command FIFO on the host. which copies the

message from CPU memory 214 on the NC via buffier 284

and into the host's local memory, in ordinary VME

block-transfer mode. The host then copies the packet

from system memory 116 into the host's own local

memory using ordinary VME transfers.

If the packet received by NC 110a from the network

is an IP packet, then the microprocessor 210

determines whether it is (1) an IP packet for the

server 100 which is not an NFS packet; (23 ‘an IP

packet to be routed to a different network; or (3) an

NES packet. If it is an IP packet for the server 100.

but not an NFS packet, then the microprocessor 210

'_causes‘_the packet_to be transmitted from the LAN

memory 235 to the host 118 in the same manner

described above with respect to certain AR? packets.

If the IP packet is not intended for the server

100, but rather is to be routed to a client on a

different network, then the packet is copied into the

LAN memory associated with the Ethernet to which the

destination client is connected. If the destination’

client is on the Ethernet 122b, which is on the same

NC board as the source Ethernet 122a, then the

microprocessor 210 causes the packet to be copied from

LAN memory 236 into LAN 256 and then causes LAN

controller 254 to transmit it over Ethernet !22b. (Of

course, if the two LAX data buses 232 and 252 are

combined, then copying would be unnecessary; the

microprocessor 210 would simply cause the LAN

controller 254 to read the packet out of the same

locations in LAN memory to which the packet was

written by LAN controller 234.)

The copying of a packet from LAN memory 236 to LAN

memory 256 takes place similarly to the copying

described above from LAN memory to system memory. For

NetApp Ex. 1002, pg. 1542

-32-

transfer sizes of 64 bytes or more, the microprocessor

210 first programs the LAN DMA controller 242 with the

starting address and length of the packet in LAN

memory 236, and programs the controller to begin

transferring-data from-the LAN memory 236 into port A

of parity FIFO 240 as soon as the FIFO is ready to

receive data. Second. microprocessor 210 programs the

LAN mm controller 252 with a destination address in
LAN memory 256 and the length of the data packet, and

instructs that controller to transfer data from parity

FIFO 260 into the LAN memory 256. Third,

microprocessor 210' programs the VME/FIFO DME

controller 272 to clock words of data out of port B-of

the FIFO 240, over the data bus 274, and into port 8’

of FIFO 260. Finally, the microprocessor 210 programs

the two FIFOs 240 and 260 with the direction of the

transfer to take place. The transfer then proceeds

entirely under the control of DNA controllers 242, 262

and 272, without any further involvement by the

microprocessor 220. Like the copying from LAN memory

to system memory, if the transfer size is smaller than

64 bytes, the microprocessor 210 performs the transfer

directly, without DMA.

when each of the LAN DMA controllers 242 and 262

complete their work, they so notify microprocessor 210

by a respective interrupt provided through MP? 224.

when the microprocessor- 210 has received both

interrupts, it programs LAR controller 254 to transmit

the packet on the Ethernet 122b in a conventional
manner.

Thus, IP routing between the two Ethernets in a

single network controller 110 takes place over data

bus 274, generating no traffic over VHS bus 120. Nor

is the host processor 118 disturbed for such routing,

in contrast to the prior art architecture of Fig. 1.

Moreover, all but the shortest copying work is
_,.

NetApp Ex. 1002, pg. 1543

-33-

performed by controllers outside microprocessbr.21b;

requiring the involvement of the microprocesso”

and bus traifiic on nicroprocessor«&ata.ons;2i*
for the supervisory fanctions of progzamaxgg the»
controllers and the parity§EIFOs and instrfi 7
to begin. . —The vuékéiso;.oMA'_é6h€ro1iér

» programmed ’ by 'l6a§in§Aj.ccntrol' register
microprocessor data bps ZI25 the LKfi7DHAf _”‘
242p and .262 -are _prooranneo‘ hy_€loao noi
registers onl the ':¢gpe¢t:§e ;¢ohtrollers
mi¢roprocessor"datatbus.212g‘respective7hi§
buffers 230 and 25D} and respectifie L§N=dat‘ h
ah55 2§2,' and .the parity :fiFOs:'Z30’~ano’ 2

