
./

-f ":2-IEWLETT-PACKARD COMPANY J...» ” D PATENT APPUCAHON
' Intellectual Property Administration
P. 0. Bo 272400 _

Fort C0|Ii(ns, Colorado 80527-2400 ATTORNEY DOCKET N°- —

. IN THE U.S. PATENT AND TRADEMARK OFFICE

, Patent Application Transmittal Letter

COMMISSIONER FOR PATENTS

if gllashington. D.C. 202312

Sir:

Transmitted herewith for filing under 37 CFR 1.53(b) is a(n): (X) Utility (I Design

1‘

Illlllllllllllllllllllllllll00/12/01
Il

.S. 3942

l)() original patent application, 825U 09/"IllII
I I continuation-in—part application U 2

INVENTORISII Eric A Pulsipher et al

TITLE: Method And System For Identifying And Processing Changes To A Network Topology

Enclosed are:

(X) The Declaration and Power of Attorney. (x) signed I) unsigned or partially signed

(XI 26 sheets of drawings (one set) (I Associate Power of Attorney

I I Form PTO-1449 () Information Disclosure Statement and Form PTO—1449

(I Priority documentlsl ()(0ther) (fee $ I

CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY

(1) (2) (3) (4) (5)
FOR NUMBER FILED NUMBER EXTRA RATE TOTALS

X$18 $

TOTAL CLAIMS

INDEPENDENT
CLAIMS 3 ‘“ 3 ‘ID- O0

ANY MULTIPLE III III
DEPENDENT CLAIMS $270 $ 0

BASIC FEE: Design ($320.00 I; Utility ($710.00) s 710

TOTAL FILING FEE

OTHER FEES

710

TOTAL CHARGES TO DEPOSIT ACCOUNT 710

Charge $ 710 to Deposit Account 08-2025. At any time during the pendency of this application,
please charge any fees required or credit any over payment to Deposit Account 08-2025 pursuant to 37
CFR 1.25. Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,
1.17,1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"Express Mail" label no. EL523338183us _
Respectfully submitted.

Date of Deposit oct, 31 2000

I hereby certify that this is being deposited with the Enc A Pulsmher et al
United States Postal Service "Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on
the date indicated above and is addressed to: BY 9

T. Grant Ritz

Attorney/Agent for Applicantls)

Reg- No- 39.819

Date: Oct. 31, 2000

Telephone N05 (970) 898-0697 Hp 2007

SerViceN0w V. HP

IPR20 1 5-007 17

1

RSV 10/00 ITf3nSNeWl — Attach as First Page to Transmitted Papers -

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
1

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
HP 2007ServiceNow v. HPIPR2015-00717

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

Title

Method and System for Identifying and Processing Changes to a Network Topology

Field of Invention

The present invention relates generally to computer networks. More particularly, it relates

to a method and system for identifying changes to a network topology and for acting upon the

network based on the changes.

Background

As communications networks, such as the Internet, carry more and more traffic, efficient

use of the bandwidth available in the network becomes more and more important. Switching

technology was developed in order to reduce congestion and associated competition for the

available bandwidth. Switching technology works by restricting traffic. Instead ofbroadcasting a

given data packet to all parts of the network, switches are used to control data flow such that the

data packet is sent only along those network segments necessary to deliver it to the target node.

The smaller volume of traffic on any given segment results in few packet collisions on that segment

and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually

possible and is typically made based upon current traffic patterns.

The intelligent routing of data packets with resultant reduction in network congestion can

only be effected if the network topology is known. The topology of a network is a description of

.« , the network which includes the location of and interconnections between nodes on the network.

The word “topology” refers to either the physical or logical layout of the network, including devices,

and their connections in relationship to one another. Information necessary to create the topology

layout can be derived from tables stored in network devices such as hubs, bridges, and switches.

The information in these tables is in a constant state of flux as new entries are being added and old

entries time out. Many times there simply is not enough information to determine where to place a

particular device.

Switches examine each data packet that they receive, read the source addresses, and log

those addresses into tables along with the switch ports on which the packets were received. If a

packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. 100081024 1

janir
Typewritten Text
2

janir
Typewritten Text

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified

where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table

can become quite large and may require a significant amount of the switch’s resources to develop

and maintain. As an additional complication, the physical layout of devices and their connections

are typically in a state of constant change. Devices are continually being removed from, added to,

and moved to new physical locations on the network. To be effectively managed, the topology of a

network must be accurately and efficiently ascertained, as well as maintained.

Existing mapping methods have limitations that prevent them from accurately mapping

topological relationships. Multiple connectivity problems are one sort of difficulty encountered by

existing methods. For example, connectors such as routers, switches, and bridges may be

interconnected devices in a network. Some existing methods assume that these devices have only a

single connection between them. In newer devices, however, it is common for manufacturers to

provide multiple connections between devices to improve network efficiency and to increase

capacity of links between the devices. The multiple connectivity allows the devices to maintain

connection in case one connection fails. Methods that do not consider multiple connectivity do not

I present a complete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a

device. Existing methods use a reference interface or a reference address in a set of devices to

orient all other devices in the same area. These methods assumed that every working device would

be able to identify, or “hear,” this reference and identify it with a particular port of the device. 'With

newer devices, however, it is possible that the same address or reference may be heard out of

multiple ports of the same device. It is also possible that the address or reference may not be heard

from any ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of

the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be Very large and expensive.

HP No 100081024 2

janir
Typewritten Text
3

I\)

CD\D0O\)O\U1-J>~U~>
Still another difficulty with existing systems is that they focus on the minutia without

considering the larger mapping considerations. VVhenever an individual change in the system is

detected, existing methods immediately act on that change, rather than taking a broader View of the

change in the context of other system changes. For example, a device may be removed from the

network temporarily and replaced with its ports reversed. In existing systems, this swapped port

scenario could require hundreds or thousands of changes because the reference addresses will have

changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.

These methods continuously poll network addresses throughout the day and make decisions based

on those continuous polling results. This creates traffic on the network that slows other processes.

Still another limitation of existing methods is the assumption that network parts of a

particular layer would be physically separated from other parts. Network layer 1 may represent the

physical cabling of the network, layer 2 may represent the device connectivity, and layer 3 may

represent a higher level of abstraction, such as the groupings of devices into regions. Existing

methods assume that all layer 3 region groupings are self-contained, running on the same unique

physical networking. However, in an intemet protocol (IP) network, multiple IP domains may co-

exist on the same lower layer networking infrastructure. It has become common for a network to

employ a virtual local area network (LAN) to improve security or to simplify network maintenance,

for example. Using virtual LANs, a system may have any number of different IP domains sharing

the same physical connectivity. As a result, existing methods create confusion with respect to

topological mapping because networks with multiple IP addresses in different subnets for the

infrastructure devices cannot be properly represented because they assume the physical separation

of connectivity for separate lP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.

Summary of Invention

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HP No l0O08102~l 3

janir
Typewritten Text
4

pnd

2

3

4

5

6

7

8

9

O

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and multi-heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

Summary of Drawings

Figure l is a drawing of a typical topological bus segment for representing the connectivity

of nodes on a network.

Figure 2 is a drawing of a typical topological serial segment for representing the connectivity

of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity

of nodes on a network.

Figure 4 is a drawing of another typical topological star segment for representing the

connectivity of nodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.

Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HP No 100081024 4

janir
Typewritten Text
5

Figure 11 is a flow chart of the first weeding phase of the method used by the connection

calculator.

Figures 12a—d are flow charts of an infrastructure—building phase of the method used by the

connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection

calculator.

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection

calculator.

Figure 15 is a flow chart of the look-for phase of the method used by the connection

calculator.

Figures l6a—b are flow charts of the consolidation phase of the method used by the

connection calculator.

Figure 17 is a flow chart of the method used by the topology converter.

Figures 18a-b are flow charts of the morph topo phase of the method used by the topology

converter.

Figure 19 is a flow chart of the duplication discard phase of the method used by the

topology converter.

Figures 20a—d are flow charts of the identify different tuples phase of the method used by

the topology converter.

Detailed Description

The system provides an improved method for creating topological maps of communication

networks based. Connectivity information is retrieved from the network nodes and stored as

“tuples” to track specifically the desired information necessary to map the topology. These light

weight data structures may store the host identifier, interface index, and a port. From this tuple

information, the topology may be determined. A tuple may be a binary element insofar as it has two

parts representing the two nodes on either end of a network link or segment. A “tuco” refers to a

tuple component, such as half of a binary tuple.

HP No 100081024 5

janir
Typewritten Text
6

As used herein, a node is any electronic component, such as a connector or a host, or

combination of electronic components with their interconnections. A connector is any network

device other than a host, including a switching device. A switching device is one type of connector

and refers to any device that controls the flow ofmessages on a network. Switching devices

include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and

switches.

As used herein, the term “tuple” refers to any collection of assorted data. Tuples may be

used to track information about network topology by storing data from network nodes. In one use,

tuples may include a ho st identifier, interface information, and a port specification for each node.

The port specification (also described as the group/port) may include a group number and a port

number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple

may include this information about two nodes as a means of showing the connectivity between them,

whether the nodes are connected directly or indirectly through other nodes. A “conn—to—conn”

tuple refers to a tuple that has connectivity data about connector nodes. A “conn~to—host” tuple

refers to a tuple that has connectivity data about a connector node and a host node. In one use,

tuples may have data about more than two nodes; that is, they may be n—ary tuples, such as those

used with respect to shared media connections described herein.

A “singly-heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,

other device, etc., that is connected directly to a connector, such as a switching device. A singly-

heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an

shh. A “multi—heard host” (mhh) refers to hosts that are heard by a connector on the same port that

other hosts are heard. A multi—heard host link (mhhl) refers to the link between the connector and

an rnhh. A link generally refers to the connection between nodes. A segment is a link that may

include a shared media connection.

Figure l is a drawing of a typical topological bus segment 100 for representing the

connectivity of nodes on a network ll0. In Figure 1, first and second hosts 121, 122, as well as a

first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No 10008 l02-l 6

janir
Typewritten Text
7

1

U!.I>~LA)I\)
6

7

8

9

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first

connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the

connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port

132 on a second connector 145 which is connected via the network 110 to the first port 131 on the

first connector 140. The serial segment 200 comprises the second port 132 on the second

connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of

a c0nnector—to—connector (“conn~to—conn”) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the

connectivity ofnodes on the network 110. In Figure 3, the first host 121 is connected to the first

port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected

to the first port 131 of the first connector 140. Figure 3 is an example of a connector—to~host

(“conn—to—host”) relationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the

connectivity of nodes on the network 110. In addition to the connections described with respect to

Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth

host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment

301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third

host 123 connected to the third port 133 of the first connector 140, and the fourth host 124

connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,

on a given connector, at least one port, wherein one and only one host is connected to that port,

and that host. In the more general case, the star segment 301 comprises, on a given connector, all

ports having one and only one host connected to each port, and those connected hosts. Since the

segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are

referred to as star segments.

For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No lOOO8]02—! 7

janir
Typewritten Text
 8

represented as terminals. However, they could also be workstations, personal computers, printers,

scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,

third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth

ports 131, 133, 134 respectively, wherein the first, third, and fourth ports 131, 133, 134 are

located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly~heard hosts connected to separate

ports 131, 133, 134 of a common connector 140 -— the first connector 140. The fifth and sixth

hosts 125, 126 are singly-heard hosts connected to the third and fourth connectors 142, 143. The

seventh and eighth hosts 127, 128 are multi-heard hosts connected to the same port 139 of the fifth

connector 144. The multi-heard hosts 127, 128 illustrate a shared media segment 180, also

referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and

illustrate a switch mesh 181. Each of the connectors in the switch mesh 181 is connected to each

other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be

dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.

The first connector 140 is connected via the network 110 to the second connector 141 by two

direct links, each of which is connected to different ports on the connectors. One linkis connected

to the sixth port 136 of the first connector 140 and to the seventh port of the second connector

137. The other link is connected to fifth port 135 of the first connector 140 and to the eighth port

138 of the second connector 141. In this example, two connectors illustrate the multiple

connectivity between nodes. Depending upon the device specifications, devices such as connectors

may be connected via any number of connectors. As explained herein, the system resolves multiple

connectivity problems by tracking port information for each connection.

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors

171, l_72, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No 100081024 8

janir
Typewritten Text
9

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or

intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected

directly to the fifth port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flow chart of the method

used by the system to retrieve and update the topology of the network. A tuple manager 300, also

referred to as a data miner 300, gathers 902 data from network nodes and builds 904 tuples to

update the current topology. The topology database “topod ” 350 stores the current topology for

use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple

manager 300. The connection calculator 320 processes the data in the neighbor data database 310

to determine the new network topology. The connection calculator 320 reduces 906 the tuple data

and sends it to the reduced topology relationships database 330. The topology converter 340 then

updates 908 the topology database 350 based on the new tuples sent to the reduced topology

relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described

generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.

The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then

retrieves 912 node information of the current topology stored in the topology database 350. This

information tells the tuple manager 300 which devices or nodes are believed to exist in the system

based on the nodes that were detected during a previous query. The tuple manager 300 then

queries 914 the known nodes to gather the desired information. For example, the connectors may

maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary

functions, such as switching. Other devices may allow the system to perform queries to gather

information about the flow ofnetwork traffic. This data identifies the devices heard by a connector

and the port on which the device was heard. The tuple manager 300 gathers this data by accessing

forwarding tables and other information sources for the nodes to determine such information as their

physical address, interface information, and the port from which they “hear” other devices. Based

on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

data” database 310. Some nodes may have incomplete information. In this case, the partial

H? No 100081024 9

10

janir
Typewritten Text
10

information is assembled into a tuple and may be used as a “hint” to determine its connectivity later,

based on other connections. The tuple manager 300 may also gather 920 additional information

about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that

information.

After the data is gathered and the tuples are stored in the neighbor database 310, the

connection calculator 320 processes the tuples to reduce them to relationships in the topology.

Figure 10 shows a flow chart of the process of the connection calculator 320, as shown generally in

the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a

first weeding phase 922 to identify singly-heard hosts to distinguish them from multi~heard hosts.

Sirigly—heard hosts refer to host devices connected directly to a connector. The connection

calculator 320 then performs an infrastructure—building phase 924 to remove redundant connector-

to—connector links and to complete the details for partial tuples that are missing information. Then,

the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports

of singly—heard hosts. The connection calculator 320 then performs a noise reduction phase 928 to

remove redundant neighbor information for connector—to—host links. If clarification of device

connectivity is required, the connection calculator 320 performs a “look for” phase 930 to ask the

tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment

and network containment relationships. The connection calculator 320 may also tag redundant

tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide

hints to connectivity of other tuples. As part of the consolidation phase 932, the connection

calculator 320 creates new n~ary tuples (tuples having references to three or more tucos) for shared

media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for

distinguishing singly-heard hosts. The purpose of the first weeding process 922 is to identify the

direct connections between connectors and hosts; that is, those tuples having a first tuco that is a

connector and a second tuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

HP No 100031024 10

ll

janir
Typewritten Text
11

fx)

3

4

5

6

7

8

9

404 whether the tuple is a connector-to-host (conn-to~host) link tuple. If it is not a conn—to—h0st

link, the connection calculator 320 concludes 418 that it is a conn-to~conn link and processes 402

the next tuple. If the tuple is a conn—to-host link tuple, then the connection calculator 320

determines 406 whether the connector hears only this particular host on the port identified in the

tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a multi-

heard host link (mhhl) tuple.

If the connector hears only the one host on the port —— that is, if the host is a singly—heard

host — then the connection calculator 320 determines 408 whether the host is heard singly by any

other connectors. If no other connectors hear the host as a singly—heard host, then the tuple is

classified as a singly—heard host link (shhl) tuple 412 and other tuples for this host are classified 414

as extra host links (ehl). Another tuple for this host may be, for example, an intermediate connector

connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the

first connector is connected directly to the first host 151. This connection therefore forms an shhl

tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data

indicates that the intermediate connector 172 is indirectly connected to the host and hears the host

from a particular port. An extra host links tuple is created so that this data may be used later in

conjunction with other extra host links tuples from devices across the network, to verify connectivity

by providing hints about connections.

The first weeding process also attempts to identify conflicts. If other connectors hear the

host as a singly—heard host, then a conflict arises and the tuple is classified 410 as a sirigly—heard

conflict link (shcl) tuple to be resolved later. This conflict may arise, for example, if a host has been

moved within the network, in which case the forwarding table data may no longer be valid. Certain

connectors previously connected directly to the host may still indicate that the moved host is

connected. When all tuples have been processed 402 to identify singly—heard host links, the first

weeding phase 922 is complete.

Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection

calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

connectors are set up in the network. The first part of the infrastructure building phase 924

HP No |0O0S102«l 1 1

12

janir
Typewritten Text
12

U1.5U9IN.)
6

7

8

9

manufactures tuples based on the list of singly-heard host link tuples identified in the first weeding

phase 922. The purpose is to identify the relationship between the connectors in the extra host links

tuples and the connectors directly connected to the singl}/«heard hosts. For each singly—heard host

link 420, the connection calculator 320 processes 422 each extra host link that refers to the host.

In the illustration ofFigure 6, a c0nn—to-Conn link tuple would represent the connection between the

first connector 171 and the intermediate connector 172. An extra host link tuple would represent

the indirect connection between the intermediate connector 172 and the first host 151. The conn-

to—conn link tuple between the first connector 17} and the intermediate connector 172 is an

example of an ehlConn—to—shhlConn tiiple. If a conn-to-conn link tuple exists 424 for the extra host

link connector to the sing1y—heard host link connector (eh1Conn—to—shhlConn), then the connection

calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be

incomplete and a conn«to-conn link may not exist. In that case, a conn~to—conn tuple does not exist

for the eh1Conn—to—shhlConn, then such a tuple is created 426.

After processing extra host links for singly—heard host links, the connection calculator 320

considers 430 each connector (referred to as connl) in the tuples to determine the relationship

between connectors. As illustrated in Figure 6, a single connector may be connected directly and

indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the

intermediate connector 171 directly and also to the third connector 173 indirectly. The third

connector 173 hears the first host 151 on the same part 165 that it hears the first connector 171 and

the intermediate connector 172. The infrastructure building phase 924 tries to determine the

relationship between other connectors heard on the same port of connl. In a series of

interconnected connectors, the connector on one end may not hear a connector on another end, but

it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are

created to represent the interconnection of conn—to—conn relationships. Based on this data, the

connection calculator 320 can make inferences regarding the overall connection between

connectors.

For every connl, the connection calculator 320 considers 432 every other connector

(conn2) to determine whether a connl—to-conn2 tuple exists. If connl—to-conn2 does not exist,

H? No l0()08l02—l

13

janir
Typewritten Text

janir
Typewritten Text
 13

4>L»Jl\J
5

6

7

8

9

then the connection calculator 320 considers 436 every other conn—to-conn tuple containing conn2.

The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique

port 438 and if connl also hears conn3 440, then the connection calculator 320 creates 442 a tuple

for conn1—to—corm2 in the connector—to-connector links tuple list.

After processing all of the connl tuples, the connection calculator 320 processes 444 each

connl—to~conn2 links tuple to ensure that they have complete port data. For each incomplete tuple

446, the connection calculator 320 looks 448 for a different tuple involving connl in the extra host

links tupleson a different port. If a different triple is found 450, then the connection calculator 320

determines 452 whether conn2 also hears the host. If conn2 does hear the host, then the

connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear

the host 452, then the connection calculator 320 continues looking 448 through different tuples

involving connl in extra host links on different ports.

After attempting to complete the missing data in each of the conn—to—conn links tuples, the

connection calculator 320 processes 456 each conn-to~conn links tuple. The purpose of this sub~

phase is to attempt to disprove invalid conn-to—conn links. The connection calculator 320 considers

45 8 connl and conn2 of each conn—to-conn links tuple. Every other connector in conn~to—conn

links may be referred to as testconn. For each testconn 460, the connection calculator 320

determines 462 whether the testconn hears connl and conn2 on different groups/ports. If testconn

hears connl and conn2 on different ports, then the tuple is moved to extraconnlinks (eel) 464.

Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the

second weeding phase 926 is to attempt to resolve conflicts involving singly—heard hosts identified in

the first weeding phase 922. In the situation described herein in which more than one connector

reports that a host is singly—heard, the second weeding phase 926 reviews the tuples created during

the infrastructure-building phase 924 involving the connector and host in question and attempts to

disprove the reported conflict. The connection calculator 320 processes 466 each

singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 connl

and hostl of the tuple. For each extra host links tuple containing hostl 470, the connection

HP No l000SlO2~l 13

14

janir
Typewritten Text
14

i\)

La.)

