
Structure and Performance of the Direct Access File System

Kostas Magoutis, Salimah Addetia, Alexandra Fedorova, Margo I. Seltzer

Division of Engineering and Applied Sciences, Harvard University

Je�rey S. Chase, Andrew J. Gallatin, Richard Kisley, Rajiv G. Wickremesinghe

Department of Computer Science, Duke University

Eran Gabber
Lucent Technologies - Bell Laboratories

Abstract

The Direct Access File System (DAFS) is an emerg-
ing industrial standard for network-attached stor-
age. DAFS takes advantage of new user-level net-
work interface standards. This enables a user-level

�le system structure in which client-side function-
ality for remote data access resides in a library
rather than in the kernel. This structure addresses
longstanding performance problems stemming from
weak integration of bu�ering layers in the network
transport, kernel-based �le systems and applica-
tions. The bene�ts of this architecture include
lightweight, portable and asynchronous access to
network storage and improved application control
over data movement, caching and prefetching.

This paper explores the fundamental perfor-
mance characteristics of a user-level �le system
structure based on DAFS. It presents experimental
results from an open-source DAFS prototype and
compares its performance to a kernel-based NFS
implementation optimized for zero-copy data trans-
fer. The results show that both systems can deliver
�le access throughput in excess of 100 MB/s, sat-
urating network links with similar raw bandwidth.
Lower client overhead in the DAFS con�guration
can improve application performance by up to 40%
over optimized NFS when application processing
and I/O demands are well-balanced.

1 Introduction

The performance of high-speed network stor-
age systems is often limited by client overhead,
such as memory copying, network access costs and
protocol overhead [2, 8, 20, 29]. A related source
of ineÆciency stems from poor integration of ap-
plications and �le system services; lack of con-
trol over kernel policies leads to problems such as

double caching, false prefetching and poor concur-
rency management [34]. As a result, databases and
other performance-critical applications often bypass
�le systems in favor of raw block storage access.
This sacri�ces the bene�ts of the �le system model,
including ease of administration and safe sharing
of resources and data. These problems have also
motivated the design of radical operating system
structures to allow application control over resource
management [21, 31].

The recent emergence of commercial direct-

access transport networks creates an opportunity to
address these issues without changing operating sys-
tems in common use. These networks incorporate
two de�ning features: user-level networking and re-

mote direct memory access (RDMA). User-level net-
working allows safe network communication directly
from user-mode applications, removing the kernel
from the critical I/O path. RDMA allows the net-
work adapter to reduce copy overhead by accessing
application bu�ers directly.

The Direct Access File System (DAFS) [14] is
a new standard for network-attached storage over
direct-access transport networks. The DAFS proto-
col is based on the Network File System Version 4
protocol [32], with added protocol features for direct
data transfer using RDMA, scatter/gather list I/O,
reliable locking, command ow-control and session
recovery. DAFS is designed to enable a user-level

�le system client: a DAFS client may run as an ap-
plication library above the operating system kernel,
with the kernel's role limited to basic network device
support and memory management. This structure
can improve performance, portability and reliabil-
ity, and o�er applications fully asynchronous I/O
and more direct control over data movement and
caching. Network Appliance and other network-
attached storage vendors are planning DAFS inter-
faces for their products.

NetApp Ex. 1014, pg. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

This paper explores the fundamental struc-
tural and performance characteristics of network �le
access using a user-level �le system structure on a
direct-access transport network with RDMA. We
use DAFS as a basis for exploring these features
since it is the �rst fully-speci�ed �le system pro-
tocol to support them. We describe DAFS-based
client and server reference implementations for an
open-source Unix system (FreeBSD) and report ex-
perimental results, comparing DAFS to a zero-copy
NFS implementation. Our purpose is to illustrate
the bene�ts and tradeo�s of these techniques to pro-
vide a basis for informed choices about deployment
of DAFS-based systems and similar extensions to
other network �le protocols, such as NFS.