.§rogrammed as s¢e*z¢;:h~;n the Agpgnaix,

If the destination worKstation§of3theAl7“

-be routed is ch-an Ethernet:connectefi'to~‘
one of the network controllers 110, then thefi
copiea into the appropriate Lkuxmemoryion the gig
to which.that Ethernet is connectefi. ’

memory 116, in the manner described above with reép
to certain ARP packets, and then notiiyingi”

destination RC that a packet is avai1abte:"fihen%an.NC
is so notified, it programs its own parity FIFO“j fl
DMA controllers to copy the packet from system mefiory
116 into the appropriate LAN memory. It is natefiazr '

that though this type of IP routing does create VE$5h

bus traffic, it still does not involve the host C§uf=
118.

If the IP packet received over the Ethernet 122a]

and now stored in LAN memory 236 is an NFS packetu

intended for the server 100. then the microprocessor

210 performs all necessary protocol preprocessing to

extract the NPS message and convert it to the local

NPS (LNFS) format. This may well involve the logical

concatenation of data extracted from a large number of._ . . V.¢ .¢

NetApp Ex. 1002, pg. 1544

-3g_

individual IP packets stored" in LA-N memo-ry 42135,“

resulting in a linked list, in CPU ‘memory-_v

pointing to the difserenc-blocks or data in fi§&.aeab:y fi.'.¢

2:36’ in the correct sequence., _ _ , _

The exact detail-s ‘of the .for1A'ua;tj.@-fpar
important. for an x_1_nderstiandin_g-'.of"::the ‘inv Iitio
‘ex'_cept~ to note-"that it includes comziiands to‘i>;;ia'Si-not
a.'.j_d_irec_t.ory of file's"§_#hich'Aareigstored on‘ d"
a‘tt;a"‘ched7-to the s-tora‘<’;‘e~:.._pAroce‘sso<rs "1'V1-§:. ‘configand:
reading and writing _d’a_‘ta, to“v"alnd“i from a
di‘s):s., and "various, c‘onfig:ura'tion"- _
d-‘i‘a9?nost‘ics control. .‘meS:'vsa§e'§’E‘ b ; A'‘'.rr:‘?‘(‘-’U.'
maintenance commands .which'j:".are-"supp.or~ted V
include the eorigwing.messagesfhaéea{bn.co§venE16
NFS: "get a.t-‘tributes’ T-of «file
attributes of a file '(ssrATTh); look *¢piga}iE
(LOOKUP); ‘created a file ("C2lZI-'.“AT‘l-Zr)‘; ‘.remo%}7e7 a'.,f.x er

{REMOVE} ;» rename a file (Remus); c‘rea.t-,ed' a:‘nef__€w
file tniux); create‘ a synlink (syMrrNri{';£en§v
directory (RMDIR); and return .fi.'le- system st5a=ti’sti:c_;s,

(STATFS). The data transfer commands zsupportedifii
LNFS include read from a file (-READ’); write to a

ywazray; read from a directory (READDIR); aha reaa”a*

link tasanrzux). LNFS also supports a buffer-release’

command (RELEASE), for notifying the file control-;l.er_' _

‘that an NC is finished using a specified buff-er.
‘system memory. It also supports ‘a VOP—derived acc-‘e'ss-W*=._-

command, for determining whether a given type acciesfs

is legal for specified credential on a specified file.

If the LNFS request includes the writing of file.

data from the LAN memory 236 todisk, the NC 11o'a

first requests a buffer in system memory 116 to be

allocated by the appropriate PC 112. when a pointer

to the buffer is returned, microprocessor 210 programs

LAN DMA controller 242, parity FIFO 240 and VME:/PI:-‘O

DEA controller 272 to transmit the entire block of

NetApp Ex. 1002, pg. 1545

-35-

file_data to system memory 116. The only difference

between this transfer and the transfer described above

for transmitting EP packets and AR? packets to system

memory 116 is that these data blocks will typically

have portions scattered throughout LAN memory 235-

The microprocessor 210 accommodates that situation by

programming LAN DNA controller 242 successively forp»

each portion of the data, in accordance with the‘

linked list, after receiving notification that the

previous portion is complete. The microprocessor 2ro;.a

can program the parity FIFO 240 and the VME/FlF0-DMA

controller 272 once for the entire message, as long asrN

the entire data block is to be placed contiguously in

system memory 116. If it is not, then the 2

microprocessor 210 can program the=DMA controller 272 -

for successive blocks in the same manner LAN DMA

controller 242.

