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INTRODUCTION

Optical engineers and researchers working on optics deal

with laser beams and optical systems as usual tools in

their specific areas. The knowledge of the special cha-

racteristics of the propagation of laser beams through

optical systems has to be one of the keystones of their
actual work, and the clear definition of their characteristic

parameters has an important impact in the success of the

applications of laser sources.[Hi' In this article, we will
provide some basic hints about the characterization and

transformation of laser beams that also deserve special

attention in basic and specific text books (e.g., see Refs.

[7—l3]). The Gaussian beam case is treated in the first

place because of its simplicity.[14‘15' Besides, it allows to
introduce some characteristic parameters whose definition

and meaning will be extended along the following

sections to treat any kind of laser beam. In between, we

will show how the beam is transformed by linear optical

systems. These systems are described by using the tools

of matrix optics.[16’18'
In the following, we will assume that laser beams have

transversal dimensions small enough to consider them as

paraxial beams. What it means is that the angular

spectrum of the amplitude distribution is located around

the axis of propagation, allowing a parabolic approxi-

mation for the spherical wavefront of the laser beam. In

the paraxial approach, the component of the electric field

along the optical axis is neglected. The characterization of

laser beams within the nonparaxial regime can be done,

but it is beyond the scope of this presentation.[19’22' We
will take the amplitudes of the beams as scalar quantities.

This means that the polarization effects are not con-

sidered, and the beam is assumed to be complete and

homogeneously polarized. A proper description of the

polarization dependences needs an extension of the for-
malism that is not included here.[23’28' Pulsed laser beams

also need a special adaptationl29’32' of the fundamental
description presented here.

GAUSSIAN BEAMS

Gaussian beams are the simplest and often the most de-

sirable type of beam provided by a laser source. As we will
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see in this section, they are well characterized and the

evolution is smooth and easily predicted. The amplitude

function representing a Gaussian beam can be deduced

from the boundary conditions of the optical resonator

where the laser radiation is produced.[7’9‘33‘34' The geo-
metrical characteristics of the resonator determine the type

of laser emission obtained. For stable resonators neglect-

ing a small loss of energy, the amplitude distribution is

self-reproduced in every round trip of the laser through the

resonator. Unstable resonators produce an amplitude dis-

tribution more complicated than in the stable case. Be-

sides, the energy leaks in large proportion for every round

trip. For the sake of simplicity, we restrict this first ana-

lysis to those laser sources producing Gaussian beams. The
curvature of the mirrors of the resonator and their axial

distance determine the size and the location of the region

showing the highest density of energy along the beam.
The transversal characteristics of the resonator allow the

existence of a set of amplitude distributions that are usu-

ally named as modes of the resonator. The Gaussian beam

is the lowest-degree mode, and therefore it is the most

commonly obtained from all stable optical resonators.

Although the actual case of the laser beam propagation

is a 3-D problem (two transversal dimensions x,y, and one

axial dimension z), it is easier to begin with the expla-

nation and the analysis of a 2-D laser beam (one trans-

versal dimension x, and one axial dimension z). The

amplitude distribution of a Gaussian laser beam can be
written aszl7‘9‘34'

 
  

(l)kxzxz]>< exp[ l2R(z)
This expression describes the behavior of the laser beam

amplitude as a function of the transversal coordinate x and
the axial coordinate z. k = 271/). is the wave number, where

2. is the wavelength of the material where the beam pro-

pagates. The functions R(z), 60(1), and q5(z) deserve

special attention and are described in the following sub-

sections. Before that, it is interesting to take a closer

look at Fig. l where we plot the irradiance pattern in

terms of x and z. This irradiance is the square modulus of

the amplitude distribution presented above. We can see

999

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Copyright©2003byMarcelDekker,Inc.Allrightsreserved.
fl

FNC 1011



Copyright©2003byMarcelDekker.Inc.Allrightsreserved.
fl

1000

Irradiance-(),4

 

 
.5 cl

mm)l
O

xcoordinate
-100 -50 . 0 50 100

z coordinate (mm)

Fig. 1 Map of the irradiance distribution of a Gaussian beam.
The bright spot corresponds with the beam waist. The hyperbolic
white lines represent the evolution of the Gaussian width when
the beam propagates through the beam waist position. The
transversal Gaussian distribution of irradiance is preserved as the
beam propagates along the z axis.

that the irradiance shows a maximum around a given

point where the transversal size of the beam is minimum.

This position belongs to a plane that is named as the beam

waist plane. It represents a pseudo-focalization point with

very interesting properties. Once this first graphical

approach has been made, it lets us define and explain in

more detail the terms involved in Eq. 1.

Width

This is probably one of the most interesting parameters

from the designer point of ViCW.[14’35’36I The popular
approach of a laser beam as a “laser ray” has to be

reviewed after looking at the transversal dependence of

the amplitude. The ray becomes a beam and the width

parameter characterizes this transversal extent. Practic-

ally, the question is to know how wide is the beam when it

propagates through a given optical system. The exponen-

tial term of Eq. 1 shows a real and an imaginary part. The

imaginary part will be related with the phase of the beam,

and the real part will be connected with the transversal

distribution of irradiance of the beam. Extracting this real

portion, the following dependences of the amplitude and
the irradiance are:

 

 

2

1w, z) o< exp [ 60%] (2)

I(x,z) : |T(x,z)lzo<exp[ 60223] (3)
where the function co(z) describes the evolution along the

propagation direction of the points having a decrease of
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He in amplitude, or He2 in irradiance with respect to the
amplitude at the propagation axis. There exist some
others definitions for the width of a beam related with

some other fields.[36’38' For example, it is sometimes use-
ful to have the width in terms of the full width at half the

maximum (FWHM) values.[14' In Fig. 2, we see how the
Gaussian width and the FWHM definitions are related. In

Fig. 3, we calculate the portion of the total irradiance

included inside the central part of the beam limited by

those previous definitions. Both the 2-D and the 3-D cases
are treated. For the 3-D case, we have assumed that the

beam is rotationally symmetric with respect to the axis

of propagation.

