WEB PUBLISHER’S

cousrnucrlou KI1T

Second Edition

of best-selling

HTML Web
Publisher’s
Construcﬂon

Publishing Your
Own HTML Puges on

the Internet

INCLUDES

NETMANAGE CHAMELEON,
SLIPKNOT, HOTMETAL,

HTML ASSISTANT, WINHTTPD,
| LVIEW PRO, WHAM, CGI SCRIPTS
K, FOR UNIX AND WINDOWS,
NCSA’S HTTPD FOR UNIX,
AND MORE!

001 ServiceNow, Inc.'s Exhibit 1008

Cousreuoriad RS

Second Edition
* of best-selling

HTML Web
Publisher’s
Construction
Kit

E‘”

Publishing Your
Own HTML Puges on

the Internet

INCLUDES

NETMANAGE CHAMELEON,
SLIPKNOT, HOTMETAL,
HTML ASSISTANT, WINHTTPD,
| LVIEW PRO, WHAM, CGI SCRIPTS
FOR UNIX AND WINDOWS,
NCSA’S HTTPD FOR UNIX,

AND MORE!
¥ \idludes
“ COVERS THE | . 4
LATEST VERSIONS s ﬁ S
OF NETSCAPE &

WAITE i CD-ROM
GROUP .
PRESS™ DAVID FOX . TRQY DOWNING

AND HTML

Publisher ¢ Mitchell Waite
Associate Publisher * Charles Drucker

Acquisitions Manager ¢ Jill Pisoni

Editorial Director » John Crudo

Managing Editor * John Crudo

Copy Editor * Scott Calamar, LightSpeed Publishing
Technical Editor « Miko Matsumura

Production Director * Julianne Ososke

Production Manager * Cecile Kaufman

Production Editor » Mark Nigara

Cover Design and Production ¢ Sestina Quarequio and Karen Johnston
Cover Illustration Rafael Lopez

[llustrations * Kristin Peterson

Production ¢ Michele Cuneo

© 1996 by The Waite Group, Inc.®
Published by Waite Group Press™, 200 Tamal Plaza, Corte Madera, CA 94925,

Waite Group Press™ is a division of Sams Publishing.

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, desktop publishing, recording, or otherwise, without permission
from the publisher. No patent liability is assumed with respect to the use of the information contained herein.
While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

All terms mentioned in this book that are known to be registered trademarks, trademarks, or service marks are
listed below. In addition, terms suspected of being trademarks, registered trademarks, or service marks have been
appropriately capitalized. Waite Group Press cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as af] fecting the validity of any registered trademark, trademark, or service mark.

The Waite Group is a registered trademark of The Waite Group, Inc.
Waite Group Press and The Waite Group logo are trademarks of The Waite Group, Inc.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Printed in the United States of America
9596 97 98 « 10987 6 5432 1

Fox, David, 1973-
Web publisher’s construction kit with HTML 3.2 / David Fox, Troy Downing.
p. cm.
Includes index.
ISBN: 1-57169-079-4
1. HTML (Document markup language) 2. World Wide Web (Information retrieval system)
[. Downing, Troy. II. Title.
QA76.76.H94F693 1996
025.04--dc20 96-30564
CIP

ii 003 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

ISTROBUBTION. . ssceisois ssmimans sy somsss S samiis Sumy kL Saums s XXIV
PART | CONNECTING TO THEWEBvuivirintnneneenennenennenennnns [
| CATCHING THE INTERNET IN A WEBottt eeeeeee e ieeeeeeannns 3

2 WEB BROWSERS eet ettt ettt et e e et e et e e e el 49
N s T T 63

B SUIBKINOT..c.c sins sthosmsomncnimssrmpass sorstisiamiien Someisan b i R oa e Foiied s 89

5 (NSRBI i s e sistmrincn Stvmssmmiign Komiioinsn dveSeonsontvfl Liicrsmss Eteonibd oot 13

6 NETSCAPE ATLAS ...ttt ettt e et e et e e et e e e 137

7 A BRIEFLOOK AT OTHER BROVWSERS - s st sawnsse vais s £aisny 505 o ges 4s 173
PART 1] CREATING WEBPRGES ; » a5 5 ssisinis ¢ 5508 & 660004 nasnns 5 s 193
8 WHAT CANIDO!........ P U=y O S S S 195

9 THE GAME PLANttt ettt et e et e et e e e e e el 275
10 THE HYPERTEXT MARKUP LANGUAGEttt eeeeeeeeeinnnnns 297
il 1> | A A PP T g, ot T O S 313
13 JBREPHIES . conciinaping wdhs sl sty ombh pmmmihn g wacsis mwasie B 375
I @10 N o 433
14 (INTERAGTIVITY v s sk nimas e e 50 SPuas Yo9aies GOl oot Sensws 45 447
(S COISERIPTS. . oo rsimmesin dnseonss srssmsincasnasints Feaomrasaes Boassiesn sl Byos EbSRmES misivinioce simne 479
16 HTML EXTRAS . . . oottt e et e ettt e et e e e e et e e 545
17 JAVASCRIPT ...ttt e et e e e et e e e e e 593
BB T 5 it i ot a2 0 R TR A i it i 65, HADUHS 03 A B W48 627
19 OTHER WEB RESOURCES. . . .« ..\t ttte ettt et e et e e eee e e e 657
20 CONVERTING, TRANSLATING, OR CHEATING. oovneetieeeeeinnnnnn 675
21 HTML ASSISTANT ..ottt ettt e ettt e e e e e e 695
02 Rl o siin i i Fa 5 BT 8 TRl BT TR A TR 715
PART 11l WEAVING A WEB OF YOUROWNoutiuineneneanenenennn. 745
23 WHERE TO PLACE YOUR HTML DOCUMENTS\ eeteeeeeeinaeinns 747
24 STARTING YTOUR OWI WEBSITE s w5 s sevmw vy vwe g vy s yannay wvs 779
A SLIPSERVICEIPROVIBERS 5 i wommiess i 2wt & 5t s s aies S0y 2us 833
B OTHER SOFTWARE SOURCES. . - « 505 s woie simsisisin s iwme bosfie 5.6 misis 5,654 35078 4 839
C WEB HELP RESOURGCES.\ttt ee et e et e e e e e e e e 849
D ABOUT THE CD ..ttt ettt e et e et e e e e e e e 855
IRIEIE 50t . i Ciomoniitl S 5% AR SR EaIe S S0 enE MOt BBe ST 5% 859

004 ServiceNow, Inc.'s Exhibit 1008 Vi

(ONTENTS

PART | CONNECTING TOTHEWEBccov00se0vncsasvsscsnsel
| CATCHING THE INTERNET INAWEB 3
FOW THE WEBNVAS WIONVER < g sovams i oo ke S5w s dineeim, i 6
CERRE TR CORTEEE e Srwns wn i oo o000 98l w5008 T8l sl Bt ¥ Pusmtin 7
RICERS THBITOE] s vnin warshs se s G ol i i S W BN v s iesaareniin 7
NETSCAPE: The Pretty Fare: . i vt.ottiie.dn bt i 2505 o b dn b di i B8 e son 74
THEDIEW FABAE o i s swise s 5o w8 0000 Wi e i AR SO ST 0gs ST DR Ie 8

THE WEB'S EVOLUTIONARY EDGE . ..ottt ittt i eenianas 8
WERLE WIBE WEB LAYOUT st imesimedie Sradivatyesh 5 fstel s ekl v i 9
TSRO s arvepsaisis e bR s T =R R T Ol 38 (B ae M Eraraesshuda iy 10
THECHEHE BrowWBr cumn g il i s s veies s SRR il v s 10
PANVAGATING WEBBAGES i s b v s st 55 s Sneon it ik ol sl ot sisont 2 -0 5 10
Hypermedia LinkS o o umma v wons g e0een 4o 508 o sleni ki e 68 SN e i I
FEANCH INBEXES. .«.vavmmsmvemimman arimonn sibeads Sodin puseiborss 8 werosms s o Semm s 13

THE HTTPIPROTOEOIL: wwn i saniliis vemi Ses i plepeiasy SEsiam i @ e 14
NIRLS; LIRS AIRES .oy o s S0 s S RIS S S S8, 0 V% 15
TherCompastionola URL. s s6 aatig S5 aueig ol i, s oo s i ims, S5 s s dasers |7
AECESSING THE WEB' ostowmmdsmsssiie bl o b s aass v dais D ey 21
What Computer D6 | INEea? i so svieinn 65 dinss s 526G b iowis 48 w0 4 sl 80 o shgsmsicd vensh 2]
WL ADOUE B PISUSIIE e s posisnsss s SRR RS SASS S Y v op e e 22

What Type of Internet Account Do I Need?coiiiiiiiiiiiiinennean 22
SLIPARCECNIINITS i comnsvnnonn s s i ot 06 e Rl i s B S s W S iR 23
g LK e AR Y. VRO 1) SVVEE LN | W SO e 24
Connecting with Windows 95 Dial-Up Networkingoovviiiniiniininnnns 25
Installing Trumpet Winsock for Windows 3.1 ..., 28
PAERRIR) OB i vonnain pmany o R iy o B AR e e e S SV SR e 31

LOS SCIIDHRE: + 0 viminsen-covrmimom it st st simie et KomsNioedon sl Eeg en, vewoncriins wibmimma v el 32
DGR CEE o i i o B B R A R P VIS R B0 VRt 34

UNIX SHELL WEB BROWSERS . . . et 34
TR LYok O NNV & o o s s e s G o i S i e s i 0 30 G s e 35
Graphics: SIPKNOL . . oo 36

THE INTERMET ADAPTER. « ianv: g5 i 0iain vonim e i5mes o 03 ot &8 mRub5nd 5 tanie s ams 36
Peterminimng Youir Lo PIHORM < somwens cbimems smmmmmrdwiis he s wsos v s wen 36
SeHing Your INCeate COUe: &5 st ity s i 55 s e i S s A s o r s et 37
GCoting The SOIOWADE. vt Vit et winbie At wo s S v oa Tmsia v S Ak i a ai 39
Installing The Internet Adaptercoiiiiiiii e 40
Configuning YVinsock f6F The Internet Adapler .« .« v va s s sommrn ae oo aod 40
ERR T 25 it T s (1 B Mo M 0 0 i e i S O 5 e e R 42

viii

005 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

HIGH-SPEERVLEASER) LINES. «uvisor cvsvsvass-smmmirvi asmvaaimssss w5 S ok s a00 a0 aih s sone vos vk 42
Bermapart Sl I on san dnamn semsini i i s it SeBlE S SEmL N R S i 42
Highi-Speen Lites s i onummm sumntnne svaismsin iwaatss s diom s s o 43
High=-Speed HardWare: « s i v iioas s o i nii s s 435 auaion i el o 44
Eoneehon CNTAINES copmmos s S SN AR e S A e 44

SHODTING DOWR TROMBLES: i svvinss imamsory svvin sy siodpaan Weevi e v i 45
Your Modem Won't RESPONA . ..o vviiiiii it 45
The “DINS Coblkiup Taled™ MESsagl ouvin covamieinimyasiivs mires b dsmmaag i 46
The “Unable to Resolve Host Name" Messagecoovveeiiiiiiiiniinines 46

WHAT NOWIE cimoam s s o mvii s e s s s sl sai oo v o st o i 46

2 WVEB BROWNSERS. : : cuns s sivi o s meses 8 %5 54 § 65 RS & 55 &85 § & 54 88 49

WHAT TYPEGF SOFTVVABE IS ABROVVSERY 1 oo v cniin slvsbsdo s bababio bk, snve i i itk 51

WHICH BEOWWSER SHOLILE LUSEY oo mmen asmamws i mmamaos o smese ane 5o s o 53

HELBRUL HAINBS o i nmsises (5 anis el d099s poves s mnss Srsamones 455 55k i 54
VIEIEES! o il oo e ol . 08 Mo o W i e). SR M s Ao 75 54
Excterrial APPICEONS s iomi swwmive s s s v Sumion Saosls w5 e 54
The TREeE PG | im0 500000000 TR0 0040 GERSARAS SUSARIATAL S0 2.9 b 55

TEENETING TOA PLBLIC:BROWSER: 1.0 s s swmm soawisce s Ge@ms awssrse s soiwsm s 57

VWMV WIACERIAIL. . i smn v s i Shaisbassi wi s, s i S Gaems yiainess 0 59

BROWSING WITHOUT THE INTERNET ALTOGETHER. +.s vu vw o0 s smmin souiwiss siwainis won 4 60
Stand-Alone BIOWSERS i svmiises e s 80658 Wiowlhe sl 56 6000 viei ssmienn i 60
PICRZIRE MVARSOEK s wwicun comommmeen o, sxommmnisng sia sumsasisin Ao s s s s 60
BNGIBOER: cov oo wommimmnvi SVaE 09 5 5 RS VRO T R SN 60

ML BEDRNT . i mhfivamaunds s b b smm e fimnin 5o snn e mmsosmr e L& w i 1 61

3 BINIK ncvo 5 585054 5 8 0 b4 BEHERS S e 50 B 5 BEGH A GU D0 HENSE BT ARS8 63

LESSON #1: THE LYNX'S MEOW 1ottt eeeiiiieeens 67

LESSONRY NAVIGATING asan s ammsms s iissee veammma i omeere s o5 vwem, st e i 68
Following Lymi LIRKS: vo v ream sovcomn en wni min s mncemm aimssnis vips fmste 08, 505 638 abs + oie, s 69
LAl IRBO. cvmiiaiinn i Soemms, i s FEm L e s ui e e st o 69

LOADRING A SPEOIFIC WBLL ;o s anan @i s 257 i 5o i i sfeailsion sl e o 69
EARIIER S LASEH s arvcovimainin s esmmssiw mon e 233190005080 5185008 3000601 M 3 M. B NN 70
Batng Lymse . suoii sovias v S5 i SHOEH SEaYETES TEORETNCHE O S S T 70

LESSOM #3: THE HISTORY LIST v sinsmswinsinmivinn sinmm@nnis dimsoon vmio s smsiwssuie s s s o 70

LESSOMN:#4: SCREEN-WASHING <o cun cu s sasmmema s ewe i o5 s e i s 71

LESSEOMN#S: PRINTING BuBABE. .. .pvcmsrasnssn nhob e (50500 e BEvESo s mh S b S 72
T R e SR 72
PIRHIEEL o cov ot it wosin I SR AR Saleram s SRR R i e RS St 72
PR o i sicirsisioniin simivmosn ewen iim wimammos s Bz W B e Sie il SR dod e tistwec st 72

LESE@N #6 CETTING TO THE SOMREE wovsns v vw i s iwoss ey s s i 73
SAVANE THE SIOUNTE: 1.0 oo menmosiase moswoim min s $79:1072:9 wias8 R min TRISRN STRIED RELAIE 5 M0, RIS 73
Retuming tothe Repilar VIBW! vo cs vuuimbis v s e £5/oe s bya o aosles s wasieqsmes 74

LESSEN #7 FIATINGIA PAGE. 50 siostnmimearmimn oo om 98 2 BSABSESaa waiam A 74

LESSEN 80 BEICHKIARIES: o s5is5omii 60w a5 i 450575 6050016 a0 5 s 74
AdiRg & Bookma .. oo s SRSy G MBI AT AR ST R S Y SR R 75
VISRINE BOOIITARKS: o vnim v ssimiasra: suvssmsinnne & 5095/ weanmohese am pala/s S umss onsia s 75

LESSEEN #2: THETRDER., i osiviiismgnms posomsnn et Soaiia s s saemese 76

006 ServiceNow, Inc.'s Exhibit 1008

WEB PUBLISHER’'S CONSTRUCTION KIT WITH HTML 3.2

LESSOIN FIDESEARCHING o i o v vnvs voaman stissad s d@ns 1t S abion s vl e st 76
Page S ANCNING . v vttt vttt e e 76

IR DOEURTERTES «ovvvnss 5 svoudid Soe v REFTens DUV I Prrd i unas & Senas 77
LESSQIN A v SAVING A MELTIMELRIAFILE.: o reom cnmmeoa s 85 sfbamm st o o 77
LESSON # |22 FILLINKG OUT FORMS v e i o5 0nmni o b5 GEsmes Coamess s v s 78
The FOrNiOr @ FOMM .o e oo hervh imsintn @iioe €5 shamalhi b 55 df ol vt 5 45 i s 78

RESP NMEIEEHOR: i asine ma i 05 v i i snds Fadnss i sl oY fe U wimenss o Sreimi 80
LESSON #:3: USENET NEWS BOSTING oo oo achin dmimmmein s 5 itk s i w wmii) 80
SSleChiiga GIOD . ;i i o7 o 0 o O URTI IS BT B T 5 B 80
BRI TN oo rvnmm e s s Rwrmcm s 09 W08 S50 588 308 SRR T SO S S S B BRI 8l
ReadiNg an ArtiCle .. vt e 81
PORUNE aRATHEIE" oo sov i e gmss simss v se s G odiis Vig v/ 36w 508 -y s s s ke f06 DS sy 82
LESSON # |4 SENDING E-MAIL . ..o oo vioems vinmns s dimsmes v.amd mesims sin #amn s s siecsis sin oomsim sy 82
LESSON #2115 THE EYNMOPTIONSMENEY & i we i ie vi sosmin seeiass i smig 83
EAHEr o e SR e P OB T e NSNS 5 e S S T T B S e e B S 85
BOSIETRC TS oo vosan s s pasawes swtinleariebaans FVTRETE DIV EE 5 e 85
Personal Mail Addressc.ooiunn. o TR - U OIS 85
SEEFCERIAE TR wv-wnamn o vmensunie R SRV sy SRR 20 U AR RANSERT S e 85
WIUIKEVS! | 40 oo simms sminanms wsn1ese; 5ass s pisios (e 4188 48 00 e o 8 SN, i oM i mpcarmon 86
EMRCS EONS! sy nuivenn w5 dwise Do do i s sl uia o siss e v ie i i 86
Keypad as Arrows or Numbered Linksot 86

WEBr TIGEE oo vinmes e B s me sy &6 s e dois 60 ais §rdvma seaisiel 86

Local BExerition Scripop Linlks ahoaeinvein v dins dsiiedods Samoms sl s 87
WEAT PG sesicirsimsie i ssen svmi e iosn o st e 8l vERIN 5o e v s 9%0e0 o seani 87
B SRS - cchona = b s musmmsmston: © ¥ 6 RREMETETER § © 5 R ST SR G B & waiEs 89
TTINGTHE KINOT: INSTALLING: « sem v vtveam sttt st anessasia s wm svans 92
HEWESLIPRISKOT SIIPS: o urmm mmoimn imwsssmmmmmei s o i ot ie e na s s 93
SETTINIGILE THE FERPIINAL - s sovnnviimrs s v s s s Ssy o8 e 93
SRR B &% tevs sediivrssn g dulkolh B BRI B & ab i 93
Setting LIg CommunICEEONS: o vu iy swatvnon isios o iimos s S0 ok S e o s 97
SRl tm TOITHRRL s smcominsmmmnian o mnmn s me e o B G s 97
LESSOM #: CONNECTING o sovs sass vsomimt i enaliiis e is &8 6 55 noi iwan i 55 2y s 98
LERRIRE I . o somremones womss braneion v uanm aSAHHRRIS N AR 0 KRR R AT WA TR R 98
CRReg CIOl oo covamian wieh paeiei iR Srsmiain e L heni aReh T St 98
LESSON #2: INAVIGATING - o6 i snesinon soamsmmals piscmn digvisals o s5 e b asit-am a5 es e 99
FalloWinga LNk e v sisimassons o ds sieiiailon e o doein oaissh i Ssehi 100
Snagane s FEeBAUBE WIRL o o omsinmwvams vases s g o s somsars h i mass 101
SIOPDINRE LIOAE rovas i 250 S50l valtivs ot AR NL £S5 7 mlTnhbae MR RIS Al e 101
Loading al Loal Bl «. s wa winmmians ssasmen s s o sasmnsoe i s oo vons 101
PR AOBIRL: o5 m 0 o m Sanmin e B mon momceestm i et e Al A Arie 102
LESSEOMN #3: TIJRNIMNG QFF IMAGES: v wewven s pwanv svamssn o soert avmssln o vama s &3 102
LESSON #4: RETRIEVING MULTIMEDIA FILESo 102
VARG oo ssevisnaw Sl i e L 5 SR AR S 55 b 2 e ol e A 103
VAT S o A ime BTl R0 T Do) O e e, 0 P e o o RPN Ty iy o, oo 103

CIEPY RIS b o 0, 0 0 A0 SR S 0 s 0 R e A T e 103
LESSOIN #5: YCORIRE HISTORY" & rtm dis oot o s iln i Sinss 500w Bush & g ab e 103
ClERIRELID o snmnwnv inwesmmmed s vimueis Dunmebees waasoeiiin w5 s o 104

007 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

Cleaning Wp {or GO 1.5 vs v vsmse i Maahis pad Sasnis 95 shomaaesin shawisin 3 104
LESS@N #6; THE PERMANENT SAVE v viv o eaeina simw s eiasmm sy sswima v weismmis s » 105
Local Keepers: Saving a Complete Web Pageovvviiniinieiiniiiiinns, 105
SVINE S e et B s gl mv e Beahle il TRERTVEOES Rt 106
Remcte Keepers: BobIimarks «.ou i suan e v ialewes sioivis il swimisiame i 106
Placing a Bookmarkiiiiuiiiriiiiiiiiii i e 106
LESEEN #7: CHECKING QUT THESOUBREE 5 s vvn-cisin smwmmernam wimitaim s 1 107
LESSON #8: CONFIGURING VIBWERS . .o oo s wmsi i s vaid siesi s 655 saoaiam 107
Editing: LViewisr WPLANY . s wienmien ssmminmigoms wonsmssei Siumes sie b b dem § 107
Adding a New VIEWEE . . voss rsasves o203 said samws svvis svs Pawai Coeit siese s & 108
LESSOM #9: MARING IT LODK PRETTN v s sumomims s suormasism wusoie sumins s 109
Setling LOI0I5 oo savihnaness W astus Sun e iews Bl TTRe e Seer i 109
CIRLOTTIIRTE PO svome wxm® Srmvewanmmim s ea sltsdrv o s e Muofon iy Fodnis vi7, 2 109
Barl@romiiitd o sn s wnon doie i B SuTRENE B R S e 10
LESSON #10: SWITCHING TO THE TERMINAL i o6 i wnan casin s tndai st d boens snann i 112
LESSENIAZ] B LIPGRABING: v asmmervin i waabm i sk 65 6smes s, 5w s 112
WNEAT BEOWME oo Beiis iviiss S0e s lain somuie v Brohiias s e SR s 112
5 NCSAMOSIAC, covv 506655 5mn s 6 summemmminge s aimrses sy s s e 114
INSTALLING MOSBIE « oo 055 0si s i e S5 syons s sy o iiae v 16
IstaAlling WIRBREOLE: o cmin dnmmmmns mnons s smsnmn’ ko sy v mob s snamive 116
Installinig the Mosale BIOWSEr i iy v ieve asmis vdi eamiss 9 s, e 116
LESSON #1: NAVIGATING USING THE VEW WINDOW . ..vviiiiiiiiiiiiinnene. 17
FOlOWANE FIYDEIINKS oo xomven vvssmin vwsms oomieiss assiede i s €00 o o ske miase i s s 18
Moving to:a SPECIfIc URL .. cu e srw smsnons soenensnnmons sasns voses vaeissssssns 19

The Right MoXise: BUHON : v o s s s v $mse g5 4008 amin¥in 9% s s s 119
Halting: The Secret BUTON: « ... s s sioinsy snmmiss s s inesanis woiess siaissasiems 120
LESSEM# 2 IGNORINGIMBGES. < s s mansnobis i omsas beas s b rasinals 121
LESSEGIN #3; PIULTIMERIAFILES i sunannseinn svmmi e i /an i s iy ne oss s vy iy 122
LESSOMN #4: HISTIORY LIST . covovmommims smn simmms s sssss wmm sm s msms sisma s wasmoios 122
LESSOR S THEHOITUIST ann s s 5o sebinlo s s oo si s s a s 122
Getting: Hot: Quickly Creating a HOt WemY.. v s vwms vowsnvmsmusnssimenn pwsins poms s 124
Customizing Youl MIOSIC IR« oo oo s i 1w e cemis s S sim-4as s 124

