L.

18/01
::-nlq“S:)[‘

00/

AL

" - HEWLETT-PACKARD COMPANY

1]

Intellectual Property Administration
P. O. Box 272400

Fort Collins, Colorado 80527-2400

’© Q ’O D PATENT APPLICATION

ATTORNEY DOCKET No. 10008102-1

IN THE U.S. PATENT AND TRADEMARK OFFICE
Patent Application Transmittal Letter

S£OMMISSIONER FOR PATENTS
WVashington, D.C. 20231

Sir:

Transmitted herewith for filing under 37 CFR 1.53(b) is a(n)

INVENTOR(S): Eric A Pulsipher et al

TITLE:

Enclosed are:

(X) The Declaration and Power of Attorney.

: (X) Utility

()} Design

(X) original patent application,

{) continuation-in-part application

Method And System For Identifying And Processing Changes To A Network Topology

(X) signed () unsigned or partially signed
X) _26 sheets of drawings (one set) {)} Associate Power of Attorney
{ } Form PTO-1449 {) Information Disclosure Statement and Form PTO-1449
() Priority document(s}) () (Other} (fee $)
CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY
(1) (2) (3) (4) (5)
FOR NUMBER FILED NUMBER EXTRA RATE TOTALS
TOTAL CLAIMS 20 — 20 0 X $18 $ 0
INDEPENDENT
CLAIMS 3 — 3 0 X $80 $ 0
ANY MULTIPLE
DEPENDENT CLAIMS 0 $270 $ 0
BASIC FEE: Design ($320.00); Utility ($710.00 } $ 710
TOTAL FILING FEE $ 710
OTHER FEES $
TOTAL CHARGES TO DEPOSIT ACCOUNT $ 710
Charge $ 710

to Deposit Account 08-2025. At any time during the pendency of this application,

please charge any fees required or credit any over payment to Deposit Account 08-2025 pursuant to 37
CFR 1.25.

Additionally please charge any fees to Depos:t Account 08-2025 under 37 CFR 1.16,
1.17,1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"Express Mail" label no. EL523338183US

Date of Deposit Qgt. 31, 2000

| hereby certify that this is being deposited with the
United States Postal Service "Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on

the date indicated above and is addressed to:
Commissi D.C.

% tents, Washmgton
20231. M
(/i 7 1/,

Typed Name aura M. Clark

By

1

Rev 10/00 {TransNew)

- Attach as First Page to Transmitted Papers -

Respectfully submitted,

Eric A Pulsipher et al

By 7] 22

T. Grant Ritz

Attorney/Agent for Applicant(s)
Reg. No. 39,819
Date: Qct. 31, 2000

Telephone No.: (970) 898-0697 HP 2007

ServiceNowv. HP
IPR2015-00717

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
1

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
HP 2007
ServiceNow v. HP
IPR2015-00717

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

Pt

2
3
4
5
6
7
8
9

Title
Method and System for Identifying and Processing Changes to a Network Topology
Field of Invention

The present invention relates generally to computer networks. More particularly, it relates
to a method and system for identifying changes to a network topology and for acting upon the
network based on the changes.

Background

As communications networks, such as the Internet, carry more and more traffic, efficient
use of the bandwidth available in the network becomes more and more important. Switching
technology was developed in order to reduce congestion and associated competition for the
available bandwidth. Switching technology works by restricting traffic. Instead of broadcasting a
given data packet to all parts of the network, switches are used to control data flow such that the
data packet is sent only along those network segments necessary to deliver it to the target node.
The smaller volume of traffic on any given segment results in few packet collisions on that segment
and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually
possible and is typically made based upon current traffic patterns.

The intelligent routing of data packets with resultant reduction in network congestion can

only be effected if the network topology is known. The topology of a network is a description of

. the network which includes the location of and interconnections between nodes on the network.

The word “topology” refers to either the physical or logical layout of the network, including devices,
and their connections in relationship to one another. Information necessary to create the topology
Jayout can be derived from tables stored in network devices such as hubs, bridges, and switches.
The information in these tables is in a constant state of flux as new entries are being added and old
entries time out. Many times there simply is not enough information to determine where to place a
particular device.

Switches examine each data packet that they receive, read the source addresses, and log
those addresses into tables along with the switch ports on which the packets were received. Ifa

packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. 10008102-1 1

janir
Typewritten Text
2

janir
Typewritten Text

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified
where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table
can become quite large and may require a significant amount of the switch’s resources to develop
and maintain. As an additional complication, the physical layout of devices and their connections
are typically in a state of constant change. Devices are continually being removed from, added to,
and moved to new physical locations on the network. To be effectively managed, the topology of a
network must be accurately and efficiently ascertained, as well as maintained.

Existing mapping methods have limitations that prevent them from accurately mapping
topological relationships. Multiple connectivity problems are one sort of difficulty encountered by
existing methods. For example, connectors such as routers, switches, and bridges may be
interconnected devices in a network. Some existing methods assume that these devices have only a
single connection between them. In newer devices, however, it is common for manufacturers to
provide multiple connections between devices to improve network efficiency and to increase
capacity of links between the devices. The multiple connectivity allows the devices to maintain

connection in case one connection fails. Methods that do not consider multiple connectivity do not

~ present a complete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a
device. Existing methods use a reference interface or a reference address in a set of devices to
orient all other devices in the same area. These methods assumed that every working device would
be able to identify, or “hear,” this reference and identify it with a particular port of the device. With
newer devices, however, it is possible that the same address or reference may be heard out of
multiple ports of the same device. Itis also possible that the address or reference may not be heard
from any ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of
the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be very large and expensive.

HP No 10008102-1 2

janir
Typewritten Text
3

S

[« TN B 2N e R

Still another difficulty with existing systems is that they focus on the minutia without
considering the larger mapping considerations. Whenever an individual change in the system is
detected, existing methods immediately act on that change, rather than taking a broader view of the
change in the context of other system changes. For example, a device may be removed from the
network temporarily and replaced with its ports reversed. In existing systerns, this swapped port
scenario could require hundreds or thousands of changes because the reference addresses will have
changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.
These methods continuously poll network addresses throughout the day and make decisions based
on those continuous polling results. This creates traffic on the network that slows other processes.

Still another limitation of existing methods is the assumption that network parts of a
particular layer would be physically separated from other parts. Network layer 1 may represent the
physical cabling of the network, layer 2 may represent the device connectivity, and layer 3 may
represent a higher level of abstraction, such as the groupings of devices into regions. Existing
methods assume that all layer 3 region groupings are self-contained, running on the same unique
physical networking. However, in an internet protocol (IP) network, multiple IP domains may co-
exist on the same lower layer networking infrastructure. It has become common for a network to
employ a virtual local area network (LAN) to improve security or to simplify network maintenance,
for example. Using virtual LANS, a system may have any number of different IP domains sharing
the same physical connectivity. As a result, existing methods create confusion with respect to
topological mapping because networks with multiple IP addresses in different subnets for the
infrastructure devices cannot be properly represented because they assume the physical separation
of connectivity for separate IP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.
Summary of Invention
A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HP No 10008102-1 3

janir
Typewritten Text
4

oy

2
3
4
5
6
7
8
9
0

based on the changes. The nodal connections are represented by data tuples that store information
such as a host identifier, a connector interface, and a port specification for each connection. A
topology database stores an existing topology of a network. A topology converter accesses the
topology database and converts the existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the new topology. The topology converter
receives the new tuples, identifies changes to the topology, and updates the topology database using
the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples
and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
connections. The topology converter attempts to resolve swapped port conditions and searches for
new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
converter also searches for new conflict link tuples in the existing tuples. The topology converter
updates the topology database with the new topology.
Summary of Drawings

Figure 1 is a drawing of a typical topological bus segment for representing the connectivity
of nodes on a network.

Figure 2 is a drawing of a typical topological serial segment for representing the connectivity
of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity
of nodes on a network.

Figure 4 is a drawing of another typical topological star segment for representing the
connectivity of nodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.

Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HP No 10008102-1 4

janir
Typewritten Text
5

Figure 11 is a flow chart of the first weeding phase of the method used by the connection
calculator.

Figures 12a-d are flow charts of an infrastructure-building phase of the method used by the
connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection
calculator.

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection
calculator.

Figure 15 is a flow chart of the look-for phase of the method used by the connection
calculator.

Figures 16a-b are flow charts of the consolidation phase of the method used by the
connection calculator.

Figure 17 is a flow chart of the method used by the topology converter.

Figures 18a-b are flow charts of the morph topo phase of the method used by the topology
converter.

Figure 19 is a flow chart of the duplication discard phase of the method used by the
topology converter.

Figures 20a-d are flow charts of the identify different tuples phase of the method used by
the topology converter.

Detailed Description

The system provides an improved method for creating topological maps of communication
networks based. Connectivity information is retrieved from the network nodes and stored as
“tuples” to track specifically the desired information necessary to map the topology. These light
weight data structures may store the host identifier, interface index, and a port. From this tuple
information, the topology may be determined. A tuple may be a binary element insofar as it has two
parts representing the two nodes on either end of a network link or segment. A “tuco” refersto a

tuple component, such as half of a binary tuple.

HP No 10008102-1 5

janir
Typewritten Text
6

1 As used herein, a node is any electronic component, such as a connector or a host, or
2 combination of electronic components with their interconnections. A connector is any network
3 device other than a host, including a switching device. A switching device is one type of connector
4 and refers to any device that controls the flow of messages on a network. Switching devices
5 include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and
6 switches.
7 As used herein, the term “tuple” refers to any collection of assorted data. Tuples may be
8 used to track information about network topology by storing data from network nodes. In one use,
9 tuples may include a host identifier, interface information, and a port specification for each node.
10 The port specification (also described as the group/port) may include a group number and a port
11 number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple
12 may include this information about two nodes as a means of showing the connectivity between them,
13 whether the nodes are connected directly or indirectly through other nodes. A “conn-to-conn”
14 tuple refers to a tuple that has connectivity data about connector nodes. A “conn-to-host” tuple
15 refers to a tuple that has connectivity data about a connector node and a host node. In one use,
16 tuples may have data about more than two nodes; that is, they may be n-ary tuples, such as those
17 used with respect to shared media connections described herein.
18 A “singly-heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,

19 other device, etc., that is connected directly to a connector, such as a switching device. A singly-
20 heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an
21 shh. A “multi-heard host” (mhh) refers to hosts that are heard by a connector on the same port that
22 other hosts are heard. A multi-heard host link (mhhl) refers to the link between the connector and
23 anmhh. A link generally refers to the connection between nodes. A segment is a link that may

24 include a shared media connection.

25 Figure 1 is a drawing of a typical topological bus segment 100 for representing the

26 connectivity of nodes on a network 110. In Figure 1, first and second hosts 121, 122,aswellas a

27 first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No 10008102-1 6

janir
Typewritten Text
7

W

5

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first
connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the
connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port
132 on a second connector 145 which is connected via the network 110 to the first port 131 on the
first connector 140. The serial segment 200 comprises the second port 132 on the second
connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of
a connector-to-connector (“‘conn-to-conn’) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In Figure 3, the first host 121 is connected to the first
port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected
to the first port 131 of the first connector 140. Figure 3 is an example of a connector-to-host
(““conn-to-host”) relationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In addition to the connections described with respect to
Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth
host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment
301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third
host 123 connected to the third port 133 of the first connector 140, and the fourth host 124
connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,
on a given connector, at least one port, wherein one and only one host is connected to that port,
and that host. In the more general case, the star segment 301 comprises, on a given connector, all
ports having one and only one host connected to each port, and those connected hosts. Since the
segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are
referred to as star segments.

For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No 10008102-1 7

janir
Typewritten Text
 8

represented as terminals. However, they could also be workstations, personal computers, printers,
scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,
third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth
ports 131, 133, 134 respectively, wherein the first, third, and fourth ports 131, 133, 134 are
located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly-heard hosts connected to separate
ports 131, 133, 134 of a common connector 140 — the first connector 140. The fifth and sixth
hosts 125, 126 are singly-heard hosts connected to the third and fourth connectors 142, 143. The
seventh and eighth hosts 127, 128 are multi-heard hosts connected to the same port 139 of the fifth
connector 144. The multi-heard hosts 127, 128 illustrate a shared media segment 180, also
referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and
illustrate a switch mesh 181. Each of the connectors in the switch mesh 181 is connected to each
other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be
dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.
The first connector 140 is connected via the network 110 to the second connector 141 by two
direct links, each of which is connected to different ports on the connectors. One link is connected
to the sixth port 136 of the first connector 140 and to the seventh port of the second connector
137. The other link is connected to fifth port 135 of the first connector 140 and to the eighth port
138 of the second connector 141. In this example, two connectors illustrate the multiple
connectivity between nodes. Depending upon the device specifications, devices such as connectors
may be connected via any number of connectors. As explained herein, the system resolves multiple
connectivity problems by tracking port information for each connection.

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors
171, 172, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No 10008102-1 8

janir
Typewritten Text
9

oy

2
3
4
5
6
7
8
9

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or
intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected
directly to the fifth port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flow chart of the method
used by the system to retrieve and update the topology of the network. A tuple manager 300, also
referred to as a data miner 300, gathers 902 data from network nodes and builds 904 tuples to
update the current topology. The topology database “topodb” 350 stores the current topology for
use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple
manager 300. The connection calculator 320 processes the data in the neighbor data database 310
to determine the new network topology. The connection calculator 320 reduces 906 the tuple data
and sends it to the reduced topology relationships database 330. The topology converter 340 then
updates 908 the topology database 350 based on the new tuples sent to the reduced topology
relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described
generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.
The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then
retrieves 912 node information of the current topology stored in the topology database 350. This
information tells the tuple manager 300 which devices or nodes are believed to exist in the system
based on the nodes that were detected during a previous query. The tuple manager 300 then
queries 914 the known nodes to gather the desired information. For example, the connectors may
maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary
functions, such as switching. Other devices may allow the system to perform queries to gather
information about the flow of network traffic. This data identifies the devices heard by a connector
and the port on which the device was heard. The tuple manager 300 gathers this data by accessing
forwarding tables and other information sources for the nodes to determine such information as their
physical address, interface information, and the port from which they “hear” other devices. Based
on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

data” database 310. Some nodes may have incomplete information. In this case, the partial

HP No 10008102-1 9

10

janir
Typewritten Text
10

Y

2
3
4
5
6
7
8
9

information is assembled into a tuple and may be used as a “hint” to determine its connectivity later,
based on other connections. The tuple manager 300 may also gather 920 additional information
about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that
information.

After the data is gathered and the tuples are stored in the neighbor database 310, the
connection calculator 320 processes the tuples to reduce them to relationships in the topology.
Figure 10 shows a flow chart of the process of the connection calculator 320, as shown generally in
the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a
first weeding phase 922 to identify singly-heard hosts to distinguish them from multi-heard hosts.
Singly-heard hosts refer to host devices connected directly to a connector. The connection
calculator 320 then performs an infrastructure-building phase 924 to remove redundant connector-
to-connector links and to complete the details for partial tuples that are missing information. Then,
the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports
of singly-heard hosts. The connection calculator 320 then performs a noise reduction phase 928 to
remove redundant neighbor information for connector-to-host links. If clarification of device
connectivity is required, the connection calculator 320 performs a “look for” phase 930 to ask the
tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment
and network containment relationships. The connection calculator 320 may also tag redundant
tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide
hints to connectivity of other tuples. As part of the consolidation phase 932, the connection
calculator 320 creates new n-ary tuples (tuples having references to three or more tucos) for shared
media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for
distinguishing singly-heard hosts. The purpose of the first weeding process 922 is to identify the
direct connections between connectors and hosts; that is, those tuples having a first tuco that isa
connector and a second tuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

HP No 10008102-1 1 O

11

janir
Typewritten Text
11

N~

3
4
S
6
7
8
9

404 whether the tuple is a connector-to-host (conn-to-host) link tuple. If it is not a conn-to-host
link, the connection calculator 320 concludes 418 that it is a conn-to-conn link and processes 402
the next tuple. If the tuple is a conn-to-host link tuple, then the connection calculator 320
determines 406 whether the connector hears only this particular host on the port identified in the
tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a muiti-
heard host link (mhhl) tuple.

If the connector hears only the one host on the port — that is, if the host is a singly-heard
host — then the connection calculator 320 determines 408 whether the host is heard singly by any
other connectors. If no other connectors hear the host as a singly-heard host, then the tuple is
classified as a singly-heard host link (shhl) tuple 412 and other tuples for this host are classified 414
as extra host links (ehl). Another tuple for this host may be, for example, an intermediate connector
connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the
first connector is connected directly to the first host 151. This connection therefore forms an shhl
tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data
indicates that the intermediate connector 172 is indirectly connected to the host and hears the host
from a particular port. An extra host links tuple is created so that this data may be used later in
conjunction with other extra host links tuples from devices across the network, to verify connectivity
by providing hints about connections.

The first weeding process also attempts to identify conflicts. If other connectors hear the
host as a singly-heard host, then a conflict arises and the tuple is classified 410 as a singly-heard
conflict link (shel) tuple to be resolved later. This conflict may arise, for example, if a host has been
moved within the network, in which case the forwarding table data may no longer be valid. Certain
connectors previously connected directly to the host may still indicate that the moved host is
connected. When all tuples have been processed 402 to identify singly-heard host links, the first
weeding phase 922 is complete.

Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection
calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

connectors are set up in the network. The first part of the infrastructure building phase 924

HP No 10008102-1 11

janir
Typewritten Text
12

S W N

h

6
7
8
9

manufactures tuples based on the list of singly-heard host link tuples identified in the first weeding
phase 922. The purpose is to identify the relationship between the connectors in the extra host links
tuples and the connectors directly connected to the singly-heard hosts. For each singly-heard host
link 420, the connection calculator 320 processes 422 cach extra host link that refers to the host.

In the illustration of Figure 6, a conn-to-conn link tuple would represent the connection between the
first connector 171 and the intermediate connector 172. An extra host link tuple would represent
the indirect connection between the intermediate connector 172 and the first host 151. The conn-
to-conn link tuple between the first connector 171 and the intermediate connector 172 is an
example of an ehlConn-to-shhlConn tuple. If a conn-to-conn link tuple exists 424 for the extra host
link connector to the singly-heard host link connector (ehlConn-to-shhiConn), then the connection
calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be
incomplete and a conn-to-conn link may not exist. In that case, a conn-to-conn tuple does not exist
for the ehlConn-to-shhlConn, then such a tuple is created 426.

After processing extra host links for singly-heard host links, the connection calculator 320
considers 430 each connector (referred to as connl) in the tuples to determine the relationship
between connectors. As illustrated in Figure 6, a single connector may be connected directly and
indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the
intermediate connector 171 directly and also to the third connector 173 indirectly. The third
connector 173 hears the first host 151 on the same part 165 that it hears the first connector 171 and
the intermediate connector 172. The infrastructure building phase 924 tries to determine the
relationship between other connectors heard on the same port of connl. In a series of
interconnected connectors, the connector on one end may not hear a connector on another end, but
it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are
created to represent the interconnection of conn-to-conn relationships. Based on this data, the
connection calculator 320 can make inferences regarding the overall connection between
connectors.

For every connl, the connection calculator 320 considers 432 every other connector

(conn2) to determine whether a connl-to-conn?2 tuple exists. If connl-to-conn2 does not exist,

HP No 10008102-1 12

13

janir
Typewritten Text

janir
Typewritten Text
 13

1 then the connection calculator 320 considers 436 every other conn-to-conn tuple containing connZ.

2 The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique

3 port 438 and if connl also hears conn3 440, then the connection calculator 320 creates 442 a tuple
4 for connl-to-conn? in the connector-to-connector links tuple list.

5 After processing all of the connl tuples, the connection calculator 320 processes 444 each
6 connl-to-conn? links tuple to ensure that they have complete port data. For each incomplete tuple
7 446, the connection calculator 320 looks 448 for a different tuple involving connl in the extra host
8 links tupleson a different port. If a different tuple is found 450, then the connection calculator 320
9 determines 452 whether conn? also hears the host. If conn2 does hear the host, then the

connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear
the host 452, then the connection calculator 320 continues looking 448 through different tuples
involving connl in extra host links on different ports.

After attempting to complete the missing data in each of the conn-to-conn links tuples, the
connection calculator 320 processes 456 each conn-to-conn links tuple. The purpose of this sub-
phase is to attempt to disprove invalid conn-to-conn links. The connection calculator 320 considers
458 connl and conn? of each conn-to-conn links tuple. Every other connector in conn-to-conn
links may be referred to as testconn. For each testconn 460, the connection calculator 320

determines 462 whether the testconn hears connl and conn2 on different groups/ports. If testconn

hears connl and conn2 on different ports, then the tuple is moved to extraconnlinks (ecl) 464.

20 Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

21 Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the

22 second weeding phase 926 is to attempt to resolve conflicts involving singly-heard hosts identified in
23 the first weeding phase 922. In the situation described herein in which more than one connector

24 reports that a host is singly-heard, the second weeding phase 926 reviews the tuples created during
25 the infrastructure-building phase 924 involving the connector and host in question and attempts to

26 disprove the reported conflict. The connection calculator 320 processes 466 each

27 singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 connl

28 and hostl of the tuple. For each extra host links tuple containing host1 470, the connection

HP No 10008102-) 1 3

14

janir
Typewritten Text
14

[\

W

4
5
6
7
8
9

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in conn-to-conn links for conn?2
and corm1 474, and if there is a conn2-to-conn1 tuple in the extra host links tuples 476, and if the
port is the same for conn2 hearing connl and host1 478, then the search tuple is moved 480 into
the singly heard host links and other tuples containing hostl are removed 482 from the
singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise
reduction phase 928 is to handle those connections in which a connector is not directly connected
to a host or to another connector. For example, networking technology may employ shared media
connections between connectors, rather than dedicated media connectors. With a shared media
connection, the entries in the forwarding tables for connectors attached to the shared media
cormection will include every node accessing the shared media connection and may not present a
useful or accurate representation of the nodal connection. For example, if the network configuration
in Figure 6 used a shared media connection between the first connector 171 and the intermediate
connector 172, then the first connector is not really connected directly to the intermediate connector
because other devices (not shown in Figure 6) may also use the shared media connection. These
other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be
created for the conmectors 171, 172 on opposing ends of the shared media. In this situation, itis
inefficient to maintain point-to-point binary tuples for every connection. The noise reduction phase
928 disproves invalid tuples created by the shared media connections.