Another important issue in the study of the Gaussian

beam width is to know its evolution along the direction of

propagation z. This dependence is extracted from the

evolution of the amplitude distribution. This calculation

provides the following formula:

z). 2
60(1) : 600 1+ —2 (4)

T5600

The graphical representation is plotted in Fig. l as a

white line overimposed on the irradiance distribution. We

can see that it reaches a minimum at z: 0, this being the

minimum value of mo. This parameter, which governs the

rest of the evolution, is usually named as the beam waist

width. It should be noted that co(z) depends on 2., where 2.

is the wavelength in the material where the beam is

propagating. At each perpendicular plane, the z beam

shows a Gaussian profile. The width reaches the mini-

mum at the waist and then the beam expands. The same

Gaussian beam amplitude and Irradiance
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Fig. 2 Transversal profile of the Gaussian beam amplitude at
the beam waist (dashed line) and irradiance (solid line). Both of
them have been normalized to the maximum value. The value of

the width of the beam waist coo is 0.1 mm. The horizontal lines

represent (in increasing value) the l/e2 of the maximum irra-
diance, the l/e of the maximum amplitude, and the 0.5 of the
maximum irradiance and amplitude.
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Fig. 3 Integrated irradiance for a 2-D Gaussian beam (black
line) and for a rotationally symmetric 3-D Gaussian beam. The
horizontal axis represents the width of a l-D slit (for the 2-D
beam) and the diameter of a circular aperture (for the 3-D beam)
that is located in front of the beam. The center of the beam

coincides with the center of the aperture. The size of the aperture
is sealed in terms of the Gaussian width of the beam at the plane
of the aperture.

amount of energy located at the beam waist plane needs to

be distributed in each plane. As a consequence, the ma-

ximum of irradiance at each z plane drops from the beam

waist very quickly, as it is expressed in Fig. l.

Divergence

Eq. 4 has a very interesting behavior when z tends to 00

(or 7 oo ). This width dependence shows an oblique

asymptote having a slope of:

J.

60 g tan 60 : Tit—COO (5)

where we have used the paraxial approach. This pa-

rameter is named divergence of the Gaussian beam. It

describes the spreading of the beam when propagating

towards infinity. From the previous equation, we see that

the divergence and the width are reciprocal parameters.

This means that larger values of the width mean lower

values of the divergence, and vice versa. This relation has

even deeper foundations, which we will show when the

characterization of generalized beams is made in terms of

the parameters already defined for the Gaussian beam

case. Using this relation, we can conclude that a good

collimation (very low value of the divergence) will be

obtained when the beam is wide. On the contrary, a high

focused beam will be obtained by allowing a large di-

vergence angle.
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Radius of Curvature

Following the analysis of the amplitude distribution of a

Gaussian beam, we now focus on the imaginary part of

the exponential function that depends on x:

 kx2

] (6)“pl ‘2R<z>
where k is the wave number and R(z) is a function of z.

The previous dependence is quadratic with x. It is the

paraxial approach of a spherical wavefront having a ra-

dius R(z). Therefore this function is known as the radius
of curvature of the wavefront of the Gaussian beam. Its

dependence with z is as follows:

7-5603 2
R(Z) : Z 1+ (7) (7)

When z tends to infinity, it shows a linear variation

with z that is typical of a spherical wavefront that

originated at z=0; i.e., coming from a point source.

However, the radius of curvature is infinity at the beam

waist position. This means that at the beam waist, the

wavefront is plane. A detailed description of the previous

equation is shown in Fig. 4. The absolute value of the

radius of curvature is larger (flatter wavefront) than the

corresponding point source located at the beam waist

along the whole propagation.

 Radius of curvature
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Fig. 4 Radius of curvature of a Gaussian beam around the
beam waist position. The beam reaches a minimum of the
absolute value of the radius at a distance of +zR and i ZR from

the beam waist. At the beam waist position, the radius of
curvature is infinity, meaning that the wavefront is plane at the
beam waist. The dashed line represents the radius of curvature of
a spherical wavefront produced by a point source located at the
point of maximum irradiance of the beam waist.
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Rayleigh Range

The width, the local divergence, and the radius of cur-

vature contain a special dependence with 600 and 2.. This

dependence can be written in the form of length that is
defined as:

2
T5600

ZR : T (8)

This parameter is known as the Rayleigh range of the

Gaussian beam. Its meaning is related to the behavior of

the beam along the propagating distance. It is possible to

say that the beam waist dimension along z is zR. The width

at z=zR is x/E larger than in the waist. The radius of
curvature shows its minimum value (the largest curvature)

at z =zR. From the previous dependence, we see that the

axial size of the waist is larger (with quadratic de-

pendence) as the width is larger. Joining this dependence

and the relation between the width and the divergence, we
find that as the collimation becomes better, then the

region of collimation becomes even larger because the

axial extension of the beam waist is longer.

