
ServiceNow, Inc.'s Exhibit 1008001

CONSTRUCTIONKIT
Féecond Edition m " - .
1" °f.beSt--'ee.'lin9

ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008002

See-bud Edlh’ok i' I _ _ k. 1-

of best-selling -‘

' ' INCLUDES

NETMANAGE CHAMELEON,

SLIPKNOT, HQTMETAL,

.- , HTML ASSISTANT, WHNHTTPD,
g1 LVIEW PRO, WHAM, CGE SCRIPTS

'7; FOR UNIX AND WINDQWS,
NCSA’S HTTPD FQR UNHX,

AND MQREE

CDliQQM

.rnAVm FQX, mar: nmmme

ServiceNow, Inc.'s Exhibit 1008003

Publisher e Mitchell Waite

Associate Publisher ' Charles Drucker

Acquisitions Manager - Jill Pisoni

Editorial Director - John Crudo

Managing Editor - John Crudo

Copy Editor - Scott Calamar, LightSpeed Publishing
Technical Editor - Miko Matsumura

Production Director - Julianne Ososke

Producrion Manager - Cecile Kaufman

Production Editor - Mark Nigara

Cover Design and Production - Sestina Quarequio and Karen Johnston
Cover Illustration - Rafael Lopez
Illustrations - Kristin Peterson

Producrion - Michele Cuneo

© 1996 by The Waite Group, Inc.®

Published by Waite Group Press“, 200 Tamal Plaza, Corte Madera, CA 94925.

Waite Group PressTM is a division of Sams Publishing.

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical. photocopying, desktop publishing, recording, or otherwise, without permission
from the publisher. No patent liability is assumed with respect to the use of the information contained herein:
While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

Ali terms mentioned in this book that are known to be registered trademarks, trademarks, or service marks are
lined below. In addition, terms suspected of being trademarks, registered trademarks, or service marks have been
appropriately capitalized. Waite Group Press cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any registered trademark, trademark, or service mark.

The Waite Group is a registered trademark of The Waite Group, Inc.
Waite Group Press and The Waite Group logo are trademarks of The Waite Group, Inc.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Printed in the United States of America

95969798'10987654321

Fox, David, 1973-

Web publisher‘s construction kit with HTML 3.2 / David Fox, Troy Downing.
p. cm.

Includes index.

ISBN: 1-57169-079-4

1. HTML (Document markup language) 2. World Wide Web (Information retrieval system)
I . Downing, Troy. 11. Title.
QA76.76.H94F693 1996

025.04--dc20 96-30564
CIP

ii 003 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008004

TABlE OF CONTENTS

INTRODUCTION .. XXIV

PART I CONNECTING TO THE WEB I

I CATCHING THE INTERNET IN A WEB 3

2 WEB BROWSERS .. 49

3 LYNX ... 63

4 SLIPKNOT.. B9

5 NCSA MOSAIC... I I3

6 NETSCAPE ATLAS .. I37

7 A BRIEF LOOK AT OTHER BROWSERS I73

PART II CREATING WEB PAGES I93

8 WHAT CAN I DO?........ ,.. I95

9 THE GAME PLAN ... 275

I0 THE HYPERTEXT MARKUP LANGUAGE 297

I I TEXT... 3l3

I2 GRAPHICS .. 375

I3 SOUND... 433

I4 INTERACTIVITY .. 447

IS CGI SCRIPTS ... 479

I6 HTML EXTRAS ... 545

I7 JAVASCRIPT ... 593

Is JAVA ... 627
I9 OTHER WEB RESOURCES.. 657

20 CONVERTING, TRANSLATING. OR CHEATING.............................. 675

2| HTML ASSISTANT .. 695

22 HOTMetaL ... 7IS

PART III WEAVING A WEB OF YOUR OWN 745

23 WHERE TO PLACE YOUR HTML DOCUMENTS 747

24 STARTING YOUR OWN WEB SITE .. 779

A SLIP SERVICE PROVIDERS .. 833

B OTHER SOFTWARE SOURCES .. 839

C WEB HELP RESOURCES.. 349

D ABOUT THE CD ... 855

INDEX .. 859

004 ServiceNow,|nc.'s Exhibit1008 V“

ServiceNow, Inc.'s Exhibit 1008005

(ONTEIITS

PART I CONNECTINGTOTHEWEB.......................... I

| CATCHING THE INTERNET IN A WEB 3

HOW THE WEB WAS WOVEN ...6

CERN: The Concept ...7
NCSA: The Tool ..7

N ETSCAPE: The Pretty Face ..7
The New Fabric ..8

THE WEB'S EVOLUTIONARY EDGE ..8

WORLD WIDE WEB LAYOUT ...9

The Server .. IO

The Client Browser ... IO

NAVIGATING WEB PAGES ... IO

Hypermedia Links .. I I
Search Indexes .. I3

THE HTTP PROTOCOL ... I4

URLS. URLS. URLS ... I5

The Composition of a URL .. I7
ACCESSING THE WEB ..2|

What Computer Do I Need? ...2|
What About the Modem? ...22

What Type of Internet Account Do I Need?22
SLIP ACCOUNTS ...23

TCPIIP ...24

Connecting with Windows 95 Dial-Up Networking25

Installing Trumpet Winsock for Windows 3.128

Manual LOgin ..3|

Login Scripting ...32

Logging Out ...34
UNIX SHELL WEB BROWSERS ..34

Text: Lynx or W ...35

Graphics: SlipKnot ..36
THE INTERNET ADAPTER ...36

Determining Your Unix Platform ..36

Getting Your License Code ..37

Getting the Software ..39

Installing The Internet Adapter ..40

Configuring Winsock for The Internet Adapter4O

Exiting TIA ..42

viii 005 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008006

TABLE OF CONTE NTS

HIGH-SPEED LEASED LINES ..42

Permanent SLIP ..42

High-Speed Lines ...43

High-Speed Hardware ..44

Connection Companies ...44
SHOOTING DOWN TROUBLES ..45

Your Modem Won't Respond ..45

The “DNS Lookup Failed" Message ..46

The “Unable to Resdve Host Name" Message46
WHAT NOW? ...46

2 WEB BROWSERS... 49

WHAT TYPE OF SOFTWARE IS A BROWSER?5 I

WHICH BROWSER SHOULD I USE? ...53

HELPFUL HANDS ...54

Viewers ..54

External Applications ..54

The Talking MIME ..55
TELNETING TO A PUBLIC BROWSER ...57

WW VIA E-MAIL ...59

BROWSING WITHOUT THE INTERNET ALTOGETHER60

Stand-Alone Browsers '..60

Minimizing Winsock ..60
Nullsock ..60

WHAT NOW? ... 61

3 LYNX ... 63

LESSON # I: THE LYNX'S MEOW ...67

LESSON #2: NAVIGATING ...68

Following Lynx Links ..69
Link Info ..69

LOADING A SPECIFIC URL ...69

Haiting a Load ...70

Exiting Lynx ...70
LESSON #3: THE HISTORY LIST ..7O

LESSON #4: SCREEN-WASHING ...7|

LESSON #5: PRINTING A PAGE ..72

Saving ..72
Mailing ...72

Printing ...72
LESSON #6: GETTING TO THE SOURCE73

Saving the Source ..73

Returning to the Regular View ..74
LESSON #7: EDITING A PAGE ..74

LESSON #8: BOOKMARKS ...74

Adding a Bookmark ..75

Viewing Bookmarks ..75
LESSON #9: THE INDEX ...76

006 ServiceNow, |nc.'s Exhibit 100i;

ServiceNow, Inc.'s Exhibit 1008007

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

LESSON # IO: SEARCHING ...76

Page Searching ...76
Index Documents ..77

LESSON #l I: SAVING A MULTIMEDIA FILE ...77

LESSON #12: FILLING OUT FORMS ...78

The Form of a Form ..78

User Validation ..80

LESSON # I 3: USENET NEWS POSTING ...80

Selecting a Group ..80

Browsing Articles ...8|

Reading an Article ..8|

Posting an Article ..82
LESSON #l4: SENDING E-MAIL ...82

LESSON # | 5: THE LYNX OPTIONS MENU ...83

Editor ...85

Bookmark File ...85

Personal Mail Address '85

Searching Type ..85

VI Keys ..86

Emacs Keys ...86

Keypad as Arrows or Numbered Links ..86
User Mode ...86

Local Execution Scripts or Links ..87
WHAT NOW? ...87

4 SLIPKNOT .. 89

TYING THE KNOT: INSTALLING ..92

HOW SLIPKNOT SLIPS ..93

SETTING UP THE TERMINAL ...93

Setting Up the Host ..93

Setting Up Communications ..97

Setting Up the Terminal ...97
LESSON # I: CONNECTING ..98

Logging In ...98

Logging Out ...98
LESSON #2: NAVIGATING ...99

Following a Link ... 100

Snagging a Particular URL ... IOI

Stopping 3 Load .. IOI

Loading a Local File .. IOI

Retrieve Again! ... 102
LESSON #3: TURNING OFF IMAGES ... IOZ

LESSON #4: RETRIEVING MULTIMEDIA FILES [02

Viewing ... |03

Saving ... |03
FI'P Fiies ... |03

LESSON #5: YOU'RE HISTORY .. |O3

Cleaning Up .. |O4

007 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008008

TABLE OF CONTENTS

Cleaning Up for Good ... 104
LESSON #6: THE PERMANENT SAVE ... 105

Local Keepers: Saving a Complete Web Page I05

Saving a Page ... |06

Remote Keepers: Bookmarks .. I06

Placing a Bookmark .. I06
LESSON #7: CHECKING OUT THE SOURCE I07

LESSON #8: CONFIGURING VIEWERS .. I07

Editing LView or WPLANY ... I07

Adding a New Viewer .. I08
LESSON #9: MAKING IT LOOK PRETTY .. I09

Setting Colors .. I09

Customizing Fonts ... I09

Background .. I IO
LESSON # IO: SWITCHING TO THE TERMINAL I I2

LESSON #I I: UPGRADING ... I I2

WHAT NOW? .. I I2

5 NCSA MOSIAC .. ||4

INSTALLING MOSAIC .. I I6

Installing WIN32S-OLE ... I I6

Installing the Mosaic Browser .. I I6
LESSON #1: NAVIGATING USING THE VIEW WINDOW I I7

Following Hyperlinks ... I I8

Moving to a Specific URL ... I I9

The Right Mouse Button .. I I9

Halting: The Secret Button .. I20
LESSON #2: IGNORING IMAGES .. |2|

LESSON #3: MULTIMEDIA FILES ... I22

LESSON #4: HISTORY LIST .. I22

LESSON #5: THE HOTLIST .. I22

Getting Hot: Quickly Creating a Hot Item I24
Customizing Your Mosaic Menu .. 124
The Quicklist ... I26

Sharing Hotlists ... I26
LESSON #6: KEEPING THE PAGE .. I26

Save It .. I27

Load It to Disk ... l2?

Print It .. I27

LESSON #7: SEARCHING ... I28

LESSON #8: THE SOURCE OF IT ALL .. I28

LESSON #9: FORMS ... _.|28

LESSON # IO: ANNOTATING ... I3I

LESSON #I I: GOOD NEWS AND BAD NEWS I3I

LESSON # I 2: I-TP .. I32

LESSON #l3: E-MAIL ... I33

Sending Mail ... I33
Mail to Developers .. I33

LESSON # l4: PRESENTATION MODE .. I33

008 ServiceNow, Inc.'s Exhibit 1005ii

ServiceNow, Inc.'s Exhibit 1008009

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

LESSON # | 5: VIEWERS AND OTHER HELPERS I34

LESSON #I6: OTHER MOSAIC OPTIONS ... I35

The Fonts You Want .. I35

Colors .. I35

Home Sweet Home ... I 36

WHAT NOW? .. I 35

6 NETSCAPE ATLAS ... I37

INSTALLING NETSCAPE .. I42

LESSON # I: SCAPING THE NET ... I42

Following Hyperlinks ... I44
Framed! ... I45

Moving to a Specific URL ... I45

Loading Indicators ... I45

Stop It! .. I45

The Web Page Appears .. I46
Safe and Secure ... I46

LESSON #2: GRAPHICLESS: NO AUTO LOADING I46

Loading Later ... I47
Hither and Dither ... I48

LESSON #3: REIRIEVING MULTIMEDIA FILES I48

LESSON #4: ANCIENT HISTORY ... I49

LESSON #5: BOOKMARKS .. I50

Dealing with Bookmarks .. I50

Adding or Deleting Bookmarks .. ISI

Organizing Bookmarks ... I52
The Bookmark Files .. I54

LESSON #6: KEEPING A WEB PAGE .. I54

Saving to Disk .. I55

Loading ... I55

Printing .. |55
Mail Document ... |56

LESSON #7: SEARCHING A PAGE ... |56

LESSON #8: GETTING TO THE SOURCE ... |57

LESSON #9: FILLING IN FORMS ... |58

Filling ‘er Out ... | 59
User Validation ... I60

LESSON #10: THE NEWS ... I60

Setting Up a News Server .. I60

Getting the News ... |6I

Subscribing to Newsgroups ... l6!