For each multi-heard host links (mhhl) tuple, also referred to as multiHeardLinks {mhl)
tuples (sometimes referred to as the search tuple) 484, connl and host] are considered 486. For
each extra host links tuple containing hostl 488, conn2 is considered 490. If there is a tuple in
conn-to-conn links for conn2 and connl 492, and if there is a conn2-to-host! tuple in
extraHostLinks 494, and if the group/port for conn2 hearing connl and hostl is different 496, then
the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase is to
complete missing data for mhhl tuples. There may exist connections on the network that have

incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

HP No 10008102-1 14

15

janir
Typewritten Text

janir
Typewritten Text
15

24

25
26
27

in which case data might not be stored in forwarding tables. In another example, a forwarding table
may not have sufficient room to store all of the required information and might delete data on a
FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager
300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding
table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the
connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an
“alreadyDidLookfors™ list, then a list is created 508 for all connectors in conn-to-conn links that are
heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the
connection calculator 320 determines 512 whether there is a conn2-to-host1 tuple in the mhhl
tuples. If there is not such a tuple, then the connection calculator 320 initiates a look-for for conn2-
to-host1 via the tuple manager 300. When each connector in the list has been processed 510, the
connl group/port tuco is added 516 to an alreadyDidLookfors list. As an additional portion of the
look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information
about connectivity. For example, the system may show the user the perceived connectivity or the
unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from
the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to
produce the new topology. This topology may have incomplete tuples possibly resulting from
extraneous information that the connection calculator 330 could not disprove. To refine the new
topology, the connection calculator 330 can request the tuple manager 300 to obtain additional
information about particular nodes or it may also request a user 10 refine the topology by adding or
removing tuples. Using the process of the connection calculator 330, tuples marked as non-
essential may be removed from the new topology to save space and to simply the topology. The
connection calculator 330 is not confused by multiple connectivity situations such as port
aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-
to-point, or neighbor-to-neighbor, connectivity showing each connection in the network. This

point-to-point connectivity concept also helps enable the system to avoid difficulties that occur in

HP No 10008102-1 15

16

janir
Typewritten Text
 16

—t

N B e L~ AT, B S VS B S |

10

systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may
contain only selected information to minimize the storage space required for the topology.

Figures 16a-b show a flow chart of the consolidation phase 932. The purpose of this phase
is to consolidate the tuples that involve shared media connections. After the noise reduction phase
928, a considerable number of tuples involving shared media may remain. Rather than maintain a
binary tuple for each of the connections, an n-ary tuple is created for the link using a tuco for each
connector and each host connected thereto. For each mbhl tuple 518, conn! and host1 are
considered 520. If there are more connl group/port tuples in multiHeardLinks, and if are not any
n-ary multiHeardSegments (mhs) tuples 524, then an mhs tuple is created 526. If hostl is not
already in this particular mhs tuple 528, then conn2 of the tuple is considered 534. Ifthereis a
connl-to-conn2 conn-to-connlLinks tuple on the same port as connl-to-hostl 536, then all
multiHeardLinks tuples for conn2-to-host1 with the same conn2 group/port as the connl-to-conn2
are added 538 to the current mhs tuple.

After processing each mhhl tuple 518, each singly-heard host links (shhl) tuple, also referred
to as a singlyHeardLinks (shl) tuple, is considered 540. For each shhl tuple, the connector and host
are considered 542. If there is no existing singlyHeardSegments (shs) tuple for the connector 544,
then an shs tuple is created 546. The host tuco is then added to the shs 548.

Figure 17 shows a flow chart of the method used by the topology converter 340, as
described generally by the topology update step 908 of the method shown in Figure 8. The
topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph
topo™ phase 934. It then compares 936 the list from the topology currently stored in the topology
database 350 with the new list generated by the connection calculator 320 and discards 936
identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes
action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is
also referred to as the “identify different tuples” phase 938.

Figure 18a shows a flow chart for the “morph topo” phase 934. For each node in the
topology 550, the topology converter 340 determines 552 whether the node is a connector. If the

node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

HP No 10008102-1 l 6

17

janir
Typewritten Text
17

the topology converter 340 determines 556 whether the conniface is connected to a star segment.
Ifit is connected to a star segment, then for every other interface in the segment 558, the topology
converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”
for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs
tuple. The tuco for the interface’s host-to-topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and 1s connected to a bus
segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for
connl. If there is not an existing mhs tuple for connl, then a topo mhs tuple is created 570. A tuco
is added 572 for the host to the mhs tuple.

If the connector node is not connected to either a star segment 556 orto a bus segment
566, then the topology converter knows that it is connected to another connector (conn2). If such
a connector does not already have an existing connLinks tuple for connl and conn2 576, then a
connLinks tuple is created 578. After processing the bus segment, star segment, and conn-to-conn
segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 18b shows a continuation of the flow chart of Figure 18a showing the steps of the
method when the topology converter 340 determines that the node is not a connector 552. If the
node is in the default segment, then an “unheardOfLinks™ tuple is created 582 and the topology
converter proceeds to the next node 550. If the node is not in the default segment 580, then the
topology converter 340 determines whether the node is in a star segment 584. Ifthenodeisina
star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 anshs
tuple. The tuco for the node is then added 590 to the shs tuple, and the topology converter 340
proceeds to the next node 550.

If the node is not in a star segment, then the topology converter 340 knows that it is in the
bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter
340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the
topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

HP No 10008102-1 1 7

18

janir
Typewritten Text
18

O VS B

wh

6
7
8
9

20
21
22
23
24
25
26

28

exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new
tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a-d show a flow chart for the identify different tuples phase 938. The system
looks through each tuple in the new SinglyHeardSegments (newSHS) tuple list 608 and tries to
identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering
those segment tuples in both the new topology and the existing topology that differ only by the port
specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”
The system also looks through each tuple in the new multiHeardSegments tuple list (newMHS) 614
and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a
swapped port is marked 618 as “handled.”

The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases
are possible for the host of the newSHL tuples. The host of the newSHL can be found in the
current singlyHeardLinks (curSHL) 622, the current multiHeardLinks (curMHL) 630, the current
connLinks (curCL) 638, or the current UnheardOfLinks (carUOL) 642. If the host of a newSHL
tuple is found 622 in the current SinglyHeardLinks (curSHL) tuples, then the system determines 624
if there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is
a matching tuco, then the system changes 626 the host connection attribute. Ifthereisnota
matching tuco, then the host connection is moved 628 in the topology.

If the host is found in the curMHL tuples 630, then the system determines 632 whether
there is a matching connector tuco between the newSHL tuples and the curSHL tuples. Ifthereisa
matching comnector, then the segment type of connection is changed 634. If there is not a matching
connector, then the host connection is moved 636 in the topology. 1f the host is found in the curCL
tuples 638, then the host is moved 640 into a star segment of ihe connector. Ifit is found in the
curUOL 642, then the host is moved 644 into the star segment of the connector.

Figure 20c shows another stage of the processing undertaken during the identify different
tuples phase 938. For each unmarked tuple in the new multiHeardLinks tuples (newMHL) 946,
four cases are possible for the host of the newMHL. The host of the newMHL may be found in the
curSHL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No 10008102-1 1 8

19

janir
Typewritten Text
 19

e

3
4
5
6
7
8
9

curSHL 648, then the system determines 650 whether there is a matching connector tuco between
the newMHL and the curMHL. If there is a matching tuco, then the segment type of connection is
changed 652. If there is not a matching tuco, then the host connection is moved 654 in the
topology.

If the host is found in the curMHL tuples 656, then the system determines 658 whether
there is a matching connector tuco in both the curMHL tuples and the newMHL tuples. Ifthereisa
matching connector tuco, then the host connection attribute is changed 660. If there is not a
matching tuco, then the host connection is moved 662 in the topology. If the host is found in the
curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in
the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identify different tuples phase 938. For each
unmarked tuple in the newCL tuples 672, there are three possibilities for the connector. The
connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the
curCL 678, or in the curUOL 682. If each connector is found in the curSHL or curMHL list 674,
then the system creates 676 a new point-to-point segment for the connectors. If the connectors are
found in the curCL 678, then the connection attributes of the connectors are changed 680. If each
connector is found in the curUOL tuples 682, then the host connection is moved 684 in the
topology.

Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of
Figure 20d. For each unmarked tuple in the newUOL tuples 686, the system checks 688 the
timer/configuration to determine whether the host/conn should move into the default segment from
its current segment.

An advantage of the system is that it may be schedulable. The system may map network
topology continuously, as done by existing systems, or it may be scheduled to run only at certain
intervals, as desired by the user. A further advantage of the system is that it is capable of
processing multiple connections between the same devices and of processing connection meshes,
because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

HP No 10008102-1 19

20

janir
Typewritten Text
20

1 Although the present invention has been described with respect to particular embodiments

2 thereof, variations are possible. The present invention may be embodied in specific forms without
3 departing from the essential spirit or attributes thereof. It is desired that the embodiments described
4 herein be considered in all respects illustrative and not restrictive and that reference be made to the

i\l

appended claims for determining the scope of the invention.

HFP No 10008102-1 20

21

janir
Typewritten Text
21

1 Claims
2 1. In a network having interconnected nodes with data tuples that represent nodal
connections, a method for mapping a network topology by identifying changes between an existing
topology and a new topology, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal
connections;

receiving new tuples that represent new nodal connections; and

comparing the list of existing tuples with the new tuples to identify changes to the topology.

2. The method of claim 1, further comprising updating a topology database with a new
topology.

3. The method of claim 1, further comprising taking action on the changes to the
topology.

4. The method of claim 1, wherein the tuples include information about a host

identifier, a connector interface, and a port specification.

5. The method of claim 1, wherein the step of comparing comprises identifying
duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a
current status of the topology for these tuples.

6. The method of claim 1, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

20 7. The method of claim 1, wherein the step of comparing comprises searching for a

21 host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing
22 tuples.

23 8. A system for mapping a network topology by identifying changes between an

24 existing topology and a new topology, based on changes to data tuples that represent nodal

25 connections comprising:

26 a topology database that stores an existing topology of a network; and

HFP No 10008102-1 2 1

22

janir
Typewritten Text
22

oy

2
3
4
5
6
7
3
9

a topology converter connected to the topology database that receives new tuples that
represent new nodal connections; and compares the new tuples with the existing topology to identify
changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing
topology into a list of existing tuples that represent existing nodal connections.

10. The system of claim 8, wherein the topology converter updates the topolog
database with a new topology based on the new tuples.

11. The system of claim 8, wherein the topology converter atiempts to identify swapped
ports on connectors.

12. The system of claim 8, wherein the topology converter identifies duplicate tuples
that appear both in the list of existing tuples and in the new tuples, and maintains a current status of
the topology for these tuples.

13. The system of claim 8, wherein the topology converter searches for a host of a new
singly-heard host link tuple or a new multi-heard host link tuple in the list of existing tuples,

14. The system of claim 8, wherein the topology converter searches for a connector of
a new conflict links tuple in the list of existing tuples.

15. A computer-readable medium having computer-executable instructions for
performing a2 method for mapping a network topology by identifying changes between an existing
topology and a new topology in a network having a interconnected nodes, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal
connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;
and

updating a topology database with a new topology.

16. The method of claim 15, wherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

HP No 10008102-1 22

janir
Typewritten Text
23

w W [

Mol e)

10

17. The method of claim 15, wherein the step of comparing comprises identifying
duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a
current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a
swapped port condition on a connector.

19. The method of claim 15, wherein the step of comparing comprises searching for a
host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing
tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a

connector of a new conflict links tuple in the list of existing tuples.

HP No 10008102-1 . 23

24

janir
Typewritten Text
24

ot

2
3
4
5
6
7
8
9
0

Abstract

A method and system are disclosed for mapping the topology of a network having
interconnected nodes by identifying changes in the network and updating a stored network topology
based on the changes. The nodal connections are represented by data tuples that store information
such as a host identifier, a connector interface, and a port specification for each connection. A
topology database stores an existing topology of a network. A topology converter accesses the
topology database and converts the existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the new topology. The topology converter
receives the new tuples, identifies changes to the topology, and updates the topology database using
the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples
and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
connections. The topology converter attempts to resolve swapped port conditions and searches for
new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

HP No 10608102-1

25

janir
Typewritten Text
25

1/26

/110
/121 /122
(131 //// ////
- FIG. 1

26

janir
Typewritten Text
26

(200

)
[l m]en]wLw) I

|
K 132‘u\\145

121

A~ 110

f131

s 3

[Goosoo |
O \ T
140

FIG. 2

janir
Typewritten Text
27

3/26

/301

OOOOOO

janir
Typewritten Text
28

4/26

FIG. 4

29

janir
Typewritten Text
29

181\ — 10 Lr[]—-—— "
.
1‘8 iR \110 110 1‘5 A 110
-UD Y H—D N - u‘u T u—
110 125 126
- r
% 110 14< 1 110 7
/// ,_[____UMD i WD_L_ ///
139
E:i:l r:_u:—_—l
110
l (— 12
128 ~1 180
/) /y
—— —I

30

janir
Typewritten Text
30

FIG. 6

31

janir
Typewritten Text
31

SAIHSNOLLY Ty | NOLLVILIETY dd50
SAIHSNOLLY T ADOTOJOL adoNdgdd
dIONATY IV SdN00T A
> (ININYINIH-ISVAD)
VIV JOGHOIAN

YHIIHANOD
ADOTOdOL

7/26

TN

q4d0doL

JOLVINDTYD
NOILOANNOD

WWIVA JOGHOIIN.
DN HIvad
ANV dN00T dLvEED

" 01¢

SdNA00T
WVIVA JOIHODIAN.

)

143
(SHIDNIANNATY

_ SNIVINOO TIILS)
N JYIVAYOGHOEN, HIVAdN
.. .. GNV'dNY00T 4LIvadD

(AQvemy
oo s 04 00T

LOdNI
NOILVOI'TddY TYNJHLXH

~ ~

~ 4

GSLSENDTY el

404 A00T.) A o~ SLIGH ¥EsN

Y

—~
0S¢

. SdN300T 0dOL

STIOd
HONOUHL ONTHHHIVD
VIVA q4SVE-100010Ud

Y

32

janir
Typewritten Text
32

8/26

33

902 904 906 908
- = - =
DATA GATHERING | | TUPLE BUILDING],, TUPLE REDUCTION|,.| TOPOLOGY
PHASE PHASE PHASE UPDATING PHASE
FIG. 8
910 922
- -
RECEIVE START FIRST WEEDING
SIGNAL PHASE
p -
LOOK UP EXISTING INFRASTRUCTURE
DEVICES IN TOPOLOGY BUILDING
DATABASE PHASE
¥ ?}4 v ?36
QUERY NODES SECOND WEEDING
PHASE
l ?36 v ?38
CREATE TUPLES NOISE REDUCTION
PHASE
l 918 ‘ 930
- -
STORE TUPLES IN LOOK-FOR
NEIGHBOR DATABASE PHASE
\ 20 Y ?;32
ADDI%%TIEI{A?EDATA CONSOLIDATION
AS REQUESTED PHASE
FIG. 9 FIG. 10

janir
Typewritten Text
33

Q 9126

402
FOR
EACH DONE
TUPLE

DO

FIG. 11

Y

404 418
2

CONNTOHOST \NO _ | TUPLEIS A CONN

TUPLE ~| TO CONNLINK
9

YES

406

CONN NO
ONLY HEARS THIS
HOST ON GROUP 1
PORT ?

YES

408

HOST HEARD

SINGLY BY ANY \, NO
OTHER 412 416
CONN Y 5 L e

?
) TUPLEIS A SHHL TUPLE IS A MHHL

410
2 4

TUPLE S A SINGLY- MOVE TUPLES FOR
HEAR% gggFLICT THIS HOST TO EHL

34

janir
Typewritten Text
34

10/26

Q

DONE FOR EACH

SHHL TUPLE

TO BLOCK =
430 OF FIG.12b

EACHTUPLE
IN EHL

CONNTO CONN
LINK TUPLE FOR

EHL-CONN TO SHHL-
CO?NN

YES

Y 428

UPDATE TUPLE
IF NOT COMPLETE

CREATE EHL CONN TO SHHLCONN
TUPLE IN CONN TO CONN LINK

3

FIG. 12a

35

janir
Typewritten Text
35

FROM BLOCK 420
OF FIG. 122 11/26

FIG. 12b
FOR EACH
DONE
CONNECTOR IN TO BLOCK 444
TUPLES OF FIG. 12¢

(CONNI)

FOR
EACH OTHER
CONNECTOR IN

CONN-TO-CONN
DONE TUPLES
(CONN2)

CONNI TO VES CONN2
CONN2 HEARS CONN3
EXISTS IN ON UNIQUE

TUP?LES PORT
) ?

CONNI1
I-[EARS?CONN3

EACH CONN2 TO
OTHER CONNECTOR
CONN3) IN CONN;,
TO-CONN

NO ¥

CREATE CONNI1 TO CONN2
TUPLE IN CONN TO CONN
LINKS

Y

36

janir
Typewritten Text
36

FROM BLOCK 430 OF FLG 12b 12/26

FOR EACH
CONN TO CONN LINKS
TUPLE

INCOMPLETE
GROUP/ PORT
DATA FOR
CONN2?

YES [
¢ Y
LOOK FOR DIFFERENT TUPLE
INVOLVING CONNI IN
EHL ON
DIFFERENT GROUP/PORT

CONN2 ALSO

DONE

HEARS
HQ}ST

K, YES

FILL IN MISSING
GROUP/PORT FOR
CONN2

y

37

TO BLOCK 456
OF FIG. 12d

FIG. 12¢

janir
Typewritten Text
37

13/26
FROM BLOCK 444 OF FIG. 12¢

I‘
il

FIG. 12d

FOR EACH
CONN TO CONN LINKS
TUPLE

DONE

CONSIDER CONN1
AND CONN2
OF THIS TUPLE

TEST CONN
HEARS CONNI AND
CONN2 ON
DIFFERENT
PO}?ZTS

MOVE THIS TUPLE
TO EXTRA CONN
LINKS

S

338

janir
Typewritten Text
38

14/26 O
O- DONE FOR EACH

SCL
TUPLE (SEARCH TUPLE)

i
CONSIDER CONNI AND HOST! OF SEARCH TUPLE
»¥

470

FOR EACH
EHL
TUPLE CONTAINING
HOSTI

DONE

CONSIDER CONN2 OF TUPLE

TUPLE IN CONN

TO CONN LINKS FOR

CONN2 AND CONN1
?

NO

FIG. 13

CONN2 TO HOST1

TUPLE IN EHL
?

NO

GROUP/PORT
SAME FOR CONN2 HEARING
CONN1 §c HOST1

NO

430
=

MOVE SEARCH TUPLE TO SHHL
482
=

i

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

Y
39

janir
Typewritten Text

janir
Typewritten Text
39

15/26 Q

FOR EACH
MHL
TUPLE (SEARCH TUPLE

DONE

486
o

CONSIDER CONNI AND HOST1
»¥

488

FOR EACH
EHL
TUPLE CONTAINING
HOST!

DONE

1
CONSIDER CONN2

TUPLE IN CONN
TO CONN LINKS FOR
CONN2 AI;ID CONNI

NO

A

FIG. 14

CONN2 TO HOSTI
TUPLE IN EHL?

NO

GROUP/PORT
DIFFERENT FOR CONN2
ARING CO%‘INl & HOST

NO

A

498
<

MOVE SEARCH TUPLE TO EHL

O

40

janir
Typewritten Text
40

Q 16/26

500 FIG. 15

DONE

FOR EACH

502
=]

1
CONSIDER CONN1 AND HOSTI

CONN1 GROUP/
PORT ALREADY IN
ALREADYDIDLOOKFORS
LIST?

YES

5((‘)8
CREATE A LIST OF ALL CONNS IN CONN TO
CONN LINKS TUPLES HEARD BY CONN1 ON SAME
GROUP/PORT AS HOSTI

;

Y 510

FOR EACH CONN DONE

(CONN2) IN LIST

CONNZ TO HOST1
TUPLE ?IN MHL

NO

514
‘/
INITIATE LOOKFOR FOR CONN2 TO HOSTI
(VIA TUPLEy MANAGER)
Y
ADD CONN1 GROUP/PORT "TUPLE COMPONENT" (TUCO) 516
TO ALREADYDIDLOOKFORS LIST

41

janir
Typewritten Text
41

17/26

FOR EACH
MHL
TUPLE

540
OF

CONSIDER CONN1 AND HOST1

MORE CONNI NO

213 FIG. 16a

DONE _ TO BLOCK

FIG. 16b

GROUP/PORT TUPLES
IN MHL?

EXISTING
N-ARY MgS TUPLE

CREATE MHS TUPLE

r

) 528

HOSTI ALEAE’/\YES

Y.

IN MHS TUPLE?

FOR REMAINING

DONE
’ MHL TUPLE WITH

FERENCE TO HOST}?
DO

CONSIDER CONN2

CONN1-TO-CONN2
TUPLE IN CONN-TO-CONN LINKS TUPLE ON SAM]
GROUP/PORT AS ?CONNI-TO-HOST

538
{

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME
CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

1

42

Y

janir
Typewritten Text
42

18/26

FIG. 16b

FROM BLOCK 518

1
CONSIDER CONN AND HOST

EXISTING
SHS TUPLEFOR
CO;\IN

NO 346
\
CREATE SHS TUPLE

)

YES

ADD HOST TUCO TO SHS
|

43

janir
Typewritten Text
43

19726

FIG. 17

934
=

CONVERT TOPOLOGY
INTO TUPLE
LISTS

v

i
COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD
INDENTICAL TUPLES

Y 938

1

TAKE ACTION ON
CHANGES TO TOPOLGY

44

janir
Typewritten Text
44

DONE
FOR EACH QTHER INTERFACE
IN SEGMENT

EXISTING SHS

FIG. 18a

TO BLOCK 580
OF FIG. 18b

.| FROM

ADD TUCO FOR
INTERFACE’SS gg)ST TOTOPO

L
NO %2
CREATE A TOPO SHS TUPLE
it 564
/

EXISTING MHS
FOR CONNT?

COMNEACEN. NO
CONNECTEDTO A
ANOTHER CONN
(CONNZ)?

1 BLOCKS
L 582,590,
598 OF
FIG. 18b

1
CREATE A TOPO MHS TUPLE
2
572
ADD TUCO FOR HOST TOMHS TUPLE }— i
CREATE CONN LINKS TUPLE FOR

CONNI & CONN2

\i Y.

45

janir
Typewritten Text
45

21726 FROM BLOCK 552

580 OF FIG. 18a

NODE IN

YE3 DEFAULT SEGMENT?