Guoy Phase Shift

There exists another phase term in Eq. 1. This term is

q5(z). This is known as the Guoy phase shift. It describes a

TE phase shift when the wavefront crosses the beam waist

region (see pp. 682—685 of Ref. [7]). Its dependence is:

q5(z) : tan’1 (5) (9)ZR

This factor should be taken into account any time the

exact knowledge of the wavefront is needed for the

involved applications.

3-D GAUSSIAN BEAMS

In “Gaussian Beams,” we have described a few pa-

rameters characterizing the propagation of a 2-D beam.

Actually, these parameters can be extended to a rota-

tionally symmetric beam assuming that the behavior is the

same for any meridional plane containing the axis of

propagation. Indeed, we did an easy calculation of the

encircled energy for a circular beam by using these

symmetry considerations (see Fig. 3). However, this is not

the general case for a Gaussian beam.[3941' For example,
when a beam is transformed by a cylindrical lens, the

waist on the plane along the focal power changes, and the

other remains the same. If a toric, or astigmatic, lens is

used, then two perpendicular directions can be defined.

Each one would introduce a change in the beam that will
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be different from the other. Even more, for some laser

sources, the geometry of the laser cavity produces an

asymmetry that is transferred to a nonrotationally sym-

metric beam propagation. This is the case of edge-emit-

ting semiconductor lasers, where the beam can be mo-

deled by having two 2-D Gaussian beam propagations.[42'
In all these cases, we can define two coordinate sys-

tems: the beam reference system linked to the beam sym-

metry and propagation properties, and the laboratory refe-
rence system.

The evolution of the simplest case of astigmatic

Gaussian beams can be decoupled into two independent

Gaussian evolutions along two orthogonal planes. The

beams allowing this decoupling are named as orthogonal

astigmatic Gaussian beams. Typically, these beams need

some other parameters to characterize the astigmatism of

the laser, besides the parameters describing the Gaussian

evolution along the reference planes of the beam refe-

rence system. When the beam reaches the waist in the

same plane for the two orthogonal planes defined within

the beam reference system, we only need to provide the

ellipticity parameter of the irradiance pattern at a given

plane. In some other cases, both orthogonal planes de-

scribing a Gaussian evolution do not produce the waist at

the same plane. In this case, another parameter describing

this translation should be provided. This parameter is

sometimes named as longitudinal astigmatism. Although

the beam propagation is located in two orthogonal planes,

it could be possible that these planes do not coincide with

the orthogonal planes of the laboratory reference system.

An angle should also be given to describe the rotation of

the beam reference system with respect to the laboratory

reference system.

When the planes of symmetry of the beam do not

coincide with the planes of symmetry of the optical

systems that the beam crosses, it is not possible to de-

couple the behavior of the resulting beam into two

orthogonal planes. This lack of symmetry provides a new

variety of situations that are usually named as general

astigmatism case.[39'

Orthogonal Astigmatic Beams

In Fig. 5, we represent a 3-D Gaussian beam having the

beam waist along the direction of x and the direction of y

in the same z plane. In this case, the shape of the beam

will be elliptic at every transversal plane along the pro-

pagation, except for two planes along the propagation

that will show a circular beam pattern. The character-

istic parameters are the Gaussian width along the x and

y directions.

In Fig. 6a, we plot together the evolution of the

Gaussian widths along the two orthogonal planes where

the beam is decoupled. The intersection of those planes is
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Gaussian width evolution
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Fig. 5 A 3-D representation of the evolution of the Gaussian
width for an orthogonal astigmatic Gaussian beam. The Gaus-
sian beam waist coincides at the z = 0 plane and the beam refe-
rence directions coincide with the laboratory reference direc-

tions. The sizes of the waists are coo,C = 0.07 mm, coo}. : 0.2 mm,
and /l = 632.8 nm. In the center of the beam, we have re-

presented the volume of space defined by the surface where 1/62
of the maximum irradiance is reached. It can be observed that

the ellipticity of the irradiance pattern changes along the pro-
pagation and the larger semiaxis changes its direction: in the
beam waist plane, the large semiaxis is along the y direction and
at 300 mm, it has already changed toward the x direction.

the axis of propagation of the beam. The evolution of the

beam along these two planes is described independently.

There are two different beam waists (one for each plane)

with different sizes. To properly describe the Whole 3-D

beam, it is necessary to provide the location and the size
of these two beam waists. The locations of the inter-

section points for the Gaussian Widths correspond with the

planes showing a circular irradiance pattern. An interest-

ing property of this type of beam is that the ellipticity of

the irradiance profile changes every time a circular irra-

diance pattern is reached along the propagation, swapping

the directions of the long and the short semiaxes.

In Fig. 6b, we represent the evolution of the two radii

of curvature within the two orthogonal reference planes.

The analytical description of the wavefront of the beam is

given by a 3-D paraboloid having two planes of sym-

metry. The intersection of the two evolutions of the radii

of curvature describes the location of a spherical

wavefront. It is important to note that a circular irradiance

pattern does not mean a spherical wavefront for this type

of beams. To completely describe this beam, we need the

values of the beam waists along the beam reference di-
rections, and the distance between these two beam waists

along the propagation direction. This parameter is some-

times known as longitudinal astigmatism. If the Whole

1003

beam were rotated with respect to the laboratory refe-

rence system, an angle describing such a rotation would

also be necessary.

Nonorthogonal Astigmatic Beams.