Browsing Articles .. |6I

Reading an Article ... I63

Posting an Article ... I64
LESSON #l l: E-MAILING ... I65

Opening The Mail Window ... I66

Sending Mail ... I66

Receiving Mail .. I67
LESSON # l 2: GRABBING FI'P FILES .. I68

xii 009 ServiceNow, lnc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008010

TABLE OF CONTENTS

UPLOADING AN FTP FILE .. I68

LESSON # | 3: CONFIGURING VIEWERS .. I69

LESSON # | 4: CUSTOMIZING YOUR NETSCAPE EXPERIENCE I70

You've Got the Look .. |7|

There's No Place Like Home .. |7|

WHAT NOW? .. I72

7 A BRIEF LOOK AT OTHER BROWSERS I73

SPRY AIR MOSAIC ... I76

Features ... I76

Getting It .. I77
WINWEB ... I77

Features ... I78

Getting It .. I79
CELLO ... I80

Features ... I80

Getting It .. |8I
SPYGLASS ENHANCED MOSAIC .. I8I

Features ... I8I

Getting It .. |8|
NETCRUISER'S WEB BROWSER .. I82

Features ... I82

Getting It .. I82
QUARTERDECK MOSAIC 20 .. I83

Features ... I83

Getting It .. I83
MICROSOFT'S INTERNET EXPLORER ... I83

Features ... I83

Getting It .. I84
NETMANAGE INTERNET CHAMELEON .. I84

INSTALLING THE CHAMELEON .. I85

SIGNING UP FOR AN INTERNET PROVIDER ACCOUNT I85

REGISTERING THE CHAMELEON SOFIWARE I87

CONNECTING TO THE INTERNET ... I88

WEB BROWSING with WebSurfer .. I90

OTHER INTERNET TOOLS .. I92

WHAT NOW? .. I92

PART II CREATINGWEBPAGES I93

8 WHAT CAN I DO? .. I95

NAVIGATE: PLACES TO START .. I98

Best of the Web .. I98

Global Network Navigator .. I98

Einet Galaxy .. I98
Yahoo ..200

INFORM: TERRIFIC TEXT ..20|

Manuals: NCSA Mosaic ...ZOI

Helpful Information: OncoLink ...202

010 ServiceNow, Inc.'s Exhibit 1008"

ServiceNow, Inc.'s Exhibit 1008011xiv

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

A New Type of Text ..202
HOME-MAKING: NO PLACE LIKE HOME PAGES203

Corporate Pages ..203

University Home Pages ...205

Government Home Pages ..207

Personal Home Pages ..208
TEACH: EDUCATION ..2|0

Geography Skills ..2|0
Eric ...2| |

Britannica Online ..2| |

ENTERTAIN: GROOVY GRAPHICS ..2|2

TV: Interactive TV Index ..2|2

Movies: Buena Vista ...2 | 2

Music: Underground Music Archive ...2 | 2
Art: ArtSource ..2 | 4

Sports: Internet Baseball Information Center2|4
PUBLISH: PAPERS, BOOKS. MAGAZINES. AND MORE2|5

Academic Papers ..215

Multimedia Magazines ..2 | 6
‘Zlnes ...217

Books ...218

SHOWCASE: PUTTING YOUR TALENTS ONLINE2l8

SELL: TAKING CARE OF BUSINESS ...220

Stock Quotes ..220

Networking over the Net ...22|

Job Searching ...22|
BUY: SHOPPING ...22|

The Internet Shopping Network ...222

Direct Ordering ...222
SPEAK FREE: POLITICS ..224

PeaceNet ..224

FedWorld ...224

OBSERVE: THE NEWS ..225

Headline News ...225

Weather ..226

INTERACT: FILL-IN FORMS ..226

Personal Ads ...226

Databases ...226

Security ...227
FIND: MAPS ...227

interactive Weather Map ...227

Xerox Map Server ..228

Map of Mars ...228
TOUR: MUSEUMS ..230

Le WebLouvre ...230

Exploratorium ..23 |

Museum of Paleontology ...23|
VISIT: VIRTUAL PLACES ...232

San Diego ...232

011 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008012

TABLE OF CONTENTS

Pans ..233

EXPO Ticket Office ...234

Downtown Anywhere ...235
Internet Town Hall ..236

BROWSE: LIBRARIES ...236

SURPRISE: OTHER NEAT GIMMICKS ..238

LabCam ...238

The Cyrano Server ..239
Lite-Bnte ..239

The Virtual Frog ..240

Say ...240
Bianca‘s Smut Shack ...24|

A Puzzler ..242

THE LATEST AND GREATEST ...243

WHAT NOW? ..272

9 THE GAME PLAN ... 275

ENTER THE WEBMASTER ...277

LESSON # I: WHO'S YOUR AUDIENCE? ..278

Does the Audience Exist? ..278

What's Already Out There? ...279

Focusing In ...279

LESSON #2: WHAT'S YOUR‘OBJECTIVE? ..28!
Sound and Video ..282

Talking Back ..282

Security ...282
LESSON #3: THE HARD SELL ...282

Astoundl ..283

Inform! ..284

Entertain! ..284

LESSON #4: OVERALL DESIGN ..285

Point of Entry ..285

The Home Page ..285
Permanence ..287

LESSON #5: PROBLEM PAGES ...288

Art Bombardment ...288

Graphic Gluttony ..288
Multimedia Moderation ...289

Textual Terseness ...289

java Jabbering ...289
LESSON #6: GETTING THE RIGHT LOOK ...290

Consistent Controls .. .29!

The Look Should Fit the Structure ..292

Cross-Browser Dressing ..292
LESSON #7: LINKS TO OTHER PAGES ..293

Stale Links ...293

Senseless Links ...293

LESSON #8: STUDYING THE STATS ...294

012 ServiceNow, Inc.'s Exhibit 1008ll

ServiceNow, Inc.'s Exhibit 1008013

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

WHAT NOW? ..295

ID THE HYPERTEXT MARKUP LANGUAGE 297

WHERE TO START ..300

Steal This Text ...300

Convert This Text ...302

HTML HISTORY ...302

HTML FUNCTIONALITY ..303

LIFE, LIBERTY. AND GOOD HTML ...304

LESSON #|: HTML ELEMENTS ...306

Specifying HTML ..307
The Header ..307

The Body ..309
THE FUTURE OF HTML ...3|0

WHAT NOW? ..3|0

|| TEXT... 3I3

DESIGN FUNDAMENTALS ..3|6

Consistency ..3 I7

Signing Your Page ...3|?
LESSON # I: SPECIAL CHARACTERS ...3|7

Punctuation ..3 | 8

Enhanced Characters ..3 l 8

Other Characters ...320

LESSON #2: SECTION HEADINGS ...322

Style: Drafting Good Headings ...323

Aligning Headings ...324
LESSON #3: PARAGRAPHS ...324

LESSON #4: LINE BREAKS ...326

No Break ..327

Word Break ..327

LESSON #5: TEXT STYLE ...327

Physical Styles ..328

Logical Styles ...329
LESSON #6: SECTION STYLE ..330

Preformatted Text ..330

Blockquotes ..332
Addresses ...333

Styles to Watch Out For ...333
LESSON #7: FONT SIZE AND COLOR ...335

Relative Font Size ...336

The Base Font ..336

Making It Easier ...336
Font Color ...336

LESSON #8: CENTERING ...337

LESSON #9: COMMENTS ...337

LESSON # IO: LISTS ..33B

Ordered Lists ..339

Unordered Lists ...34|

xvi 013 ServiceNow, Inc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008014

TABLE OF CONTE NTS

Customizing Lists ..343
Definition Lists ..343

Plain Lists ..345

Menu Lists ...346

Directory Lists ..346
LESSON #l I: HORIZONTAL LINES ..346

In Thickness and in Health ...347

Setting the Line's Width ..347

Aligning Your Lines ..347

Using a Solid Bar ..348
LESSON # I2: TABLES ..349

Text Tables ..349

Graphical Tables ..349
HTML+ Tables ...350

LESSON #I3: HYPERTEXT ..356

The Anchor Element ...356

Links: HREF ..358

Anchors: The Name Attribute ...360

Title ..363

Defining Relationships ..364
Methods366

LESSON # l4: RELATIONSHIPS AND HYPERPATHS366
Using Link ...366
Nodes ..367

Path ..368

LESSON # l 5: MATHEMATICAL EQUATIONS368

LESSON # I 6: DYNAMIC DOCUMENTS: PUSH OR PULL?370

Server Push ..370

Client Pull ...370

LESSON #I7: MARQUEES DE HAPPY ...37l

LESSON # I 8: POLISHING ...373

WHAT NOW? ..373

l2 GRAPHICS .. 375

GRAPHIC FORMATS ...378

GIF ...378

JPEG ..379
GRAPHIC VIEWERS ..379

LView ...379

WinGIF ...38|

LESSON #I: INLINED IMAGES ...382

The IMG Command ...383

Distant Images ..383

Hyperimages ...383

Crossing the Border ...384
LESSON #2: ALIGNMENT ...384

Absolute Alignment ...385

Floating Alignment ...386
Mind in the Gutter ..387

014 ServiceNow, Inc.'s Exhibit 106%“

ServiceNow, Inc.'s Exhibit 1008015

WEB PUBLISHER'S CONSTRUCTION KIT WITH HTML 3.2

Clearing Space After Line Breaks ...387
LESSON #3: TEXT ALTERNATIVES ...388

LESSON #4: IMAGE SIZING ...389

Auto-Scaling ..390

Percentage Auto-Scaling ..39|
LESSON #5: TRANSPARENT GIFS ..392

STEP l: Isolate the Background ..392

STEP 2: Selecting a Background Color ...394

STEP 3: Making the Background Transparent395
LESSON #6: CREATING SPACERS ..399

LESSON #7: PERKS. GIZMOS. AND FRILLS ...400

Bullets ..400

Buttons I Icons ...402

Bars ..403

LESSON #8: MAKING GRAPHICS HUMBLE ..403

Shrink Me ...404

Thumbnails ..406

The Flip Trick ..407

LESSON #9: INTERLACED GIFS AND PROGRESSIVE JPEGS408

Intedacing a GIF Image ...408

Progressive JPEGS ...409
LESSON # | 0: CLICKABLE IMAGEMAPS ..4|0

STEP I: Create the Image ...4| I

STEP 2: Create the Map ..4| I

MapEd'rt |.|.2 ...4|3
STEP 3: Write the HTML ...4 | 6

STEP 4: Set Up the Server ..4 | 7
STEP 5: The Text-Based Index ...4 | 8

LESSON #I I: CLIENT-SIDE IMAGE MAPS ...4 | 8

LESSON # I 2: WHAT'S YOUR BACKGROUND?420

Background Color ...42I

Foreground Color ...422

Getting Backgrounds ...422
LESSON #I3: EMBEDDING ..423

THE SILVER SCREEN ...423

Lights. Camera... Action? ..424

QuickTime ...424
MPEGPLAY ..425

GRABBING GRAPHICS ...425

Playing Picasso ..425

Capturing ..426

Image Hunting ..427
WHAT NOW? ..43|

I3 SOUND .. 433

HEARING AIDS ..436

Installing SPEAK.E><E ...437

Configuring SPEAKERDRV ..437

JAMMIN' ..438

xviii 015 ServiceNow, Inc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008016

TABLE OF CONTENTS

WPLANY ...438

WHAM ... 439

LESSON #1: HYPERSOUND ...440

LESSON #2: AMBIENT SOUND ..442

SOUNDING OFF ..443

Audio Formats ..443

Recording It Yourself ...444
WHAM ...444

Searching For That Right Sound ..445
WHAT NOW? ..445

I4 INTERACTIVIT‘I’ .. 447

HOW A FORM WORKS ..450

LESSON #I: A FORM IS BORN ..452

Action ..452

Method ...452

ENCTYPE ...453

TARGET ..453

LESSON #2: INPUT FIELDS ..453

TYPE ...4S4

NAME ..455

DISABLED ...456

MINIMAX456

LESSON #3: TEXT FIELDS ...456

Text Field Variations ...457

VALUE ...458

SIZE ..458

MAXLENGTH ..458

LESSON #4: CHECKBOXES OR RADIO BUTTONS458

VALUE ..459

Checkboxes ..459

Radio Buttons ..460

Prechecked ..46|

LESSON #5: THE RESET AND SUBMIT BUT—TONS46|

Customizing the Label ..462

Using Icons ..462
LESSON #6: TEXTAREAS ...462

Size ...463

WRAP ..463

LESSON #7: SELECTION LISTS ..464

SIZE ..465

Multiple Selections ...466

Options Attributes ..466
LESSON #8: PUTTING IT ALL TOGETHER ..467

A Basic Form ...467

A Sample Message Form ...468
LESSON #9: UPLOADING A FILE ..470

LESSON #IO: BUTTONS ..47|

LESSON #I I: INCLUDING HIDDEN TEXT ..47|

016 ServiceNow, Inc.'s Exhibit 100’5x

ServiceNow, Inc.'s Exhibit 1008017

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

LESSON #IZ: SEARCH INDEXES ...472

ISINDEX ... ‘.472

HREF ...473

PROMPT ..473

Book-Like Index Documents ..473

LESSON # I 3: TESTING IT OUT ..474

LESSON # I 4: WHAT THE DATA LOOKS LIKE474

Search Indexes ...475

The GET Method ...475

POST ...476

THE FUTURE OF FORMS ...476

WHAT NOW? ..477

I5 CGI SCRIPTS .. 479

LESSON #|: WHAT IS CGI? ...482

What Can I Do with a CGI Script? ...484
LESSON #2: THE STANDARD CGI SCRIPTS485

LESSON #3: HOW TO USE PRE-EXISTING SCRIPTS488

Constructing a CGI URL ..488

Specifying a Script Within a Form ..489

Specifying a Script from the “Open URL" Interface489
LESSON #4: HOW TO USE A SCRIPT TO ACCESS OTHER APPLICATIONS490