Tl QIS .. oo e s iker st AR A A FAAS% SRR S R R 126
Sharing HOUBE oo ox suvnuanns winmmsme sneamons sommessmenesesmommall ms s pssm o 126
LESSCON #6 KEEPING THE PAGE os siasmimi s vniniibonsa sbampsiel sl e iy viis sy 126
SHUEIE e pnsmramns sxsmsimommsmass s SR T R AT TN T AT 127

LORH T 5 DB oy wisins 0oy 35000 000 5 o) 0 O 0 0 B 778 AT W 7 127

PIE I 2 e Sscommcmon T resmsnreiviny | nonsonimsorass spssiam A TSR S B 21 S IS Re 127
LESSEN #7: SEABCHING: v svvpmni s i Botusalissvs vs shs s S es 43 128
LESSON. #8: THE-SOLIRCE GF ITALL. suvens sismisasioms i, i o faesn i 128
LESSON 9% ORI . <oiwrwmncsisosiosso o s 06 5555 s m A 1 MTWY H0101 10 70850 R AN & .128
LESSON #10:AMNNOTATING 56 i vmes 85550 aEa oo vt T sieese o 131
LESSON -#] 1 GOOD NEWS- ANDL.BAE INEWS v vavvamins swmms wonsidimmssm so o 131
LESSOINE BT 28 BUP ensimnmetis st e mas s st s s Seaii s sy o 132
VESROIRLS B BRI oooie sosinte s dbrotben B o e Tt o wR iy Al 9 Mehny 22 133
SO M conmmmes memmn vosvm s B v S S et B e e 133

Mail t0 DEVEIOPEIS .. v\ttt ettt i 133
LESSEIN #14: PRESENTATION-MODE ou v siiuh s onndin- oo s mes e i osi e o 133

008 ServiceNow, Inc.'s Exhibit 1008

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

LESSON #15: VIEWERS AND OTHER HELPERSot 134
LESSON #16 OTHER MOSAIC OPTIOING csdmeus o savie sy 5o 0anahaess s 135
The Fomts WOUNMVBNE: v v s wimwmmmom s o vy 5 Ho o w6 mem-vsm i s amais 135
COIOS. i oo 5 05 LR i Mo SR B e e 135
HGE W G ot it wosomommnr s 000 6 | T Sl B G B 6 P i i i iy s 136
WVHAT HOMWE viiosnvuman i o5 SUeieeine i sepiaam s 3 Sronv i bn v s |36
6, NETSCAPE ATLAS . ; : s s 5055 somin s 2 5 95 5 0 s wahra@ess 5§ 4 4 RORsa%ads b o 137
INSTALLING NETSCAPE . . oottt ettt e e e e i e 142
LESSON B SCAPING THENET & iowivcinsuve e s pivm s s vimaass 65 25 e55 § 142
Following Hyperlinkso e e |44
Pl «avormeanes SR sTewIR SIIRAE B SEENE BRSO 55 TR S S S e e 145
MoVEREE 2 BPBCHIELIRL: «on v omemmmaminie s Boimmvaomstnn s S wmmssi 5k Emees 145
Leamng MEIGEEONS «u i s3es Boaltg SR w e e i A S A 145

STOR R o 5on dvv o st s wnas dotnsde i iin s B0 S 4 whan s sty R L ew 145

The Wet Page ADPEAES iy ivaiii s i i o o5 o 00 o5 v #1 o0 % 0600 o6 oveiri e 146

Safe and SeCUre . .. it 146
LESSON #2: GRAPHICLESS: MO AUTO LOARING: oo vovinss v onoss ineii i v sbaais 146
Loaaing Lot .o owen o isne wmumon s ne amsme o @@ s S e g siieie enme e s 147
CITRrRRE LINEE . .o o 5 55 Sal nimes i Aaht St AnE SRt ST A Aot Rt sttt 148
LESSON #3: BETRIEVING MUILTIMEDIA FILES o ieov v iam s e ov bt s i o i 148
LESSQN. #4: ANCIENT FUSTIORN - cc o ivntonisi fanesivlind st s sibitaa e s mns gt $m:simsind s 149
EESSEIN RS BOCHCPIABIS: . sl c susonngs mopasnie s 96raa s 6o s S g 150
Dealing with BOOKINAIKS: .o vvomes st s s bl it ng o §iare s e b ddvis s 150
Adiding of Deleting BOORMatas: . vovuins vsismieienrss o ieanans ossaasns evieias 151
Organizing Bookmarksttt |52

The Boolmark FIlES v o cvvmsvans son s shmiiess S0 05 85 IR Daisun sl d e i 154
LESSON #6: KEEPING AWEB PAGE\ 154
SANEIOTTER o s s s R S B Ve e e SR 155
EEIR | oy T ol i R ST e R s et Al e 1 i Bl T st minn [55
PATHING o oo s Thsmmii e i be SEmeiia iR i B Len S B 155
PlallIROCEREIE +ucnm, monminonmps s s s 42 4 i B S8R S RS SR 156
LESSOM #7: SEARCHING A PAGE . cvsnsimassiaais it srenismise s is s ans 156
LESSON A8 GET TING TO TRESDURCE. .o vnsrss s o swaiamssi s samsvivai s s 157
LESSON #9: FILLING IN FORMS . .ottt e e e et e e i 158
PRGBSO s ovsonnos comssim o FEscarar RIS SO SRS SRR VR RO ST AR A R TR 159

Msee NARHON oo i s SR e o At B PR T IR B I i S e 160
LESSEN #1008 THE MEWS iy wmsmas. i ieasss o s slnraai s i e 160
SR LIna Mo SBVEE & osim i i i S s 50 5o W CR R A TR 8 15 e 160

(SO ANND HITR IS RN s oo sy PO 0 R s AR 00 WP R N 161
Subscribing to NEWSZIroOUPS . . . v v v ittt ettt et et 161
BrowSINg ATHEIEs . o svmamnn swmmenn smass Sasssmrsim i paseu e 9o @ o0 ERaRy v 16l
Reading an Articleot 163
PESting 20 AT avscnymsma o syisn SEmase AR s R s s S e 164
LESSON #1 |2 ESMAMNINIG: .+ v v sty s v sien 55 i ol 165
Opening THe Flall WIRGEOW: .6 smissnisiivmeiss smhaisi cossemy panass sieeisaie 166
SERARE PRIl o tomnrnim st i o aek ey ey L R 166
ReeBNIng IIRIE oo s avme s Comn s SHaRRIES Irates IROREL s ETRS S e 167
LESSON #2125 ORABBINIG TP FILES': 1+ s0mwmimaisunnssesmosinn o wioiosiiessiiossoe 55 o s s i 168

Xii

009 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

UPLOADING AN FTP FILE . . o0 cie s s sin siosinie s oisioisss sisssts 4 s s e ss sus ey oo aecs |68
LESSON #13: CONFIGURING VIEWERS wivian mewnnm wnmidi alleiie st st s |69
LESSON # 14: CUSTOMIZING YOUR NETSCAPE EXPERIENCEcoiviinenn.. |70
Youve GOt e Look - unn s v siimaras s b s ass e it s e e 550 @« s 171
Therels: No:Place Like:HOMIE: .o viie s s vos S0 sos s sen isiiavass 171
NV RSN roesmismarsic aseas it ot e (R AT s s S A SR AT 172
7 A BRIEF LOOK AT OTHER BROWSERS i i e e 173
SPRYCAIRBIMESAIC: . o sorpummesenysammmn st S0 sl Sl Av st s e 00 sovbv il 176
FEAITES v s B e e ro e S0, Dnlels FRIe AT O R R B A e R |76
KRB T2 s e s oscsonam it i smORCRER 50 0 i S SRR SSep e DN K A 177
NVINIVVER i sveivis sin Samsss s s i SARS e i T iy S TR paen Sooveer ot oo R s |77
T U7 R N | e e T = |78

G BAPE TS oo min v om0 I 0 RS 0 S G581 i A R 179
LY, e B B s B P T M, vl ol e, 98, o o o 8 ol Sl o B o e S TSR 80
FEAMIES irosmrmsmmrars viomsei s o) 4 ey e ey s e s e ST ST AR BN 180
GAUINEIE .o sanicn s 96 450 o0 v me s, WA A S o wrols s Bt S B 181
SPYGLASS ENHANCED MOSAIC ittt ittt i et c it st st aran et eaenas 181
FEATIREE 2 aram aiaiessls. SEvaems ovmisis BTy (7 e e S s S s SR YR R AR e 181
GRS o mmnsmn Sowommnpmmmens, s rmonms e SaTwn s Sess n oo WA SR S wersranisd s 181
NETERUISERS VVER BREWSER wison sussimminma wise s st dioonsii 746 sasyi Vs ERmmoei S5 s e s ety 182
BETHIRES. v i e s e TN soaidihss s bty e et i B v, S s S 182
GELURE I v sad B s S R g T i i e N Roncld T 182
OUARTERDECK MEOSAIC LD o 1 siwite nsis vl sl s0isi Mt e Sim arb vl e i 183
L e P T P e e e 183
GRUING [E ivivisvoviiasons FEvsbn vSove sus SnEsi duvm e s S 183
MICROSOFT'S INTERNET EXPLORER . vt v vvevt vvneenninsanssessrssssass s ns 183
FERTEIRES 1 it w3 S e e S B e R P S Vg s A A 183
GEEIRE B s s g mmnusomen syacaes: ssineon A B SR AR ol e SR 184
NETMANAGE INTERNET IEHAMELEGON i sian v s smmesss o i s e sgmianis s | 84
INSTALLING THE CHAMELEON . o oot i ittt ieiistreansneneeasanesnsnsain |85
SIGNING UP FOR AN INTERNET PROVIDER ACCOUNT ... i 185
REGISTERING THE CHAMELEON SOFTWARE it ii i 187
CONNECTING TO THE INTERNET 1 vttt et e ene e e e |88

WEB BROWSING with WebSUIEE . vianin somm sivi oussn, e S Shveams o 190
OTHER INTERNET TOOLS v v uievies viamm s srarois o sisis sinisias ism e oo mieis sinais ss o sos 192
NVEIAT TNOMR sorsprmsien o e e s s e s S i e AT las o R TN RS BN R s 192
PART Il CREATING WEB PAGESccovvneenenennnnen ... 193
8 WHAT CAN I DO . . ottt e e e 195
NAVIGATE: PLACES T STTART ., .visinre sis ssiinin sinimismsiasais sis s onis-sie ki oain S/l i, s |98
BEST OTHREINVED s rom s s sarasens s soia s outs S0 Wssts Hssay b e s aTReaen’ s SR oo 16 198
Global INetowork INSVBEEOR: . covws s ommems v ametoh gosaa s 56 6as s e vei i 198

BIREE GaIAN < .o v vs e wissin o ml wialboslh (oo s ool Am M Kin A o R s o & 198
WaANOO: Eosivevssd marenv s TSR RS ier s SRRl WO T e R S R i e & 200
INFORM: TERRIFIC TEX T ot ittt et et ettt e e ettt et ettt et e e nees 201
Manlals NESA MGEAIC : oo me by s oBmm S s ST TR Sah e a5 Py S & 201
Halpfl ifsrmaticniONCOLINK cos v srwin s s smsi st teememummmoms s 202

010 ServiceNow, Inc.'s Exhibit 1008"

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

BTN TYPRIEIE TESE wcncoman i s wovimsni smbRuasnis k1 atiisl B g A b G A T RS AR 202
HOME-MAKING: NO PLACE LIKEHOME PAGESottt iiiiiaes 203
COFDORATE PREEE cvuvmmndt o7 §5 vmomismce 0nmn s v amaianss Sue s Snmesm s 203
University Home Pages 205
GOvSTIABIT EIGIHE BEEES 5 i i svavn o o simis PRres s Soov s i o sa i g 207
Personal HOMBIPAZES 4 vo.ws v ki vvsine wn wainnin sin e momin soarm ave i wonsie s sie 8l ieets waien 208
TEACH: EDVICATION. oo sniisn i s i soonesiiimmigs i s s sy dionis st 5 e. 0 s, jasisia 210
EGeoataty SIS 455 w005 0 2 Rt in i 000 b e e i Wb el e G 210
EEIC orissveiis Dl s i WS SO0 OB S A M R s R S 211
Britannica Onlingo vttt e 211
ENITERTAINGROOVY GRAPHIES: wusipissanon oo ve v 6 iy asnas sinim 5y s 212
Tliesratirs TN I s ns siascmmormmommanion s onmrblmrmmm ey 5o AR HR s 212
Movies: Buena VISt ai s o6 s 0@ antbaiieian i3 I8 Simiiiinin o SR e i ia e e At 212
Music: Wndergrothid MUSIC. ARCRING: < 5. covsnm s wm i i o 66 saisatvl s okeie i 212
P APIOBRITCE i i o 055 5 e G A #0008 A B R Wi s A cumarhtin Mot Pin Bebinss 214
Sportst Intemet Baseball Information Cemer .« wawsu s s usiws aoe i iosinsiie s ka s s 214
PUBLISH: PAPERS. BOOKS, MAGAZINES; AND MORE ;5 o i v 6% iinan i vvsin in 64 sns 215
AEBIIC RIS oo wias s inaams R 3 Sxwm ¥k BATHE T WG O S 215
PILIHedin MAZATINES o i i st i iein S S e Y R AR RO b AT 216
ENTEE: urs so: o i i S R AT 5 B ESTS G BE eE SRE EE 217
s R N T T I el = S S 218
SHOWCASE: PUTTING YOUR TALENTS ONLINE . iciia cwvimen sscinin i swsis i vamas 218
SELL: TAKING CAREIGF BLSINESS .00 648 a4 v sbn e bin At gomtimsie il voiomen mn- Shacsas 220
SEOCK @UBTES n s wvih boeen o8 SRavas B SRS S 0 Rl | B B 220
Networking overthe Net e 221
JEO DRI v cvii s v smsiiys SRR FOREVS PRI S R S R 221
BLY: SHOPPING oo s sive msniae arovom smmsnis miamoonsins s szesss s anls 406 555 50 85078108 358 87558508 8 221
The Intermet:Shopbing NEBNOIE «uwus save sisrms snee st s s TeWE s e 222
DEEE CIBIIE s ve o st simovnm woscsmpiaiondi s womssam e aeon A A Cumiaamny 59 6m e s 222
SEEAE BEREE BOLITICS o v s a0 S s i i s s st She N eme s v asar 224
PRACEINEE o5 oup 0 ouel 090 S0 wopolle S vl e R VA R A R 224
FENORE, o vavimnim iin 1505 SH00T Hiail il 15 G000 P TR R ST B R 224
QOBSERNVE THEBIEYNS: siire b i min: s sowsetsssoisi itk s e 5t aaieRsass 655 &3 soniis 225
Headling INeWS siasis i prai o5 psirs 19 5% Deai v e e 45 15 i b e 5 e dene s 225
WNIEBENEE cova oo s w06 shovi s v v RO ESRBatEs SRR ST B A BRI 226
INTERACT: FILL-IN FORMS . it enans 226
PErOnEl ES .« vpumen oi BB s denramneate £ s S A SR LA 1 AR 226
B N S S S S R U SR) 226
SN oo G 5 USSR N TR A e AR s SR i i i 227
IR TR 5 b B i By B B Bl 0 0% T RS e b [l vh o b i, mey et Jh 227
Interdctivei VVEEthErF MaE cuuse s smmaiin: srem i Sae 1 BOsSe TE EYess S i 227
XEroX Map SeIVEr ittt e e e 228
MEDOf IS s swum s Soamvmens ive 089 SRl S Ses ¥ s S e R 228
TOUR: MUSEUMS oottt et ettt e et et e e e e 230
L WVEBEOMIE ' e i cosonieion DR 55 iyt i oo i s 230
ERDIOREEORIUINT oo v e baivon nd fusms we ecoi G et e thpd 0 oy 13 23|
Phesim of Paeontolgny ouvesvaiiini #e sina e 15 S0 He R0 55 maed e, 231
VIRTTeNIRTIRL PLAICES conn o wiomsemmms i i s somii. sy slyamy e maris o sEeigs 232
SANIDNERE: wvinsss vreit i S B e 53, e S TR e S A S R e 232,

Xiv 011 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

ParIS & vt e e e e e e e 233
EXPEITICkEY IOHEE oo vty o ae s S Siaieim om Haiein s sm i ien i 234
DoWNntoOWn ANYWNEIE v vttt et 235
Interriet oW Hall i s ammoms s omms e o i e m e s s s bl e e 236
BREOWSE LIBRABIES :: o suiain sansieas i ss ot am eai o aveirisisn sl | 236
SURPRISE: OTHER NEAT GIMMICKS .ottt e i e e e i e 238
LABEAI tocirs cnn tonsn ooy Siundams v i s St o s i S T S 238

The: CyranEISEIVERNE i -t Srrmish frealbrs. ma s s ad sosroe-eb sn w8 s umms Sl i 239
LBt cieivms srmeieriaian sl st s dd e St s s S maasi b e S0 o WA AR, WIS 239

THE VRUALFRRE: . snevimnann BTSN TR SRR 20 B i i R Lt R 000 155 4 240

SAY s5an praesinm FEae DR PR SRR E R S SRS SRR R R SRR 240
BIARCAS STUESHECK oo simmomms sasamsers meiis e S Tl Eim o5 S i Wi 241

B PUTZIED orvayenc Trmonalint T S s son ot ol e e S oy Sansien i B o o o o e 242
THELATEST AN GREATEST tn.us tiimii s ot ariwtime g sw/ammmiime, i i s senmeias 243
MV H AT N O e e e e e e e e e e e 272
9 “THE GAME PLAN« cue s 0 srsin o x v 5n s missss s o mnieh s el siies 275
ENTER THENVEBMASTER. 510, e sussian s b0 i st Hria s i es it mwotus v fos 277
LESSOM#E | WHOS YEUR AUBDIENEEY 1 soean wivmmm an omaiss s i s v st s s s 278
Does the Audience EXist? ...t e e 278
WhHat's ARy OUE TREFEY i vv ovmeinamma wovaie i o6l s S hmme st S s i 279

e ab i ol o N el T e G T e S 279
LESSON #2: WHATS YOUR DBIECTIVEL .« i smieh sawmnisimerss e saihss:s i e nmne 281
Sound and Miden: vz s rism sovimis S St ai srana Lrein sdniagl W i 282
Tl BB < 0 e owsimcominm ssiasmsves aesmmorns wemmsmasasi S S SRR R A 282
BRI o SO s e S SR R AT G R 282
LESSONM #3: THE HARDISELL.. 5 1 wv cvsunin s smmroimis svssmin bras, siv s sl vin s s e sovmmas siaions 282
DSEEUREL sies mom s e e s s Gt S A i ST SRS GRS R e S 283
IFOITI o ommmayesisormme. e s et st st e SR SR B W e R S R 284
EREEREEINL fmin trommn aospess v s A sl e st Al A s s B FR R TR R R 284
LESSON:#4: OVERALLIDESIGIN ..o.cvon s s srnes saoniasii i shad G dhii e st sieriims 285
POIBEOT OB ousioi s vomssue sosm siammaimsn saame o s sbe i e Svidoe Sawin wmniomn 285

The HEr® PaIS ws arsss imns s Somiemi Suiieiroee i soi nuEEn HEmsm /e s salhiiG 285
PN N . v ottt e e e 287
LESSENH5: PROBLEM PAGES « cien s aia siiaiss salas e T B oo vaiss s sivaes 288
ALt BombBardimErE oo o ovoms s s s i s s eisiemms weleia s s e s e e 6 288
AAPAPING GO -viss i msiasiiain s n Wk e 453075 SR S 55 O L0 RS B8 288
Multimedia: Moderation. «o: s vt sriisans 100 B0 e S st soenie e swaae 289

T EXtUAl T S ONEES .+ . v v vttt et et ettt et e e e e e 289

Jova [abErTE «20u i b v e SRR SO e R S S e 289
LESSON #6: GETTING THE RIGHT LOOK ..o i i e e e e 290
(CONGISIENTCORINS | v s 1 i St s M T SOH S AR~ SRR A w22

The Look Should Fit the Structure . ..o v s oo eene e e e i ianenns 292

CHOSE PEOWSBE DIESEINE ooesme st s i S i . Eiin it Rl aa s Sataes iy 292
LESSEN: #7: LINKS TO OTHERPAGES .. (.o istensesisessine, siva siassi i v sl s v saiviis o 293
ST IS i o 8 s G S0 €55 A BTG AU 0 i a0 A TS 293
Senseless LinkS .« v im o s im0 S e vt cnn ST e VREEE S B A i 293
LESSEMN:-HB:STIUBRNING THE STATS cuem s s svsss smimis somkssios s s ses. a6 s mmyss 5 294

012 ServiceNow, Inc.'s Exhibit 1008

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

MV H AT N OV ottt e e e e e e e 295
|0 THE HYPERTEXT MARKUP LANGUAGE 297
WHERE TOISTART omnim sovsnmims sonms it s e spssviem | SEmamms i sivese s 300
Steal ThE T drom. s v s e S AT PR Sk Al ot e =i 300
(COTNVBIE TING TEOS v v om0 S5 T S R ST SV s 302
HIEMAHISTEIRY: svmt oot e o Fe i T T T e S LTS o pumceimo s e 302
HT ML FUNCETIONALITY: v s s s s st s sweuant o anme o 303
LIFE, LIBERTY, AND GOOD HT ML ottt ettt ettt e e e eas 304
LESSON #1: HTML: ELEMERNITS v covion savs o arsinis s s sussmsai Samiansii s suvnm et 306
YTt~ PP 307

The HEABE 5 omuian s s e s S it Sl ot 305 s 307

R B L 0 RS S AT SR R s oS U R ARy Py w0 B Wb 1 309

THE FEITCIRE @E T et i ey i i a0 s s S e R o B S 310
N AT N NN v iz i nozo Dol e R s P s L e oy o on S &] 310
| A 2, < T RO LTSN Il S 1 Sl SR e 11 313
DESIGN. FUNBAMEMNTALS. iriranissss smvmm v stms i sasaonis i mssss o seemimms 316
T 120 5 R S S Sy S e (R B Sy SNl [g 317
SIERINE YOUr PagR + v wan oveis S0ussas SN i@ i iy o eses i 317
LESSON # 1: SPECIAL CHARACTERS .ottt e e e e e e 317
PRI O T s s i B e e G s T e s B s e e 0 T 318
ERRanced Charagters: i wisintnaibins s e in Siviais snin sha e e dnoaliinns nis eis oy faaiass 318
NG RGOS v e s A S e IS e A T A s S R b 320
LESSON #2: SECTION HEADINGS ..ot e e 322
Style: Diaiting Good HEdIngs .« .. v s esir G sy SEs o Rimieses sy siaivives 323
Algring HEFHIES, i mmmmsn s dissermn s siemmms s smsmms w00 w s Ss s S i 324
LESSON:H#3: PARAGRAPHES oo an vn snmii bt snm v s c5a, i, 85wk i s e b 50 v 324
LESS@INGHASLINEBREAKS ;i wiesscssmmrnmss o-ams diatasiis S mm i i s S e e 326
Blo:Break i co el b S s S S R R 327
NNVOHAIBIEARE o.scsva s svmies e st fiatie o Svassers s s, sisatasiton Sasiasasiei it s igs Ao Vo oA el nibte E0timr 327
LESSOINES: TEMTSTILE com it i 57 s i am b & e s aperiyn d s oty Ses, 0 05 o & 327
PHYSICAL SEBE ccovasi svminsrins s astasanioiiih s1atm st wadssoie Suvirsa Savavs Vs miss 4 328
LogIcal SEYIES . . oottt e e 329
LESSON #6:SECTIOMN STYLE i i wasmns siteam s e saeivs immmwmins Ssnansiesmins piss 330
Preformatted Textt 330
BlIOEEAHOIES v s v i 5 mis biv i s FUAes ns AUl PR e Ak 332
Yl [o T e o T 333
TS0 WREEh IR FOP 5)ic v s i s s/mnis. eessrsiin i i e st 3ok e wans Sash 333
LESSON #7: FONT SIZE AND COLOR. e soneinoimie soimsisimis sslossionase st i oo oo 335
REIZVEFOIRESIZA supmvmin v o snaisn Suobies e e A S e i @A 336