General Astigmatic Beams

The variety of situations in the nonorthogonal case is

richer than in the orthogonal one and provides a lot of

information about the beam. General astigmatic Gaussian

beams were described by Arnaud and Kogelnikl39' by
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Fig. 6 Evolution of the Gaussian width (a) and the radius of
curvature (b) for an orthogonal astigmatic Gaussian beam having

the following parameters: coo,C = 0.1 mm, coo}. = 0.25 mm, /l = 633
nm, and 360 mm of distance between both beam waists. The

black curve corresponds with the y direction and the gray curve
is for the x direction. The intersection in (a) represents the
position of the points having circular patterns of irradiance. The
intersection in (b) represents those planes showing a spherical
wavefront. The plots shows how both conditions cannot be
fulfilled simultaneously.
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adding a complex nature to the rotation angle that relates

the intrinsic beam axis (beam reference system) with the

extrinsic (laboratory references system) coordinate sys-

tem. One of the most interesting properties of these beams

is that the elliptic irradiance pattern rotates along the

propagation axis. To properly characterize these Gaussian

beams, some more parameters are necessary to provide a

complete description of this new behavior. The most

relevant is the angle of rotation between the beam re-

ference system and the laboratory reference system,

which now should be provided with real and imaginary

parts. In Fig. 7, we show the evolution of the Gaussian

width for a beam showing a nonorthogonal astigmatic

evolution. An important difference with respect to Fig. 5,

besides the rotation of axis, is that the nonorthogonal

astigmatic beams shows a twist of the l/e2 envelope that
makes possible the rotation of the elliptical irradiance

pattern. It should be interesting to note that in the case

of the orthogonal astigmatism, the elliptic irradiance

pattern does not change the orientation of their semi-

axes; it only swaps their role. However, in the general

astigmatic case, or nonorthogonal astigmatism, the rota-

tion is smooth and depends on the imaginary part of the

rotation angle.

A simple way of obtaining these types of beams is by

using a pair of cylindrical or toric lenses with their cha-

racteristic axes rotated by an angle different from zero or

90°. Although the input beam is circular, the resulting

beam will exhibit a nonorthogonal astigmatic character.
The reason for this behavior is related to the loss of

symmetry between the input and the output beams along
each one of the lenses.

Gaussian width evolution
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Fig. 7 Evolution of the Gaussian width for the case of a
nonorthogonal astigmatic Gaussian beam. The parameters of this

beam are: 2:63 nm (00,620.07 mm, c003,:02 mm, and the
angle of rotation has a complex value of 51225071150. The
parameters, except for the angle, are the same as those of the
beam plotted in Fig. 5. However, in this case, the beam shows a
twist due to the nonorthogonal character of its evolution.
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ABCD LAW FOR GAUSSIAN BEAMS

ABCD Matrix and ABCD Law

Matrix optics has been well established a long time

ago.[16’18‘43‘44' Within the paraxial approach, it provides
a modular transformation describing the effect of an

optical system as the cascaded operation of its compo-

nents. Then each simple optical system is given by its

matrix representation.

Before presenting the results of the application of the

matrix optics to the Gaussian beam transformation, we

need to analyse the basis of this approach (e.g., see

Chapter 15 of Ref. [7]). In paraxial optics, the light is

presented as ray trajectories that are described, at a given

meridional plane, by its height and its angle with respect

to the optical axis of the system. These two parameters

can be arranged as a column vector. The simplest mathe-

matical object relating two vectors (besides a multiplica-

tion by a scalar quantity) is a matrix. In this case, the

matrix is a 2 X 2 matrix that is usually called the
ABCD matrix because its elements are labeled as A, B,

C, and D. The relation can be written as:

(a : <2 mm
where the column vector with subindex 1 stands for the

input ray, and the subindex 2 stands for the output ray.

An interesting result of this previous equation is

obtained when a new magnitude is defined as the ratio

between height and angle. From Fig. 8, this parameter

coincides with the distance between the ray—optical axis

intersection and the position of reference for the des-

cription of the ray. This distance is interpreted as the

radius of curvature of a wavefront departing from that

intersection point and arriving to the plane of interest
where the column vector is described. When this radius of

curvature is obtained by using the matrix relations, the

following result is found:

AR] "BR :—
2 CRIWD

(11) 

This expression is known as the ABCD law for the

radius of curvature. It relates the input and output radii

of curvature for an optical system described by its
ABCD matrix.

The Complex Radius of Curvature, q

For a Gaussian beam, it is possible to define a radius of

curvature describing both the curvature of the wavefront
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Input Plane Optical Output Plane

System

Fig. 8 The optical system is represented by the ABCD ma-
trix. The input and the output rays are characterized by their
height and their slope with respect to the optical axis. The
radius of curvature is related to the distance between the

intersection of the ray with the optical axis and the input or
the output planes.

and the transversal size of the beam. The nature of this

 

radius of curvature is complex. It is given by:[9‘34'

l l 2. (12)_ : _a z

4(Z) R(Z) 7m>(z)2

If the definition and the dependences of R(z) and cu(z)

are used in this last equation, it is also possible to find

another alternative expression for the complex radius of
curvature as:

QQ):Z+RR on

By using this complex radius of curvature, the phase

dependence of the beam (without taking into account

the Guoy phase shift) and its transversal variation is
written as:

eliziél
Once this complex radius of curvature is defined, the

ABCD law can be proposed and be applied for the

calculation of the change of the parameters of the beam.