\OO0\]O\£h-¥>-

20

21

23

24

25

26

27

28

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in conn—to-conn links for conn2

and connl 474, and if there is a conn2-to—connl tuple in the extra host links tuples 476, and if the

port is the same for conn2 hearing connl and hostl 478, then the Search tuple is moved 480 into

the singly heard host links and other tuples containing hostl are removed 482 from the

singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise

reduction phase 928 is to handle those connections in which a connector is not directly connected

to a host or to another connector. For example, networking technology may employ shared media

connections between connectors, rather than dedicated media connectors. With a shared media

connection, the entries in the forwarding tables for connectors attached to the shared media

connection will include every node accessing the shared media connection and may not present a

useful or accurate representation of the nodal connection. For example, if the network configuration

in Figure 6 used a shared media connection between the first connector 171 and the intermediate

connector 172, then the first connector is not really connected directly to the intermediate connector

because other devices (not shown in Figure 6) may also use the shared media connection. These

other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be

created for the connectors l7l, 172 on opposing ends of the shared media. In this situation, it is

inefficient to maintain point~to—point binary tuples for every connection. The noise reduction phase

928 disproves invalid tuples created by the shared media connections.

For each multi—heard host links (mhhl) tuple, also referred to as multiHeardLinks (mhl)

tuples (sometimes referred to as the search tuple) 484, connl and hostl are considered 486. For

each extra host links tuple containing hostl 488, conn2 is considered 490. If there is a tuple in

conn—to—conn links for conn2 and connl 492, and if there is a conn2—to—hostl tuple in

extraHostLinks 494, and if the group/port for conn2 hearing connl and hostl is different 496, then

the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase is to

complete missing data for mhhl tuples. There may exist connections on the network that have

incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

HP No 100081024

15

janir
Typewritten Text

janir
Typewritten Text
15

D.)

4

in which case data might not be stored in forwarding tables. In another example, a forwarding table

may not have sufficient room to store all of the required information and might delete data on a

FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager

300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding

table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the

connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an

“alreadyDidLool<fors” list, then a list is created 508 for all connectors in conn~to—conn links that are

heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the

connection calculator 320 determines 512 whether there is a conn2-to-hostl tuple in the mhhl

tuples. If there is not such a tuple, then the connection calculator 320 initiates a lool<~for for conn..—

to—host1 via the tuple manager 300. When each connector in the list has been processed 510, the

connl group/port tuco is added 516 to an alreadyDidLool<fors list. As an additional portion of the

look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information

about connectivity. For example, the system may show the user the perceived connectivity or the

unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from

the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to

produce the new topology. This topology’ may have incomplete tuples possibly resulting from

extraneous information that the connection calculator 330 could not disprove. To refine the new

topology, the connection calculator 330 can request the tuple manager 300 to obtain additional

information about particular nodes or it may also request a user to refine the topology by adding or

removing tuples. Using the process of the connection calculator 330, tuples marked as non-

essential may be removed from the new topology to save space and to simply the topology. The

connection calculator 330 is not confused by multiple connectivity situations such as port

aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-

to-point, or neighbor-to-neighbor, connectivity showing each connection in the network. This

point-to~point connectivity concept also helps enable the system to avoid difficulties that occur in

HPNO lD008lD2-l

16

janir
Typewritten Text
 16

systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may

contain only selected information to minimize the storage space required for the topology.

Figures l6a—b show a flow chart of the consolidation phase 932. The purpose of this phase

is to consolidate the tuples that involve shared media connections. After the noise reduction phase

928, a considerable number of tuples involving shared media may remain. Rather than maintain a

binary tuple for each of the connections, an n—ary tuple is created for the link using a tuco for each

connector and each host connected thereto. For each mhhl tuple 518, connl and hostl are

considered 520. If there are more connl group/port tuples in rnultiHeardLinl<s, and if are not any

n-ary rnultil-leardSegrnents (rnhs) tuples 524, then an mhs tuple is created 526. Ifhostl is not

already in this particular mhs tuple 528, then conn2 of the tuple is considered 534. If there is a

connl—to—conn2 conn—to—connLinks tuple on the same port as connl—to—hostl 536, then all

multiHeardLinks tuples for conn2—to-hostl with the same conn2 group/port as the connl—to—conn2

are added 5 38 to the current mhs tuple.

Alter processing each mhhl tuple 518, each singly—heard host links (shhl) tuple, also referred

to as a singlyHeardLinks (shl) tuple, is considered 540. For each shhl tuple, the connector and host

are considered 542. If there is no existing singlyHeardSegrnents (shs) tuple for the connector 544,

then an shs tuple is created 546. The host tuco is then added to the shs 548.

Figure 17 shows a flow chart of the method used by the topology converter 340, as

described generally by the topology update step 908 of the method shown in Figure 8. The

topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph

topo” phase 934. It then compares 936 the list from the topology currently stored in the topology

database 350 with the new list generated by the connection calculator 320 and discards 936

identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes

action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is

also referred to as the “identify different tuples” phase 938.

Figure 1821 shows a flow chart for the “morph topo” phase 934. For each node in the

topology 550, the topology converter 340 determines 552 whether the node is a connector. If the

node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

HP No l0O08lD2-l 16

17

janir
Typewritten Text
17

Xx)

D.)

4

5

6

7

8

9

20

21

22

23

24

25

26

27

28

the topology converter 340 determines 556 whether the conniface is connected to a star segment.

If it is connected to a star segment, then for every other interface in the segment 558, the topology

converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”

for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs

tuple. The tuco for the interface’s host—to—topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and is connected to a bus

segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for

connl. If there is not an existing mhs tuple for connl , then a topo mhs tuple is created 570. A tuco

is added 572 for the host to the mhs tuple.

If the connector node is not connected to either a star segment 556 or to a bus segment

566, then the topology converter knows that it is connected to another connector (conn2). If such

a connector does not already have an existing connLinl<s tuple for connl and conn2 576, then a

connLinks tuple is created 578. After processing the bus segment, star segment, and conn—to—conn

segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 18b shows a continuation of the flow chart of Figure 18a showing the steps of the

method when the topology converter 340 determines that the node is not a connector 552. If the

node is in the default segment, then an “unheardOtLinl<s” tuple is created 582 and the topology

converter proceeds to the next node 550. If the node is not in the default segment 580, then the

topology converter 340 determines whether the node is in a star segment 584. If the node is in a

star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 anvshs

tuple. The tuco for the node is then added 590 to the shs tuple, and the topology converter 340

proceeds to the next node 550.

If the node is not in a star segment, then the topology converter 340 knows that it is in the

bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter

340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the

topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

HP No l0008|02—l 17

18

janir
Typewritten Text
18

U1.13U3[U

\OO0\)C7\

20

21

22

23

24

25

26

28

exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new

tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a—d show a flow chart for the identify different tuples phase 938. The system

looks through each tuple in the new S.inglyHeardSegments (newSHS) tuple list 608 and tries to

identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering

those segment tuples in both the new topology and the existing topology that differ only by the port

specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”

The system also looks through each tuple in the new multiHeardSegments tuple list (newMHS) 614

and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a

swapped port is marked 618 as “handled.”

The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases

are possible for the host of the newSHL tuples. The host of the newSHL can be found in the

current singlyHeardLinks (curSHL) 622, the current multil-IeardLinks (curMHL) 630, the current

connLinks (curCL) 638, or the current UnheardOfLinks (curUOL) 642. If the host of a newSHL

tuple is found 622 in the current Singlyl-leardLinks (curSHL) tuples, then the system determines 624

if there is a matching connector tuco between the newSHL tuples and the curSI-IL tuples. If there is

a matching tuco, then the system changes 626 the host connection attribute. If there is not a

matching tuco, then the host connection is moved 628 in the topology.

If the host is found in the curMHL tuples 630, then the system determines 632 whether

there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is a

matching connector, then the segment type of connection is changed 634. If there is not a matching

connector, then the host connection is moved 636 in the topology. If the host is found in the curCL

tuples 638, then the host is moved 640 into a star segment of the connector. If it is found in the

curUOL 642, then the host is moved 644 into the star segment of the connector.

Figure 20c shows another stage of the processing undertaken during the identify different

tuples. phase 938. For each unmarked tuple in the new rnultiHeardLinks tuples (newMI-IL) 946,

four cases are possible for the host of the newMHL. The host of the newMHL may be found in the

curSI-IL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No |0008lO2—l 18

19

janir
Typewritten Text
 19

X0

3

4

5

6

7

8

9

curSHL 648, then the system determines 650 whether there is a matching connector tuco between

the newMHL and the curMHL. If there is a matching tuco, then the segment type of connection is

changed 652. If there is not a matching tuco, then the host connection is moved 654 in the

topology.

If the host is found in the curMHL tuples 656, then the system determines 658 whether

there is a matching connector tuco in both the curMHL tuples and the newMHL tuples. If there is a

matching connector tuco, then the host connection attribute is changed 660. If there is not a

matching tuco, then the host connection is moved 662 in the topology. If the host is found in the

curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in

the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identify different tuples phase 938. For each

unmarked tuple in the newCL tuples 672, there are three possibilities for the connector. The

connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the

curCL 678, or in the curUOL 682. If each connector is found in the curSHL or curMHL list 674,

then the system creates 676 a new point—to-point segment for the connectors. If the connectors are

found in the curCL 678, then the connection attributes of the connectors are changed 680. If each

connector is found in the curUOL tuples 682, then the host connection is moved 684 in the

topology.

Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of

Figure 20d. For each unmarked tuple in the nevs/UOL tuples 686, the system checks 688 the

timer/configuration to determine whether the host/conn should move into the default segment from

its current segment.

An advantage of the system is that it may be schedulable. The system may map network

topology continuously, as done by existing systems, or it may be scheduled to run only at certain

intervals, as desired by the user. A further advantage of the system is that it is capable of

processing multiple connections between the same devices and of processing connection meshes,

because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

HPNO 10008102-I

20

janir
Typewritten Text
20

1 Although the present invention has been described with respect to particular embodiments

2 thereof, variations are possible. The present invention may be embodied in specific forms without

3 departing from the essentiai spirit or attributes thereof. It is desired that the embodiments described
4 herein be considered in all respects illustrative and not restrictive and that reference be made to the

U1 appended claims for determining the scope of the invention.

20HP No 100081024

21

janir
Typewritten Text
21

Claims

1. in a network having interconnected nodes with data tuples that represent nodal

connections, a method for mapping a network topology by identifying changes between an existing

topology and a new topology, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal

connections;

receiving new tuples that represent new nodal connections; and

comparing the list of existing tuples with the new tuples to identify changes to the topology.

2. The method of claim 1, further comprising updating a topology database with a new

topology.

3. The method of claim l, further comprising taking action on the changes to the

topology.

4. The method of claim 1, wherein the tuples include information about a host

identifier, a connector interface, and a port specification.

5. The method of claim 1, wherein the step of comparing comprises identifying

duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

6. The method of claim 1, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

7. The method of claim 1, wherein the step of comparing comprises searching for a

host of a new singly—heard host link tuple or a new multi—heard host link tuple in the list of existing

tuples.

8. A system for mapping a network topology by identifying changes between an

existing topology and a new topology, based on changes to data tuples that represent nodal

connections comprising:

a topology database that stores an existing topology of a network; and

H? No IOOOSIOZ-I 21

22

janir
Typewritten Text
22

)-.4

2

3

4

5

6

7

8

9

a topology converter connected to the topology database that receives new tuples that

represent new nodal connections; and compares the new tuples with the existing topology to identify

changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing

topology into a list of existing tuples that represent existing nodal connections.

10. The system of claim 8, wherein the topology converter updates the topolog

database with a new topology based on the new tuples.

ll. The system of claim 8, wherein the topology converter attempts to identify swapped

ports on connectors.

12. The system of claim 8, wherein the topology converter identifies duplicate tuples

that appear both in the list of existing tuples and in the new tuples, and maintains a current status of

the topology for these tuples.

l3. The system of claim 8, wherein the topology converter searches for a host of a new

singly—heard host link tuple or a new multi-heard host link tuple in the list of existing tuples.

l4. The system of claim 8, wherein the topology converter searches for a connector of

a new conflict links tuple in the list of existing tuples.

15. A computer—readable medium having cornputer—executable instructions for

performing a method for mapping a network topology by identifying changes between an existing

topology and a new topology in a network having a interconnected nodes, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal

connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;

and

updating a topology database with a new topology.

16. The method of claim 15, wherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

HP No 100081024

23

janir
Typewritten Text
23

U1-5DJE0

\">O0\]O\
10

17. The method of claim 15, wherein the step of comparing comprises identifying

duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

19. The method of claim 15, wherein the step of comparing compiises searching for a

host of a new singly-heard host link tuple or a new multi—heard host link tuple in the list of existing

tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a

connector of a new conflict links tuple in the list of existing tuples.

HP No 10008102-l _

24

janir
Typewritten Text
24

Abstract

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and rnulti-heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

HP No l0GOSl02—l

25

janir
Typewritten Text
25

1/26

 oooooo

1 FIG. 1

26

janir
Typewritten Text
26

2/26

27

janir
Typewritten Text
27

3/26

28

janir
Typewritten Text
28

4/26

FIG. 4

29

janir
Typewritten Text
29

5/26

FIG. 5

121

30

janir
Typewritten Text
30

FIG. 6

31

janir
Typewritten Text
31

Qzmazébmamsommmfimmzofifmmzo:§,:$_<Mam:
mfimmzogfimm»oSon§.emupoma

amunomm,H.<$358
7/26

%§m>zouE822.

N.GE

@zmz<§E-a<:9éamommgmz

 m.5v5S_.<.H.<Qmo$§mz..

em

mo_.<5B<uzoaomzzou
ca

 amszmozpomm. mZH<HzOU‘E5,,__<H<Q~.5mmUHmZ..BEE:..<.w<QmOmm©EZ_.,, ,,,QZ<n5MOOw_.mE_<mmUgmwaammm+<E:$6/mg92$58Bzmfi._momMoog;

Sm

BEzo:.<uE%ézmflxm

I\

$3305aomV505

|\:msamamms

M589.

$85299.

W58% moneys:mzammaéEE5omm<m3ouo_.9a
 32

janir
Typewritten Text
32

8/26

TOPOLOGY

UPDATING PHASE
902

DATA GATHERING TUPLE BUILDING , TUPLE REDUCTION
PHASE PHASE PHASE

904 906 908

910

RECEIVE START

SIGNAL

9 I 2

LOOK UPEXISTING
DEVICES IN TOPOLOGY

DATABASE

914

QUERY NODES

916

CREATE TUPLES

91 8

STORE TUPLES IN
NEIGHBOR DATABASE

GATHER

ADDITIONAL DATA

AS RE UESTED

FIG. 9

FIG. 8

33

922

FIRST WEEDING

PHASE

924

INFRASTRUCTURE

BUILDING
PHASE

SECOND WEEDING
PHASE

A. 928

NOISE REDUCTION
PHASE

930

LOOK-FOR
PHASE

932

CONSOLIDATION

PHASE

FIG. 10

janir
Typewritten Text
33

. 9/26

FIG. 11

O

418

NO TUPLE ISA CONN
TO CONNLINK

CONN TO HOST
TUPLE

?

 CONN

ONLY HEARS THIS
HOST ON GROUP 1

PORT ?

NO

HOST HEARD

SINGLY BY ANY
OTHER

CONN
?

416

- TUPLE IS A MHHL

412

TUPLE IS A SHHL

414

MOVE TUPLES FOR
THIS HOST TO EHL

TUPLE IS A SINGLY—
HEARD CONFLICT

LINK

34

janir
Typewritten Text
34

10/26

FOR EACH

TO BLOCK SHHL TUPLE
430 OF FIG.12b

FOR

EACH TUPLE
IN EHL

 CONN TO CONN
LINK TUPLE FOR

EHL-CONN TO SHEL-

COINN

YES

428

UPDATE TUPLE
IF NOT COMPLETE

CREATE EHL CONN TO SHHLCONN
TUPLE IN CONN TO CONN LINK

FIG. 12a

35

janir
Typewritten Text
35

FROM BLOCK 420

OF FIG. 12a 11/26

FIG. 1 2b

FOR EACH

CONNECTOR IN DONE TO BLOCK 444
TUPLE3 OF FIG. 12¢
(CONN1)

FOR

EACH OTHER

CONNH%'r85LNCON\I—T - NN
DONE TUPLES

(CONN2)

 CONN1 TO CONN2

CONN2 HEARS CONN3 N0
EXISTS IN ON UNIQUE

TUE7LES POVRT

NO

436

CONN 1

HEARS?CONN3
EACH CONN2 TO

OTHER CONNECTOR

CONN3) IN CONN-
TO-CONN

ONE

DO

CREATE CONN 1 TO CONN2

TUPLE IN CONN TO CONN

LINKS

36

janir
Typewritten Text
36

FROM BLOCK 430 OF FIG. 12b 12/26

FOR EACH

CONN TO CONN LINKS
TUPLE

DONE
TO BLOCK 456

OF FIG. 12d

DO

 INCOMPLETE

GROUPI PORT
DATA FOR

CONN2?

YES
6

LOOK FOR DIFFERENT TUPL
INVOLVING CONN 1 IN

EHL ON

DIFFERENT GROUP/PORT

FIG. 120
CONN2 ALSO NO

HEARS

HO?ST

FILL IN MISSING

GROUP/PORT FOR
CONNZ

37

janir
Typewritten Text
37

13/26

FROM BLOCK 444 OF FIG. 12¢

FIG. 12d

FOR EACH
CONN TO CONN LINKS

TUPLE

DONE

CONSIDER CONN1
AND CONN2

OF THIS TUPLE

OTHER CONN

EFEST CONI\ INONN TO C NN
LINKS THAT
HEARS BOTH

CONN 1 &
CONN2

ONE
DO

TEST CONN
HEARS CONN1 AND

CONN2 ON
DIFFERENT

PORTS

NO

MOVE THIS TUPLE
TO EXTRA CONN

LINKS
38

janir
Typewritten Text
38

14/26 .

FOR EACH

. DONE SCL
TUPLE (SEARCH TUPLE)

DO ._ 468

CONSIDER CONN 1 AND HOST1 OF SEARCH TUPLE

470

FOR EACH
EHL

TUPLE CONTAINING
HOST1

472

CONSIDER CONN2 OF TUPLE

474

TUPLE IN CONN

TO CONN LINKS FOR

CONN2 AND CONN1

FIG. 13

476 CONN2 TO HOSTI

TUPLE?IN EHL

478

GROUP/PORT
SAME FOR CONN2 HEARING

CONN} §L HOST1

480

MOVE SEARCH TUPLE TO SHHL

482

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

39

janir
Typewritten Text

janir
Typewritten Text
39

15/26

FOR EACH

MHL

TUPLE (SEARCH TUPLE

486

CONSIDER CONNI AND HOST}

488

FOR EACH

EHL

TUPLE CONTAINING

HOSTI

490

CONSIDER CONN2

492

TUPLE IN CONN
TO CONN LINKS FOR

CONN2 AND CONNI

DONE

CONN2 TO HOSTI

TUPLE IN EHL?

GROUP/PORT

DIFFERENT FOR CONN2

I ARING CONNI & HOST

40

498

MOVE SEARCH TUPLE TO EHL

FIG. 14

janir
Typewritten Text
40

0 16/26

500 FIG. 15

DONE

 FOR EACH

MHL
TUPLE

502

CONSIDER CONN1 AND HOST1

504

CONN1 GROUP/
PORT ALREADY IN

ALREADYDIDLOOKFORS
LIST?

NO

508

CREATE A LIST OF ALL CONNS IN CONN TO
CONN LINKS TUPLES HEARD BY CONN1 ON SAME

GROUP/PORT AS HOST1

FOR EACH CONN DONE

(CONN2) IN LIST

 CONN2 TO HOST1

TUPLB ?IN MHL

 514

INITIATE LOOKFOR FOR CONN2 TO HOST1
IA TUPLE MANAGER

ADD CONN1 GROUP/PORT "TUPLE COMPONENT" (TUCO) 515
TO ALREADYDIDLOOKFORS LIST

41

janir
Typewritten Text
41

C) 17/26

$8 FIG. 16a
 FOR EACH

MHL DONE TO BLOCK

TUPLE 56119
D0 520 FIG. 16b

CONSIDER CONN1 AND HOST1

' 522

MORE CONN1 N0
GROUP/PORT TUPLES

IN MHL?

 EXISTING

N—ARY MES TUPLE

CREATE MHS TUPLE

HOSTI ALREADY

IN MHS TUPLE?