The Base FONt . ..ottt e e e e e e 336
Mlaldng i BASIBE - oo ummnns o sabesny sreas i so et SOV ToR Ve R A 336
EOILICIOIOT: nussrasmams semim e 5 amuss s S I S T R s s e R s A 336
LESSONHBLCENTERING: ocnn s 65 15 wvaidt il e i i s s i i e e 337
LESSONHIFEGMIMENTS: ihmais 35 b et flams osvsrs e e e "o e d e pein 337
LESSONFELOLLISTS L. oicinis sintssimiess sar smmnshomsssissls ot sadioleists s b i R o b it hint 338
RSB LISIS i sosronvesnss s s aiie v, b sans i ooy sabuis e s | ete e b e |y st At s 339
LInordered LI8ESE, dué et e f s bl s et i e s AN R S e v 341

XVi 013 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

CUSTEMIZING LISTS vy i vumens v bvsis s s ey v S e s s s S it 8 343
DEfiNItioON LiStS « v vttt e e sttt e et e e e 343
PIRINUESES & copnoumsn s amees o smam mm e s smean i o e e o 345
MERELISIS: i aiiniis Soves ianih iR m s e S s R A e S S RS 346
EIOBERORY LISES: coincnes wsomons wommoviommmtshn b i 45081005 T B 505 B AN 1 346
LESSON #1 | : HORIZOMTAL LINES: 5 osmess srnwmssiime povmeig ey dsaiva vaasis s 96 35 v 346
In Thickness and in Health e 347
Setting B Line S WA oo vvavs tunv s i in s s s e o8 347
AIENME LOUR LINES [thvhnininien . srsiativmrmene o b ottt b, e 0 0, L o 347

LIsirir A SORE Bal.ous suana s omoses e S sominss i il s s ese o 348
HESSEIR B 12 TRBLES 1oue s st bt mrsammmniihba mas s e o map o il €8 349
TR TREMEE o umiams e s i ks A A SRR s B TS AT 8 i T s 349
Graphical Tables oy cvemu sms s v vansialom i Ve R e s Sl s e e s i 349
FATPAL A TBBIEE: i smccnn oonioniein. s o bhmai, s s nss 5o s S ARG WM N B 350
LESSON #1332 HYPERTEXT .unimuvamminionds e st et s shssaoeis o 356
The ANChor Element . .. oo ettt e e e 356

T | = I AR 358
Anchiors: The Name - AMIDULE s svwviis iion sk viasiin S0 MBa I o0 site s dihe Add i 08 360

TR conscmson ssane b Mg e Sconme e s A D L A e o i ot g 363
Defining Relationships: . i ¢ avmit i SRism v v B T s e it s aeins o3 364

i (=g ToTs N S U= e = We L o B SRR 366
LESSON #14: RELATIORSHIPS AND HYPERRATHS: wouvevaiiin st o sioasiise o i o 366
Esing Lok o v ov oo R T L L S 366
PEIEY oy i s b T A TN €59 AP AT A S S BN B SR s 367

1§ eSO U SO O B |+ 1 | LY S 368
LESSON #1585 MATHEMATICAL EQLIATIONS: i satommans sumics sk sssiba s i su v s s 368
LESSON #16; DYNAMIC DOCUMENTS: PUSH OR PULLTvinbiniiesnsin peopanss ss 370
SBINOETIRT 000050 vmcns s ashsssanr oot T Ot i TVt e o T s 0 AP MR €48 370

et Pall soansoseis sosmesn R e S SR S A e Se N g 370
LESSON.#17: MABDLUIEES DE HAPPY \xovumin Sinsarmssmim o simors i oyl wodbineosss; sm e mn e 371
LESSON BB POLISHING wsmsmenis comoni @i sAamsisims susat s Siad s o 373
WHAT MOV . s e et oested0 o ossn il st e - 55 sd faal o8 373
12 GRAPHIES : :cos 5 5505 55 8 5500888 0y S ERE e TRe s 0655 2F ARSTBA 55 S & 375
GRAPHIC. FORMATS. o vi s simiaracmninin s acsscs s waim aia s.amcuesasn s sonds s Toisis. o aniaks. soa omsmim-nin sin 378
BEIP i smmassins i b s, S H RS AR SRR RS SRR G SRR s 378

JPEG i s samas S ov i mvess s mn e i o8 See SR e v anavamein o 379
CRAPHICMIBVWERS. < cosomammimmsnimss s sumiss ohissiosniss oo G aaeas i s s e s 379
EVIBWE <oy sviinin Vierain MR S 5 ey i S 6 O W AT 8 SRS R e T T 379
NNBGEAR ity s s s s G E) ERTI ATV sl o7 38|
EESSON 212 INEIDED IMAGES: i sorvinssava v i i ey s MR g oy e sy o8 382
THe MG Cofhinang: &l s it 5 .ahwb o dhoditwled Tl A T ieds 58404 28 383
IISEANE WHEEIBE wov s simmiom vimassnmnd o 5use: ok ass e sdss o S YRR 00 Ve Ly VSR S 383

5= 1= PP 383
ErosSIfg TRBBOIAEE" o biwrn e aws amseta Bl ool sl Pamn Soutel Setr-ats o 384
LESSON #ZALIGNMENT . cuvw isosaenatn sivmi- it s i viem sRbai mivsse » 384
Absolute AlIGNMENt ot e 385
Floating AenmBat o saman s s (36 550 i Sl ie ST WIS e iess SEeryisss 386
MINALNThSIGUIBE . sv st s imerstomm sl s St s msonmldbedl o o s 387

014 ServiceNow, Inc.'s Exhibit 1004

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Cledring Space Alter LIRS Breals . vo v v wvms vaamved 3 an s aav s i aubis o 387
LESSON B3 TEXL ALTERNATIVES «o v muams ms smammns sxmn 3 ememin s emsss w6 Bmss i 388
FESSCIN-HE IMAGESIZING . o srimii sras o i i eah o5 pime M o s v 389

AURER ORI o cav amoivs ssrans domsmms s waloiis mw woke SVRRRWS » SERARUA AR S0: AR AR W, ORI 390

Percentage AULO-SCAIING 5 o iasisiisisaaliin wn sasic swmvonh a5 S0 a0 oie B ¥ s eininaie 391
LESSOIN. #5: TRANSEABENT GGIES 5 ciimwimn ssomsamniimion s s vow a1 sl s @ die 392

STEP |} Isolate the BACKSPOUNG .. v ovnin se s itnn swniswiih win s sins st wiobis s dia sl o s 392

STEP 2xSelecting 2 BackproundiColor v v s v dion sieriin e merse siomsv s 394

STEP 3: Making the Background Transparentovveeveinneennnnocanans 395
LESSON #6:CREATING SPACERS i vummarvnnin wemmsoan smwsian s s v s 5 wiasi o 399
LESSON #7: PERKS, GIZMOS, AND FRILLS . ..ottt e iaan s 400

Billel suieosvne s son oy S an e TR s RSt B ST 400

BULLONS | ICOINS . «10 vp. i wim sim s mmmsn sumiasioions aomassnmoe s e sse a8 57 06 aians onsia e s som oxmsersis o8 402

BAIS: i ivimnaimnning iivn Sovis e e s vaies S SR EE B S e e 403
LESSON #8: MAKING GRAPHICS HUMBLEttt it e et cn e n s 403

SIS e v on i Baos sl GRBAREREES BUERGL R TE I R R a By 5 404

ThUMDNEIIS o oottt ettt e 406

TOE RIB THER unimon ivss sniisavemiis L CRerilesm el BIvEays MESna iass s 407
LESSON #9: INTERLACED GIFS AND PROGRESSIVE JPEGScovviiiiiiiniiinnn. 408

lteriacig 8 GIFEmaed: 1o sivsiaicmn B niibig bR heines 2 408

PROBIESENE JPEGS: o oo wvwmiviommn v Bummmms sy i v asmoed oo s i 409
LESSON 10 CLICKABL B AMBGEMMAPS v vsin cven viiticsn i sramSn s sens &msaind 410

STER [Cheate the WOREE « v asps pumsmin amimms oo oo s s s mams s s 411

STEPSICHeatE TS IVIaE 4o iv500 0 man o0 sl aG A A 08 D N8 50 O 5k 41|

PAGEERE L i i i aom s oot liRiiowe. i s GORRENS. R 96 R T | PG WG ORERI 413

STEP 3 WV ThE HTMIL, ¢ ii0 i 5 sumenis vls mmmnss ain vmmmen am som aumiaos gomswains somsemenmnas 416

STER 4 Sot LI W SBIVEr sosimnmi sn iwmse i aay o spasanis im e oveanvarie 417

STEP 5: The Text-Based INndeXo oo 418
LESSEONELE CLENTSIDE IMAGE MIAPS' a5 cvasum b seasueisiaee'ss gossus e 418
LESSON #12: WHAT'S YOUR BACKGROUNDY?ttt 420

Bl oL COION o i i mi S-S ai-aaei i 4F IR eiiEe bR PuessEg i 421

FOregenind Color o auor it b OB s 4 e Bt ol bt pelbsailen g i sl 422

faetiing BackRmolinds . vaucumin s ot Duaas s sons 8 (einaEseRes M 422
LESSON #13: EMBEDDINGttt ittt et e e e 423
THESIVER SCREEN wir snsiarmn s aisid Grodafi i sail & B i@ s momiran 423

Lighvts, CamBra.. MEUOMIE o i vs eoremmras amsh B G5mee e s66a% 5 i ol 424

I I T i e A e T L O A S el T T i e s S s 424

MPEGPLAY «onmmsn i miiaming vl baties s wfslstammobod watole @ b o5 sk i 425
GRABBINGIGRAPHICS i wasioninsin-i s5aeie s sdiami wLsiiae 05 ¢ il aeivs i) 425

PG PICASEON s w05 o MR G AR S RT3 g L 425

Capiinie o s s i R T SRR i P TP I A5 T A 426

IPAEEE IO oo mmmmmsunsnn o ammm sxmasess s §omsmasin v SRR RsmR o 36 SRR o 27
MH AT N O et 431

B SOUIND ;.o anmamas s aad 555 50500 5 55 5 4 § S Beemmes § § 55§ na@hies s 433
HEABINKG DG ¢ om0 S e e SHseseh v owvish ool shameame] 436

IrsElng SPEAICEXE o soiv v s e b e s s i s o slite i a s ma i o i Suiaidinet 437

Configunng SPEAKERIDRY i s s om s siomnsss e s 65asiss s wie i pe s 437
FAMIMIING cams s omantie S5 S S o e S S A B T e L i A e 438

Xviii 015 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

WWRLARTY . i i O o . SR A i i SRR e BT aaS T A mia s 438
NV s s S AT D S A B B R BRGSO B SR 30, BRI 439
LESSOM # 1 HYPERSOUND. v s s st ib s sasenibein neals Saass isisesn s 440
EESSEN #£2: AFBIENT SOUND g womwcarenissom Snapalioon Sy oo simbne v dionml 442
SOUNBING IR siismimmma-asmm s aomim s o Sy nsaae s iasm e v o 443
Aie) FOPIIES o . conimpecs wimmsmsm wsammmmzoces oo wunomn wisymions vy miayyn s sleos som ain wimned n: Wl 58 443
Recording IE YOUISEIF s o uaus sansmsis i in SETHG 93 @Ry e Sy § s st m 444
MBI o smrrsmns s S messmmsin iy s s ssms oo G Ao et b e e BRGSO S roaen B8 444
searching For THat Right Sotnd: i pvaysemamman spwbs v eiaensms nsmstnas o 445
WHAT NOWE . neii itas i i srapies By Rl iesas Seiiivs peaPasss sramevis 445
B INTERACTIVITY 5 o 5 s 5 555 5 7 555 5 § 3 99 500emems & e 5o eise o smu 447
HOW A FORIMEMWORKS i vimis e wiie s sairaein S i s eriaies Toiassmis 450
LESSON #1: A FORMISIBOBN ..o e ence v s bainisss bl i saevs i ou oo ssm o 452
PEHON svre vavien SR Sve s SR Vamv e v aie Ao 4 o o e O S e 452
PACERIOM: 000 oo mamw imme womans e s oy s s e e S e R sk T ey SR BN 452
ENIETYPE: wosirisis psanae avamoa s sk e aa skt os saniidin Py i 453
TABIGET] o oimetmum st By a. o sl s b en e 07, Sy e i ki 453
LESSOM #28 INPULET RIELIDS: . o nun sianmimasapnommis sisimonssto i simisieon siwes ok s siorieriie s oies i 453
TAPE & om0 in.d% de 0 0 04540k A3RRE SERa 105 B aRl it AT s 454
BRI v savmasnmiion v mbmhokoomaion ikt thsgodring o mrse smesmazee) 455
DISABLED siuniiain ssint sepniaivss sl Ss v s ey S s e 456
MIN/MAX 0,00 T b B e O i b AT O A B 456
LESSOMIN 832 TEXT FIELDS ivovman vvmm o viiia s ias % v s O00 ssian oniemab e s s e s 456
Text Field Vanations: ceeis s s s snmmine s smnoiens saees va e s 4 o880 VEG § a3 457
VBLWE oo v s e dinith s o mss scnsscals Sospemmssion st i eintas Hresanbivaon:e-acara e iomonzmins 458

SEEE. i citaompess vt e bmmtonbie el snoink ek KRCIRAIATR E DR RO A A 458
FYAEY EIIGTH: s sy s iestiugiontaiss susauonsasin Senon s tsesal . io-olbme: 5 i dis 0 S0 400 458
LESSON #4: CHECKBOXES OR RADIO BUTTONS: v s tvamon s wission oiatie s sivsis 458
O I om0 MRS S A P e P P oS e 459
CREERBONES | Lo vy BEeNE sa-imm iy TRy RS B g e S e 459

Ratlio BULLONS, <o st vlim th e s 55 s weote sumgimamsfon ol sklnoatocati men womes st s 460
PIEChBERER v uonm cimus uiiiiivinn Sousisiesst S o S G Simscs IR R i A i X 46|
LESSON #5: THE RESET AND'SLIBMIT BUTTONS: o s o s visess e e vimas il i 46|
CREROTTRZIOE RS (LRI v i avesiiesrssmomvo s “somions rasis R SR Ao 0 BISCHNH FRARIASH. WP 462

MBI ICBIS, o s o esioiihsio i oo naninis, A5 a0 SR A e SO A SR 462
LESSON: #1068 TERRTRBEES . ooxmic wio b4 s il 578, 800 000 S0 9 A A S oo gl 00 e 0 462
Iz E it s e R WCh S SRR RS W b B T B e AT TR T e 463
R o cniminmaciin: e s e sy R 8 A AR ARG e AN e 463
LESSON #7: SELECTION LISTS s sn s wiipsvin s e an Gamus i whesn oalwks sidnsil sl 464
SIZE 50 090 e 0 simlimsaeciladily orsohn, v i sl rh Ao b . SRS B B A SR 465
Putiple Selathomns : s s s wmmimmesss s, o i Gaseme 5 se somm e o 466
Cptiohs ALHDUTES s vamis 5 oipe i i3 I SR DS IDaw RV Ees SEes sllies Qp e 466
LESSON #8: PLITTING TT ALL TOGETHER: 4 wvsva v uvnman s smmmsswwis dhew e snsismmin 467
A BaSICIBORITY s v v RO e s L R SR SRR R S 467

A Sarmple Messmge FOIm. »ueie rnmm s e sodnbn sl Gamnsnibre hblem mate s eimis oo miss 468
LESSON #RLIPEOABING AR HLE 5: svsmundussmamnunemaine s s aum s 470
LESSON #100BLITTOMNG v voxvrimmmmcsomuincnnt riimimsssssis sssbnis dhusaldins badtdns midkd HE0 Lo wEa 47|
LESSGMN # 15 INCLUBING HIDDEN TEXT . wocomsamsomnettn v i e o 47|

016 ServiceNow, Inc.'s Exhibit 1008"

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

LESSON #12: SEARCH INDEXES . . .\ttt et e e i 472
ISINBER osummssbasig 06 7 Ga0ies S meins Sueboms Peeene mesiiv . 472

EHREES ol i cnsamimmneinicats g1 VA IR oen i ANms e e e e R e e v el 473
PROMPIT 5 50055 35555,00 1 66 imaieiide i 2 ahom iutai i Bnee i i imin 473
BEGK-LIEE (6% DORHRIRIS. v envwnmmmmmn msmmaminioss i e 473
LESSON #| 3 TESTINGIT ©OUT & sr snvummsisnmes vvanyms s o iroreny sveviias s 474
LESSON #14: WHAT THE DATALOOKS LIKE ..ottt 474
SEArCH IBUCREE et du.en o sr 5 00 v e a0 ml o SRR, G B e b s e A 475
PREGIEL [ronmoms wn s osommbenss: st R30G5 aiRaR AR A 5 0 LR AR TR R 475
POIST = 14 oo i s il s 28 S0 Sl it 2 S e rians B a i susa 36 Saiaas 476

TFHE PUTLIREOFFEBMS: wios wn sn ssmain tosssrein o e s 5 Susasines suemns sss 476
MVH AT N O ottt ettt e e ettt et e e s 477
15 CGLSERIPTY i o0 5 mmmedios 2.4 & 1§ G0eionnis 5 ¥ b 9% ket simn s 5o 3 3 5 § Sras 479
LESSOIN # Lo NUWHAT ISTCGHE 1 55 g svoy st wn st siseiam s v i i piass a5 sifsonindn fuen o 482
What Can' | Do with a CGl SEpRl i sin v ssvimans vomins, i Beans i svese e wam e 484
LESSON #2: THE STANDARD CGI SCRIPTS ottt et 485
LESSON #3: HOW TG WSE PREEXISTING/SCRIPTS v mvisn i v i s vavanon dnanms 488
CanskrucingaiCial LIRL 1 v wo onommmmmnm o s s v g Gamss s smesnd 488
SorcilVing s SEHDT VNI BBBRIIY (v it o s sl h i Fo it 53PS it P A A s 489
Specifying a Script from the "Open URL™ INtErface: v v v s ws dimeniin vswsn wowiemd 489
LESSON #4: HOW TO USE A SCRIPT TO ACCESS OTHER APPLICATIONS 490
LESSON #5/WRITING YOLIR OV STRIPTS: i covaisnim s moe asmemsriniisisis iasin i 493
WVAhng 2-SIEISISERBE o 5 0. w8 P i T 5 Wro el i R A 493

Lising Etiviconment Vanables In SEApLS. «.vs v vusisn wamns o vl s st s 497
Location and Status Headersuuu et e 499
=T g g B B o e L ————— 501
LESSON #6: HANDLING FORM DAT A oottt ettt 503
Wihiat Biges Forii Data Leble LIS o vba v i oo s i sa il 88 Buyinrvm s e poeni 3 503
VTP A OORIEE . rmc i T Bl s 8 3l e B8 TS o B el 520
LESSON #7: SAMPLE SCRIPTS FOR UNIX, WINDOWS, AND MACINTOSH SERVERS .. .524
Rl e e s S0 B e o e i A0 p e e e A L L s e e B 524

e i L L T D e L 530
SEIVEI-PUSN . o oo e e 533

BBR o0 o seoumiinis ML SN EE T I T e I R R T S N 535
DIOSIVVIRLIOWS SCIBEE 1« o aveverm i snewisn o6 vowesm 5w e sl s srma e wede 0% 6 Eu/enias 539
Magintosh SOIPES Jaran s G s iiig wie S5 asin VoRse i i vnehivgi-sie uie s Aniis s 54|
WVEAT NOWE o 450 sukea sa s Sudmpes st 58 050w ma e Suih eaemsd niape s v 544
16 HTML EXTRAS . . ettt ettt 545
LESSON # 1= INLINED VIDECQ WITH INTERNET EXPLORER .- v iwveani vuwvn ow sininas 548
When 1o Play It ... 549
Shiciild There Be - Control STPY us vopen i vywaam v de e 315 59550 6 0w o Sieis . 549
LOCPDELCHOPE . sisinn snm somsst somrie siniansiss w56 wivssmi s sete, 35 50 54| Bov sk sideimam n 48080803 550
LESSON £2 FRAMING WEBPAEES . v vavoini 6 1bib bA- 0 ds a8 2ibis @ Peia £ § 550
THE FraiE DBEtEIE « o smmmeen Sty ¢ Bl i 00 ISR Mon v B oy sk i 551
SUpRGting The Frama-lmpairsd. oo vavis in snvm s e85 B RDRese VR o 1505 1 558
LESSON #3: TARGETINIG & ERAME ..ovoin s s s s smems s sim s s s s s 4 559
FIAMIOE YOUREIT oo vt smvanas oo s 0 anai S st B B e ahistobin. 56 eang s 560

THE AT CRIBIOE: 1o sorin vimamenss s G s Ss s Bos Snsi s s ot w5 s 56

XX 017 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

LESSCN #4: CHARGING WP NETSCAPE PLUGHNS v s v sasn i s ans ssions aansi i s 564
A ISl Pl 00 v om. oo armrmsose 55 min o ke s B P b S (SACHGSRORL & 568
How'to Embed a LiveyOblett i i v 5vsianing semion v i@ sl vilaims v ¢ 569

LESSON #5: LIVEMEDIA: STREAMED VIDEO AND AUDIO vvviiiiiiiiieieeeees 569
LIVE DS i i sumveion sald Whansn Sooteevaeg SVvehems s shir e S aeee § 570
LIVE VIO ..ttt ittt ettt e e e e 571

LESSON #6: OTHER STREAMED VIDEO AND AUDIO PLUG-INSoviiiiinnnnn. 572
NWOONAME: v (el Paled. Fro A G AS P i e e e D e e B B pa s | 572
NERDIVE & o vammins o v saammnans B o nap b imens Bas s shgis s 575
PRV ¢ owsmmamvvnny 9 svviioseis uai oy anriem e aaen e - 576
BEMBI cxsmmons wserssmommsn wisme RS S5 nas 0 S oo VSRR ISR SSNCER R & 576

LESSON #7: LIVE3D AND THE VIRTUAL-REALITY MODELING LANGUAGE 578
Wialkinig Thirough: 30 WORHS . ..o v o v v e s vimiobs s e seis mheimess 579
Creating Your W VBML FlES o v wesi wivvvi ena s s sisn b sl siays s 581

LESSON#S: USING SHOTKWANE . 1. v i imon v sint v i 680 oot b sied msminis soien i s 589
INSAEH I SIVGERWETIE | sunn s dsivmsous suviiess ROy s €on oo sis ol Souoans NOwRLR WM GIGRIE R 5 589
ANSBOMING! e snens it SisiEre il B LT SRR R R e 589
Sply SNCHNE: & Jaere B2l R S AT e v5 5 e i et s 08 T § 591

WHAT BOYVE" cummmms s sasan woi i aoss Wi e @iaswe memmems o i em 592

7 - JAVASGRIPT . .o oamysssansssson sonsusaes e sbwhossies 593

VWEAT. JRYASCRIPT DIOES s vis v dovuas e e vie i S s eve el seayiii 596

WHIAT [AVASCRIPT DROESHNT DO i i mnsivmm @ik s e rs Sobiminan fho5 it o 597

INSERTINIG JANASCRIPT INTO YOLR WEB PAGE i i vsws svesmn owwsm avis swwiiam i 597

THE LANGUIRGE: .. o oo nnain tmmamd o sy nabn b s 48 sian silims npsmaens & 600
(OBYETES: - i woasirnsse somiabosy wsauntit S AT Tar s SRS Wi W 00 Wiy B R R e VR o i § 600
EUTIEHIORS: smsiivis. he. o o o Sermn s Somiss fiiie Somnlst Sy ip-oues demalues § 601
DABERENAR .« s oo e 8 850 5 g0 S8R BV 255, BB 1 RN BRI AR IRESTS T | 602
VaHaBles ocunin snwmraaony cop ienpiss e et PR SR SR U8 I ey § 603
Event Handlers e 603