LESSON #5: WRITING YOUR OWN SCRIPTS493

Writing a Simple Scn'pt ...493

Using Environment Variables in Scripts ..497
Location and Status Headers ..499

Security with CGI Scripts ...SOI
LESSON #6: HANDLING FORM DATA ...503

What Does Form Data Look Like? ...503

HTTP Cookies ..520

LESSON #7: SAMPLE SCRIPTS FOR UNIX. WINDOWS. AND MACINTOSH SERVERS . . .524

Unix ..524

Easy Counter ...530
Server~Push ..533

Perl ...535

DOSNVindows Scripts ...539

Macintosh Scripts ...54|
WHAT NOW? ..544

I6 HTML EXTRAS .. 545

LESSON # I: INLiNED VIDEO WITH INTERNET EXPLORER548

When to Play It ...549

Should There Be a Control Strip? ..549
LOOP-D-LOOP ..550

LESSON #2: FRAMING WEB PAGES ..550

The Frame Document ...55|

Supporting The Frame-Impaired ..558
LESSON #3: TARGETING A FRAME ..559

Framing Yourself ..560

The Acme Catalog ..56|

XX 017 ServiceNow, lnc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008018

TABLE OF CONTENTS

LESSON #4: CHARGING UP NETSCAPE PLUG-INS564

How to Install a Plug-in ...568

How to Embed a Live Object ...569
LESSON #5: LIVEMEDIA: STREAMED VIDEO AND AUDIO569

Live Audio ...570

Live Video ...57|

LESSON #6: OTHER STREAMED VIDEO AND AUDIO PLUG~INS572

Voxware ..572

VDOLive ..S75

PreVU ..576

ReaIAudio ...576

LESSON #7: LIVE3D AND THE VIRTUAL-REALITY MODELING LANGUAGE578

Walking Through 3D Worlds ..579

Creating Your Own VRML Files ..58E
LESSON#8: USING SHOCKWAVE ..589

Installing Shockwave ...589

Afterburning ...589

Simply Shocking ..59 I
WHAT NOW? ..592

I7 JAVASCRIPT ... 593
WHAT jAVASCRlPT DOES ..596

WHAT jAVASCRIPT DOESN'T DO ...597

INSERTING JAVASCRIPT INTO YOUR WEB PAGE597
THE LANGUAGE ...600

Objects ...600
Functions ..60I

Methods ...602

Variables ..603

Event Handlers ...603

JAVASCRIPT EXAMPLES ..606
LUSCIOUS LINKS ...606

After That Mouse! ...606

You're History ..607
FANTASTIC FORMS ..609

Making Forms Smart ...609

Processing Forms ..6IO

Error—Checking ...6 | 0

Interest Calculator Example ...6|5

Beautifyng The Page ...6 I 6

Scrolling Marquee ...6|6

BUILT‘IN OBJECTS AND FUNCTIONS ..620

The String Object ...62!

The Math Object ...622

The Date Object ..622
Built-in Functions ..625

WHAT NOW? ..626

I8 JAVA ... 627
JAVA'S JOLT ...630

018 ServiceNow, Inc.'s Exhibit 1068i

ServiceNow, Inc.'s Exhibit 1008019

WEB PUBLISHER‘S CONSTRUCTION KIT WITH HTML 3.2

THE BIG APPLET ...630

The ABCs of Alpha and Beta ..632

An Applet a Day..632
PLACES TO GET APPLETS ..632

Applets from the Java Products Group ..633
USING EXISTING APPLETS ..636

Some Applets to Bite Into ..637
Animation ...638

Sound ...642

Blinkinngervous Text ..642

Scrolling Marquee ...643

Image Maps ..646
CREATING YOUR OWN APPLET ..649

The Java Developer's Kit ..650

Writing The Applet ..65!

Compiling It ..653

Using It ..653

Java Development Packages ...654
WHAT NOW? ..654

I9 OTHER WEB RESOURCES 657

LESSON #l: GOPHER ..660

LESSON #2: NET NEWS ..662

LESSON #3: E-MAIL ..665

LESSON #4: WIDE AREA INFORMATION SERVICE667

LESSON #5: FILE TRANSFER PROTOCOL ...668

What Happens to Downloaded Files? ...669

How Can I Send a File Using FTP? ..67E
LESSON #6: TELNET ...67E

What Does Telnet Allow Me to Do? ...67I

What Happens When I Initiate a Telnet Session?67!
LESSON #7: ACCESSING LOCAL FILES ...672

LESSON #8: URL SCHEMES ...673

WHAT NOW? ..673

20 COVERTING, TRANSLATING, OR CHEATING 675

WORDPERFECT TO HTML ...679

Installing It ...679

Writing Your Document ..680

Converting ...68|
MICROSOFT WORD TO HTML ...68|

ANT_HTML ...68|

CU_HTML ...687
The Internet Assistant ..690

Other Tools ...69 I

Netscape Navigator Gold ...69|
BOOKMARKS TO HTML ..692

Lynx ..692
Mosaic ..693

Netscape ..693

xxii 019 ServiceNow, Inc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008020

TABLE OF CONTENTS

Cello ...693

WHAT NOW? ..693

2| HTML ASSISTANT... 695

INSTALLING THE ASSISTANT ...698

LESSON #I: FROM TEXT TO HTML ..698

LESSON #2: CREATING FROM SCRATCH ...700

LESSON #3: THE TOOLBAR ..700

Selection Tools ...70I

Insertion Tools ..703

LESSON #4: INSERTING HYPERLINKS ..703

External Links ..704

Internal Links ...705

Recycling URLs ...706
LESSON #5: IMAGES ...706

LESSON #6: USER TOOLS ..706

Creating a User Tool ..707

Entering Enter ..708
LESSON #7: FINDING OR REPLACING ...708

Finding ..708

Replacing ..708
LESSON #8: TOOLING WITH TOOLS ..708

Undo ...709

Auto Repeat ...709

Putting an HTML Document on Hold ...709
LESSON #9: TESTING 'ER OUT ..709

Specifying a Browser ...710
The Final Test ..7|0

LESSON #IO; PRINTING ..7|0

LESSON #I I: URL FILES ..7|0

Grabbing URLs ...7| |

Editing URLs ...7| |

Combining URL Files ...7|2

Saving It ...7|2
LESSON # | 2: CONVERTING A BOOKMARK, HOTLIST. OR URL FILE TO HTML7|2

WHAT NOW? ..7| 3

22 HoTMetaL .. 7l5

ENSTALLING IT ..7|8

LESSON # I: STARTING WITH A TEXT FILE7|9

LESSON #2: STARTING FROM SCRATCH ...7|9

Templates ...720

Saving ...72|
LESSON #3: MARKING IT UP ..72|

Inserting ...722

Surrounding ..725

Changing ..725

Deleting ...726
The Smart List ..726

020 ServiceNow, Inc.'s Exhibit 1688

ServiceNow, Inc.'s Exhibit 1008021

WEB PUBLISHER‘S CONSTRUCTION KIT WITH HTML 3.2

Pinning ..726
LESSON #4: SPECIAL CHARACTERS ...727

LESSON #5: WORKING WITH HYPERLINKS728

Creating External Links ...728

Creating Internal Links ..729
LESSON #6: WORKING WITH GRAPHICS ..730

Image Attributes ..730

Viewing Images ...73 |
LESSON #7: WORKING WITH FORMS ...73I

Input Field ...73I
TEXTAREA ..733

Selection Lists ..734

LESSON #8: FINDING SOMETHING ..735

The Search Term ...735

Search Options ...736

Searching ..737
LESSON #9: BREAKING THE RULES ..737

LESSON # IO: STYLES ...737

Character ..738

Separation ...739

Load Styles ..739
LESSON #l l: TESTING IT OUT ..740

Hiding Tags ..740

Publishing ..74 I

Previewing ...74 I
LESSON # I2: THE HTML BACKBONE ..74|

The Context Window ...742

The Structure Window ...742

WHAT NOW? ..743

PART III WEAVING A WEB OF YOUR OWN. 745

23 WHERE TO PLACE YOUR HTML DOCUMENTS 747

LESSON # l: TROUBLESHOOTING YOUR HTML DOCUMENTS750

LESSON #2: HTML DOCUMENT ANALYSIS SERVICES752

LESSON #3: FREE WEB POSTING SPOTS ...755

LESSON #4: WEB SPACE FOR SALE ..757

LESSON #5: POSTING ..769

LESSON #6: UPLOADING DOCUMENTS ...77I

Uploading via FTP ...77l

Transferring Files with a Modern ...772
LESSON #7: INSTALLING PAGES ON AN EXISTING WEB SERVER772

LESSON #8: ANNOUNCING YOUR WEB PAGES775

WHAT NOW? ..777

24 STARTING YOUR OWN WEB SITE 779

LESSON # |: YOUR WEB SERVER ..782

LESSON #2: WEB SERVER SOFTWARE ...782

LESSON #3: SERVER SOFTWARE SOURCES785

xxiv 021 ServiceNow, lnc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008022

TABLE OF CONTENTS

LESSON #4: TIPS AND CAUTIONS ..786

Type of Machine ...786

Memory ...787
LESSON #5: SECURITY! ...788

Transmission Security and Data Encryption789

Pretty Good Privacy Encryption ...791
Access Control. Passwords and Other Filters793

LESSON #6: HARDWARE ..800

LESSON #7: INSTALLING A WEB SERVER ...80|

Unix Server Installation ...80I

Netscape‘s Latest Servers ...8 | 2
Windows 95 And NT Servers ...8 | 5

Windows 3.1 Server Installation ..8 | 6

Macintosh Server installation ..826

LESSON #8: HYPERMEDIA GATEWAYS ...83|

WHAT NOW? ..83|

A SLIP SERVICE PROVIDERS .. 833

B OTHER SOFTWARE SOURCES 839

C WEB HELP RESOURCES... 849

D ABOUT THE CD ‘ 855

INDEX .. 859

022 ServiceNow, |nc.'s Exhibit 1068

ServiceNow, Inc.'s Exhibit 1008023

ServiceNow, Inc.'s Exhibit 1008024

ServiceNow, Inc.'s Exhibit 1008025

WEB PUBLISHER'S CONSTRUCTION KIT WITH HTML

Sounds pretty exciting, doesn’t it? In this chapter, you’ll get a descrip-
tion of what a C61 script can do, what it can use as its input, and how it

can format its output, and then you’ll see some sample scripts that you can

edit to suit your needs or just use as is. For the most part, the samples will
be written in C and will assume that your server is running on a standard

Unix platform, but if you are running a server on a Macintosh or Windows
PC, you'll find a few tidbits that you can use as well. The main reason Unix

is given preferential treatment as the Web server platform of choice is
simple: Unix HTTP servers are the most common and m05t robust HTTP-
servers available as of this writing. That’s not to say that you can‘t get satis-

factory results from a Macintosh or Windows server; in fact there are many
intriguing Web sites that are running on both of these platforms. it’s just
that the Unix side works better at this point in the history of the Web. Well,

enough on that, let‘s get started.

[550“ #I: WHAT IS (GI!

482

The Common Gateway Interface—or CGi—is a method that lets you access

external programs on a Web server and usually send the results to a Web
browser. (There are situations in which you want the script to do some

processing on your server, but not send data back to the client.)
These programs can be any executable code, script, or program

supported by the operating system that runs your server. The CGI code to
call an external program can be a shell script, or a batch file, an AppleScript

file, a C program, a PASCAL program, compiled BASIC...literally anything
that will run as a stand-alone executable Script on your system. Many CGI

developers use shell scripts; others prefer Perl and C. Choose what works
best for you! just to make things simple, this chapter refers to all CGl code
files as CGI scripts—or simply as “scripts"—whether they are written in a

scripting language or in a compiled or interpreted programming language.
A server executes a C61 script based on a user request from a Web

browser, as diagrammed in Figure 15-1. This request can be as simple as
selecting a hyperlink that points to an executable item, or it can be a search
request using the <ISINDEX> tag, or it can involve clicking the Submit
button from within an HTML form. The parameters the script has available

to it depend on how it was accessed. There are also many parameters avail-
able to scripts via environment variables that are set by the server. You‘ll get
details on all of this in the Writing Your Own Scripts section.

025 ServiceNow, |nc.'s Exhibit 1008

3.2

ServiceNow, Inc.'s Exhibit 1008026

'I 5 CG! SCRIPTS

“ iii-i? 1'99: 5"“ s“ a“

Mrtfilhmrrwsdnme
_ _=l',_fl_rqusar;-rn_uirss_arequ_ast, thient

 requests (GI

 HTTP server

(6i request?