If the network controller lloa receives a message"

from another processor in server 100, usually from

file controller 112, that file data is available in

system memory 116 for transmission on one of the

Ethernets, for example Ethernet 122a, then the network

controller 110a copies the file data into LAN memory

236 in a manner similar to the copying of file data in

the opposite direction. In particular, the

microprocessor 210 first programs VME/FIFO DMA

controller 272 with the starting address and length of

the data in system memory 116, and programs the

controller to begin transferring data over the VME bus

126 into port 3 of parity FIFO 240 as soon as the FIFO

is ready to receive data. The microprocessor 210 then

programs the LAN DMA controller 242 with a destination

address in LAN memory 236 and then length of the file

data, and instructs that controller to transfer data

from the parity FIFO 240 into the LAN memory 236.

Third, microprocessor 210 programs the parity FIFO 240.. - I .-_c

NetApp Ex. 1002, pg. 1546

-35-

vith_the direction of the transfer to take place. The

transfer then proceeds entirely under the control of

DNA controllers 242 and 272, without any further

involvement by the microprocessor 210. Again, if the

file data is scattered in multiple blocks in system

memory 116, the microprocessor 210 programs= the _
VME/FIFO DMA controller 272 with a linked list of the

blocks to transfer in the proper order.

When each of the DNA controllers 242 and 2i2

complete their work, they so notify microprocessor 210-‘

through MP? 224. The microprocessor 210 then-performs

all necessary protocol processing on the LNPS message ~

in LAN memory 236 in order to prepare the messageflfor:
transmission over the Ethernet 1223 in the form of

Ethernet :IP packets..‘ As set forth above, this

protocol processing is performed entirely in network

controller 110a, without any involvement of the local
host 118.

It should‘ be noted that the parity FI?Os are

designed to move multiples of 128-byte blocks most

efficiently. The data transfer size through port 3 is

always 32-bits wide, and the VMB address corresponding

to the 32-bit data must be quad-byte aligned. The

data transfer size for port A can be either 8 or 16

bits. For bus utilization reasons, it is set to 16

bits when the corresponding local start address is

double-byte aligned, and is set at 8 bits otherwise.

The TCP/I? checksum is always computed in the 16 bit

mode. Therefore, the checksum word requires byte

swapping if the local start address is not double-

byte aligned.

Accordingly, for transfer from port 3 to port A of

any of the FIFOs 240, 250 or 270, the microprocessor

210 programs the VME/FIFO DMA controller to pad the

transfer count to the next 128-byte boundary. The

extra 32-bit word transfers do not involve the VHS

NetApp Ex. 1002, pg. 1547

-37-I

bus;.and only the desired number of 32-bit.words.wffl '

he udloeded-from port A. _ ’_ M

.Fqr firafisfersffirou port A to-port B of t$eE§”'
FIFOf270,-fheguicroprocessor 2lO‘loads}por§“Af‘
byfifiord and forces a”F1PO'£ull7iodicetiooiwhedy

from¢§or;.s,VrTfie‘ssuelfirocedureselsovrsfeshfill
:£3fi;£§;;s;:¢m'pqrfisxltc.p6r£i§i¢ff§1thefi
¢eg£§ygg;t9§}:£o’5r.2§6;~s;nce1Era§s£eglT¢g-£éwg
i2§%by§es£a£e;pé:§o;aeafifig¢§:;1oc§i7fi;¢§§pg‘
cofi£roi.r§;fier tfiau~undefi the coufirof of ign
confiroller gig or.2o2§. For fill o§.rfie ff‘
‘VME[?IfO5$MAucodtroller'is.pro§rafimed go ufilo
the de§r:ea;nu¢b¢:;o£=32§bit gander"