JAVASCRIPT EXAMBLES secun v pnupiniig Sese s epilae s seal Cresn saasims | 606

EUSEIOLS IS pom i s acssmo Bt B i B0 e A 0 ooy 9 1904 By 5 B0 1 606
PR TIAE PAOKIBBE soisunses s siarmessiniamosssotn 4500 oot s n e aReR oA WA 606
Youlte HBEOMY x5 vasas svess b0 sise isss S8 05 i 05wy Duar THa 9 Sl | 607

FANTASTIC FORMS i o ismmwiinn suwsmassem 5w semi sy auamms s mrem e 609
Making: Forms SPart: oo amoss e v 5o Goohi s Lowaiesh Seibane s § 609
PIOECsRINg FOMTISE o u it de 6 Ml 5 Hhah i o 80 30 S8 40 50 AR LT o8 S Bems & 610
EMBRCRETURT - conmmimminim s em Saassimaane i w5 oiwiime wemd EEes e § 610
Interest:Calailtor EXAMBIR: .o rwicaminsns Tros Beaadl alipsbin Shnuraeas wenised 615
BERUINNG THE PAGE oo jreomn v on Bamspvape @ 8 BE R 00w 5w T G ik nss | 616
Serolling Margues; v s iimia i s vanle fiE SR euRe SERRETRETE S de s § 616

BUICTSIROE IS TS AT PRI TITING & s mssiarssmen i s piomsmsesm sasmusesg 620
The STng OB wyapasow i s ess s oy S5ae T 3o bEe 15 T PEiTawss | 621
THeMath OBt oo vvormnn v vurmes s s s (e m oo s | 622
The Dale ©Bect.: . vimerimas it s i v pUvveryss wiegn s seeiraegs | 622
BB FOREHONE - 50 i 5B n o B B e 8 (00 S0 B O B T e € 625

WHAT NOMY s spmmmaasnn s s i i o @ WETass s e s s Dosicmees 626

M AN - cmceslomosy mBmavietieg o B & oseall = % % DA H ¥ 5, SRS B Baiin SomsDRS A La R 627

JAVASIOLT s wnnmrionias sovammmmsisi e mimiaere i b a0 ARG B R AR A s s aaaeis | 630

018 ServiceNow, Inc.'s Exhibit 1008

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

TRE BIGAPRUET s bimdn. v oo sn ol A ket ve 118 Sl lee caill o8, 20 S0 05 VEENS SR asainal 630
T ABCS B Alpha At BELE: o-.cmmsa va-vin sssonissmaisse it s e s s e siees aemiaon s 632

BT BB IR v o s b Bt e D, A, MRS A T S A AR A e R SRR e 632
PLACES TOIGEY APPLETS | i aisiwvsannaenea i sosaSe vl st domanas swssaod 632
Applets from the Java Products Group ...t 633
USING EXISTING APPLETS i ixemniims e i sasvbsaiana s jous seeh 4550 455 oid 636
SOMEAPDIES T3 B IR0 |acbie o 1k i e widi B SRR 908 ool ST Bl me 637
BINEREION §isicavoni il usEeants HEEa e n oy i s Cua s oy R i 638
DL i g s KA A o IS S WM s Sn, A ey il N 642
BIAKINANENOUS TERE i ssvsmins pomen o van s vl §9vess Seamis »5 Bvens sl 642
SEROUINE MAIKIEBE w0 1w vis wmiommania 6505808 Bon SS008 WomNS SRR .06 a0 Bbeo B R e .8 a0 W08 643
IMRGEIIARE s i v i Em TS ¥ TRES RIS B Y R Sl e 646
CREATING Y OUR OWP APPLET. wosoms anbems wm snmmaadaiivms s ottt smemmes sk 649
The lave Dievelopers Bt - vuvuiis siuin 55 Siswi S ivais Ve auesss st o saotie 650
NVIENG. TR ABPIEE i i wyovimmsonion wmeas i sivmonte sl s s oo ags sl 5% aa 548 651
COMPIING 55 cisnass i rvaves vev samas vl SeET Sisam 2 vran sl seh o e s 653
BRSO R i SRR DAL AR RO € NS 8 653

Java. Development Packagts: « s e sus i in s §is vvan sl e sves TR i snent 1 d 654
B4 £ B Y 7 R S R S 654
B2 AOTHER WEB BESCOUINEES: < oxix & o 5 0 5 otenvargmne s tow dom s 5 & uss s g 0 50450 657
LESSON 17 1E BOPHER. i i saivion v iian®s i el Gopasiars farers i i 660
LESSEHN #e NIEL INBUNS o5 b 50 amesinogn mon ath 408 sibioopasionsi ot sdonvitn. S8 600 D15 s ih: s 953 TN, 0 b oMb T 662
LESSON 338 BeMIAIE v s smonicmmms oo i Suseism S0 W s gl s ek 5o ms s seeni i 665
LESSON #4: WIDE AREA INFORMATION SERVICE oo 667
LESSON #5; FILE TRANSFER PROTOCOL. srup s saoiisaevaig 25 sy alin e o 3 $oavs i 668
YWhat Happensto Downloaded Fles? .« o awome smseman s idbamwemedes sm s owamm i 669

Hew Can:| Send a File Lising FTPY 5 s i i sia v 00805 550 59000 v viaais i 4 671
LESSON B0 TELNET < wirom vr anasosmms wmom i shomss Sasaemin el rmab s wamv 5 frmiris 671
What Does Telnet Allow Me 10 Dol wus avasmi vivvaiin v s Svaems id vl vie 671

What Happens When | Initiate a Telnet Session?covvivviiiviin i viinneas 671
LESSON #7: ACCESSING LOCAL FILES 1.0 w4 somievivsn i By a8 on saibimsie 3% v e e 672
LESSOMN B8 LIBEBCHIEMES: = coonwamun onmmimms mvmssn oistesion 7 0mmiss s [673
NVELRT TIOONDA v mmsony sin mamon somimimse pvsmne. o Fn LA a0 00 S0 R R T A Kk . B 673
20 COVERTING, TRANSLATING, OR CHEATINGo, 675
WORDPERFECT TO HTML. « sisisivis ooninsoniizomm s i v sboons® b3 455w ob v s s 679
INSERIIARIIC oopimain w8 suenmienianions 55 armbeisiEsme S AR e 6 e Es 679
WitnE Tt Documient <o e v som o 15 o dbuens 5 oo heh s bl vl by driodh 680
CONVEEHNE vis i in Sloheimrainas &4 D aonl 55 BRaivi e v 19 Ve 681
MICROSOFT WORE TOHTIML o v wwomensssmions s s sesdime v inoismsis 681
ANT HTML. oz cverms o5 s i vFasis b R iv eI 05 aus s aon 1 b oseis 681

CUS HTML o0 svomnti, uns ssaresswmsvavin e i o oneios aeese-ai_5is s S2a-aUsI Mo ome 550 £0u i 1 687
TheIAternet ASSIANE ... v ommmmbmemmm s Srmsin b saaasai Vosie st s 690
CREGFTOOIE & o g w3 Bowson o ol il Gpan il s s i ks I Sou TR o e e e ol 691
INetscape NAIERIET GO . .n civen e rmioiin i3 Smmnte DERAWRA 48 FEGEA RSN e SRS 691
BOOKMARES TOHIML: s s covsimai e v viasmion i3 &6 bumai g sl 692
3 5 A RN SNC VIS S S S L SR O R S S T 692
PIBSAIE e niv i i eaieeiiinss PEHRnTon SR eI ES A e il SR AR N Ve 693
NEESCAPE .« . v vttt v ettt ettt e e e e 693

XXii

019 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

RIS i it o i s R0 050N AR A% G R AT RN A A 693
VIR IMEINE scvns oo s e ShaR i R e RSl haN e N Tinsid 693
ETIMIE ASSESTAINT «vovun s s emieerig des § 5 & i 5.4 € 58 i ¥ S48 § 05 BGTHEH 695
INSEALIING THEASSISERINT <00 usemiids i aanin s sie 1o sy vaaisen i s 698
LESSON 32l EROMIVERT T HIML. oo mcemammdivnn smistuansis snmsss vy s imssnmasmio s 698
LESSON #2: CREATING FROM SCRATEH 5.4 5w 5.8 hes80 8 008 prinsld i s 66 Sh a0 5 00 700
LESSONN #32 THE TOOLBAR .00 vn siuwmss v ssenimira s s %o e s soeswne a5 st 5o 700
SEIOEHONTOOR, 5w oo s v i e s G s i s o B N B A SR s 701
SEHON NI e oo o SN e o bl ko S s 2 s o B e P e B e 703
LESSON %4 INSERTING FXPERLINES: i iwavina s vvovin svatomniss v s s e s 703
el LIRS, oo (e irains P e f e s s FN AT i bmeraes o o e 704
WAl LINKS: oo i vumibomnms wsswn woau i il s ammmihl s s a wl s e . i aos 705
ReEyelng WRES. . oci s i snareiiiie 55 5w W TR in R T mas M 706
LESSON 5 IMAGES . .ot i e e 706
LESSOIN HEFUSER TOOLS vvvvinms svans pisavmsvmm il o s Wien s s sl suanvsms 706
Ereating alser TOB ..o vommr cnsmn st o dn s iRk ohsmgon 707
EORRG BB o sonnan pmnins omrsimsnsiisss s on s <iiiai. G emrsde the v Mg s (e s e 708
LESSON #7: FINDING OR REPLACING 5 i 505 snni vuain wilinos ie By aan s e os s 708
UGS s mcosssmsninn ssmmemmion sesmass sow s st a8 S5 ot i s SR R S R RS SRR Y 708
REBIACING v enis wvsiih idiess Siat iv e TR eRTs e S e s s 708
LESSION #8: TOGLINGIWWITE TRIOLS: . v v fntnd 5t fie o i o et ossme s 708
LB, i amimssies wenlismons meens Eesis semng Ssame mATSEE DRSERIVE S SR 709
AULO REPEAL . . 4ot it vtetvreiieeee ettt oot eansosessssassonssnsssnsoessss 709
Pattirig 2t HTML. DotumeEntion Hold! v neemvi-senms s maesasmies svasma 709
LESSOIRN 757 TeSTING IR OUIT 2, = 5 ssid s sy rscn st as hamh e o S fln iamse i 709
SPRHYINE A BIrOWSEE s svmon s 5o s wad pymsie 06 oW (o0 T dhamab s iy wei 710

The Final TEsh o snvsivamin vasaiiie vis Wb o 102 PRGR TS SRR vER e Reeivesn 710
LESSOMN 2 10: PRINTIMG: oveissmunmnn somsenm s toommssion 0 s0easassns sy suesn snsssm s 710
LESSON Z11 UBL BEES: wsvonunss soins pessn poasi vaais soli e VResirswis smesed 710
GrabbMPWRLS? v mbamsismemmionr s Sl oy rmeiieor Bt i A 711
EABREAIRLS .o gaaas vmvan snaiupmig sasispms g sl sianm e orsseEe 711
Sormbwiing WRL ISR i se 5 8 08 thinls oo Thsoon TR it s i 5 o, e S0 0 B 0, Bt 712
SAVOE w0rcrici 3515 s st Rsie 560538, Rk SRR RS ORI SRS SURTAMRRIART, H SR GRS 712
LESSON #12: CONVERTING A BOOKMARK, HOTLIST, OR URL FILE TO HTML 2
WWHRAT INOMWE oo immmnimes e iemmms Bass s ey e e s Vs s s i 713
22 HelMeEl - - o s s/ S E Bt 5 5 SA A AL S R S R h e s O e 715
INSTALLINESIT o emminmn sesmsmsmomns sy s oasm mer s s wil o an Roms s 718
LESSON-# | STARTING WITH A TEXT FILE v vovns vivi s ane v suianineas isonve 719
LESSON #2: STARTING FROM SCRATCHiiiiit e ee e 719
TEIPIEES: w oo sovv Sen S TN s, AT G I e 720
= N e O D A S S-S0y ot - T 721
LESSON #30 MARKING: T P i s svomm sammevins i 5 6w afaons vae s s 721
IRSBIERIRD oo snsainiis St RIS A e e 722
SUFTOURCAIAE: .« .onais wosinamn s sacans 5 o g Mrsiatemniun i win e st 8 W08 5 bhe m, ol 4 s 725
CHENEINE | conans saosrsaivis diaes SoRiwoiss po Tl SR SRen SeEPs@ny Eves e 725
IVSEEIEND, oo mamomonnian wnmsomys s St AR P VS gAY PN BT WPt eior i 726

THE ST LY womu vxenvivisn 8 i s pits Bany v i eaviases Ui rae o sy s 726

020 ServiceNow, Inc.'s Exhibit 1008

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

PIBOING 5 it o s s s e e W aisesions Seima 2 univs ¥F SR e ¥ Diee Dy 726
LESECIN I SEECIAL CHARNE T PR oo rnonssmscn s s vt sommesm s eissn s Duimmamne 727
LESSON #5: WORKING WITH HYPERLINKS i voovensvovey s ssevonpivsia s prowigaps 728

Creatiis: BBl LIRS vwmsmeimmn o inss amsas s o s i o s sce wit o i 558 #S50A S 728

Creating intermal Links e aimeis al S0 ayie 5 i eiiie i 1uvaiy el 729
LESSON #65 WORKING WITH GRARHICS: 1oc v o v itwnim 5 25 ohebio i s g swin $lvd vos 730

liape BUABUEES: o5 svmes s 5 Fessd miinssnus s 0 58 o PR e B 730

VACARBIRERIES o agemsayumnnssia st assagt w7 i 0400 e B30 A0TSR SRR MR P ST 731
LESSON #7: WORKING WITH FORMS: 5565 15 it b5 5 7 ieeianmiaees & ioesikye v 731

INEIBEICIE wusavssranm sonnmsosmummsinre duss s AENRNSRTRRS T SRR R ond AT A8 WA K 731

TERTABREAG i imcis rsisosconsionne s scetesisonss K ss 8 wamnswsain 08 vy a-g s xomsiosond Bk o e 58 733

SSIEEHBI LIS, iy oo oot om0 s a0 s SRR om s (e 61 734
LESSON -#8: FINDINGSOMETHING ... covinmine ronomswmn s spnis s 5 o8 s sin00 0860 00s 58 735

THE SRR TBIT s mssingminis. @mteinss Soniw w oA W EEm OB a0 s s st s 735

SERFeh) OBHGES: v o B o e T e P s HL Skt 8 B oo Ahiid s o s 736

SRR 5 i 550 e 834 S 0 M R 0 VATV 1 N MBS g 737
LESSON #2: BREAIING THE RUILES: .ot b v Kieithshos izt dln 5 1q it i sitondl 5500700 737
LESSON #10: STYLES vy snconnnsinmnn vavmas s wnnasio samne By seananse@m saes g6 737

L0 ™ - S| SR R SO uSI S 5e STRE St 67 PP~ 738

SEPRPRHGH oo i Sise SRUs BEH S SRR SIS B ST TR R 739

LBEESTAES riuvm alietre tmmentionnto S e Rstme by Wi S 4o oS s a8 B s cis 739
LESSCIR 1 1 TESTINSS IT-OUT sovomssmmmiy svemamy v i e aiiuiiy@aiof iy 740

FHRIRD aEST Wahndabm, 7. 0 o 8. S T ot o o B ol P B ol 2 2 080 B 8l B 740

PUBIISIIRG 54 s s i i Sueninns aWenl vy il il Selomiss v e v ue Seeisiy 741

PRI w0 v b s WM 1D L VOO U AW HD ERTNAGINGA 741
LESSON #12 THE HIPIL BACKBOINE naupimoenaws youvh s ieoieiesso s o measiy s 741

THiE CONYERE WVICKONN <50 nooe mmsussiavies sussomsdis. wieseia (6 43057606 E0s M8 AU WS R ATATR NS Bl 742

The Struchire WNOW . ik v s i soiinn s sivise oi sisice s VN s 742
NVEIBT TIOWWE s smamin wiimammis syl sl £ 915 S560 6 BHam o5 R 800 s W S e 743

PART |1l WEAVING A WEB OF YOUR OWN...... oSS E « slve a TS
23 'WHERE TO' PLACE YOUR HTML DOCLIMENTS ; < siv i 5 5 5 slatimaistia s 0 o 5 747
LESSON # 11 TROUBLESHOOTING YOUR, HTML-DQCIUIMENTS s v v sovsssca i oo e 750
LESSON #2: HTML DOCUMENT ANALYSIS SERVICES .. os v vaomsniineisn s s sisis e 752
LESSON #3: FREE WEB POSTING SPOITS. v wmsmmmsirsmin i wsi i ssssansts surmipms-is 755
LESSOIN d#ds WEB SPACE FORSALE covusionss ineiih i i vimis s (eavens teoeds 757
LESSEIN #ESIPRISTING . 5. cossmsimmamins pogam v wopamsns s Mmssn st meim i sy syles ym 769
LESSON #65 UPLOADING DOCUMENTS: . st w5 v siomamme s ki s s w0 e SLoasas s 771

LIBIGARINE MR FTP oo oicsinnsorsiam v it doniiioin e oo ot a5/ susip slasas somvmminsiis 771

Transferring FileswithaModemccvviniiiiivniiininnerernrinneannneren, 772
LESSON #7: INSTALLING PAGES ON AN EXISTING WEB SERVERoov0e 72
LESSON #8: ANNOUNCING YOURWEBPAGEScoiiiiiiiiiiiiiiinnn, 775
WHAT NOWE o sceviss sesdas e vae s Isvaaieiliioins ¥ Srisnginisis prians i T

24 STARTING YOUR OVVIN 'WEB SITE ...c.c.cu55 5 5 o 503 svmmiath 5% 6 & 5 nmmeany 779
LESSON &1 YOULIR WEB SERVER. 14 0s siesain s st anabonshin i i shnsiaveviasn slweies 782
LESSON #2:WEB SERVER SOFTWARE: 5o s vinwimswnsummn e sdstoss s iogusmmrsssissn soinmmacii sis 782
LESSON #3: SERVER SOFTWARE SOURCES .. 1o ni niis s i iieniasis 469750 iebmassis 785

XXiv 021 ServiceNow, Inc.'s Exhibit 1008

TABLE OF CONTENTS

LESSON #4: TIPS AND CAUTIONS oottt e e e e 786

Tpear MECHINE wvasony s Hos i aiimRG BERRe A SR TRV SeR e s 786

TUETTIOEY, wis somoviiss osits i s Tasos@uions SEiavinoish. wibviavie. §ToRIsRCS TS, WEATR AN SO 610§ AT SAORBEALS i 787

LESSOIN H#5: SECUIRITA v comm s so i i b e s i sis s o i Tamkss e s Oy A 788

Transmission Security and Data Encryption ..., 789

Pretty Good Prvacy EREPHORN. s vouin invansas s s sy -aum s v s oo 791

Access Control, Passwords, and Other Filters i 793

LESSOMN H6: HARDWARE ;oo vveni sommiss aers @sosisiare v s s a s sas/ais sieia e s e o 800

LESSON #7: INSTALLING-AWEB SERVER: i svsisn wvmmiaen soserin sionien oo wisve diaisi wis 801

Unix Server INstallation v e e 801

Metseape's LATASE SErvers v visois vomss aus s SR a b S e e s e 55 812

WINAOWS 95 AN N T SOIVeIS o v e ot e e e et e e e e e e e e e e 815

Windows 3| Server NSO« e s dmian srsbe st @iy &5 s a e it 816

Macintosh Server Installationot e e e e 826

LESSON #8: HYPERMEDIA GATEMWANS & iv i sviiarann sturitiinn swimiatis aveis suisnison iatsns s aiviiera v o 831
WHATTNEOWE 5 izess suision 2om i sam i s Saaie Sumemie fansm SaRes N Meaviis e, 08 831

A SLIP SERVICE PROVIDIERS . & & o i i 5 6 5 om0 e e biaersasammiios 55 shils o & i ssih 833
B OTHER SOFTWARE SOURCESo it it et ettt e e 839
CYWEB HELP RESOURCES. .o o i 6 66 i 5 i eeienes s s sinessess s aiesass 849
DABOUT THECD........... 6 B ¥ i W e e R T I e & e 855
INBEX : ccoconcinssonssssains il it iBee it i5.55e s ¥ 5 shs 859

022 ServiceNow, Inc.'s Exhibit 10&

WEB

PUBLISHER”S CONSTRUCTION KIT WITH HITML

Sounds pretty exciting, doesn't it? In this chapter, you'll get a descrip-
tion of what a CGI script can do, what it can use as its input, and how it
can format its output, and then you'll see some sample scripts that you can
edit to suit your needs or just use as is. For the most part, the samples will
be written in C and will assume that your server is running on a standard
Unix platform, but if you are running a server on a Macintosh or Windows
PC, you'll find a few tidbits that you can use as well. The main reason Unix
is given preferential treatment as the Web server platform of choice is

simple: Unix HTTP servers are the most common and most robust HTTP-

servers available as of this writing. That’s not to say that you can't get satis-
factory results from a Macintosh or Windows server; in fact there are many
intriguing Web sites that are running on both of these platforms. It’s just
that the Unix side works better at this point in the history of the Web. Well,
enough on that, let’s get started.

LESSON #1: WHAT IS (Gl

482

The Common Gateway Interface—or CGI—is a method that lets you access
external programs on a Web server and usually send the results to a Web
browser. (There are situations in which you want the script to do some
processing on your server, but not send data back to the client.)

These programs can be any executable code, script, or program
supported by the operating system that runs your server. The CGI code to
call an external program can be a shell script, or a batch file, an AppleScript
file, a C program, a PASCAL program, compiled BASIC.. literally anything
that will run as a stand-alone executable Script on your system. Many CGl
developers use shell scripts; others prefer Perl and C. Choose what works
best for you! Just to make things simple, this chapter refers to all CGI code
files as CGI scripts—or simply as “scripts”—whether they are written in a
scripting language or in a compiled or interpreted programming language.

A server executes a CGI script based on a user request from a Web
browser, as diagrammed in Figure 15-1. This request can be as simple as
selecting a hyperlink that points to an executable item, or it can be a search
request using the <ISINDEX> tag, or it can involve clicking the Submit
button from within an HTML form. The parameters the script has available
to it depend on how it was accessed. There are also many parameters avail-
able to scripts via environment variables that are set by the server. You'll get
details on all of this in the Writing Your Own Scripts section.

025 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

Basic CG1 bin processing scheme :

1. Browser makes a request | WWW Client
G [

3. Server lounches script n requests (61
4. Script runs other apps (if called for)

HTTP server

(Gl request?

Open shell on host

Run CGI script Output

More scripts?

gateways fo other scripts
data from script stdout

Figure 15-1 Diagram of a CGl session

A CGI script must produce an output header even if no data is to be
forwarded to the Web browser. The HTML header must be the first thing
that a script sends as output and must be followed by a blank line or
carriage return. The header tells the server what kind of data to expect, if -
any; the server in turn tells the client that invoked the script what to expect.
Currently, there are three types of headers. These headers are mutually
exclusive—that is, you can’t have more than one header for any one
request. (See note for exception.) Valid header types are Content-Type,
Location, and Status (see Table 15-1).

026 ServiceNow, Inc.'s Exhibit 1 2&8

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

&=3 NOTE: Browsers that support HTML 3.0 or better allow a CGI application to
return multiple objects in a single CGI transaction. In other words, a CGl appli-
cation can return a series of images rather than a single one, or, a series of
HTML pages that replace each previous HTML document. This is done with a
special MIME type added to the Contenttype: header. Namely, the multipart/x-
mixed-replace MIME type. If a CGI application sends this initial header, it can
then send an arbitrary number of Contenttype: headers that are followed by
content that replaces whatever was sent before. This technique is often used to
create slide-show animations that are often referred to as a “server push.”

T e Rt T T T L A W i ==

Table 15-1 Header types
Header Type Format Desaiption .. " NGNAGER
Content-Type Content-Type: xxx/xxx Content-type refers fo any MIME data type

that is supported by the server. Common types
include text/html, text/plain, and image/gif.
Since the browser/server can't deduce the file
type from a location or filename suffix, this
heading will tell the browser what type of data
fo expect and how fo use it. (See Table 15-4 at
the end of the chapter for a full list of MIME
types.)

Location Location: /path/doc Points to a document somewhere else on the
server. Allows you to redirect requesis fo
documents based on some criteria sent via a
form or environment variable.