Our experiments explore the application prop-
erties that determine how RDMA and user-level �le
systems a�ect performance. For example, when a
workload is balanced (i.e., the application simulta-
neously saturates the CPU and network link) DAFS
delivers the most bene�t compared to more tradi-
tional architectures. When workloads are limited by
the disk, DAFS and more traditional network �le
systems behave comparably. Other workload fac-
tors such as metadata-intensity, I/O sizes, �le sizes,
and I/O access pattern also inuence performance.

An important property of the user-level �le
system structure is that applications are no longer
bound by the kernel's policies for �le system bu�er-
ing, caching and prefetching. The user-level �le
system structure and the DAFS API allow appli-
cations full control over �le system access; however,
the application can no longer bene�t from shared
kernel facilities for caching and prefetching. A sec-
ondary goal of our work is to show how adaptation

libraries for speci�c classes of applications enable
those applications to bene�t from improved control
and tighter integration with the �le system, while
reducing or eliminating the burden on application
developers. We present experiments with two adap-
tation libraries for DAFS clients: Berkeley DB [28]
and the TPIE external memory I/O toolkit [37].
These adaptation libraries provide the bene�ts of
the user-level �le system without requiring that ap-
plications be modi�ed to use the DAFS API.

The layout of this paper is as follows. Section 2
summarizes the trends that motivated DAFS and
user-level �le systems and sets our study in context
with previous work. Section 3 gives an overview of
the salient features of the DAFS speci�cations, and
Section 4 describes the DAFS reference implemen-
tation used in the experiments. Section 5 presents
two example adaptation libraries, and Section 6 de-

scribes zero-copy, kernel-based NFS as an alterna-
tive to DAFS. Section 7 presents experimental re-
sults. We conclude in Section 8.

2 Background and Related Work

In this section, we discuss the previous work
that lays the foundation for DAFS and provides the
context for our experimental results. We begin with
a discussion of the issues that limit performance in
network storage systems and then discuss the two
critical architectural features that we examine to at-
tack performance bottlenecks: direct-access trans-
ports and user-level �le systems.

2.1 Network Storage Performance

Network storage solutions can be categorized
as Storage-Area Network (SAN)-based solutions,
which provide a block abstraction to clients, and
Network-Attached Storage (NAS)-based solutions,
which export a network �le system interface. Be-
cause a SAN storage volume appears as a local disk,
the client has full control over the volume's data
layout; client-side �le systems or database software
can run unmodi�ed [23]. However, this precludes
concurrent access to the shared volume from other
clients, unless the client software is extended to co-
ordinate its accesses with other clients [36]. In con-
trast, a NAS-based �le service can control sharing
and access for individual �les on a shared volume.
This approach allows safe data sharing across di-
verse clients and applications.

Communication overhead was a key factor
driving acceptance of Fibre Channel [20] as a high-
performance SAN. Fibre Channel leverages network
interface controller (NIC) support to o�oad trans-
port processing from the host and access I/O blocks
in host memory directly without copying. Recently,
NICs supporting the emerging iSCSI block storage
standard have entered the market as an IP-based
SAN alternative. In contrast, NAS solutions have
typically used IP-based protocols over conventional
NICs, and have paid a performance penalty. The
most-often cited causes for poor performance of net-
work �le systems are (a) protocol processing in net-
work stacks; (b) memory copies [2, 15, 29, 35]; and
(c) other kernel overhead such as system calls and
context switches. Data copying, in particular, in-
curs substantial per-byte overhead in the CPU and
memory system that is not masked by advancing
processor technology.

One way to reduce network storage access over-

NetApp Ex. 1014, pg. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

head is to o�oad some or all of the transport proto-
col processing to the NIC. Many network adapters
can compute Internet checksums as data moves to
and from host memory; this approach is relatively
simple and delivers a substantial bene�t. An in-
creasing number of adapters can o�oad all TCP
or UDP protocol processing, but more substantial
kernel revisions are needed to use them. Neither ap-
proach by itself avoids the fundamental overheads
of data copying.