NO 530

ADD HOST1 TO MHS TUPLE

532

FOR REMAINING
MHL TUPLE WITH

' FERENCE TO HOSTI7

DO 534»

CONSIDER CONN2

536

CONNI—TO-CONN2
TUPLE IN CONN—TO-CONN LINKS TUPLE ON S * I

GROUP/PORT AS CONN1-T0-HOST

ADD AN MHI. TUPLE FOR CONN2-TO-HOST1 WITH SAME

CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

42

janir
Typewritten Text
42

18/26

FIG. 16b

FROM BLOCK 518
OF

FIG. 16a

FOR EACH
SHL

TUPLE

DO 542

CONSIDER COIW AND HOST

544

EXISTING
SHS TUPLE FOR ‘

CO;\IN

No 546

CREATE SHS TUPLE

YES

548

ADD HOST TUCO TO SHS

43

janir
Typewritten Text
43

19/26

FIG. 17

CONVERT TOPOLOOY
INTO TUPLE

LISTS

COMPARE CURRENT LIST WTTH
NEW LIST AND DISCARD

ENTDENTICAL TUPLES

TAKE ACTION ON
CHANGES TO TOPOLGY

44

janir
Typewritten Text
44

20/26

. . 550
FIG. 1 8a

OR EACH NODE IN TOPOLOGY

DONE
DO 552

'2 TO BLOCK 580
IS NODEA CONN. OF HG. 18b __

554

FOR EACH

FROM

BLOCKS

582,590,

ONNECTED WTERFACEIIQCONNEFACE) 0I .

YES 558
DONE

FOR EACH OTHER INTERFACE
IN SEGMENT

D0 560

BXISTINGSHS YES
"TOPO TUPLE" FOR

SEGMENT ‘.7

NO

CREATE A TOPO SHS TUPLE

, 566

CONNIFACE NO
CONNECTED TO A BUS SEGMENT ?

YES 568

EXISTING MHS YES
FOR CONN] ?

NO

CREATE A TOPO MHS TUPLE

' 572
ADD TUCO FOR HOST TO MHS TUPLE

CREATE CONN LINKS TUPLB FOR
CONN1 & CONN2

 574

CONNIFACE NO
CONNECTED TOA
ANOTHER CONN

(CONWZ) ?

45

CONN (CO 1

D0 556

IS CONNIFAC 598 OF
CONNECTED TOASTAR SEGMENT N0 FIG-18b V

janir
Typewritten Text
45

DEFAULT SEGMENT‘?

CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

FIG. 18b

588

CREATE SHS TUPLE

. I 590

ADD TUCO FOR NODE TO SHS mu

CREATE MHS TUPLE

ADD TUCO FOR NODE TO MHS TUPLE

46

 TO

BLOCK 55.0
OF FIG. 18a 598

janir
Typewritten Text

janir
Typewritten Text
46

FOR EACH TUPLE

IN NEW

TUPLES (NT)

MARK NT AS "NO CHANGE"

47

janir
Typewritten Text

janir
Typewritten Text
47

23/26

,.eEz§_.m<mmde.QmxaV322

Esmzzouzo

_.omSz§..2

WEEQm&<3mxi

ms?GEEV3.2

53228zo

32cmW5EozmasaéN.

aeagm09mm2Bmz7:
E2.5%mom

 5mmda.mumamzEWEE.8%mom

SNGE

 48

janir
Typewritten Text
48

 mosmzzou,5%§zz8no@392:E3o.§mSE.:<EmzommM2,;EmzummgmEzopumzzouEzopumzzouzoabmzzooob:$0:E02025%E02$8E525%.E625%M6235
N.

Em~50
9,2EmE27:Q02.92EmEz7:003.728@2592:728ozfipzz

N.

5~59z958Em3%mo:8

N.EmmaE9,58

6

E2M82552amamznoson
Em2&2noaom

En?Emamvmzzzp5%mom

amammo$50.5Smzom

so

mam.65

awommoE8895SOME

 49

janir
Typewritten Text
49

m_,5%E<22.5528sonmazéu

S3o§Ezesmzzs5%962

@322EzomumzzouS5952

Eo§BEzomumzzou5%E52

zozumzzounoEmzomm5%BEEOEE62

zoabmzzamo55.mzumm8245

...EmE59:.1E252EQUE.zzouozapzz

N.1E2E292EH2E5E82.728UZEDHE2

E

5~59E958EmE2"5sea

EEmasEQ22:

N.

E2E2.35%,a28zaz§
E2EzmeSE

E

asasE952E252no5%

 S3252Ema?mmvmzzzp5%men

anGEnoNEVBOEQ5mzoo

oz

as

08GE

amamnoo§uSmZONE

50

janir
Typewritten Text
50

 552:8zopumzzsW728meEzeamzzanommB%E<Emzomm22.2.25m>oEzoabmzzamazsa-E:E2SE6

Hzmzumm.S:<mmQBEE622.50%zzoupmomEma2..o:zo%§E5&5

N5EuE952goE2as72855

E8:M50E9585E2nozzou5%

SE2asMsEmasE958.5EzasE85%

303E2Z5153.mmvpzzzz5%mom

so52EWEE.mzoaaamzzzs5%mo»NS

08GEmo€50529m

A SN.05
m

51

janir
Typewritten Text
51

PATENT APPLICATION

 DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

ATTORNEY DOCKET No. 100031024

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;
I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and
joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a
patent is sought on the invention entitled:
Method And System For Identifying And Processing Changes To A Network Topology

the specification of which is attached hereto unless the following box is checked:

() was filed on as US Application Serial No. or PCT International Application
Number and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above—identified specification,
including the claims, as amended by any amendmentisi referred to above. I acknowledge the duty to
disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Applicationis) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or
inventor(s) certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a
filing date before that of the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 U.S.C. 119

--
Provisional Application

I hereby claim the benefit under Title 35, United States Code Section ‘l19{e) of any United States provisional application(s) listedbelow:

APPLICATION SERIAL NUMBER FILING DATE

U. S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States applicationisi listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:

FIUNG DATE STATUS (patented/pendmg/abandoned)
POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorneyis) and/or agent(s) to prosecute this application and transact all
business in the Patent and Trademark Office connected therewith:

Place Customer

Customer Number 022879 Nu,-ma, 3,5, codeLabel here

Send Correspondence to: Direct Telephone Calls To:
HEWLETT-PACKARD COMPANY

Intellectual Property Administration T. Grant Ritz
P.O. Box 272400

Fort Collins, Colorado 80527-2400 I970’ 3930697

I hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with
the knowledge that willful faise statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A Pu|5§ her Citizenship: Us

Residence: 2937 Redburn Drive Ft Collins CO 80525

Sage as residence,)I

Rev 10/ (D wn} (Use Page Two For Additional Inventorls) Signature(s)) Page 1 of 2
52

Post O_(fice7\ dress:

 l0/sari’-2/(3l%Date

janir
Typewritten Text

janir
Typewritten Text
52

5

DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION (continued)

ATTORNEY DOCKET NO. 100031024

Full Name of # Zjoint inventor: Joseph R Hunt Citizenship: USns ca

 E‘Love5fanf3o§ 80538

Residence:

Post Office Address: Same as R°5Ide"°e

§ : /age: [/90nven o s gna re Date

FuII Name of # 3 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature Date

Full Name of # 4 joint inventor: Citizenship:

Residence: ———*;

Post Office Address:

Inventor's Signature Date

Full Name of # 5 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature Date
Full Name of # 6 joint inventor: Citizenship:

 j.:

Residence:

Post Office Address:

_____:.

Inventor s Signature Date »

Full Name of # 7 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature Date

Full Name of # 8 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature page

Rev 10/00 (DecPwrI [Use Page Two For Additional Inventor s) Signature(s))
5:(3 Page2of 2

janir
Typewritten Text
53

~ ";HEWLETT-PACKARD COMPANY 4.»-— ‘L PATENT APPUCAHON
Intellectual Property Administration

T-"""—— §I:.or?.C?3(l)li(n:7C2?:lOo?ado 80527-2400 ATTORNEY DOCKET NO- —-——-AI00081024
3"”-_..—..— IN THE u.s. PATENT AND TRADEMARK OFFICE

3% Patent Application Transmittal Letter

e"'f——=~__.._?
'J.E v'COI\/IMISSIONER FOR PATENTS __
.: 3Vashington, DC. 20231 2 1

Sir: $-0‘ T

Transmitted herewith for filing under 37 CFR 1.53(b) is a(n): (X) Utility () Design g1* E

()() original patent application,

() continuation-in-part application 8:’ EI‘) *2.

INVENTORISI: Eric A Pulsipher et al

TITLE: Method And System For Identifying And Processing Changes To A Network Topology

~ Enclosed are:

(X) The Declaration and Power of Attorney. ix) signed () unsigned or partially signed

' (X) 26 sheets of drawings (one set) () Associate Power of Attorney

() Form PTO-1449 () Information Disclosure Statement and Form PTO—14-49

() Priority document(s) I I(OtherI (fee $)

(fl-<0-Ur COCD

CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY

(‘ll (2) (3) l4) (5)
FOR NUMBER FILED NUMBER Ex'rRA RATE TOTALS

INDEPENDENT ANY MULTIPLE
DEPENDENT CLAIMS

BASIC FEE: Design ($320.00); Utility {$710.00 I 710

 m

TOTAL CHARGES TO DEPOSIT ACCOUNT

Charge $ 710 to Deposit Account 08-2025. At any time during the pendency of this application,
please charge any fees required or credit any over payment to Deposit Account O8-2025 pursuant to 37
CFR 1.25. Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,
1.1 7,1 .19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

<0.‘/,'
710

"Expr M 1" I be: no. EL523338183US .
653 al a Respectfully submitted,

Date of Deposit oct, 31 2000

I hereby certify that this is being deposited with the Enc A Pulsipher et al
United States Postal Service "Express Mail Post

Office to Addressee" service under 37 CFR 1.10 on i gthe date indicated above and is addressed to: BY /?[
T. Grant Ritz

Attorney/Agent for App|icant(s)
Reg- No- 39.819

Date: Oct. 31, 2000

Telephone No.: (970) 893_0697

Rev 10/00 lTransNew) - Attach as First Page to Transmitted Papers -
54

.10/31/on

janir
Typewritten Text
54

27

28

Title

Method and System for Identifying and Processing Changes to a Network Topology

Field of Invention

The present invention relates generally to computer networks. More particularly, it relates

to a method and system for identifying changes to a network topology and for acting upon the

network based on the changes.

Background

As communications networks, such as the Internet, carry more and more traffic, efficient

use of the bandwidth available in the network becomes more and more important. Switching

technology was developed in order to reduce congestion and associated competition for the

available bandwidth. Switching technology works by restricting traffic. Instead ofbroadcasting a

given data packet to all parts of the network, switches are used to control data flow such that the

data packet is sent only along those network segments necessary to deliver it to the target node.

The smaller volume of traffic on any given segment results in few packet collisions on that segment

and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually

possible and is typically made based upon current traffic patterns.

The intelligent routing of data packets with resultant reduction in network congestion can

only be effected if the network topology is known. The topology of a network is a description of

. the network which includes the location of and interconnections between nodes on the network.

The word “topology” refers to either the physical or logical layout of the network, including devices,

and their connections in relationship to one another. Information necessary to create the topology

layout can be derived from tables stored in network devices such as hubs, bridges, and switches.

The information in these tables is in a constant state of flux as new entries are being added and old

entries time out. Many times there simply is not enough information to determine where to place a

particular device.

Switches examine each data packet that they receive, read the source addresses, and log

those addresses into tables along with the switch ports on which the packets were received. If a

packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. 100081024 1

55

janir
Typewritten Text

janir
Typewritten Text
55

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified

where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table

can become quite large and may require a significant amount of the switch’s resources to develop

and maintain. As an additional complication, the physical layout of devices and their connections

are typically in a state of constant change. Devices are continually being removed from, added to,

and moved to new physical locations on the network. To be effectively managed, the topology of a

network must be accurately and efficiently ascertained, as well as maintained.

Existing mapping methods have limitations that prevent them from accurately mapping

topological relationships. Multiple connectivity problems are one sort of difficulty encountered by

existing methods. For example, connectors such as routers, switches, and bridges may be

interconnected devices in a network. Some existing methods assume that these devices have only a

single connection between them. In newer devices, however, it is common for manufacturers to

provide multiple connections between devices to improve network efficiency and to increase

capacity of links between the devices. The multiple connectivity allows the devices to maintain

connection in case one connection fails. Methods that do not consider multiple connectivity do not

present a complete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a

device. Existing methods use a reference interface or a reference address in a set of devices to

orient all other devices in the same area. These methods assumed that every working device would

be able to identify, or “hear,” this reference and identify it with a particular port of the device. With

newer devices, however, it is possible that the same address or reference may be heard out of

multiple ports of the same device. It is also possible that the address or reference may not be heard

from any ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of

the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be very large and expensive.

HP No 100081024 2

56

janir
Typewritten Text
56

2

Still another difficulty with existing systems is that they focus on the minutia without

considering the larger mapping considerations. Whenever an individual change in the system is

detected, existing methods immediately act on that change, rather than taking a broader view of the

change in the context of other system changes. For example, a device maybe removed from the

network temporarily and replaced with its ports reversed. In existing systems, this swapped port

scenario could require hundreds or thousands of changes because the reference addresses will have

changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.

These methods continuously poll network addresses throughout the day and make decisions based

on those continuous polling results. This creates traffic on the network that slows other processes.

Still another limitation of existing methods is the assumption that network parts of a

particular layer would be physically separated from other parts. Network layer 1 may represent the

physical cabling of the network, layer 2 may represent the device connectivity, and layer 3 may

represent a higher level of abstraction, such as the groupings of devices into regions. Existing

methods assume that all layer 3 region groupings are self—contained, running on the same unique

physical networking. However, in an internet protocol (IP) network, multiple IP domains may co-

exist on the same lower layer networking infrastructure. It has become common for a network to

employ a virtual local area network (LAN) to improve security or to simplify network maintenance,

for example. Using virtual LANS, a system may have any number of different IP domains sharing

the same physical connectivity. As a result, existing methods create confusion with respect to

topological mapping because networks with multiple IP addresses in different subnets for the

infrastructure devices cannot be properly represented because they assume the physical separation

of connectivity for separate IP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.

Summary of Invention

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HP No 100081024 3

57

janir
Typewritten Text
57

...a

\OOO\lC\UI-L>U)l\)
10

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and multi—heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

Summary of Drawings

Figure 1 is a drawing of a typical topological bus segment for representing the connectivity

of nodes on a network.

Figure 2 is a drawing of a typical topological serial segment for representing the connectivity

of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity

of nodes on a network.

Figure 4 is a drawing of another typical topological star segment for representing the

connectivity ofnodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.

Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HP No 100081024 4

58

janir
Typewritten Text
58

ix.)

DJ

4

5

6

7

8

9

20

21

23

24

25

26

27

Figure 11 is a flow chart of the first weeding phase of the method used by the connection

calculator.

Figures 12a—d are flow charts of an infrastructure-building phase of the method used by the

connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection

calculator.

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection

calculator.

Figure 15 is a flow chart of the look-for phase of the method used by the connection

calculator.

Figures 16a-b are flow charts of the consolidation phase of the method used by the

connection calculator.

Figure 17 is a flow chart of the method used by the topology converter.

Figures 18a—b are flow charts of the morph topo phase of the method used by the topology

converter.

Figure 19 is a flow chart of the duplication discard phase of the method used by the

topology converter.

Figures 20a—d are flow charts of the identify different tuples phase of the method used by

the topology converter.

Detailed Description

The system provides an improved method for creating topological maps of communication

networks based. Connectivity information is retrieved from the network nodes and stored as

“tuples” to track specifically the desired information necessary to map the topology. These light

weight data structures may store the host identifier, interface index, and a port. From this tuple

information, the topology may be determined. A tuple may be a binary element insofar as it has two

parts representing the two nodes on either end of a network link or segment. A “tuco” refers to a

tuple component, such as halfof a binary tuple.

HP No 10008102-I 5

59

janir
Typewritten Text
59

As used herein, a node is any electronic component, such as a connector or a host, or

combination of electronic components with their interconnections. A connector is any network

device other than a host, including a switching device. A switching device is one type of connector

and refers to any device that controls the flow ofmessages on a network. Switching devices

include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and

switches.

As used herein, the term “tuple” refers to any collection of assorted data. Tuples may be

used to track information about network topology by storing data from network nodes. In one use,

tuples may include a host identifier, interface information, and a port specification for each node.

The port specification (also described as the group/port) may include a group number and a port

number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple

may include this information about two nodes as a means of showing the connectivity between them,

whether the nodes are connected directly or indirectly through other nodes. A “conn—to—conn”

tuple refers to a tuple that has connectivity data about connector nodes. A “conn—to—host” tuple

refers to a tuple that has connectivity data about a connector node and a host node. In one use,

tuples may have data about more than two nodes; that is, they may be n—ary tuples, such as those

used with respect to shared media connections described herein.

A “singly—heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,

other device, etc., that is connected directly to a connector, such as a switching device. A singly-

heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an

shh. A “multi-heard host” (mhh) refers to hosts that are heard by a connector on the same port that

other hosts are heard. A multi-heard host link (mhhl) refers to the link between the connector and

an mhh. A link generally refers to the connection between nodes. A segment is a link that may

include a shared media connection.

Figure l is a drawing of a typical topological bus segment 100 for representing the

connectivity of nodes on a network 110. In Figure 1, first and second hosts 121, 122, as well as a

first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No 100031024 6

60

janir
Typewritten Text
60

1

2

3

4

5

6

7

8

9

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first

connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the

connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port

132 on a second connector 145 which is connected via the network 110 to the first port 131 on the

first connector 140. The serial segment 200 comprises the second port 132 on the second

connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of

a connector—to—connector (“conn—to-conn”) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the

connectivity of nodes on the network 110. In Figure 3, the first host 121 is connected to the first

port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected

to the first port 131 of the first connector 140. Figure 3 is an example of a connector-to—host

(“conn—to—host”) relationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the

connectivity of nodes on the network 110. In addition to the connections described with respect to

Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth

host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment

301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third

host 123 connected to the third port 133 of the first connector 140, and the fourth host 124

connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,

on a given connector, at least one port, wherein one and only one host is connected to that port,

and that host. In the more general case, the star segment 301 comprises, on a given connector, all

ports having one and only one host connected to each port, and those connected hosts. Since the

segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are

referred to as star segments.

For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No 100082024 7

janir
Typewritten Text
61

\OO0\lO\U1-l>-UJl\.)

20

21

23

24

25

26

27

28

represented as terminals. However, they could also be workstations, personal computers, printers,

scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,

third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth

ports 131, 133, 134 respectively, wherein the first, third, and fourth ports 131, 133, 134 are

located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly~heard hosts connected to separate

ports 131, 133, 134 of a common connector 140 — the first connector 140. The fifth and sixth

hosts 125, 126 are singly—heard hosts connected to the third and fourth connectors 142, 143. The

seventh and eighth hosts 127, 128 are multi~heard hosts connected to the same port 139 of the fifth

connector 144. The rnulti-heard hosts 127, 128 illustrate a shared media segment 180, also

referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and

illustrate a switch mesh 181. Each of the connectors in the switch mesh 181 is connected to each

other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be

dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.

The first connector 140 is connected via the network 110 to the second connector 141 by two

direct links, each of which is connected .to different ports on the connectors. One linkvis connected

to the sixth port 136 of the first connector 140 and to the seventh port of the second connector

137. The other link is connected to fifth port 135 of the first connector 140 and to the eighth port

138 of the second connector 141. In this example, two connectors illustrate the multiple

connectivity between nodes. Depending upon the device specifications, devices such as connectors

may be connected via any number of connectors. As explained herein, the system resolves multiple

connectivity problems by tracking port information for each connection.

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors

171, 172, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No 10008102-1 8

62

janir
Typewritten Text
62

I\)

3

4

5

6

7

8

9

15

16

17

18

‘19

20

21

22

23

24

25

27

28

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or

intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected

directly to the fifth port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flowchart of the method

used by the system to retrieve and update the topology of the network. A tuple manager 300, also

referred to as a data miner 300, gathers 902 data firom network nodes and builds 904 tuples to

update the current topology. The topology database “topod ” 350 stores the current topology for

use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple

manager 300. The connection calculator 320 processes the data in the neighbor data database 310

to determine the new network topology. The connection calculator 320 reduces 906 the tuple data

and sends it to the reduced topology relationships database 330. The topology converter 340 then

updates 908 the topology database 350 based on the new tuples sent to the reduced topology

relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described

generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.