This is the so-called ABCD law for Gaussian beams (see

Chapter 3 of Ref. [18]):

 

(14)

 

  
1

C771)—

i Aq] ”B l i q]
(12 C 77D 01' 1 (15)

(II ‘12 A773—
‘11

The results of the application of the ABCD law can be

written in terms of the complex radius of curvature and

the Gaussian width by properly taking the real and ima-

ginary parts of the resulting complex radius of curvature.
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Invariant Parameter

When a Gaussian beam propagates along an ABCD op-

tical system, its complex radius of curvature changes

according to the ABCD law. The new parameters of the

beam are obtained from the value of the new complex
radius of curvature. However, there exists an invariant

parameter that remains the same throughout ABCD

optical systems. This invariant parameter is defined as:

2.
60600 : — (16)TC

Its meaning has been already described in “Diver-

gence.” It will be used again when the quality parameter

is defined for arbitrary laser beams.

Tensorial ABCD Law

The previous derivation of the ABCD law has been made

for a beam along one meridional plane containing the

optical axis of the system that coincides with the axis of

propagation. In the general case, the optical system or the

Gaussian beam cannot be considered as rotationally

symmetric. Then the beam and the system need to be

described in a 3-D frame. This is done by replacing each

one of the elements of the ABCD matrix by a 2 X 2 matrix

containing the characteristics of the optical system along

two orthogonal directions in a transversal plane. In the

general case, these 2 X 2 boxes may have nondiagonal

elements that can be diagonalized after a given rotation.

This rotation angle can be different in diagonalizing

different boxes when nonorthogonal beams are treated.
Then the ABCD matrix becomes an ABCD tensor in the

form of:

A” AC), BM ,0,

P : A)“ A)')' B)'X By)’ (17)
CM ny DH 1),).

C)?“ C)')' D)'X Dy)’

where, by symmetry considerations, AW=Ayx and is the
same for the B, C, and D, boxes.

For a Gaussian beam in the 3-D case, we will need to

expand the definition of the complex radius of curvature
to the tensorial domain.[45 I The result is as follows:

c0526 sin2 6 I , I I
+ — 5m 26 _,_

(Ix qy 2 (Ix qy

  

Q" :

I , (I 1) sin2 6 cos2 6— 5m 26 _,_ +
2 (Ix (va (IX ‘1)

  

(18)
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where 6 is the angle between the laboratory reference

coordinate system and the beam reference system. If the

beam is not orthogonal, then the angle becomes a

complex angle and the expression remains valid. By

using this complex curvature tensor, the tensorial ABCD

law (see Section 7.3 of Ref. [18]) can be written as:

Q? :f (19) 

where A, B, C, and D with bars are the 2 X 2 boxes of the
ABCD tensor.

ARBITRARY LASER BEAMS

As we have seen in the previous sections, Gaussian beams

behave in a very easy way. Its irradiance profile and its
evolution are known and their characterization can be

made with a few parameters. Unfortunately, there are a lot

of applications and laser sources that produce laser beams

with irradiance patterns different from those of the

Gaussian beam case. The simplest cases of these non-

Gaussian beams are the multimode laser beams. They

have an analytical expression that can be used to know

and to predict the irradiance at any point of the space for

these types of beams. Moreover, the most common
multimode laser beams contain a Gaussian function in the

core of their analytical expression. However, some other

more generalized types of irradiance distribution do not

respond to simple analytical solution. In those cases, and
even for multimode Gaussian beams, we can still be

interested in knowing the transversal extension of the

beam, its divergence in the far field, and its departure

from the Gaussian beam case that is commonly taken as a

desirable reference. Then the parameterization of arbit-

rary laser beams becomes an interesting topic for

designing procedures because the figures obtained in this

characterization can be of use for adjusting the optical

parameters of the systems using them.[46‘47'

Multimode Laser Beams

The simplest cases of these types of arbitrary beams are

those corresponding to the multimode expansion of laser

beams (see Chapters 16, 17, 19, 20, and 21 of Refs.

[7,34]). These multimode expansions are well determined

by their analytical expressions showing a predictable

behavior. Besides, the shape of the irradiance distribution

along the propagation distance remains the same. There

exist two main families of multimode beams: Laguerre—

Gaussian beams, and Hermite—Gaussian beams. They

appear as solutions of higher order of the conditions of

resonance of the laser cavity.
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Their characteristic parameters can be written in terms
of the order of the multimode beam.[48’53' When the beam

is a monomode of higher-than-zero order, its width can be

given by the following equation:

a)” : 600V 2n + 1 (20)

for the Hermite—Gauss beam of n order, and

60pm : com/2p + m +1 (21)

for the Laguerre—Gauss beam of p radial and m azimuthal

orders, where 600 is the width of the corresponding zero

order or pure Gaussian beam. For an actual multimode

beam, the values of the width, the divergence, and the

radius of curvature depend on the exact combination of

modes, and need to be calculated by using the concepts

defined in “Generalized Laser Beams.” In Fig. 9, we

have plotted three Hermite—Gaussian modes containing

the same Gaussian beam that has an elliptic shape. We

have plotted them at different angles to show how, in the

beam reference system, the modes are oriented along two

orthogonal directions.

Generalized Laser Beams

When the irradiance distribution has no analytical so-

lution, or when we are merely dealing with actual beams

coming from actual sources showing diffraction, fluctua-

tions, and noise, it is necessary to reVise the definitions of

the parameters characterizing the beam. For example, the

definition of the width of the beam provided by the He2
decay in irradiance may not be valid any longer. In the
case of multimode laser beams, the irradiance falls below

He2 at several locations along the transversal plane. The
same is applied to the other parameters. Then it is ne-

cessary to provide new definitions of the parameters.