'feow$R
.The1 file’ controllers. (fic);iir2"gmg§" geese

standard off>the¥s&el£~microprocessor3board;;sqcB
-one‘ manuéacpured by--Motorola"Ific; ‘éref

However, a more specialized board is used such7 Jo:
shown in block diagram-form‘in Fig;‘4.= V

Fig. 4 shows one of the RC5 112a.'and it;Q#ir

understood that the other PC can be.idenci¢e

many aspects it is simply a scaled-down versiofifiofl
NC 1103 shown in Pig. 3, and in some respects ifs

scaled up.‘ Like the NC 110a, FC 112a comfirtseslég.
20MHz 68020 microprocessor 310 connected to a 32€$.§r
microprocessor data bus 312. Also connected to the

microprocessor data bus 312 is a 256K byte shared_¢é

memory 314. The low order 8 bits‘ o£~ tHe.5¢ .
microprocessor data bus 312 are connected through.£Hfi;

bidirectional buffer 316 to an 8-bit slow-speed data“?

bus 318. on s1ow—speed data bus 318 are a 128K_byte'

PROM 320, and a multifunction peripheral (M?-) 324-

The functions of the PROM 320 and MFP 324 are the same

as those described above with respect to epaon 220 and

NetApp Ex. 1002, pg. 1548

-33-

MP? 224 on EC 110a. FC 112a does not include PROM

like the PROM 222 on NC Jlaa, but does include a

parallel port 392. The parallel port 392 is mainly

for testing and diagnostics.

Like the'NC 1103, the so 112a is connected to the

VME bus 120 via a bidirectional buffer 380 and a 32-

bit local data bus 376. A set of control registers

3&2 are connected to the local data bus 376, and; _
directly addressable across the was bus 120. The. 5

local data bus 375 is also coupled to 'theVV
microprocessor data bus 312 via a bidirectional buffer.”

3&4. This permits the direct addressability of CPU

memory 314 from VME bus 120.

rc 112a also includes a command use 390., which-.~

15 2 - rncludes an input porttcoupled to the local data bus

376 and which is directly addressable across the VME *-

bus 120; The command FIFO 390 also includes an outgut

port connected to the microprocessor data bus 312.

The structure, operation and purpose of command FIFO

390 are the same as those described above with respect

to command use 290 on NC 110a.

The PC 112a omits the LAN data buses 323 and 352

which are present in NC 110a, but instead includes a

4 megabyte 32-bit wide PC memory 396 coupled to the

microprocessor data bus 312 via a bidirectional buffer

394. As will be seen, EC memory 395 is used as a

cache memory for file control information, separate

from the file data information cached in system memory
116.

The file controller embodiment shown in Fig. 4 does

not include any DMA controllers, and hence cannot act

as a master for transmitting or receiving data in any

block transfer mode. over the VME bus 120. Block

transfers do occur with the C?U memory 314 and the EC

memory 395, however, with the PC 112a acting as an VME

bus slave. In such transfers, the remote master

NetApp Ex. 1002, pg. 1549

-39-

addresses the CPU memory 314 or the FC memory 396

directly over -the VHS bus 120 through the

bidirectional buffers 384 and, if appropriate, 394.

 H9H

The purpose of the FC 112a is basically to provide

virtual file system services in response to requests.

provided in LNFS format by remote processors on the

VME bus 120. Most requests will come from a network

controller 110, but requests may also come from the*fi3

local host 118.

The file related commands supported by LNFS are

identified above. They are all specified to the FC

1123 in terms of logically identified disk data

blocks. For example,nthe:LNFS command for reading

data from a file includes a specification of the file

from which to read (file system ID LFSID) and file ID

(inode)), a byte offset, and a count of the number of

bytes to read. The PC 112a converts that

identification into physical form, namely disk and

sector numbers, in order to satisfy the command.