The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then

retrieves 912 node information of the current topology stored in the topology database 350. This

information tells the tuple manager 300 which devices or nodes are believed to exist in the system

based on the nodes that were detected during a previous query. The tuple manager 300 then

queries 914 the known nodes to gather the desired information. For example, the connectors may

maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary

functions, such as switching. Other devices may allow the system to perform queries to gather

information about the flow of network traffic. This data identifies the devices heard by a connector

and the port on which the device was heard. The tuple manager 300 gathers this data by accessing

forwarding tables and other information sources for the nodes to determine such information as their

physical address, interface information, and the port from which they “hear” other devices. Based

on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

data” database 310. Some nodes may have incomplete information. In this case, the partial

HP No 100081024 9

63

janir
Typewritten Text
63

inforrnatiori is assembled into a tuple and may be used as a “hint” to determine its connectivity later,

based on other connections. The tuple manager 300 may also gather 920 additional information

about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that

information.

After the data is gathered and the tuples are stored in the neighbor database 310, the

connection calculator 320 processes the tuples to reduce them to relationships in the topology.

Figure 10 shows a flow chart of the process of the connection calculator 320, as shown generally in

the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a

first weeding phase 922 to identify singly-heard hosts to distinguish them from multi—heard hosts.

Singly-heard hosts refer to host devices connected directly to a connector. The connection

calculator 320 then performs an infrastructure-building phase 924 to remove redundant connector-

to—connector links and to complete the details for partial tuples that are missing information. Then,
the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports

of singly-heard hosts. The connection calculator 320 then performs a noise reduction phase 928 to

remove redundant neighbor information for connector—to—host links. If clarification of device

connectivity is required, the connection calculator 320 performs a “look for” phase 930 to ask the

tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment

and network containment relationships. The connection calculator 320 may also tag redundant

tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide

hints to connectivity of other tuples. As part of the consolidation phase 932, the connection

calculator 320 creates new n—ary tuples (tuples having references to three or more tucos) for shared

media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for

distinguishing singly—heard hosts. The purpose of the first weeding process 922 is to identify the

direct connections between connectors and hosts; that is, those tuples having a first tuco that is a

connector and a second tuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

HP No 100081024 10

64

janir
Typewritten Text
64

I\)
4
.3

404 whether the tuple is a connector-to-host (conn—to-host) link tuple. If it is not a conn—to—host

link, the connection calculator 320 concludes 418 that it is a conn-to~conn link and processes 402

the next tuple. If the tuple is a conn-to—host link tuple, then the connection calculator 320

determines 406 whether the connector hears only this particular host on the port identified in the

tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a multi-

heard host link (mhhl) tuple.

If the connector hears only the one host on the port — that is, if the host is a singly-heard

host —— then the connection calculator 320 determines 408 whether the host is heard singly by any

other connectors. If no other connectors hear the host as a singly-heard host, then the tuple is

classified as a singly—heard host link (shhl) tuple 412 and other tuples for this host are classified 414

as extra host links (ehl). Another tuple for this host may be, for example, an intermediate connector

connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the

first connector is connected directly to the first host 151. This connection therefore forms an shhl

tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data

indicates that the intermediate connector 172 is indirectly connected to the host and hears the host

from a particular port. An extra host links tuple is created so that this data may be used later in

conjunction with other extra host links tuples from devices across the network, to verify connectivity

by providing hints about connections.

The first weeding process also attempts to identify conflicts. If other connectors hear the

host as a singly-heard host, then a conflict arises and the tuple is classified 410 as a singly-heard

conflict link (shcl) tuple to be resolved later. This conflict may arise, for example, if a host has been

moved within the network, in which case the forwarding table data may no longer be valid. Certain

connectors previously connected directly to the host may still indicate that the moved host is

connected. When all tuples have been processed 402 to identify singly-heard host links, the first

weeding phase 922 is complete.

Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection

calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

connectors are set up in the network. The first part of the infrastructure building phase 924

HP No 100081024 11

65

janir
Typewritten Text
65

,_.a

\OOO\lO\U\-$>UJt\)
10

manufactures tuples based on the list of singly-heard host link tuples identified in the first weeding

phase 922. The purpose is to identify the relationship between the connectors in the extra host links

tuples and the connectors directly connected to the singly~heard hosts. For each singly-heard host

link 420, the connection calculator 320 processes 422 each extra host link that refers to the host.

In the illustration ofFigure 6, a Conn-to~conn link tuple would represent the connection between the

first connector 171 and the intermediate connector 172. An extra host link tuple would represent

the indirect connection between the intermediate connector 172 and the first host 151. The conn-

to—conn link tuple between the first connector 171 and the intermediate connector 172 is an

example of an ehlC0nn-to~shhlC0nn tuple. If a conn—to-conn link tuple exists 424 for the extra host

link connector to the sing1y~heard host link connector (ehlConn-to—shhlConn), then the connection

calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be

incomplete and a conn~to—conn link may not exist. In that case, a conn—to—conn tuple does not exist

for the eh1C0nn—tc—shhlConn, then such a tuple is created 426.

After processing extra host links for singly—heard host links, the connection calculator 320

considers 430 each connector (referred to as connl) in the tuples to determine the relationship

between connectors. As illustrated in Figure 6, a single connector may be connected directly and

indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the

intermediate connector 171 directly and also to the third connector 173 indirectly. The third

connector 173 hears the first host 151 on the same part 165 that it hears the first connector 171 and

the intermediate connector 172. The infrastructure building phase 924 tries to determine the

relationship between other connectors heard on the same port of connl. In a series of

interconnected connectors, the connector on one end may not hear a connector on another end, but

it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are

created to represent the interconnection of conn-to—conn relationships. Based on this data, the

connection calculator 320 can make inferences regarding the overall connection between

connectors.

For every connl , the connection calculator 320 considers 432 every other connector

(conn2) to determine whether a connl-to—corin2 tuple exists. If conn1—to—conn2 does not exist,

HPNO 10008102-1

66

janir
Typewritten Text
66

,_g

»—-A

©\O0O\)O\U1—DUOI\-J
,...4 ;_.a

then the connection calculator 320 considers 436 every other conn-to—conn tuple containing conn2.

The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique

port 438 and ifconnl also hears conn3 440, then the connection calculator 320 creates 442 a tuple

for connl —to—conn2 in the connector—to—connector links tuple list.

After processing all of the connl tuples, the connection calculator 320 processes 444 each

connl—to-conn2 links tuple to ensure that they have complete port data. For each incomplete tuple

446, the connection calculator 320 looks 448 for a different tuple involving connl in the extra host

links tupleson a different port. If a different tuple is found 450, then the connection calculator 320

determines 452 whether conn2 also hears the host. If conn2 does hear the host, then the

connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear

the host 452, then the connection calculator 320 continues looking 448 through different tuples

involving connl in extra host links on different ports.

After attempting to complete the missing data in each of the conn—to—conn links tuples, the

connection calculator 320 processes 456 each conn-to-conn links tuple. The purpose of this sub-

phase is to attempt to disprove invalid conn—to-conn links. The connection calculator 320 considers

458 connl and conn2 of each conn-to—conn links tuple. Every other connector in conn—to—conn

links may be referred to as testconn. For each testconn 460, the connection calculator 320

determines 462 whether the testconn hears connl and conn2 on different groups/ports. If testconn

hears connl and conn2 on different ports, then the tuple is moved to extraconnlinks (eel) 464.

Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the

second weeding phase 926 is to attempt to resolve conflicts involving singly~heard hosts identified in

the first weeding phase 922. In the situation described herein in which more than one connector

reports that a host is singly—heard, the second weeding phase 926 reviews the tuples created during

the infrastructure—building phase 924 involving the connector and host in question and attempts to

disprove the reported conflict. The connection calculator 320 processes 466 each

singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 connl

and hostl of the tuple. For each extra host links tuple containing hostl 470, the connection

HP No 1000810234 13

67

janir
Typewritten Text
67

i\)

DJ

4

5

6

7

8

9

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in Conn-to-conn links for conn2

and connl 474, and if there is a conn2—to-connl tuple in the extra host links tuples 476, and if the

port is the same for conn2 hearing connl and hostl 478, then the search tuple is moved 480 into

the singly heard host links and other tuples containing hostl are removed 482 from the

singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise

reduction phase 928 is to handle those connections in which a connector is not directly connected

to a host or to another connector. For example, networking technology may employ shared media

connections between connectors, rather than dedicated media connectors. With a shared media

connection, the entries in the forwarding tables for connectors attached to the shared media

connection will include every node accessing the shared media connection and may not present a

useful or accurate representation of the nodal connection. For example, if the network configuration

in Figure 6 used a shared media connection between the first connector 171 and the intermediate

connector 172, then the first connector is not really connected directly to the intermediate connector

because other devices (not shown in Figure 6) may also use the shared media connection. These

other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be

created for the connectors 171, 172 on opposing ends of the shared media. In this situation, it is

inefficient to maintain point~to—point binary tuples for every connection. The noise reduction phase

928 disproves invalid tuples created by the shared media connections.

For each multi—heard host links (mhhl) tuple, also referred to as rnultil-leardLinl<s (mhl)

tuples (sometimes referred to as the search tuple) 484, connl and hostl are considered 486. For

each extra host links tuple containing hostl 488, conn2 is considered 490. If there is a tuple in

conn-to—conn links for conn2 and connl 492, and if there is a conn2-to-hostl tuple in

extraHostLinl<s 494, and if the group/port for conn2 hearing connl and hostl is different 496, then

the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase is to

complete missing data for mhhl tuples. There may exist connections on the network that have

incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

HP No 100081024

68

janir
Typewritten Text
68

in which case data might not be stored in forwarding tables. In another example, a forwarding table

may not have sufficient room to store all of the required information and might delete data on a

FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager

300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding

table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the

connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an

“alreadyDidLool<fors” list, then a list is created 508 for all connectors in conn-to—conn links that are

heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the

connection calculator 320 determines 512 whether there is a conn2~to-hostl tuple in the mhhl

tuples, If there is not such a tuple, then the connection calculator 320 initiates a lool<—for for conn2—

to-hostl via the tuple manager 300. When each connector in the list has been processed 510, the

connl group/port tuco is added 516 to an alreadyDidLool<fors list. As an additional portion of the

look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information

about connectivity. For example, the system may show the user the perceived connectivity or the

unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from

the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to

produce the new topology. This topology may have incomplete tuples possibly resulting from

extraneous information that the connection calculator 330 could not disprove. To refine the new

topology, the connection calculator 330 can request the tuple manager 300 to obtain additional

information about particular nodes or it may also request a user to refine the topology by adding or

removing tuples. Using the process of the connection calculator 330, tuples marked as non~

essential may be removed from the new topology to save space and to simply the topology. The

connection calculator 330 is not confused by multiple connectivity situations such as port

aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-

to—point, or neighbor-to—neighbor, connectivity showing each connection in the network. This

point-to—point connectivity concept also helps enable the system to avoid difficulties that occur in

HPNCA lD008l02-l

69

janir
Typewritten Text
69

systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may

contain only selected information to minimize the storage space required for the topology.

Figures l6a—b show a flow chart of the consolidation phase 932. The purpose of this phase

is to consolidate the tuples that involve shared media connections. After the noise reduction phase

928, a considerable number of tuples involving shared media may remain. Rather than maintain a

binary tuple for each of the connections, an n—ary tuple is created for the link using a tuco for each

connector and each host connected thereto. For each rnhhl tuple 5 l 8, connl and hostl are

considered 520. If there are more connl group/port tuples in multiHeardLinks, and if are not any

n-any rnultil-IeardSegments (mhs) tuples 5.24, then an mhs tuple is created 526. Ifhostl is not

already in this particular rnhs tuple 528, then conn2 of the tuple is considered 534. If there is a

connl—to—conn2 conn-to—connLinks tuple on the same port as connl-to-hostl 536, then all

multiHeardLinl<s tuples for conn2-to—hostl with the same conn2 group/port as the conn1—to—conn2

are added 5 38 to the current mhs tuple.

After processing each mhhl tuple 518, each singly—heard host links (shhl) tuple, also referred

to as a singlyHeardLinks (sh1)tuple, is considered 540. For each shhl tuple, the connector and host

are considered 542. If there is no existing singlylrrleardsegments (shs) tuple for the connector 544,

then an shs tuple is created 546. The host tuco is then added to the shs 548.

Figure 17 shows a flow chart of the method used by the topology converter 340, as

described generally by the topology update step 908 of the method shown in Figure 8. The

topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph

topo” phase 934. It then compares 936 the list from the topology currently stored in the topology

database 350 with the new list generated by the connection calculator 320 and discards 936

identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes

action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is

also referred to as the “identify different tuples” phase 938.

Figure 18a shows a flow chart for the “morph topo” phase 934. For each node in the

topology 550, the topology converter 340 determines 5152 Whether the node is a connector. If the

node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

HPNO 10008102-l

70

janir
Typewritten Text
70

4
J

the topology converter 340 determines 556 whether the conniface is connected to a star segment.

If it is connected to a star segment, then for every other interface in the segment 558, the topology

converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”

for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs

tuple. The tuco for the interface’s host-to-topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and is connected to a bus

segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for

connl. If there is not an existing mhs tuple for connl , then a topo mhs tuple is created 570. A tuco

is added 572 for the host to the mhs tuple.

If the connector node is not connected to either a star segment 556 or to a bus segment

566, then the topology converter knows that it is connected to another connector (conn2). If such

a connector does not already have an existing connLinl<s tuple for connl and conn2 576, then a

connLinl<s tuple is created 578. After processing the bus segment, star segment, and conn—to—conn

segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 1813 shows a continuation of the flow chart of Figure 18a showing the steps of the

method when the topology converter 340 determines that the node is not a connector 552. If the

node is in the default segment, then an “unheardOtLinks” tuple is created 582 and the topology

converter proceeds to the next node 550. If the node is not in the default segment 580, then the

topology converter 340 determines Whether the node is in a star segment 584. If the node is in a

star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 an shs

tuple. The tuco for the node is then added 590 to the shs tuple, and the topology converter 340

proceeds to the next node 550.

If the node is not in a star segment, then the topology converter 340 knows that it is in the

bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter

340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the

topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

HP No 10008l02-l 17

71

janir
Typewritten Text
71

U.)

U’!

6

7

8

9

0

20

21

22

23

24

25

26

27

28

exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new

tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a—d show a flow chart for the identify different tuples phase 938. The system

looks through each tuple in the new SinglyHeardSegments (newSl-IS) tuple list 608 and tries to

identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering

those segment tuples in both the new topology and the existing topology that differ only by the port

specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”

The system also looks through each tuple in the new mu1tiHeardSegments tuple list (newMHS) 614

and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a

swapped port is marked 618 as “handled.”

The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases

are possible for the host of the newSHL tuples. The host of the newSHL can be found in the

current singly}-leardLinks (curSHL) 622, the current multiHeardLinks (curMl-IL) 63 0, the current

connLinks (curCL) 638, or the current UnheardOfLinks (curUOL) 642. If the host of a newSHL

tuple is found 622 in the current SinglyHeardLinks (curSHL) tuples, then the system determines 624

if there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is

a matching tuco, then the system changes 626 the host connection attribute. If there is not a

matching tuco, then the host connection is moved 628 in the topology.

If the host is found in the curMHL tuples 630, then the system determines 632 whether

there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is a

matching connector, then the segment type of connection is changed 634. If there is not a matching

connector, then the host connection is moved 636 in the topology. If the host is found in the curCL

tuples 63 8, then the host is moved 640 into a star segment of the connector. If it is found in the

curUOL 642, then the host is moved 644 into the star segment of the connector.

Figure 20c shows another stage of the processing undertaken during the identify different

tuples phase 938. For each unmarked tuple in the new multiHeardLinl<s tuples (newMHL) 946,

four cases are possible for the host of the newM_HL. The host of the newl\/IHL may be found in the

curSHL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No IOOOSIOZ-1 18

72

janir
Typewritten Text
 72

I\)

3

4

5

6

7

8

9

20

21

22

23

24

25

26

27

28

curSHL 648, then the system determines 650 whether there is a matching connector tuco between

the newMHL and the curMHL. If there is a matching tuco, then the segment type of connection is

changed 652. If there is not a matching tuco, then the host connection is moved 654 in the

topology.

If the host is found in the curMI-IL tuples 656, then the system determines 658 whether

there is a matching connector tuco in both the curMHL tuples and the nevs/MHL tuples. If there is a

matching connector tuco, then the host connection attribute is changed 660. If there is not a

matching tuco, then the host connection is moved 662 in the topology. If the host is found in the

curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in

the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identify different tuples phase 938. For each

unmarked tuple in the new/CL tuples 672, there are three possibilities for the connector. The

connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the

curCL 678, or in the curUOL 682. If each connector is found in the curSl-IL or curl\/IHL list 674,

then the system creates 676 a new point—to—point segment for the connectors. If the connectors are

found in the curCL 678, then the connection attributes of the connectors are changed 680. If each

connector is found in the curUOL tuples 682, then the host connection is moved 684 in the

topology.

Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of

Figure 20d. For each unmarked tuple in the newUOL tuples 686, the system checks 688 the

timer/configuration to determine whether the host/conn should move into the default segment from

its current segment.

An advantage of the system is that it may be schedulable. The system may map network

topology continuously, as done by existing systems, or it may be scheduled to run only at certain

intervals, as desired by the user. A further advantage of the system is that it is capable of

processing multiple connections between the same devices and of processing connection meshes,

because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

HPNO 10008102-I

73

janir
Typewritten Text
73

1 Although the present invention has been described with respect to particular embodiments

2 thereof, variations are possible. The present invention may be embodied in specific forms without

3 departing from the essential spirit or attributes thereof. It is desired that the embodiments described
4 herein be considered in all respects illustrative and not restrictive and that reference be made to the

5 appended claims for determining the scope of the invention.

20HP No 100081024

74

janir
Typewritten Text
74

Ix)

.£>bJ

\OOO\lO\

20

21

23

24

25

26

Claims

1. In a network having interconnected nodes with data tuples that represent nodal

connections, a method for mapping a network topology by identifying changes between an existing

topology and a new topology, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal

connections;

receiving new tuples that represent new nodal connections; and

comparing the list of existing tuples with the new tuples to identify changes to the topology.

2. The method of claim 1, further comprising updating a topology database with a new

topology.

3. The method of claim 1, further comprising taking action on the changes to the

topology.

4. The method of claim 1, wherein the tuples include information about a host

identifier, a connector interface, and a port specification.

5. The method of claim 1, wherein the step of comparing comprises identifying

duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

6. The method of claim l, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

7. The method of claim 1, wherein the step of comparing comprises searching for a

host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing

tuples.

8. A system for mapping a network topology by identifying changes between an

existing topology and a new topology, based on changes to data tuples that represent nodal

connections comprising:

a topology database that stores an existing topology of a network; and

HP No lO008l02-I

75

janir
Typewritten Text
75

,..4

2

3

4

5

6

7

8

9

a topology converter connected to the topology database that receives new tuples that

represent new nodal connections; and compares the new tuples with the existing topology to identify

changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing

topology into a list of existing tuples that represent existing nodal connections.

10. The system of claim 8, wherein the topology converter updates the topolog

database with a new topology based on the new tuples.

11. The system of claim 8, wherein the topology converter attempts to identify swapped

ports on connectors.

12. The system of claim 8, wherein the topology converter identifies duplicate tuples

that appear both in the list of existing tuples and in the new tuples, and maintains a current status of

the topology for these tuples.

13. The system of claim 8, wherein the topology converter searches for a host of a new

singly—heard host link tuple or a new multi-heard host link tuple in the list of existing tuples.

14. The system of claim 8, wherein the topology converter searches for a connector of

a new conflict links tuple in the list of existing tuples.

15. A computer—readable medium having computer-executable instructions for

performing a method for mapping a network topology by identifying changes between an existing

topology and a new topology in a network having a interconnected nodes, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal

connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;

and

updating a topology database with a new topology.

16. The method of claim 15, wherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

HP No lO0O8lO2-l

76

janir
Typewritten Text
76

L):-PDJt\)

\’300\]C‘\

17. The method of claim 15, wherein the step of comparing comprises identifying

duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

19. The method of claim 15, wherein the step of comparing comprises searching for a

host of a new singly—heard host link tuple or a new mu1ti—heard host link tuple in the list of existing

tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a

connector of a new conflict links tuple in the list of existing tuples.