These definitions should be applied to any kind of laser

beam, even in the case of partially coherent beams. Two

different approaches have been made to this problem of

analytical and generalized characterization of laser

beams. One of them can be used on totally coherent laser

beams. This is based on the knowledge of the map of the

amplitude, and on the calculation of the moments of the

irradiance distribution of the beam.[46' The other approach
can be used on partially coherent laser beams, and is

based on the properties of the cross-spectral density and

the Wigner distribution.[47'
It is important to note that the parameters defined in

this section must be taken as global parameters. They do
not describe local variations of the irradiance distribution.

On the other hand, the definitions involve integration, or

summation, from 7 00 to + 00. To carry out these

integrations properly, the analytical expressions need to
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Hermite-Gaussian (0,0); oc=10°

 
Hermite-Gaussian (1,2); oc=50°

 
Fig. 9 Irradiance patterns for three multimode Hermite—
Gaussian beams. The modes are represented at three rotations
with respect to the laboratory reference system. The inner
rectangular symmetry remains the same. The transversal size of
the mode increases with the mode order.
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be well defined and be integrable along those regions.[54'
In an experimental setup, these limits are obviously not

reached. The practical realizations of the definitions need

to deal with important conditions about the diffraction,

the noise, the image treatment, and some other experi-

mental issues that are mostly solved through character-

ization devices currently used for the measurements of

these parameters.

Totally Coherent Laser Beams
in Two Dimensions

As we did with the Gaussian beams, we are going to

introduce the most characteristic parameters for a 2-D
beaml48‘49‘54’58' defined in terms of the moments of the
irradiance distribution and its Fourier transform. After

that, we will generalize the definitions to the 2-D case.

Generalized width

When the amplitude map T(x) of a laser source is

accessible, it is possible to define the width of the
beam in terms of the moments of the irradiance distri-

bution as:

ff; I‘P(x)|2lx A x<av>rdx

\ f3; I‘P(x)|2dx

 

ff; I‘P(X)|2xszC
: 2 W

\ fmlwaldx
7 x20”) (22)

 
where the denominator is the total irradiance of the

beam and x( T) is the position of the “center of mass”
of the beam:

ff; | and) |2xdxx T : —

( ) ffOOOIWXNZdX
(23)

The introduction of this parameter allows to apply the
definition to a beam described in a decentered coordinate

system. It is easy to check that in the case of a Gaussian
distribution, the width is the Gaussian width defined in the

previous sections.

Generalized divergence

As we saw in the definition of the divergence for Gaus-

sian beams, the divergence is related to the spreading of

the beam along its propagation. This concept is described

analytically by the Fourier transform of the amplitude

distribution, i.e., also named as the angular spectrum. The
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Fourier transform (15(5) of the amplitude distribution T(x)
is defined as:

(15(5) : [00 T(x) exp(ii2nxf)dx (24)00

where f is the transverse spatial frequency that is related

to the angle by means of the wavelength. The far-field

distribution of irradiance is then given by the squared

modulus of (15(5). Once this irradiance distribution is

obtained, it is possible to define an angular width that is

taken as the divergence of the beam. This generalized

divergence is defined as:

6) : 2.
“‘15) 2\ mlmlzdr

ff; |<P(€)lzézdé

\ ff°ml<1><olzdé

where {(45) is given by:

: 2). 7 52015) (25)
 

7 ff°ool<15(f)lzédé
w) * f3; l¢<é>l2dé (26)

This parameter is related with the misalignment, or tilt, of

the beam that is the product of ii.

Generalized radius of curvature

Another parameter defined for Gaussian beams was the

radius of curvature.[54’56' For totally coherent laser
beams, it is also possible to define an effective or gene-

ralized radius of curvature for arbitrary amplitude dis-
tributions. This radius of curvature is the radius of the

spherical wavefront that best fits the actual wavefront of

the beam. This fitting is made by weighting the departure

from the spherical wavefront with the irradiance distri-

bution. The analytical expression for this radius of
curvature can be written as follows:

1 i).

R(T) T na)2(ll’)ff:0I‘I’OdlszC

X 1365i")
X [x i x( T)]dx (27)

 

  

1pm) i To) 82;”)

The integral containing the derivatives of the ampli-

tude distribution can be written in different ways by using

the properties of the Fourier transform. This integral is

also related with the crossed moments (in x and f) of the
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beam. It will play an important role in the definition of the

invariant parameter of the beam.

Generalized complex radius of curvature

By using the previous definitions, it is possible to describe

a generalized complex radius of curvature as follows:

1 1
—ii

R(T)

63(45) 1

60201!) * R2(T)

  

(28)

Now the transformation of the complex radius of

curvature can be carried out by applying the ABCD law. It

is important to note that there are three parameters

involved in the calculation of the generalized complex

radius of curvature: w2( T), 6%( T), and R( T). The

application of the ABCD law provides two equations:

one for the real part, and one for the imaginary. Therefore

we will need another relation involving these three

parameters to solve the problem of the transformation of

those beams by ABCD optical systems. This third rela-

tion is given by the invariant parameter, or quality factor.

Quality factor, M2

For the Gaussian beam case, we have found a parameter

that remains invariant through ABCD optical systems.