582
2

FIG. 18b

CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

588
2

; 1
CREATE SHS TUPLE

i
ADDTUCO FOR NODE TO SHS TUPLE

590
o

A

EXISTING
MHS "gUPLE

YES

- 596
<
Y CREATE MHS TUPLE
TO »
BLOCK 550 598
OF FIG. 18a ADD TUCO FOR NODE TO MHS TUPLE —
i)

46

janir
Typewritten Text

janir
Typewritten Text
46

22/26

FIG. 19

FOR EACH TUPLE
IN NEW
TUPLES (NT)

A
LOOK FOR EXACT MATCH IN CURRENT TUPLES

604

N
EXACT MATCH FOUND? 0

YESL 606
=

1
MARK NT AS "NO CHANGE"

\

f

47

janir
Typewritten Text

janir
Typewritten Text
47

23/26

I TANVH. SV

STTANL QX Y
_
JOLOANNOD NO JQTTANVH, SV
SINOd QIddVMS X1 SHTANL CEXE YN
= = I
919 719
. , JOLIENNOD NO
407 ‘OLI 0 i
ST L SHIN MAN NI m,%m (AddYMS X4
4NOd A1dNL HOVE 04 07

19

A

§
SH1dNL SHS MHN NI

4NOd 21d0L HOVE ¥Od

e0¢C D14

43

janir
Typewritten Text
48

q0¢ DId

20T DI 40
97930014 OL

41d0L
THS QEEVIAND
HOVA 401

YOLDANNOD 20 YOLDANNOD 40 100T0d0L NOILJANNOD A0070d0L TLNATILLY
INANOAS ¥VLS LNNOES AYLS NI NOLLJANNOD 40 3dAL NINOLLOANNOD NOLLDENNGD
\OINI ISOH HAOW (OINI ISOH ZAOW ISOHAAOW | | INAWOHSHONVED || | ISOHFAOW . LSOH EDNVHD
. J o A < Co o
P69 879
e 079 99 SiIX SHIA
; ;
THS ¥ND THS ¥ND
ANV ‘THS AEN NI 0J0L QN THS AEN NI OJNL
NNOD DNIHDLVIN NNOD DNTHOLYI
;
I
NI ANAOA
"THS MAN 0 LSOH .
S 6 THS Y00 NI QN0
.
F TH ¥) NI ANNOA
Q "THS MAN 40 JSOH THS MAN 40 LSOH

_A

80¢ "D 40
P192D0Td WO

49

janir
Typewritten Text
49

A

XD0T0d0L NOILOINNOD 40 XD0T0d0L SINARLLY AD0T040L NOTLOANNOD
NI NOTLDANNOD INTUOAS VIS | | NINOLDANNOD| | NOLOENNOD || NINOILDANNOO A0 8dAL
" ISOHEAON (OINI LSOH HAOI ISOHEAON | | | LSOHAONVHD || . ISOHTAOW LNFNDAS EONVHD
= = = =
g 4 999 750 099 79 759

SHA

SHA

b b
THN MEN THS ¥0O
A ANV 'THW A0 NI ODI1L ANV THIA MEN NI OONL
NNOD ONIHOLVIN ON NNOD ONIHOIVIN

i
TOAND
NIAN(Od
"THS MAN 40 LSOH

0¢

)
‘THS 4110 NI AN(1O4
THA MEN 40 LSOH

b
"THS 4010 NI ANAOd
"THIN MEN 10 LSOH

25/26

b
1003800
NIANNO
"THN AN 40 ISOH

POT 'DI4 40
L9NO0TI OL

CTHN AMEN NI HTdAL
DAVANN HOVE 04

20¢ DId

oy
~

40 DI 4O
0293001 WO¥d

o0

janir
Typewritten Text
50

AD0T0dOL NOLLDENNOD SNNOD Y04
NI NOILDANNOD 40 STLNGRILLY INGNOAS INIOA-0L
. ISOHAAOW NOILOBNNOD #ONVHD| | -INIOd MAN ALVAD
= e e
739 A 039 STA 919 ,
|
INANDAS L1NVaHa i
OINI TAOM Q'INOHS UMD NLANACE D
NNOD/LSOH 41 335 OL L AAN 40 NNOD HOvd
DLNODRIEILL XOTED
3 SHA
889

b
T00AND NIANNOA IO
MIN 40 NNOD HOVE

¢THWANO YO
THS N0 NEANNOA ')
MAN A0 NNOO HOVE

(700 MEN NI HTdNL
CHAIYIANA HOVH 304

@)

26/26

§TO MEN NTHTd(L
AIVIANA HOVH 904

HNOd

_A\l
907 ‘DI 40

POZ ‘O[] d0IENon

i

51

janir
Typewritten Text
51

hd

PATENT APPLICATION

¥ - =T

FOR PATENT APPLICATION

DECLARATION AND POWER OF ATTORNEY

ATTORNEY DOCKET NO. 10008102-1

As a below named inventor, | hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

{ believe | am the original, first and sole
joint inventor (if plural names are listed below)

patent is sought on the invention entitled:
Method And System For Identifying And Processing Changes To A Network Topology

inventor (if only one name is listed below) or an original, first and
of the subject matter which is claimed and for which a

the specification of which is attached hereto unless the following box is checked:

{)} was filed on

Number

I hereby state that | have reviewed and understood t
including the claims, as amended by any amendment

(if applicable).

{s) referred to above.

disclase all information which is material to patentability as defined in 37 CFR 1.b86.

Foreign Application(s} and/or Claim of Foreign Priority

as US Application Serial No. or PCT International Application
and was amended on

he contents of the above-identified specification,
I acknowledge the duty to

| hereby claim foreign priority benefits under Title 35, United States Code Section 118 of any foreign application(s) for patent or
inventar(s) certificate listed below and have also identified below any foreign application for patent or inventar(s) certificate having a

filing date before that of the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 36 U.S.C. 118
N/A YES: NO:
YES: NO:

Provisional Application

| hereby claim the benefit under Title 35, United States Code Section 118{e} of any United States provisional application(s) listed
below:

APPLICATION SERIAL NUMBER FILING DATE

N/A

U. 8. Priority Claim
| hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 35, United States Code Section 112, | acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section 1.56{a} which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER FILING DATE

N/A

STATUS (patented/pending/abandoned)

POWER OF ATTORNEY:
As a named inventor, | hereby appeint the following attorney(s) and/or agentis) to prosecute this application and transact all
business in the Patent and Trademark Office connected therewith:

Customer Number | 022879

Send Correspondence to:
HEWLETT-PACKARD COMPANY
Intellectual Property Administration
P.O. Box 272400

Fort Coliins, Colorado 80527-2400

Place Customer
Number Bar Code
Label here

Direct Telephone Calls To:

T. Grant Ritz
(970) 898-0697

| hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jecpardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A Pulsipher Citizenship: U$S

2937 Redburn Drive Ft Collins CO 80525

Residence:

Sane as residence

Post Office ’A‘ dr;ﬁ‘s:
rﬂf{%"" T 10)3i 2060
nvenq@gq‘aﬂuﬁre / ” Date

Rev 10/4Q (D wr)} {Use Page Two For Additional Inventor(s} Signature!(s)}

952

Page 1 of 2

janir
Typewritten Text

janir
Typewritten Text
52

v

“»
.-~| DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET No._10008102-1

FOR PATENT APPLICATION (continued)

Full Name of # 2 joint inventor: Joseph R Hunt @_ Citizenship: US
LA Pabns vee D ¥ FA

Residence: 5841 Meadow-Eresicin Loveland. G0’ 80538
Post Office Address: Same as Residence

0 /3) /ﬁ@
fiventoy s Jgnatire Date 4
Full Name of # 3 joint inventor: Citizenship:
Residence:

Post Office Address:

nventior s Signafure Date

Full Name of # 4 joint inventor: Citizenship:

Residence:

Post Office Address:

Tnventor s signature Date

Full Name of # 5 joint inventor: Citizenship:

Residence:

Post Office Address:

nvenior's Signature Date

Full Name of # 6 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor's Signature Date

Full Name of # 7 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor's Signatlre Date

Full Name of # 8 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature Date

Rev 10/00 (DecPwr} (Use Page Two For Additional Inveng:rés) Signature(s)) Page 2 of 2

janir
Typewritten Text
53

—

1807

<2

" - ‘HEWLETT-PACKARD COMPANY
. Inteliectual Property Administration
___ P, 0. Box 272400

—

I

gFort Collins, Colorado 80527-2400

b } \’@;"OO PATENT APPLICATION

ATTORNEY DOCKET No. 10008102-1

il

[+
ot

Ul

I

IN THE U.S. PATENT AND TRADEMARK OFFICE
Patent Application Transmittal Letter

——
e

O% SOMMISSIONER FOR PATENTS

\

—
——

Sir:

Transmitted herewith for filing under 37 CFR 1.53(b) is a(n): X} Utility

INVENTOR(S):

TITLE:

Washington, D.C. 20231

Eric A Pulsipher et al

{)} Design

{X) original patent application,
{) continuation-in-part application

(A NRTRA

710/31/00

Method And System For Identifying And Processing Changes To A Network Topology

Enclosed are:

X)
{x)

{ } Priority document(s)

{

({
} (Other)

The Declaration and Power of Attorney.
26
{)} Form PT0-1449

sheets of drawings (one set)

)

(X} signed {
()
information Disclosure Statement and Form PTO-1448

(fee $)

} unsigned or partially signed

Associate Power of Attorney

CLAIMVIS AS FILED BY OTHER THAN A SMALL ENTITY
(1) {2) (3} (4) (5}
FOR NUMBER FILED NUMBER EXTRA RATE TOTALS
TOTAL CLAIMS 20 — 20 0 X $18 $ 0
INDEPENDENT
CLAIMS 3 — 3 0 X $80 $ 0
ANY MULTIPLE
DEPENDENT CLAIMS 0 / $270 $ 0
BASIC FEE: Design ($320.00 }; Utility ($710.00) $ 710
TOTAL FILING FEE $ 710
OTHER FEES $
TOTAL CHARGES TO DEPOSIT ACCOUNT $ 710

Charge $

710

to Deposit Account 08-2025. At any time during the pendency of this application,

please charge any fees required or credit any over payment 10 Deposit Account 08-2025 pursuant to 37

CFR 1.25.

Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,

1.17,1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"Express Mail" label no. EL523338183US

Date of Deposit Qct, 31, 2000

| hereby certify that this is being deposited with the
United States Postal Service "Express Mail Post
Office to Addressee" service under 37 CFR 1.10 on
the date indicated _above and is addressed to:

Commissioner

for’/ Patents,

Washington,

D.C.

20231. o A0S
by AT (e
Typed Name: Yaura M. Clark

Rev 10/00 {TransNew)

Respectfully submitted,

Eric A Pulsipher et al

sy L2

T. Grant Ritz

Attorney/Agent for Applicant(s)
Reg. No. 39,819

Date: oct. 31, 2000
Telephone No.: (970) 898-0697

- Attach as First Page to Transmitted Papers -

janir
Typewritten Text
54

1 Title
Method and System for Identifying and Processing Changes to a Network Topology

Field of Invention

DWW

The present invention relates generally to computer networks. More particularly, it relates
to a method and system for identifying changes to a network topology and for acting upon the
network based on the changes.

Background
As communications networks, such as the Internet, carry more and more traffic, efficient

use of the bandwidth available in the network becomes more and more important. Switching

O W e N N W

technology was developed in order to reduce congestion and associated competition for the

available bandwidth. Switching technology works by restricting traffic. Instead of broadcasting a
given data packet to all parts of the network, switches are used to control data flow such that the
data packet is sent only along those network segments necessary to deliver it to the target node.

The smaller volume of traffic on any given segment results in few packet collisions on that segment
and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually
possible and is typically made based upon current traffic patterns.

The intelligent routing of data packets with resultant reduction in network congestion can
only be effected if the network topology is known. The topology of a network is a description of
19. . the network which includes the location of and interconnections between nodes on the network.

20 The word “topology” refers to either the physical or logical layout of the network, including devices,
21 and their connections in relationship to one another. Information necessary to create the topology
22 layout can be derived from tables stored in network devices such as hubs, bridges, and switches.

23 The information in these tables is in a constant state of flux as new entries are being added and old
24 entries time out. Many times there simply is not enough information to determine where to place a
25 particular device.

26 Switches examine each data packet that they receive, read the source addresses, and log

27 those addresses into tables along with the switch ports on which the packets were received. Ifa

28 packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. 100081021 1

55

janir
Typewritten Text

janir
Typewritten Text
55

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified
where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table
can become quite large and may require a significant amount of the switch’s resources to develop
and maintain. As an additional complication, the physical layout of devices and their connections
are typically in a state of constant change. Devices are continually being removed from, added to,
and moved to new physical locations on the network. To be effectively managed, the topology of a
network must be accurately and efficiently ascertained, as well as maintained.

Existing mapping methods have limitations that prevent them from accurately mapping
topological relationships. Multiple connectivity problems are one sort of difficulty encountered by
existing methods. For example, connectors such as routers, switches, and bridges may be
interconnected devices in a network. Some existing methods assume that these devices have only a
single connection between them. In newer devices, however, it is common for manufacturers to
provide multiple connections between devices to improve network efficiency and to increase
capacity of links between the devices. The multiple connectivity allows the devices to maintain
connection in case one connection fails. Methods that do not consider multiple connectivity do not
present a complete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a
device. Existing methods use a reference interface or a reference address in a set of devices to
orient all other devices in the same area. These methods assumed that every working device would
be able to identify, or “hear,” this reference and identify it with a particular port of the device. With
newer devices, however, it is possible that the same address or reference may be heard out of
multiple ports of the same device. It is also possible that the address or reference may not be heard
from any ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of
the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be very large and expensive.

HP No 10008102-1 2

56

janir
Typewritten Text
56

2

Still another difficulty with existing systems is that they focus on the minutia without
considering the larger mapping considerations. Whenever an individual change in the system is
detected, existing methods immediately act on that change, rather than taking a broader view of the
change in the context of other system changes. For example, a device may be removed from the
network temporarily and replaced with its ports reversed. In existing systems, this swapped port
scenario could require hundreds or thousands of changes because the reference addresses will have
changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.
These methods continuously poll network addresses throughout the day and make decisions based
on those continuous polling results. This creates traffic on the network that slows other processes.

Still another limitation of existing methods is the assumption that network parts of a
particular layer would be physically separated from other parts. Network layer 1 may represent the
physical cabling of the network, layer 2 may represent the device connectivity, and layer 3 may
represent a higher level of abstraction, such as the groupings of devices into regions. Existing
methods assume that all layer 3 region groupings are self-contained, running on the same unique
physical networking. However, in an internet protocol (IP) network, multiple IP domains may co-
exist on the same lower layer networking infrastructure. It has become common for a network to
employ a virtual local area network (LAN) to improve security or to simplify network maintenance,
for example. Using virtual LANs, a system may have any number of different IP domains sharing
the same physical connectivity. As a result, existing methods create confusion with respect to
topological mapping because networks with multiple IP addresses in different subnets for the
infrastructure devices cannot be properly represented because they assume the physical separation
of connectivity for separate IP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.

Summary of Invention
A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HP No 10008102-1 3

5/

janir
Typewritten Text
57

oy

2
3
4
5
6
7
8
9

based on the changes. The nodal connections are represented by data tuples that store information
such as a host identifier, a connector interface, and a port specification for each connection. A
topology database stores an existing topology of a network. A topology converter accesses the
topology database and converts the existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the new topology. The topology converter
receives the new tuples, identifies changes to the topology, and updates the topology database using
the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples
and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
connections. The topology converter attempts to resolve swapped port conditions and searches for
new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
converter also searches for new conflict link tuples in the existing tuples. The topology converter
updates the topology database with the new topology.
Summary of Drawings

Figure 1 is a drawing of a typical topological bus segment for representing the connectivity
of nodes on a network.

Figure 2 is a drawing of a typical topological serial segment for representing the connectivity
of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity
of nodes on a network.

Figure 4 is a drawing of another typical topological star segment for representing the
connectivity of nodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.

Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HP No 10008102-1 4

58

janir
Typewritten Text
58

[0

(U]

O w2 B

10
11

20

21

23
24
25
26
27

Figure 11 is a flow chart of the first weeding phase of the method used by the connection
calculator.

Figures 12a-d are flow charts of an infrastructure-building phase of the method used by the
connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection
calculator.

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection
calculator.

Figure 15 is a flow chart of the look-for phase of the method used by the connection
calculator.

Figures 16a-b are flow charts of the consolidation phase of the method used by the
connection calculator.

Figure 17 is a flow chart of the method used by the topology converter.

Figures 18a-b are flow charts of the morph topo phase of the method used by the topology
converter.

Figure 19 is a flow chart of the duplication discard phase of the method used by the
topology converter.

Figures 20a-d are flow charts of the identify different tuples phase of the method used by
the topology converter.

Detailed Description

The system provides an improved method for creating topological maps of communication
networks based. Connectivity information is retrieved from the network nodes and stored as
“tuples™ to track specifically the desired information necessary to map the topology. These light
weight data structures may store the host identifier, interface index, and a port. From this tuple
information, the topology may be determined. A tuple may be a binary element insofar as it has two
parts representing the two nodes on either end of a network link or segment. A “tuco” refers to a

tuple component, such as half of a binary tuple.

HP No 10008102-1 5

59

janir
Typewritten Text
59

p—

BOWW

= JANo TR BN BN @) W V4

As used herein, a node is any electronic component, such as a connector or a host, or
combination of electronic components with their interconnections. A connector is any network
device other than a host, including a switching device. A switching device is one type of connector
and refers to any device that controls the flow of messages on a network. Switching devices
include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and
switches.

As used herein, the term “tuple” refers to any collection of assorted data. Tuples may be
used to track information about network topology by storing data from network nodes. In one use,
tuples may include a host identifier, interface information, and a port specification for each node.
The port specification (also described as the group/port) may include a group number and a port
number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple
may include this information about two nodes as a means of showing the connectivity between them,
whether the nodes are connected directly or indirectly through other nodes. A “conn-to-conn”
tuple refers to a tuple that has connectivity data about connector nodes. A “conn-to-host” tuple
refers to a tuple that has connectivity data about a connector node and a host node. In one use,
tuples may have data about more than two nodes; that is, they may be n-ary tuples, such as those
used with respect to shared media connections described herein.

A “singly-heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,
other device, etc., that is connected directly to a connector, such as a switching device. A singly-
heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an
shh. A “multi-heard host” (mhh) refers to hosts that are heard by a connector on the same port that
other hosts are heard. A multi-heard host link (mhhl) refers to the link between the connector and
an mhh. A link generally refers to the connection between nodes. A segment is a link that may
include a shared media connection.

Figure 1 is a drawing of a typical topological bus segment 100 for representing the
connectivity of nodes on a network 110. In Figure 1, first and second hosts 121, 122, as well as a

first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No 10008102-1 6

60

janir
Typewritten Text
60

O o 3 Oy MWW p—

S T S T N T T e T e = T T == S =
N = O D0 N Y W B WY e O

24
25
26
27

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first
connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the
connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port
132 on a second connector 145 which is connected via the network 110 to the first port 131 on the
first connector 140. The serial segment 200 comprises the second port 132 on the second
connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of
a connector-to-connector (“‘conn-to-conn”) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In Figure 3, the first host 121 is connected to the first
port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected
to the first port 131 of the first connector 140. Figure 3 is an example of a connector-to-host
(““conn-to-host”) relationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In addition to the connections described with respect to
Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth
host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment
301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third
host 123 connected to the third port 133 of the first connector 140, and the fourth host 124
connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,
on a given connector, at least one port, wherein one and only one host is connected to that port,
and that host. In the more general case, the star segment 301 comprises, on a given connector, all
ports having one and only one host connected to each port, and those connected hosts. Since the
segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are
referred to as star segments.

For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No 10008102-1 7

61

janir
Typewritten Text
61

fum—

INo SR TG S« N ¥ Ut ~SUR VS B

[\ N N o [\) Y] ™ [\ Yt [[[y Joy [— p—t y— ot
0 ~J [0 L B W o — (@ \O o] ~ (@) wn SN (¥ [\ Pt <o

represented as terminals. However, they could also be workstations, personal computers, printers,
scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,
third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth
ports 131, 133, 134 respectively, wherein the first, third, and fourth ports 131, 133, 134 are
located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly-heard hosts connected to separate
ports 131, 133, 134 of a common connector 140 — the first connector 140. The fifth and sixth
hosts 125, 126 are singly-heard hosts connected to the third and fourth connectors 142, 143. The
seventh and eighth hosts 127, 128 are multi-heard hosts connected to the same port 139 of the fifth
connector 144. The multi-heard hosts 127, 128 illustrate a shared media segment 180, also
referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and
illustrate a switch mesh 181. BEach of the connectors in the switch mesh 181 is connected to each
other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be
dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.
The first connector 140 is connected via the network 110 to the second connector 141 by two
direct links, each of which is connected to different ports on the connectors. One link is connected
to the sixth port 136 of the first connector 140 and to the seventh port of the second connector
137. The other link is connected to fifth port 135 of the first connector 140 and to the eighth port
138 of the second connector 141. In this example, two connectors illustrate the multiple
connectivity between nodes. Depending upon the device specifications, devices such as connectors
may be connected via any number of connectors. As explained herein, the system resolves multiple
connectivity problems by tracking port information for each connection.

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors
171,172, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No 100081021 8

62

janir
Typewritten Text
62

N

3
4
5
6
7
8
9

15
16
17
18
19
20
21
22
23
24
25

27
28

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or
intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected
directly to the fifth port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flow chart of the method
used by the system to retrieve and update the topology of the network. A tuple manager 300, also
referred to as a data miner 300, gathers 902 data from network nodes and builds 904 tuples to
update the current topology. The topology database “topodb™ 350 stores the current topology for
use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple
manager 300. The connection calculator 320 processes the data in the neighbor data database 310
to determine the new network topology. The connection calculator 320 reduces 906 the tuple data
and sends it to the reduced topology relationships database 330. The topology converter 340 then
updates 908 the topology database 350 based on the new tuples sent to the reduced topology
relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described
generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.
The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then
retrieves 912 node information of the current topology stored in the topology database 350. This
information tells the tuple manager 300 which devices or nodes are believed to exist in the system
based on the nodes that were detected during a previous query. The tuple manager 300 then
queries 914 the known nodes to gather the desired information. For example, the connectors may
maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary
functions, such as switching. Other devices may allow the system to perform queries to gather
information about the flow of network traffic. This data identifies the devices heard by a connector
and the port on which the device was heard. The tuple manager 300 gathers this data by accessing
forwarding tables and other information sources for the nodes to determine such information as their
physical address, interface information, and the port from which they “hear” other devices. Based
on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

data” database 310. Some nodes may have incomplete information. In this case, the partial

HP No 10008102-1 9

63

janir
Typewritten Text
63

foy

2
3
4
5
6
7
8
9

information is assembled into a tuple and may be used as a “hint” to determine its connectivity later,
based on other connections. The tuple manager 300 may also gather 920 additional information
about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that
information.

After the data is gathered and the tuples are stored in the neighbor database 310, the
connection calculator 320 processes the tuples to reduce them to relationships in the topology.
Figure 10 shows a flow chart of the process of the connection calculator 320, as shown generally in
the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a
first weeding phase 922 to identify singly-heard hosts to distinguish them from multi-heard hosts.
Singly-heard hosts refer to host devices connected directly to a connector. The connection
calculator 320 then performs an infrastructure-building phase 924 to remove redundant connector-
to-conmector links and to complete the details for partial tuples that are missing information. Then,
the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports
of singly-heard hosts. The connection calculator 320 then performs a noise reduction phase 928 to
remove redundant neighbor information for connector-to-host links. If clarification of device
connectivity is required, the connection calculator 320 performs a “look for” phase 930 to ask the
tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment
and network containment relationships. The connection calculator 320 may also tag redundant
tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide
hints to connectivity of other tuples. As part of the consolidation phase 932, the connection
caleulator 320 creates new n-ary tuples (tuples having references to three or more tucos) for shared
media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for
distinguishing singly-heard hosts. The purpose of the first weeding process 922 is to identify the
direct connections between connectors and hosts; that is, those tuples having a first tuco thatis a
connector and a second tuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

HP No 10008102-1 1 0

64

janir
Typewritten Text
64

o

~
S

404 whether the tuple is a connector-to-host (conn-to-host) link tuple. If it is not a conn-to-host
link, the connection calculator 320 concludes 418 that it is a conn-to-conn link and processes 402
the next tuple. If the tuple is a conn-to-host link tuple, then the connection calculator 320
determines 406 whether the connector hears only this particular host on the port identified in the
tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a multi-
heard host link (mhhl) tuple.