HPN<> 10008102-l

77

janir
Typewritten Text
77

l

,...i

©\OO0\)O\UI-I>~UJ!\)

Abstract

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and multi-heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

H!’ .\’o l00O8102~l

78

janir
Typewritten Text
78

1/26

 oooooo

, FIG. 1

79

janir
Typewritten Text
79

2/26

80

janir
Typewritten Text
80

3/26

81

janir
Typewritten Text
81

4/26

FIG. 4

82

janir
Typewritten Text
82

5/26

FIG. 5 %

121

128 K 180 127
// //

83

janir
Typewritten Text
83

FIG. 6

84

janir
Typewritten Text
84

Qzmazébmamzommmnmmmzoafimmzo:.$E§§mm:
mfimmzofifmmE328amuamma

omega;.2$303
7/26

%,.Em>zouEo.§8

wOE

@zmz§,aE-a<:oV£3mommoaz

 EEQS._<H<Qmo$5Ez_.

em

~._o,;:8,2oomm.

zoabmzzoo$522225.Hmzzezmvudag__<Emoms52:33.50:.yeamoe§mz._oz§35S.E.<m5om.u:ammm+<Qn5§E<mxSmé9,2$58Ezmaugemmoodzo:.§:&§<zmExmIK

p§m,5o§28V805

Hmbmmzmma

M588

$85828

342mosoma.ozamfiéon$5%m<m-5uo,§a

85

janir
Typewritten Text
85

8/26

906

. TUPLE REDUCTION
PHASE

904

TOPOLOGY

UPDATING PHASE
TUPLE BUILDING

PHASE

902

DATA GATHERING
PHASE

908

910

RECEIVE START

SIGNAL

9 12

LOOK UP EXISTING

DEVICES IN TOPOLOGY
DATABASE

9 14

QUERY NODES

. 916

CREATE TUPLES

91 8

STORE TUPLES IN

NEIGHBOR DATABASE

GATHER

ADDITIONAL DATA
AS REUESTED

FIG. 9

FIG. 8

86

' 932

CONSOLIDATION
PHASE

922

FIRST WEEDING
PHASE

924

INFRASTRUCTURE

BUILDING
PHASE

SECOND WEEDING
PHASE

NOISE REDUCTION
PHASE

. 930

LOOK-FOR
PHASE

FIG. 10

janir
Typewritten Text
86

. 9/26

FIG. 11

O

418

NO TUPLE ISA CONN
TO CONNLINK

CONN TO HOST

TUPLE
‘I

 CONN

ONLY HEARS THIS
HOST ON GROUP 1

PORT ‘.7

NO

HOST HEARD

SINGLY BY ANY
OTHER

CONN

416

TUPLE IS A MHHL

412

TUPLE IS A SHHL

414

MOVE TUPLES FOR
THIS HOST TO EHL

TUPLE IS A SINGLY-
HEARD CONFLICT

LINK

87

janir
Typewritten Text
87

IO/26

FOR EACH

T0 BLOCK SHHL TUPLE
430 OF FIG.I2b

FOR

EACH TUPLE
IN EHL

 CONN TO CONN
LINK TUPLE FOR

EHL-CONN TO SHHL-

CONN
‘I

YES

428

UPDATE TUPLE
IF NOT COMPLETE

CREATE EHL CONN TO SHHLCONN

TUPLE IN CONN TO CONN LINK

FIG. 12a

88

janir
Typewritten Text
88

FROM BLOCK 420

OF FIG. 1221 11/26

 430 FIG. 12b

FOR EACH

CONNECTOR IN DONE . To BLOCK 444
TUPLE3 OF FIG. 12¢

 (CONN I)

FOR

EACH OTHER

C(C))NNE%TgI5INc N\I-T - NN
DONE 'I‘UPLES

(CONN2)

CONN1 TO CONN2

CONN2 HEARS CONN3 N0
EXISTS IN ON UNIQUE

TUI3)LES POVRT

NO

CONN 1

HEARSVCONN3

EACH CONN2 TO
OTHER CONNECTO ONE

CREATE CONN 1 TO CONN2
TUPLE IN CONN TO CONN

LINKS

89

janir
Typewritten Text
89

FROM BLOCK 430 OF FIG. 12b 12/26

444

FOR EACH

CONN TO CONN LINKS
TUPLE

DONE
TO BLOCK 456

OF FIG. 12d

DO

 INCOMPLETE

GROUP/ PORT
DATA FOR

CONN2?

NO

448
YES

LOOK FOR DIFFERENT TUPL

FIG. 120
INVOLVING CONNI IN

EHL ON

DIFFERENT GROUP/PORT
CONN2 ALSO NO

HEARS
HOST

?

FILL IN MISSING

GROUP/PORT FOR
CONNZ

90

janir
Typewritten Text
 90

13/26

FROM BLOCK 444 OF PIG. 12c

FIG. 12d

FOR EACH

CONN TO CONN LINKS

TUPLE

DONE

CONSIDER CONN1
AND CONN2

OF THIS TUPLE

 OTHER CONN

ETEST CONI\ INONN TO C NN
LINKS THAT
HEARS BOTH

ONE

TEST CONN
HEARS CONN1 AND

CONN2 ON
DIFFERENT

PORTS

NO

MOVE THIS TUPLE
T0 EXTRA CONN

LINKS

91

janir
Typewritten Text
91

14/26 .

FOR EACH
SCL

DONE

. TUPLE (SEARCH TUPLE)

DO _ 468

CONSIDER CONN1 AND HOST} OF SEARCH TUPLE

470

FOR EACH
EHL

TUPLE CONTAINING
HOST1

472

CONSIDER CONN2 OF TUPLE

474

TUPLE IN CONN

TO CONN LINKS FOR

CONN2 AND CONN1

FIG. 13

476

CONN2 TO HOST1
TUPLE IN EHL

7

478

GROUP/PORT

SAME FOR CONN2 HEARING

CONN1 §£ HOST1

480 A

MOVE SEARCH TUPLE TO SHHL

482

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

92

janir
Typewritten Text
92

15/26

FOR EACH
MHL

TUPLE (SEARCH TUPLE

486

CONSIDER CONNI AND HOST1

488

FOR EACH
EHL

TUPLE CONTAINING
HOST]

490

CONSIDER CONN2

492

TUPLE IN CONN
TO CONN LINKS FOR

CONN2 AND CONNI
?

DONE

CONN2 TO HOST1

TUPLE IN EHL?

GROUP/PORT

DIFFERENT FOR CONN2

I ARING COrI)\1NI & HOST

93

498

MOVE SEARCH TUPLE TO EHL

FIG. 14

janir
Typewritten Text
 93

0 16/26

FIG. 15

DONE

 FOR EACH

MHL
TUPLE

CONSIDER CONNI AND HOST1

504

CONN I GROUPI
PORT ALREADY IN

ALREADYDIDLOOKFORS
LIST?

NO

508

CREATE A LIST OF ALL CONNS IN CONN TO

CONN LINKS TUPLES HEARD BY CONN 1 ON SAME
GROUP/PORT AS HOSTI

FOR EACH CONN DONE

(CONN2) IN LIST

CONN2 TO HOST1

TUPLE IN MHL
?

514

INITIATE LOOKFOR FOR CONN2 TO HOSTI
IA TUPLE MANAGER

ADD CONN1 GROUP/PORT "TUPLE COMPONENT" (TUCO) 516
TO ALREADYDIDLOOKFORS LIST

94

janir
Typewritten Text
94

0 17/26

38 FIG. 16a

FOR EACH

MHL DONE TO BLOCK

TUPLE 56119
D0 520 FIG. 16b

CONSIDER CONN1 AND HOST1

‘ 522

MORE CONN1 NO
GROUP/PORT TUPLES

IN MHL?

 EXISTING

N—ARY MIIS TUPLE

CREATE MHS TUPLE

HOST1 ALREADY

IN MHS TUPLE?

FOR REMAINING
MHL TUPLE WITH

’ FERENCE TO HOST17

CONN1-TO-CONN2
TUPLE IN CONN—TO-CONN LINKS TUPLE ON S

GROUP/PORT AS CONN1-T0-HOST

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME

CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

95

janir
Typewritten Text
95

18/26

FIG. 16b

FROM BLOCK 518
OF

FIG. 16a

FOR EACH
SHL

TUPLE

DO 542

CONSIDER CONN AND HOST

544

EXISTING
SHS TUPLE FOR

CONN

N0 546

CREATE SHS TUPLE

YES

548

ADD HOST TUCO TO SHS

96

janir
Typewritten Text
96

19/26

FIG. 17

CONVERT TOPOLOGKY
INTO TUPLE

LISTS

COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD

INDENIICAL TUPLES

TAKE ACTION ON
CHANGES TO TOPOLGY

97

janir
Typewritten Text
97

. . 20/26
550 FIG. 183

OR EACH NODE IN TOPOLOGY

DONE
D0 552

. TO BLOCK 580
IS NODEA CONN? OF HG. Rb __

554

FOR CH

EA
ONNECTED [NTERFACE(_CONNIFACE)0 FROM

CONN (CONM BLOCKS
D0 582,590,

IS CONNIFAC 556 NO 598 OF
CONNECLED TOASTAR SEGMENT FIG 18b

YES 558

EXISTING SH-S
"TOPO TUPLE" FOR

SEGMENT ?

NO

CREATE A TOPO SHS TUPLE..—
574

CONNIFACE
CONNECTED TO A
ANOTHER CONN

(CONN2) ?

 NO

566

CONNIFACE NO
CONNECTED TO A BUS SEGMENT 2

YES 568

EXISTING MHS YES
FOR CONN] ?

NO

CREATE A TOPO MHS TUPLE

I 572
ADD TUCO FOR HOST TO MHS TUPLB

CREATE CONN LINKS TUPLE FOR
CONN1 & CONN2

98

janir
Typewritten Text
98

 NODE IN

DEFAULT SEGMENT?

CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

FIG. 18b

588

CREATE SHS mm

. C 590

ADD TUCO FOR NODE TO SHS TUPLE

CREATE MHS TUPLE

ADD TUCO FOR NODE TO MHS TUPLE

99

 TO

BLOCK 55.0
OF FIG. 18a 593

janir
Typewritten Text
99

FOR EACH TUPLE

IN NEW

TUPLES (NT)

604

EXACT MATCH FOUND?

MARK NT AS "NO CHANGE"

100

janir
Typewritten Text
100

23/26

gmGE,6owsaoqmOH

 ..am:az§__2mama.QmxaVES2

mosmzzouzoE2Qm&<_,>mxi

N.E:E27:mzoomash5%.mom

Ea

SN

mzoa

._Qm1Ez<m__23%:EE5::

EsmzzouzoWEEmm.:§aEm 5EdimamamzEWEBBSEmom

woo

GE

101

janir
Typewritten Text
101

So.5.§Ezoaomzzou5%E62

mosmzzou,6Emzommgm9.7:$0:$02

N_oSmzz8noEmzomm5%BE5%E62

EaonéEzopumzzoo5%E52

m5%E<zopomzzooaommozss

N.

Em~59
9,2EmE2E002.92EmE27:OUE.zzouGZEBEEzz8ozaazz

m

5~59zmgzzomEmE2mo:8

N.EmMB7:Q28;

w

52~50EazpaEmBmzmoHmo:
EmE2"5aom

Ea:Emmmozzzzp5%mom

08GE,3gsaogmBmzom
cs

98GE

amamV53860520%

 102

janir
Typewritten Text
102

m.5mE.E<zoEmzz8$3mazss

E8o§Ezozomzzou5%E52

5228Ezomomzzou5%E/O2

zoabmzzoumoEC.mamamuzsa

6328EzopumzzouSo:ma:

zoaomzzounoEmzomm2:SE5%$52

2..2...52E2‘EmE592432~597:82.9,2.52E2E002.zzouozauzzzzouozapzz

2

528E958‘EmE2mo5%

N.EmMBE958E2E2.35%

103

N.EmE5E958.52amzmo5%

NV

.5:asE958E2E2,5sea

W52E25Ba:omvszzzs5%man

SmeaHaEvaoqmOHmzom

oz

so

Dom.05

amasno2350.5295

janir
Typewritten Text
103

mzzoumaEmsomm2.8-2.-E:E2Eéa

Eo§8EzopumzzouaomE02

zesmzzamsmmB%E<zoaumzzou525

EmzoaSzémo8.7:3522:505zzouaomEma2.._,Ezo§m2:.V25

N.550E9525E2moE85%

w,5:maE958.5E2mo%85%

SE2asmoEmE5E9525E28zzoo5%

SOD52EWEE.mmvaézz8%mom

so52ZHma?mzomamvnzzzz5%M8m$

0%amwe.Emuoé20%
fl

104

janir
Typewritten Text
104

PATENT APPLICATION

ATTORNEY Docket No. 100031024
DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;
I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and
joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a
patent is sought on the invention entitled:
Method And System For Identifying And Processing Changes To A Network Topology

the specification of which is attached hereto unless the following box is checked:

() was filed on as US Application Serial No. or PCT International Application
Number and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification,
including the claims, as amended by any amendmentlsl referred to above. I acknowledge the duty to
disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Applicationlsl and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign applicationlsl for patent or
inventorlsl certificate listed below and have also identified below any foreign application for patent or inventorls) certificate having a
filing date before that of the application on which priority is claimed:

 Provisional Application

I hereby claim the benefit under Title 35, United States Code Section ’ll9(e) of any United States provisional applicationlsl listedbelow:

APPLICATION SERIAL NUMBER FILING DATE

U. S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States applicationlsl listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 35, United States Code Section ‘I12, I acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section ‘l.56(a) which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:
POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorneyisl and/or agentlsl to prosecute this application and transact all
business in the Patent and Trademark Office connected therewith:

Place Cusromer

Customer Number 022879 Number Bar codeLabei here

Send Correspondence to: Direct Telephone Calls To:
HEWLETT~PACKARD COMPANY

Intellectual Property Administration T. Grant Ritz
P.O. Box 272400

Fort Collins, Colorado 80527-2400 ‘97°’ 8980597

I hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A Pu|5i her Citizenship: Us

Residence: 2937 Redburn Drive Ft Collins CO 80525

Post oi:flce*A dr : Sa e as residence

‘xii/by ‘ 20/3 .: fwao
V S ' ' Date

Rev 10/ (D wr); (Use Page Two For Additional Inventorlsl Signaturelsll Page 1 0f 2
105

janir
Typewritten Text
105

iv‘

6

DECLARATION AND POWER OF ATTORNEY
ATTORNEY DOCKET No. 10003102-1

FOR PATENT APPLICATION (continued)
US

Post Office Address: Same as Residence

: }{){g)[c9©nveno s gna re Date

Citizenship:

Full Name of # 3 joint inventor:

 Residence:

Post Office Address:

Invenfor s Signaiure Date

Full Name of # 4 joint inventor: Citizenship:

Residence:

Post Office Address:

lnvenior S Slgnaiure

Full Name of # 5 joint inventor:__:__._. Citizenship:

Residence:

Post Office Address:

IHVEHEOI’ S Signafure ..

Full Name of # 6 joint inventor:__%_j__r.. Citizenship: ___.__

Residence:

Post Office Address: _._?_*

IHVETI E01’ 5 Signature

Citizenship: Full Name of # 7 joint inventor: ___j.

Residence:

Post Office Address:

IHVBHEOF S Slgnafure

Citizenship: *.T.
Full Name of # 8 joint inventor:

Residence: *_

Post Office Address:

lnvenfor's Sngnafure pate

Rev 10/00 (DecPwr) [Use Page Two For Additional Inventor(s) Signature(s))
106

Page 2 of 2

janir
Typewritten Text
106

PATENT Nuglgaea

.,M.‘“_5 »W..«.......wM»-.v,-2-1».«W-.e..-«Irv.-..*.—J_(u'qfi0dN'_,_'"
ul_ '.— —-— -. ,-.4: +4’:

_ _ _ _ _ » «_ Ht‘ .' -. f_r'j ;:-rn:-n:>:’£S1:IEI '—I'IC‘-I‘f3——' --
My‘-‘-t.}‘xA_‘_nj EIFIIZI ':y‘=t*—‘_m ‘Fur 1|3*:.'I’I.1f3'1I"3 "I “network tUPD1O9¥

I I 5e;stIAvgisab1eI»g:@pyI

ISSUING CLASSIFICATION

ORIGINAL _ cnoss nsFEm=.NcE(s) '
II SUBW55 (WE SUBCLASS 95“ 3'-°°'<1

 MMSALLOWED
Sheets Drwg. Figs. Drwg. Prini Fig. Tota! Claims Prim Claim for 0.G.

[3 1-,,a,e,,,, 0, W8 Pam, ~ I NOTICE or ALLOWANCE MAILED
subsequent to _j_____ (date)
has been disclaimed. ‘ - (Assistant Btamlnerh (Om)

III The (arm of this patent shall

Amount Due Date Paid

(Pflnmry Examhan (Dam)

rm extend beyond the aiplnzflon data

ISSUE BATCH NUMBER

D TERMINAL '. DBCLMMER

o1U.$Pat3n3.No.

 D The terminal _,__momhs of
this patent have baen disciaimad.

WARNING:
Tlmkdunnlknrdsdosadharahmayberwxuiasd. mxmmm1mddh¢1arrenaymmmNra3wmeUNmdSmMCodaflm35,Saahm122.181mm368.PossassIonoms!datheU.S.Patam&TmdeznamOfl1calsrasviaadmauflw11zedampbyeesmdmnbaamswfly.

FILED wrm: D oxsx (car) [:1 FIGHE E] CD-ROM(%DdI1'1po$iwIrb?xlI.I'&1sIIap)

(FACE)

107

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
107

I II “WAG

1': 1‘3
I

§

SEARCH NOTES
(INCLUDING SEARCH STRATEGY)

108"

INTERFERENCE SEARCHED

(RIGHT OUTSIDE)

janir
Typewritten Text
108

ISSUE SLIP STAPLE AREA (for additia‘-nal cross references)

 ‘WW-5

FEE DETERMINATION -
247-
T1

RESPONSE FORMAUTY REVIEW ’

INDEX OF CLAIMS

.1 Rejected N Nun-elected

= Allowed . interference

.. (Through numeral)... Canceled Appeal
4 Restricted 0 Objected

10 I
KIIIIIIII

-III=IIII

I

IFEEIIIIIIIEIIII

IlE!IIIIII:I

If more than 150 claims or 10 actions

staple additional sheet here

109

(LEFT INSIDE)

janir
Typewritten Text
109

' "HEWLETT-PACKARD COMPANY fill PATENT APPLICATION

g ‘ ‘Intellectual Property Administration” Q)i--—-_ §:ar?'c?:i?n:,7é:g?ado 80527-2400 — ATTORNE CKET N°- .___.._..__..._1°°°81°2'1
25% ,T
(A13
We'§:“'.."‘-'... ' .

S -EOMMISSIONER FOR PATENTS __
E gllashington, D.C. 20231 E 3:

Sir: §C“ Li.

Transmitted herewith for filing under 37 CFR I.53(b) is a(n): (X) Utility () Design LEP‘ .._‘='_—

(X) original patent application, ma %
()continuation—in-part application L) i y

INVENTOR(S): Eric A Pulsipher et al

TITLE: Method And System For Identifying And Processing Changes To A Network Topology

Enclosed are:

(X) The Declaration and Power of Attorney. (x) signed () unsigned or partially signed

' (XI 26‘ sheets of drawings (one set) (I Associate Power of Attorney

() Form PTO-1449 () Information Disclosure Statement and Form PTO—1449

(I Priority documentlsl ()(OtherI (fee $)

CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY

(ll (2) _ (3) (4) (5)
FOR NUMBER FILED NUM3ER_ gxTRA RATE TOTALS

X $18IIIII“III.”""(ii?
on
I

N

ono 4/?‘‘/5’ 0

TOTAL CLAIMS 20 .-

 INDEPENDENT
CLAIMS

ANY MULTIPLE
DEPENDENT CLAIMS

X $80

 S

4/» 0$270 »

BASIC FEE: Design ($320.00); Utility ($710.00 I (A 710

TOTAL FILING FEE 710

OTHER FEES

TOTAL CHARGES TO DEPOSIT ACCOUNT $ 71 0

Charge $ 710 to Deposit Account O8-2025. At any time during the pendency of this application,
please charge any fees required or credit any over payment to Deposit Account 08-2025 pursuant to 37
CFR 1.25. Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,
1.17,1 .19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"Express Mail“ labe‘ n°' EL523338183Us Respectfully submitted,
Date of Deposit oct_ 31 2000

I hereby certify that this is being deposited with the Enc A Pwslpher et a!
United States Postal Service “Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on
the date indicated above and is addressed to: BY {X
Commissioner f Patents, Washington, D.C.