Now in the case of totally coherent non-Gaussian beams,

we can define a new parameter that will have the same

properties. It will be constant along the propagation

through ABCD optical systems. Its definition (see list of

references in Ref. [59]) in terms of the previous cha-

racterizing parameters is:

M : §w<w> em ,
 

(29)

This invariance, along with the results obtained from

the ABCD law applied to the generalized complex radius

of curvature, allows to calculate the three resulting para-
meters for an ABCD transformation. The value of the

square root of the M2 parameter has an interesting
meaning. It is related to the divergence that would be

obtained if the beam haVing an amplitude distribution T is

collimated at the plane of interest. The collimation should

be considered as haVing an effective, or generalized, radius

of curvature equal to infinity. From the definition of R( T),

this is an averaged collimation. The divergence of this
collimated beam is the minimum obtainable for such a

beam haVing a generalized width of a)( T). Then the M2
factor represents the product of the width defined as a

second moment (a variance in the x coordinate) times the
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minimum angular width obtainable for a given beam by

canceling the phase (a variance in the f coordinate).

The previous definition and the one based on the

moments of the Wigner function of the M2 parameter as a
quality factor allow to compare between different types of
beam structures and situations.[54‘6m69' The Gaussian

beam is the one considered as having the maximum qua-

lity. The value of M2 for a Gaussian beam is 1. It is not
possible to find a lower value of the M2 for actual, re-
alizable beams. This property, along with its definition in

terms of the variance in x and f, resembles very well an

uncertainty principle.

Usually, quality factors are parameters that increase

when the quality grows; larger values usually mean better

quality. This is not the case for M2 that becomes larger as
the beam becomes worse. However, the scientific and

technical community involved in the introduction and the

use of M2 has accepted this parameter as a quality factor
for laser beams.

Besides the interesting properties of invariance and

bounded values, it is important to find the practical

meaning of the beam quality factor. A beam showing

better quality and lower value of M2 will behave better for
collimation and focalization purposes. It means that the

minimum size of the spot obtainable with a given optical

system will be smaller for a beam having a lower value of

M2. Analogously, a better beam can be better collimated;
i.e., its divergence will be smaller than another beam

showing a higher value of M2 and collimated with the
same optical system.

Totally Coherent Beams in Three Dimensions

Once these parameters have been defined for the 2-D

case, where their meanings and definitions are clearer, we

will describe the situation of a 3-D totally coherent laser

beam. The parameters needed to describe globally the
behavior of a 3-D beam will be an extension of the 2-D

case adapted to this case, in the same way as that for 3-D
Gaussian beams.[46‘66'

The width and the divergence become tensorial

parameters that are defined as 2 X 2 matrices. These mat-
rices involve the calculation of the moments of the ir-

radiance distribution, both in the plane of interest and in

the Fourier-transformed plane (angular spectrum). In or-

22 ffjooolglx

|T(Xy)2|dXdy 1‘ij ITXEffie

y)|2(X* (X>)

2(y * W
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der to provide a compact definition, we first define the
normalized moments used in the definitions:

1 In IT x y xl‘lyl‘fldxdy<de >: ff—
fff; Wxy)ldxdy

Hf; |45((é 17)|)€"11’”d€d11

Hf; (15(5 11)|dédn

Then the width (actually the square of the width) is

defined as the following tensor:

27 <x2> <xy>><<x>> x 1w 4mm M m <<> <y>> <32>
The vector (<x),<y)) describes any possible decentering

of the beam. The term containing this vector can be

cancelled by properly displacing the center of the

coordinate system where the beam is described. It should

be noted that there exists a coordinate system where this

matrix is diagonal.

The tensor of divergences is also represented as a 2 X 2
matrix defined as:

<52> em) (e) 12 : 42.2 i 5l<<én> <n2> <n> W W)

As in the width tensor, the second term of this

definition accounts for the tilting of the beam with respect

to the direction of propagation established by the co-

ordinate system. Again, an appropriate rotation (it may be

different from the one for diagonalizing W2) and a dis-
placement of the coordinate system can produce a

diagonal form of the divergence and the cancellation of

the second term of the divergence tensor. It should be

noted that, in general, the angle of rotation that diago-

nalizes the width tensor may be different from the angle

of rotation diagonalizing the divergence tensor. This is the

case for nonorthogonal, general—astigmatic, 3-D beams.
The definition of the radius of curvature needs the

definition of the following tensor: (see Eq. 34 below)

where (f) is the phase of the amplitude distribution, and

(30)

<€II17111>: (31)

(33)

WOW) : IT(x,y)leXp[i(f>(xay)l (35>

a¢g+yhxdy ff” (mu i<x>>a¢§§y>dxdy

8¢é_:y>dxdy ff” le(y,<y>)6¢g:ay>dxdy
(34)
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By using this tensor, the radius of curvature can be

calculated as the following 2 X 2 matrix that represents

the reciprocal of the radius of curvature:

 

R’l : (w2)’ls+ [ST e (wzrlswfi (36)
Tr[W2]

where superscript T means transposition.

The transformation of these parameters by an ABCD

optical system (see Section 7.3.6 of Ref. [18]) can use the

definition of the complex radius of curvature for arbitrary

laser beams. Alternatively, it is obtained by defining the

following matrix that describes the beam:

W2 S

B : (5T (,2) (3,,
where the elements are the 2 X 2 matrix defined pre-

viously. This beam matrix is transformed by the fol-

lowing relation:

32 : PBIPT (38)

where P is the ABCD tensor defined previously, and

superscript T means transposition.