If the connector hears only the one host on the port — that is, if the host is a singly-heard
host — then the connection calculator 320 determines 408 whether the host is heard singly by any
other connectors. If no other connectors hear the host as a singly-heard host, then the tuple is
classified as a singly-heard host link (shhl) tuple 412 and other tuples for this host are classified 414
as extra host links (ehl). Another tuple for this host may be, for example, an intermediate connector
connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the
first connector is connected directly to the first host 151. This connection therefore forms an shhi
tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data
indicates that the intermediate connector 172 is indirectly connected to the host and hears the host
from a particular port. An extra host links tuple is created so that this data may be used later in
conjunction with other extra host links tuples from devices across the network, to verify connectivity
by providing hints about connections.

The first weeding process also attempts to identify conflicts. If other connectors hear the
host as a singly-heard host, then a conflict arises and the tuple is classified 410 as a singly-heard
conflict link (shcl) tuple to be resolved later. This conflict may arise, for example, if a host has been
moved within the network, in which case the forwarding table data may no longer be valid. Certain
connectors previously connected directly to the host may still indicate that the moved host is
connected. When all tuples have been processed 402 to identify singly-heard host links, the first
weeding phase 922 is complete.

Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection
calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

connectors are set up in the network. The first part of the infrastructure building phase 924

HP No 10008102-1 1 l

65

janir
Typewritten Text
65

fa—y

ol I - NV S S e

10

manufactures tuples based on the list of singly-heard host link tuples identified in the first weeding
phase 922. The purpose is to identify the relationship between the connectors in the extra host links’
tuples and the connectors directly connected to the singly-heard hosts. For each singly-heard host
link 420, the connection calculator 320 processes 422 each extra host link that refers to the host.

In the illustration of Figure 6, a conn-to-conn link tuple would represent the connection between the
first connector 171 and the intermediate connector 172. An extra host link tuple would represent
the indirect connection between the intermediate connector 172 and the first host 151. The conn-
to-conn link tuple between the first connector 171 and the intermediate connector 172 is an
example of an ehlConn-to-shhiConn tuple. If a conn-to-conn link tuple exists 424 for the extra host
link connector to the singly-heard host link connector (ehlConn-to-shhiConn), then the connection
calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be
incomplete and a conn-to-conn link may not exist. In that case, a conn-to-conn tuple does not exist
for the ehlConn-to-shhlConn, then such a tuple is created 426.

After processing extra host links for singly-heard host links, the connection calculator 320
considers 430 each connector (referred to as connl) in the tuples to determine the relationship
between connectors. As illustrated in Figure 6, a single connector may be connected directly and
indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the
intermediate connector 171 directly and also to the third connector 173 indirectly. The third
connector 173 hears the first host 151 on the same part 165 that it hears the first connector 171 and
the intermediate connector 172. The infrastructure building phase 924 tries to determine the
relationship between other connectors heard on the same port of connl. In a series of
interconnected connectors, the connector on one end may not hear a connector on another end, but
it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are
created to represent the interconnection of conn-to-conn relationships. Based on this data, the
connection calculator 320 can make inferences regarding the overall connection between
connectors.

For every connl, the connection calculator 320 considers 432 every other connector

(conn2) to determine whether a connl-to-conn?2 tuple exists. If connl-to-conn2 does not exist,

HP No 10008102-1 12

66

janir
Typewritten Text
66

O 00 3 N R W e

ot
O

11

then the connection calculator 320 considers 436 every other conn-to-conn tuple containing connZ.
The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique
port 438 and if connl also hears conn3 440, then the connection calculator 320 creates 442 a tuple
for connl-to-conn? in the connector-to-connector links tuple list.

After processing all of the connl tuples, the connection calculator 320 processes 444 each
connl-to-conn? links tuple to ensure that they have complete port data. For each incomplete tuple
446, the connection calculator 320 looks 448 for a different tuple involving connl in the extra host
links tupleson a different port. If a different tuple is found 450, then the connection calculator 320
determines 452 whether conn? also hears the host. If conn2 does hear the hqst, then the
connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear
the host 452, then the connection calculator 320 continues looking 448 through different tuples
involving connl in extra host links on different ports.

After attempting to complete the missing data in each of the conn-to-conn links tuples, the
connection calculator 320 processes 456 each conn-to-conn links tuple. The purpose of this sub-
phase is to attempt to disprove invalid conn-to-conn links. The connection calculator 320 considers
458 conni and conn2 of each conn-to-conn links tuple. Every other connector in conn-to-conn
links may be referred to as testconn. For each testconn 460, the connection calculator 320
determines 462 whether the testconn hears connl and conn2 on different groups/ports. If testconn
hears connl and conn2 on different ports, then the tuple is moved to extraconnlinks (ecl) 464.
Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the
second weeding phase 926 is to attempt to resolve conflicts involving singly-heard hosts identified in
the first weeding phase 922. In the situation described herein in which more than one connector
reports that a host is singly-heard, the second weeding phase 926 reviews the tuples created during
the infrastructure-building phase 924 involving the connector and host in question and attempts to
disprove the reported conflict. The connection calculator 320 processes 466 each
singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 conmi

and hostl of the tuple. For each extra host links tuple containing hostl 470, the connection

HP No 10008102-{ 1 3

janir
Typewritten Text
67

2

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in conn-to-conn links for conn2
and connl 474, and if there is a conn2-to-conn1 tuple in the extra host links tuples 476, and if the
port is the same for conn2 hearing connl and host1 478, then the search tuple is moved 480 into
the singly heard host links and other tuples containing host1 are removed 482 from the
singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise
reduction phase 928 is to handle those connections in which a connector is not directly connected
to a host or to another connector. For example, networking technology may employ shared media
connections between connectors, rather than dedicated media connectors. With a shared media
connection, the entries in the forwarding tables for connectors attached to the shared media
connection will include every node accessing the shared media connection and may not present a
useful or accurate representation of the nodal connection. For example, if the network configuration
in Figure 6 used a shared media connection between the first connector 171 and the intermediate
connector 172, then the first connector is not really connected directly to the intermediate connector
because other devices (not shown in Figure 6) may also use the shared media connection. These
other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be
created for the connectors 171, 172 on opposing ends of the shared media. In this situation, it is
inefficient to maintain point-to-point binary tuples for every connection. The noise reduction phase
928 disproves invalid tuples created by the shared media connections.

For each multi-heard host links (mhhl) tuple, also referred to as multiHeardLinks (mhl)
tuples (sometimes referred to as the search tuple) 484, connl and host1 are considered 486. For
each extra host links tuple containing host1 488, conn2 is considered 490. If there is a tuple in
conn-to-conn links for conn? and connl 492, and if there is a conn2-to-host1 tuple in
extraHostLinks 494, and if the group/port for conn2 hearing connl and hostl is different 496, then
the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase is to
complete missing data for mhhl tuples. There may exist connections on the network that have

incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

HP No 10008102-1 14

68

janir
Typewritten Text
68

in which case data might not be stored in forwarding tables. In another example, a forwarding table
may not have sufficient room to store all of the required information and might delete data on a
FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager
300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding
table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the
connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an
“alreadyDidLookfors™ list, then a list is created 508 for all connectors in conn-to-conn links that are
heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the
connection calculator 320 determines 512 whether there is a conm2-to-host1 tuple in the mhhl
tuples. If there is not such a tuple, then the connection calculator 320 initiates a look-for for conn2-
to-host1 via the tuple manager 300. When each connector in the list has been processed 510, the
connl group/port tuco is added 516 to an alreadyDidLookfors list. As an additional portion of the
look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information
about connectivity. For example, the system may show the user the perceived connectivity or the
unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from
the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to
produce the new topology. This topology may have incomplete tuples possibly resulting from
extraneous information that the connection calculator 330 could not disprove. To refine the new
topology, the connection calculator 330 can request the tuple manager 300 to obtain additional
information about particular nodes or it may also request a user to refine the topology by adding or
removing tuples. Using the process of the connection calculator 330, tuples marked as non-
essential may be removed from the new topology to save space and to simply the topology. The
connection calculator 330 is not confused by multiple connectivity situations such as port
aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-
to-point, or neighbor-to-neighbor, connectivity showing each connection in the network. This

point-to-point connectivity concept also helps enable the system to avoid difficulties that occur in

HP No 10008102-1 15

69

janir
Typewritten Text
69

OO0 Ny B W N

| S e e e T e T e T S
[N T N N~) R V. T S VL O ==

systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may
contain only selected information to minimize the storage space required for the topology.

Figures 16a-b show a flow chart of the consolidation phase 932. The purpose of this phase
is to consolidate the tuples that involve shared media connections. After the noise reduction phase
928, a considerable number of tuples involving shared media may remain. Rather than maintain a
binary tuple for each of the connections, an n-ary tuple is created for the link using a tuco for each
connector and each host connected thereto. For each mhhl tuple 518, connl and hostl are
considered 520. If there are more connl group/port tuples in multiHeardLinks, and if are not any
n-ary multiHeardSegments (mhs) tuples 524, then an mbs tuple is created 526. If hostl is not
already in this particular mhs tuple 528, then corm? of the tuple is considered 534. Ifthereisa
connl-to-conn2 conn-to-connlLinks tuple on the same port as connl-to-hostl 536, then all
multiHeardLinks tuples for conn2-to-host1 with the same conn2 group/port as the connl-to-conn2
are added 538 to the current mhs tuple.

After processing each mhhl tuple 518, each singly-heard host links (shhl) tuple, also referred
to as a singlyHeardLinks (shl) tuple, is considered 540. For each shhl tuple, the connector and host
are considered 542. If there is no existing singlyHeardSegments (shs) tuple for the connector 544,
then an shs tuple is created 546. The host tuco is then added to the shs 548.

Figure 17 shows a flow chart of the method used by the topology converter 340, as
described generally by the topology update step 908 of the method shown in Figure 8. The
topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph
topo” phase 934. It then compares 936 the list from the topology currently stored in the topology
database 350 with the new list generated by the connection calculator 320 and discards 936
identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes
action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is
also referred to as the “identify different tuples™ phase 938.

Figure 18a shows a flow chart for the “morph topo” phase 934. For each node in the
topology 550, the topology converter 340 determines 552 whether the node is a connector. If the

node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

HP No 10008102-1 16

70

janir
Typewritten Text
70

LI

4
5
6
7
8
9

the topology converter 340 determines 556 whether the conniface is connected to a star segment.
Ifit is connected to a star segment, then for every other interface in the segment 558, the topology
converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”
for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs
tuple. The tuco for the interface’s host-to-topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and is connected to a bus
segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for
connl. If there is not an existing mhs tuple for connl, then a topo mhs tuple is created 570. A tuco
is added 572 for the host to the mhs tuple. |

If the connector node is not connected to either a star segment 556 or to a bus segment
566, then the topology converter knows that it is connected to another connector (conn2). If such
a connector does not already have an existing connLinks tuple for connl and conn2 576, then a
connLinks tuple is created 578. After processing the bus segment, star segment, and conn-to-conn
segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 18b shows a continuation of the flow chart of Figure 18a showing the steps of the
method when the topology converter 340 determines that the node is not a connector 552. If the
node is in the default segment, then an “unheardOfLinks” tuple is created 582 and the topology
converter proceeds to the next node 550. If the node is not in the default segment 580, then the
topology converter 340 determines whether the node is in a star segment 584. Ifthenodeisina
star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 an shs
tuple. The tuco for the node is then added 590 to the shs tuple, and the topology converter 340
proceeds to the next node 550.

If the node is not in a star segment, then the topology converter 340 knows that it is in the
bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter
340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the
topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

HP No 10008102-1 1 7

71

janir
Typewritten Text
71

exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new
tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a-d show a flow chart for the identify different tuples phase 938. The system
looks through each tuple in the new SinglyHeardSegments (newSHS) tuple list 608 and tries to
identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering
those segment tuples in both the new topology and the existing topology that differ only by the port
specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”
The system also looks through each tuple in the new multiHeardSegments tuple list (newMHS) 014
and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a
swapped port is marked 618 as “handled.”

The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases
are possible for the host of the newSHL tuples. The host of the newSHL can be found in the
current singlyHeardLinks (curSHL) 622, the current multiHeardLinks (curMHL) 630, the current
connLinks (curCL) 638, or the current UnheardOfLinks (curUOL) 642. If the host of a newSHL
tuple is found 622 in the current SinglyHeardLinks (curSHL) tuples, then the system determines 624
if there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is
a matching tuco, then the system changes 626 the host connection attribute. If thereisnota
matching tuco, then the host connection is moved 628 in the topology.

If the host is found in the curMHL tuples 630, then the system determines 632 whether
there is a matching connector tuco between the newSHL tuples and the curSHL tuples. Ifthereisa
matching connector, then the segment type of connection is changed 634. If there is not a matching
connector, then the host connection is moved 636 in the topology. If the host is found in the curCL
tuples 638, then the host is moved 640 into a star segment of the connector. If it is found in the
curUOL 642, then the host is moved 644 into the star segment of the connector.

Figure 20c shows another stage of the processing undertaken during the identify different
tuples phase 938. For each unmarked tuple in the new multiHeardLinks tuples (newMHL) 946,
four cases are possible for the host of the newMHL. The host of the newMHL may be found in the
curSHL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No 10008102-1 1 8

(2

janir
Typewritten Text
 72

3]

3
4
5
6
7
8
9

20
21
22
23
24
25
26
27
28

curSHL 648, then the system determines 650 whether there is a matching connector tuco between
the newMHL and the curMHL. If there is a matching tuco, then the segment type of connection is
changed 652. If there is not a matching tuco, then the host connection is moved 654 in the
topology.

If the host is found in the curMHL tuples 656, then the system determines 658 whether
there is a matching connector tuco in both the curMHL tuples and the newMHL tuples. If there is a
matching connector tuco, then the host connection attribute is changed 660. If there isnota
matching tuco, then the host connection is moved 662 in the topology. If the host is found in the
curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in
the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identify different tuples phase 938. For each
unmarked tuple in the newCL tuples 672, there are three possibilities for the connector. The
connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the
curCL 678, or in the curUOL 682. If each connector is found in the curSHL or curMHL list 674,
then the system creates 676 a new point-to-point segment for the connectors. If the connectors are
found in the curCL 678, then the connection attributes of the connectors are changed 680. If each
connector is found in the curUOL tuples 682, then the host connectibn is moved 684 in the
topology.

Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of
Figure 20d. For each unmarked tuple in the newUOL tuples 686, the system checks 688 the
timer/configuration to determine whether the host/conn should move into the default segment from
its current segment.

An advantage of the system is that it may be schedulable. The system may map network
topology continuously, as done by existing systems, or it may be scheduled to run only at certain
intervals, as desired by the user. A further advantage of the system is that it is capable of
processing multiple connections between the same devices and of processing connection meshes,
because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

HP No 10008102-1 19

73

janir
Typewritten Text
73

1 Although the present invention has been described with respect to particular embodiments

2 thereof, variations are possible. The present invention may be embodied in specific forms without
3 departing from the essential spirit or attributes thereof. It is desired that the embodiments described
4 herein be considered in all respects illustrative and not restrictive and that reference be made to the
5 appended claims for determining the scope of the invention.

HP No 10008102-1 20

4

janir
Typewritten Text
74

1 Claims

2 1. In a network having interconnected nodes with data tuples that represent nodal
3 connections, a method for mapping a network topology by identifying changes between an existing
4 topology and a new topology, the method comprising:
5 converting an existing topology into a list of existing tuples that represent existing nodal
6 connections;
7 receiving new tuples that represent new nodal connections; and
8 comparing the list of existing tuples with the new tuples to identify changes to the topology.
9 2. The method of claim 1, further comprising updating a topology database with a new
topology.
3. The method of claim 1, further comprising taking action on the changes to the
topology.
4. The method of claim 1, wherein the tuples include information about a host

identifier, a connector interface, and a port specification.

5. The method of claim 1, wherein the step of comparing comprises identifying
duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a
current status of the topology for these tuples.

6. The method of claim 1, wherein the step of comparing comprises identifying a

swapped port condition on a connector.

20 7. The method of claim 1, wherein the step of comparing comprises searching for a

21 host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing
22 tuples.

23 8. A system for mapping a network topology by identifying changes between an

24 existing topology and a new topology, based on changes to data tuples that represent nodal

25 connections comprising:

26 a topology database that stores an existing topology of a network; and

HP No 10008102-1 21

/5

janir
Typewritten Text
75

pam—ry

2
3
4
S
6
7
8
9

a topology converter connected to the topology database that receives new tuples that
represent new nodal connections; and compares the new tuples with the existing topology to identify
changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing
topology into a list of existing tuples that represent existing nodal connections.

10. The system of claim 8, wherein the topology converter updates the topolog
database with a new topology based on the new tuples.

11. The system of claim 8, wherein the topology converter attempts to identify swapped
ports on connectors.

12. The system of claim 8, wherein the topology converter identifies duplicate tuples
that appear both in the list of existing tuples and in the new tuples, and maintains a current status of
the topology for these tuples.

13. The system of claim 8, wherein the topology converter searches for a host of a new
singly-heard host link tuple or a new multi-heard host link tuple in the list of existing tuples.

14. The system of claim 8, wherein the topology converter searches for a connector of
a new conflict links tuple in the list of existing tuples.

15. A computer-readable medium having computer-executable instructions for
performing a method for mapping a network topology by identifying changes between an existing
topology and a new topology in a network having a interconnected nodes, the method comprising:

converting an existing topology into a list of existing tuples that represent existing nodal
connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;
and

updating a topology database with a new topology.

16. The method of claim 15, wherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

HP No 10008102-1 22

76

janir
Typewritten Text
76

S

wh

6
7
8
9

17. The method of claim 15, wherein the step of comparing comprises identifying
duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a
current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a
swapped port condition on a connector.

19. The method of claim 15, wherein the step of comparing comprises searching for a
host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing
tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a

connector of a new conflict links tuple in the list of existing tuples.

HP No 10008102-1 23

rf

janir
Typewritten Text
77

p—t

[« 2NN B« N) W & T > VS S S

Abstract

A method and system are disclosed for mapping the topology of a network having
interconnected nodes by identifying changes in the network and updating a stored network topology
based on the changes. The nodal connections are represented by data tuples that store information
such as a host identifier, a connector interface, and a port specification for each connection. A
topology database stores an existing topology of a network. A topology converter accesses the
topology database and converts the existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the new topology. The topology converter
receives the new tuples, identifies changes to the topology, and updates the topology database using
the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples
and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
connections. The topology converter attempts to resolve swapped port conditions and searches for
new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
converter also searches for new conflict link tuples in the existing tuples. The topology converter

updates the topology database with the new topology.

HP No 10008102-1

/8

janir
Typewritten Text
78

1/26

[O_ Gsseso |
o — T
140
- FIG. 1

79

janir
Typewritten Text
79

2/26

(200

[O__Geseso|
LI oy

1132‘<\145

121

A~ 110

80

janir
Typewritten Text
80

3/26

81

janir
Typewritten Text
81

4/26

i / 124 / 123

e
//// *——jum WK‘A ////

FIG. 4

82

janir
Typewritten Text
82

g
/
EN e J
_______ N
13 L o 110 16 1 110
ERls=01 N - DP 1 v
10 195 e
‘ -
7 110 ”i 1 110 %
% // *—L—-ﬂrua " WU—.__[i / //
139
—— R —
110
| K 12
128 — 180
74 /y
|j_—|__.:3 C___—L—'_—_——_]

33

janir
Typewritten Text
83

FIG. 6

e
i l_.J\ e
162
A~ 110
: [163 / 172
[O Gesseo]
T
o
o {165 KIB

d"—"\
j{
E’

34

janir
Typewritten Text
84

7/26

SAIHSNOLLY T1¥ AD0TOJOL AE0NaHy
dgoNaEy Iv SdNM00T

\Q@M@ S.LSHNOAA L DId

YAIAHANOD
ADOTOOL

SAIHSNOLLYTHY | NOILVILIGYY ¥4S1
(ININYINIHISVAO)

VIVA AOGHOIHEN

R

SO0
WVLYA JOIHOIHEN.

—01¢

)

JOIVINODTVD 0zs -

NOLLDENNOD (SHIDNIANNAEY
_ SNIVINOD TTILS)
<7V~ VIV MOEHOIEN, A1Vadn
Obe VIVA OTHDIAN, e AN _ ONY dNA00T 41VHID
QEDNJARY HIVAdN T (AQVEY L0dNI
ANV d2I00T 41VHE0 . 04300 NOILLYOI'TddY TYNYALXE

(GSISENDR e

\\j 04 1007,) N LI ¥ASN

€00d0L \

Y

> SdN3007 0dOL
$T10d
Q\/ﬁ HONOVLL ONIIAHLYD

VIVA AdSVE-1000104d

Y

85

janir
Typewritten Text
85

8/26

86

002 904 906 908
e c c e
DATA GATHERING | | TUPLE BUILDING] . [TUPLE REDUCTION|,| TOPOLOGY
PHASE PHASE PHASE UPDATING PHASE
FIG. 8
910 922
- e
RECEIVE START FIRST WEEDING
SIGNAL PHASE
A 212 Yy %4
LOOK UP EXISTING INFRASTRUCTURE
DEVICES IN TOPOLOGY BUILDING
DATABASE PHASE
Y %4 v ?36
QUERY NODES SECOND WEEDING
PHASE
Y ?36 v ?}8
CREATE TUPLES NOISE REDUCTION
PHASE
y o r o
STORE TUPLES IN LOOK-FOR
NEIGHBOR DATABASE PHASE
Y ?,»20 Y ?3)2
ADDI%%TI%DATA CONSOLIDATION
AS REQUESTED PHASE
FIG. 9 FIG. 10

janir
Typewritten Text
86

Q 9/26

O FIG. 11
418
<
CONN TO HOST TUPLE IS A CONN
TUPLE TO CONNLINK
9
CONN
ONLY HEARS THIS \, NO
HOST ON GROUP 1
PORT ?
HOST HEARD
SINGLY BY ANY \,NO
S y 42 Y He
9
: TUPLE IS A SHHL TUPLE IS A MHHL
4)‘0) J 4/1v4
TUPLE IS A SINGLY- y
MOVE TUPLES FOR
HEAR%\?I?FUCT THIS HOST TO EHL
3 Y. ‘

87

janir
Typewritten Text
87

10/26

Q

DONE FOR EACH

SHHL TUPLE

TO BLOCK =
430 OF FIG.12b

EACHTUPLE
INEHL

CONNTO CONN

LINK TUPLE FOR

EHL-CONN TO SHHL-

CONN
7

YES

Y 428

UPDATE TUPLE
IFNOT COMPLETE

CREATE EHL CONN TO SHHLCONN
TUPLE IN CONN TO CONN LINK

I

FIG. 12a

388

janir
Typewritten Text
88

FROM BLOCK 420
OF FIG. 122 11/26

FIG. 12b
FOR EACH
DONE
CONNECTOR IN TO BLOCK 444
TUPLES OFFIG. 12¢

(CONNT)

FOR
EACH OTHER
CONNECT%IS IN
CONN-TO-CONN
DONE TUPLES
(CONN2)

CONN1TO
CONN2
EXISTS IN
TU};LES

CONN2
HEARS CONN3
ON UNIQUE
P07RT

YES

CONNI
HEARS?CONNZ%

CREATE CONNI TO CONN2
TUPLE IN CONN TO CONN
LINKS

Y

89

janir
Typewritten Text
89

FROM BLOCK 430 OF FIG. 12b 12/26

444

FOR EACH
CONN TO CONN LINKS
TUPLE

DONE
TO BLOCK 456

OF FIG. 12d

INCOMPLETE
GROUP/ PORT
DATA FOR
CONN2?