Status Status: nan XXXX Can be used fo run a script, without sending a
new page to the client. Can also be used to
send an error message or other information fo
the client.

e

What Can | Do with a CGI Script?

A CGI script can do anything allowed on the host system as long as it sends one
of the three header types listed in Table 15-1. It can access other programs, open
files, read from files, create graphics, dial your modem, call your mother, do
database searches, send e-mail, you name it. The only rules are:

€SI The script has to be in a place designated by the server for CGI
scripts, or it has to have a special suffix that the server is configured
to recognize as a legal CGI script. Most systems store CGI scripts in

484 027 ServiceNow, Inc.'s Exhibit 1008

15 CGIJ SCRIPTS

a directory relative to the root directory of the HTTP server called
cgi-bin, which is set up so that only certain trusted users can write
to it. This avoids the obvious security problems of allowing anony-
mous remote users to execute anything they want on your system.

€EID The script can take its parameters from the standard input (by stan-
dard input, I mean what would normally be typed in at the
keyboard), the environment variables, or both. (It is not necessary
to take user input at all; the script can simply execute without
needing any more information.)

€D The script must output one of the three standard header types as a
normal text string.

€D The script must be runable by the user that the server is configured
to run as. (On a Unix machine every directory, file, and program
has a set of permissions attached to it. These permissions specify
who can read, change, or execute different files. These permissions
are divided into three groups: owner, group, and world. Also, every
process must run as some user. There is a special user called
“nobody” that is the default user for most Web servers. You must
make sure that the user “nobody,” or the user that your server is
configured to run as, has permission to execute your scripts and
read/write to any files that the script may use.)

CGlI scripts are used for doing all of the “cool” stuff on the Net. There are sites
that have interactive robots you can control with a Web browser, sites that
allow you to control cameras and take pictures of remote places, sites that
create graphic images on-the-fly, serve maps, open X clients on your machine
and send you live video feeds, access huge databases, order submarine sand-
wiches, and ask questions of the Web’s own version of the Magic Eightball, as
shown in Figure 15-2. All of this is possible through the use of CGI scripts.

LESSON #2: THE STANDARD (Gl SCRIPTS

As you read this, CGI scripts are coming to life all over the world. Some are
special purpose, some are useful utilities, some are interesting, and some are
just plain silly. Among these scripts, there are a handful that have become
standard at most Web sites. If you download NCSA's HTTPD or copy it
from the CD-ROM that came with this book, you'll find that it includes two

028 ServiceNow, Inc.'s Exhibit 1004?85

WEB

PUBLISHER"S CONSTRU

Figure 15-2 Two nifty services, courtesy of CGl scripts

CTION KIT WITH HTML

3.2

CGI directories, cgi-bin and cgi-src. The cgi-bin directory contains many
demos and useful CGI scripts, and cgi-src contains the source code for these
scripts so you can customize them—or just learn from them.

The CD-ROM scripts include C programs, shell scripts, and Perl scripts
that do a few helpful little tasks for you. A few of them are even necessary
for your server to have all the utility that you expect of it, like processing
image maps. Table 15-2 describes all the scripts in the cgi-bin directory that

comes standard with NCSAs HTTPD.

Table 15-2 Standard CGl scripts

Nome AR TR
archie shell script
calendar shell script
date shell script
finger shell script
fortune shell script

486 029

Laitinh, Jlogth S S B S Sl
Gateway to an archie server.
Gateway to the Unix calendar utility.
Calls the system date and sends it as an
HTML doc.

Gateway to the Unix finger ufility.

Gateway to the Unix fortune utility.

ServiceNow, Inc.'s Exhibit 1008

7

Name
imagemap

i

nph-test-cgi

phf*

*

post-query
query”
test-cgi*
test-cgi.tcl*
uptime*

wais.pl*

Type
(C program

C program

shell script

(program

C program
(program
shell script
tclsh script
shell script

perl script

15 CGI SCRIPTS

Description

Handles imagemaps in HTML documents,
taking the X and Y coordinates from the user,
and forwarding a URL based on a map file
created by the map developer.

Processes an order form from a submarine
sandwich shop, then opens a pipe fo a mailer,
and faxes the order out of a fax modem. (A
useful example, even if you're not selling
sandwiches.)

Echoes back the names and values of the
environment variables. (Good for testing
forms, or just figuring out what's going on.)
(reates a fill-in form interface for a (SO ph
database. (Great for looking up
names/addresses on ph servers.)

Echoes the name/value pairs of a form that
uses the POST method.

Echoes the name/value pairs of a form that
uses the GET method.

Echoes the names and contents of the environ-
ment variables.

Echoes the names and contents of the
environment variables.

Gateway to the Unix uptime command. Will
print the fime that the system has been running.
Provides an <ISINDEX> front end for WAIS
searches.

e S e s

Some of these are C programs, some are TCL scripts, and some are Perl

scripts, but they all function in the same way. They get executed by the
HTTP server, take their parameters (if any) from standard input or environ-
ment variables, and output at least a header when they’re done.

As you can see, there are a few utilities here that you may find useful,

such as a WAIS or finger gateway, and some that are necessary in some form
to allow valuable utilities like imagemap, and still others that are intended
simply as learning tools to demonstrate how to write a CGI script in the
TCL scripting language. They all come standard with the NCSA HTTPD

030

ServiceNow, Inc.'s Exhibit 1004%7

WEB

PUBLISHER’S CONSTRUCTION KIT WITH HTML

server software, and it’s good to know what’s there and how it can be used,
either as a learning tool or utility. Later on, this chapter will describe many
other special-purpose and form-handling scripts.

LESSON ##3: HOW TO USE PRE-EXISTING SCRIPTS

OK, 1 know what a CGI script is, I know what one looks like, 1 know the
names of a few standard scripts; now how do I use them?

The answer to this is simple. You access a CGI script in the same way
you access any other URL: create a hyperlink in a document that points to a
CGI script, or use the “open URL” option on your browser, or include the
URL in the METHOD attribute of a form (as described in Chapter 14).
Since most installations require all CGI scripts to be in one protected direc-
tory (namely cgi-bin), the following examples all use this convention.

Constructing a CGl URL

488

A URL that points to a CGI script follows the same conventions as other
URLs that point to HTTP servers. It contains a protocol type (HTTP), the
name of the server that will execute the script and forward the results, and
the name and path of the CGI script to be executed. The simple generic
format to create a CGI script URL is

http://machinename/cgi-bin/myprogram

In this form, the URL will open an HTTP connection to the “machinename”
server, the server will then invoke the “myprogram” script from the stan-
dard cgi-bin directory, and will forward the results of the execution of
“myprogram” back to the Web browser. There are also ways to include
query and path information along with the URL. Query information can be
appended to the URL separated by a question mark (?).

http://machinename/cgi-bin/myprogram?whoareyou

Here the HTTP server sets the environment variable QUERY_STRING to the
value “whoareyou” when it executes the “myprogram” script. The script can
then access the query data through the environment and make a decision based
on the “whoareyou” value that was stored in the QUERY_STRING variable.

To include path information in the URL, simply append the relative
path to the URL. For example:

http://machinename/cgi-bin/myprogram/people/docs

This will invoke the script and assign the value “/people/docs” to the environ-
ment variable PATH_INFO. It will also resolve the address from a virtual path to

031 ServiceNow, Inc.'s Exhibit 1008

3. 2

15 CGI SCRIPTS

a physical path and store that value into PATH_TRANSLATED. For example, if
your server root is set to “/usr/httpd” and “/people/docs” is sent along with the
CGI URL, the server will assign PATH_INFO the value “/people/docs” and
“/ust/httpd/people/docs” will be assigned to PATH_TRANSLATED.

The following listing is a sample HTML document that calls a CGI
script called test-cgi on a server called myserver.com. If you have a standard
HTTPD installation like the one on the CD-ROM that comes with this book,
you should be able to replace “myserver.com” with the name of the machine
running the server software and use this document.

<TITLE>test-cgi</TITLE>
<H1>Test CGI</H1>

<HR>

Click here to run test-
cgi

<HR>

test-cgi should return a virtual HTML document that contains the names
of environment variables and their values on the HTTP server speci-
fied.

Specifying a Script Within a Form
When specifying a script to act on form data submitted from a client,
construct the URL in the same way as before, that is

http://machinename/cgi-bin/programname

The only difference is where to place it within the HTML document.
Specifically, include the script URL in the ACTION attribute of the
<FORM> tag.

<FORM ACTION="http://machinename/cgi-bin/programname'>

&3 NOTE: The ACTION atiribute in a <FORM> tag is optional. If there is no
ACTION=URL attribute specified, the CGI script will be assumed to have the
same URL as the document containing the <FORM> tag. This is useful when
creating CGl scripts that generate the HTML documents that contain the forms
that they process.

Later in this chapter, the section headed Handling Form Data will give
you the details on creating a CGI script that will process the HTML form.

Specifying a Script from the “Open URL’
Interface

Executing a script directly from your Web browser is as simple as selecting
the Open URL or Open Location option in your browser and entering the

032 ServiceNow, Inc.'s Exhibit 'IOOE?189

WEB

PUBLISHER’'S CONSTRUCTION KIT WITH HTML

URL for the script. The URL can contain any of the standard URL conven-
tions—see Chapter 1, Catching the Internet in a Web, if you need a review.
In particular, you can include optional port numbers if you need them, and
you have to escape any special characters that may be required to specify
the path or filename of the CGI script.

LESSON #4: HOW TO USE A SCRIPT T0 ACCESS OTHER
APPLICATIONS

490

Why is it called the Common “Gateway” Interface? Well, the answer is
simple: The Common Gateway Interface was originally intended as a
“gateway” between WWW clients and other programs that could be run
remotely on your server. Many CGI scripts, especially those that access
databases, simply execute another application on the server and redirect its
output with whatever formatting changes are required to the HTTP server
and then to the client that requested the script.

As a simple example, lets take a quick look at the finger script that was
mentioned in the standard script table (Table 15-2). Finger is a standard
Unix utility that allows you to locate users and/or machines and retrieve
information about them. Don't worry if you don't understand the entire
script; we'll cover that in the next section.

NOTE: In the following code examples, the HTML code generated is not
complete. Some important tags were left out in order to keep the examples
short and simple. Namely, the output of the CGI applications should include
<HTML>, <HEAD>, and <BODY> tags just as any well-structured HTML docu-
ment would contain.

The finger gateway is written in the Unix shell scripting language, so
first we give it a shell script header, and define a constant that points to the
actual finger program in the Unix filesystem.

#! /bin/sh

FINGER=/usr/ucb/finger

Notice that the FINGER constant is assigned the entire path of the program
that it will be running. Next, we send the server a standard header. We'll use
the Content-Type header and specify the “text/html” MIME type. (For a
complete list of MIME types, see Table 15-4 at the end of the chapter.) This
will inform the client that we plan on sending it straight ASCII text, and that
the text should be interpreted as HTML code. It is important to specify a

033 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

header of some type, as most servers and browsers will return an error message
if they don't get a header. We send the header to the server simply by writing it
to the standard output. (In the examples of this chapter, standard output is the
same as printing directly to the screen or console. The HTTPD server inter-
cepts and redirects this output as necessary.) An easy way to do this in a shell
script is with the “echo” command. Note the blank echo line after the header.
This is necessary with most servers and should always be included.

echo Content-type: text/html
echo

Now we are ready to start sending the output from the finger script to
the server. Just to make it look a little nicer, we add a <TITLE> tag and a
short description of the output as follows:

echo <TITLE>Finger Gateway</TITLE>
echo <H1>Finger Gateway</H1>

echo This will finger our HTTP server
echo

Now, we execute finger, with a <PRE> tag added just before and a </PRE>
right after to make it look a little nicer to the user:

echo <PRE>
$FINGER
echo</PRE>

Since finger will automatically send its results to the standard output, this
text goes to the server and then to the browser as part of an HTML docu-
ment. This simplified finger gateway looks like this:

#! /bin/sh

FINGER = /usr/ucb/finger

echo Content-type: text/html

echo

echo <TITLE>Finger Gateway</TITLE>
echo <H1>Finger Gateway</H1>

echo This will finger our HTTP server
echo

<PRE>

$FINGER

</PRE>

Since finger usually works best with parameters, such as user@machine, it’s
nice to be able to pass along a parameter supplied by the user. The full finger
gateway uses the <ISINDEX> tag to get a username and machinename from
the user, and passes these along to the Unix finger utility. A listing of the
complete finger gateway is listed below. Some parts may be unfamiliar, but
these will be discussed in the Writing Your Own Scripts section.

034 ServiceNow, Inc.'s Exhibit 19)(18

W EB

492

PUBLISHER’S CONSTRUCTION KIT WITH HTML

#! /bin/sh
#This script comes standard with NCSA's HTTPD
FINGER=/usr/ucb/finger
echo Content-type: text/html
echo
if [-x SFINGER J; then

if L $# = 0 1; then

cat << EOM

<TITLE>Finger Gateway</TITLE>
<H1>Finger Gateway</H1>
<ISINDEX>
This is a gateway to "finger". Type a userahost combination in your
browser's search dialog.<P>

EOM
else
echo \<PRE\>
$FINGER "$*"
fi
else
echo Cannot find finger on this system.
fi

WARNING! Remember to make your shell scripts executable. In Unix this
means that you must type

chmod a+x scriptname
for any new shell script you create.

It should start becoming clear how simple and powerful a gateway
script can be. A script can point to any executable file on your server and
execute it. All data sent to the standard output—either your script or the
file(s) it executes—will be forwarded to the client and interpreted as the
MIME type specified in the Content-Type header. This is a lot of power and
should be used with caution. You don't want users imposing potentially (or
deliberately) destructive scripts on your server, so it is usually a good idea,
on a shared system, to allow only a few trusted users to create CGI scripts.

There are a few mechanisms in place to help protect you. One is the
ability to require CGI scripts to be in a specific directory, and the other is
the ability to require CGI scripts to have a specific suffix. Either method
prevents anonymous users from being able to write URLs that point to your
server and run whatever they want (Say, rm-r * for example. Not a pleasant
thought.) Don't worry! The risk potential is there, but if you install your
server with some thought, you should be able to avoid such mishaps. If you
are concerned about security, read the security section in Chapter 21,
HTML Assistant.

035 ServiceNow, Inc.'s Exhibit 1008

3 =2

b |

15 CGI SCRIPTS

LESSON ##3: WRITING YOUR OWN SCRIPTS

OK, enough talk, lets see some action. We're going to try the learning-by-
example method here, so lets just get a few things out of the way first. In
order to run CGI scripts, make sure the following infrastructure is in place:

€IID You have an HTTP server installed at your site.
€EID The HTTP server has been configured to allow CGI scripts.

€D You, or someone you know, has write permission in the cgi-bin
directory on this server, unless the server has been configured to
allow CGI scripts elsewhere.

That in mind, writing a CGI script is a six-step process:
1. Write the script and compile it if necessary. (Obviously, you don't
compile a shell script.)

2. Have the script moved into the cgi-bin directory (or equivalent).

3. Make sure the script is executable. (The Unix command is chmod
a+x scriptname.)

4. Write a reference URL or form to access the script.
5. Debug the script.

6. Publish the script. (Tell your audience about it, or create links to it.)

Writing a Simple Script
Lets start with a simple script: an interactive <ISINDEX> form that will ask
the user to input his or her name, and then echo back a short greeting to
the user’s browser. This example assumes that you are using the NCSA
HTTPD server software from the CD-ROM that came with the book.
We will use the Unix shell scripting language to write it. To start, using
your favorite text editor, create the following file:

echoname.sh

Since this is a shell script, we will start it with a standard shell script header.
The first line is:

#! /bin/sh

036 ServiceNow, Inc.'s Exhibit 1005})3

WEB

494

PUBLISHER’S CONSTRUCTION KIT WITH HTML

Now, to avoid having problems interpreting the data, or getting error
messages for not being specific, we add the HTML header. In this case, we
are returning text that we want interpreted as HTML code. The header for
this type of data is just the MIME type for HTML code. Add the following to
your file to print the header information:

echo Content-Type: text/html
echo

The extra “echo” is necessary. A blank line is used to separate the header from
the actual content. Next, we want to create the HTML code that is sent to the
browser. We will share some code, and the rest will be unique depending on
whether there was user input or not. First we create the common HTML.
Notice that in a shell script, the greater-than and less-than brackets (< >) are
reserved symbols and must be escaped with backslashes (\). So if you want to
print a less-than symbol using echo, you would use “echo \<"—“echo <" won't
work by itself. You can avoid messing with backslashes by enclosing the entire
string in double-quotes. With that in mind, add the following lines to your file:

echo "<TITLE>Echoname example</TITLE>"

echo "<ISINDEX>"

echo "<H1>CGI script example</H1>"

echo Any name typed into the query window will be echoed to the
screen.

echo "<HR>"

Now we want to create a fork—one side allows the user to input a
name, and the other displays a message if the user types in a name. In this
example, since we are using the <ISINDEX> tag, we can assume that the
command line parameter count is greater than zero if the user entered a
value, and zero if not. The following lines will check for a value on the
command line and print a prompt message if there were no parameters.
if [84 = 01 ; then

echo Please enter your name in the query window.\<BR\>
else

echo Hello $*, Welcome to our server.
fi
Now, if this script is called without parameters, it will print the message
“Please enter your name in the query window.” When called with parame-
ters, it will print the message “Hello [parameters], Welcome to our server.”
The entire script looks like this:

#! /bin/sh

echo Content-Type: text/html

echo

echo "<TITLE>Echoname example</TITLE>"

037 ServiceNow, Inc.'s Exhibit 1008

3

2

15 CGI SCRIPTS

echo "<ISINDEX>"
echo "<H1>CGI script example</H1>"
echo Any name typed 1into the query window will be echoed to the
screen.
echo "<HR>"
if L $4 = 0 1; then

echo Please enter your name in the query window.\<BR\>
else

echo Hello $*, Welcome to our server.\<BR\>
fi
NOTE: The <ISINDEX> tag uses the GET method to pass data from the browser
to the calling script. This means that the encoded input data is stored in the
QUERY_STRING environment variable. But the <ISINDEX> query will also list the
unencoded values on the command line of the calling script. In the previous

script, the $* operator refers to the command line arguments.

Before we can test the script, we need to make sure it is executable. At
the Unix command prompt, type

chmod a+x echoname.sh

This will make the shell script executable, a necessity if you want to be able
to run this script. Now to test it, type

echoname.sh

This should produce the results:
Content-Type: text/html

<TITLE>Echoname example</TITLE>

<ISINDEX>

<H1>CGI script example</H1>

Any name typed into the query window will be echoed to the screen.
<HR>

Please enter your name in the query window.

Now test the script with a command line argument. Try the following:

echoname.sh Troy

The result should be:
Content-Type: text/html

<TITLE>Echoname example</TITLE>

<ISINDEX>

<H1>CGI script example</H1>

Any name typed into the query window will be echoed to the screen.
<HR>

Hello Troy, Welcome to our server.

We are now ready to place the file into the correct directory and try it out
with a Web browser. Copy the file into the appropriate directory for CGI

038 ServiceNow, Inc.'s Exhibit 199?

1

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

scripts on your server. If you're using NCSA HTTPD from the CD-ROM, this
is the cgi-bin directory. In any case, the command will be something like:

cp echoname.sh /usr/httpd/cgi-bin

Now, let’s try it out with a browser. Take your favorite Web browser and
open the following URL, substituting the name of your server and the exact
path to your CGI directory as necessary:

http://yourserver/cgi-bin/echoname.sh

oo v Hae) o] oon. |

Figure 15-4 echoname.sh with “Troy Downing” as the argument
496 039 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

Opening this URL should cause your HTTP server to execute the script
“echoname.sh” and send back an HTML page with a query window as in
Figure 15-3.

Now try typing a name into the query window. The resulting screen
should look something like Figure 15-4.

Congratulations! You've just created your first CGI script. Doesn't do a
whole lot, but it shows how simple script writing can be. This script could have
been created just as easily in another scripting language or a compiled language
such as C or PASCAL. The next example will show how to use environment
variables to get information about the user and the user’s environment.

Using Environment Variables in Scripts

Whenever a server launches a CGI script, a new shell is launched and a
number of environment variables are set with information about the data
being sent, the client software, the client machine, even the username in
some authentication schemes. See Table 15-3 for a list of environment vari-
ables set on the NCSA HTTPD server. As a simple exercise, we are going to
add a few lines of code to the previous echoname.sh script to make use of
some environment variables. The only lines we are going to change are the
few at the end that print the “hello” message. The two variables we will use
to demonstrate this are SERVER_NAME and REMOTE_HOST.
SERVER_NAME is set to the name of the machine that is running the HTTP
server and REMOTE_HOST is the name of the machine that is making the
HTTP request. Let’s make the following changes to echoname.sh:

#!/bin/sh
echo Content-Type: text/html
echo
echo "<TITLE>Echoname example</TITLE>"
echo "<ISINDEX>"
echo "<H1>CGI script example</H1>"
echo Any name typed into the query window will be echoed to the
screen.
echo "<HR>"
if L $%# = 0 1; then
echo "Please enter your name in the query window.
"
else
echo Hello $* from $REMOTE_HOST, Welcome to \
$SERVER_NAME.\<BR\>
fi

Notice the addition to the last “echo” line. We've added the two environ-
ment variables to our greeting. Now execution of this file should result in a
reply string that looks something like:

Hello Troy from play.cs.nyu.edu. Welcome to www.nyu.edu.

040 ServiceNow, Inc.'s Exhibit 199,8

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.

You may or may not want to use the environment variables in this way.
Environment variables are particularly useful when processing forms. In many
cases, you need them for retrieving data from forms using the GET method, and
for determining the length of the data block when using the POST method.
This will all be explained in greater detail in the section on form handling
coming up next. Before going on to forms, lets take a look at a few more scripts.

2

T A

Toble 15-3 Environment Variables

Variable Name
SERVER_SOFTWARE

SERVER_NAME
GATEWAY_INTERFACE
SERVER_PROTOCOL

SERVER_PORT
REQUEST_METHOD
PATH_INFO

PATH_TRANSLATED
SCRIPT_NAME
QUERY_STRING

REMOTE_HOST
REMOTE_ADDR
AUTH_TYPE
REMOTE_USER
REMOTE_IDENT
CONTENT_TYPE
CONTENT_LENGTH
HTTP_ACCEPT
HTTP_USER_AGENT

Description

The name and version number of the server software that is serving the request, and
running the CGI script. Format: name/version.

The server’s hostname, alias, or IP address depending on the particular installation.
Revision number of the gateway interface. Format: (GI/revision #.

The protocol name and revision of the protocol that the request came in with. Format:
profocol/revision.

The port number that the server is accepting requests through. (Usually port 80.)

The method of the request. Normally POST or GET.

The path information that came along with the request. Normally, this information was
appended fo the end of the URL that called the CGI script.

The physical mapping that is derived from the virtual path supplied in PATH_INFO.
The path and file name of the script.

The value of a query URL or a form that was sent using the GET method is stored here.
The QUERY_STRING is url-encoded, unless the query was invoked with the <ISINDEX>
tag, then the “name” of the field is omitted and only the value is assigned to
QUERY_STRING variable. In <ISINDEX> calls, the unencoded value will also be passed
along to the script as command line parameters.

The host name of the machine making the request. Either the DNS name or alias.

The IP address of the REMOTE_HOST.

The authentication method used to validate users for protected scripts.

The user name making the request. This value is only set if user authentication has been used.
The user ID for a remote user in some authentication schemes.

The MIME type of the data being served.

The number of bytes of content being sent by the client.

The MIME types that the client will accept. Format type/type, type/type,...

The browser that the dlient is using.

As an exercise and a utility to see what your environment variables are
being set to, we will write a short shell script that simply returns the values
of all the main environment variables.