Several known techniques can remove copies
from the transport data path. Previous work has
explored copy avoidance for TCP/IP communica-
tion (Chase et al. [8] provide a summary). Brus-
toloni [5] introduced emulated copy, a scheme that
avoids copying in network I/O while preserving copy
semantics. IO-Lite [29] adds scatter/gather fea-
tures to the I/O API and relies on support from
the NIC to handle multiple client processes safely
without copying. Another approach is to implement
critical applications (e.g., Web servers) in the ker-
nel [19]. Some of the advantages can be obtained
more cleanly with combined data movement prim-
itives, e.g., send�le, which move data from stor-
age directly to a network connection without a user
space transfer; this is useful for �le transfer in com-
mon server applications.

DAFS was introduced to combine the low over-
head and exibility of SAN products with the gen-
erality of NAS �le services. The DAFS approach to
removing these overheads is to use a direct-access
transport to read and write application bu�ers di-
rectly. DAFS also enables implementation of the �le
system client at user level for improved eÆciency,
portability and application control. The next two
sections discuss these aspects of DAFS in more de-
tail. In Section 6, we discuss an alternative ap-
proach that reduces NFS overhead by eliminating
data copying.

2.2 Direct-Access Transports

Direct-access transports are characterized by
NIC support for remote direct memory access
(RDMA), user-level networking with minimal ker-
nel overhead, reliable messaging transport connec-
tions and per-connection bu�ering, and eÆcient
asynchronous event noti�cation. The Virtual Inter-
face (VI) Architecture [12] de�nes a host interface
and API for NICs supporting these features.

Direct-access transports enable user-level net-

working in which the user-mode process interacts
directly with the NIC to send or receive messages

NIC

DAFS Client NFS Client

I/O Library

User Applications

DAFS Client Library

Network Adapter

Network Driver

VM/VFS Buf Cache

NFS

TCP/IP Stack

Network Driver

Network Adapter

User Applications

I/O Library
User Space

OS Kernel

Figure 1: User-level vs. kernel-based client �le sys-
tem structure.

with minimal intervention from the operating sys-
tem kernel. The NIC device exposes an array of
connection descriptors to the system physical ad-
dress space. At connection setup time, the ker-
nel network driver maps a free connection descrip-
tor into the user process virtual address space,
giving the process direct and safe access to NIC
control registers and bu�er queues in the descrip-
tor. This enables RDMA, which allows the net-
work adapter to reduce copy overhead by access-
ing application bu�ers directly. The combination of
user-level network access and copy avoidance has a
lengthy heritage in research systems spanning two
decades [2, 4, 6, 33, 38].

The experiments in Section 7 quantify the im-
provement in access overhead that DAFS gains from
RDMA and transport o�oad on direct-access NICs.

2.3 User-Level File Systems

In addition to overhead reduction, the DAFS
protocol leverages user-level networking to enable
the network �le system structure depicted in the
left-hand side of Figure 1. In contrast to traditional
kernel-based network �le system implementations,
as shown in the right side of Figure 1, DAFS �le
clients may run in user mode as libraries linked di-
rectly with applications.

While DAFS also supports kernel-based
clients, our work focuses primarily on the properties
of the user-level �le system structure. A user-level
client yields additional modest reductions in over-
head by removing system call costs. Perhaps more
importantly, it can run on any operating system,
with no special kernel support needed other than
the NIC driver itself. The client may evolve in-
dependently of the operating system, and multiple

NetApp Ex. 1014, pg. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

client implementations may run on the same sys-
tem. Most importantly, this structure o�ers an op-
portunity to improve integration of �le system func-
tions with I/O-intensive applications. In particu-
lar, it enables fully asynchronous pipelined �le sys-
tem access, even on systems with inadequate kernel
support for asynchronous I/O, and it o�ers full ap-
plication control over caching, data movement and
prefetching.