(YES V<
LOOK FOR DIFFERENT TUPLE
INVOLVING CONNI IN FIG. 12¢
EHL ON
DIFFERENT GROUP/PORT

CONN2 ALSO
HEARS
HOST

FILL IN MISSING
GROUP/PORT FOR
CONN2

y

90

janir
Typewritten Text
 90

13/26
FROM BLOCK 444 OF FIG. 12¢

I -—)
— 3

FIG. 12d

FOR EACH
CONN TO CONN LINKS
TUPLE

DONE

-

= CONSIDER CONN1
£ AND CONN2
OF THIS TUPLE

EAC
OTHER CONN
g‘ EST CONN) IN

ONNTO CONN
LINKS THAT
HEARS BOTH
CONNI
ONN2

TEST CONN
HEARS CONNI AND
CONN2 ON
DIFFERENT
PO};TS

NO

464
H

MOVE THIS TUPLE
TO EXTRA CONN
LINKS

[YES

Y

91

janir
Typewritten Text
91

14/26 Q
O- DONE FOR EACH

SCL
TUPLE (SEARCH TUPLE)

\
CONSIDER CONN1 AND HOST1 OF SEARCH TUPLE
oY

470

FOR EACH
EHL
TUPLE CONTAINING
HOSTI1

DONE

CONSIDER CONN2 OF TUPLE

TUPLE IN CONN
TO CONN LINKS FOR
CONN2 AI;ID CONNI1

NO

A

FIG. 13

CONN2 TO HOST1

NO TUPLE IN EHL
?

GROUP/PORT
NO__—~SAME FOR CONN2 HEARING
CONNI1 §c HOSTI

480
D

MOVE SEARCH TUPLE TO SHHL
432
o

i

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

]

92

janir
Typewritten Text
92

15/26 Q

FOR EACH
MHL
TUPLE (SEARCH TUPLE

DONE

i
CONSIDER CONN1 AND HOST1
»¥

P

488

FOR EACH
EHL
TUPLE CONTAINING
HOSTI

DONE

1
CONSIDER CONN2

TUPLE IN CONN

TO CONN LINKS FOR

CONNZ AND CONNI1
?

NO

FIG. 14

CONN2 TO HOSTI

NO
TUPLE IN EHL?

GROUP/PORT
DIFFERENT FOR CONN2
ARING CO{E\U‘H & HOST

NO

A

498
pd

MOVE SEARCH TUPLE TO EHL

‘l

janir
Typewritten Text
 93

Q 16/26

FOR EACH

FIG. 15

DONE

502
o

3
CONSIDER CONN1 AND HOSTI

CONNI GROUP/

YES PORT ALREADY IN

ALREADYDIDLOOKFORS
LIST?

508
()
CREATE A LIST OF ALL CONNS IN CONN TO

CONN LINKS TUPLES HEARD BY CONN1 ON SAME
GROUP/PORT AS HOST1

Y 510

FOR EACH CONN DONE

(CONN2) IN LIST

NO CONN2 TO HOSTI

TUPLE IN MHL
?

514
H

INITIATE LOOKFOR FOR CONN2 TO HOST!
(VIA TUPLE MANAGER)

y

Y

ADD CONNI GROUP/PORT "TUPLE COMPONENT" (TUCQ) ~— 516
TO ALREADYDIDLOOKFORS LIST

94

janir
Typewritten Text
94

MORE CONNI NO

FIG. 16a

DONE _ TO BLOCK
540
OF
FIG. 16b

GROUP/PORT TUPLES
IN MHL?

EXISTING
N-ARY M?HS TUPLE

NO 526
d

i
CREATE MHS TUPLE

F

) 528

HOSTI AL@‘/\YES

IN MHS TUPLE?

532

FOR REMAINING

DONE
MHL TUPLE WITH

FERENCE TO HOST1?
DO

CONSIDER CONN2

CONNI-TO-CONNZ2
TUPLE IN CONN-TO-CONN LINKS TUPLE ON S
GROUP/PORT AS 9CONN1-T0-HOST

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME
CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

Y

95

Y

janir
Typewritten Text
95

18726

FIG. 16b

FROM BLOCK 518

XISTIN
SHS TUPLE FOR
CO{;\TN

NO ?;16

CREATE SHS TUPLE

<l

1
ADD HOST TUCO TO SHS
‘ .

96

janir
Typewritten Text
96

19/26

FIG. 17

934
=

CONVERT TOPOLOGY
INTO TUPLE
LISTS

y %6

COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD
INDENTICAL TUPLES

Y ?,38

TAKE ACTION ON
CHANGES TO TOPOLGY

97

janir
Typewritten Text
97

EXISTING SHS
"TOPQ TUPLE" FOR
SEGMENT ?

FIG. 18a

CREATE A TOPO SHS TUPLE

F

ADD TUCO FOR
INTERFACE’SS Eg)ST TO TOPO

EXISTING MHS
FOR CONN1?

CREATE A TOPO MHS TUPLE

.

A

ADD TUCO FOR HOST TO MHS TUPLE

TO BLOCK 580
OF FIG. 18b
.| FROM
1 BLOCKS
[582,590,
598 OF
FIG. 18b

CONNIFACE
ONNECTEDgO A

QTHER C
(CO’\'NZ)

NO

(’)

]
CREATE CONN LINKS TUPLE FOR
CONNI & CONN2

Y

_—

janir
Typewritten Text
98

21/26 FROM BLOCK 552
580

OFFIG. 18a

NODE IN

YES DEFAULT SEGMENT?

582
2

FIG. 18b

CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

588
=
CREATE SHS TUPLE
T
ADD TUCO FOR NODE TO SHS TUPLE
 — T
EXISTING YES
MHS 'gUPLE
- 596
et
Y CREATE MHS TUPLE
TO
BLOCK 550 : 598
OFFIG. 18a ADD TUCO FOR NODE TO MHS TUPLE —
]

99

janir
Typewritten Text
99

22/26

FIG. 19

FOR EACH TUPLE
IN NEW
TUPLES (NT)

602
=

1
LOOK FOR EXACT MATCH IN CURRENT TUPLES

604

NO
EXACT MATCH FOUND?

YES - 606
=

A
MARK NT AS "NO CHANGE"

\

"

100

janir
Typewritten Text
100

23/26

40¢ "OI 40
07930014 OL

HNOd

«JTANVH. SV

SHTANL QXL YAVI
> i
319
_
MOLDANNOD NO T TANVEL SV
SN0 (VAL X4 SHIANL QIXE YAYI
= e I
919 719
; OLDANNOD NO
SN SN A SLA0d CRAdYAS X
T1d0L HOVA ¥0d o

19

A

b
SHI{LL SHS MAN NI

HNOd

1L ROV 404

v0¢ DI4

101

janir
Typewritten Text
101

YOLDANNOD 40 MOLDANNOD 40 AD0T0d0L NOLLOANNOD AD0T0dOL qLNGTYLLY
INAWDES YVLS INANOAS AVIS NI NOLLDFNNOD A0 1dAL NI NOLLDANNOD NOLLDANNOD
OINIISOH FAOW ,OINI ISOH 9AOW ISOHAAON INEWDES BONVHD || | ISOHFAOW . LSOH HONVHD
-] r i e (ol - [t
$£9 879 979
124 0¥9 9¢9 Sax -
i i
THS 0D THS ¥ND
i ANV THS MAN NI ODNL NV ‘THS MAN NI ODNL
SHA NNOD ONIHDLYIW ON NNOD ONTHDIVIY
i
¥
NI GNAOA
THS MAN 30 ISOH .
Q ¢ THS 400 NI CNOOd 3
~ —
3 THIN ¥0D NI ANNOA
N THS MEN 40 LSOH THS MENHO LSOH

d1d0L
"THS AHNAVIANA
HOVH 404

b
00 40D
NIAN04
JHS MEN 0 LSOH

207 DI 0
979500 TH OL

(4

q0¢ DId

_A
0T "D H0
P19200Td WO

janir
Typewritten Text
102

A
_ L

XDOT0d0L NOILDANNOD 40 0070401 SINANLLY 000401 NOTLOANNOD
NI NOLLDANNOD INADES §1S | | NINOLDANNOO| | NOLOENNOO || NINOLLJANNOD A0 9dAL
. LSOHEAON (OINI 1SOH FAOW ISOHEAOW | | | ISOHEONVED || . 1SOHEAOK INENDAS EONVHD
= = =
o9 4 099 4 750 099 79 799

SHA

SHA

b
THS 0D
ANV THIN MHN NI OO(1L
NNOD ONIHOLVIA

b
"THIN MEN
ANV THW 0D NI 0ONL
NNOD ONIHOLVIN

ON

6
TOAND
NIANOOd
THS MAN 40 LSOH

b
"THS A0 NI ANOL
"THA MIN 40 LSOH

25726

b
"THS 4010 NI AN(10d
"THN MEN 40 1SOH

b

; @o%zﬂ&w p0¢ D140 (THIW MEN NI H AL
THN MAN 10 ISOH LHAD0TE OL TLRAVAND HOVE 904

20¢ DId

vy
_

90T ‘DI H0
07930014 WO¥A

103

janir
Typewritten Text
103

26/26

O

!
JNAWDHS LTV4Ha
OLNIAOW A'TNOHS
NNODALSOH 1] 34§ OL

DLINODRIEWLL X03H)

{TON MAN NI H1d1L

CENAYIAND HOVH ¥0d

/

A

ADOTOdOL NOILOANNOD SNNGD 404
NINOILDANNOD 40 SHLOMIALLY JNAWOES INIOd-OL
, LSOHHAOW NOILOANNOD HONVHD| | -JNIOd MEN HIVEID

vw\o A

SHA

b
T00AND NTANNOA 'TD
MIN A0 NNOD HOVA

SHA

b
TOUND NIANNOA T
MENJ0 NNOJ HOVH

ANOA

i

AIVIAND HOVH ¥04d

919 ,

SHA

CTHNAND Y0
THS N0 NIANNOA 1D
MEAN A0 NNOD HOVH

(10 AEN NTHTA(LL

907 ‘DI 40

POZ ‘OLI SHonoH

104

janir
Typewritten Text
104

PATENT APPLICATION

.

L&

DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET NO. 10008102-1
FOR PATENT APPLICATION

As a below named inventor, | hereby declare that:
My residence/post office address and citizenship are as stated below next to my name;
| believe | am the original, first and sole inventor {if only one name is listed below) or an original, first and

joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

Method And System For Identifying And Processing Changes To A Network Topology

the specification of which is attached hereto uniess the following box is checked:

{) was filed on as US Application Serial No. or PCT international Application
Number and was amended on (if applicable).

| hereby state that | have reviewed and understood the contents of the above-identified specification,
including the claims, as amended by any amendment(s) referred to above. | acknowledge the duty to
disclase all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application{s) and/or Claim of Foreign Priority

| hereby claim foreign priority benefits under Title 35, United States Code Section 118 of any foreign application(s) for patent or
inventor{s} certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a
filing date before that of the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 U.S.C. 119
N/A YES: NO:
YES: NC:

Provisional Application

| hereby claim the benefit under Title 35, United States Code Section 119{e} of any United States provisional application{s) listed
below:

APPLICATION SERIAL NUMBER FILING DATE

N/A

U. S, Priority Claim
| hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 36, United States Code Section 112, | acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS {patented/pending/abandoned)

N/A

POWER OF ATTORNEY:
As a named inventor, 1 hereby appeint the following attorney{s} and/or agent(s) to prosecute this application and transact all
business in the Patent and Trademark Office connected therewith:

Place Customer
Customer Number | 022879 Number Bar Code

Label here
Send Correspondence to: Direct Telephone Calls To:
HEWLETT-PACKARD COMPANY
Intellectual Property Administration T. Grant Ritz
P.O. Box 272400
Fort Coliins, Colorado 80527-2400 (970) 898-0697

| hereby declare that all statements made herein of my own knowledge are true and that all statements
made on infarmation and belief are believed to be true; and further that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements
may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A Pulsipher Citizenship: US
Residence: 2937 Redburn Drive Ft Collins CO 80525
Post Office A dreds: 7 Sapne as residence

12y o102

Inventpr's @g}fa!u:re / Date

Rev 10/Q0 (D wr); (Use Page Two For Additional Inventor(s} Signature!s)} Page 1 of 2

janir
Typewritten Text
105

§

»
DECLARATION AND POWER OF ATTORNEY ATTORNEY DOCKET No._10008102-1

FOR PATENT APPLICATION {continued)

Full Name of # 2 joint inventor: Joseph R Hunt (. citizenship:__US

S5 Habns Peet W
Residence: S84t Meador Orethain Loveland. G0’ 80538

Post Office Address: Same as Residence

/3!)80

fiventoy s ggnature * Date 7

Full Name of # 3 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor' s Signature Date

Full Name of # 4 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor s Signature Date

Full Name of # b joint inventor: Citizenship:

Residence:

Post Office Address:

Invenior's Signhature Date

Full Name of # 6 joint inventor: Citizenship:

Residence:

Post Office Address:

Iventof s signature Date

Full Name of # 7 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor § Signature Date

Full Name of # 8 joint inventor: Citizenship:

Residence:

Post Office Address:

Inventor's Signature Date

Rev 10/00 {DecPwr) (Use Page Two For Additional Inventor(s) Signature(s))
106 Page 2 of 2

janir
Typewritten Text
106

AN i e

§
¥
H
|
¢

g W et | PATENT NUMBER .
oy £ |

U.S: UTILITY Patent Application

\/\ O.LP.E. A/ PATENT DATE
[oar .o
e - EXAMINER
APPLICATION NO. CONT/PRIOR | CLASS suacs.fS ART UNIT | "
09/703942 370 25 "f Y 2 -’—?’w?-i‘%—} = ad
_ T Sild72
Eric Pulsiphar
% J.r:.;eph Humt
Q
-
a.
z) e e =
Mathod and system for identify irg and processing chanass = =
w ' Fretwork faopoloay . :)
g B t A ‘ s MM
F _ €s! Available ¢ opy 78
ISSUING CLASSIFICATION
ORIGINAL] ' CROSS REFERENCE(S)
CLASS SUBCLASS CLASS - SUBCLASS (ONE SUBCLASS PER BLOCK)

INTERNATIONAL CLASSIFICATION

Continued-on Issue Slip Inside Fite Jacket

DTERMINAL ' DRAWINGS CLAIMS ALLOWED
DISCLAIMER Sheets Drwg. | Figs. Drwg. | Print Fig: Totat Claims Print Claim for C.G.
] The term of this patant NOTICE OF ALLOWANCE MAILED
subsequent to {date)
has been di d S - {Assistant Examiner) (Data)
[e term of this patent shall
not extend beyond the expiration date
of U.S Patent. No. ISSUE FEE
Amount Dus Date Paid
(Prirmary Examinar) (Oxe)
ISSUE BATCH NUMBER
3 The terminat —winonths of
this patent have bsen dt i
{Lagal tnstrumenms Examiner) (Daa)
WARNING:
The information disclossd hereln may bs u may be p &y the United Statas Cods Titte 35, Sactinns 122, 181 and 368.
Pessassion outside the U.S. Patent & Tt Office Is restricted to \ployoes and only.
Fom PTO-4S3A FILED wiTh: [] isk (cRF) [JricHE [[] co-rRom
{Anachod In pociet on right inside fiap)
{FACE)

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
107

e

L e

Best Available Copy

SEARCHED SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

Class Sub.

Date Exmr.

Date Exmr.
3‘7(7 229 G/u/oy wes b"f‘gifﬂ Spo

5(/2‘["7 weS
2i6
7
22
225"
254
2258
256

2
s |\

INTERFERENCE SEARCHED
Class Sub.

Date Exmr.

(RIGHT OUTSIDE)

108

janir
Typewritten Text
108

ISSUE SLIP STAPLE AREA (for additi~nal cross references)

| AdoD eicoiony 52

POSITION INITIALS 1D NO. DATE
FEE DETERMINATION
O.1.P.E. CLASSIFIER g ;/— 25 %0
FORMALITY REVIEW o "9SS - -]
RESPONSE FORMALITY REVIEW i
INDEX OF CLAIMS
Ve Rejected Non-elected
T e Allowed Interference
— (Through numeral)... Canceled Appeal
e Restricted Objected
Claim < Date Claim Date Claim Date
_|E] 2 g
kS k) |5
£1Zhor e HE
1 51 101
2N 52 102
3l 53 103
A 54 104
51\ 55 hos
61\ 56 106]
J 2N 57 107
8 58 08|
FIN 59 09
F10{ % 60 10
1 61 111
12N 62 112
13 63 113
1aRJ 64 114]
B 65 115
16 66 116]
17N 67 117
18H 68 118]
191N 69 119]
20N 70 lt20
21 71 121
22 72 122
23 73 123
24 74 124]
25 75 125
26 76 26
27| 7 77 h2r
B gL 78 128
79 29|
30 80 [130
31 81 131
32 82 132
33 83 133
34 84 134
35 85 35
38 86 1136
37 87 137
38 88 38
39 89 h3g
g 90 40)
41 g1 141
424 92 had
43 03 had -
44 94 had
45 95 45
48 96 5]
4717 a7 147,
48 98 148
{9 89 hiad
50 hog fi50

If more than 150 claims or 10 actions

staple additional sheet here

wertinsiogy 109

janir
Typewritten Text
109

/1¢/01

00

-y

.

< 0.96601

!

aio—
m——n
e~
==
m——

== XVashington, D.C. 20231

"HEWLETT-PACKARD COMPANY

Intellectual Property Administration
.P. 0. Box 272400

Fort Collins, Colorado 80527-2400

A o2

ATTORNE

1

"D O. PATENT APPLICATION

CKET NO. 10008102-1

IN THE U.S. PATENT AND TRADEMARK OFFICE
Patent Application Transmittal Letter

L£OMMISSIONER FOR PATENTS

Sir:

Transmitted herewith for filing under 37 CFR 1.53(b} is a(n): {X) Utility
{X) original patent application,
{)} continuation-in-part application

INVENTOR(S): Eric A Pulsipher et al

TITLE:

Enclosed are:

(X) The Declaration and Power of Attorney. {X) signed

{
(

I

o

{)} Design

Method And System For Identifying And Processing Changes To A Network Topology

) unsigned or partially signed

} Associate Power of Attorney

(X) __ 26 sheets of drawings (one set)
(} Form PTO-1448 {)} Information Disclosure Statement and Form PTO-1449
() Priority document(s) (}{Other) (fee $)
CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY
i1 2) (3) (4) {5)
FOR NUMBER FILED NUMBER EXTRA RATE TOTALS
TOTAL CLAIMS 20 — 20 o X $18 $ 0
NctAms 3— 3 0 X $80 s 0
|oEPENGENT CLAIMS 0 $270 ¢ 0
BASIC FEE: Design ($320.00); Utility {$710.00) $ 710
TOTAL FILING FEE $ 710
OTHER FEES $
TOTAL CHARGES TO DEPOSIT ACCOUNT $ 710

Charge $ 710

to Deposit Account 08-2025. At any time during the pendency of this application,

please charge any fees required or credit any over payment to Deposit Account 08-2025 pursuant to 37

CFR 1.25.

Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.16,

1.17,1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed.

"Express Mail” label no. EL523338183US

Date of Deposit QOct. 31, 2000

| hereby certify that this is being deposited with the
United States Postal Service "Express Mail Post
Office to Addressee” service under 37 CFR 1.10 on
the date indicated above and is addressed to:

Commissioner f Patents, Washington, D.C.

20231. g/

By 7L ﬁ//ZJ
[hd [y

Typed Name: laura M. Clark

Rev 10/00 {TransNew)

- Attach as First Page to Transmitted Papers -

Respectfully submitted,

Eric A Pulsipher et al

By T/J/ //
T. Grant Ritz

Attorney/Agent for Applicant({s}
Reg. No. 39,819

Date: Qct. 31, 2000

Telephone No.: (970) 898-0697

janir
Typewritten Text
110

- HEWLETT-PACKARD COMPANY ’“ "OQ\ "‘OD PATENT APPLICATION

intellectual Property Administration

;P. 0. Box 272400 : ATTORNE.)CKET No. 10008102-1

1

PR

o
E== QFort Caliins, Colorado 80527-2400
— ==
=== IN THE U.S. PATENT AND TRADEMARK OFFICE
===9q Patent Application Transmittal Letter
==
== @OMMISSIONER FOR PATENTS - o
== QVashington, D.C. 20231 e =
= o ==
Sir: P
Transmitted herewith for filing under 37 CFR 1.563(b)} is a(n): X) Utility () Design 58 =
— ==
{X) original patent application, g;;

() continuation-in-part application & = .
"y ———

INVENTOR(S): Eric A Pulsipher et al

TITLE: Method And System For Identifying And Processing Changes To A Network Topology

Enclosed are:

(X) The Declaration and Power of Attorney. {X) signed { } unsigned or partially signed
' Xy _26 sheets of drawings (one set} (} Associate Power of Attorney
f;: (} Form PTO-1449 {) Information Disclosure Statement and Form PTO-1449
{ } Priority document(s) (}(Othen (fee ¢)
£l CLAIMS AS FILED BY OTHER THAN A SMALL ENTITY
a h 2y {3) {4} {5}
:; FOR NUMBER FILED NUMBER EXTRA RATE TOTALS
o TOTAL CLAIMS 20 — 20 (4] X $18 $ 0
INDEPENDENT
CLAIMS 3 — 3 o] X $80 $ 0
ANY MULTIPLE
= DEPENDENT CLAIMS 0 $270 $ 0
,‘n BASIC FEE: Design ($320.00); Utility ($710.00 } $ 710
TOTAL FILING FEE $ 710
OTHER FEES $
TOTAL CHARGES TO DEPOSIT ACCOUNT $ 710
Charge $ 710 to Deposit Account 08-2025. At any time during the pendency of this application,

please charge any fees required or credit any over payment 1o Deposit Account 08-2025 pursuant to 37
CFR 1.25. Additionally please charge any fees to Deposit Account 08-2025 under 37 CFR 1.186,
1.17.1.19, 1.20 and 1.21. A duplicate copy of this sheet is enclosed. :

"Express Mail" label no. EL523338183US

Respectfully submitted,
Date of Deposit Qct. 31, 2000

. . i Isi
| hereby certify that this is being deposited with the Eric A Pu snpher etal
United States Postal Service "Express Mail Post

Office to Addressee” service under 37 CFR 1.10 on ﬂ

the date indicated above and is addressed to: By T_n/

Commissioner f Patents, Woashington, D.C. 4 v

20231. ML/ T. Grant Ritz

By < L / 4 Attorney/Agent for Applicant(s)
Typed Name: Yaura M. Clark Reg. No. 39,819

Date: Qgct. 31, 2000
Telephone No.: (970) 898-0697

Rev 10/00 (TransNew) - Attach as First Page to Transmitted Papers -

111

janir
Typewritten Text
111

En il

e fe e 0

U I

1/26

(100

/110

/ 121

/ 122

112

———

janir
Typewritten Text
 112

==
ot
£
=
£
=

2/26

113

janir
Typewritten Text
113

it W o 0 1

SRR

3/26

OOOOOO

114

janir
Typewritten Text
114

L

T N i TR

4/26

- FIG. 4

115

janir
Typewritten Text
115

L

i o 1

e

A

OO0

—LT\

OOOOOO

110

116

janir
Typewritten Text
116

et o 5 0

IR

FIG. 6

117

janir
Typewritten Text
117

é SLSANOTY - L DI

&Emzo;ﬁmmzoE\Ea%%%
SAIHSNOLLY T3 A00T0d0L a300aTY
| (INANYIRIAL-ISYNO)
~ VLVA JOgHOIEN

@Iond=y 1v SdNM00T

SdM00T
WYIVA JOGHOIAN.