Open shall on host

Run {GI script

More scripts?

 gateways to other stripts

data from script stdout

Figure 15-1 Diagram of o CGI session

A CGI script must produce an output header even if no data is to be

forwarded to the Web browser. The HTML header must be the first thing
that a script sends as output and must be followed by a blank line or
carriage return. The header tells the server what kind of data to expect, if '
any; the server in turn tells the client that invoked the script What to expect.
Currently, there are three types of headers. These headers are mutually
exclusive—that is, you can’t have more than one header for any one
request. (See note for exception.) Valid header types are Content-Type,
Location, and Status (see Table 15-1).

026 ServiceNow, |nc.'s Exhibit 128918

ServiceNow, Inc.'s Exhibit 1008027

WEB PUBLISHER'S CONSTRUCTION KIT WITH HTML 3.2

“3 NOTE: Browsers that support HTML 3.0 or better allow a CGI application to
return multiple objects in a single CGI transaction. In other words, a CGI appli-
cation can return a series of images rather than a single one, or, a series of
HTML pages that replace each previous HTML document. This is done with a
special MIME type added to the Content-type: header. Namely, the multipart/x—
mixed-replace MIME type. It a CGI application sends this initial header, it can
then send an arbitrary number of Content-type: headers that are followed by
content that replaces whatever was sent before. This technique is often used to
create slide-show animations that are alien referred to as a ”server push.”
 m1 TIM—flm‘JJfl—MRamn‘L‘M'Ir».

Table 15-1 Header We;
-' Head" WP“ Formal Description .-

 ._ .1 .: - .a-s astral???

Content-Type Content-Type: xxx/xxx Content-type refers to any MIME data type
that is supported by the server. Common types

include text/html, text/plain, and image/git.

Since the browser/server can't deduce the file

type from a location or lilename suffix, this

heading will tell the browser what type of data

to expect and how to use it. (See Table 15-4 at

the end of the chapter for a lull list of MIME

types.)

Location location: /path/doc Points to a document somewhere else on the
server. Allows you to redirect requests to

documents based on some criteria sent via o

form or environment variable.

Status Status: nnn XXXX (an be used to run a script, without sending a
new page to the client. [an also be used to

send an error message or other information to

the client.
 mmI'vla—‘Itr:1WrmIAnw-m-z-WJ—LTM '-»IT.w.-.-v -- u» nm» :4 w~.:;—..—v— -_ -r 1!.

What Can I Do with a CGI Script?
A CGI script can do anything allowed on the host system as long as it sends one
of the three header types listed in Table 15—1. It can access other programs, open
files, read from files, create graphics, dial your modem, call your mother, do
database searches, send email, you name it. The only rules are:

MThe script has to be in a place designated by the server for CGI
scripts, or it has to have a special suffix that the server is configured
to recognize as a legal CGI script. Most systems store CGI scripts in

434 027 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008028

'I 5 CGI SCRIPTS

a directory relative to the root directory of the HTTP server called
cgi-bin, which is set up so that only certain trusted users can write

to it. This avoids the obvious security problems of allowing anony-
mous remote users to execute anything they want on your system.

mThe script can take its parameters from the standard input (by stan-
dard input, I mean what would normally be typed in at the
keyboard), the environment variables, or both. (It is not necessary
to take user input at all; the script can simply execute without
needing any more information.)

mThe script must output one of the three standard header types as a
normal text string.

mThe script must be runable by the user that the server is configured
to run as. (On a Unix machine every directory, file, and program
has a set of permissions attached to it. These permissions specify
who can read, change, or execute different files. These permissions
are divided into three groups: owner, group, and world. Also, every
process must run as some user. There is a special user called
“nobody" that is the default user for most Web servers. You must

make sure that the user “nobody,” or the user that your server is
configured to run as, has permission to execute your scripts and
read/write to any files that the script may use.)

CGI scripts are used for doing all of the “cool" stuff on the Net. There are sites

that have interactive robots you can control with a Web browser, sites that
allow you to control cameras and take pictures of remote places, sites that
create graphic images on-the-fly, serve maps, open X clients on your machine
and send you live video feeds, access huge databases, order submarine sand-

wiches, and ask questions of the Web‘s own version of the Magic Eightball, as
shown in Figure 15-2. All of this is possible through the use of CGl scripts.

[ESSON #2: THE STANDARD (GI S(R|PTS
As you read this, CGI scripts are coming to life all over the world. Some are

special purpose, some are useful utilities, some are interesting, and some are
just plain silly. Among these scripts, there are a handful that have become

standard at most Web sites. If you download NCSA’s HTTPD or copy it
from the CD—ROM that came with this book, you’ll find that it includes two

028 ServiceNow, |nc.'s Exhibit 1008

485

ServiceNow, Inc.'s Exhibit 1008029

WEB PUBLISHER'S CONSTRUCTION KIT WITH HTML 3.2

Figure 15-2 Two nihy services, courtesy of CGI scripts

CGI directories, cgi-bin and cgi—src. The cgi-bin directory contains many

demos and useful CGI scripts, and cgi-src contains the source code for these

scripts so you can customize them—or just learn from them.
The CD-ROM scripts include C programs, shell scripts, and Perl scripts

that do a few helpful little tasks for you. A few of them are even necessary

for your server to have all the utility that you expect of it, like processing

image maps. Table 15-2 describes all the scripts in the cgi-bin directory that
comes standard with NCSA‘s HTTPD.

Table 15-2 Standard CGI scripts

 "me Tm9; -. T

arthie shell script

calendar shell script Gateway to the Unix calendar utility.

date shell script Calls the system date and sends it as an
HTML dac.

linger shell script Gateway to the Unix finger utility.
fortune shell script Gateway to the Unix fortune utility.

436 029 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008030

Name

imagemap

ii

nph-test-cgi

phf*

g;

post-query

querv*

test-cgi*

test-cgitcl"

optima?

waispl"

Type

C program

C program

shell script

(program

C program

C program

shell script

tclsh script

shell script

perl script

15 CGI SCRIPTS

Description

Handles imagemops in HTML documents,

taking the X and Y coordinates from the user,

and forwarding a URi based on a map file

created by the map developer.

Processes an order form from a submarine

sandwich shap, then opens a pipe to a mailer,

and faxes the order out of a fax modem. (A

useful example, even if you’re not selling

sandwiches.)

Echoes back the names and values of the

environment variables. (Good for testing

forms, or iust figuring out what's going on.)

Creates a fill-in form interface for a (St) ph

database. (Great for looking up

namesfaddresses on ph servers.)

Echoes the name/value pairs of a form that

uses the POST method.

Echoes the name/value pairs of a form that

uses the GE method.

Echoes the names and contents of the environ-

ment variables.

Echoes the names and contents of the

environment variables.

Gateway to the Unix upfime command. Will

print the time that the system has been running.

Provides an <ISINDEX> front end for WAIS

searches.-_ _l -.r.:.— -.r: :11: r:—..1.-_-L-——-_--—_~uuw-n:-_.:—n—m.-_gnrxurr war—m:

Some of these are C programs, some are TCL scripts, and some are Perl

scripts, but they all function in the same way They get executed by the

HTTP server, take their parameters (if any) from standard input or environ-

ment variables, and output at least a header when they’re done.

As you can see, there are a few utilities here that you may find useful,

such as a WAIS or finger gateway, and some that are necessary in some form

to allow valuable utilities like imagemap, and still others that are intended

simply as learning tools to demonstrate how to write a CGI script in the

TC}. scripting language. They all come standard with the NCSA HTTPD

030 ServiceNow, |nc.'s Exhibit 100%7

ServiceNow, Inc.'s Exhibit 1008031

VV E B P U B LI 5 H E R ’ S C C) N 5 T R U C T l() N K |T vvl T H H T NiL

server software, and it‘s good to know what's there and how it can be used,

either as a learning tool or utility. Later on, this chapter will describe many

other special-purpose and form-handling scripts.

[550“ #3: HOW T0 |le I’M-EXISTING S(RIPTS
OK, I know what a CGI script is, I know what one looks like, 1 know the

names of a few standard scripts; now how do I use them?

The answer to this is simple. You access a CGI script in the same way

you access any other URL: create a hyperlink in a document that points to a
CGI script, or use the “open URL" option on your browser, or include the
URL in the METHOD attribute of a form (as described in Chapter 14).

Since most installations require all CGI scripts to be in one protected direc-

tory (namely cgi-bin), the following examples all use this convention.

Constructing a CGI URL

488

A URL that points to a CGI script follows the same conventions as other
URLs that point to HTTP servers. It contains a protocol type (HTTP), the
name of the server that will execute the script and forward the results, and

the name and path of the CGI script to be executed. The simple generic

format to create a CGI script URL is

http:Ifmachinenamefcgi-bin/myprogram

In this form, the URL will open an HTTP connection to the “machinename”

server, the server will then invoke the “myprogram” script from the stan-

dard cgi-bin directory, and will forward the results of the execution of
“myprogram” back to the Web browser. There are also ways to include
query and path information along with the URL. Query information can be
appended to the URL separated by a question mark (?).

http:ifmachinename/cgiwbinlmyprogram?uhoareyou

Here the HTTP server sets the environment variable QUERYflSTRING to the

value “whoareyou” when it executes the “myprogram” script. The script can

then access the query data through the environment and make a decision based

on the “whoareyou” value that was stored in the QUERY_STRING variable.

To include path information in the URL, simply append the relative

path to the URL. For example:

http:Ifmachinename/cgi-binfmyprogramlpeopLeldocs

This will invoke the script and assign the value “Ipeoplefdocs” to the environ-
ment variable PATH_INFO. It will also resolve the address from a virtual path to

031 ServiceNow, |nc.'s Exhibit 1008

3 .2

ServiceNow, Inc.'s Exhibit 1008032

IS CGI SCRIPTS

a physical path and store that value into PATH_TRANSLATED. For example, if

your server root is set to “[usr/httpd” and “/peopleIdocs" is sent along with the

C61 URL, the server will assign PATH_INFO the value “/people/docs" and
“fusr/httpdfpeoplefdocs“ will be assigned to PATH_TRANSLATED.

The following listing is a sample HTML document that calls a C61

script called test-cgi on a server called myservercom. If you have a standard

HTTPD installation like the one on the CD-ROM that comes with this book,

you should be able to replace “myservercom” with the name of the machine

running the server software and use this document.

<TITLE>test-cgi</TITLE>
<H1>Test CGI<IH1>

<HR>

CLick here to run test—
cgi<IA>

<HR>

test-cgi should return a virtual HTML document that contains the names

of environment variables and their vaLues on the HTTP server speci—
fied.

Specifying a Script Within a Form
When specifying a script to act on form data submitted from a client,

construct the URL in the same way as before, that is

http:I/machinename/cgi-bin/programname

The only difference is where to place it within the HTML document.

Specifically, include the script URL in the ACTION attribute of the

<FORM> tag.

<FORM ACTION="http:l/machinename/cgi-bin/pragramname”>

m NOTE: The ACTION attribute in a <FORM> tag is optional. If there is no
ACTION=URl attribute specified, the CGI script will be assumed to have the
same URL as the document containing the <FORM> tag. This is useful when
creating CGI scripts that generate the HTML documents that contain the forms

that they process.

Later in this chapter, the section headed Handling Form Data will give
you the details on creating a C61 script that will process the HTML form.

Specifying a Script from the “Open URI.”
Interface

Executing a script directly from your Web browser is as simple as selecting

the Open URL or Open Location option in your browser and entering the

032 ServiceNow, |nc.'s Exhibit 1008489

ServiceNow, Inc.'s Exhibit 1008033

VV E B P U B L | S H E R ' S C (3 PI 3 T RIJ C T l() hl K IT Vii T H H T AA L

URL for the script. The URL can contain any of the standard URL conven—

tions—see Chapter 1, Catching the Internet in a Web, if you need a review.
In particular, you can include optional port numbers if you need them, and
you have to escape any special characters that may be required to specify
the path or filename of the C61 script.

lESSON #4: HOW T0 USE A S(RIPT T0 MCESS OTHER

lll’l’llCllTlONS

490

Why is it called the Common “Gateway" Interface? Well, the answer is
simple: The Common Gateway Interface was originally intended as a
“gateway" between WWW clients and other programs that could be run
remotely on your server. Many CGI scripts, especially those that access
databases, simply execute another application on the server and redirect its

output with whatever formatting changes are required to the HTTP server
and then to the client that requested the script.

As a simple example, let’s take a quick look at the finger script that was
mentioned in the standard script table (Table 15-2). Finger is a standard

Unix utility that allows you to locate users and/or machines and retrieve
information about them. Don't worry if you don’t understand the entire

script; we’ll cover that in the next section.

NOTE: In the following code examples, the HTML code generated is not
complete. Some important tags were left out in order to keep the examples
short and simple. Namely, the output of the CGI applications should include
<HTML>, <HEAD>, and <BODY> tags just as any well-structured HTML docu-
ment would contain.