It has long been recognized that the kernel
policies for �le system caching and prefetching are
poorly matched to the needs of some important ap-
plications [34]. Migrating these OS functions into
libraries to allow improved application control and
specialization is similar in spirit to the library oper-

ating systems of Exokernel [21], protocol service de-

composition for high-speed networking [24], and re-
lated approaches. User-level �le systems were con-
ceived for the SHRIMP project [4] and the Network-
Attached Secure Disks (NASD) project [18]. NFS
and other network �le system protocols could sup-
port user-level clients over an RPC layer incorpo-
rating the relevant features of DAFS [7], and we
believe that our results and conclusions would ap-
ply to such a system.

Earlier work arguing against user-level �le sys-
tems [39] assumed some form of kernel mediation
in the critical I/O path and did not take into ac-
count the primary sources of overhead outlined in
Section 2.1. However, the user-level structure con-
sidered in this paper does have potential disadvan-
tages. It depends on direct-access network hard-
ware, which is not yet widely deployed. Although
an application can control caching and prefetching,
it does not bene�t from the common policies for
shared caching and prefetching in the kernel. Thus,
in its simplest form, this structure places more bur-
den on the application to manage data movement,
and it may be necessary to extend applications to
use a new �le system API. Section 5 shows how
this power and complexity can be encapsulated in
prepackaged I/O adaptation libraries (depicted in
Figure 1) implementing APIs and policies appro-
priate for a particular class of applications. If the
adaptation API has the same syntax and seman-
tics as a pre-existing API, then it is unnecessary to
modify the applications themselves (or the operat-
ing system).

3 DAFS Architecture and Standards

The DAFS speci�cation grew out of the DAFS
Collaborative, an industry/academic consortium

led by Network Appliance and Intel, and it is
presently undergoing standardization through the
Storage Networking Industry Association (SNIA).

The draft standard de�nes the DAFS proto-

col [14] as a set of request and response formats
and their semantics, and a recommended proce-
dural DAFS API [13] to access the DAFS service
from a client program. Because library-level com-
ponents may be replaced, client programs may ac-
cess a DAFS service through any convenient I/O
interface. The DAFS API is speci�ed as a recom-
mended interface to promote portability of DAFS
client programs. The DAFS API is richer and more
complex than common �le system APIs including
the standard Unix system call interface.

The next section gives an overview of the
DAFS architecture and standards, with an empha-
sis on the transport-related aspects: Sections 3.2
and 3.3 focus on DAFS support for RDMA and
asynchronous �le I/O respectively.

3.1 DAFS Protocol Summary

The DAFS protocol derives from NFS Version
4 [32] (NFSv4) but diverges from it in several sig-
ni�cant ways. DAFS assumes a reliable network
transport and o�ers server-directed command ow-
control in a manner similar to block storage pro-
tocols such as iSCSI. In contrast to NFSv4, every
DAFS operation is a separate request, but DAFS
supports request chaining to allow pipelining of de-
pendent requests (e.g., a name lookup or open fol-
lowed by �le read). DAFS protocol headers are or-
ganized to preserve alignment of �xed-size �elds.
DAFS also de�nes features for reliable session re-
covery and enhanced locking primitives. To enable
the application (or an adaptation layer) to sup-
port �le caching, DAFS adopts the NFSv4 mech-
anism for consistent caching based on open delega-

tions [1, 14, 32].

The DAFS speci�cation is independent of the
underlying transport, but its features depend on
direct-access NICs. In addition, some transport-
level features (e.g., message ow-control) are de-
�ned within the DAFS protocol itself, although they
could be viewed as a separate layer below the �le
service protocol.

3.2 Direct-Access Data Transfer

To bene�t from RDMA, DAFS supports direct
variants of key data transfer operations (read, write,
readdir, getattr, setattr). Direct operations transfer

NetApp Ex. 1014, pg. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

directly to or from client-provided memory regions
using RDMA read or write operations as described
in Section 2.2.