—01¢

)

(SHIONIANNJHY

YALIHANOD

JOLVINDTYO 02

A5070d0L NOILDENNOD
SNIVINOD TIILS)
-7V WVIVQOYOEHOMAN, 41vadN

O obe VIVQ YOGHOIN, e, NV ANHOOT ALVEYD

Q - qIdNA A1vadn ((AQvEY LNdNI

= ANY dN00T FLVRD T 04 300T) NOLLYOI1ddY TVNYELXE

(GsIsdndEm
) 404 400 -~ LT ¥Esn
€0040L \

N\ 00T 0dOL

ST10d
N HONOYHL ONIIHHIVD
08¢ VLV @dSvd-1000104d

I e W e 8 e o B

118

janir
Typewritten Text
 118

b 0l

[
1

TR O O 8 R

902
‘,)

8/26

904
e

906
=

908
e

PHASE

PHASE

PHASE

A \
DATA GATHERING |, | TUPLE BUILDING} , |TUPLE REDUCTION|,{ TOPOLOGY
UPDATING PHASE

\

910
)

RECEIVE START
SIGNAL

l 912
-

LOOK UP EXISTING
DEVICES IN TOPOLOGY
DATABASE

914

\ g

QUERY NODES

l 916
: e
CREATE TUPLES

l 918
=

STORE TUPLES IN
NEIGHBOR DATABASE

l 920
o

GATHER
ADDITIONAL DATA

AS REQUESTED

FIG. 9

FIG. 8

119

922
o

\
FIRST WEEDING
PHASE

Y 2

INFRASTRUCTURE
BUILDING
PHASE

¢

\
SECOND WEEDING

PHASE

|

NOISE REDUCTION

...PHASE

pw

LOOK-FOR
PHASE

Vom
e

CONSOLIDATION
PHASE

FI1G. 10

janir
Typewritten Text
119

WA el o 0 1

A

402

FOR
EACH DONE

9/26

TUPLE

DO

404

O

418
2

FIG. 11

TUPLE IS A CONN

CONNTOHOST \\NO
TUPLE
?

YES

406

CONN NO
ONLY HEARS THIS

\

TO CONNLINK

HOST ON GROUP 1
PORT ?

YES

408

HOST HEARD N
SINGLY BY ANY 0

OTHER
CO;\IN

410
c

TUPLE IS A SINGLY-
HEARD CONFLICT
LINK

——
l‘
3

b

Y 416

\

TUPLEIS A SHHL

TUPLE IS A MHHL

414
]

MOVE TUPLES FOR
THIS HOST TO EHL

1

120

janir
Typewritten Text
120

10/26

Q

DONE FOR EACH

SHHL TUPLE

TO BLOCK =
430 OF FIG.12b

FOR
EACH TUPLE
INEHL

Pt o 0

CONN TO CONN

LINK TUPLE FOR

EHL-CONN TO SHHL-

"N " CONN
9

YES

e

¥ 428

UPDATE TUPLE
IF NOT COMPLETE

426
K‘

CREATE EHL CONN TO SHHLCONN
TUPLE IN CONN TO CONN LINK

1.

-l

FIG. 12a

121

janir
Typewritten Text
121

A o e O i

‘ | |

FROM BLOCK 420
OF FIG. 12a 11/26

DONEN CONN-TO-CONN

FIG. 12b
FOR EACH
CONNECTOR IN DONE TO BLOCK 444
(CONND) OFFIG. 12¢

FOR
EACH OTHER
CONNECTOR IN

TUPLES
(CONN2)

CONN1TO YES CONN2
CONN2 HEARS CONN3
EXISTS IN ON UNIQUE

PORT

TUPLES
? ?

CONNI
HEARS?CONNZ%

EACH CONN2 TO
OTHER CONNECTOR
CONN3) IN CONN,,
TO-CONN

CREATE CONN1 TO CONN2
TUPLE IN CONN TO CONN
LINKS

Y

122

janir
Typewritten Text
122

R e 0 N 0

FROM BLOCK 430 OF FIG. 12b 12/26

—

FOR EACH
CONN TO CONN LINKS
TUPLE

DONE

INCOMPLETE
GROUP/ PORT
DATA FOR
CONN2?

448 VES Y
i
LOOK FOR DIFFERENT TUPLE
INVOLVING CONN1 IN
EHL ON
DIFFERENT GROUP/PORT

CONN2 ALSO
HEARS -
HQ}ST

FILL IN MISSING
GROUP/PORT FOR
CONN2

Y

123

TO BLOCK 456
OF FIG. 12d

FIG. 12¢

janir
Typewritten Text
123

ST E T el 0

13/26
FROM BLOCK 444 OF FIG. 12¢

lA
e}

FOR EACH
CONN TO CONN LINKS
' TUPLE

DONE

CONSIDER CONNI
AND CONN2
OF THIS TUPLE

MOVE THIS TUPLE
TO EXTRA CONN
LINKS

S

124

FIG. 12d

janir
Typewritten Text
124

U0 o R TR W

14/26

FOR EACH

DONE SCL

TUPLE (SEARCH TUPLE)

468
o

CONSIDER CONN1 AND HOST1 OF SEARCH TUPLE

»Y

470

FOR EACH
EHL
TUPLE CONTAINING
HOST1

CONSIDER CONN2 OF TUPLE

TUPLE IN CONN

NO TO CONN LINKS FOR

CONN2 AIgD CONNI

N CONN2 TO HOSTI

TUPLE?IN EHL

GROUP/PORT

NO__—~SAME FOR CONN2 HEARING

A

CONN1 <§£ HOST1

DONE

FIG. 13

MOVE SEARCH TUPLE TO SHHL

i

432
o

REMOVE OTHER TUPLES CONTAINING HOST1 FROM SCL

Y

125

janir
Typewritten Text
125

I B el 0 o

15726 Q

FOR EACH

DONE MEHL

TUPLE (SEARCH TUPLE

DO 486
-~

- 1
CONSIDER CONNI AND HOSTI
»¥

s

488

FOR EACH
EHL
TUPLE CONTAINING
HOST1

CONSIDER CONN2

TUPLE IN CONN

NO TO CONN LINKS FOR

CONN2 AIiD CONNI

NO CONN2 TO HOST1

+ TUPLE IN EHL?

GROUP/PORT

NO DIFFERENT FOR CONN2

A

ARING CO;*INI & HOST

DONE

FI1G. 14

janir
Typewritten Text

janir
Typewritten Text
126

W T e e e 0 R

Q 16/26

FOR EACH

FIG

DONE

CONSIDER CONN1 AND HOSTI

CONN1 GROUP/

YES PORT ALREADY IN

ALREADYDIDLOOKFORS
LIST?

508
.
CREATE A LIST OF ALL CONNS IN CONN TO

CONN LINKS TUPLES HEARD BY CONN1 ON SAME
GROUP/PORT AS HOST1

o

Y

510
FOR EACH CONN DONE

.15

(CONN2) IN LIST

NO CONN2 TO HOST1

TUPLE IN MHL
?

INITIATE LOOKFOR FOR CONN2 TO HOST!
(VIA TUPLE MANAGER)

y

Y

ADD CONNI1. GROUP/PORT "TUPLE COMPONENT" (TUCO) 1

L 516

TO ALREADYDIDLOOKFORS LIST

127

janir
Typewritten Text
127

U R) R W R R

QO 17126

FOR EACH
MHL
TUPLE

DONE

540
OF
FIG. 16b

520
=

CONSIDER CONN1AND HOST1

MORE CONNI NO

318 FIG. 16a

TO BLOCK

GROUP/PORT TUPLES

EXISTING
N-ARY M‘I;IS TUPLE

Y
~"ADD HOSTI TO MHS TUPLE
| B
' - A

532

FOR REMAINING

DONE
MHL TUPLE WITH

FERENCE TO HOST12
DO

CONSIDER CONN2

534-
-

CONNI1-TO-CONN2
TUPLE IN CONN-TO-CONN LINKS TUPLE ON SA
GROUP/PORT AS gIONNl-TO-HOST

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME
CONN2 GROUP/PORT AS CONN1-TO-CONN2 IN CURRENT MHS TUPLE

1

|

128

g

janir
Typewritten Text
128

BT D R

[}
i

SRR

18726

FIG. 16b

FROM BLOCK 518

EXISTING
.- .SHS TUPLE FOR
o CO;\IN

NO 46

CREATE SHS TUPLE

—
-

y %8

\
ADD HOST TUCO TO SHS

l

129

janir
Typewritten Text
129

DT B

e
=
T

19/26

FIG. 17

934
)

CONVERT TOPOLOGY
INTO TUPLE
LISTS

936
-

COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD
INDENTICAL TUPLES

938
-

T A REACTIONON
CHANGES TO TOPOLGY

130

.......... —

janir
Typewritten Text
130

EEI T et e 0 L

$

A O) 20/26
550
OR EACH NODE IN TOPOLOGY
DONE
DO 552

IS NODE A CONN?

554
FOREACH
ONNECTED INTERFACE (CONNIFACE) O
CONN (CONNI
DO 556
T
CONNECTEDTO ASTAR SEGMENT

.

|
’é
5

FIG. 18a
NO TO BLOCK 580
OF FIG. 18b
DONE FROM
VL BLOCKS
NO FIG. 18b

ADD TUCO FOR
INTERFACE’SS I}{ig)ST TOTOPO

YES 558
DONE SR EACH INTERFAC
EACH OTHER ACE
i ~ LR
DO 560
EXISTING SHS
*TOPO TUPLE" FOR YES
SEGMENT 7
NO 562
CREATE A TOPO SHS TUPLE
i 564

CREATE A TOPO MHS TUPLE
i 572
ADD TUCO FOR HOST TO MHS TUPLE | J
CREATE CONN LINKS TUPLE FOR
CONNI & CONN2
, i

131

janir
Typewritten Text
131

It o 0 i

(NN

.’ l. | .

21/26 | T~ FROMBLOCK 552
580

OF FIG. 18a

, NODE IN
DEFAULT SEGMENT?

582
o

FIG. 18b

A
CREATE UNHEARD OF LINKS TUPLE

NODE IN STAR SEGMENT?

588
<
CREATE SHS TUPLE
y
ADD TUCO FOR NODE TO SHS TUPLE
- §
| 596
e
v CREATE MHS TUPLE
TO
BLOCK 550 r 598
OFFIG. 18a ADD TUCO FOR NODE TO MHS TUPLE —
]

132

janir
Typewritten Text
132

10 0

H
i}

"

AR

22126

FIG. 19

FOR EACH TUPLE
IN NEW
TUPLES (NT)

A
LOOK FOR EXACT MATCH IN CURRENT TUPLES

604

EXACT MATCH FOUND? NO

=

MARK NT AS "NO CHANGE'

\

'A

133

janir
Typewritten Text
133

23726

40 DI 40
00930074 OL

JITANYH. SY

SHTANL AaXI YN
> A
819
_
YOLOANNOD NO JLHTANYH, SV
SINOd qdddVAMS X1 SHTANL QX VI
.\\,. (el - >
919 719
i JOLIINNOO NO
SHIN AN NI MEE (dddYMS X4
41d(11 HOVH 404 2\@

A

, b
SHTdNL SHS MIN NI

gNOd ATdNL HOVE ¥Od

N

134

janir
Typewritten Text
134

6
AW
NI aNNOd
THS MAN 40 LSOH

24/26

A
1004010

NI ANNOA
ON

YOLDANNOD H0 YOLJANNOD H0 AD0T04OL NOLLOANNOD AD07040L AINANYLLY
INAWNOES ¥VIS INTWOAS AVIS NI NOLLDANNOD A0 HdAL NI NOLLDANNOD NOLLDANNOD
\OINI ISOH 3AOW OINI LSOH HAOW ISOHAAOW | | INEWOESHONVHD || | ISOHHAOW . 1SOH RONVHD
el = (all > .\ A.\ 'l
$£9 879
m o %9 SAA SHA
i i
THS 0D THS ¥ND
ANV THS MAN NI 000 NV THS MAN NI 0JN.L
SHA NNOD ONIHDLYIW NNOD DNIHOLYIW

b
THS 410 NIANDOA

w .
THN AN NI ANNOA “THS MAN 10 ISOH

'THS MdN 40 1SOH

H1dNL
"THS AHEVIAND
HOVH 404

907 D440

B

T 1 T

q0C "OId C N
. 80 'O 40
Y190 NOU

ohe

135

janir
Typewritten Text
135

A H] >
m o

AD0T0A0L NOWDENNGOA0 | [ADoTodoL ANy ADOT0A0L NOILDENNOD
NINOLOENNOD | | INGiodswvis | |NINOILOBNNGD| | NOLLDANNGD || NINOLLDENNOO A08dAL
CISOHRAOW | | OLNIISOHEAOW | | ISOHSAOW | | | ISOHEONVED ||, ISOHTAOW | | JNAWOASZONVRD
e > > e 7

Y o9 4 g9 099 9 %9

SHA STA

6
THS NI
ANV THW MIN NI ODNL
NNOD ONIHOLYW

i
THIN MEN
ANV THA 400 NI 00NL
NNOD ONIHOLVIN

_SHA

ON

6
10800
NI N0
THS MdN 40 LSOH

{
THS 400 NI ONNOA
"THW MdN 40 LSOH

6
"THS 400 NI ANNOA
"THA MEN 40 LSOH

25/26

SaA
6
; m%%z%_ POZ O 40 {THA MAN NI 31401
THA MAN 40 LSOH 10930014 OL ~ANod AINAVIANA HOVE 404

90¢ DI

907 ‘D 40
02932014 WO¥d

LK ;

136

janir
Typewritten Text
136

26/26

O s

1 ,
INAWDAES L1NVAAd
OLNIJAOW d'1N0HS
NNOD/LSOH [448 OL

DLNODMANLL HOTH)
-
889

(100 MAN NI FTd1L

AIDIEVIANA HOVH 404

y

- SNNOD ¥0d

AD07040L NOLLDANNOD
NINOLLOBNNOD J0SIINANLIY | | INGWOES INIOd-OL
. ISOH3AOW NOLLOANNOO HONVHD| | -INIOd MAN ALYED
. -

§\@ A

SHA|

AN A0 NNOD HOVd

i
100 ¥N0 NTANNOA 'TD

e
s

b
- TAINLANDOS T
MINJO NNOD HOVd

dNOd

- P0T Ol

i
i

.

o9 A

CTHAAND YO
THS 40D NI ANNOA'TD
MAN 40 NNOD HOVH

(1) MEN NI I1dML

QY VAN HOVH 904

07 DI 40
9¥94D0'1d WO

137

janir
Typewritten Text
137

O 0 I & »n bh W

O T R
00 ~N Y W bk W N~ O

19
20
21
22
23
24
25
26
27
28

Title
Method and System for Identifying and Processing Changes to a Network Topology
Field of Invention

The present invention relates generally to computer networks. More particularly, it relates
to a method and system for identifying changes to a network topology and for acting upon the
network based on the changes.

Background

As communications networks, such as the Internet, carry more and more traffic, efficient
use of the bandwidth available in the network becomes more and more important. Switching
technology was developed in order to reduce congestion and associated competition for the
available bandwidth. Switching technology works by restricting traffic. Instead of broadcasting a
given data packet to all parts of the network, switches are used to control data flow such that the
data packet is sent only along those network segments necessary to deliver it to the target node.
The smaller volume of traffic on any given segment results in few packet collisions on that segment
and, thus, the smoother and faster delivery of data. A choice between alternative paths is usually
possible and is typically made based upon current traffic patterns.

The intelligent routing of data packets with resultant reduction in network congestion can

only be effected if the network topology is known. The topology of a network is a description of -

.the netwerk.which-.includes the.location;of and interconnections between.nodes on.the.network. . .

The word “topology” refers to either the physical or logical layout of the network, including devices,
and their cox}mections in relationship to one another. Information necessary to create the topology
layout can be derived from tables stored in network devices such as hubs, bridges, and switches.
The information in these tables is in a constant state of flux as new entries are being added and old.
entries time out. Many times there simply is not enough information to determine where to place a
particular device.

Switches examine each data packet that they receive, read the source addresses, and log

those addresses into tables along with the switch ports on which the packets were received. Ifa

packet is received with a target address without an entry in the switches table, the switch receiving it

HP No. 10008102-1 1

138

PUAERE)

janir
Typewritten Text
138

HOWON

[« TN« TN~ NN B o S

- 1

]
. | .

broadcasts that packet to each of its ports. When the switch receives a reply, it will have identified
where the new node lies.

In a large network with multiple possible paths from the switch to the target node, this table
can become quite large and may require a significant amount of the switch’s resources to develop
and rr_xaintain. As an additional complication, the physical layout of devices and their connections
are typically in a state of constant change. Devices are continually being removed from, added to,
and moved to new physical locations on the network. To be effectively managed, the topology of a
network must be accurately and efficiently ascertained, as well as maintained.

~ Existing mapping methods have limitations that prevent them from accurately mapping -
topological relationships. Multiple connectivity problems are one sort of difficulty encountered by
existing methods. For example, connectors such as routers, switches, and bridges may be
interconnected devices in a network. Some existing methods assume that these devices have only a
single connection between them. In newer devices, however, it is common for manufacturers to
provide multiple connections between devices to improve network efficiency and to increase
capacity of links between the devices. The multiple connectivity allows the devices to maintain
connection in case-one connection fails. Methods that do not consider multiple connectivity do not
present a.complete and accurate topological map of the network.

Another limitation of existing topology methods is the use of a single reference to identify a

device: Existing methods.use a reference interface or: areference address in,a.set.of devices to

orient all other devices in the same area. These methods assumed that every working device would
be able to identify, or “hear,” this reference and identify it with a particular port of the device. With
newer devices, however, it is possible that the same address or reference may be heard out of

multiple ports of the same device. Itis also possible that the address or reference may not be heard

- from any-ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that they require a complete copy of
the topological database to be stored in memory. In larger networks, the database is so large that

this really is not feasible, because it requires the computer to be very large and expensive.

HP No. 10008102-1 2

139

janir
Typewritten Text
 139

=
a2
i

N o A

O 0 N O bW

R I T T T O R S S S i~ T O el =
BN BRI BT E S - &8 ®» 9 o v b w M= O

s

Still another difficulty with existing systems is that they focus on the minutia without
considering the larger mapping considerations. Whenever an individual change in the system is
detected, existing methods immediately act on that change, rather than taking a broader view of the
change in the context of other system changes. For example, a device may be removed from the
network temporarily and replaced with its ports reversed. In existing systems, this swapped port
scenario could require hundreds or thousands of changes because the reference addresses will have
changed for all interconnected devices.

Still another disadvantage of existing methods is that they use a continuous polling paradigm.
These methods continuously poll network addresses throughout the day and make decisions based
oﬁ, those continuous polling results. ThisAcreates traffic on the network that slows other processes.

Still another lirhitation of existing methods is the assumption that network parts of a
particular layer would be physically separated from other parts. Network layer 1 may represent the
physical cabling of the network, layer 2 may represent the device connectivity, and layer 3 may
represent a higher level of abstraction, such as the groupings of devices into regions. Existing
methods assume that all layer 3 region groupings are self-contained, running on the same unique
physical networking. However, in an internet protocol (IP) network, multiple IP domains may co-
exist on the same lower layer networking infrastructure. It has become common for a network to

employ a virtual local area network (LAN) to improve security or to simplify network maintenance,

~for example. Using virtual LANs, a system may have any number of different IR. domains sharing

' the same physical connectivity. Asa result, existing methods create confusion with respect to

topological mapping because networks with multiple IP addresses in different subnets for the
infrastructure devices cannot be properly represented because they assume the physical separation
of connectivity for separate IP domains. Still another limitation of existing methods is that they do

not allow topological loops, such as port aggregation or trunking, and switch meshing.

Summary of Invention
A method and system are disclosed for mapping the topology of a network having

interconnected nodes by identifying changes in the network and updating a stored network topology

HP No. 10008102-} 3

140

janir
Typewritten Text
140

S
R

U S o

s

based on the changes. The nodal connections are represented by data tuples that store information
such as a host identifier, a connector interface, and a port specification for each connection. A
topology database stores an existing topology of a network. A topology converter accesses the
topology database and converts the existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the new topology. The topology converter
receives the new tuples, identifies changes to the topology, and updates the topology database using
the new tuples. The topology converter identifies duplicate tuples that appear in both the new tuples
and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
connections. The topology converter attempts to resolve swapped port conditions and searches for
new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
converter also searches for new conflict link tuples in the existing tuples. The topology converter
updates the topology database with the new topology.
Summary of Drawings

Figure 1 is a drawing of a typical topological bus segment for representing the connectivity
of nodes on a network.

Figure 2 is a drawing of a typical topological serial segment for representing the connectivity
of nodes on a network.

Figure 3 is a drawing of a typical topological star segment for representing the connectivity

.ofinodes on.a network. : , ©r s eeEe

Figure 4 is a drawing of another typical topological star segment for representing the
connectivity of nodes on a network.

Figure 5 is a drawing of the connectivity of an example network system.

Figure 6 is a drawing of the connectivity of another example network system.

Figure 7 is a block diagram of the system.

Figure 8 is a flow chart of the method of the system.

Figure 9 is a flow chart of the method used by the tuple manager.

Figure 10 is a flow chart of the method used by the connection calculator.

HP No. 10008102-1 4

141

janir
Typewritten Text
141

IR E 0T 5 0 000

O 00 2 O »n b W

NN RN N R R R e e e e e e e e
\IO\UI-QUJNP-‘O\OOO\]O\UI-&WNHO

ax

Figure 11 is a flow chart of the first weeding phase of the method used by the connection

calculator.

Figures 12a-d are flow charts of an infrastructure-building phase of the method used by the

connection calculator.

Figure 13 is a flow chart of a second weeding phase of the method used by the connection

calculator.