The FC 112a runs a conventional Past File System

(FPS or UPS), which is based on the Berkeley 4.3 VAX

release. This code performs the conversion and also

performs all disk data caching and control data

caching. However, as previously mentioned, control

data caching is performed using the PC memory 396 on

PC 112a, whereas disk data caching is performed using

the system memory 116 (Fig. 2). Caching this file

control information within the PC 112a avoids the VME

bus congestion and speed degradation which would

result if file control information was cached in

system memory 116. The memory on the PC 112a is

directly accessed over the VHS bus 120 for three main

purposes. First, and by far the most frequent, are

accesses to SC memory 396 by an S9 114 to read or

NetApp Ex. 1002, pg. 1550

-40-

write cached file control information. These are

accesses requested by PC 112a to write locally

modified file control structures through to disk, or

to read file control structures from disk. second,

the FC's CPU memory 314 is accessed directly by other

processors for message transmissions from the FC'l1ia

to such other processors. For example, if a data

block in system memory is to be transferred to an S?

114 for writing to disk, the PC 112a first assemblesW

.a message in its local memory 314 requesting such a

transfer. The sc 112a then notifies the s2 :14, which

copies the message directly from the CPU memory 314

and executes the requested transfer.

A third type of direct access to the FC"s local

memory occurs when an LNPS client reads-directory"'

entries. when FC 112a receives an LNFS request to

read directory entries, the FC 112a formats the.

requested directory entries in PC memory 396 and

notifies the requester of their location. The

requester than directly accesses PC memory 396 to read
the entries.