The finger gateway is written in the Unix shell scripting language, so
first we give it a shell script header, and define a constant that points to the
actual finger program in the Unix filesystem.
fl! Ibinfsh

FINGER=/usr/ucb/finger

Notice that the FINGER constant is assigned the entire path of the program

that it will be running. Next, we send the server a standard header. We‘ll use
the Content-Type header and specify the “text/html” MIME type. (For a
complete list of MIME types, see Table 15-4 at the end of the chapter.) This
will inform the client that we plan on sending it straight ASCII text, and that

the text should be interpreted as HTML code. It is important to specify a

033 ServiceNow, |nc.'s Exhibit 1008

3 . 2

ServiceNow, Inc.'s Exhibit 1008034

'I 5 CGI SCRIPTS

header of some type, as most servers and browsers will return an error message

if they don‘t get a header. We send the header to the server simply by writing it

to the standard output. (In the examples of this chapter, standard output is the

same as printing directly to the screen or console. The HTTPD server inter-

cepts and redirects this output as necessary.) An easy way to do this in a shell

script is with the “echo" command. Note the blank echo line after the header.

This is necessary with most servers and should always be included.

echo Content-type: text/htmL
echo

Now we are ready to start sending the output from the finger script to

the server. Just to make it look a little nicer, we add a <TITLE> tag and a

short description of the output as follows:

echo <TITLE>Finger Gateway<ITITLE>

echo <H1>Finger Gateway<lH1>

echo This will finger our HTTP server
echo

Now, we execute finger, with a <PRE> tag added just before and a <fPRE>

right after to make it look a little nicer to the user:
echo <PRE>

$FINGER

echo<lPRE>

Since finger will automatically send its results to the standard output, this

text goes to the server and then to the browser as part of an HTML docu-

ment. This simplified finger gateway looks like this:
#1 {bin/sh

FINGER = Iusrlucb/finger

echo Content-type: text/html
echo

echo <TITLEbFinger Gateway<ITITLE>

echo <H1>Finger Gateway<lH1>

echo This HiLL finger our HTTP server
echo

<PRE>

SFINGER

<IPRE>

Since finger usually works best with parameters, such as user@machine, it’s

nice to be able to pass along a parameter supplied by the user. The full finger

gateway uses the <ISINDEX> tag to get a username and machinename from

the user, and passes these along to the Unix finger utility. A listing of the

complete finger gateway is listed below. Some parts may be unfamiliar, but

these will be discussed in the Writing Your Own Scripts section.

034 ServiceNow, |nc.'s Exhibit 1MB

ServiceNow, Inc.'s Exhibit 1008035

VV E B

492

P U B L | 5 H E R ’ 5 C CJIH S T R U C T IC) bl K ll‘ VVI T H H T AA L

#! lbinfsh

#This script comes standard with NCSA's HTTPD

FINGER=lusrlucblfinger

echo Contentwtype: text/htmL
echo

if E -x $FINGER 1; then

if E $# = D 1; then
eat << EOM

<TITLE>Finger Gateway<lTITLE>

<H1>Finger Gateway<lH1>
<ISINDEX>

This is a gateway to "finger". Type a userahost combination in your
browser‘s search dialog.<P>
EOM

eLse

echo \<PRE\>

$FINGER ”$*"

fi

eLse

echo Cannot find finger on this system.
fi

WARNING! Remember to make your shell scripts executable. In Unix this

means that you must type

chmod a+x scriptname

for any new shell script you create.

It should start becoming clear how simple and powerful a gateway

script can be. A script can point to any executable file on your server and
execute it. All data sent to the standard output—either your script or the

file(s) it executes—will be forwarded to the client and interpreted as the

MIME type specified in the Content-Type header. This is a lot of power and
should be used with caution. You don‘t want users imposing potentially (or

deliberately) destructive scripts on your server, so it is usually a good idea,

on a shared system, to allow only a few trusted users to create CGI scripts.

There are a few mechanisms in place to help protect you. One is the

ability to require CGI scripts to be in a specific directory, and the other is

the ability to require CGI scripts to have a specific suffix. Either method

prevents anonymous users from being able to write URLs that point to your
server and run whatever they want (Say, rmar "‘ for example. Not a pleasant

thought.) Don’t worry! The risk potential is there, but if you iriStall your
server with some thought, you should be able to avoid such mishaps. If you

are concerned about security, read the security section in Chapter 21,
HTML Assistant.

035 ServiceNow, |nc.'s Exhibit 1008

3 .2

7

ServiceNow, Inc.'s Exhibit 1008036

1 5 CG] SCRIPTS

[550“ #5: WRITING YOUR OWN S(RIPTS
OK, enough talk, let’s see some action. We’re going to try the learning-by-

example method here, so let's just get a few things out of the way first. In

order to run CGI scripts, make sure the following infrastructure is in place:

mYou have an HTTP server installed at your site.

mThe HTTP server has been configured to allow CGI scripts.

mYou, or someone you know, has write permission in the cgi-bin

directory on this server, unless the server has been configured to

allow CGI scripts elsewhere.

That in mind, writing a C61 script is a six—step process:

1. Write the script and compile it if necessary. (Obviously, you don’t

compile a shell script.)

2. Have the script moved into the cgi—bin directory (or equivalent).

3. Make sure the script is executable. (The Unix command is chmod

a+x scriptname.)

4. Write a reference URL or form to access the script.

5. Debug the script.

6. Publish the script. (Tell your audience about it, or create links to it.)

Writing a Simple Script
Let‘s start with a simple script: an interactive <ISINDEX> form that will ask

the user to input his or her name, and then echo back a short greeting to

the user’s browser. This example assumes that you are using the NCSA
HTTPD server software from the CD—ROM that came with the book.

We will use the Unix shell scripting language to write it. To start, using

your favorite text editor, create the following file:
echoname.sh

Since this is a shell script, we will start it with a standard shell script header.
The first line is:

#1! lbin/sh

036 ServiceNow, |nc.'s Exhibit 100$},3

ServiceNow, Inc.'s Exhibit 1008037

VV E B

494

P U B L | S H E R ’ S C CD14 5 T R U C T |(D hl K IT' VVI T H H T AA L

Now, to avoid having problems interpreting the data, or getting error

messages for not being specific, we add the HTML header. In this case, we
are returning text that we want interpreted as HTML code. The header for
this type of data is just the MIME type for HTML code. Add the following to
your file to print the header information:
echo Content-Type: text/htmL

echo

The extra “echo" is necessary. A blank line is used to separate the header from
the actual content. Next, we want to create the HTML code that is sent to the

browser. We will share some code, and the rest will be unique depending on

whether there was user input or not. First we create the common HTML.

Notice that in a shell script, the greater-than and less-than brackets (< >) are

reserved symbols and must be escaped with backslashes (\). So if you want to
print a less—than symbol using echo, you would use “echo \<"—“echo <" won’t
work by itself. You can avoid messing with backslashes by enclosing the entire
string in double-quotes. With that in mind, add the following lines to your file:
echo “<TITLE>Echoname exampLe<lTITLE>”
echo “<ISINDEX)“

echo "<H1>CGI script example<iH1>”

echo Any name typed into the query window uiLL be echoed to the
screen.

echo “<HR>"

Now we want to create a fork—one side allows the user to input a

name, and the other displays a message if the user types in a name. In this

example, since we are using the <iSINDEX> tag, we can assume that the
command line parameter count is greater than zero if the user entered a
value, and zero if not. The following lines will check for a value on the

command line and print a prompt message if there were no parameters.

if E $# = U] ; then

echo Please enter your name in the query Hindou.\<BR\>
else

echo HeLLo 3*, HeLcome to our server.
fi

Now, if this script is called without parameters, it will print the message
“Please enter your name in the query window.” When called with parame-
ters, it will print the message “Hello [parameters], Welcome to our server.“
The entire script looks like this:

#1 lbin/sh

echo Content—Type: text/htmL
echo

echo “<TITLE>Echoname exampte<lTITLE>“

037 ServiceNow, |nc.'s Exhibit 1008

3 . 2

ServiceNow, Inc.'s Exhibit 1008038

IS CGISCRWTS

echo “<ISINDEX>”

echo "<H1>CGI script example<lH1>“

echo Any name typed into the query window will be echoed to the
screen.

echo “<HR>“

if E $# = D 3; then

echo Please enter your name in the query window.\<BR\>
else

echo Hello $*, welcome to our server.\<BR\>
fi

NOTE: The <|S|NDEX> tag uses the GET method to pass data From the browser

to the calling script. This means that the encoded input data is stored in the
QUERY_STRING environment variable. But the <|S|NDEX> query will also list the

unencoded values on the command line ol the calling script. In the previous

script, the $* operator refers to the command line arguments.

Before we can test the script, we need to make sure it is executable. At

the Unix command prompt, type
chmod a+x echoname.sh

This will make the shell script executable, a necessity if you want to be able

to run this script. Now to test it, type
echoname.sh

This should produce the results:

Content-Type: text/html

<TITLE>Echoname example<lTITLE>
<ISINDEX>

<H1>CGI script example<IH1>

Any name typed into the query window will be echoed to the screen.
<HR>

Please enter your name in the query window.

New test the script with a command line argument. Try the following:

echoname.sh Troy

The result should be:

Content-Type: textlhtmL

<TITLE>Echoname examples/TITLE>
<ISINDEX>

<H1>EGI script example<IH1>

Any name typed into the query window will be echoed to the screen.
<HR>

Hello Troy, welcome to our server.

We are now ready to place the file into the correct directory and try it out

with a Web browser. Copy the file into the appropriate directory for CGI

038 ServiceNow, |nc.'s Exhibit 199?

ServiceNow, Inc.'s Exhibit 1008039

1

VV E B P U B L | S H E R ’ S C ()IV S T R U CIT IC) bl K IT VII T H H T AA L 3 . 2

scripts on your server. if you’re using NCSA HTTPD from the CD-ROM, this
is the cgi-bin directory. In any case, the command will be something like:

on echoname.sh lusr/httpdlcgi—bin

Now, let‘s try it out with a browser. Take your favorite Web browser and
open the following URL, substituting the name of your server and the exact

path to your CGI directory as necessary:

http:Ifyourserverlcgi-biniechoname.sh

Figure I 5-4 echonomesh with ”Troy Downing” as the argument

496 039 ServiceNow, Inc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008040

'I 5 CGI SCRIPTS

Opening this URL should cause your HTTP server to execute the script

“echonamesh” and send back an HTML page with a query window as in

Figure 15-3.

Now try typing a name into the query window. The resulting screen

should look something like Figure 15-4.

Congratulations! You’ve just created your first CGI script. Doesn’t do a

whole lot, but it shows how simple script writing can be. This script could have

been created just as easily in another scripting language or a compiled language

such as C or PASCAL. The next example will show how to use environment

variables to get information about the user and the user’s environment.

Using Environment Variables in Scripts
Whenever a server launches a C61 script, a new shell is launched and a
number of environment variables are set with information about the data

being sent, the client software, the client machine, even the username in

some authentication schemes. See Table 15—3 for a list of environment vari—

ables set on the NCSA HTTPD server. As a simple exercise, we are going to

add a few lines of code to the previous echonamesh script to make use of

some environment variables. The only lines we are going to change are the

few at the end that print the “hello“ message. The two variables we will use
to demonstrate this are SERVER_NAME and REMOTE_HOST.

SERVER_NAME is set to the name of the machine that is running the HTTP

server and REMOTE_HOST is the name of the machine that is making the

HTTP request. Let’s make the following changes to echonamesh:

filibinish

echo Content-Type: textlhtmt
echo

echo ”<TITLE>Echoname exampLe</TITLE>“
echo "<ISINDEX>“

echo "<H1>CGI script example<lH1>"

echo Any name typed into the query window uiLl be echoed to the
screen.

echo "<HR>”

if E $# = D 3; then

echo "Please enter your name in the query Hindou.
”
eLse

echo Hello $* from $REMOTE_HOST, Welcome to \

$SERVER_NAME . \<BR\)
fi

Notice the addition to the last “echo“ line. We've added the two environ-

ment variables to our greeting. Now execution of this file should result in a

reply string that looks something like:

HeLLo Troy from pLay.cs.nyu.edu. Welcome to uuw.nyu.edu.

040 ServiceNow, |nc.'s Exhibit 1%)?

ServiceNow, Inc.'s Exhibit 1008041

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.

You may or may not want to use the environment variables in this way.

Environment variables are particularly useful when processing forms. In many

cases, you need them for retrieving data from forms using the GET method. and

for determining the length of the data block when using the POST method.
This will all be explained in greater detail in the section on form handling

coming up next. Before going on to forms, let’s take a look at a few more scripts.
:.---..w.-.—vu=§mur¢wmmr

Table15-3 Envtrcmmemwrombes" "

Variable Name

SERVELSOFIWARE

SERVER_NAME

GATEWAYJNTERFACE

SERVER_PROTOCOL

summer

REQUESLMETHOD

PATH_INFO

PATH_TRANSLAT£D

SERIPT_NAME

DUERLSTRING

REMOTE_HOST

REMUTLADDR

AUTHJYPE

REMOTLUSER

REMOTEJDENT

commuter

communism

HTTP_ACCEPT

HTTP_USER_AGENT. :. :.= 1flwmm- .

Description

The name and version number of the server software that is serving the request, and

running the (GI script. Format: namefversion.

The server’s hostname, alias, or IP address depending on the particular installation.

Revision number of the gateway interface. Format: CGI/revision #.