Figure 14 is a flow chart of the noise reduction phase of the method used by the connection

- calculator.

Figure 15 is a flow chart of the look-for phase of the method used by the connection

calculator.
~Figures 16a-b are flow charts of the consolidation phase of the method used by the
connection calculator.
Figure 17 is a flow chart of the method used by the topology converter.
Figures 18a-b are flow charts of the morph topo phase of the method used by the topology

converter.

Figure 19 is a flow chart of the duplication discard phase of the method used by the

topology converter.

Figures 20a-d are flow charts of the identify different tuples phase of the method used by

. the topologY CONVEITET. wms . i wwtoeees o ohen o adew o C e e e ez

Detailed Description
The system provides an improved method for creating topological maps of communication
networks based. Connectivity information is retrieved from the network nodes and stored as
“tuples” to track specifically the desired information necessary to map the topology. These light
weight data structures may store the host identifier, interface index, and a port. From this tuple
information, the topology may be determined. A tuple may be a binary element insofar as it has two
parts representing the two nodes on either end of a network link or segment. A “‘tuco” refers to a

tuple component, such as half of a binary tuple.

HP No. 10008102-1

142

janir
Typewritten Text
142

O 00 N G b b W e

— b ek pemd b ek ek ek e
0 ~1 O Wun A W N = O

19

20
21
22
23
24
25
26
27

As used herein, a node is any electronic component, such as a connector or a host, or
combination of electronic components with their interconnections. A connector is any network
device other than a host, including a switching device. A switching device is one type of connector
and refers to any device that controls the flow of messages on a network. Switching devices
include, but are not limited to, any of the following devices: repeaters, hubs, routers, bridges, and
switches.

As used herein, the term “tuple” refers to any collection of assorted data. Tuples may be
used to track information about network topology by storing data from network nodes. In one use,
tuples may include a host identifier, interface information, and a port specification for each node.
The port specification (also described as the group/port) may include a group number and a port
number, or just a port number, depending upon the manufacturer’s specifications. A binary tuple
may include this information about two nodes as a means of showing the connectivity between them,
whether the nodes are connected directly or indirectly through other nodes. A “conn-to-conn”
tuple refers to a tuple that has connectivity data about connector nodes. A ‘“conn-to-host” tuple
refers to a tuple that has connectivity data about a connector node and a host node. In one use,
tuples may have data about more than two nodes; that is, they may be n-ary tuples, such as those
used with respect to shared media connections described herein.

A “singly-heard host” (shh) refers to a host, such as a workstation, PC, terminal, printer,

.«other device, etc., that.is.connected directly.to a connector, such as a switching device. A singlys. .

heard host link (shhl) refers to the link, also referred to as a segment, between a connector and an
shh. A “multi-heard host” (mhh) refers to hosts that are heard by a connector on the same port that
other hosts are heard. A multi-heard host link (mhhl) refers to the link between the connector and
an mhh. A link generally refers to the connection between nodes. A segment is a link that may
include a shared media connection.

Figure 1 is a drawing of a typical topological bus segment 100 for representing the
connectivity of nodes on a network 110. In Figure 1, first and second hosts 121, 122,aswell as a

first port 131 of a first connector 140 are interconnected via the network 110. The bus segment

HP No. 100081021

143

janir
Typewritten Text
143

i
|
3
=3

U R Y

I

DN e

oo SERN SR o SRR BN o N O, T S M

12
13
14
15
16
17
18

.19,

20
21
22
23
24

.25

26
27

)

100 comprises the first and second hosts 121, 122 connected to the first port 131 of the first
connector 140.

Figure 2 is a drawing of a typical topological serial segment 200 for representing the
connectivity of nodes on the network 110. In Figure 2, the first host 121 comprises a second port
132 on a second connector 145 which is connected via the network 110 to the first port 131 on the
first connector 140. The serial segment 200 comprises the second port 132 on the second
connector 145 connected to the first port 131 on the first connector 140. Figure 2 is an example of
a connector-to-connector (“conn-to-conn’) relationship.

Figure 3 is a drawing of a typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In Figure 3, the first host 121 is connected to the first
port 131 of the first connector 140. The star segment 301 comprises the first host 121 connected
to the first port 131 of the first connector 140. Figure 3 is an example of a connector-to-host
(“‘conn-to-host™) r'eiationship.

Figure 4 is a drawing of another typical topological star segment 301 for representing the
connectivity of nodes on the network 110. In addition to the connections described with respect to
Figure 3, a third host 123 is connected to a third port 133 of the first connector 140 and a fourth
host 124 is connected to a fourth port 134 of the first connector 140. In Figure 4, the star segment
301 comprises the first host 121 connected to the first port 131 of the first connector 140, the third
host-123 connected.to the third port.133.of the first connector 140, and.the fourth.host 124 ...
connected to the fourth port 134 of the first connector 140. Thus, the star segment 301 comprises,
on a given connector, at least one port, v_vherein one and only one host is connected to that port,
and that host. In the more general case, the star segment 301 comprises, on a given connector, all
ports having one and only one host connected to each port, and those connected hosts. Since the
segments, or links, drawn using the topological methods of Figure 4 resemble a star, they are
referred to as star segments.

A For illustrative purposes, nodes in the figures described above and in subsequent figures are

shown as individual electronic devices or ports on connectors. Also, in the figures the nodes are

HP No, 10008102-1

144

janir
Typewritten Text
144

o 0

R e B

O 0 N Y b W=

NNNNNI\)NNN)—‘HHHHH!—*)—IHH

‘) | .

represented as terminals. However, they could also be workstations, personal computers, printers,
scanners, or any other electronic device that can be connected to networks 110.

Figure 5 is a drawing of the connectivity of an example network system. In Figure 5, first,
third, and fourth hosts 121, 123, 124 are connected via the network 110 to first, third, and fourth
ports 131, 133, 134 respectively, whg:rein the first, third, and fourth ports 131, 133, 134 are
located on the first connector 140.

The first, third and fourth hosts 121, 123, 124 are singly-heard hosts connected to separate
ports 131, 133, 134 of a common connector 140 — the first connector 140. The fifth and sixth
hosts 125, 126 are singly-heard hosts connected to the third and fourth cormeétors 142, 143. The
seventh and eighth hosts 127, 128 are multi-heard hosts connected to the same port 139 of the fifth
connector 144. The multi-heard hosts 127, 128 illustrate a shared media segment 180, also
referred to as a bus 180.

The second, third, fourth, and fifth connectors 141, 142, 143, 144 are interconnected and
illustrate a switch mesh 181. Each of the connectors in the switch mesh 181 is connected to each
other, either directly or indirectly, to create a fully meshed connection. In the mesh, traffic may be
dynamically routed to create an efficient flow.

Figure 5 also shows an example of a port aggregation 182, also referred to as trunking 182.

The first connector 140 is connected via the network 110 to the second connector 141 by two

_.direct links, each of which is.connected.to different ports on, the connectors., One link is connected

16 the sixth port 136 of the first connector 140 and to the seventh port of the second connector

137. The other link is connected to fifth port 135 of the first connector 140 and to the eighth port
138 of the second connector 141. In this example, two connectors illustrate the multiple
connectivity between nodes. Depending upon the device sﬁeciﬂcations, devices such as connectors
may be connected via any number of connectors. As explained herein, the system resolves multiple
connectivity problems by tracking port information for each connection.

Figure 6 is a drawing of the connectivity of a portion of a network having three connectors
171, 172, 173. A first host 151 is connected directly to the first port 161 of the first connector 171

and the second host 152 is connected to a sixth port 166 of the third connector 173. The second

HP No. 10008102-1

145

janir
Typewritten Text
145

T Gl o 00

g1

4

O 00 N Oy v s W N

NNNNNNNNN»—}»—-—AHHWHWHH
oo\loxm-hwwwoxooo\lc\mpwwr-o

-

port 162 of the first connector 171 is connected directly to the third port 163 of the second, or
intermediate, connector 172. The fourth port 164 of the intermediate connector 172 is connected
directly to the fifth port 165 of the third connector 173.

Figure 7 shows a block diagram of the system. Figure 8 shows a flow chart of the method
used by the system to retrieve and update the topology of the network. A tuple manager 300, also
referred to as a data miner 300, gathers 902 data from network nodes and builds 904 tuples to
update the current topology. The topology database “topodb” 350 stores the current tOpology for
use by the system. The “neighbor data” database 310 stores new tuple data retrieved by the tuple
manager 300. The connection calculator 320 processes the data in the neighbor data database 310
to determine the new network topology. The connection calculator 320 reduces 906 the tuple data
and sends it to the reduced topology relationships database 330. The topology converter 340 then
updates 908 the topology database 350 based on the; new tuples sent to the reduced topology
relationships database 330 by the connection calculator 320.

Figure 9 shows a flow chart of one operation of the tuple manager 300, as described
generally by the data gathering 902 and tuple building 904 steps of the method shown in Figure 8.
The tuple manager 300 receives 910 a signal to gather tuple data. The tuple manager 300 then
retrieves 912 node information of the current topology stored in the topology database 350. This
information tells the tuple manager 300 which devices or nodes are believed to exist in the system
based-on the nodes that-were detected during-a previous query. The tuple manager 300.then
queries 914 the known nodes to gather the desired information. For example, the connectors may
maintain forwarding tables that store connectivity data used to perform the connectors’ ordinary

functions, such as switching. Other devices may allow the system to-perform queries to gather
information about the flow of network traffic. This data identifies the devices heard by a connector
and the port on which the device was heard. The tuple manager 300 gathers this data by accessing
forwarding tables and other information sources fof the nodes to determine such information as their
physical address, interface information, and the port from which they “hear” other devices. Based
on this information, the tuple manager 300 builds 916 tuples and stores 918 them in the “neighbor

data” database 310. Some nodes may have incomplete information. In this case, the partial

HP No. 10008102-1

146

janir
Typewritten Text
146

W I e o A e

O 0 N1 O W b W

10
11
12
13
14
15

16

17
18

19. ..

20
21
22
23
24
25
26
27
28

1

information is assembled into a tuple and may be used as a “hint” to determine its connectivity later,
based on other connections. The tuple manager 300 may also gather 920 additional information
about the network or about particular nodes as needed. For example, the connection calculator

320 may require additional node information and may signal the tuple manager 300 to gather that
information.

After the data is gathered and the tuples are stored in the neighbor database 310, the
connection calculator 320 processes the tuples to reduce them to relationships in the topology.
Figure 10 shows a flow chart of the process of the connection calculator 320, as shown generally in
the reduction step 906 of the method shown in Figure 8. The connection calculator 320 performs a
first weeding phase 922 to identify singly-heard hosts to distinguish them from multi-heard hosts.
Singly-heard hosts refer to host devices connected directly to a connector. The connection
calculator 320 then performs an infrastructure-building phase 924 to remove redundant connector-
to-connector links and to complete the details for partial tuples that are missing information. Then,
the connection calculator 320 performs a second weeding phase 926 to resolve conflicting reports
of singly-heard hosts. The connection calculator 320 then performs a noise reduction phase 928 to
remove redundant neighbor information for connector-to-host links. If clarification of device
connectivity is required, the connection calculator 320 performs a “look for” phase 930 to ask the
tuple manager 300 to gather additional data. The tuple data is then consolidated 932 into segment
and network containment relationships...The connection calculator 320 may. also tag redundant
tuples to indicate their relevance to actual connectivity. These redundant tuples may still provide
hints to connectivity of other tuples. As part of the consolidation phase 932, the connection
calculator 320 creates new n-ary tuples (tuples having references to three or more tucos) for shared
media segments.

Figure 11 is a flow chart of the connection calculator’s first weeding process 922 for
distinguishing singly-heard hosts. The purpose of the first weeding process 922 is to identify the
direct connections between connectors and hosts; that is, those tuples having a first tuco thatis a
connector and a second fuco that is a host. The connection calculator 320 looks through the tuple

list in the neighbor database 310, and for each tuple 402, the connection calculator 320 determines

10

HP No. 10008102-}

147

janir
Typewritten Text
 147

¢

O 0~ Oy ke W N

NNNNNNNNNQHM»—AH»—J#»—!»—A»—-
OO\)C\U\-bMN'—‘O\OOO\)O\U\-P-bJNHO

404 whether the tuple is a connector-to-host (conn-to-host) link tuple. Ifitisnota conn-to-host
link, the connection calculator 320 concludes 41 8 that it is a conn-to-conn link and processes 402
the next tuple. If the tuple is a conn-to-host link tuple, then the connection calculator 320
determines 406 whether the connector hears only this particular host on the pdrt identified in the
tuple. If the connector hears other hosts on this port, then the tuple is classified 416 as a multi-
heard host link (mhhl) tuple.

If the connector hears only the one host on the port — that is, if the host is a singly-heard
host — then the connection calculator 320 determines 408 whether the host is heard singly by any
other connectors. If no other connectors hear the host as a singly-heard host, then the tuple is
classified as a singly-heard host link (shhl) tuple 412 and other tuples fof this host are classified 414
as extra host links (ehl). Another tuple for this host may be, fbr example, an intermediate connector
connected indirectly to a host. For example, Figure 6 shows three connectors 171, 172, 173 the
first connector is connected directly to the first host 151. This connection therefore forms an shhl
tuple. The intermediate connector 172 is indirectly connected to the first host 151. The tuple data
indicates that the intermediate connector 172 is indirectly connected to the host and hears the host
from a particular port. An extra host links. tuple is created so that this data may be used later in
conjunction with other extra host links tuples from devices across the network, to verify connectivity
by providing hints about connections.

. The.first weeding process.also attempts to identify conflicts. If other connectors hearthe,
hostas a singly-heard host, then a conflict arises and the tuple is classified 410 as a singly-heard
conflict link (shcl) tuple to be resolved later. This conflict may arise, for example, if a host has been
moved within the network, in which case the forwarding table data may no longer be valid. Certain
connectors previously connected directly to the host may still indicate that the moved host is
connected. When all tuples have been processed 402 to identify singly-heard host links, the first
weeding phase 922 is complete.

Figures 12a-d show a flow chart of the infrastructure building phase 924 of the connection
calculator 320. The purpose of the infrastructure building phase 924 is to determine how the

connectors are set up in the network. The first part of the infrastructure building phase 924

HP No. 10008102-} 1 1

148

janir
Typewritten Text
148

O© 00 ~N O v s W N

10
11

I 120

12

11

P e

13
14

18
A9
20

I

21
22
23
24
25
26
27
28

manufactures tuples based on the list of singly-heard host link tuples identified in the first weeding
phase 922. The purpose is to identify the relationship between the connectors in the extra host links
tuples and the connectors directly connected to the singly-heard hosts. For each singly-heard host
link 420, the connection calculator 320 processes 422 each extra host link that refers to the host.

In the illustration of Figure 6, a conn-to-conn link tuple would represent the connection between the
first connector 171 and the intermediate connector 172. An extra host link tuple would represent
the indirect connection between the intermediate connector 172 and the first host 151. The conn-
to-conn link tuple between the first connector 171 and-the intermediate connector 172 is an
example of an ehlConn-to-shhlConn tuple. If a conn-to-conn link tuple exists 424 for the extra host
link connector to the singly-heard host link connector (ehlConn-to-shhlConn), then the connection
calculator 320 updates 428 the tuple if it is incomplete. It is possible that the tuple data may be
incomplete and a conn-to-conn link may not exist. In that case, a conn-to-conn tuple does not exist
for the ehlConn-to-shhlConn, then such a tuple is created 426.

After processing extra host links for singly-heard host links, the connection calculator 320
considers 430 each connector (referred to as connl) in the tuples to determine the relationship
between connectors. As illustrated in Figure 6, 2 single connector may be connected directly and
indirectly to multiple other connectors. In Figure 6, the first connector 151 is connected to the

intermediate connector 171 directly and also to the third connector 173 indirectly. The third

.......

connector 173 hears the first-host 151.on the same part 165 that jt hears the first connector 171 and

the intermediate connector 172. The infrastructure building phase 924 tries to determine the
relationship between other connectors heard on the same port of connl. In a series of
interconnected connectors, the connector on one end may not hear a connector on another end, but
it may hear intermediate connectors, that in turn hear their own intermediate connectors. Tuples are
created to represent the interconnection of conn-to-conn relationships. Based on this data, the
connection calculator 320 can make inferences regarding the overall connection between
connectors.

For every connl, the connection calculator 320 considers 432 every other connector
(conn2) to determine whether a connl-to-conn2 tuple exists. If connl-to-conn2 does not exist,

12

HP No. 10008102-1

149

janir
Typewritten Text

janir
Typewritten Text

janir
Typewritten Text
149

id
e
’

t
. \ .

then the connection calculator 320 considers 436 every other conn-to-conn tuple containing conn2.

oy

The other connector on this tuple may be referred to as conn3. If conn2 hears conn3 on a unique

port 438 and if connl also hears conn3 440, then the connection calculator 320 creates 442 a tuple

A OWN

for connl-to-conn? in the connector-to-connector links tuple list.

After processing all of the connl tuples, the connection calculator 320 processes 444 each
connl-to-conn2 links tuple to ensure that they have complete port data. For each incomplete tuple
446, the connectién calculator 320 looks 448 for a different tuple involving connl in the extra host

links tupleson a different port. Ifa different tuple is found 450, then the connection calculator 320

O o N O W

determines 452 whether conn2 also hears the host. If conn?2 does hear the host, then the

10 connection calculator 320 completes the missing port data for conn2. If conn2 does not also hear

the host 452, then the connection calculator 320 continues looking 448 through different tuples

12 involving connl in extra host links on different ports.

13 After attempting to complete the missing data in each of the conn-to-conn links tuples, the
14 connection calculator 320 processes 456 each conn-to-conn links tuple. The purpose of this sub-

15 phase is to attempt to disprove invalid conn-to-conn links. The connection calculator 320 considers

BT b g

16 458 connl and conn2 of each conn-to-conn links tuple. Every other connector in conn-to-conn

Lt
§

17 links may be referred to as testconn. For each testconn 460, the connection calculator 320

I

18 determines 462 whether the téstconn hears connl and conn2 on different groups/ports. If testconn
-~+19 “~hears conni=and conn? on different-ports, then the tuple is moved to extraconnlinks (ecl) 464...... _ .
20 Otherwise, the connection calculator 320 continues processing 460 the remaining testconns.

21 Figure 13 shows a flow chart of the second weeding phase 926. The purpose of the

22 second weeding phase 926 is to attempt to resolve conflicts involving singly-heard hosts identified n
23 the first weeding phase 922. In the situation described herein in which more than one connector

24 reports that a host is singly-heard, the second weeding phase 926 reviews the tuples created during
25 the infrastructure-building phase.924 involving the connector and host in question and attempts to
26 disprove the reported conflict. The connection calculator 320 processes 466 each

27 singleConflictLinks (scl) tuple (sometimes referred to as the search tuple) and considers 468 connl
28 . and hostl of the tuple. For each extra host links tuple containing host1 470, the connection

13

HP No. 10008102-1

150

janir
Typewritten Text
150

A

T

3

O 00 N N ok W

p— ek pamd ed jed b et
A A W = O

17

RO ON RN N NN N e =
o g9 O A W N~ O Vv ®

calculator 320 considers 472 conn2 of the tuple. If there is a tuple in conn-to-conn links for conn2
and connl 474, and if there is a conn2-to-connl tuple in the extra host links tuples 476, and if the
port is the same for conn2 hearing connl and host1 478, then the search tuple is moved 480 into
the singly heard host links and other tuples containing hosti are removed 482 from the
singleConflictLinks.

Figure 14 shows a flow chart of the noise reduction phase 928. The purpose of the noise
reduction phase 928 is to handle those connections in which a connector is not directly connected
to a host or to another connector. For example, networking technology may employ shared media

connections between connectors, rather than dedicated media connectors. With a shared media -

~ connection, the entries in the forwarding tables for connectors attached to the shared media

connection will include every node accessing the shared media connection and may not present a
useful or accurate representation of the nodal connection. For example, if the network configuration
in Figure 6 used a shared media connection between the first connector 171 and the intermediate
connector 172, then the first connector is not really connected directly to the intermediate connector
because other devices (not shown in Figure 6) may also use the shared media connection. These
other devices may include web servers, other connectors, other subnetworks, etc. Tuples will be
created for the connectors 171, 172 on opposing ends of the shared media. In this situation, it is
inefficient to maintain point-to-point binary tuples for every connection. The noise reduction phase
928 disproves invalid tuples: created by the shared media connections..,.

For each multi-heard host links (mhhl) tuple, also referred to as multlHeardLmks (mhl)
tuples (sometimes referred to as the search tuple) 484, connl and hostl are considered 486. For
each extra host links tuple containing host1 488, conn2 is considered 490. If there is a tuple in
conn-to-conn links for conn2 and connl 492, and if there is a conn2-to-host1 tuple in
extraHostLinks 494, and if the group/port for conn2 hearing connl and hostl is different 496, then
the search tuple is moved 498 to extraHostLinks.

Figure 15 shows a flow chart for the “look for” phase 930. The purpose of this phase isto
complete missing data for mhhl tuples. There may exist connections on the network that have
incomplete tuple data. For example, the network may simply have no traffic between certain nodes,

14

HP No. 10008102-1

151

janir
Typewritten Text
151

CHED T E T ™ el o 7 100 0 100

O 00 =1 O W b W N

NNNNNNNMP—'P—‘H#—‘)—‘H)—‘»——IH—‘
\IO\M-PUJNMO\OOO\!O\UI#WNHO

x

i

in which case data might not be stored in forwarding tables. In another example, a forwarding table
may not have sufficient room to store all of the required information and might delete data on a
FIFO basis. In the look for phase 930, the connection calculator 320 instructs the tuple manager
300 to query specific nodes to retrieve the missing data. Data that was not stored in a forwarding
table on the first interrogation may be present on a subsequent query. For each mhhl tuple 500, the
connection calculator 320 considers 502 connl and hostl. If the connl group/port is already in an
“alreadyDidLookfors” list, then a list 1s created 508 for all connectors in conn-to-conn links that are
heard by connl on the same group/port as hostl. For each connector (conn2) in the list 510, the
connection calculator 320 determines 512 whether there is a conn2-to-host1 tuple in the mhhl
tuples. If there is not such a tuple, then the connection calculator 320 initiates a look-for for conn2-
to-host1 via the tuple manager 300. When each connector in the list has been processed 510, the
connl group/port tuco is added 516 to an alreadyDidLookfors list. As an additional portion of the
look for phase 930 (not shown in figures) the system may ask a user to verify or clarify information
about connectivity. For example, the system may show the user the perceived connectivity or the
unresolved connectivity issues and request the user to add information as appropriate.