The client must register each memory region
with the local kernel before requesting direct I/O on
the region. The DAFS API de�nes primitives to reg-
ister and unregister memory regions for direct I/O;
the register primitive returns a region descriptor to
designate the region for direct I/O operations. In
current implementations, registration issues a sys-
tem call to pin bu�er regions in physical memory,
then loads page translations for the region into a
lookup table on the NIC so that it may interpret
incoming RDMA directives. To control bu�er pin-
ning by a process for direct I/O, the operating sys-
tem should impose a resource limit similar to that
applied in the case of the 4.4BSD mlock API [26].
Bu�er registration may be encapsulated in an adap-
tation library.

RDMA operations for direct I/O in the DAFS
protocol are always initiated by the server rather
than a client. For example, to request a DAFS di-
rect write, the client's write request to the server
includes a region token for the bu�er containing the
data. The server then issues an RDMA read to fetch
the data from the client, and responds to the DAFS
write request after the RDMA completes. This al-
lows the server to manage its bu�ers and control
the order and rate of data transfer [27].

3.3 Asynchronous I/O and Prefetching

The DAFS API supports a fully asynchronous
interface, enabling clients to pipeline I/O operations
and overlap them with application processing. A
exible event noti�cation mechanism delivers asyn-
chronous I/O completions: the client may create an
arbitrary number of completion groups, specify an
arbitrary completion group for each DAFS opera-
tion and poll or wait for events on any completion
group.

The asynchronous I/O primitives enable event-
driven application architectures as an alternative
to multithreading. Event-driven application struc-
tures are often more eÆcient and more portable
than those based on threads. Asynchronous I/O
APIs allow better application control over concur-
rency, often with lower overhead than synchronous
I/O using threads.

Many NFS implementations support a limited
form of asynchrony beneath synchronous kernel I/O
APIs. Typically, multiple processes (called I/O dae-

mons or nfsiods) issue blocking requests for sequen-

tial block read-ahead or write-behind. Unfortu-
nately, frequent nfsiod context switching adds over-
head [2]. The kernel policies only prefetch after
a run of sequential reads and may prefetch erro-
neously if future reads are not sequential.

4 DAFS Reference Implementation

We have built prototypes of a user-level DAFS
client and a kernel DAFS server implementation for
FreeBSD. Both sides of the reference implementa-
tion use protocol stubs in a DAFS SDK provided
by Network Appliance. The reference implementa-
tion currently uses a 1.25 Gb/s Giganet cLAN VI
interconnect.

4.1 User-level Client

The user-level DAFS client is based on a three-
module design, separating transport functions, ow-
control and protocol handling. It implements
an asynchronous event-driven control core for the
DAFS request/response channel protocol. The sub-
set of the DAFS API supported includes direct and
asynchronous variants of basic �le access and data
transfer operations.

The client design allows full asynchrony for
single-threaded applications. All requests to the
library are non-blocking, unless the caller explic-
itly requests to wait for a pending completion. The
client polls for event completion in the context of
application threads, in explicit polling requests and
in a standard preamble/epilogue executed on ev-
ery entry and exit to the library. At these points,
it checks for received responses and may also initi-
ate pending sends if permitted by the request ow-
control window. Each thread entry into the library
advances the work of the client. One drawback of
this structure is that pending completions build up
on the client receive queues if the application does
not enter the library. However, deferring response
processing in this case does not interfere with the
activity of the client, since it is not collecting its
completions or initiating new I/O. A more general
approach was recently proposed for asynchronous
application-level networking in Exokernel [16].

4.2 Kernel Server

The kernel-based DAFS server [25] is a kernel-
loadable module for FreeBSD 4.3-RELEASE that
implements the complete DAFS speci�cation. Us-
ing the VFS/Vnode interface, the server may export

NetApp Ex. 1014, pg. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