The version of the UPS code on PC 112a includes

some modifications in order to separate the two

caches. In particular, two sets of buffer headers are

maintained, one for the FC memory 395 and one for the

system memory 116. Additionally, a second set of the

system buffer routines (GET8LK(), BRELS£(), 3READ(),

BWRITE(), and BREADA()) exist, one for buffer accesses

to FC Mem 396 and one for buffer accesses to system

memory 116. The UPS code is further modified to call

the appropriate buffer routines for PC memory 396 for

accesses to file control information, and to call the

appropriate buffer routines for the system memory 11

for the caching of disk data. A description of B

may be found in chapters 2, E, 7 and B of ‘Kernel

tructure and Flow,‘ by Rieken and Webb of .sh

NetApp Ex. 1002, pg. 1551

NetApp Ex. 1002, pg. 1552

NetApp Ex. 1002, pg. 1553

NetApp Ex. 1002, pg. 1554

NetApp Ex. 1002, pg. 1555

NetApp Ex. 1002, pg. 1556

NetApp Ex. 1002, pg. 1557

NetApp Ex. 1002, pg. 1558

NetApp Ex. 1002, pg. 1559

NetApp Ex. 1002, pg. 1560

NetApp Ex. 1002, pg. 1561

NetApp Ex. 1002, pg. 1562

NetApp Ex. 1002, pg. 1563

NetApp Ex. 1002, pg. 1564

NetApp Ex. 1002, pg. 1565

NetApp Ex. 1002, pg. 1566

NetApp Ex. 1002, pg. 1567

NetApp Ex. 1002, pg. 1568

NetApp Ex. 1002, pg. 1569

NetApp Ex. 1002, pg. 1570

NetApp Ex. 1002, pg. 1571

NetApp Ex. 1002, pg. 1572

NetApp Ex. 1002, pg. 1573

NetApp Ex. 1002, pg. 1574

NetApp Ex. 1002, pg. 1575

NetApp Ex. 1002, pg. 1576

NetApp Ex. 1002, pg. 1577

NetApp Ex. 1002, pg. 1578

NetApp Ex. 1002, pg. 1579

NetApp Ex. 1002, pg. 1580

NetApp Ex. 1002, pg. 1581

NetApp Ex. 1002, pg. 1582

NetApp Ex. 1002, pg. 1583

NetApp Ex. 1002, pg. 1584

NetApp Ex. 1002, pg. 1585

NetApp Ex. 1002, pg. 1586

NetApp Ex. 1002, pg. 1587

NetApp Ex. 1002, pg. 1588

NetApp Ex. 1002, pg. 1589

NetApp Ex. 1002, pg. 1590

NetApp Ex. 1002, pg. 1591

NetApp Ex. 1002, pg. 1592

NetApp Ex. 1002, pg. 1593

NetApp Ex. 1002, pg. 1594

NetApp Ex. 1002, pg. 1595

NetApp Ex. 1002, pg. 1596

NetApp Ex. 1002, pg. 1597

NetApp Ex. 1002, pg. 1598

NetApp Ex. 1002, pg. 1599

NetApp Ex. 1002, pg. 1600

NetApp Ex. 1002, pg. 1601

NetApp Ex. 1002, pg. 1602

NetApp Ex. 1002, pg. 1603

NetApp Ex. 1002, pg. 1604

NetApp Ex. 1002, pg. 1605

NetApp Ex. 1002, pg. 1606

NetApp Ex. 1002, pg. 1607

NetApp Ex. 1002, pg. 1608

NetApp Ex. 1002, pg. 1609

NetApp Ex. 1002, pg. 1610

NetApp Ex. 1002, pg. 1611

NetApp Ex. 1002, pg. 1612

NetApp Ex. 1002, pg. 1613

NetApp Ex. 1002, pg. 1614

NetApp Ex. 1002, pg. 1615

NetApp Ex. 1002, pg. 1616

NetApp Ex. 1002, pg. 1617

NetApp Ex. 1002, pg. 1618

NetApp Ex. 1002, pg. 1619

NetApp Ex. 1002, pg. 1620

NetApp Ex. 1002, pg. 1621

NetApp Ex. 1002, pg. 1622

NetApp Ex. 1002, pg. 1623

NetApp Ex. 1002, pg. 1624

NetApp Ex. 1002, pg. 1625

NetApp Ex. 1002, pg. 1626

NetApp Ex. 1002, pg. 1627

NetApp Ex. 1002, pg. 1628