498

041 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

#!/bin/sh

Hsimple script to return the values of environment variables.
echo Content-Type: text/html

echo

#simple header info

echo "<TITLE>env_vars.sh</TITLE>"

echo "<H1>env_vars.sh</H1>"

echo "Below are the values of environment variables that were set"
echo "when this script was launched.<HR><LISTING>"

#were there any command-line arguments?

echo number of args: $#

echo value of args: $*

echo

#now the variables

echo SERVER_SOFTWARE: $SERVER_SOFTWARE
echo SERVER_NAME: $SERVER_NAME
echo GATEWAY_INTERFACE: SGATEWAY_INTERFACE
echo SERVER_PROTOCOL: $SERVER_PROTOCOL
echo SERVER_PORT: $SERVER_PORT
echo REQUEST_METHOD: $REQUEST_METHOD
echo PATH_INFO: $PATH_INFO

echo PATH_TRANSLATED: $PATH_TRANSLATED
echo SCRIPT_NAME: $SCRIPT_NAME
echo QUERY_STRING: ' $QUERY_STRING
echo REMOTE_HOST: $REMOTE_HOST
echo REMOTE_ADDR: SREMOTE_ADDR
echo AUTH_TYPE: SAUTH_TYPE

echo REMOTE_USER: $REMOTE_USER
echo REMOTE_IDENT: $REMOTE_IDENT
echo CONTENT_TYPE: $CONTENT_TYPE
echo CONTENT_LENGTH: SCONTENT_LENGTH
echo HTTP_ACCEPT: $HTTP_ACCEPT
echo HTTP_USER_AGENT: $HTTP_USER_AGENT

Be sure to make this script executable and put it into the correct direc-
tory for CGI scripts. If you include this script as the action for a form, or
just call the script directly from your favorite browser, it will list the
contents of the environment variables that we listed in the script. Typically,
the results will look something like Figure 15-5.

Location and Status Headers

The Content-Type header we've been discussing tells the browser to expect a
stream of data of a certain type, but sometimes you don't want to create a data
stream at all. If you want your script to simply redirect clients to a different
location based on the machine they are connecting from or the browser they
are using, use the Location header. You can also use a Location header to point
the browser to a different URL. The format is simple:

Location: http://foo.com

042 ServiceNow, Inc.'s Exhibit 1

o
25
‘iﬂm

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Figure 15-5 env_vars.sh results

Like the Content-Type header, the Location header requires a blank line
after it. The Location header can be followed by any valid URL. To use this
header in a shell script, it would look something like:

echo Location: ../downing/funstuff.html
echo

&=3 NOTE: You cannot mix header types. Every header must be either Content-
Type, Location, or Status.

The following script will redirect a request based on the browser
making it. A Netscape browser will get a file formatted for Netscape, other
browsers will get a default page.

#!/bin/sh

#This will send the Location of a file based on the
ficlient browser

FILENAME="default.htmL"

#default.html is the standard HTML file we want to serve
#if the user is using Netscape, we will redirect to

500 043 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

#nsversion.html

if ["SHTTP_USER_AGENT" = "Mozilla"l; then
FILENAME="nsversion.html"

fi
echo Location: ../htdocs/$FILENAME
echo

If you want to run a CGI script without having any change appear on
the user’s browser, use the Status header. If the script returns a Status
header with the status number set to 204 and the string “No Response”
attached, the calling browser will simply stay on the page that the request
was made from. In other words, the browser does nothing, even though the
server ran a remote script based on the browser’s request. We can take care
of some task, say add a line to a database, without changing the users
current page. The following script will add the machine name that the
request came from, and the name of the browser used, to a database in the
“logs” directory relative to the cgi-bin directory:.

#! /bin/sh

#This will add the machine name and browser
#name of a client to a database
LOGPATH="../logs/browser.dat"

echo $REMOTE_HOST $HTTP_USER_AGENT >> $LOGPATH
#now send the status to the browser

echo Status: 204 No Response

echo

Assuming that you have created a file called /logs/browser.dat, this script
will add the remote host name and the browser name to this file and termi-
nate, sending a status code back to the client. The client will stay on the
page where the call came from. There are a number of status codes that are
sent from a server to a browser. Most of them aren't very useful in cgi scripts
but are used to tell the browser that a file was not found or that the user
doesn’t have permission to access a certain file. I'm sure you've all seen the
“404 Not Found” error message—this was status number 404.

Security with CGI Scripts

BEWARE! Watch out for characters that have special meanings to the shell,

‘ such as %.<,>... A client can enter these characters into input fields and
sometimes compromise your system if you don't handle them carefully. Any
user-supplied data that is used as a command line argument can take advan-
tage of this problem. An easy, but not foolproof way to handle some of these
problems is to include the command line parameters in double quotes so that
any special characters will be treated as literals rather than shell directives.
See Chapter 21, HTML Assistant, for more information on server security.

044 ServiceNow, Inc.'s Exhibit 1058]8

WEB

502

PUBLISHER’S CONSTRUCTION KIT WITH HTM L

Most HTTP servers and clients have certain security features built in, but
you may occasionally want to try protecting a document by having a CGI
script ask the user for a password of some sort. The following script will
give very rudimentary security to a scrip; its listed here as an example of
how you might implement such a scheme, even though its not necessarily a
completely secure solution. It will print a message prompting the user to
input a password. Since this is a single field of input, we will use the
<ISINDEX> tag.

NOTE: If you wanted to add a more secure password field in a form, it
would make sense to use <FORM> tags instead of the <ISINDEX> tag and
use the <INPUT TYPE="password”> tag to prevent characters from being
echoed to the screen.

This script will return a “failure” page if it receives an incorrect pass-
word. If it gets the correct password, it will redirect the browser to
another location.

#!/bin/sh

#simple password script
PASSWORD=Schmoo
PROTECTEDFILE=/usr/me/securefile.html

if L $# =0 1
then
cat << EOM
Content-Type: text/html
<TITLE>Password script</TITLE>
<ISINDEX>
<H1>This page is protected. Enter password</H1>
EOM
elif ["$#" = "$PASSWORD" 1
then
echo Location: $PROTECTEDFILE
echo
else
cat << EOM2
Content-Type: text/html
<TITLE> FAIL!</TITLE>
<ISINDEX>
<H1>Password failed! Try again.</H1>
EOM2
fi

Remember—passwd.sh is meant as a demonstration to base other
schemes on: it’s far from the most secure way to protect a page or server. If
you are interested in security, read the security section in Chapter 21,
HTML Assistant.

045 ServiceNow, Inc.'s Exhibit 1008

3 o

15 CGI SCRIPTS

LESSON #6: HANDLING FORM DATA

And now, (drum roll please), the moment you have all been waiting for...
Form Handling! In Chapter 14, Interactivity, we learned all about one half
of the form scheme: how to write the HTML code that describes a form
interface and how the form sends its data. Unfortunately, you can’t do much
with a form without having some sort of program that can accept the data
that is passed by a form and do something with it. To clear the air about
using form data, there is some good news and some bad news. The bad
news: The form data is sent in an encoded data block that can be a pain to
decode into its component parts. The good news: This is such a common
task among CGI scripters that people have already written a number of
form-decoding utilities. A useful little collection of C functions comes with
NCSA's HTTPD; you can just plug these functions into your C programs,
and voila! the task is done. For those of you who are not C programmers,
there are also plenty of utilities that can be used with shell scripts, TCL
scripts, and most of the common scripting and programming languages.

What Does Form Data Look Like?

There are two methods that a form can use to pass data to a script, GET and
POST. As a quick guideline, use POST whenever possible, and use GET
only for indexes and single-parameter forms.

When a form sends its data using the GET method, the data is encoded
and stored in the environment variable QUERY_STRING. With the POST
method, data is sent along through the standard input stream of the script.
(By standard input, I mean what would normally be typed in from the
keyboard. The HTTPD server redirects that data to the script as if it were
being typed in.) In either case, the string is URL encoded. All variables and
their values are paired together with equals (=) signs, then all of the
name/value pairs are concatenated and separated with ampersands (&). The
spaces are replaced with plus (+) signs, and the special characters are
escaped. (Backslashes dont work here as they did in shell scripts); in this
context, “escaped” means the character is represented by a percent sign (%)
followed by the hexadecimal ASCII representation for that character.)

&0 NOTE: Some definitions may be useful here. American Standard Code for
Information Interchange (ASCII) is a code assigning unique numbers to the
standard printable and control characters. This code can be read by virtually
any computer in operation today. Hexadecimal, or base 16, is a numbering

046 ServiceNow, Inc.'s Exhibit 1%)53

W EB

504

PUBLISHER’S CONSTRUCTION KIT WITH HTML

system using 16 as the base instead of 10. Numbers from 10 to 15 are
represented by the first five letters of the alphabet.)

Encoding example: If a form had the following text input fields in its
description: <INPUT TYPE=“text” NAME=“VAR1"> and <INPUT
TYPE=“text” NAME=“VAR2">, and the strings typed into these text fields
were “Troy Downing” and “Boo{TAB}Radley”, the resulting encoded string
would look like:

VAR1=Troy+Downing&VAR2=Boo%09Radley

To interpret the contents of the string, you would want to parse it into
name/value pairs, replace the “+” with a space, and replace %09 with the
(Tab) character. Simple enough? The following code has a number of C
routines to do just that. Actually, the following code has a number of useful
procedures that can be plugged into your CGI applications. These proce-

dures generate common headers, simple HTML pages, and retrieve cookies.

cgilLib.c

/* cgiLib.c

Troy Downing

719 Broadway, 12th Floor
New York, NY 10003

(212) 998-3208

downinganyu.edu

This is a library of common cgi decoding functions. It is meant to
be compiled and Linked into most cgi applications. Feel free to
redistribute this source code, as long as this header remains as part
of the file. If you have any optimizations, bugs, or suggestions,
please send me email at the address above.

cgilib.c Copyright 1995, 1996 Troy Downing
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "cgiLib.h"

/* this will decode all post data, and return a Llinked Llist
This will only decode data coming in via standard in, so, it 95

047 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

only good for decoding form data that was submitted with a "POST"
method.

*/

node_t* getcgidata() {

char *buffer; /* tmp space for extracting url data */
node_t *node, *root; /* the root, and actual nodes of the Linked
List */
int cont_len; /* Llength of form data, is decremented as data is
extracted */
int first=0; /* used to determine if we have Looped through this
yet */

cont_Llen=atoi(getenv("CONTENT_LENGTH")); /* how much data? */
while(cont_Llen) { /* Lloop through as long as there is still

cont_Len */
if(!first) { /* see if this is the first time */

root = node = (node_t*)malloc(sizeof(node_t)); /*assign a
root*/
first=1;
} else {
node->next = (node_t*)malloc(sizeof(node_t));
node = node->next;
}

buffer = (char*)fmakeword(&cont_len); /* break the data block at
the first & */

node->name=makeword(buffer); /* assign name to the name field */
node->value=buffer; /* assign the data to the value field */
plustospace(node->value); /* turn all + to spaces */
unescape_url(node->value); /* fix the hex digits */

}

node->next=NULL; /* make sure this is the last node */

return root; /* return the root of the Linked list */

}

/* return a substring from stdin that is up to the next &. This

is what divides the urlencoded data stream into key=value chunks.
This will return a string that is the next key=value set in the stdin
stream.

*/

char *fmakeword(int *cl) {

char stop='&'; /* the character that is used to delimit the
key=values */
long wsize; /* the lLength of the data */
char *word; /* the chopped data */
int LL; /* a counter */

wsize = 32000; /* set the default size of the data */
LL=0; /* set the counter */

Continued on next page

048 ServiceNow, Inc.'s Exhibit 15%(38

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTM L S.%2

C[?P'Iffﬂl.t(,’d rom previous page
: 8

word = (char *) malloc(sizeof(char) * (wsize + 1)); /* create the
data block to be returned. */

while(1) { /* grab characters, increment the counter, and Look for
the ampersand */
wordCLL] = (char)fgetc(stdin);
if(ll==wsize) {
wordCLL+1] = '\0';
wsize+=102400;
word = (char *)realloc(word,sizeof(char)*(usize+1));
>
-=(*cl);
if((wordCLL] == stop) || (feof(stdin)) || (!(*cL))) {
ifCwordCLL] != stop) Ll++;
wordCLL] = '\D';
return word;
>
++LL;

}

/* divide a key=value string into a key and a value */
char *makeword(char *Line) {
char stop = '=';
int %X,Y;
char *word = (char *) malloc(sizeof(char) * (strlen(line) + 1));

for(x=0;((linelx]) && (linelx] != stop));x++)
wordCx] = Llinelx1;

wordCx] = '\0';
if(linelx]) ++x;
y=0;

while(lineLy++] = Llinelx++1);
return word;
}

/* convert all pluses '+' to spaces */
void plustospace(char *str) {
register int x;

for(x=0;strCx1;x++) if(strlx] == "+") strlxd = ' ';
}

/* convert escaped characters of the form %XX where XX is a hex number
representing an ASCII character value. This will convert the escape
sequence back into the character that it represents

*/

void unescape_url(char *url) {

register int x,y;

for(x=0,y=0;urllyl;++x,++y) {

506 049 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

1f(Curllx] = urllyl) == '%') {
urllx] = x2c(&urlly+11);
y+=2;

}

}
urlCx] = '"\0';
}

/* getval is sort of the equivalent to an associative array 1in Perl.
(${"keyname"}). This will take a Llinked List of name/value pairs and a
key. It will search for the key in the list, and return a value if the
key is found. Otherwise, it will return null.

*/

char* getval(node_t* node, char* name){

while(node!=NULL) {

if(node->name!=NULL)
if(!strncmp(name,node->name,strlen(name)))
return(node->value);

node=node->next;

}

return NULL;

}

/* simple html header generator */
void htmlheader(char* title) {

printf("Content-type: text/html\n\n");
printf("<HTML><HEAD><TITLE>%s</TITLE></HEAD>\n",title);
}

/* closes most html pages */
void htmlfooter(){

printf("</BODY></HTML>\n");

/* Generate a simple html page. */
void simplepage(char *title, char *message) {

htmlheader(title);
puts(message);
htmlfooter();

>

/* print a Llist of all of the name/val pairs */
void printnamelist(FILE *fp, node_t *node) {

while(node!=NULL) {

Continued on next page

050 ServiceNow, Inc.'s Exhibit g00708

W EB

508

PUBLISHER’S CONSTRUCTION KIT WITH HT ML

Continued from previous page

if(node—>value!=NULL)
fprintf(fp,"%4s = %s\n" ,node->name ,node—>value);
node=node->next;
}
}
/* print a Llist of all of the values for name/val pairs */
void printlist(FILE *fp, node_t *node) {

while(node!=NULL) {
if(node->value!=NULL)
fprintf(fp,”is\n“,node—>vaLue);
node=node—>next;

/* generate a simple error page */
void errorpage(char* message) {

htmlLheader("Error!");
printf("<h1 align=center>Error!<!H1>\n%s",message);
htmlfooter();
exit(1);
}

/* set a full cookie. Be sure to add an extra carriage return after
the last call to a cookie.
*/
void setcookie(char* key, char *val, char *path, char *expire)
{

printf("Set-Cookie: %s=Z4s; path=Zs;
expires=%s\n", key,val, path,expire);
}

/* set up a simple cookie */
void setsimplecookie(char* key, char* val){

printf("Set—Cookie: %s=%s\n", key,val);
>

/* generate a simple 1-cookie html header */
void cookieheader(char* title, char* key, char* val) {

printf("Content-type: text/html\n");
if(key!=NULL)

printf("Set-Cookie: %s=%s\n\n" key,val);
else

printf("\n");

printf(“<HTML><HEAD><TITLE>Zs<!TITLE><!HEAD>\n",title);

051 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

/* convert a hex number to a character. */
char x2c(char *what) {
register char digit;

digit = (what[0] >= 'A' ? ((what[0] & Oxdf) - 'A')+10 :

L0 55
digit *= 16;

digit += (what[1] >= 'A' ? ((what[1] & Oxdf) - 'A'")+10 :

= '0%));
return(digit);
}

void httpheader(void){
printf(”"Content-type: text/html\n");
>

/* this will build a linked List of name/value pairs from
the cookie environment variable
*/

node_t* getcookiedata(void) {

char *buffer;

char *buffer2;
node_t *list;

node_t *node;

char cookielBUFSIZ];
int first=TRUE;

List=NULL;

if(getenv("HTTP_COOKIE")==NULL)
return NULL;

(what[0]1 -

(whatl[13]

memcpy(cookie,getenv("HTTP_COOKIE") ,strlen(getenv("HTTP_COOKIE")));

if(cookie!=NULL){
while(TRUE){
if(first){
list=node=(node_t*)malloc(sizeof(node_t));
first=FALSE;
buffer=strtok(cookie,";");
} else {
node->next=(node_t*)malloc(sizeof(node_t));
node=node->next;
buffer=strtok(NULL,";");
}
if(buffer==NULL) break;

if(bufferf0l==" ') {
buffer2=buffer+1;

Continued on next page

052 ServiceNow, Inc.'s Exhibit gﬁ)é)S

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Continued from previous page

else
buffer2=buffer;

node->name=makeword(buffer2);
node—>value=buffer?;

}

return Llist;

The following is the header file that goes along with cgiLib.c.
/* cgilib.h

Troy Downing

719 Broadway, 12th Floor
New York, NY 10003

(212) 998-3208

downing@nyu.edu
cgiLib.h Copyright 1995, 1996 Troy Downing
*/

#ifndef __CGILIB_H
#define __CGILIB_H
struct url_node {
char *name;
char *value;
struct url_node* next;
¥;
typedef struct url_node node_t;

#ifndef TRUE
enum {FALSE, TRUE};
#endif

node_t* getcgidata(void);

char* fmakeword(int* cl);

char* makeword(char* buff);

void plustospace(char* buff);

void unescape_url(char* url);

char x2c(char* c);

void printlist(FILE *fp, node_t*);

void printnamelist(FILE *fp, node_t*);
char* getval(node_t* node, char* name);
void setcookie(char* key, char *val, char *path, char *expire);
void httpheader(void);

node_t* getcookiedata(void);

void htmlheader(char* title);

void setsimplecookie(char* key, char* val);
void htmlfooter(void);

510 053 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

void simplepage(char* title, char* message);
void errorpage(char* message);
Hendif

Right now, you're probably thinking, “Wow, what a mess! What am [
supposed to do with all of that stuff?” Well, dont worry; you don't have to
look at the cgilib.c code again. All we will do is compile it into an object
file once, then link it to whatever programs we write that use its functions.
Before we jump in, lets get familiar with the prototypes in the header file.
The following prototypes are extracted from the cgilLib.h file in the previous
code listing. The prototypes here will be followed by brief explanations of
their functions, and the parameters that they require.

€D node_t* getcgidata(void);

The getcgidata() function is probably the most important one in this
list. This function is sort of the magic “black box” that will turn a huge
block of urlencoded data into a list of names and values that can be easily
accessed in your programs. This function returns a node_t structure that is
also defined in this header. file. This structure is used in other functions
later on for accessing the form data.

mchar* getval(node_t* node, char* name);

This getval() function is probably the second most useful in this library.
The getval() function takes a node_t structure such as the one returned by
the getcgidata() function, and a character string representing a name. It will
return a value that corresponds to the name that is passed as a parameter.

€5 void printlist(FILE *fp, node_t*);

The printlist() function is used to print all of the values that were passed
in as either urlencoded data, or in the form of cookies. It requires a file
pointer and a node_t structure such as the one returned by getcgidata(). The
file pointer that is passed will often be the special “stdout” pointer for
printing the results directly to standard output.

€D void printnamelist(FILE *fp, node_t*);
The printnamelist() function is exactly the same as printlist() with one
exception—the names of the name/value pairs are printed as well as the values.

€I void setcookielchar* key, char *val, char *path,
char *expire);

The setcookie() function is used for setting html cookies in a Browser.

€I void httpheader(void);
054 ServiceNow, Inc.'s Exhibit 159?8

W EB

512

PUBLISHER’S CONSTRUCTION KIT WITH HTML

This prints a simple HTML header.
m void htmlLfooter(void);

This prints a standard HTML closing tag.
m node_t* getcookiedata(void);

The getcookiedata() function is similar to the getcgidata() function,
except it returns a node_t structure that contains name/value pairs that were
passed as cookies rather than as urlencoded data. The getval() function may
be used to retrieve that data.

mvoid htmlheader(char* title);

The htmlheader() function prints a standard HTTP header followed by
an HTML header with the title of the document set to the value passed as
the “title” parameter.

mvoid setsimplecookie(char* key, char¥* val);
This sets a simple cookie name/value pair on a Browser.
mvoid simplepage(char* title, char* message);

The simplepage() function takes a title and a message and will generate
a complete HTML document with those parameters.

mvoid errorpage(char* message);

The errorpage() function is similar to the simplepage() function, but is
meant for sending error messges to the users browser.

m char* fmakeword(int* cl);

fmakeword is used internally by the cgiLib functions. There is really no
nead to access it in your programs. This is used mainly by the getcgidata()
function.

m char* makeword(char* buff);

makeword() is also used internally by the getcgidata() function. In general,
this function divides the name/value pairs into their component parts.

m void plustospace(char* buff);
plustospace() is an internal function that converts all pluses (+) to spaces.

mvoid unescape_url(char* url);

055 ServiceNow, Inc.'s Exhibit 1008

3 .2

15 CGI SCRIPTS

unescape_url() is an internal function that turns escaped characters of
the form %XX and turns them into the ASCII character that they represent.

€I char x2c(char* ¢);

x2¢() is used internally by the unescape_url() function.

So, in general, the functions in the cgiLib.c file do all of the dirty work
associated with CGI applications programming. There are functions for
decoding urlencoded CGI data, grabbing cookie data, setting cookies, and
generating simple HTML pages. Now, before we compile this library, lets
take a quick look at what its doing.

Obviously, the most useful function in this library is the getcgidata()
function. (Assuming we are decoding form data.) So, what exactly is this
function doing for us? Well, the quick answer is that it is taking a block of
data that looks something like:

fname=Troy+B.&Lname=Downing&add=719%0DBroadway&phone=555+1212

and turning it into something useful like:

fname Troy B.
Lname Downing

add 719 Broadway
phone 555 1212

So, lets think back about HTML forms for a second. A form urlencodes its
data before sending it to a CGI application for processing. So, all field names
and their values have been stuck together and separated by an equals (=)
sign, all of these name/value pairs have been stuck together and separated by
an ampersand (&), all spaces have been converted to plus signs (+), and any
special characters have been escaped to a hexidecimal representation of the
form %XX.

Our getcgidata() function undoes all of that mess and gives us a nice
linked list of the name/value pairs. In the linked list, we can search for a
name, and we should be able to find the value that was associated with it.
(The getval() function does just that.) So, lets take a look at this function:
node_t* getcgidata() {

All this tells us is the name of the function and that it returns a pointer
to a node in our linked list. (Don't worry if you don't understand this, the
other functions of this library work with this structure directly.)

char* buffer;
node_t *node, *root;
int cont_Llen;

int first=0;

056 ServiceNow, Inc.'s Exhibit 10?]%

W EB

514

PUBLISHER’S CONSTRUCTION KIT WITH HTM L

That was simple enough, just defining some variables that this function
will use.
cont_Llen=atoi(getenv("CONTENT_LENGTH"));

Now, you may recall that all data from a form using the POST method
will be sent to our CGI application via the standard input. Well, we need to
know how much data to read from the standard input. Well, it just so
happens that the server will set an environment variable called
CONTENT_LENGTH to the exact number of bytes that the urlencoded
data block take up. So, if we grab this value, we know exactly how many
bytes to read from standard input. Here we are assigning this number to the
cont_len variable.

whileCcont_Len) {

Here we keep looping through our read routines while there is still data
to be read. Every time we take some information from standard input, we
subtract the number of bytes read from the cont_len variable. Once this
number hits zero, we are through.

if(lfirst) €
1% o ®f
}

This is just an initialization so that we create 2 new linked list node the
first time we run through this loop.
buffer= (char*)fmakeword(&cont_len);

This function just grabs data from the standard input until it reaches an
ampersand, or the end of the input stream. The cont_len variable is decre-
mented by the number of bytes read.

node->name=makeword(buffer);

This will take the name/value pair that was stored in the buffer variable,
and divide it at the equal sign (=). Then the first part, which is the name is
stored to the node structure and the second part which is the value is stored
in the buffer variable.

node->value=buffer;

This assigns the value that was in the buffer to the node.

plustospace(node->value);

This will convert all of the plus signs (+) back into spaces.

unescape_url(node->value);

057 ServiceNow, Inc.'s Exhibit 1008

8 .

2

15 CGI SCRIPTS

This will turn all of the escaped characters back into themselves. That
is, if there were any escaped characters in a particular value.