T. Grant Ritz

Attorney/Agent for Applicantlsl
Reg. No. 39319

Date: Oct. 31. 2000

Telephone No.: (970) 898_0697

39“ '°’°° IT'°"5"°“” - Attach as First Page to Transmitted Papers —
110

janir
Typewritten Text
110

/is/in,.lllllllllllllllllllllllll.
" "HEWLETT-PACKARD COMPANY

‘intellectual Property Administration‘ -P. O. Box 272400
Fort Collins, Colorado 80527-2400.631‘

__‘_.. .
._..._._.__:........_—
ui-:-u

llfI.'ll"ill""‘Ci}?

EOMMISSIONER FOR PATENTS

:3’ gi/ashington, D.C. 20231
Sir:

Transmitted herewith for filing under 37 CFR 1.53(b) is a(n): (X) Utility

.’i'i«5©;1
ATTORNE PATENT APPLICATIONO

() Design

(X) original patent application,

() continuation—in-part application

lNVENTOR(Sl: Eric A Pulsipher et al

TITLE: Method And System For Identifying And Processing Changes To A Network Topology

Enclosed are:

(X) The Declaration and Power of Attorney.

(X) 26

(3 Form PTO-1449

() Priority document(s) (

(x) signed () unsigned or partially signed

sheets of drawings (one set) ()

() information Disclosure Statement and Form PTO-1449

(fee $)

Associate Power of Attorney

) (Other)

CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY

(2) (3) (4) (5)
TOTALS

(1)

NUMBER FILED NUM3gR_ 5xTRA RATE

s 0

FOR

TOTAL CLAIMS x s 13

lNDEPENDENT
CLAIMS

ANY MULTIPLE
DEPENDENT CLAIMS

X $80
Charge $ 710 to Deposit Account 08-2025. At any time during the pendency of this application,
please charge any fees required or credit any over payment to Deposit Account 08-2025 pursuant to 37
CFR 1.25. Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,
1.17.1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"E M 1"! b l . EL523338183US .
xpress 3' a 8 no Respectfully submitted,

Date of Deposit Oct 31 2009

Eric A Pulsipher et al

By 2
T. Grant Ritz

Attorney/Agent for Applicantis)
Reg- No- 39.319

Date: Oct. 31, 2000

I hereby certify that this is being deposited with the
United States Postal Service "Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on
the date indicated above and is addressed to:
Commissioner Patents, Washington, DC.

Te'eP“°"e N0-3 (970)898-0697

— Attach as First Page to Transmitted Papers -

111

Rev 10/00 (TransNew)

CKET No. 1 00081024

janir
Typewritten Text
111

1/26

 oooooo2E.W_._“__.E.3..mm:.3...E__.=...3.“__.;.S5,.
1

112

janir
Typewritten Text
 112

wmwwmmwmmmwmwmm

2/26

113

janir
Typewritten Text
113

‘IE3}M"H17‘#1393Hi"1537‘"§i3§§‘1"ii"1|Ilifiurllifffflifflixii.’flifin113111

114

3/26

janir
Typewritten Text
114

Miii]!"iii?3335:‘M1"H37'“i§EE3f5"1§"1I!I5fEa:2E3:Ilifiil¢.!i7§115534:113111?

4/26

‘ .FIG. 4

115

janir
Typewritten Text
115

~SE]!lilliil"M33312Hill!"H37"’%iEfE?5"!f"a11l5fin{ECIII}!11$:Ilffiniiffill

128

116

121

127

janir
Typewritten Text
116

1121!M'"§iII‘tlfffil{H12"#1"15:"-.‘f*?"i!"z1tlffiu33353lJ'II!1.,u!5fjllffinIII}!

FIG. 6

117

janir
Typewritten Text
117

czmazfieEmmzozfimammEmzoE.<1_mmESo.§Q8292
nmoammaaxm.§oS

7/26

%Em>zou5o.§o,_
ox%

wwmmsomm.NGE
zoEa.:$2ma:

:zmz<§mEm<:9. <,w<Qmommomz
.

@552_.S.<QmomE2mz__

mo_.fi_.§5Sm .zozumzzou$523225mzfizouS5.53mommoaz.B55._§5moe§mz_.92$53555amnaammm..~<E:€E<mm92A553E<m6._momMoog;§m,s§..XC%

822

$3.03o.§aw.
32$285ozamfié

O2

<,H.<Qammsfiouosé

E

SEzoEQ.E<ézmaxmmcammmma

118

janir
Typewritten Text
 118

5133?:III]!..:)fIIIfiffnIIIII

'III}!III!"IL"15353IIIII“I157’”Ef:§i!'!“lI*‘«1113532»

LOOK UP EXISTING

DEVICES IN TOPOLOGY
DATABASE

918

STORE TUPLES EN
NEIGHBOR DATABASE

920

GATHER

ADDITIONAL DATA

AS ’ UESTED

FIG. 9

8/26

904

FIG. 8

119

906

TUPLE REDUCTION
PHASE

926

SECOND WEEDING
PHASE

928

NOISE REDUCTION

' 932

CONSOLIDATION
PHASE

922

FIRST WEEDING
PHASE

924

INFRASTRUCTURE

BUILDING
PHASE

. .-PHASE

930

LOOK_~FOR
PHASE

FIG. 10

TOPOLOGY

UPDATING PHASE

908

janir
Typewritten Text
119

III}!112%‘;"l|31'tl':E§fIllfffil"H37‘”EiE§?5'!*‘ll"1:1t‘:ff«.cil§§ff1lIfl1...sfIIt'5inifjiil

. 9/26

O

418

N0 TUPLE IS A CONNCONN TO HOST
TO CONNLINKTUPLE

?

 CONN

ONLY HEARS THIS

HOST ON GROUP 1

NO

HOST HEARD

SINGLY BY ANY
OTHER

CONN

412

TUPLE IS A SHHL

414

MOVE TUPLBS FOR
THIS HOST TO EHL

120

 TUPLE IS A SINGLY-
HEARD CONFLICT

LINK

FIG. 11

' 416

TIJPLEISAMLHE

janir
Typewritten Text
120

J13]!1123!"1137$1255:éfffli"H37}i§E§H":zIiifin{E53113]]=.2§fI1135::M!

10/26

FOR EACH

TO BLOCK SHHL TUPLE
430 OF FIG. 12b

FOR

EACH TUPLE
IN EHL

 CONN TO CONN
LINK TUPLE FOR

EHL-CONN TO SHHL-
"CONN

7

428

UPDATE TUPLE

IF NOT COMPLETE

CREATE EHL CONN TO SHHLCONN

TUPLE IN CONN TO CONN LINK

FIG. 12a

121

janir
Typewritten Text
121

III?!1113!"ii?£15231ilfllh"if.-”‘”iii!“IH2IlfinE13333III}!1551::i|‘:fEnIififii
DONE CONN-TO—CONN

FROM BLOCK 420
OF FIG. 12a 11/26

FOR EACH

CONNECTOR IN
TUPLES

(CONN 1)

DONE

FOR

EACH OTHER

CONNECTOR IN

TUPLES

(CONN2)

CONN1 TO

CONN2
EXISTS IN

TUE;LES

EACH CONN2 TO

OTHER CONNECTO

122

FIG. 12b

TO BLOCK 444

OF FIG. 12c

 CONN2

HEARS CONN3

ON UNIQUE

POVRT

NO

CONN 1

HEARSOCONN3

CREATE CONN1 TO CONN2
TUPLE IN CONN TO CONN

LINKS

janir
Typewritten Text
122

‘ J . .

FROM BLOCK 430 OF FIG. 12b 12/26

 FOR EACH

CONN TO CONN LINKS
TUPLE

DONE
TO BLOCK 456

OF FIG. 12d

DO

 INCOMPLETE

GROUPI PORT
DATA FOR

CONN2?

NO

448
YES

LOOK FOR DIFFERENT TUPL H

FIG. 12C
INVOLVING CONNI IN

EHL ON

DIFFERENT GROUP/PORT

III}"IT‘"a"z§§!5"li"1&HffiuiJ3:":IIIII]!..:.'ff§IE3»IIIXII

FILL IN MISSING

GROUP/PORT FOR
CONN2

123

janir
Typewritten Text
123

I313:]!"HT3353:IE}!"I37‘“iiE:":??"i|"z1flu{EECIII]!,.::*,I11551»Mi

13/26

FROM BLOCK 444 OF FIG. 12c

FIG. 12d

FOR EACH

CONN TO CONN LINKS
' TUPLE

DONE

CONSIDER CONN]
AND CONN2

OF THIS TUPLE

 TEST CO IN

ONN TO C NN
LINKS THAT

HEARS BOTH I
CONN} &

CONN2

ONE

DO

 TEST CONN

HEARS CONN1 AND
CONN2 ON
DIFFERENT

PORTS

 NO

MOVE THIS TUPLE
T0 EXTRA CONN

LINKS

124

janir
Typewritten Text
124

III]!iii]!"IE7iiffiif11133"H17‘“ii?3E‘.?"fl"u!15:7uififffHf]!;x:!f'.I1255::III]!

. DONE

14/26 .

FOR EACH
SCL

TUPLE (SEARCH TUPLE)

DO . 468

CONSIDER CONN 1 AND HOST1 OF SEARCH TUPLE

470

FOR EACH
EHL

TUPLE CONTAINING
HOST1

472

CONSIDER CONN2 OF TUPLE

474

TUPLE IN CONN

TO CONN LINKS FOR

CONN2 AND CONN1

FIG. 13

476

CONNZATO HOST1

TUPLE?lN EHL

478

 GROUP/PORT

SAME FOR CONN2 HEARING

CONN1 <3 HOST1

480

MOVE SEARCH TUPLE TO SHHL

482

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

125

janir
Typewritten Text
125

LEI!IIIII"1133"‘I933:3517!!"iii?’"ii§§?!"1!"sziifin3333III]!d:‘.'CIlfffuI131

15/26

FOR EACH
MHL

TUPLE (SEARCH TUPLE

486

CONSIDER CONN1 AND HOSTI

488

FOR EACH

EHL

TUPLE CONTAINING
HOSTI

490

CONSIDER CONN2

492

TUPLE IN CONN

TO CONN LINKS FOR

CONN2 AND CONN1

DONE

CONN2 TO HOSTI

-' TUPLE IN EHL?

 GROUP/PORT

DIFFERENT FOR CONN2

I ARING CONN1 & HOST

126

498

MOVE SEARCH TUPLE TO EHL

FIG. 14

janir
Typewritten Text

janir
Typewritten Text
126

M1M"53?15533:III]!"N37"’iiEE!!"I1"zJlffinEIEEFII{LXIJEII:35%»III]!

. 16/26

500 FIG. 15

DONE .
FOR EACH

MHL

TUPLE

502

CONSIDER CONN1 AND HOSTI

504

CONN1 GROUP]

PORT ALREADY IN

ALREADYDIDLOOKFORS
LIST?

NO

508

CREATE A LIST OF ALL CONNS IN CONN TO I
CONN LINKS TUPLES HEARD BY CONN1 ON SAME

GROUP/PORT AS HOST1

 FOR EACH CONN DONE

(CONN2)1N LIST__

CONN2 TO HOST1
TUPLE IN MI-IL

?

514

INITIATE LOOKFOR FOR CONN2 TO HOST1 I
‘ TUPLE MANAGER

ADD CONN1. GROUP/PORT "TUPLE COMPONENT" (TUCO) 516
TO ALREADYDIDLOOKFORS LIST

127

janir
Typewritten Text
127

III}!1121!!"iii?:l§§§II£1.31"i|3''”3:59?!"111:Ilfifn{Effilfffl!.e!fIIi!i’fuIII]!

0 17/26

'38 FIG. 16a

FOR EACH

MHL DONE TO BLOCK
TUPLE 540

D0 520 FIC(‘x).F16b

522

MORE CONN1 N0

GROUP/PORT TUPLES
IN MHL?

 EXISTING

N-ARY MI;IS TUPLE

CREATE MHS TUPLE

HOST1 ALREADY

IN MHS TUPLE?

I RADIO‘), HOST1 TO MHS TUPLE

FOR REMAINING
MHL TUPLE WITH

' FERENCE TO HOST}?

DO 534-

CONSIDER CONN2

A 536

CONN1 —TO-CONN2

TUPLE IN CONN-TO—CONN LINKS TUPLE ON S ‘

GROUP/PORT AS (CONN1-T0-HOST

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME
CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

128

. -J’

janir
Typewritten Text
128

if:.‘§f.'H"H17'"£52355?"I11:IE3:i.i:'5:'.'I1!f.'.'i1,u'.ffjIfifinEC]!
2(III!IE1!"153

18/26

FIG. 16b

FROM BLOCK 518
OF

FIG. 16a

FOR EACH
SHL

TUPLE

542

CONSIDER CONN AND HOST

544

EXISTING
ISHS TUPLE FOR

‘ . CONN

NO 546

CREATE SHS TUPLE

S48

ADD HOST TUCO TO SHS

129

janir
Typewritten Text
129

19/26

FIG. 17%

CONVERT TOPOLOGY
INTO TUPLE

LISTS

COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD

INDENTICAL TUPLES
f33131"Ill"'"3275!?"M113551:LI-TiffIII]!Ag:Itfiullfffil
 _ =

3:5

7!

TAKEIACHON ON‘ _.
CHANGES TO TOPOLGY

130

janir
Typewritten Text
130

iii]!I113!“iii?iliffifiiifli"Hi?'“}iEEE??"!l"T2‘lfiiitiiiiiLEI!.5251‘ET112]!

20/26

. C
550

OR EACH NODE 1N TOPOLOGY

DONE
D0 552

IS NODB A CONN?

554

FOR C

FIG. 1821

TO BLOCK 539
OF FIG. 18b

EA H
ONNECFED INTERFACE (CONNIFACE) 0 FROM

CONN (CONN1 BLOCKS
582,590,
598 OF *
FIG. 18b

EXISTING SHS
"TOPO TUPLE" FOR

SEGMENT ?

NO

CREATE A TOPO SHS TUPLE—

ADDTUCOEOR
INTERFACES HOST TO TOPO

.5 - _ SHS V ,

. V v_ ' " 566 ‘
‘ ‘ ‘ICONNIFACE NO

CONNECTED TO A BUS SEGMENT?

YES 568

EXISTING MHS YES
_ FOR CONN1 ?

CREATE A TOPO MHS TUPLE

572

ADD TUCO FOR HOST TO MI-IS TUPLE
CREATE CONN LINKS TURLE FOR

CONN1 & CONN2

131

janir
Typewritten Text
131

‘liifiliiiifill"ili1'tl5E§II152]!"E157£i§35f!“H‘111l3§s1:l3i§iIl}IIl§1,;:!ffI!i3Efza1£IiE1

O L ' C

K]
580

V NODE IN
DEFAULT SEGMENT?

FROM BLOCK 5_5_2
OF FIG. 18a

CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

CREATE SHS TUPLE

590

ADD TUCO FOR NODE TO SHS TUPLE

TO

BLOCK 55.0
OF FIG. 18a A

132

FIG. 18b

janir
Typewritten Text
132

E55553If]!diff11%llfffii

iii]!113311"1177Uiffff!|I.'.'l1"iii?'"§iE?:?."'ii"uIftfn

22/26

FIG. 19

FOR EACH TUPLE
IN NEW

TUPLES (NT)

602

LOOK FOR EXACT MATCH IN CURRENT TUPLES

604

EXACT MATCH FOUND?

MARK NT AS "NO CHANGE"

133

janir
Typewritten Text
133

am:oz§_.23:36%.V322

mobmzzoozoE2aésaEm

am.05mogases2.

5mm:52Emzoames...5%ME

23/26

v

mzoo

._%.az§_.2.$133.naeV32 mosmzzouzoE293.5E....8&2mumamzEWEE.SEmom
,_w

Sm.oE%

EE.

134

janir
Typewritten Text
134

$o.§8Ezofimzzou

mosmzzounoExam~25ea5%as:

NssmzzamoHzmzoaEfimSE5%ea:

GoéaEzoEmzz85%ea:

m.SmE.E.<zoaomzzs5%5,25

...

Em~5092EmamzE88728ozaoiz

9,2Em252E82zzouozEB.<2

N.

EasE952EmE2"55%

M.EmasE952

~...

E:asEESEEmBmzmoemom
EmE2"55%

mEE.Em@322:5%ME

02as,8SSBOEEmzoo.so

newGE

gm.oEmoESUOESOME

EEE.ZH_m_,~E_;..E_._E._

 135

janir
Typewritten Text
135

 E388zofimzzsmo$395..E225530%:E288228Hzmzcmm5%Ezozbmzzouzozumzzs.Ezoaomzzou5%252BE5%es:5%es:5%mozsa.. E‘E2E292‘E2.~50EODE.728ozauzz

072E2>62EQuazz8OEIPEE

N.

.5.asEE228EmE2Us5%

EEmasE9,58

...

.523%mo5%.a2suzEz:a
E2E2usso:

N.

15:ma

 usamnoSE23%EWEB. oz4§7m,%~%%(mom2350.52.mzoa@32225%mom08dzE 30
Wswam"5

seaoqmEOE

-3Ew_.__,..E3._u____E

136

janir
Typewritten Text
136

26/26

Eo.§SEzoEmzz85%E62

%2omfi,_:<§OPEm>oE@505zzsaozEma8E2852:V25

....5~59E9,52.5

E,5:E5E9525E23E85%

So:3%Eme?@8322:5%mom

3%hazzouEs.

mzoa¢ 3NGE
.1

.928meEaémm22.8..2E2E55

E2Emumo,5~50E952.652moE88%so52E35@322:5%mom
NE

02as“EssaogmEOE

137

janir
Typewritten Text
137

I

r _' .1 .v t- l

1 Title

Method and System for Identifying and Processing Changes to a Network Topology

Field of Invention

The present invention relates generally to computer networks. More particularly, it relates

to a method and system for identifying changes to a network topology and for acting upon the

network based on the changes.

Background

As communications networks, such as the Internet, carry more and more traffic, efficient
\OO0\lO\U\~l>bJl\)

use of the bandwidth available in the network becomes more and more important. Switching

10 technology was developed in order to reduce congestion and associated competition for the

11 available bandwidth. Switching technology works by restricting traffic. Instead of broadcasting a

. .

given data packet to all parts of the network, switches are used to control data flow such that the

13 data packet is sent only along those network segments necessary to deliver it to the target node.

14 The smaller volume of traffic on any given segment results in few packet collisions on that segment“WWW
15 and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually

16 possible and is typically made based upon current traffic patterns.

17 The intelligent routing of data packets with resultant reduction in network congestion canMMWHHW
18 only be effected if the network topology is known. The topology of a network is a description of -

19ff»f#5._t_he network,whic.h,inc1udes ;th_e.loc,ation,;o,f,and interconnections betwee_n;nodes_on_.the,.netwo1jk. _

20 The word “topology” refers to either the physical or logical layout of the network, including devices,
21 and their coiinections in relationship to one another. Information necessary to create the topology

22 layout can be derived from tables stored in network devices such as hubs, bridges, and switches.

23 The information in these tables is in a constant state of flux as new entries are being added and old,

24 entries time out. Many times there simply is not enough information to determine where to place a

25 particular device.

26 Switches examine each data packet that they receive, read the source addresses, and log

27 those addresses into tables along with the switch ports on which the packets were received. If a

28 packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. l0008l02-I

138

janir
Typewritten Text
138

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified

where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table

can become quite large and may require a significant amount of the switch’s resources to develop

and maintain. As an additional complication, the physical layout of devices and their connections
are typically in a state of constant change. Devices are continually being removed from, added to,

and moved to new physical locations on the network. To be effectively managed, the topology of a

network must be accurately and efficiently ascertained, as well as maintained.

Existing mapping methods have limitations that prevent them from accurately mapping ‘

topological relationships. Multiple connectivity problems are one sort of difficulty encountered by

existing methods. For example, connectors such as routers, switches, and bridges may be

interconnected devices in a network. Some existing methods assume that these devices have only a

single connection between them. In newer devices, however, it is common for manufacturers to

provide multiple connections between devices "to improve network efficiency and to increase

capacity of links between the devices. The multiple connectivity. allows the devices to maintain

connection in caseone connection fails. Methods that do not consider multiple connectivity do not

present acomplete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a

d‘ev.i‘ce; Existingimethods-use a reference interface ona.-.reference.address i,r;i_3at«set.of d_ey»ices,to _, ,._

orient all other devices in the same area. These methods assumed that every working device would

be able to identify, or “hear,” this reference and identify it with a particular port of the device. With

newer devices, however, it is possible that the same address or reference may be heard out of

multiple ports of the same device. It is also possible that the address or reference may not be heard

' from any-ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of

the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be very large and expensive.

HP No. lO0O8l02-I 2

139

janir
Typewritten Text
 139

ll

. .