The protocol name and revision of the protocol that the request came in with. Format:

protocol/revision.

The part number that the server is accepting requests through. (Usually part 80.)

The method of the request. Normally POST or GET.

The path information that came along with the request. Normally, this information was

appended to the end of the URL that called the (GI script.

The physical mapping that is derived from the virtual path supplied in PATH_INFO.

The path and file name of the script.

The value of a query URL or a farm that was sent using the GET method is stored here.

The QUERLSTRING is url-encaded, unless the query was invoked with the <iSINDEX>

tag, then the “name" of the field is omitted and only the value is assigned to

QUERY_STRING variable. In <ISINDEX> calls, the unencoded value will also be passed

along to the script as command line parameters.

The host name of the machine making the request. Either the DNS name or alias.

The IP address of the REMOTE_HDST.

The authentication method used to validate users for protected scripts.

The user name making the request. This value is only set if user authentication has been used.
The user II] for a remote user in some authentication schemes.

The MIME type of the data being served.

The number of bytes of content being sent by the client.

The MIME types that the client will accept. Format type/type, type/type...

The browser that the client is using.

As an exercise and a utility to see what your environment variables are

being set to, we will write a short shell script that simply returns the values
of all the main environment variables.

498
041 ServiceNow, |nc.'s Exhibit 1008

2

ServiceNow, Inc.'s Exhibit 1008042

'I S CGI SCRIPTS

#l/bin/sh

#simpLe script to return the vaLues of environment variables.

echo Content-Type: text/html
echo

#simple header info

echo "<TITLE>env_yars.sh</TITLE>"

echo “<H1>env_yars.sh</H1>”

echo “Betou are the vaLues of environment variables that were set“

echo "when this script H85 launched.<HR><LISTING>"

#vere there any command-Line arguments?

echo number of args: $fi

echo value of args: 3*
echo

finou the variabLes

echo SERVER_SOFTUARE: $SERVER_SOFTHARE

echo SERVER_NAME: $8ERVER_NAME

echo GATEHAY_INTERFACE: $GATEHAY_INTERFACE

echo SERVER_PROTOCOL: $SERVER_PROTOCOL

echo SERVER_PORT: $SERVER_PORT

echo REQUEST_METHOD: $REQUEST_HETHOD

echo PATHHINFO: $PATH_INFO

echo PATH_TRANSLATED: $PATH_IRANSLATED

echo SCRIPT_NAME: $SCRIPT_NAME

echo QUERI_STRING: ' $QUERK_STRING

echo REMOTE_HOST: $REMOTE_HOST

echo REMOTE_fiDDR: $REMOTE_ADDR

echo AUTH_TYPE: $AUTH_IYPE

echo REMOTE_USER: $REMOTE_DSER

echo REMOTE_IDENT: $REMOTE_IDENT

echo CONTENT_IYPE: $CONTENT_IYPE

echo CONTENT_LENGTH: $CONTENT_LENGTH

echo HTTR_ACCEPT: $HTTP*ACCEPT

echo HTTR_USERflfiGENT: $HTTP_USER_AGENT

Be sure to make this script executable and put it into the correct direc-

tory for CGI scripts. If you include this script as the action for a form, or

just call the script directly from your favorite browser, it will list the

contents of the environment variables that we listed in the script. Typically,
the results will look something like Figure 15-5.

Location and Status Headers

The Content-Type header we've been discussing tells the browser to expect a
stream of data of a certain type, but sometimes you don’t want to create a data

stream at all. If you want your script to simply redirect clients to a different

location based on the machine they are connecting from or the browser they
are using, use the Location header. You can also use a Location header to point
the browser to a different URL. The format is simple:

Location: http://foo.com

042 ServiceNow, |nc.'s Exhibit 1 o30”lam

ServiceNow, Inc.'s Exhibit 1008043

VV E B P U B LI 5 H E R' S C C) N S T R U C T Ii) N K IT' VVI T H H T AA L 3 . 2

Figure 15-5 env_vars.sh results

Like the Content-Type header, the Location header requires a blank line
after it. The Location header can be followed by any valid URL. To use this

header in a shell script, it would look something like:

echo Location: ../douninglfunstuff.html
echo

m NOTE: You cannot mix header types. Every header must be either Content-

Type, Location, or Status.

The following script will redirect a request based on the browser
making it. A Netscape browser will get a file formatted for Netscape, other
browsers will get a default page.
#!Ibin/sh

#This wiLL send the location of a file based on the
#cLient browser

FILENAME=”default.htmL”

#defauLt.htmL is the standard HTML file we want to serve

#if the user is using Netscape, we will redirect to

500 043 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008044

IS CGI SCRIPTS

finsversion.html

if E "$HTTR_USER_AGENT” = "Mozilta”3; then
FILENAME="nsuersion.htmt"

fi

echo Location: ../htdocsf$FILENAME
echo

If you want to run a CGI script without having any change appear on
the user’s browser, use the Status header. If the script returns a Status

header with the status number set to 204 and the string “No Response”
attached, the calling browser will simply stay on the page that the request
was made from. In other words, the browser does nothing, even though the
server ran a remote script based on the browser‘s request. We can take care

of some task, say add a line to a database, without changing the user’s
current page. The following script will add the machine name that the

request came from, and the name of the browser used, to a database in the

“logs” directory relative to the cgi-bin directory.
#! [bin/sh

#This uilL add the machine name and browser

#name of a client to a database

LOGPATH="..llogs/brouser.dat“

echo $REMOTE_HOST $HTTP_USER_AGENT >> SLOGPATH
#nou send the status to the browser

echo Status: 204 No Response
echo

Assuming that you have created a file called Hogs/browserdat, this script
will add the remote host name and the browser name to this file and tenni-

nate, sending a status code back to the client. The client will stay on the
page where the call came from. There are a number of status codes that are

sent from a server to a browser. Most of them aren’t very useful in cgi scripts
but are used to tell the browser that a file was not found or that the user

doesn’t have permission to access a certain file. I‘m sure you’ve all seen the
“404 Not Found” error message—this was status number 404.

Security with CGI Scripts

' BEWARE! Watch out for characters that have special meanings to the shell,
‘ such as °/o.<,>... A client can enter these characters into input fields and

sometimes compromise your system if you don't handle them carefully. Any
user-supplied data that is used as a command line argument can take advan-
tage of this problem. An easy, but not foolproof way to handle some of these
problems is to include the command line parameters in double quotes so that
any special characters will be treated as literals rather than shell directives.

See Chapter 21, HTML Assistant, for more information on server security.

044 ServiceNow, |nc.'s Exhibit “£818

ServiceNow, Inc.'s Exhibit 1008045

VV E B P U B LI 5 H E R ’ S C (3 r4 5 T R U CiT |() hl K IT VVI T H H T An L 3 . 2

Most HTTP servers and clients have certain security features built in, but

you may occasionally want to try protecting a document by having a C61
script ask the user for a password of some sort. The following script will
give very rudimentary security to a script; it‘s listed here as an example of
how you might implement such a scheme, even though it’s not necessarily a
completely secure solution. It will print a message prompting the user to
input a password. Since this is a single field of input, we will use the
<ISINDEX> tag.

m NOTE: It you wanted to add a more secure password field in a form, it
would make sense to use <FORM> tags instead of the <|S|NDEX> tag and
use the <lNPUT TYPE=”possword”> tag to prevent characters from being
echoed to the screen.

This script will return a “failure" page if it receives an incorrect pass-
word. If it gets the correct password, it will redirect the browser to
another location.

#libinlsh

#stmpLe password script
PASSWORD=Schmoo

PROTECTEDFILE=lusrlmelsecurefiLe.htmL

if E $# = 0 1

then

cat 4< EOM

Content-Type: text/htmL

<TITLE>Passuord script<lTITLE>
<ISINDEX>

<H1>This page is protected. Enter password<lH1>
EON

elif E ”$#" = "$PASSHORD" J
then

echo Location: $PROTECTEDFILE

echo

else

cat << EOMZ

Content—Type: textfhtml

<TITLE> FAILI<ITITLE>

<ISINDEX>

<H1>Passuord faiLed! Try again.<!H1>

EOMZ

fi

Remember—passwd.sh is meant as a demonstration to base other
schemes on; it‘s far from the most secure way to protect a page or server. If

you are interested in security, read the security section in Chapter 21,
HTML Assistant.

502 045 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008046

I 5 CGI SCRIPTS

[550" #6: HANDIING FORM DATA
And now, (drum roll please), the moment you have all been waiting for...
Form Handling! In Chapter 14, Interactivity, we learned all about one half
of the form scheme: how to write the HTML code that describes a form

interface and how the form sends its data. Unfortunately, you can‘t do much

with a form without having some sort of program that can accept the data
that is passed by a form and do something with it. To clear the air about

using form data, there is some good news and some bad news. The bad

news: The form data is sent in an encoded data block that can be a pain to
decode into its component parts. The good news: This is such a common

task among CGI scripters that people have already written a number of
form-decoding utilities. A useful little collection of C functions comes with

NCSA’S HTTPD; you can just plug these functions into your C programs,

and voila! the task is done. For those of you who are not C programmers,

there are also plenty of utilities that can be used with shell scripts, TCL

scripts, and most of the common scripting and programming languages.

What Does Form Data Look Like?
There are two methods that a form can use to pass data to a script, GET and

POST. As a quick guideline, use POST whenever possible, and use GET

only for indexes and single-parameter forms.

When a form sends its data using the GET method, the data is encoded

and stored in the environment variable QUERY_STRING. With the POST

method, data is sent along through the standard input stream of the script.

(By standard input, 1 mean what would normally be typed in from the

keyboard. The HTTPD server redirects that data to the script as if it were
being typed in.) In either case, the string is URL encoded. All variables and

their values are paired together with equals (=) signs, then all of the

name/value pairs are concatenated and separated with ampersands (&). The

spaces are replaced with plus (+) signs, and the special characters are

escaped. (Backslashes don’t work here as they did in shell scripts); in this

context, “escaped" means the character is represented by a percent Sign (%)
followed by the hexadecimal ASCII representation for that character.)

no NOTE: Some definitions may be useful here. American Standard Code For

Information Interchange (ASCII) is a code assigning unique numbers to the
standard printable and control characters. This code can be read by virtually
any computer in operation today. Hexadecimal, or base if), is a numbering

046 ServiceNow, |nc.'s Exhibit 19853

ServiceNow, Inc.'s Exhibit 1008047

VV E B

504

P U B L I S H E R ’ S C (3 r4 5 T R U CIT | Ciri K IT' VVI T H H T an L

system using l6 as the base instead of 10. Numbers from 10 to 15 are
represented by the first Five letters oF the alphabet.)

Encoding example: If a form had the following text input fields in its
description: <INPUT TYPEz“text” NAME=“VAR1”> and <INPUT
TYPE=“text” NAME=“VAR2“>, and the strings typed into these text fields

were “Troy Downing” and “Boo{TAB}Radley”, the resulting encoded string
would look like:

VAR1=Troy+DoHning&VAR2=Boo%09RadLey

To interpret the contents of the string, you would want to parse it into
name/value pairs, replace the “+” with a space, and replace %09 with the
[Tab] character. Simple enough? The following code has a number of C
routines to do just that. Actually, the following code has a number of useful
procedures that can be plugged into your CGI applications. These proce-
dures generate common headers, simple HTML pages, and retrieve cookies.

cgiLib.c
/* cgiLib.c

Troy Downing

719 Broadway, 12th FLoor

New York, NY 10003
(212) 998—3208

downinganyu.edu

This is a Library of common cgi decoding functions. It is meant to
be compiled and Linked into most cgi appLications. Feel free to
redistribute this source code, as Long as this header remains as part

of the fiLe. If you have any optimizations, bugs, or suggestions,

pLease send me email at the address above.

cgiLib.c Copyright 1995, 1996 Troy Downing

*/

#incLude <stdio.h>

#incLude <stdlib.h>

#incLude <string.h>

#incLude ”cgiLib.h"

/* this HiLL decode aLL post data, and return a Linked List

This uiLL only decode data coming in via standard in, so, it is

047 ServiceNow, |nc.'s Exhibit 1008

3. 2

ServiceNow, Inc.'s Exhibit 1008048

'I 5 CG] SCRIPTS

only good for decoding form data that was submitted with a ”POST"
method.

*1

node_t* getcgidata() {

char *buffer; 1* tmp space for extracting url data *1
node_t *node, *root; 1* the root, and actual nodes of the Linked

list *1

int cont_len; 1* length of form data, is decremented as data is
extracted *1

int first=0; 1* used to determine if we have Looped through this
yet *1

cont_len=atoi(getenv(”CONTENI_LENGTH")J; 1* how much data? *1

Hhile(cont_len) { 1* Loop through as long as there is still
cont_Len *1

if(!first) { 1* see if this is the first time *1

root = node = (node_t*)malLocfsizeoanode_t)); 1*assign a
root*1

first=1;
} else {

node->next = (node_t*)maLlocCsizeof(node_t));
node = node—>next;

}

buffer = (char*)fmakeuord(&cont_len); 1* break the data block at
the first 0 *1

node~>name=makeuord(buffer); 1* assign name to the name field *1
node—>value=buffer; 1* assign the data to the value field *1

plustospace(node->value); 1* turn all + to spaces *1
unescape_url(node—>value); 1* fix the hex digits *1

}

node->next=NULL; 1* make sure this is the last node *1

return root; 1* return the root of the linked list *1

}

1* return a substring from stdin that is up to the next a. This

is what divides the urlencoded data stream into key=value chunks.
This will return a string that is the next key=value set in the stdin
stream.