NetApp Ex. 1002, pg. 1629

NetApp Ex. 1002, pg. 1630

NetApp Ex. 1002, pg. 1631

NetApp Ex. 1002, pg. 1632

NetApp Ex. 1002, pg. 1633

NetApp Ex. 1002, pg. 1634

NetApp Ex. 1002, pg. 1635

NetApp Ex. 1002, pg. 1636

NetApp Ex. 1002, pg. 1637

NetApp Ex. 1002, pg. 1638

NetApp Ex. 1002, pg. 1639

NetApp Ex. 1002, pg. 1640

NetApp Ex. 1002, pg. 1641

NetApp Ex. 1002, pg. 1642

NetApp Ex. 1002, pg. 1643

NetApp Ex. 1002, pg. 1644

NetApp Ex. 1002, pg. 1645

NetApp Ex. 1002, pg. 1646

NetApp Ex. 1002, pg. 1647

NetApp Ex. 1002, pg. 1648

NetApp Ex. 1002, pg. 1649

NetApp Ex. 1002, pg. 1650

NetApp Ex. 1002, pg. 1651

NetApp Ex. 1002, pg. 1652

NetApp Ex. 1002, pg. 1653

NetApp Ex. 1002, pg. 1654

NetApp Ex. 1002, pg. 1655

NetApp Ex. 1002, pg. 1656

NetApp Ex. 1002, pg. 1657

NetApp Ex. 1002, pg. 1658

NetApp Ex. 1002, pg. 1659

NetApp Ex. 1002, pg. 1660

NetApp Ex. 1002, pg. 1661

NetApp Ex. 1002, pg. 1662

NetApp Ex. 1002, pg. 1663

NetApp Ex. 1002, pg. 1664

NetApp Ex. 1002, pg. 1665

NetApp Ex. 1002, pg. 1666

NetApp Ex. 1002, pg. 1667

NetApp Ex. 1002, pg. 1668

NetApp Ex. 1002, pg. 1669

NetApp Ex. 1002, pg. 1670

NetApp Ex. 1002, pg. 1671

NetApp Ex. 1002, pg. 1672

NetApp Ex. 1002, pg. 1673

NetApp Ex. 1002, pg. 1674

NetApp Ex. 1002, pg. 1675

NetApp Ex. 1002, pg. 1676

NetApp Ex. 1002, pg. 1677

NetApp Ex. 1002, pg. 1678

NetApp Ex. 1002, pg. 1679

NetApp Ex. 1002, pg. 1680

NetApp Ex. 1002, pg. 1681

NetApp Ex. 1002, pg. 1682

NetApp Ex. 1002, pg. 1683

NetApp Ex. 1002, pg. 1684

NetApp Ex. 1002, pg. 1685

NetApp Ex. 1002, pg. 1686

NetApp Ex. 1002, pg. 1687

NetApp Ex. 1002, pg. 1688

NetApp Ex. 1002, pg. 1689

NetApp Ex. 1002, pg. 1690

NetApp Ex. 1002, pg. 1691

NetApp Ex. 1002, pg. 1692

NetApp Ex. 1002, pg. 1693

NetApp Ex. 1002, pg. 1694

NetApp Ex. 1002, pg. 1695

NetApp Ex. 1002, pg. 1696

NetApp Ex. 1002, pg. 1697

NetApp Ex. 1002, pg. 1698

NetApp Ex. 1002, pg. 1699

NetApp Ex. 1002, pg. 1700

NetApp Ex. 1002, pg. 1701

NetApp Ex. 1002, pg. 1702

NetApp Ex. 1002, pg. 1703

NetApp Ex. 1002, pg. 1704

NetApp Ex. 1002, pg. 1705

NetApp Ex. 1002, pg. 1706

NetApp Ex. 1002, pg. 1707

NetApp Ex. 1002, pg. 1708

NetApp Ex. 1002, pg. 1709

NetApp Ex. 1002, pg. 1710

NetApp Ex. 1002, pg. 1711

NetApp Ex. 1002, pg. 1712

NetApp Ex. 1002, pg. 1713

NetApp Ex. 1002, pg. 1714

NetApp Ex. 1002, pg. 1715

NetApp Ex. 1002, pg. 1716

NetApp Ex. 1002, pg. 1717

NetApp Ex. 1002, pg. 1718

NetApp Ex. 1002, pg. 1719

NetApp Ex. 1002, pg. 1720

NetApp Ex. 1002, pg. 1721

NetApp Ex. 1002, pg. 1722

NetApp Ex. 1002, pg. 1723

NetApp Ex. 1002, pg. 1724

NetApp Ex. 1002, pg. 1725

NetApp Ex. 1002, pg. 1726

NetApp Ex. 1002, pg. 1727

NetApp Ex. 1002, pg. 1728

NetApp Ex. 1002, pg. 1729

NetApp Ex. 1002, pg. 1730

NetApp Ex. 1002, pg. 1731

NetApp Ex. 1002, pg. 1732

NetApp Ex. 1002, pg. 1733

NetApp Ex. 1002, pg. 1734

NetApp Ex. 1002, pg. 1735

NetApp Ex. 1002, pg. 1736