‘#3

llflilI133}'7llI.“352.71.’llilfll"ll?'“Zifil ii

28

Still another difficulty with existing systems is that they focus on the minutia without

considering the larger mapping considerations. Whenever an individual change in the system is

detected, existing methods immediately act on that change, rather than taking a broader View of the

change in the context of other system changes. For example, a device may be removed from the

network temporarily and replaced with its ports reversed. In existing systems, this swapped port

scenario could require hundreds or thousands of changes because the reference addresses will have

changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.

These methods continuously poll network addresses throughout the day and make decisions based

on. those continuous polling results. Thisicreates traffic on the network that slows other processes.

Still another limitation of existing methods is the assumption that network parts of a

particular layer would be physically separated fiom other parts. Network layer 1 may represent the

physical cabling of the network, layer 2 may represent the deviceconnectivity, and layer 3 may

represent a higher level of abstraction, such as the groupingshof devices into regions. Existing
methods assume that all layer 3 region groupings are self-contained, running on the same unique

physical networking. However, in an intemet protocol (IP) network, multiple IP domains may co-
exist on the same lower layer networking infrastructure. It has become common for a network to

employ a virtual local area network (LAN) to improve security or to simplify network maintenance,

“for example. Using virtual LANS, a system may have any number ofud-ifferent domainssharing

A the same physical connectivity. As a result, existing methods create confusion with respect to

topological mapping because networks with multiple IP addresses in different subnets for the

infrastructure devices cannot be properly represented because they assume the physical separation

of connectivity for separate IP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.

Summary of Invention

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HPNO. l0(!)8l02~! 3

140

janir
Typewritten Text
140

illiiltlifll"ill"{tiffllfill"ll?'”.£i§§E’:.'"ii"ll1155;:2533:11:31.iaifTLIl?EEix1lfffli

\OO0\lO\U1.K>UJl\)
10

ll

12

13

14

15

16

17

18

. ,.,1.9

20

21

22

23

24

25

26

27

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and multi—heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

Summary of Drawings

Figure 1 is a drawing of a typical topological bus segment for representing the connectivity

of nodes on a network.

Figure 2_is a drawing of a typical topological serial segment for representing the connectivity

of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity

-of?-nodes on.a network. V . _

Figure 4' is a drawing of another typical topological star segment for representing the

connectivity of nodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.
Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HPNo. ICXJOXIOZ-I 4

141

janir
Typewritten Text
141

nutwutmmunumrnn

1 Figure 11 is a flow chart of the first weeding phase of the method used by the connection

calculator.

Figures 12a-d are flow charts of an infrastructure-building phase of the method used by the

connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection

2

3

4

5

6 calculator.

7

8~ calculator.

9 Figure 15 is a flow chart of the look—for phase of the method used by the connection

10 calculator.

11 A Figures 16a—b are flow charts of the consolidation phase of the method used by the
12 connection calculator.

13 Figure 17 is a flow chart of the method used by the topology converter.

14 Figures l8a—b are flow charts of the morph topo phase of the method used by the topology

15 converter.

16 Figure 19 is a flow chart of the duplication discard phase of the method used by the

17 topology converter.

18 Figures 20a-d are flow charts of the identify different tuples phase of the method used by

~19» .. the topology converter. ,-_».,.., , _ 1 “R an

20 Detailed Description

21 The system provides an improved method for creating topological maps of communication

22 networks based. Connectivity information is retrieved from the network nodes and stored as

23 “tuples” to track specifically the desired information necessary to map the topology. These light

24 weight data structures may store the host identifier, interface index, and a port. From this tuple

25 information, the topology may be determined. A tuple may be a binary element insofar as it has two

26 parts representing the two nodes on either end of a network link or segment. A “tuco” refers to a

27 tuple component, such as half of a binary tuple.

HP No. 100081024

142

janir
Typewritten Text
142

HI]!,;::fTIllfffnllfill
_.L.

235==r

,_;

-—s

O\OO0\lO\U\-I>bJl\)
>—A)——-I

>—a I\)

V-4 U)

>—I -5

>—- U}

>----- ON

#4 \I

>—- 00

>-A \O

N O

N »—I

N IO

I0 0-)

N-b

l\) U1

(0 O\

N \I

As used herein, a node is any electronic component, such as a connector or a host, or

combination of electronic components with their interconnections. A connector is any network

device other than a host, including a switching device. A switching device is one type of connector

and refers to any device that controls the flow of messages on a network. Switching devices

include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and

switches.

As used herein, the term “tuple" refers to any collection of assorted data. Tuples may be

used to track information about network topology by storing data from network nodes. In one use,

tuples may include a host identifier, interface information, and a port specification for each node.‘

The port specification (also described as the group/port) may include a group number and a port

number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple

may include this information about two nodes as a means of showing the connectivity between them,

whether the nodes are connected directly or indirectly through other nodes. A “conn—to—conn”

tuple refers to a tuple that has connectivity data about connector nodes. A “Conn-to—host” tuple

refers to a tuple that has connectivity data about a connector node and a host node. In one use,

tuples may have data about more than two nodes; that is, they may be n-ary tuples, such as those

used with respect to shared media connections described herein.

A “singly-heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,

.-.;-40thCI'- device, etc.,' thatisconnected directly-.to a connector, such as, a switc_hing_device,_ A,_singly._-,,._

heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an

shh. A “multi-heard host” (mhh) refers to hosts that are heard by a connector on the same port that

other hosts are heard. A multi-heard host link (mhhl) refers to the link between the connector and

an mhh. A link generally refers to the connection between nodes. A segment is a link that may

include a shared media connection.

Figure 1 is a drawing of a typical topological bus segment 100 for representing the

connectivity of nodes on a network 110. In Figure 1, first and second hosts 121, 122, as well as a

first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No. lO(X)8l02-I 6

143

janir
Typewritten Text
143

E':1'.

"aft1'

,3 5

ll.".l‘Illfflll"ll-'3'11335.’:lifill"I173"‘”1iE§§!f"ll".:z1l:

1

2

3

4

5

6

7

8

9

01

ll

12

13

14

15

16

17

18

- 1.9. ,

20

21

22

23

24

.25

26

27

‘\

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first

connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the

connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port

132 on a second connector 145 which is connected via the network 110 to the first port 131 on the

first connector 140. The serial segment 200 comprises the second port 132 on the second

connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of

a connector—to-connector (“conn—to—conn”) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the

connectivity of nodes on the network 110. In Figure 3, the first host 121 is connected to the first

port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected
to the first port 131 of the first connector 140. Figure 3 is an example of a connector—to-host

(“conn-to—host”) relationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the

connectivity of nodes on the network 110. In addition to the connections described with respect to

Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth

host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment

301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third

host»-1-.:2»3 connected.to the third port.l—33..of the first connector 140, andtthe f0l}f:t_h;1_1OSt 124

connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,

on a given connector, at least one port, wherein one and only one host is connected to that port, '

and that host. In the more general case, the star segment 301 comprises, on a given connector, all

ports having one and only one host connected to each port, and those connected hosts. Since the

segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are

referred to as star segments.

For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No. IWOSIO2-I

144

janir
Typewritten Text
144

flmrmm

HflWflMW“WMM

\OOO\)O\U\-S>-UJl\)
10

ll

12

13

14

15

16

17

18

19- -2;

20

21

22

23

24

25

26

27

28

. I

represented as terminals. However, they could also be workstations, personal computers, printers,

scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,

third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth

ports 131, 133, 134 respectively, wherein the first, third, and fourth ports 131, 133, 134 are

located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly«heard hosts connected to separate

ports 131, 133, 134 of a common connector 140 — the first connector 140. The fifth and sixth
hosts 125, 126 are singly—heard hosts connected to the third and fourth connectors 142, 143. The
seventh and eighth hosts 127, 128 are multi-heard hosts connected to the same port 139 of the fifth

connector 144. The multi-heard hosts 127, 128 illustrate a shared media segment 180, also

referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and

illustrate a switch mesh 181. Each of the connectors in the switch mesh 181 is connected to each

other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be

dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.

The first connector 140' is connected via the network 110 to the second connector 141 by two

direct links, each of which is..connected.to different .ports on, the c_oniiec,t_o_if§.,,One_;,,_l:iri_l,_§‘,is connected

-to the sixth port 136 of the first connector 140 and to the seventh port of the second connector

137. The other link is connected to fifth poit 135 of the first connector 140 and to the eighth port

138 of the second connector 141. In this example, two connectors illustrate the multiple

connectivity between nodes. Depending upon the device specifications, devices such as connectors
may be connected via any number of connectors. As explained herein, the system resolves multiple

connectivity problems by tracking port information for each connection,

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors

171, 1.72, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No. 100081024

145

janir
Typewritten Text
145

mtmmmnannnm

5" E

5:

l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

‘T9

20

21

22

23

24

25

26

28

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or
intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected

directly to the fifih port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flow chart of the method
used by the system to retrieve and update the topology of the network. A tuple manager 300, also
referred to as a data miner 300, gathers 902 data from network nodes and builds 904 tuples to

update the current topology. The topology database “topodb” 350 stores the current topology for
use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple

ager 300. The connection calculator 320 processes the data in the neighbor data database 310I'll an

to determine the new network topology. Theconnection calculator 320 reduces 906 the tuple data

and sends it to the reduced topology relationships database 330. The topology converter 340 then

updates 908 the topology database 350 based on the new tuples sent to the reduced topology
relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described

generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.
The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then
retrieves 912 node information of the current topology stored in the topology database 350. This

information tells the tuple manager 300 which devices or nodes are believed to exist in the system

b’a's'ed=on the nodes that-‘were detected during--a previous query. f.1‘.he,tuple manager 309_._the_n

queries 914 the known nodes to gather the desired information. For example, the connectors may
maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary

functions, such as switching. Other devices may allow the system to -perform queries to gather

information about the flow of network traffic. This data identifies the devices heard by a connector

and the port on which the device was heard. The tuple manager 300 gathers this data by accessing A
forwarding tables and other information sources for the nodes to determine such information as their
physical address, interface information, and the port from which they “hear” other devices. Based
on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

HP No. IOOOSIOZ-l

146

janir
Typewritten Text
146

mnmamrmmhmmmhmm

\OOO\lO\U1-IAUJIQ
10

11

12

13

14

15

16

17

18

1-9: ~..

20

21

22

23

24

25

26

27

28

informationis assembled into a tuple and may be used as a “hint” to determine its connectivity later,

based on other connections. The tuple manager 300 may also gather 920 additional information

about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that

information.

After the data is gathered and the tuples are stored in the neighbor database 310, the

connection calculator 320 processes the tuples to reduce them to relationships in the topology.

Figure 10 shows a flow chait of the process of the connection calculator 320, as shown generally in
the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a

first weeding phase 922 to identify singly-heard hosts to distinguish them from multi—heard hosts.

Singly-heard hosts refer to host devices connected directly to a connector. The connection

calculator 320 then performs an infrastructure—building phase 924 to remove redundant connector-

to-connector links and to complete the details for partial tuples that are missing information. Then,

the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports

of singly-heard hosts. The connection calculator 320 then performs a noise reduction phase 928_ to

remove redundant neighbor information for connector—to—host links. If clarification of device

connectivity is required, the connection calcu1ator’32O performs a “look for” phase 930 to ask the

tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment
and network containment relationships... “The connection calculator 3210 may» alsowgagpredundagit __

tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide
hints to connectivity of other tuples. ‘As part of the consolidation phase 932, the connection

calculator 320 creates new n—ary tuples (tuples having references to three or more tucos) for shared

media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for

distinguishing sing1y—heard hosts. The purpose of the first weeding process 922 is to identify the

direct connections between connectors and hosts; that is, those tuples having a first tuco that is a

connector and a second tuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

10HP No. l0008l02-I

147

janir
Typewritten Text
 147

1 404 whether the tuple is a connector-to—host (conn-to-host) link tuple. If it is not a conn—to-host

2 link, the connection calculator 320 concludes 418 that it is a conn-to~conn link and processes 402

3 the next tuple. If the tuple is a conn-to-host link tuple, then the connection calculator 320

4 determines 406 whether the connector hears only this particular host on the port identified in the

5 tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a multi-

6 heard host link (mhhl) tuple.

7 If the connector hears only the one host on the port — that is, if the host is a singly-heard

8 host ~ then the connection calculator 320 determines 408 whether the host is heard singly by any

9 other connectors. If no other connectors hear the host as a singly-heard host, then the tuple is

10 classified as a singly—heard host link (shhl) tuple 412 and other tuples for this host are classified 414
11 as extra host links (ehl). Another tuple for this host may be, for example, an intermediate connector
12 connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the
13 first connector is connected directly to the first host 151. This connection therefore forms an shhl

14 tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data

15 indicates that the intermediate connector 172 is indirectly connected to the host and hears the host

16 from a particular port. An extra host links. tuple is created so that this data may be used later in
17 conjunction with other extra host links tuples from devices across the network, to verify connectivity

18 by providing hints about connections.

~ :19 . . The;first_weedi_ng. process. also attempts to identify conflicts'. If other.99nnec;grs hear the: _‘

20 host as a singly-heard host, then a conflict arises and the tuple is classified 410 as a singly-heard

21 conflict link (shcl) tuple to be resolved later. This conflict may arise, for example, if a host has been

22 moved within the network, in which case the forwarding table data may no longer be valid. Certain

23 connectors previously connected directly to the host may still indicate that the moved host is

24 connected. When all tuples have been processed 402 to identify singly-heard host links, the first

25 weeding phase 922 is complete.

26 Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection

27 calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

28 connectors are set up in the network. The first part of the infrastructure building phase 924

HPNO. 10008102-1 11

148

janir
Typewritten Text
148

iifin1333Hillmi’.1155::till

\OO0\lO\U\-$39-)l\J
10

ll

12

13

20

‘21

22

23

24

25

26

27

28

manufactures tuples based on the list of singly—heard host link tuples identified in the first weeding

phase 922. The purpose is to identify the relationship between the connectors in the extra host links
tuples and the connectors directly connected to the singly-heard hosts. For each singly-heard host
link 420, the connection calculator 320 processes 422 each extra host link that refers to the host.

In the illustration of Figure 6, a conn~to-conn link tuple would represent the connection between the

first connector 171 and the intermediate connector 172. An extra host link tuple would represent

the indirect connection between the intermediate connector 172 and the first host 151. The conn-

to—conn link tuple between the first connector 171 and-the intermediate connector 172 is an

example of an ehlConn~to-shhlConn tuple. If a conn-to—conn link tuple exists 424 for the extra host
link connector to the singly—heard host link connector (ehlConn-to—shhlConn), then the connection
calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be

incomplete and a conn—to—conn link may not exist. In that case, a conn—to—conn tuple does not exist
for the ehlConn-to—shhlConn, then such a tuple is created 426.

After processing extra host links for singly-heard host links, the connection calculator 320
considers 430 each connector (referred to as connl) in the tuples to determine the relationship

between connectors. As illustrated in Figure 6, a single connector may be connected directly and

indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the
intermediate connector 171 directly and also to the third connector 173 indirectly. The third

connector 173 hears the first~~host 15.1.-.o_n the same part l65,that it he,arsg__,the_ first gonnector and

the intermediate connector 172. The infrastructure building phase 924 tries to determine the

relationship between other connectors heard on the same port of connl. In a series of
interconnected connectors, the connector on one end may not hear a connector on another end, but

it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are
created to represent the interconnection of conn-to-conn relationships. Based on this data, the
connection calculator 320 can make inferences regarding the overall connection between

connectors.

For every connl, the connection calculator 320 considers 432 every other connector

(conn2) to determine whether a connl-to-conn2 tuple exists. If connl-to-conn2 does not exist,

12HP No. 100021024

149

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
149

9,5 5:

I lrIE3!lliiill"ii?iE§fI',\lIIf1.l"I117%i§§E?!"ll":21155:}:'.lEE§ffliifliiséffjllffinlliffll
ll

13

14

15

l6

l7

l8

~«-'19

20

21

22

23

24.

25

26

27

28.

.\ .

then the connection calculator 320 considers 436 every other conn-to-conn tuple containing conn2.

The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique

port 438 and if connl also hears conn3 440, then the connection calculator 320 creates 442 a tuple
for connl —to—conn2 in the connector-to—connector links tuple list.

After processing all of the connl tuples, the connection calculator 320 processes 444 each

connl—to-conn2 links tuple to ensure that they have complete port data. For each incomplete tuple

446, the connection calculator 320 looks 448 for a different tuple involving connl in the extra host

links tupleson a different port. If a different tuple is found 450, then the connection calculator 320
determines 452 whether conn2 also hears the host. If conn2 does hear the host, then the

connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear

the host 452, then the connection calculator 320 continues looking 448 through different tuples

involving connl in extra host links on different ports.

After attempting to complete the missing data in each of the conn-to-conn links tuples, the

connection calculator 320 processes 456 each conn-to-conn links tuple. The purpose of this sub-

phase is to attempt to disprove invalid conn-to-conn links. The connection calculator 320 considers
458 connl and conn2 of each conn-to-conn links tuple. Every other connector in conn-to-conn

links may be referred to as testconn. For each testconn 460, the connection calculator 320
determines 462 whether the testconn hears connl and conn2 on different groups/ports. If testconn

*‘-"'-hears conn*1'~‘ and conn-2» on differentports,-’then.the tuple ‘is 11103/,fc.d to extraconnlinks .(€.C1)_,464._.._,,,,._ E _

Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the

second weeding phase 926 is to attempt to resolve conflicts involving singly—heard hosts identified in

the first weeding phase 922. In the situation described herein in which more than one connector

reports that a host is singly-heard, the second weeding phase 926 reviews the tuples created during
the infrastructure—building phasei924 involving the connector and host in question and attempts to

disprove the reported conflict. The connection calculator 320 processes 466 each

singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 connl.

and hostl of the tuple. For each extra host links tuple containing hostl 470, the connection

13HP No. 100081024

150

janir
Typewritten Text
150

‘ll?"‘ZiE§§f?"ll"i:11551:333:":llfillrllii:Ilffiullffll

:‘ E

1

2

3

4

5

6

7

8

9

—-I O

)-A)-A

p-- I\)

u-a DJ

r—- #-

>—A VJ}

>-I Ox

17

—I O0

50

N O

[Q v--

N l\)

N La.)

I0 -I2»

I\) U!

f\) O\

l\) \!

I\) 00

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in conn-to-conn links for conn2

and connl 474, and if there is a conn2~to-connl tuple in the extra host links tuples 476, and if the

port is the same for conn2 hearing connl and hostl 478, then the search tuple is moved 480 into
the singly heard host links and other tuples containing hostl are removed 48?. from the

singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise

reduction phase 928 is to handle those connections in which a connector is not directly connected
to a host or to another connector. For example, networking technology may employ shared media

connections between connectors, rather than dedicated media connectors. With a shared media *

_ connection, the entries in the forwarding tables for connectors attached to the shared media
connection will include every node accessing the shared media connection and may not present a

useful or accurate representation of the nodal connection. For example, if the network configuration

in Figure 6 used a shared media connection between the first connector 171 and the intermediate
connector 172, then the first connector is not really connected directly to the intermediate connector

because other devices (not shown in Figure 6) may also use the shared media connection. These

other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be

created for the connectors 171, 172 on opposing ends of the shared media. In this situation, it is

inefficient to maintain point-to—point binary tuples for every connection. The noise reduction phase

-928 disproves invlalid tupleszcreated .by..the shared media connection,s,m._,, __ _ U b

For each multi—heard host links (mhhl) tuple, also referred to as multiHeardLinks (mhl)

tuples (sometimes referred to as the search tuple) 484, connl and hostl are considered 486. For
each extra host links tuple containing hostl 488, conn2 is considered 490. If there is a tuple in

conn—to-conn links for coma and connl 492, and if there is a conn2—to-hostl tuple in

extraHostLinks 494, and if the group/port for conn2 hearing com] and hostl is different 496, then

the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase is to

complete missing data for mhhl tuples. There may exist connections on the network that have

incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

14HP No. 100081024

151

janir
Typewritten Text
151

‘:52

"-¢

llfilllliifll'll3'$1352till"ll?"’“3i§3!!"ll“u1|5f§u

1

2

3

4

5

6

7

8

9

10

ll

12

13

14

15

16

17

18

19;...-

20

21

22

23

24

25

26

27

in which case data might not be stored in forwarding tables. In another example, a forwarding table

may not have sufficient room to store all of the required information and might delete data on a

FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager

300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding

table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the

connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an

“alreadyDidLool<fors” list, then a list is created 508 for all connectors in conn-to—conn links that are

heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the

connection calculator 320 determines 512 whether there is a conn2-to—hostl tuple in the mhhl

tuples. If there is not such a tuple, then the connection calculator 320 initiates a look—for for conn2-
to—host1 via the tuple manager 300. VVhen each connector in the list has been processed 510, the

connl group/port tuco is added 516 to an alreadyDidLool<fors list. As an additional portion of the

look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information

about connectivity. For example, the system may show the user the perceived connectivity or the

unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from

the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to

produce the new topology. This topology may have incomplete tuples possibly resulting from
-extraneous informationthat the connection calculator..33O could not disp_r;ove.“ Tovreufine the pleyy

topology, the connection calculator 330 can request the tuple manager 300 to obtain additional

information aboutparticular nodes or it may also request a user to refine the topology by adding or

removing tuples. Using the process of the connection calculator 330, tuples marked as non-

essential may be removed from the new topology to save space and to simply the topology. The

connection calculator 330 is not confused by multiple connectivity situations such as port

aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-

to—point, or neighbor-to-neighbor, connectivity showing each connection in the network. This

point-to-point connectivity concept also helps enable the system to avoid difficulties that occur in

HP No. IOCDEIOZ-I 15

152

janir
Typewritten Text
 152

1 systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may

contain only selected information to minimize the storage space required for the topology.