The connection calculator 330 process described above collects the tuple information from
the tuple manager 300, builds tuples new tuples and removes redundant or unnecessary tuples to

produce the new topology. This topology may have incomplete tuples possibly resulting from

....extraneous information that the connection calculator. 330 could not disprove. To refine the new

topology, the connection calculator 330 can request the tuple manager 300 to obtain additional
information about‘particular nodes or it may also request a user to refine the topology by adding or
removing tuples. Using the process of the connection calculator 330, tuples marked as non-
essential may be removed from the new topology to save space and to simply the topology. The
connection calculator 330 is not confused by multiple connectivity situations such as port
aggregation 182 or switch meshing 181 as shown in Figure 5, because the tuples represent point-
to-point, or neighbor-to-neighbor, connectivity showing each connection in the network. This

point-to-point connectivity concept also helps enable the system to avoid difficulties that occur in

HP No. 10008102-1 l 5

152

janir
Typewritten Text
 152

i
B 3

U O P

O 0 N N v s W

NN N NNNN B U e e

systems that track higher levels of abstraction, such as layer 3 connectivity. Also, the tuples may
contain only selected information to minimize the storage space required for the topology.

Figures 16a-b show a flow chart of the consolidation phase 932. The purpose of this phase
is to consolidate the tuples that involve shared media connections. After the noise reduction phase
928, a considerable number of tuples involving shared media may remain. Rather than maintain a
binary tuple for each of the connections, an n-ary tuple is created for the link using a tuco for each
connector and each host connected thereto. For each mhhl tuple 518, connl and ﬁostl are
considered 520. If there are more connl group/port tuples in multiHeardLinks, and if are not any
n-ary multiHeardSegments (mhs) tuples 524, then an mhs tuple is created 526. If hostl is not
already in this particular mhs tuple 528, then conn2 of the tuple is considered 534. Ifthereisa
connl-to-conn2 conn-to-connLinks tuple on the same port as connl-to-hostl 536, then all
multiHeardLinks tuples for conn2-to-hostl with the same conn2 group/port as the connl-to-conn2
are added 538 to the current mhs tuple.

After processing each mhhl tuple 518, each singly-heard host links (shhl) tuple, also referred
to as a singlyHeardLinks (shl) tuple, is considered 540. For each shhl tuple, the connector and host
are considered 542. If there is no existing singlyHeardSegments (shs) tuple for the connector 544,
then an shs tuple is created 546. The host tuco is then added to the shs 548.

Figure 17 shows a flow chart of the method used by the topology converter 340, as

. described generally by the.topology-update step.908 of the method shown in Figure 8. The

topology converter 340 converts 934 the topology into tuple lists, also referred to as the “morph
topo” phase 934. It then compares 936 the list from the topology currently stored in the topology
database 350 with the new list generated by the connection calculator 320 and discards 936
identical tuples in what is also referred to as the “discard duplicates” phase 936. It then takes
action 938 on the changes in the topology as determined by the changes in the tuple lists, in what is
also referred to as the “identify different tuples” phase 938.

Figure 18a shows a flow chart for the “mSerh topo” phase 934. For each node in the
topology 550, the topology converter 340 determines 552 whether the node is a connector. If the
node is a connector, then for each connected interface (conniface) of the connector (connl) 554,

16

HP No. 10008102-1

153

janir
Typewritten Text
 153

A

PA e i

I

QO 0 N N R W N

NNNNNNNNNM'———-M-—‘.—A_‘.—AHH
OO\IO\MAWNHO\OOO\)O\U\&MNMO

')

the topology converter 340 determines 556 whether the conniface is connected to a star segment.
If it is connected to a star segment, then for every other interface in the segment 558, the topology
converter 340 determines 560 whether there is an existing shs tuple, referred to as the “topo tuple”
for the segment. If there is no such tuple, then the topology converter 340 creates 562 a topo shs
tuple. The tuco for the interface’s host-to-topo shs is then added 564 to the topo shs tuple.

If the connector node is not connected to a star segment 556 and is connected to a bus
segment 566, the topology converter 340 determines 568 whether there is an existing mhs tuple for
connl. If there is not an existing mhs tuple for connl, then a topo mhs tuple is created 570. A tuco
is added 572 for the host to the mhs tuple.

If the connector node is not connected to either a star segment 556 or to a bus segment
566, then the topology converter knows that it is connected to another connector (conn2). If such
a connector does not already have an existing connLinks tuple for connl and conn2 576, then a
connLinks tuple is created 578. After processing the bus segment, star segment, and conn-to-conn
segment, for each conniface 554, the topology converter 340 proceeds to the next node 550.

Figure 18b shows a continuation of the flow chart of Figure 18a showing the steps of the
method when the topology converter 340 determines that the node is not a connector 552. If the
node is in the default segment, then an “unheardOfLinks” tuple is created 582 and the topology

converter proceeds to the next node 550. If the node is not in the default segment 580, then the

- topology.converter 340 determines whether the node is in a star segment 584. Ifthe nodeisina

star segment, then if there is not already an shs tuple, the topology converter 340 creates 588 an shs
tuple. The tuco for the node is then added 590 to the shs tuple, and the topology converter 340
proceeds to the next node 550.

If tﬁe node is not in a star segment, then the topology converter 340 knows that it is in the
bus segment. If there is not already an mhs tuple for the node, 594, then the topology converter
340 creates 596 an mhs tuple. The tuco for the node is then added 598 to the mhs tuple, and the
topology converter proceeds to the next node 550.

Figure 19 shows a flow chart for the discard duplicates phase 936 of the topology

converter 340. For each tuple in the new tuples (nt) 600, the topology converter looks for 602 an

17

HP No. 10008102-1

154

janir
Typewritten Text
154

—

Vo> RN S e N VR

10

12

F U0 i

1

15
16
17
18
- 19
20

SFar
]
ad
s 3

21
22
23
24
25
26
27
28

' 1
.\ .

exact match in the current tuples stored in the topodb. If an exact match is found 604, then the new
tuple is marked 606 as “no change” indicating that this is an identical tuple.

Figures 20a-d show a flow chart for the identify different tuples phase 938. The system
looks through each tuple in the new SinglyHeardSegments (newSHS) tuple list 608 and tries to
identify and fix 610 swapped ports on connectors. Swapped ports are identified by considering
those segment tuples in both the new topology and the existing topology that differ only by the port
specification in the tuco. Each tuple that is fixed as a swapped port is marked 612 as “handled.”
The system also looks through each tuple in the new multiHeardSegments tuple list (newMHS) 614
and tries to identify and fix 616 swapped ports on connectors. Each tuple that is fixed as a
swapped port is marked 618 as “handled.”

The system then processes 620 each unmarked tuple in the newSHL tuples. Four cases
are possible for the host of the newSHL tuples. The host of the newSHL can be found in the
current singlyHeardLinks (curSHL) 622, the current multiHeardLinks (curMHL) 630, the current
connLinks (curCL) 638, or the current UnheardOfLinks (curUOL) 642. If the host of a newSHL
tuple is found 622 in the current SinglyHeardLinks (curSHL) tuples, then the system determines 624
if there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there is
a matching tuco, then the system changes 626 the host connection attribute. If there is not a
matching tuco, then the host connection is moved 628 in the topology.

... Ifthe host is found.in the.curMHL tuples 630, then the system determines 632 whether
there is a matching connector tuco between the newSHL tuples and the curSHL tuples. If there isa
matching connector, then the segment type of connection is changed 634. If there is not a matching
connector, then the host connection is moved 636 in the topology. If the host is found in the curCL
tuples 638, then the host is moved 640 into a star segment of the connector. Ifit is found in the
curUOL 642, then the host is moved 644 into the star segment of the connector.

Figure 20c shows another stage of the processing undertaken during the identify different
tuples phase 938. For each unmarked tuple in the new multiHeardLinks tuples (newMHL) 946,
four cases are possible for the host of the newMHL. The host of the newMHL may be found in the
curSHL 648, the curMHL 656, the curCL 664, or the curUOL 668. If the host is found in the

HP No. 10008102-1 18

155

janir
Typewritten Text
155

I N S T S

O 0 N A s W

NN R RN RN RN N R e e e e e et e e e e
0 - O R WO = O 0w 0N Y AW N - O

C
® ®

curSHL 648, then the system determines 650 whether there is a matching connector tuco between
the newMHL and the curMHL. If there is a matching tuco, then the segment type of connection is
changed 652. If there is not a matching tuco, then the host connection is moved 654 in the
topology.

If the host is found in the curMHL tuples 656, then the system determines 658 whether
there is a matching connector tuco in both the curMHL tuples and the newMHL tuples. If there is a
matching connector tuco, then the host connection attribute is changed 660. If there is not a
matching tuco, then the host connection is moved 662 in the topology. If the host is found in the
curCL tuples 664, then the host is moved into a bus segment of a connector. If the host is found in
the curUOL tuples 668, then the host connection is moved 670 in the topology.

Figure 20d shows another portion of the identify different tuples phase 938. For each
unmarked tuple in the newCL tuples 672, there are three possibilities for the connector. The
connector of the unmarked tuple in newCL can be found in the curSHL or curMHL 674, in the
curCL 678, or in the curUOL 682. 1If each connector is found in the curSHL or curMHL list 674,
then the system creates 676 a new point-to-point segment for the connectors. If the connectors are
found in the curCL 678, then the connection attributes of the connectors are changed 680. If each
connector is found in the curUOL tuples 682, then the host connection is moved 684 in the
topology.

Another part of the identify different tuples phase 938 is shown in blocks 686 and 688 of
Figure 20d. For each unmarked tuple in the newUOL tuples 686, the system checks 688 the
timer/configuration to determine whether the host/conn should move into the default segment from
its current segment.

An advantage of the system is that it may be schedulable. The system may map network
topology continuously, as done by existing systems, or it may be scheduled to run only at certain
intervals, as desired by the user. A further advantage of the system is that it is capable of
processing multiple connections between the same devices and of processing connection meshes,
because it tracks each nodal connection independently, without limitations on the types of

connections that are permitted to exist.

HP No. 10008102-1 l 9

156 -

janir
Typewritten Text
156

]

w A W N

) '
. ‘/

Although the present invention has been described with respect to particular embodiments
thereof, variations are possible. The present invention may be embodied in specific forms without
departing from the essential spirit or attributes thereof. It is desired that the embodiments described
herein be considered in all respects illustrative and not restrictive and that reference be made to the

appended claims for determining the scope of the invention.

HP No. 10008102-1 20

157

janir
Typewritten Text
 157

> °

1 Claims
2 1. In a network having interconnected nodes with data tuples that represent nodal
3 connections, a method for mapping a network topology by identifying changes between an existing
4 topology and a new topology, the method comprising:
5 converting an existing topology into a list of existing tuples that represent existing nodal
6 connections;
7 receiving new tuples that represent new nodal connections; and
8 comparing the list of existing tuples with the new tuples to identify changes to the topology.
9 2. The method of claim 1, further comprising updating a topology database with a new
10 topology.
11 3. The rﬁethod of claim 1, further comprising taking action on the changes to the
12 topology. ‘
13 4, The method of claim 1, wherein the tuples include information about a host
= 14 identifier, a connector interface, and a port specification.
: 15 5. The method of claim 1, wherein the step of comparing comprises identifying
E 16 duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a
: 17 current status of the topology for these tuples. - v
"Z 18 6. The method of claim 1, wherein the step of comparing comprises identifying a
- 19:-. swapped port condition on.a connector. A
20 7. The method of claim 1, wherein the step of comparing comprises searching for a
21 host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing
22 tuples.
23 8. A system for mapping a network topology by identifying changes between an
24 existing topology and a new topology, based on changes to data tuples that represent nodal
25 connections comprising:
26 a topology database that stores an existing topology of a network; and

HP No. 10008102-1 2 1

158

janir
Typewritten Text
158

I M R S W A T

—

O 00 N O U A W W

t e
'\ .

a topology converter connected to the topology database that receives new tuples that
represent new nodal connections; and compares the new tuples with the existing topology to identify
changes in the network.

9. The system of claim 8, wherein the topology converter converts the existing
topology into a list of existing tuples that represent existing nodal connections.

10. The system of claim 8, wherein the topology converter updates the topology
database with a new topology based on the new tuples.

11. The system of claim 8, wherein the topology converter attempts to identify swapped
ports on connectors.

12. The system of claim 8, wherein the topology converter identifies duplicate tuples
that appear both in the list of existing tuples and in the new tuples, and maintains a current status of
the topology for these tuples.

13. The system of claim 8, wherein the topology converter searches for a host of a new
singly-heard host link tuple or a new multi-heard host link tuple in the list of existing tuples.

14. The system of claim 8, wherein the topology converter searches for a connector of
a new conflict links tuple in the list of existing tuples.

15. A computer-readable medium having computer-executable instructions for
performing a method for mapping a network topology by identifying changes between an existing
topology and-a new fopology in a network having a interconnected nodes, th_g.method,_(;_omp.rising:‘_ o

converting an existing topology into a list of existing tuples that represent existing nodal
connections;

receiving new tuples that represent new nodal connections;

comparing the list of existing tuples with the new tuples to identify changes to the topology;

- and

updating a topology database with a new topology.
16. The method of claim 15, vlifherein a topology converter receives the new tuples from

a connection calculator that calculates connections between nodes.

HP No. 10008102-1 ' 22

159

janir
Typewritten Text
159

—
o= TN T - B S Y L o

ERCTEEICT ™ el 0 a8 Ea 0

e ®

17. The method of claim 15, wherein the step of comparing comprises identifying
duplicate tuples that appear both in the list of existing tuples and in the new tuples, and maintaining a

current status of the topology for these tuples.

18. The method of claim 15, wherein the step of comparing comprises identifying a

- swapped port condition on a connector.
19. The method of claim 15, wherein the step of comparing comprises searching for a

host of a new singly-heard host link tuple or a new multi-heard host link tuple in the list of existing

tuples.

20. The method of claim 15, wherein the step of comparing comprises searching for a-

connector of a new conflict links tuple in the list of existing tuples.

23

HP No. 10008102-1

160

janir
Typewritten Text
160

¢ ®
¢ |

1 Abstract _
2 A method and system are disclosed for mapping the topology of a network having
3 interconnected nodes by identifying changes in the network and updating a stored network topology
4 based on the changes. The nodal connections are represented by data tuples that store information
5 such as a host identifier, a connector interface, and a port specification for each connection. A
6 topology database stores an existing topology of a network. A topology converter accesses the
7 topology database and converts the existing topology into a list of current tuples. A connection
8 calculator calculates tuples to represent connections in the new topology. The topology converter
9 receives the new tuples, identifies changes to the topology, and updates the topology database using
10 the new tuplies. The topology converter idehtiﬁes duplicate tuples that appear in both the new tuples
% 11 and the existing tuples and marks the duplicate tuples to reflect that no change has occurred to these
:E 12 connections. The topology converter attempts to resolve swapped port conditions and searches for
*; 13 new singly-heard and multi-heard host link tuples in the list of existing tuples. The topology
14 converter also searches for new conflict link tuples in the existing tuples. The topology converter
15 updates the topology database with the new topology.

IS
o]

EAEY

HP No. 10008102-§

161

janir
Typewritten Text
161

FI

PATENT APPLICATION

PAS

= =

DECLARATION AND POW .ATTORNEY A”ORNEY'ET NO. 10008102-1
FOR PATENT APPLICATIO

As a below named inventor, | hereby declare that:
My residence/post office address and citizenship are as stated below next to my name;
| believe | am the original, first and sole inventor {if only one name is listed below) or an original, first and

joint inventor {if plural names are listed below) of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

Method And System For ldentifying And Processing Changes To A Network Topology

the specification of which is attached hereto unless the following box is checked:

{ } was filed on as US Application Serial No. or PCT International Application
Number and was amended on {(if applicable).

| hereby state that | have reviewed and understood the contents of the above-identified specification,
including the claims, as amended by any amendment(s) referred to above. | acknowledge the duty to
disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application{s) and/or Claim of Foreign Priority

| hereby claim foreign priority benefits under Title 35, United States Code Section 118 of any foreign application(s) for patent or
inventor(s) certificate listed below and have also identified below any foreign application for patent or inventor{s} certificate having a
filing date before that of the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35 U.S.C. 119
N/A . ' YES: NO:
YES: ‘NO:

Provisional Application
I hereby claim the benefit under Title 35, United States Code Section 119(e} of any United States provisional application(s) listed
below:

APPLICATION SERIAL NUMBER FILING DATE

N/A

U. S. Priority Claim
| hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and,
insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the
manner provided by the first paragraph of Title 35, United States Code Section 112, | acknowledge the duty to disclose material
information as defined in Title 37, Code of Federal Regulations, Section 1.56(a} which occurred between the filing date of the prior
application and the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS (patented/pending/abandoned)

N/A

POWER OF ATTORNEY:
As a named inventor, | hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact ali
business in the Patent and Trademark Office connected therewith:

Place Customer
Customer Number | 022879 Number Bar Cade
Label here

Send Correspondence to: Direct Telephone Calls To:
HEWLETT-PACKARD COMPANY
intellectual Property Administration T. Grant Ritz

P.O. Box 272400

Fort Collins, Calorado 80527-2400 {970) 898-0697

] hereby declare that all statements made herein of my own knowledge are true and that all statements
made on information and belief are believed to be true; and further that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,
or both, under Section 1001 of Title 18 of the United States Code and that such wiliful false statements
may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Eric A Pulsipher Citizenship: (S

Residence: 2937 Redburn Drive Ft Collins CO_80525

Post Office Addreas: Same as residence

™ i ofi 2050

nvanrjr"';gg ah/zre / v Date)

Rev 10/&Q (og;Zw) ' {Use Page Two For Additional tnventor(s) Signature{s}} Page 1 of 2

162

janir
Typewritten Text
162

FOR PATENT APPLICA

{continued)

»>
~| DECLARATION AND P?W OF ATTORNEY

An‘sv DOCKET NO

. 10008102-1

Full Name of # 2 joint inventor:
Residence:

Post Office Address:

Joseph R Hunt

Citizenship: US

X3 Hakns ?f“‘

Nand. GO’ 80538

Same as Residence

0 /31 /50

nvenicy s $ggnature *
Full Name of # 3 joint inventor:
Residence:

Post Office Address:

Date 7/

Citizenship:

Invenlor s Sighature

Full Name of # 4 joint inventor:
Residence:

Post Office Address:

Date

Citizenship:

Tnventor's Signature

Fuil Name of # 5 joint inventor:
Residence:

Post Office Address:

Date

Citizenship:

Inventor's Signaiure

Full Name of # 6 joint inventor:
Residence:

Post Office Address:

Date

Citizenship:

Inventor's Signature

Full Name of # 7 joint inventor:
Residence:

Post Office Address:

Date

Citizenship:

Tnventor's Signature

Full Name of # 8 joint inventor:
Residence:

Post Office Address:

Date

Citizenship:

Invenlor's Signature

Rev 10/00 {DecPwr)

(Use Page Two For Additional Inventor(s} Signature(s))

163

Date

Page 2 of 2

janir
Typewritten Text
163

3 ! RTMARNS)] Mg S B 8 g B

. . Page 1 of 1

V)
B

_) UNITED STATES PATENT AND TRADEMARK OFFIGE

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WasHINGTON. D.C. 20231

www.usplo.gov

(M mme,

Bib Data Sheet

FILING DATE ATTORNEY
SERIAL NUMBER 10/31/2000 CLASS GROUP ARTUNIT | 1 o0e,

or7
09/703,942 RULE _ 370 2661 10008102-1

APPLICANTS

Eric A. Pulsipher, Ft Collins, CO ;
Joseph R. Hunt, Loveland, CO ;

b % CONT'NU'NG DATA Ahkkdkhdkrhhdkhkhhhihthhkh . w &
»)\j v/
13 FORE'GN APPLICATIONS Ahkhkhr AR ARRAXARAN 3 ,

IIF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 02/05/2001 -

Foreign Pricrity claimed a yes & no

3 STATEOR| SHEETS | TOTAL [INDEPENDENT

25 USC 119 (a-d) conditions. L o5 B no L et after COUNTRY | DRAWING | CLAMS | cLAIMS
Allowan

Verified and) co 26 20 3

JAcknowiedged Examiner's Signature Initials

ADDRESS

022879
TITLE

[Method and system for identifying and processing changes to a network topology
m

I_D All Fees
U 1.16 Fees (Filing)

FILING FEE |FEES: Authority has been given in Paper D 1.17 Fees (Processing Ext. of
RECEIVED [No. to charge/credit DEPOSIT ACCOUNT time)
710 No. for following: O 1 18 Fees (Issue)
(] Other

| Credit

file://C:\APPS\PreExam\correspondence\l A.xml 164 2/5/01

janir
Typewritten Text
164

TIPS

PATENT APPLICATION SERIAL NO._

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE -
FEE RECORD SHEET

11/06/2000 KZEWDIE 00000062 082085 09703342
01 FC:101 710,00 CH

. PTO-1556
(5/87)

US. GPO: 1960-450522/19144

165

janir
Typewritten Text
165

((/]

- Applicatipn or Docket Number

A 1903942

PATENT APPLICATION FEE DETERMINATION RECORD
Effective October 1, 2000

-

K

s

CLAIMS AS FILED - PART | SMALL ENTITY OTHER THAN
(Column 1) Column 2 "TYPE [OR SMALL ENTITY
TOTAL CLAIMS /9 O RATE | FEE RATE | FEE
FOR NUMBER FILED NUMBER EXTRA BASIC FEE| 355.00 |oR[BASIC FEE 710.00
ToraL cHARGEABLE CLAMS | /U minus 20- |) X8 9= on xs1e- [\
{ , * J) -
INDEPENDENT CLAIMS é minus 3 = ‘ X40= OR X80= \
MULTIPLE DEPENDENT CLAIM PRESENT |
+136= OR| +270=
If the difference in column 1 is less than zero, enter “0” in column 2 TOTAL OR TOTAL
CLAIMS AS AMENDED - PART I OTHER THAN
CLAIMS HIGHEST
< REMAINING NUMBER PRESENT ADDI- ADDI-
E AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE [TIONAL
w AMENDMENT PAID FOR FEE FEE
= .
% Total - Minus *e = X$ 8= orl| X$18=
t * M 22 =
5 Independen inus X40= oR X80=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM | I
+135= or| +270=
TOTAL TOTAL
ADDIT. FEE OR AppiT. FEE
Column 1 Column 2) (Column 3}
CLAIMS HIGHEST
@ "REMAINING NUMBER PRESENT ADDt- ADDI-
E AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE { TIONAL
w AMENDMENT PAID FOR EEE FEE
= . .
% Total * Minus ** = X$ 9= orl X$18=
Ind dent - Mi L2 =
5 epenaen 1NuUs X40= OR X80=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM _Q
+135= OR| +270=
TOTAL TOTAL
ADDIT. FEE OR AooiT. FEE
{Column 3}
o REMAINING NUMBER PRESENT ADDI- ADDI-
el AFTER ’ PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
& .. AMENDMENT 1§ PAID FOR FEE FEE
=) - -
g Total » Minus L3 = X$ 9= OR X$18= /
%" Independent |+ Minus e =
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM . ‘ |
+135= oR | +270=
* If the entry in column 1 is less than the entry in column 2, write “0” in column 3. T
** If the "Highest Number Previously Paid For” IN THIS SPACE is less than 20, enter °20.” ADD,?FTQ; OR ADDB:TQE

***|f the “Highest Number Previously Paid For” IN THIS SPACE is less than 3, enter 3.”
The “Highest Number Previously Paid For™ (Total or independent) is the highest number found in the appropriate box in column 1.

Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE
“U.S. GPO: 2000-460-705/30103

FORM PTO-875
{Rev. 8/00)

166

st

janir
Typewritten Text
166