The rest of this function just loops through the previous functions until
there is no more data to be read from standard input. Once this is complete,
the linked list is terminated with a NULL pointer, and the root of the list is
returned. So, an assignment such as:

node_t* Llist;
List = getcgidata();

will assign the linked list to the list variable which is then ready to be
used in a call to getval(list,"keyword”). Pretty simple.

Now the best part of this whole thing. Now that you know how it works,
you never have to look at it again. In general, you will never need to make
changes to the functions in cgiLib.c, and can just plug them into any new CGI
program that you write. Now, let’s compile this library and start using it.

You should create a directory somewhere to contain the source code for
your CGI scripts. Move the cgilib.c and cgilLib.h files into this directory.
Now, using your favorite C compiler, compile the cgiLib.c file into an object
file called cgilib.o. If you use the gcc compiler, all you have to type to
create this object file is

gcc-o .cgilLib.c -o cgilLib.o

This would compile the code and save it in the same directory as cgiLib.c.
OK, that’s taken care of. Now, the best way to show how to use these func-
tions is to demonstrate them in a CGI script example. The following
program will create a Magic Eightball game on your server. For those of you
who have never heard of the Magic Eightball, it is a black plastic ball full of
blue liquid, with an icosahedron floating inside. The bottom of the ball has
a window, in which one of the sides of the icosahedron is visible. There are
20 different answers to “Yes” or “No” questions written on the sides of the
icosahedron. The user asks the Eightball a question, shakes the ball, and
then turns it upside down to read its response.

In this version of the Eightball, the user types a question into a form on
their Web browser. A click of the Submit button encodes the question and
sends it to a server. The server randomly picks one of the 20 replies that
would normally be written on the icosahedron, and returns an HTML docu-
ment with the answer. This CGI script also adds the question and answer to
a log file so that users can select the “log” page and look at all of the
extremely useful advice that the Eightball has given.

058 ServiceNow, Inc.'s Exhibit 1%%

WEB

516

PUBLISHER’S CONSTRUCTION KIT WITH HTM L

Forms generally have two parts, an HTML part and a CGl script part.
This example lists the CGI script first since thats what we’re working on
here, then it gives a few notes on how to compile the script, and finally lists
the corresponding HTML form description.

#include <stdio.h>
#include "cgiLib.h"
#define CHOICESZ20
#define LOG "/usr/httpd/logs/eightball_Llog.html"
void main(void) {
node_t* cgidata;
unsigned char rn; /*random number */
FILE *questions; /* log file */

static char *messagel]={
"Yes",
"No",
"Maybe",
"My Reply is Yes",
"Reply Hazy, Try again”,
"Concentrate and ask again",
"pefinitely",
"Signs point to YES",
"Ask again Llater",
"Without a doubt",
"It is certain",
"Ooutlook not so good",
"My reply is No",
"Don't count on it",
"Outlook good",
"Most Likely",
“Very doubtful",
"My sources say no",
"You may rely on it",
"It is decidedly so"

};

if(!(questions=fopen(L0G,"a")))
errorpage("Can't open log file"); /* catch an error*/

/* seed the random generator */
srand(getpid());

/*get a random number between 0 and 19 */
rn = rand()%20;

cgidata = getcgidata(); /* now wasn't that simple? The
previous statement just
urldecoded all of the data and
stored it in cgidata */

059 ServiceNow, Inc.'s Exhibit 1008

3 -

2

15 CGI SCRIPTS

/* now for the content... First, let's write to the log*/

fprintf(questions,"<PRE>%s </PRE>",

getval(cgidata,"question"));
fprintf(questions," %s<HR>\n",messagelrnl);
fclose(questions);

/* now Let's generate the response page */

htmlheader("Oracle Response"); /* print a header */
printf("The Oracle has thought Long and hard about ");
printf("your question and has come to the following ");
printf("answer:
\n");

printf("<H1>%s</H1>\n" ,messagelrnl);

/* finish off the HTML document */
htmlfooter();

Note that you will have to change the path names and filenames to
match the ones your system uses. For example, if you put the log file in a
different location, you will have to change the HREF that points to it in the
bottom of the file.

To install this file, compile it and link it with the cgiLib.o object file that
we created earlier in this section. If you're following the example exactly, type

gcc eightball.c cgiLib.o —o /usr/httpd/cgi-bin/eightball

Note the path to the cgi-bin directory. This eliminates the step of moving
the compiled program into the correct directory. If you compile your
version locally, remember to either move it into the correct directory, or ask
your system administrator to move it for you if you don't have write privi-
leges to make changes there.

Now, lets take a look at the form that calls this script. Remember that you
will have to change the machine name and path to match your own installation.

<HTML>

<HEAD>

<TITLE>Magic Eightball</TITLE>

</HEAD>

<BODY>

<H1>Troy's Magic 8-ball page</H1>

<P>
<HR>

This is where one should turn for advice of critical
importance. To use this Oracle:

Concentrate

Type in a yes or no question

Click on the "ask" button.

Continued on next page

060 ServiceNow, Inc.'s Exhibit 10%?7

WEB

518

PUBLISHER’S CONSTRUCTION KIT WI TH HTML

Continued from previous page

You will receive a reply shortly.

<HR>

<H1> The Oracle can only answer "YES or NO" questions.</H1>

<HR>

<FORM ACTION="http://found.cs.nyu.edu/cgi—bin/douning/eightbaLL"
METHOD="POST">

Type in your question:<P>

<HR>

<TEXTAREA NAME="question" ROWS=2 COLS=60></TEXTAREA>

<HR>

<INPUT TYPE="submit" VALUE="Ask 8-ball"><INPUT TYPE="reset"
VALUE="Clear Entry">

</FORM>

<HR>

<H5>I can't be held responsible for bad advice given

by this oracle</H5>

<H4>Accept no imitations! This is the Original WWW 8Ball and not a
cheap imitation!</H&4>

Read Log

</BODY>

</HTML>

To make this work, you must make sure that all of the hrefs are
pointing to the path/names of the files you created on your system. The
paths and filenames listed here are only examples. To see the Eightball in
action in its original home, point your Web browser at:
http:!/found.cs.nyu.edu/douning!eightbaLL.htmL

The Eightball example only deals with a single variable that contains the
question string. What happens when we need to deal with several
name/value pairs? Well, the following example works with the basic “feed-
back” page form that was described in Chapter 14, which allows a user to
submit comments via their browser. This version adds the comments to a
database. but this could easily be changed to a mailer that would mail the
results to the form’s owner.

Here is the description of the database handler that goes with the form
description in Chapter 14. It will take the form data, return an HTML page
to the browser confirming receipt of the data, write the data to a database,
and send e-mail informing the author that new data has been added.

#include <stdio.h>
#include <stdlib.h>
#include "cgiLib.h"

#define MAILER "/usr/lib/sendmail”
#define ADDRESS "userdsomewhere.com"

void main(void){

061 ServiceNow, Inc.'s Exhibit 1008

3 a5

15 CGI SCRIPTS

node_t* root;
FILE *mail;
char address[BUFSIZI];

root=getcgidata();

/* put the user response page together */
htmlheader("Mailer Page");

printf("Thanks for your submission.
");
printf("The contents of your submission follow:");
printf("<PRE>\n");

printnamelist(stdout,root);

htmlfooter();

/* construct the mail address */
sprintf(address,"%s 7%s",MAILER, ADDRESS);
mail=popen(address,"w'"); /* open a pipe to mail */

if(mail==NULL)
errorpage("Couldn't open mailer\n");
/* send a page if the mail pipe failed*/

fprintf(mail,"Subject: WebMail!\n");
/* set the subject Line in the mailer */

printnamelist(mail,root);
/*print all of the cgi data to the mailer */

fclose(mail); /* close the mail pipe */

Here’s an exercise. To get an idea of what your encoded strings look like
to your CGl scripts, write the following shell script:

#include <stdio.h>

#include <stdlib.h>

void main(int argc, char *argv[l)
£

int cont_Llen,index;
char c;

cont_Llen = atoi(getenv("CONTENT_LENGTH"));

print("Content-type: text/html\n\n");
printf("<listing>\n");
for(index=0;index<cont_Llen;index++)
{
c = getchar();
Continued on next page

062 ServiceNow, Inc.'s Exhibit 10ﬂ%

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Continued from previous page

printf("%c",c);
}
}

Compile this program and place it in the cgi-bin directory. Now, using
one of the forms you've created, or one of the forms described in this book,
change the <ACTION> tag to point at this program. (You must use the POST
method for this to work.) Now, when you submit a form that points to this
script, it should return the entire encoded string that your form sent it. This
can be a useful tool if your decoding algorithms aren't doing what you expect.

HTTP Cookies

Mmmmm Cookies! Well, um, actually, HTTP cookies aren' as tasty as one
may hope. But that doesn't mean that they should be taken lightly. HTTP
cookies are the single most powerful mechanism at a CGI programmer’s
disposal for maintaining client-side state. So, what is a cookie? The quick
answer: “An HTTP cookie is persistent, client-side state, that is assigned
through a standard HTTP header.”

Well, what’s so cool about that? Lets think about the standard HTTP
transaction between a browser and a CGI application. First, the browser
opens a connection to an HTTP server and requests a CGI application. The
server locates the CGI application, executes it, sends it data, and takes its
results from the CGI application’s standard output. The server then
forwards the output from the CGI application to the browser that requested
it in the first place, and kills the connection.

Once the connection is closed, the CGI application has no way of
keeping track of who had accessed it. The CGI application lies dormant
until a request is made for its services, then it springs to life, and goes back
to sleep. There is no persistence of state kept in the CGI application’s
memory, since it exits, and no longer has a connection to any particular
client browser anyway.

In many circumstances, it is useful to keep track of what transactions a
particular client has made. For instance, say you have an Internet shopping
service. Part of the functionality of this service is that you'd like your clients
to be able to shop around and add items to a virtual shopping bag. Once
the client is done shopping, you want him or her to be able to “check out,”
or pay for the items in the virtual shopping bag.

Well, the problem is keeping track of items as they are added to the
shopping bag. Your CGI application could generate a new HTML form with
hidden input tags after every transaction, and these hidden tags could
contain the names of items in the bag. Or you could keep a local database

590 063 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

on your server that assigned a unique ID that was hidden in an HTML form
and track items on your server. Or, use cookies.

Cookies allow you to store information on a client’s browser that is not
part of the HTML content. You can set the persistence of cookies to last
throughout a single session, or for some arbitrarily large amount of time.

Many of you no doubt have seen customizable Web sites. These are
Web sites where you select what information you want to see, and how you
want to see it. Amazingly enough, when you come back to that same site
the next day, it remembers all of the preferences you set. These work with
cookies. The site maintains a database of your preferences and assigns your
browser a unique ID number. This number is hidden in your browser as a
cookie so anytime that you access the site, the server at the site can deter-
mine who you are, and what your preferences are.

So, how does it work? Simply, a cookie is set on a browser with a stan-
dard HTTP header. This works exactly the same as the mechanism we use
to tell the server what type of content we are sending. The cookie data, in
its simplest form, is formatted as a name/value pair. To clear things up a bit,
the following code bit is an HTTP header for an HTML document that will
set a cookie name “fname” and the value of “Troy” on the client’s browser:

Content-type: text/html
Set-Cookie: fname=Troy

You can have an arbitrary number of “Set-Cookie:” lines in a single
HTTP header. The server distinguishes the header from the content by
looking for a blank line seperating the two. This is why an HTTP header
must always be followed by an extra blank line. For example, the following
ouput would set a number of cookies, and then begin sending content:

Content-type: text/html
Set-Cookie: name=Bob
Set-Cookie: add=Smith Street
Set-Cookie: phone=555-1212

<HTML>
<HEAD>

Notice the extra line between the header and the content. If this line is
omitted, this script will not work. The browser will be sent an error message
of the form “Server Error 500”, which doesn’t mean a whole lot to anyone.

Relevance

The next interesting part of a cookie is setting its relevance. By default,
the cookies that you set will only be sent to documents with the same base

064 ServiceNow, Inc.'s Exhibit §£08

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

URL of the CGI application that set the cookie. So, normally, only the site
that set a cookie can get the data back. Sometimes, you may want to set the
cookie’s relevance to a specific path on your server. This is useful if you have
a number of applications that may use the same names for cookies. This is
done by adding a “path” attribute to the cookie header. The attributes in the
header are separated by semi-colons (). So, to set the path of a cookie to be
relevant to /cgi-bin/downing/, you could use the following cookie header:

Set-Cookie: name=Troy; path=/cgi-bin/downing/

Once issued, this cookie would only be sent to CGI applications in the
/cgi-bin/downing/ directory.

Persistence

By default, a cookie will remain in effect throughout the session that it was
created in. In other words, the cookie is forgotten once the client’s browser is
restarted. So, how do you set the persistence? Well, there is an “expires”
attribute that can be added to the cookie header. The expires attribute is in an
odd format. The format is in the form Wdy, 11-Jun-98 12:15:00 GMT. More
generically, “Weekday, DD-Mon-YR HH:MM:SS GMT”, where the first part is
the weekday, the DD is the day of the month, Mon is an abbreviation for the
name of the month, YR is the last 2 digits of the year and HH:MM:SS are the
hours, minutes, and seconds of the expiration. All times are recorded in
Greenwich Mean Time (GMT). So, the following cookie header would remain
persistent until June 11, 1998 at 12:15 Greenwich Mean Time:

Set-Cookie: name=Troy; expires=Wdy, 11-Jun-98 12:15:00 GMT

Retrieving Cookie Data

So, now you know how to set cookies, the obvious question is: “How
do 1 get the data back from the browser?” All relevant cookie data is auto-
matically sent to a CGI application through an environment variable called
“HTTP_COOKIE”. The form is “key=val; key=val; ...” for an arbitrary
number of keys. So, getting cookie values is as simple as reading the
HTTP_COOKIE environment variable and parsing it into name/value pairs.

Using the cgilLib Library with Cookies

The cgiLib.c library has a number of functions for setting and retrieving
cookie values. Setting cookies can be as simple as calling a setcookie() func-
tion. The setcookie() function takes four parameters representing the name,
value, path, and expiration of a cookie. Here is a code sample for setting a
cookie with the library:

522 065 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

httpheader();

setcookie("name", "Troy", "/cgi-bin/downing/","Wdy, 11-Jun-98 12:15:00
GMT™) ;

printf("\n");

Notice that the httpheader() function was issued first to print a
“Content-type” header, and that the entire HTTP header was followed by a
printf(*\n"); to print an extra line after the header. Often, you only want to
set a temporary cookie, in which case you can use the setsimplecookie()
function with a name and value parameter. For example:

httpheader();
setsimplecookie("Name", "Troy");
setsimplecookie("Phone","555-1212");
printf("\n");

There is one other simple function that will create an HTTP header and
set a cookie value all in one fell swoop: cookieheader(). This is sent a docu-
ment title parameter, and a cookie name and value. This function will auto-
matically print the “Content-type” header, and follow the cookie with the
extra blank line. For example:

cookieheader("Cookie Pagé", "name"”, "Troy");
/* content follows*/

So as you can see, setting cookies is pretty simple. Extracting cookies is
almost identical to extracting the urlencoded CGI data. The getcookiedata()
function returns the root of a linked list that can be used in any of the
getval(), printlist(), or printnamelist() functions. So, here is a code fragment
that gets the cookie data from the HTTP_COOKIE environment variable,
parses it into a linked list, and prints the value of the cookie named “fname”:

node_t * cookie;

cookie = getcookiedata();

htmlheader("test page");

printf("The value of the cookie fname = %s\n", getval(cookie,"fname));
htmlfooter();

Couldn't be simpler. Instead of using the getval() function in a printf()
statement, we could have printed all of the cookie name/value pairs with
the following statement:

printnamelist(stdout,cookie);

The printnamelist() function takes a stream or file handle, and the root
of a linked list. It then traverses the linked list and prints out all of the
names and values that it contains.

Finally, here is a simple program that sets a number of cookies and then
prints their values:

066 ServiceNow, Inc.'s Exhibit 1(}%

W E B

PUBLISHER’S CONSTRUCTION KIT WITH H TML

#include <stdio.h>
#include "cgiLib.h"
void main(void) {
node_t* cookie;
cookie=getcookiedata();
httpheader();
setsimplecookie("name","Troy");
setsimplecookie("add", "719 Broadway");
setsimplecooke("phone", "555-1212");
printf("\n");
printf("<HTML><HEAD><TITLE>Cookie Test</TITLE></HEAD>\n");
printf("<BODY>\nThe submitted cookies fol LlLow:<PRE>/n");
printnamelist(stdout,cookie);
printf("<\PRE>\n");
htmlfooter();

As you can see, cookies are a powerful mechanism for storing informa-
tion on a user’s browser. They are also very simple to use, especially if you
use the prepackaged functions listed above. Common uses for cookies are
storing password information, keeping track of a particular user (look in
your browser’s cookie database on your local machine, you may be
surprised to see how many services have assigned you an ID number so that
they can keep track or your browsing habits), or keeping track of items that
you may select during a shopping spree. The applications are enormous,
and I'm sure you'll come up with your own intriguing requirements for
client-side state tracking.

LESSON #1: SAMPLE SCRIPTS FOR UNIX, WINDOWS,
AND MACINTOSH SERVERS

This final section offers a number of educational, useful, and/or interesting
CGl scripts, with something for whatever platform you're likely to be using.
Most of them come from public archive sites around the Internet community,
and their authors deserve great thanks for making them publicly available.

Unix

524

Unix is generally the CGI programmer’s operating system of choice. Most of
the more intriguing scripts seem to have been written for Unix servers. This
doesn’t mean that they can't be revised to run on other servers; in fact,
many of them can be modified to run on other platforms with very little
work. It may take some doing to convert a shell script to an AppleScript
program, but the C programs should port quite nicely. Note that any C

067 ServiceNow, Inc.'s Exhibit 1008

3

2

15 CGI SCRIPTS

programs that are listed below that contain “#include “cgiLib.h™ must be
linked with the cgiLib.c functions listed earlier in this chapter. Well, enjoy!

fax_mailer.c

/* This works with a specific fax-modem terminal that
the author runs locally. The fax modem takes e-mail as
its input. This may need to be modified to work on your
system.

HTML Fax Utility. Should be run as a cgi file under
HTTPD. Takes the variable string supplied from the

HTML "Form" submittal and parses it into an e-mail
address.... The order that the variables appear in the
htmlL form is important. They must appear in the form

in the same order that they are Llisted in the defines
below, that is, AT..FROM. (Not the best approach for the
job; it'll get fixed at some point.) This will produce
an e-mail message of the form:

/FN=995-4122/AT=Troy_Downing/0=NYU/@text-fax.nyu.edu

text-fax.nyu will parse the "to" line and create a fax
cover page and attempt to fax it to the number Llisted
after /FN=. Currently, all spaces are converted to
underscores in the address but not in the body.

The fax is mailed from nobodydyourserver.com and this
will appear on the header as the sender. So, Its
important to include the FROM string so that the
recipient will know who it came from....

*/

#include <stdio.h>
#include <stdlib.h>
#include "cgiLib.h"

#define MAILER "/usr/bin/mail"
#define LOGFILE "/usr/logs/fax.log"

#define FAX "dtext-fax.myserver.com"

void main(int argc, char *argv[])
{

node_t* data;

char address[256];

FILE *mdata, *log;

/* get form data */
data = getcgidata();

Continued on next page

068 ServiceNow, Inc.'s Exhibit 45%)8

W EB

526

PUBLISHER’S CONSTRUCTION KIT WITH HTML

Continued from previous page

/* put together e-mail address. The getval() function is

passed the linked list that we created with the getcgidata()

function, and then the names of the input fields are passed to

retrieve the values that were input in the html form */

sprintf(address, "%s -s \"Zs\" \"'/FN=%s/AT=%s/0=Vs/0U=Vs/\"%s" ,
MAILER, getval(data,"subject"), getval(data,"FaxNo"),
getval(data,“addressee"),getval(data,"Organization"),
getval(data,"address"),FAX);

/* open a pipe to the mailer */
if (!(mdata=popen(address,"w")))
errorpage("Couldn't open the mailer");

/* Send the mail message to the fax machine*/

fprintf(mdata,"%s\n", getval(data,"body"));

fprintf(mdata,"Message Sender: Zs\n",
getval(data,"from"));

pclose(mdata);

/*write the data to the log file*/
Log=fopen(LOGFILE, "a");

fprintf(log,"———===——-- \n");
printnamelist(log,data);
forintfllog,"—=—r=—m=—m end--\n");
fclose(log);

/* send a response page to the user */
htmLheader("Fax Sent!");

printf("<h1>Mail sent!</h1>\n");
printf("content fol Lows :<p><hr><PRE>\n");
printnamelist(stdout,data);
printf("</PRE>");

/* end html document */
htmlfooter();

¥

fax mailer.html

<HTML>

<HEAD>

<title>FAX Utility</title>

</HEAD>

<BODY>

<h1>FAX Mailer</h1>

<hr>

This form will send a FAX to the fax number/recipient that is
supplied. Currently it will only work with area codes 212 and 718. If

069 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

you haven't used this before, please read the instruc—
tions.<p>

***REQUIRED fields are marked with a *<p>

<hr>

<form action=“http://found.cs.nyu.edu/cgi-bin/douning/fax"
METHOD="POST">

<pre>
To:* <input type="text" name="addressee" size=30><p>
Sub:* <input type="text" name="subject" size=30><p>

Fax number:* <input type="text" name="FaxNo" size=15><p>
Organization: <input type="text" name="0Organization" size=30><p>
Address: <input type="text" name="address" size=30><p>
</pre>

<hr>

Body : <p>

<TEXTAREA name="body" COLS=80 ROWS=10></TEXTAREA>

<p>

<hr>

From:<input type="text" name="from" size=35><p>

<input type="submit" value="submit">

</form>

</BODY>

</HTML>

mailer.c

This next script will send e-mail submitted via a form. It can be useful if
users can't use mailto: URLs with their browsers.

/* This is a simple mail program. It uses the cgiLib Library
and is configurable in the html, so it's useful for a number
of users at a site. It expects a form such as:

<FORM ACTION=http://foo.com/cgi-bin/mailer/downingafoo.com>
<INPUT name="email" >
<INPUT ...>

<FORM>

there can be an arbitrary number of input elements in the
form. If one of the input fields has the name "email", then
the contents of the field will be used as a return address,
otherwise the server's address will be used. The email
address that will be sent the results of the form submission
is appended to the URL in the ACTION attribute. This makes it
possible for a number of users to use this same program by
only changing the URL in the ACTION attribute to point to
their particular email address

*/

#include <stdio.h>
#include <stdlib.h>

#include "cgilib.h" 070 ServiceNBW “theE & Eibit 1%)%8

WEB

528

PUBLISHER’S CONSTRUCTION KIT WITH HTML
Continued from previous page

#define MAILER "/usr/lib/sendmail"

void main(void){

node_t* root;
FILE *mail;
char addressCBUFSIZ];

root=getcgidata();

/* put the user response page together */
htmlheader("Test Page");
printf("<BODY><PRE>");
printf("Thanks for your submission %s
\n",
getval(root, "fname"));
printf("We have your email address as: %s
\n",
getval(root,"email™));
printf("The contents of your submission follow:\n");

printnamelist(stdout,root);
htmLfooter();

/*construct the mail address */
sprintf(address,"%s %s",MAILER, getenv("PATH_INFO'")+1);

/* if an email address wasn't provided, send an error*/
jf(getenv("PATH_INFO")==NULL)
errorpage("You must supply an email address \
appended to the action url. Otherwise, \
this mailer has no idea who to mail to...");

mail=popen(address,"w"); /* open a pipe to mail */

jf(mail==NULL)
errorpage("Couldn't open mailer\n");
/* send a page if the mail pipe failed*/

fprintf(mail,"Subject: WebMail!\n");
/* set the subject Line in the mailer */

if(getval(root,"email")!=NULL)
/* if email is a var, make that the ret. add*/
fprintf(mail,"Reply-to: %s\n",
getval(root,"email"));

printnamelist(mail, root);

/*print all of the cgi data to the mailer */
fclose(mail); /* close the mail pipe */

071 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

mailer.html

<HTML>

<HEAD>

<TITLE>Mail Interface</TITLE>

</HEAD>

<BODY>

<H1>Mailer</H1>

<P>Please send us a message:</P>

<FORM ACTION="http://foo.com/cgi-bin/mailer/downing@foo.com"
METHOD="POST">

<PRE>

Name: <INPUT name="name'>

Email: <INPUT name="email'">

<TEXTAREA rows=10 cols=60 name='"message'>

Type your message here

</TEXTAREA>

<INPUT type='"submit'">

</PRE>

</FORM>

</BODY>

</HTML>

names.c

/* This program parses a form that contains 3 input fields: a
name suggestion for my expected new baby, a sex which could
be male/female/either, and a comment
the suggestions are added to a database that I'm keeping
until I actually have to name the kid.

addendum: The baby was born 3-25-95 and named Morgan
*/

#include <stdio.h>
##include <stdlib.h>
#include "cgilLib.h"
#define NAMES "/usr/pub/names"”

void main(void)
{

char address[2561];

FILE *names;

node_t* data;
data=getcgidata();

names = fopen(NAMES, "a");

htmLheader(""Name Submission");
Continued on next page

072 ServiceNow, Inc.'s Exhibit 109%

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Continued from previous page
fprintf(names,“%s\t\t%s\t%s\n“,getvaL(data,"name"),
getual(data,”sex"),getval(data,"comment"));
fclose(names);

printf("<h1>Thanks for your suggestion!</h1> \n");
printf("<h2>I will take the name \"Zs\" into serious \

consideration!<p>",getval(data,"name"));
printf('");
printf("List of names<p>");

htmLfooter();

names.form

<form action="http://myserver.com/cgi-bin/names" METHOD="POST">
Please help suggest a name. Enter a name, comment if you want, and
sex.

name:<input type="text' NAME="name" size=15>

<select name='"sex'>

<option>Male

<option>Female

<option>Either

</select>

comment:<input type="text" name="comment" size=30>

<input type="submit" value="submit name">

List of names so far...
</form>

Easy Counter

Most Web servers support server-side programs, which are a way of creating
small bits of HTML on-the-fly. These are similar to cgi scripts, but they do
not need to be called via a form or hyperlink—they can be called from the
source of your HTML document.