3-D quality factor

The quality factor of a laser beam has been defined in the

2-D case as an invariant parameter of the beam when it

propagates along ABCD optical systems. The extension of

the formalism to the 3-D case requires the definition of a

quality tensor as follows:

77:2

M4 : 72 (W202 52) (39)

where W2, 82, and S have been defined previously. It can
be shown that the trace of this M4 tensor remains invariant

after transformation along ABCD optical systems. There-

fore a good quality factor, defined as a single number, is

given as:

l

J : 5 (Mg, +ij) (40)

where M); and MC; are the diagonal elements of the
quality tensor.[60‘66' Its minimum value is again equal to
one, and it is only reached for Gaussian beams.

Partially Coherent Laser Beams

A partially coherent light beam is better described by its

second-order functions correlating the amplitude distribu-

tions along the space and time. One of these functions is

lViARCEL DEKKER, INC.
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the cross-spectral density function that, in the 2-D case,
can be written as:

F(x,s,z) : {T(x+s/2,z)¥’*(xis/2,z)} (41)

where * means complex conjugation and {} stands for an

ensemble average. The Wigner distribution is defined as

the Fourier transform of the cross-spectral density:

h(x,f,z) : /F(x,.s,z) exp(ii27tfs)ds (42)
This Wigner distribution contains information about

the spatial irradiance distribution and its angular spec-

trum. The use of the Wigner distribution in optics has

been deeply studied and it seems to be very well adap-

ted to the analysis of partially coherent beam, along

with the cross-spectral density function.[47‘60‘61‘70’78'
For a centered and an aligned partially coherent beam,

it is possible to define both the width and the diver-
gence as:

2 4ff:016,,§ z))dxdf”W: 4H3:hp,(,5 z)mm: (43)

2h(x dxd

4ff§0 h(x,fz)dxd§

where the subindex w means that we are dealing with

the Wigner distribution. The radius of curvature is
defined as:

L: ffj; xfh(x z)dxdf (45)
RW ff; x2h(x z)dxdf

As we can see, all the parameters are based on the

calculation of the moments of the Wigner distribution.[78'
By using all these moments, it is also possible to define

the following quality factor for partially coherent
beams:[60'

M4:
W2”—il<//:xm>dxds>

>< (/ 1:52h(x,f,z)dxd£>

, (/ /: xémx, 5, z)dxdé> 2] <46>
The evolution of the parameters of these partially

coherent beams can be obtained by using the transforma-
tion properties of the Wigner distribution.[75‘76'



Laser and Gaussian Beam Propagation and Transformation

Panmnycohmentbserbeams
in three dimensions

For a 3-D partially coherent beam, it is necessary again to

transform the scalar parameters into tensorial ones. Their

definitions resemble very well those definitions obtained

in the case of totally coherent beams. The width for this

partially coherent beam is:

szv : 4(<x2>w <xy>w> (4,)<XY>W <y2>w

where the subindex W in the calculation of the moments

stands for the moments of the Wigner distribution:

<P>w : /1 Way,Mammy,maddxdydédn
(48)

where p is any product of x, y, f, 11, and their powers. The

divergence for centered and aligned beams becomes:

03w : 4<<52>w MW) (49)
The crossed moment tensor SW is also defined as:

(MM (WW)SW : <y€>w (WM
(50)

All these three tensors can be grouped in a 4 X 4 matrix

containing the whole information about the beam.[79' This
matrix is built as follows:

(x2>w (XWW (xaw <W>w2

BW : (WM (y N (yfhv <y17>w (51)
(xaw <y€>w <5 >w (imw

(Mow <y11>w <€n>w (110w

Now the transformation of the beam by a 3-D optical

system is performed as the following matricial product:

8m : PBW,1PT (52>

where the matrix P is the one already defined in the

description of 3-D ABCD systems.

Within this formalism, it is also possible to define a
quality factor,[61' invariant under ABCD 3-D transforma-
tions, in the following form:

J : Tr [Vt/3,857,, 7 53, (53)
where Tr means the trace of the matrix inside the floors.
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CONCLUSION

The Gaussian beam is the simplest case of laser beams

actually appearing in practical optical systems. The pa-
rameters defined for Gaussian beams are: the width, which

informs about the transversal extension of the beam; the

divergence, which describes the spreading of the beam in

the far field; and the radius of curvature, which explains
the curvature of the associated wavefront. There also exist

some other derived parameters, such as the Rayleigh

range, which explains the extension of the beam waist

along the propagation axis, and the Guoy phase shift,

which describes how the phase includes an extra TE phase

shift after crossing the beam waist region. Although sim-

ple, Gaussian beams exhibit a great variety of realizations

when 3-D beams are studied. They can be rotated,

displaced, and twisted. To properly evaluate such effects,

some other parameters have been defined by accounting

for the ellipticity of the irradiance pattern, the longitudinal

astigmatism, and the twisting of the irradiance profile.

Some other types of beams include the Gaussian beam

as the core of their amplitude profile. This is the case of

multimode laser beams. When the beam is totally

coherent, it can be successfully described by extending

the definitions of the Gaussian beam case by means of the
calculation of the moments of their irradiance distribution

(both in the plane of interest and in the far field). The

definition of a quality factor M2 has provided a figure for
comparing different types of beams with respect to the

best quality beam: the Gaussian beam. Another extension

of the characteristic parameters of the Gaussian beams to

partially coherent beam can be accomplished by using the

cross-spectral density and the Wigner distribution and
their associated moments.

Summarizing, Gaussian laser beams are a reference of

quality for a laser source. The description of other types

of generalized, non-Gaussian, nonspherical, nonorthogo-

nal, laser beams is referred to the same type of parameters

describing the Gaussian case.
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