NetApp Ex. 1002, pg. 1737

NetApp Ex. 1002, pg. 1738

NetApp Ex. 1002, pg. 1739

NetApp Ex. 1002, pg. 1740

NetApp Ex. 1002, pg. 1741

NetApp Ex. 1002, pg. 1742

NetApp Ex. 1002, pg. 1743

NetApp Ex. 1002, pg. 1744

NetApp Ex. 1002, pg. 1745

NetApp Ex. 1002, pg. 1746

NetApp Ex. 1002, pg. 1747

NetApp Ex. 1002, pg. 1748

NetApp Ex. 1002, pg. 1749

NetApp Ex. 1002, pg. 1750

NetApp Ex. 1002, pg. 1751

NetApp Ex. 1002, pg. 1752

NetApp Ex. 1002, pg. 1753

NetApp Ex. 1002, pg. 1754

NetApp Ex. 1002, pg. 1755

NetApp Ex. 1002, pg. 1756

NetApp Ex. 1002, pg. 1757

NetApp Ex. 1002, pg. 1758

NetApp Ex. 1002, pg. 1759

NetApp Ex. 1002, pg. 1760

NetApp Ex. 1002, pg. 1761

NetApp Ex. 1002, pg. 1762

NetApp Ex. 1002, pg. 1763

NetApp Ex. 1002, pg. 1764

NetApp Ex. 1002, pg. 1765

NetApp Ex. 1002, pg. 1766

NetApp Ex. 1002, pg. 1767

NetApp Ex. 1002, pg. 1768

NetApp Ex. 1002, pg. 1769

NetApp Ex. 1002, pg. 1770

NetApp Ex. 1002, pg. 1771

NetApp Ex. 1002, pg. 1772

NetApp Ex. 1002, pg. 1773

NetApp Ex. 1002, pg. 1774

NetApp Ex. 1002, pg. 1775

NetApp Ex. 1002, pg. 1776

NetApp Ex. 1002, pg. 1777

NetApp Ex. 1002, pg. 1778

NetApp Ex. 1002, pg. 1779

NetApp Ex. 1002, pg. 1780

NetApp Ex. 1002, pg. 1781

NetApp Ex. 1002, pg. 1782

NetApp Ex. 1002, pg. 1783

NetApp Ex. 1002, pg. 1784

NetApp Ex. 1002, pg. 1785

NetApp Ex. 1002, pg. 1786

NetApp Ex. 1002, pg. 1787

NetApp Ex. 1002, pg. 1788

NetApp Ex. 1002, pg. 1789

NetApp Ex. 1002, pg. 1790

NetApp Ex. 1002, pg. 1791

NetApp Ex. 1002, pg. 1792

NetApp Ex. 1002, pg. 1793

NetApp Ex. 1002, pg. 1794

NetApp Ex. 1002, pg. 1795

NetApp Ex. 1002, pg. 1796

NetApp Ex. 1002, pg. 1797

NetApp Ex. 1002, pg. 1798

NetApp Ex. 1002, pg. 1799

NetApp Ex. 1002, pg. 1800

NetApp Ex. 1002, pg. 1801

NetApp Ex. 1002, pg. 1802

NetApp Ex. 1002, pg. 1803

NetApp Ex. 1002, pg. 1804

NetApp Ex. 1002, pg. 1805

NetApp Ex. 1002, pg. 1806

NetApp Ex. 1002, pg. 1807

NetApp Ex. 1002, pg. 1808

NetApp Ex. 1002, pg. 1809

NetApp Ex. 1002, pg. 1810

NetApp Ex. 1002, pg. 1811

NetApp Ex. 1002, pg. 1812

NetApp Ex. 1002, pg. 1813

NetApp Ex. 1002, pg. 1814

NetApp Ex. 1002, pg. 1815

NetApp Ex. 1002, pg. 1816

NetApp Ex. 1002, pg. 1817

NetApp Ex. 1002, pg. 1818

NetApp Ex. 1002, pg. 1819

NetApp Ex. 1002, pg. 1820

NetApp Ex. 1002, pg. 1821

NetApp Ex. 1002, pg. 1822

NetApp Ex. 1002, pg. 1823

NetApp Ex. 1002, pg. 1824

NetApp Ex. 1002, pg. 1825

NetApp Ex. 1002, pg. 1826

NetApp Ex. 1002, pg. 1827

NetApp Ex. 1002, pg. 1828

NetApp Ex. 1002, pg. 1829

NetApp Ex. 1002, pg. 1830

NetApp Ex. 1002, pg. 1831

NetApp Ex. 1002, pg. 1832

NetApp Ex. 1002, pg. 1833

NetApp Ex. 1002, pg. 1834

NetApp Ex. 1002, pg. 1835

NetApp Ex. 1002, pg. 1836

NetApp Ex. 1002, pg. 1837

NetApp Ex. 1002, pg. 1838

NetApp Ex. 1002, pg. 1839

NetApp Ex. 1002, pg. 1840

NetApp Ex. 1002, pg. 1841

NetApp Ex. 1002, pg. 1842

NetApp Ex. 1002, pg. 1843