Server-side scripts are a marvelously easy way of adding a counter to your
Web page. A counter is a simple program that keeps track of how many
people have visited your site. Whenever your Web page is loaded, the counter
is incremented. You can then print a message onto your page similar to:

1,238 folk have visited this Web page since January 1, 1996.

STYLE TIP: Counters are highly over-used. Given that warning, you're still
welcome to use one but be aware that some people find them annoying.

To add a counter to your Web page, split your HTML document into
two documents. The first file should contain all the HTML markup you
want to appear before the counter appears. The second file should contain
the rest of the markup.

530 073 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

For instance, you might have two files as follows:

filel.html
<HTML>
<HEAD>
<TITLE>My counter Page</TITLE>
</HEAD>
<BODY>
A counter page. <P>
<HR>

file2 html
folk have visited this Web page since January 1, 1996.<pP>
<HR>
Pretty neat, eh?
</BODY>
</HTML>

Now create a text file which contains the initial counter value (i.e., 0).
This file shold be named count.txt.

count.txt
0

NOTE: Make sure that all the files are readable and writable by the Web server.
Use the chmod 644 command to give the file the correct mode. For example:

chmod 644 counter.txt

You'll now use a simple server-side program to stitch these three files
together. The C code for such a program is as follows:
/***

counter.c:

A script to add a counter to your Web page.
***/

#idefine HTML_HEADER "(entire lLocal path to)/test.head"

#define HTML_COUNTER "(entire local path to)/test.count"
#define HTML_FOOTER "(entire local path to)/test.foot"

void print_file(char *file)

{

FILE *fp = fopen(file,"r+");
char Linel10241;
Linel01 = '\0';
while (fscanf(fp, "%[A\nls", Line) != EOF)
{
fgetc(fp);
printf("%Zs\n", Lline);
Linef01 = "\0';
}
fclose(fp);

Continued on next page

074 ServiceNow, Inc.'s Exhibit 353108

W EB

532

PUBLISHER'S CONSTRUCTION KIT WITH HTM L

Continued from previous page

void increment_counter(char *file)

{
int counter;
FILE *fp = fopen(file,"r+");
fscanf(fp, "%d", &counter);
/* Increment the counter */
counter++;
/* Save the new value to the count.txt file. */
fseek(fp, OL, 0);
fprintf(fp, "%d\n", counter);
fclose(fp);
/* Spit out the count number. */
printf("%d", counter);

¥

void main(int argc, char **argv)

{
printf("Content-type: text/html\n\n");
print_file("filel.html");
increment_counter("count.txt");
print_file("file2.html");

}

You can compile the program (assuming you're using the Unix cc
compiler) as follows:

cc counter.c —o /cgi-bin/counter.html

Modify the output path, if necessary, so that the output is put in your
server’s cgi-bin directory. You can name this file anything you want,
counterhtml is just a suggestion.

To test the file, just run the counterhtml file by typing its name. The
correct HTML output should appear on your screen if everything seems
fine. You can now have people access your counter directly. For example, if
your cgi-bin directory is at: http://www.smartypants.com/cgi-bin then your
new counting Web page can be accessed at: http://www.smartypants.com/cgi-
bin/counterhtml

If you wish, you can create an alias so that when people seem to be
accessing a Web page from your regular Web directory they’ll actually be
accessing the counterhtml program in the cgi-bin directory.

Move to the config directory of your Web server and edit the srm.conf
file. Add this line to the ScriptAlias section:

ScriptAlias /mypage.html /cgi-bin/counter.html

The first value should be the directory where your Web pages are stored.
You can change mypage.html to any name you'd like people to access. The
second value should be the actual cgi-bin directory on your Web server.

075 ServiceNow, Inc.'s Exhibit 1008

3.2

15 CGI SCRIPTS

Once your server is restarted, your counter page will be accessed when-
ever somebody calls hitp://www.smartypants.com/mypage.html

Server Push

Most late-model browsers, such as the Netscape Navigator and Microsofts
Internet Explorer, allow dynamic content in the form of a “Server Push” or a
“Client Pull.” What the Server Push allows you to do is send a series of
objects to the client rather than a single one. Normally, a CGI script sends a
single type of data, say a text/html document or a GIF image and once this
object has been passed on to the client, the connection is broken. With a
Server Push, the connection is left open while the server sends a series of
objects and is not closed until the script terminates. This is particularly
useful using the multipart/x-mixed-replace MIME type with graphic images.
This will allow you to send a graphic image to the client browser and then
immediately replace it with another. By stringing a series of images like this
together, you can create a sort of inline animation on the clients browser
without using an external “helper application.”

The Client Pull is similar to the Server Push but rather than having the
server send another object, the client requests a series of objects after a
specified interval. This comes in handy if you want the client to keep
checking a document or script for changes automatically and for orches-
trating “guided tours” without requiring user intervention. The Client Pull
is implemented as an HTML tag that is interpreted by the client’s browser.
An example of a Server Push and a Client Pull follow.

Slide Show Animation—The following is the code for an inline anima-
tion script. It will send a series of GIF files to a browser, replacing each
image with a subsequent one. It can easily be modified to use JPEG or XBM
images as well. To work as intended, it should be called with an HTML
document similar to the one that follows.

movie.c

/* Multipart-mixed cgi demo.
Troy Downing 1995
This was written to demonstrate the multipart/mixed-replace
capabilities that are now available with HTML 3.0 compliant
browsers.
This will send a series of images to a browser. Each image

will replace the previous image giving the illusion of an
Continued on next page

076 ServiceNow, Inc.'s Exhibit 1%)38

W EB

534

PUBLISHER’S CONSTRUCTION KIT WITH HT ML

Continued from previous page

animation. This will work best on fast networks with small
images of the same size/resolution.

Just to make things simple, I've named the images 1..8.q9i1f;
this could be easily modified to deal with other
filenames/types.

*/

#include <stdio.h>

#define BOUNDARY "—ThisRandomString\n" /*marks beginning of file*/
#define ENDING "——ThisRandomString--\n"/*marks end of file*/
#define HEADER "Content-type:multipart/x-mixed
repLace;boundary=ThisRandomString"

#define TYPE "Content-type: image/gif" /*mime type of file*/

#idefine IMAGETYPE "gif" /*filename suffix*/

#define IMAGEDIR "/usr/downing/gifs/" /*contains the images*/

#define NAMELEN 256

#define REPEAT 8 /*number of images to send*/

#define BUF_SIZE 1024 /*number of bytes to read at
once*/

void main(void)

£

FILE *f_spew; /*points to image files*/

char file[NAMELEN]; /*holds image file name for use with J
fopen()*/

char buffer[BUF_SIZE1; /*buffer for reading file*/
int counter,count,tries;

printf("%s\n\n" HEADER); /*print the multipart header*/

counter=REPEAT+1;

while(counter--) /*cycle through images*/

{
printf("%s",BOUNDARY); /*print beginning boundary*/
printf("%s\n\n",TYPE); /*print mime type for image*/

sprintf(fiLe,“Zs%d.Zs",IHAGEDIR,counter,IHAGETYPE);
/*construct filename*/
while((f_spew = fopen(file,"r"))==NULL) /*open file*/

{
if(tries—-<0) break;
}
while (!feof(f_spew)) /*send data while not EOF*/
{

count = fread(buffer, 1, BUF_SIZE, f_spew);
fwrite(buffer, 1, count, stdout);
}

fclose(f_spew);

077 ServiceNow, Inc.'s Exhibit 1008

<

15 CGI SCRIPTS

printf("%s" ,ENDING) ; /*print ending boundary*/

}

Now, here is the HTML page that calls this program. I'm assuming that the
code was compiled as “movie.cgi” and placed in the cgi-bin directory.

<HTML>
<HEAD>
<TITLE>Movie Test</TITLE>
</HEAD>
<body>

The following box should show a series of images. Click the

"reload" button to restart it.

<CENTER>

<TABLE border = 10><td><img src = "http://yourserver.com/cgi-bin/
movie.cgi'></td>

</TABLE>

</CENTER>

</BODY>

The following is an example of a Client Pull. The Client Pull is specified
with an HTML <META> tag. For more information on the HTML 3 specs,
see Chapter 10. This page will automatically reload itself every 30 seconds.

<HTML>

<HEAD>

<TITLE> Client Pull demo </TITLE>

<META http-equiv="Refresh" content=30>

</HEAD>

<BODY>

The following is a picture of our lab. It will
refresh every 30 seconds.

</BODY>

Perl

Perl is a very popular scripting language for creating CGI applications. Since
it is beyond the scope of this book to teach you the “Practical Expression
and Report Language” (PERL), here are some code examples in Perl for
creating simple CGI applications.

In the cgilib.c library earlier in this chapter, there were a number of
common functions for creating simple html documents and decoding URL
data. The following code example is an almost identical library, but
designed to be included in Perl scripts.

078 ServiceNow, Inc.'s Exhibit 1008535

WEB PUBLISHER’S CONSTRU CTION KIT WITH HTML 3.2

Perl is much slower than compiled C code, but has one advantage. It has
a very powerful regular expression model for easily manipulating strings. So,
the getcgidata() function in Perl, as you will soon see, is much shorter and
more elegant than its C equivalent. Well enough talk, here’ the library:

cgiLib.pl
cgiLib.pl

Troy Downing
downinganyu.edu

This is a package or core subroutines that are helpful when
writing cgi applications

IE 3T I I I I

the following line must be present for "require"
to succeed
1;

htmlheader prints out a standard header, and <HEAD>... tags.
syntax htmlheader("title");
sub htmlheader {

local($title) = a_;

print "Content-type: text/html\n\n";
print "<HTML><HEAD><TITLE>$title</TITLE></HEAD>\n";
}

4 textheader prints out a text/plain http header
sub textheader {

print("Content-type: text/plain\n\n");
>

imageheader prints out a standard http gif header
#syntax imageheader("gif");
sub imageheader {

local($type) = a@_;

print "Content-type: image/$type\n\n";
T

htmlfooter prints out a standard html doc closure
sub htmlfooter {

print "\n</BODY></HTML>\n";
¥

getcgidata will decode the urlencoded data from a form or

query submission
it will return the decoded name/value pairs as a alist.

536 079 ServiceNow, Inc.'s Exhibit 1008

15 CGI SCRIPTS

By default, it

will determine how to get the data

(ie POST or GET) by examining the
REQUEST_METHOD environment variable.

It can be forced to use either

POST or GET by passing it the value "POST" or
#"GET" as a parameter. ie:

Zalist = getcgidata("POST");

I I I I I I

sub getcgidata {
Local($method) = a_;

if($method eq "") { # check to see if a value was passed
$method = $ENV{'REQUEST_METHOD'};

}

if (($method eq "POST") || ($method eq "post")) {
read(STDIN, $buffer, SENV{'CONTENT_LENGTH'});

} else {
$buffer = SENV{'QUERY_STRING'};

¥

anameValue = split(/&/, S$buffer);
#break up the urlencoded block

foreach $pair (@nameValue) {
($name, $value) = split(/=/, $pair);
fidivide the name/value pairs
$value =" tr/+/ /; #replace all + with a space
$value =" s/%(La-fA-F0-91Ca-fA-F0-91)/pack("C",
hex($1))/eg;
#ldecode any escaped hex characters
if ($value ne "") {
$form{$name} = S$value;
}
¥
return Zform;
}

simplePage generates a simple html page.
It expects a title and
a message string to use when generating the page
sub simplePage {
local($title,$message) = a_;
htmlheader($title);

print("$message\n");
htmlfooter();

080 ServiceNow, Inc.'s Exhibit 195)78

WEB

538

PUBLISHER’'S CONSTRUCTION KIT WITH HTML

Phew! That was almost as ugly as the cgiLib.c file! Well, the nice thing
about it is, like the cgilLib.c file, you don't ever need to look at it again. Just
include it in any CGI programs that you write in Perl. Here is an example
program written in Perl that generates a simple HTML page:

#'/usr/local/bin/perl

require 'cgiLib.pl';

htmlheader("Test page");

print "<H1>Whoopy! A generated page!\n";
htmLfooter();

That wasn't so bad now was it? Here's a more complicated example.
This is the equivalent to the mailer.c program earlier in this chapter. This
will parse nearly any HTML form input, and send it as e-mail to an address
specified in the ACTION attribute as path information. (ie:
ACTION=http:/foo.com/cgi-bin/mailit. pl/downing@foo.com)

oge
mailit.pl
#!/usr/Llocal/bin/perl
#
Troy Downing
downinganyu.edu
#
This is a basic mail application. It is generic and can be used by a
variety
of installations using different recipient email addresses.
#
the destination address is passed in the PATH_INFO variable, so the
form that
uses this would lLook something Like:

It

<FORM action=/cgi-bin/mailit/downinganyu.edu>
email: <INPUT name=email>

name: <INPUT name=name>

Mess: <INPUT name=message>

</FORM>

if the name of one of your input fields is called "email" ,
then this mailer will use that as the "Reply-To" field,
otherwise, the server's return address will be used.

I 3 I I T I L I I: I

require 'cgilLib.pl';
%“list = getcgidata();
if ($list{message} eq "") {

simplePage("Mailit Error", "<H1>You Must supply a message!</H1>");
exit();

081 ServiceNow, Inc.'s Exhibit 1008

P

-~

£

15 CGI SCRIPTS

htmlheader("Form Submission");

print "<H1 align=center>Thanks for your submission</H1>\n";
print "The file contents of your submission follow:
\n<PRE>\n";

$mailaddr= $ENV{'PATH_INFO'};
$mailaddr = tr/\// /; # This will replace the first /
open (MAIL,"| mail $mailaddr");

if($list{email} ne "") {
print MAIL "Reply-To: $List{emaill}\n";
}

foreach (keys 7%Llist) {
print "$_ = $list{$_}\n";
print (MAIL "$_ = $list{$_X\n");
¥
print "</pre>";
close (MAIL);

htmlfooter();

Now, you've got to admit that was pretty simple! All of the dirty work is
hidden in the cgiLib.pl functions. This leaves you, the programmer, free to
concentrate on what you want to program, rather than the tedious part of
decoding urlencoded data streams. So, try taking the mailit.pl program
above and modify it for your own needs. Once you start to play with it a
bit, it should become clear how the cgiLib.pl functions work. Enjoy!

DOS/Windows Scripts

There are a number of DOS and Windows scripts available on the Internet
archives. Many are written as batch files, C programs, compiled BASIC
programs, or PASCAL programs. Since most of the C programs written for
Unix can easily be modified to work on a DOS system, this section will
concentrate on the batch files.

A few notes about file location: The standard directory for CGI scripts on
a Unix server is in the cgi-bin directory relative to the server root directory. As
described in Chapter 21, HTML Assistant, the HTTPD server is installed rela-
tive to a directory specified in the configuration files for a particular installa-
tion. This directory is usually something like C\HTTPD and all of the docu-
ment, configuration, and CGI files are in directories relative to this. Any refer-
ence to “server root” is referring to this directory. For example: Given the
above installation, to say that the cgi-bin directory is relative to the server root
directory is the same as saying C\HTTPD\CGI-BIN. Likewise, the document

082 ServiceNow, Inc.'s Exhibit 1008539

WEB

540

PUBLISHER’S CONSTRUCTION KIT WITH HTML

root directory is the directory that you have configured your server to look for
HTML documents in. Normally this would be something like
CAHTTPD\HTDOCS. The HTTPD server for Windows is very similar to the
Unix version. Relative to server root, there is normally a cgi-win and a cgi-dos
directory. You should place your DOS and Windows CGI scripts into one of
these corresponding directories.

args.bat

rem
pem Fkkkkkdkkkkkk

rem * ARGS.BAT *

rem kkkkkkhkkkkkk

rem

rem Script used in args.htm to illustrate argument transfer
rem

rem Bob Denny <rdennyanetcom.com>

rem 30-Apr-94

rem

rem Echo is OFF at script entry

rem

set of=%output_fileZ

echo Content-type:text/plain > Z%of%

echo. >> %of%

echo CGI/1.0 test script report: >> Z%of%
echo. >> %of%

echo argc = %# argv: >> Z%ofi%

if NOT %#==0 echo %1 %2 %3 %& %5 %6 %7 %8 >> ZofZ
if %#==0 echo {empty} >> ZofZ

echo. >> ZofZ

echo environment variables: >> ZofZ%

echo REQUEST_METHOD=%REQUEST_METHODZ >> %ot
echo SCRIPT_NAME=%ZSCRIPT_NAMEZ >> %of%

echo QUERY_STRING=%QUERY_STRINGZ >> %ot
echo PATH_INFO=%PATH_INFO%Z >> %ofZ

echo PATH_TRANSLATED=%PATH_TRANSLATED%Z >> ZofZ
echo. >> %of%

if NOT %REQUEST_METHOD%==POST goto done

echo CONTENT_TYPE=%CONTENT_TYPEZ >> %#of%
echo CONTENT_FILE=%CONTENT_FILE% >> ZofZ%
echo CONTENT_LENGTH=%ZCONTENT_LENGTH >> %ot
echo ---- begin content ———- >> Zof%

type %CONTENT_FILE%Z >> ZofZ

echo. >> ZofZ%

echo ———— end content ————- >> JofZ
echo. >> %of%

:done

echo —— end of report —- >> Zof%

083 ServiceNow, Inc.'s Exhibit 1008

32

15 CGI SCRIPTS

demoindx.bat

rem
rem *k%kkkkkkkkikdhkdk

rem * DEMOINDX.BAT *

rem e e e e ek ok e e e g ke ok ke

rem

rem Offers an ISINDEX document if no query arguments,
rem else reports on the "results" of the query.

rem

rem Bob Denny <rdennyanetcom.com>

rem 28-Apr-94

rem

set of=Zoutput_file%

if NOT %#==0 goto shoquery

rem

rem No query, signal server to do redirect to ISINDEX demo doc.
rem

echo Location: /demo/isindex.htm > %Zof%

echo. >> Zof%

goto done

rem

rem There were query arguments. Generate plain text report
(COMMAND.COM: BAH!)

rem

:shoquery

echo Content-type:text/plain > %of¥%

echo. >> %of/

echo Here is what the server would have fed to the back-end program:
>> JofZ

echo. >> %of%

echo Number of query arguments = %# >> %of%

echo. >> %of%

echo Arguments: >> Zof%

echo %1 %2 %3 %4 %5 %6 %7 %8 %9 >> %of%

:done

echo -— end of report —- >> Z%of¥%

Macintosh Scripts

Most Macintosh scripts are written as AppleScript programs. Here is an
AppleScript CGI script and an HTML file to give you an idea of how
Macintosh CGI scripting works. Dennis Wilkinson wrote the code you see
here as an example of how to get MacHTTP to deal with data from forms
supported by clients like XMosaic 2.0.

query.applescript

tell window 1 of application "Scriptable Text Editor"
set contents to http_search_args
return "<title>Server Query Response</title><h1>Hi!</h1>We get
the picture. Thanks for the feedback.<P><address>Here</Address>"
end tell

084 ServiceNow, Inc.'s Exhibit 100584]

WEB PUBLISHER’S CONSTRU CTION KIT WITH HTML 3.2

query.html

<title>Feedback Form</title>

<h2>Submit your feedback</h2>

<form method=GET action="http:/form.script">
Name: <input name='"username'><p>

E-Mail: <input name="usermail'><p>

<select name="feedback">

<option selected>I Love It!

<option>I'm Lost!

<option>I Hate It!

</select><p>

<input type=submit value="Submit your feedback now"><p>
<input type=reset value="Reset this form"><p>
</form>

s s o T i = e sy

Table 15-4 MIME types
MIME Type File Extension(s)

applicafion/activemessage
application/andrew-inset
application/applefile
application/atomicmail
application/dea-rft
application/dec-dx
application/mac-hinhex40
application/macwriteii
application/msword
application/news-message-id
application/news-transmission

application/octet-stream bin
application/oda oda
application/pdf pdf
application/postscript i eps ps
application/remote-printing

application/rtf rif
application/slate

application/x-mif mif
application/wita

application/wordperfect5.1
application/x-csh esh
application/x-dvi dv

549 085 ServiceNow, Inc.'s Exhibit 1008

MIME Type
application/x-hdf
application/x-latex
application/x-netcdf
application/x-sh
application/x-td
application/x-tex
application/x-texinfo
application/x-troff
application/x-troff-man
application/x-troff-me
application/x-troff-ms
application/x-wais-source
application/zip
application/x-bepio
application/x-cpio
application/x-gtar
application/x-shar
application/x-sv4cpio
application/x-sv4cre
application/x-tar
application/x-ustar
audio/basic

audio/x-aiff
audio/x-wav

image/gif

image/ief

image/jpeg

imagey/tiff
image/x-cmu-raster
image/x-portable-anymap
image/x-portable-bitmap
image/x-portable-graymap
image/x-portable-pixmap
image/x-rgb
image/x-xbitmap
image/x-xpixmap

15 CGI SCRIPTS

File Extension(s)
hdf

latex

nc cdf

sh

td

fex
texinfo texi
t1r roff
man

me

ms

[

zip

bepio

tpio

gtar -
shar
svéepio
svdcre

tar

ustar

au snd

aif aiff aifc

wav

gi
ief
ipeg ipg ipe
fiff tif

ras

pnm

pbm

pgm

ppm

rgh

xbm

Xxpm

086

Continued on next page

ServiceNow, Inc.'s Exhibit 10§)483

WEB PUBLISHER'S CONSTRUCTION KIT WITH HTML 3.2

Continued from previous page

MIME Type File Extension(s)
image/x-xwindowdump xwd
message/external-body

message/news

message/partial

message/rfc822

mulfipart/alternative

multipart/appledouble

multipart/digest

multipart/mixed

multipart/parallel

text/html himl
text/plain ixt
text/richtext rx
text/tab-separated-values fsv
text/x-setext elx
video/mpeg mpeg mpg mpe
video/quicktime gt mov
video/x-msvideo avi
video/x-sgi-movie movie

WHAT NOW?

There are popular services that you can use in your Web publishing. The
next chapter looks at some of the major non-HTTP services available
through WWW browsers.

" 087 ServiceNow, Inc.'s Exhibit 1008