*1

char *fmakeuord(int *cl) {

char stop=‘&‘; 1* the character that is used to delimit the
key=values *1

long usize; 1* the length of the data *1

char *Hord; 1* the chopped data *1
int ll; 1* a counter *1

usize = 32000; 1* set the default size of the data *1
ll=0; 1* set the counter *1

Continued on next page

048 ServiceNow, |nc.'s Exhibit 15%(5)8

ServiceNow, Inc.'s Exhibit 1008049

VV E B

506

P U B LI 5 H E R’ S C C) N S T R U C T 1(3 N K IT V¢| T H H T NiL

Confinucdjionipnnvouspagc

word = (char *) maLLocCsizeof(char) * ("size + 1)); f* create the
data bLock to be returned. */

uhiLe(1) { /* grab characters, increment the counter, and Look for

the ampersand */
HordELL] = (char)fgetc(stdin);
ifCLl==Hsize) {

uordELL+1J = '\D';

usize+=102400;

word = (char *3reaLLoc(vord,sizeof(char)*(usize+1));
}

--(*cL);

if((uordELlJ == stop) |[(feof(stdin)) || (!(*cl))) {
if(uord[Ll3 [2 stop) LL++;

wordELL] = '\U';

return word;
1

++tL;

}

/* divide a key=vaLue string into a key and a vaLue *I
char *makeuord(char *Line) {

char stop = '=';

int x,y;

char *uord = (char *) maltoc(sizeof(char) * (strLenCLine) + 1));

for(x=0;((LineExJ) && (LineExJ != stop));x++)
HordEx] = LineEx];

wordEx] = '\D‘;

if(Line[xJ) ++x;

y=0;

HhiLe(LineEy++J lineEx++]);

return word;
}

I* convert aLl pLuses '+' to spaces */

void plustospace(char *str) {

register int x;

for(x=fl;strEx3;x++) isztrExJ == '+') strEx] = ' ';
}

/* convert escaped characters of the form XXX where XX is a hex number
representing an ASCII character vaLue. This HilL convert the escape
sequence back into the character that it represents

*!

void unescape_yrl(char *url) {

register int x,y;

for(x=D,y=U;urLEyJ;++x,++y) {

3 .2

049 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008050

'l 5 CG! SCRIPTS

if((url[x] = urlEyJ) == '2') {

urlEx] = x2ctfiurlty+1]);

Y+=2;
}

}

urlEx] = '\0';
}

/* getval is sort of the equivalent to an associative array in Perl.
($("keyname"}). This will take a Linked list of name/value pairs and a
key. It will search for the key in the list, and return a value if the
key is found. Otherwise, it will return null.
*/

char* getvaltnode_t* node, char* name){

uhile(node!=NULL) {

if(node—>name!=NULL)

if<!strncmaname,node—>name,strlenCname)))

returnCnode->value);

node=node->next;
}

return NULL;
}

1* simple html header generator */
void htmlheaderCchar* title) {

printf("Content-type: text!html\n\n");

printf("<HTHL><HEAD><TITLE>Zs<ITITLE><IHEAD>\n",title);
}

/* closes most html pages */
void htmlfooter(){

printf("<lBODY></HTHL>\n");

l* Generate a simple htmL page. */

void simplepage(char *title, char *message) {

htmlheader(title);

putsCmessage);

htmlfooter();
}

/* print a list of all of the name/val pairs *1

void printnamelist(FILE 1*fp, node_t *node) {

uhile(node!=NULL) {

Continued on next page

050 ServiceNow, Inc.'s Exhibit 9&08

ServiceNow, Inc.'s Exhibit 1008051

VV E B P U B LI 8 H E R"S C C) N S T R U C T |(3 N K IT' VV [T H H T AA L 3 . 2

Cbnflnuedjronlpreflouspage

ianode->value!=NULL)

fprintf(fp,"%s = %s\n“,node->name,node->vaLue);
node=node->next;

}

}

I* print a List of all of the vaLues for name/vaL pairs *I
void printList(FILE *fp, node_t *node) {

Hhile(nodeI=NULL) {

if(node->value!=NULL)

fprintf(fp,“%s\n",node->vaLue);
node=node—>next;

/* generate a simpLe error page *I
void errorpage(char* message) {

htmLheader(”Error!”);

printf(”<h1 align=center>Error!<lH1>\nZs”,message);
htmLfooter();

exit(1);
}

I* set a iuLL cookie. Be sure to add an extra carriage return after
the Last caLl to a cookie.
*l

void setcookietchar* key, char *vat, char *path, char *expire 3
{

printf("Set-Cookie: 25:25; path=Zs;
expires=%s\n",key,val,path,expire);
}

/* set up a simpLe cookie */
void setsimplecookie(char* key, char* vaL){

printf("Set-Cookie: Zs=Zs\n",key,vaL);
}

I* generate a simple 1—cookie htmL header *l
void cookieheader(char* title, char* key, char* val) {

printf{“Content-type: textlhtmL\n");
if(key!=NULL)

printf("Set-Cookie: %s=Zs\n\n",key,vaL);
eLse

printf("\n”);

printf(“<HTML><HEAD><TITLE>Zs<ITITLE><IHEAD>\n",title);

503 051 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008052

IS CGISCRWTS

/* convert a hex number to a character. *1

char x2c(char *uhat) {

register char digit;

digit = (whatEDJ >= 'A' ? ((uhatEO] 8 flxdf) - 'A')+1D : (uhatEDJ -

'0'));

digit *= 16;

digit += (whatE1J >= 'A' ? ((HhatE1] & def) ~ 'A')+10 : (whatE1J

_ ‘0'));

returnCdigit);
}

void httpheader(void){

printf("Content—type: text/html\n”);
}

/* this uiLL buiLd a linked List of name/value pairs from
the cookie environment variable

*/

node_t* getcookiedata€void) {

char *buffer;

char *bufferZ;

node_t *List;

node_t *node;

char cookieEBUFSIZ];

int first=TRUE;

List=NULL;

if(getenv(“HTTR_CO0KIE” ==NULL)

return NULL;

memcpy(cookie,getenv("HTTP_£00KIE"),strLen(getenv(”HTTR_§00KIE”)));

ichookie!=NULL){

white(TRUE){

if(first){

List=node=<node_t*)maLLoc(sizeof(node_t));
first=FALSE;

buffer=strtok<cookie,”;”);
} else {

node—>next=(node_t*)maLLoc(sizeof(node_t));

node=node->next;

buffer=strtok(NULL,”;“);
}

ibeuffer==NULL) break;

if<bufferE0 ==' ') {

buffer2=buffer+1;

Confinucdtm1nextpagc

052 ServiceNow, |nc.'s Exhibit £6508

ServiceNow, Inc.'s Exhibit 1008053

VV E B P U B LI 5 H E R' S C (D N S T R U C T ICD N K IT VVI T H H T AA L 3 . 2

Cbnflnucdfnnnfntwouspage
eLse

buffer2=buffer;

node—>name=makeword(buffer23;

node—>vaLue=buffer2;

}

return List;

The following is the header file that goes along with cgiLib.c.

f* cgiLib.h

Troy Downing

719 Broadway, 12th FLoor

New York, NY 10003
(212) 998—3208

downinganyu.edu

cgiLib.h Copyright 1995, 1996 Troy Downing

*/

#ifndef __CGILIB_H

#define __CGILIB_H

struct urL_node {

char *name;

char *vaLue;

struct url_node* next;

3*;

typedef struct urL_node node_x;

#ifndef TRUE

enum {FALSE, TRUE};
fiendii

nodo_t* getcgidata<void);
char* fmakeuord(int* ct);

char* makeuord(char* buff);

void plustospace(char* buff);
void unescape_prl(char* url);
char x2c(char* c);

void printList(FILE *fp, node_x*);
void printnameList<FILE *fp, node_x*);
char* getvaLCnode_t* node, char* name);
void setcookie(char* key, char *vaL, char *path, char *expire);

void httpheadeeroid);

nodq_t* getcookiedata<void);
void htmLheader(char* titte);

void setsimpLecookie(char* key, char* val);
void htmlfooter(void);

510 053 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008054

'I 5 CGI SCRIPTS

void simplepage<char* title, char-* message);

void errorpage(char‘* message);
#endif

Right now, you‘re probably thinking, “Wow, what a mess! What am I

supposed to do with all of that stuf ." Well, don’t worry; you don’t have to

look at the cgiLib.c code again. All we will do is compile it into an object
file once, then link it to whatever programs we write that use its functions.

Before we jump in, lets get familiar with the prototypes in the header file.

The following prototypes are extracted from the cgiLibh file in the previous

code listing. The prototypes here will be followed by brief explanations of

their functions, and the parameters that they require.

mnode_t* getcgidata(void);

The getcgidataO function is probably the most important one in this

list. This function is sort of the magic “black box” that will turn a huge
block of urlencoded data into a list of names and values that can be easily
accessed in your programs. This function returns a node_t structure that is

also defined in this header file. This structure is used in other functions

later on for accessing the form data.

mcharit getvaL(node_t* node, char* name),-

This getvalO function is probably the second most useful in this library.

The getvalO function takes a node_t structure such as the one returned by
the getcgidataO function, and a character string representing a name. It will

return a value that corresponds to the name that is passed as a parameter.

cmvoid printListU-‘ILE *fp, node_t*);

The printlistO function is used to print all of the values that were passed

in as either urlencoded data, or in the form of cookies. It requires a file

pointer and a node_t structure such as the one returned by getcgidataO. The

file pointer that is passed will often be the special “stdout” pointer for

printing the results directly to standard output.

m void pri ntname L 1 st (FILE *fp, node_t*);

The printnamelistO function is exactly the same as printlistO with one

exception—the names of the name/value pairs are printed as well as the values.

mimic! setcookieCchar* key, char 1"vaL, char- *path,

char *expire);

The setcookieO function is used for setting htrnl cookies in a Browser.

mvoid httpheadeeroid);

054 ServiceNow, |nc.'s Exhibit 159(38

ServiceNow, Inc.'s Exhibit 1008055

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML

This prints a simple HTML header.

mimic! htmlfootertvoid);

This prints a standard HTML closing tag.

m node_t* getcooki edata (voi d);

The getcookiedataO function is similar to the getcgidataO function,
except it returns a node_t strucmre that contains name/value pairs that were
passed as cookies rather than as urlencoded data. The getvalO function may
be used to retrieve that data.

mvoid htmLheaderCchar* title);

The htmlheaderO function prints a standard HTTP header followed by
an HTML header with the title of the document set to the value passed as

the “title” parameter.

mvoid setsimplecookie(char* key, char* val);

This sets a simple cookie name/value pair on a Browser.

mvoid simplepageCchar* title, char* message);

The simplepageO function takes a title and a message and will generate
a complete HTML document with those parameters.

mvoid errorpage(char* message);

The errorpageO function is similar to the simplepageO function, but is
meant for sending error messges to the user‘s browser.

m char* fmakeuordCint* CL);

fmakeworcl is used internally by the cgiLib functions. There is really no

nead to access it in your programs. This is used mainly by the getcgidataO
function.

m char* makewor‘d(char* buff);

makewordO is also used internally by the getcgidataO function. In general,

this function divides the namefvalue pairs into their component parts.

mvoid pLustospaceCchar'k buff),-

plustospaceO is an internal function that converts all pluses (+) to spaces.

mire-id unescape_ur't(char* urL);

512 055 ServiceNow, |nc.'s Exhibit 1008

3.2

ServiceNow, Inc.'s Exhibit 1008056

15 CGISCRWTS

unescape_ur1() is an internal function that turns escaped characters of

the form %XX and turns them into the ASCII character that they represent.

mohar‘ x2c(char* c);

XZCO is used internally by the unescape__url() function.

So, in general, the functions in the cgiLib.c file do all of the dirty work

associated with CGI applications programming. There are functions for

decoding urlencoded CGI data, grabbing cookie data, setting cookies, and

generating simple HTML pages. Now, before we compile this library, let’s
take a quick look at what it’s doing.

Obviously, the most useful function in this library is the getcgidataO
function. (Assuming we are decoding form data.) So, what exactly is this
function doing for us? Well, the quick answer is that it is taking a block of
data that looks something like:

fname=Troy+B.8Lnamezbowningaadd=719%UDBroaduay8phone=555+1212

and turning it into something useful like:

fname Troy B.

[name Downing

add 719 Broadway

phone 555 1212

So, let’s think back about HTML forms for a second. A form urlencodes it‘s

data before sending it to a C61 application for processing. 50, all field names

and their values have been stuck together and separated by an equals (=)

sign, all of these namefvalue pairs have been stuck together and separated by
an ampersand (6:), all spaces have been converted to plus signs (+), and any
special characters have been escaped to a hexidecimal representation of the
form %XX.