Figures 16a—b show a flow chart of the consolidation phase 932. The purpose of this phase
is to consolidate the tuples that involve shared media connections. After the noise reduction phase

928, a considerable number of tuples involving shared media may remain. Rather than maintain a

2

3

4

5

6 binmy tuple for each of the connections, an n-ary tuple is created for the link using a tuco for each
7 connector and each host connected thereto. For each mhhl tuple 518, connl and hostl are
8 considered 520. If there are more connl group/port tuples in multiHeardLinks, and if are not any

9 n-ary multiHeardSegments (mhs) tuples 524, then an mhs tuple is created 526. If hostl is not

. 10 already in this particular mhs tuple 528, then conn2 of the tuple is considered 534. If there is a
= 11 connl-to—conn2 conn—to-connLinks tuple on the same port as conn1—to-hostl 536, then all

12 mu1tiHeardLinks tuples for conn2-to-hostl with the same conn2 group/port as the connl-to—conn2

13 are added 538 to the current mhs tuple.
14 After processing each mhhl tuple 518, each singly-heard host links (shhl) tuple, also referred

15 to as a singlyHeardLinks (shl) tuple, is considered 540. For each shhl tuple, the connector and host

16 are considered 542. If there is no existing singlyHeardSegments (shs) tuple for the connector 544,

17 then an shs tuple is created 546. The host tuco is then added to the shs 548.

18 . Figure 17 shows a flow chart of the method used by the topology converter 340, as

~19... described generally by the.topology..update step .908 of the .n'_1ethod__sh__o3v_n infiigureg 8. _ A

20 topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph

21 topo” phase 934. It then compares 936 the list from the topology currently stored in the topology

22 database 350 with the new list generated by the connection calculator 320 and discards 936

23 identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes

24 action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is

25 also referred to as the “identify different tuples” phase 938.

26 Figure 18a shows a flow chart for the “morph topo” phase 934. For each node in the

27 topology 550, the topology converter 340 determines 552 whether the node is a connector. If the

28 node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

16HP No. IOOOSXOZ-1

153

janir
Typewritten Text
 153

;_a

’3©00\]O\Lh-$3-UJt\)
,..4 p-D

p—4 [Q

r-—- DJ

>-- -5

n-- U!

>--4 ON

—- \l

v—-- 00

r-a \D

N O

[U)-A

l\J I\)

[0 OJ

I0 -5

IO U‘!

N O'\

IQ \I

28

the topology converter 340 determines 556 whether the conniface is connected to a star segment.

If it is connected to a star segment, then for every other interface in the segment 558, the topology

converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”

for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs

tuple. The tuco for the interface’s host-to—topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and is connected to a bus

segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for
connl. If there is not an existing mhs tuple for connl , then a topo mhs tuple is created 570. A tuco

is added 572 for the host to the mhs tuple.

If the connector node is not connected to either a star segment 556 or to a bus segment

566, then the topology converter knows that it is connected to another connector (conn2). If such

a connector does not already have an existing connLinks tuple for connl and conn2 576, then a

connLinks tuple is created 578. After processing the bus segment, star segment, and conn-to—conn

segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 18b shows a continuation of the flow chart of Figure 1821 showing the steps of the

method when the topology converter 340 determines that the node is not a connector 552. If the

node is in the default segment, then an “unheardOfLinks” tuple is created 582 and the topology

converter proceeds to the next node 550. If the node is not in the default segment 580, then the

vtopology.-.converter.34O determines whether the nodeis in a star segment 584. If_t__h_e node is inda _,

star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 an‘ shs

tuple. The tuco for the node is then added 590 to the shs tuple, and the topologyconverter 340'

proceeds to the next node 550.

If the node is not in a star segment, then the topology converter 340 knows that it is in the

bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter

340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the

topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

HPNO. IOOOSIO2-I

154

janir
Typewritten Text
154

- .

.\ .

1 exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new

tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a—d show a flow chart for the identify different tuples phase 938. The system

looks through each tuple in the new SinglyHea.rdSegments (newSl-IS) tuple list 608 and tries to

identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering

2

3

4

5

6 those segment tuples in both the new topology and the existing topology that differ only by the port

7 specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”

8 The system also looks through each tuple in the new multiHeardSegments tuple list (newMHS) 614

9 and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a

10 swapped port is marked 618 as “handled.”

11 The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases

12 are possible for the host of the newSHL tuples. The host of the newSHL can be found in theEECilfifll...rff§liffiulliiill

1

current singlyHeardLinks (curSHL) 622, the current multiHeardLinks (curMHL) 630, the current

connLinks (curCL) 638, or the current UnheardOfLinks (curUOL) 642. If the host of a newSHL

tuple is found 622 in the current SinglyHeardLinks (curSHL) tuples, then the system determines 624

if there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is

17 a matching tuco, then the system changes 626 the host connection attribute. If there is not a

18 matching tuco, then the host connection is moved 628 in the topology.

xzrv

F
'—_:-3
5 E

19 . If the host is found..in the._curMHL tuples 630,-then the system deterrniries 632_,vy_liether

20 there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is a

21 matching connector, then the segment type of connection is changed 634. If there is not a matching

22 connector, then the host connection is moved 636 in the topology. If the host is found in the curCL

23 tuples 638, then the host is moved 640-into a star segment of the connector. If it is found in the

24 curUOL 642, then the host is moved 644 into the star segment of the connector.

25 Figure 20c shows another stage of the processing undertaken during the identify different

26 tuples phase 938. For each unmarked tuple in the new multiHeardLinks tuples (newMI-IL) 946,

27 four cases are possible for the host of the newMHL. The host of the newMH_L may be found in the

28 curSHL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No. HX)08lO2<1

155

janir
Typewritten Text
155

llliillllifll"ill"llffifillfffll"ll-3"‘"Ii§3§5f"ll"llIfifis»§lE3iIIllfiillsliiiiiIt'.‘Eulliill

h—J

5\O00\)O\U1-J>-U->l\)
)_.4 p-nu!

»—- IQ

s-A DJ

>—4 J?-

>-A U1

>-I O\

>-—- *4

>-I 00

7-- \D

l\) O

(Q :-A

N R)

IQ LA

N 43

I0 U1

N O\

N \l

I0 00

curSHL 648, then the system determines 650 whether there is a matching connector tuco between

the newMHL and the curl\/IHL. If there is a matching tuco, then the segment type of connection is

changed 652. If there is not a matching tuco, then the host connection is moved 654 in the

topology.

If the host is found in the curMHL tuples 656, then the system determines 658 w-hether

there is a matching connector tuco in both the curMI-IL tuples and the newMHL tuples. If there is a

matching connector tuco, then the host connection attribute is changed 660. If there is not a

matching tuco, then the host connection is moved 662 in the topology. If the host is found in the

curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in

the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identity different tuples phase 938. For each

unmarked tuple in the newCL tuples 672, there are three possibilities for the connector. The

connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the

curCL 678, or in the curUOL 682. If each connector is found in the curSHL or curMHL list 674,

then the system creates 676 a new point—to-point segment for the connectors. If the connectors are

found in the curCL 678, then the connection attributes of the connectors are changed 680. If each

connector is found in the curUOL tuples 682, then the host connection is moved 684 in the

topology.

-Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of

Figure 20d. For each unmarked tuple in the newUOL tuples 686, the system checks 688 the

timer/configuration to determine whether the host/conn should move into the default segment from

its current segment.

An advantage of the system is that it may be schedulable. The system may map network

topology continuously, as done by existing systems, or it may be scheduled to run only at certain

intervals, as desired by the user. A further advantage of the system is that it is capable of

processing multiple connections between the same devices and of processing connection meshes,

because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

19HP No. I0O08l02-l

156 r

janir
Typewritten Text
156

n .

. .,

1 Although the present invention has been described with respect to particular embodiments

2 thereof, variations are possible. The present invention may be embodied in specific forms without

3 departing from the essential spirit or attributes thereof. It is desired that the embodiments described

4 herein be considered in all respects illustrative and not restrictive and that reference be made to the

5 appended claims for determining the scope of the invention.

=_...,--

HP No. l0008lO2~l

157

janir
Typewritten Text
 157

0

1 Claims

1. In a network having interconnected nodes with data tuples that represent nodal

connections, a method for mapping a network topology by identifying changes between an existing

topology and a new topology, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal

receiving new tuples that represent new nodal connections; and

2

3

4

5

6 connections;

7

8 comparing the list of existing tuples with the new tuples to identify changes to the topology.

9 2. The method of claim 1, further comprising updating a topology database with a new

10 topology.

11 — 3. The method of claim 1, further comprising taking action on the changes to the

12 topology. 2
4. The method of claim 1, wherein the tuples include information about a host

identifier, a connector interface, and a port specification.

15 5. The method of claim 1, wherein the step of comparing comprises identifying

i‘ -3 16 duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a.:

17 current status of the topology for these tuples.
5 18 6. The method of claim 1, wherein the step of comparing comprises identifying a

1.9_..«.a., swapped port condition on.a connector... - .. . J _

20 7. The method of claim 1, wherein the step of comparing comprises searching for a

21 host of a new sing1y—heard host link tuple or a new multi—heard host link tuple in the list of existing

22 tuples.

23 8. A system for mapping a network topology by identifying changes between an

24 existing topology and a new topology, based on changes to data tuples that represent nodal

25 connections comprising:

26 a topology database that stores an existing topology of a network; and

HP No. l00O8I02-l 21

158

janir
Typewritten Text
158

liiillllill"l!37:l§EiIfI!fIll"I337'”£iEiEf?*il"11Il’izifiiiiiiii;liii:iiiiiiiiiiiiii

,_ o~_A

b—| N

—-I U)

)— -53

,..A

21

22

23

24

25

26

27

.‘ .

a topology converter connected to the topology database that receives new tuples that

represent new nodal connections; and compares the new tuples with the existing topology to identify

changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing

topology into a list of existing tuples that represent existing nodal connections.

l0. The system of claim 8, wherein the topology converter updates the topology

database with a new topology based on the new tuples.

1 1. The system of claim 8, wherein the topology converter attempts to identify swapped

ports on connectors.

12. The system of claim 8, wherein thetopology converter identifies duplicate tuples

that appear both in the list of existing tuples and in the new tuples, and maintains a current status of

the topology for these tuples.

13. The system of claim 8, wherein the topology converter searches for a host of a new

singly—heard host link tuple or a new multi—heard host link tuple in the list of existing tuples.

14. The system of claim 8, wherein the topology converter searches for a connector of

a new conflict links tuple in the list of existing tuples.

15. I A computer—readable medium having compute_r—executable instructions for

performing a method for mapping a network topology by identifying changes between an existing

topology and-a new topology in anetwork having a interconnected nodes, themethod;c_omprising:__ _ A

converting an existing topology into a list of existing tuples that represent existing nodal

connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;

-and

updating a topology database with a new topology.

l6. The method of claim 15, wherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

22HP No. lD008|02-J

159

janir
Typewritten Text
159

-lliilllliifll"31371135525131!"ll?‘"ii‘.§§l?"ll“ntllfinllE3E'.Illifll,,a!‘1Ill5Ez«1lIIll
,_.n

)—-l

CD\O0O\lO‘\UI-b»L»Jt\)

Q ‘C

17. The method of claim 15, wherein the step of comparing comprises identifying

duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a

V swapped port condition on a connector.

19.

host of a new singly—heard host link tuple or a new multi-heard host link tuple in the list of existing

The method of claim 15, wherein the step of comparing comprises searching for a

tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a‘

connector of a new conflict links tuple in the list of existing tuples.

23HP No. IDOOXIOZ-I

160

janir
Typewritten Text
160

ea;

2":

Ilfffllllliiil"ll?‘J33

...a

2

3

4

5

6

7

8

9

C‘ ‘O
R t A

Abstract

A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

based on the changes. The nodal connections are represented by data tuples that store information

such as a host identifier, a connector interface, and a port specification for each connection. A

topology database stores an existing topology of a network. A topology converter accesses the

topology database and converts the ‘existing topology into a list of current tuples. A connection

calculator calculates tuples to represent connections in the new topology. The topology converter

receives the new tuples, identifies changes to the topology, and updates the topology database using

the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples

and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these

connections. The topology converter attempts to resolve swapped port conditions and searches for

new singly—heard and multi-heard host link tuples in the list of existing tuples. The topology

converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

HP No. l0008l02-I

161

janir
Typewritten Text
161

3 PATENT APPLICATION

DECLAPATION AND POW T ATTORNEY ’ 5’ '‘'°- j.__._10008102-1
FOR PATENT APPLICATIO

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and
joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

Method And System For Identifying And Processing Changes To A Network Topology

 the specification 0 which is attached hereto unless the ollowing box IS c ec ed:

() was filed on as US Application Serial No. or PCT International Application
Number and was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the aboveeidentified specification,
including the claims, as amended by any amendmentls) referred to above. I acknowledge the duty to
disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Applicationls) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign applicationls) for patent or
inventorlsl certificate listed below and have also identified below any foreign application for patent or inventorls) certificate having a
filing date before that of the application on which priority is claimed: _

APPLICATION NUMBER one FILED PRlORlTY CLAIMED uwoen 35 u.s.c. :19YES: NO:
—_

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 1‘l9(e) of any United States provisional applicationls) listed
below:

APPLICATION SERIAL NUMBER FILING DATE

_

U. S. Priority Claim
I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States applicationls) listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS (patentedlpendinglebandoned)

—

POWER OF ATTORNEY:
As a named inventor, I hereby appoint the following attorneylsl and/or agentls) to prosecute this application and transact all
business in the Patent and Trademark Office connected therewith:

P/ace Customer
Customer Number 022879 Number Bar code

Label here

Ill

Send Correspondence to: Direct Telephone Calls To:
HEWLETT-PACKARD COMPANY

Intellectual Property Administration T. Grant Ritz
P.O. Box 272400

Fort Collins. Colorado 80527-2400 ‘97°’ 898'°597

I hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with

the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A pmsigher Citizenship: Us

Residence: 2937 Redbum Drive Ft Collins CO 80525

Post otfice'A clr a e as residence

Rev 10/ ' (Use Page Two For Additional lnventorls) Signaturelsl) Page 1 of 2
162

janir
Typewritten Text
162

O

DECLARATION AND P?‘or ATTORNEEY AT"‘$Y DOCKET “°- ‘°°°3‘°2“FOR PATENT APPLICA (continued)
Full Name of # 2 joint inventor: Joseph R Hunt Citizenshifii Us

58%-M E ' lm:LE3veEiand7.'Dé0§ 80538Residence:

Post Office Address: Same as Re5'd°"°e

’ 1043:1290nveno s gna re Dage

Full Name of # 3 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor‘: Slgnafure page

Full Name of # 4 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor 5 Signature page
Fuil Name of # 5 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor's Signafure Date
Full Name of # 6 joint inventor: Citizenship!

Residence:

Post Office Address:

inventor S Sxgnafure Date

Full Name of # 7 joint inventor: Citilenshipi

Residence:

Post Office Address:

inventor 5 Signature Date

Full Name of # 8 joint inventor: Citizenship?

Residence: _

Post Office Address:

inventor s Signature Date

Rev 10/00 (DecPwr) (Use Page Two For Additional Inventor(s) Signature(s)) Page 2 of 2
163

janir
Typewritten Text
163

EIImlIlIljX—'l?'1""

 u-I:uIIII-.._....—+-

‘0,-. no pg

«I

; UNITED STIATES PATENT AND TRADEMARK OFFICE
 UNITED STATES PATENT AND TRADEMARK OFFICE

vI¢\sI-IINGION. D.C. 2023I
I.wvw.uspt<1g0v

9"‘II‘

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIIIIIIIIIIIJ
Bib Data Sheet

FILING DATE ATTORNEY
sERIAL NuM3ER 10/31,2000 GROUP ART UNIT DOCKET NO.

09/703,942 RULE 2551 100081024
' PPLICANTS

Eric A. Pulsipher, Ft Coilins, CO ;
Joseph R. Hunt, Loveland, CO ;

~ 1 *****#fi§**§t***i***I'fififi*t

- ‘I *#*f*****k*i**fi'***‘ki

IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 02/05/2001

Dye‘ "° STATE OR SHEETS
5 USC‘I19(a-d)condItIons Dyes no D Memfle, COUNTRY DRAWING

Allowan M} O CO 26
Examiners Sinature Initials

TOTAL INDEPENDEN

- DDRESS

022879

B All Fees

CI 1.16 Fees (Filing)

FILING FEE FEES: Authority has been given in Paper 1-17 Fees (Processing Ext of
RECEIVED No. to charge;/credit DEPOSIT ACCOUNT time)

. _______ for followmg. D M8 Fees (issue)

G
I:-I Credit

fiIe://C:\APPS\PreExam\correspondence\1_A.xmI 1 6 4 2/5/01

Page 1 of 1

W = COMMISSIONER FOR PATENTS

janir
Typewritten Text
164

.....,..,-,v\.

PATENT APPLICATION SERIAL NO. _________._____

us. DEPARTMENT or COMMERCE

PATENT AND TRADEMARK omce -

FEE RECORD SHEET

11/06/2000 KZEHDIE 00000062‘ 082025 09703942

01 FC:i01 710.00 CH

. PTO- 1556

(5137)

‘U5. W99-4593'.I£2l19Iu

165

janir
Typewritten Text
165

‘J

PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2000

Cl-“M3 A5 F“-ED ' PART‘ SMALL ENTITY o HER TIIAN

CoIumn1 __ ‘TYPE [:1 on SMALLENTITY

T°“*n°“*'MS me FEE
on nnnn

I/XEMHK OR X$18_=

D

INDEPENDENT CLAIMS
MULTIPLE DEPENDENT CLAIM PRESENT

OR X80:

QR +270:

IIIEIIIIII
' If the difference in column 1 is less than zero, enter "0" in column 2 OR TOTAL

CLAIMS AS AMENDED - PART II OTHER THAN
SMALL ENTITY OR SMALL ENTITY

E I . A‘ . " ‘ ‘. ' pg5\/IOUSLY RATE TIONAL RATE TIONAL
E L; .~ 1 ., ‘ PAID FOR FEE FEE
E -on -
In

E 1OR1
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

on—
TOTAL

-OR ADDIT. FEE-

In ' ‘RI'£CI\lIT:II:lAliIG -‘.,'I I ‘ NUMBER ADDI’ ADDI‘
E AFTER ‘ PREVIOUSLY RATE TIONAL 0 RATE TIONAL
m AMENDMENT I W - = FEE P55
5

E -on-

TOTAL

ADDIT. FEE-OR ADDIT. FEE-

""“““““l CLAIMS HIGHEST« REMAINING I 1 NUMBER ADDIF
I AFTER I 5 PREVIOUSLY RATE TIONAI.
I AMENDMENT I FEE

18: ’0IO 69

ADDL

RATE TIONAL

_ FEE

IAMENDMENTC_@-I
Innnnnnnnnt_ X80:

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM - I 0“
+135: OR +270:

 ' II the entry in column 1 is less than the entry in column 2, write ‘O’ in column 3,
“ II the ‘Highest Number Previously Paid For‘ IN THIS SPACE is less than 20, enter "20." ADD”. FEE
'''II the "Highest Number Previously Paid For’ IN THIS SPACE is less than 3, enter '3.’

The “Highest Number Previously Paid For‘ (Total or Independent) is the highest number found in the appropriate box inoolumn 1.

FORM PTO-875 Patent and Trademark otfice. u.s. DEPARTMENT OF COMMERCE
‘Rev’ Wm) °us. GPQ 2ooo4swoaI3o1o3

166

—I3I?- -4C-IF

OR ADDIT: FEE

janir
Typewritten Text
166