Our getcgidataO function undoes all of that mess and gives us a nice
linked list of the name/value pairs. In the linked list, we can search for a
name, and we should be able to find the value that was associated with it.

(The getvalO function does just that.) So, let‘s take a look at this function:

node_t* getcgidata() {

All this tells us is the name of the function and that it returns a pointer
to a node in our linked list. (Don‘t worry if you don‘t understand this, the

other functions of this library work with this structure directly.)
char* buffer;

nods_t *node, *root;

int cont_ien;

int first=0;

056 ServiceNow, |nc.'s Exhibit 10?]?3

ServiceNow, Inc.'s Exhibit 1008057

VV E B

514

P U B L | S H E R ’ S C C)!% S T R U CIT |(D bl K I T \V l T H H T an L

That was simple enough, just defining some variables that this function
will use.

contfllen=atoi(getenv("CONTENI_LENGTH"));

Now, you may recall that all data from a form using the POST method
will be sent to our CGI application via the standard input. Well, we need to
know how much data to read from the standard input. Well, it just so

happens that the server will set an environment variable called
CONTENTHLENGTH to the exact number of bytes that the urlencoded

data block take up. So, if we grab this value, we know exactly how many
bytes to read from standard input. Here we are assigning this number to the
cont_len variable.

HhiLe(cont_ien) {

Here we keep looping through our read routines while there is still data
to be read. Every time we take some information from standard input, we
subtract the number of bytes read from the cont_len variable. Once this
number hits zero, we are through.

if(!first) {

f* ... *l

}

This is just an initialization so that we create a new linked list node the
first time we run through this loop.

buffer: (char*)fmakewordCZcont_Len);

This function just grabs data from the standard input until it reaches an
ampersand, or the end of the input stream. The cont_len variable is decre-
mented by the number of bytes read.

node->name=makeword(buffer);

This will take the name/value pair that was stored in the buffer variable,
and divide it at the equal sign (=). Then the first part, which is the name is
stored to the node structure and the second part which is the value is stored

in the buffer variable.

node->vaLue=buffer;

This assigns the value that was in the buffer to the node.

ptustospace(node->vaLue);

This will convert all of the plus signs (+) back into spaces.

unescape_prl(node->vaLue);

057 ServiceNow, |nc.'s Exhibit 1008

3 . 2

ServiceNow, Inc.'s Exhibit 1008058

15 CGISCRWTS

This will turn all of the escaped characters back into themselves. That

is, if there were any escaped characters in a particular value.

The rest of this function just loops through the previous functions until

there is no more data to be read from standard input. Once this is complete,
the linked list is terminated with a NULL pointer, and the root of the list is

returned. So, an assignment such as:

node_t* list;

List 2 getcgidata();

will assign the linked list to the list variable which is then ready to be
used in a call to getval (list, ”heyword”). Pretty simple.

Now the best part of this whole thing. Now that you know how it works,

you never have to look at it again. In general, you will never need to make

changes to the functions in cgiLibc, and can just plug them into any new CGI

program that you write. Now, let‘s compile this library and start using it.
You should create a directory somewhere to contain the source code for

your CGI scripts. Move the cgiLibc and cgiLib.h files into this directory.

Now, using your favorite C compiler, compile the cgiLib.c file into an object

file called cgiLibo if you use the gcc compiler, all you have to type to
create this object file is

gcc-o .cgiLib.c -o cgiLib.o

This would compile the code and save it in the same directory as cgiLibc.

OK, that’s taken care of. Now, the best way to show how to use these func-

tions is to demonstrate them in a C61 script example. The following

program will create a Magic Eightball game on your server. For those of you

who have never heard of the Magic Eightball, it is a black plastic ball full of

blue liquid, with an icosahedron floating inside. The bottom of the ball has
a window, in which one of the sides of the icosahedron is visible. There are

20 different answers to “Yes" or “No“ questions written on the sides of the

icosahedron. The user asks the Eightball a question, shakes the ball, and

then turns it upside down to read its response.

In this version of the Eightball, the user types a question into a form on

their Web browser. A click of the Submit button encodes the question and

sends it to a server. The server randomly picks one of the 20 replies that
would normally be written on the icosahedron, and returns an HTML docu—

ment with the answer. This CGl script also adds the question and answer to

a log file so that users can select the “log" page and look at all of the

extremely useful advice that the Eightball has given.

058 ServiceNow, |nc.'s Exhibit 10fi§

ServiceNow, Inc.'s Exhibit 1008059

VV E B P U B L | S H E R ' S C (DIV S T R U C T IC) bl K [1' VV IT Fl H T an L 3 . 2

Forms generally have two parts, an HTML part and a C61 script part.
This example lists the C61 script first since that‘s what we‘re working on
here, then it gives a few notes on how to compile the script, and finally lists
the corresponding HTML form description.
#include <stdio.h>

#incLude "cgiLib.h"
#define CHOICESZD

#define LOG "fusrlhttpd/LogsfeightbaLL_log.htmL"
void mainCvoid) {

node_t* cgidata;

unsigned char rn; {*random number */
FILE *questions; /* Log file *I

static char *messageE]={

"Yes”,

"No",

”Maybe”,

"My Reply is Yes",

"Reply Hazy, Try again",
"Concentrate and ask again",

”DefiniteLy”,

”Signs point to YES",

"Ask again Later”,

"without a doubt",

“It is certain",

”OutLook not so good",

"My repLy is No",
"Don't count on it”,

”OutLook good”,

"Most LikeLy”,

“Very doubtfuL",

"My sources say no",

"You may rely on it”,
"It is decidedLy so"

};

if(!(questions=fopenCLOG,”a”)))
errorpage(”Can‘t open Log fiLe"); /* catch an error*!

/* seed the random generator */

srand(getpid());

l*get a random number between 0 and 19 *l
rn = rand()Z20;

cgidata = getcgidata(); f* nou wasn‘t that simpLe? The
previous statement just

urLdecoded aLL of the data and

stored it in cgidata */

516 059 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008060

I 5 CG] SCRIPTS

/* now for the content... First, Let's write to the Log*/

fprintf(questions,”<PRE>%s </PRE>",

getval(cgidata,"question“));

fprinthquestions," Zs<iB><HR>\n",messageErn]);
chose<questions);

/* now Let's generate the response page */

htmlheader(”0raole Response"); /* print a header */

printf("The OracLe has thought long and hard about ");

printf("your question and has come to the folLouing "3;
printf("ansuer:
\n”);

printf<”<H1>Zs</H1>\n”,messageErn]);

/* finish off the HTML document */

htmlfooterC);

Note that you will have to change the path names and filenames to

match the ones your system uses. For example, if you put the log file in a

different location, you will have to change the l-IREF that points to it in the
bottom of the file.

To install this file, compile it and link it with the cgiLib.o object file that

we created earlier in this section. If you’re following the example exactly, type

gcc eightbaLL.c cgiLib.o —o lusrlhttpd/cgi—bin/eightbaLl

Note the path to the cgi-bin directory. This eliminates the step of moving
the compiled program into the correct directory. If you compile your

version locally, remember to either move it into the correct directory, or ask

your system administrator to move it for you if you don’t have write privi-
leges to make changes there.

Now, let‘s take a look at the form that calls this script. Remember that you

will have to change the machine name and path to match your own installation.
<HTML>

<HEAD>

<TITLE>Magic EightbaLl<lTITLE>
<IHEAD>

<BODY>

<H1>Troy‘s Magic 8-baLl page<lH1>

<P>
<HR>

This is where one shouLd turn for advice of criticaL

importance. To use this OracLe:

Concentrate

Type in a yes or no question
Click on the "ask" button.

CbnfinuedrNinextpage

060 ServiceNow, |nc.'s Exhibit 10%]

ServiceNow, Inc.'s Exhibit 1008061

VV E B

518

P U B L I S H E R ' S C C)!% S T R {J C T l C)!“ K I‘l VVI T H H T an L

Confinuedfnmuinewouspagc
<IUL>

You wiLL receive a reply shortly.

<HR>

<H1> The OracLe can onLy answer "YES or NO" questions.</H1>
<HR>

<FORM ACTION="http:l/found.cs.nyu.edulcgi—bin/douning/eightbaLL"
METHOD="POST">

Type in your question:4P>
<HR>

<TEXTAREA NAME="question" ROHS=2 COLS=60><ITEXTAREA>
<HR>

<INPUT TYPE="submit” VALUE="Ask 8-baLL”><INPUT TYPE="reset”
VALUE=”CLear Entry“>

<1FORM>

<HR>

<H5)I can't be heLd responsible for bad advice given

by this oracLe<lH5>
<H4>Accept no imitations! This is the Original WNW SBaLL and not a
cheap imitation!</H4>

Read Log<lA>
</BODY>

<IHTML>

To make this work, you mu5t make sure that all of the hrefs are
pointing to the path/names of the files you created on your system. The
paths and filenames listed here are only examples. To see the Eightball in
action in its original home, point your Web browser at:

httpzflfound.cs.nyu.eduidouningfeightbaLL.htmL

The Eightball example only deals with a single variable that contains the
question string. What happens when we need to deal with several
name/value pairs? Well, the following example works with the basic “feed-
back" page form that was described in Chapter 14, which allows a user to
submit comments via their browser. This version adds the comments to a

database, but this could easily be changed to a mailer that would mail the
results to the forms owner.

Here is the description of the database handler that goes with the form
description in Chapter 14. It will take the form data, return an HTML page
to the browser confirming receipt of the data. write the data to a database,
and send e-mail informing the author that new data has been added.
#inciude <stdio.h>

#incLude <stdLib.h>

#inctude "cgiLib.h"

#define MAILER “lusr/LibfsendmaiL”

#define ADDRESS "userasomewhere.com“

void mainCvoid){

061 ServiceNow, |nc.'s Exhibit 1008

3. 2

ServiceNow, Inc.'s Exhibit 1008062

15 CGI SCRIPTS

node_t* root;

FILE *mail;

char addressEBUFSIZ];

root=getcgidata();

/* put the user response page together */
htmlheader("MaiLer Page“);

printf("Thanks for your submission.
");

printf("The contents of your submission follou:“);
printf("<PRE>\n");

printnamelist(stdout,root);

htmlfooter();

/* construct the mail address */

sprintf(address,"Zs Zs",MAILER, ADDRESS);

mail=popen(address,"w”); /* open a pipe to mail */

imeai ==NULL)

errorpage("Couldn't Open mailer\n”);

/* send a page'if the mail pipe failed*/

fprintf(mail,"$ubject: WebHaiL!\n");

/* set the subject line in the mailer */

printnamelist(mail,root);

/*print all of the cgi data to the mailer */

fcloseCmail); /* close the mail pipe *I

Here’s an exercise. To get an idea of what your encoded strings look like
to your CGI scripts, write the following shell script:
#include <stdio.h>

#include <stdlib.h>

void main<int argc, char *arngJ)
{

int cont_Len,index;

char c;

cont_Len = atoi(getenvC”CONTENT_LENGTH”)3;

print("Content-type: text/html\n\n");

printf("<Listing>\n");

forCindex=0;index<cont_len;index++)
{

c = getchar();

ConfinuedtNIHextpage

062 ServiceNow, |nc.'s Exhibit 108%

ServiceNow, Inc.'s Exhibit 1008063

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Continued from previous page

printf("%c",c);
}

}

Compile this program and place it in the cgi-bin directory. Now, using
one of the forms you‘ve created, or one of the forms described in this book,
change the <ACTlON> tag to point at this program. (You must use the POST
method for this to work.) Now, when you submit a form that points to this

script, it should return the entire encoded string that your form sent it. This
can be a useful tool if your decoding algorithms aren’t doing what you expect.

HTTP Cookies
Mmmmm Cookies! Well, um, actually, HTTP cookies aren‘t as tasty as one

may hope. But that doesn‘t mean that they should be taken lightly. HTTP
cookies are the single most powerful mechanism at a C61 programmer’s
disposal for maintaining client-side state. So, what is a cookie? The quick
answer: “An I-lTTP cookie is persistent, client-side state, that is assigned

through a standard HTTP header."
Well, what‘s so cool about that? Let‘s think about the standard HTTP

transaction between a browser and a C61 application. First, the browser

opens a connection to an HTTP server and requests a C61 application. The
server locates the C61 application, executes it, sends it data, and takes its
results from the C61 application‘s standard output. The server then
forwards the output from the C61 application to the browser that requested
it in the first place, and kills the connection.

Once the connection is closed, the C61 application has no way of

keeping track of who had accessed it. The CGI application lies dormant
until a request is made for its services, then it springs to life, and goes back
to sleep. There is no persistence of state kept in the C61 application's
memory, since it exits, and no longer has a connection to any particular
client browser anyway

In many circumstances, it is useful to keep track of what transactions a
particular client has made. For instance, say you have an Internet shopping
service. Part of the functionality of this service is that you’d like your clients
to be able to shop around and add items to a virtual shopping bag. Once
the client is done shopping, you want him or her to be able to “check out,”
or pay for the items in the virtual shopping bag.

Well, the problem is keeping track of items as they are added to the
shopping bag. Your CGI application could generate a new HTML form with
hidden input tags after every transaction, and these hidden tags could
contain the names of items in the bag. Or you could keep a local database

520 063 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008064

l5 CGISCRWTS

on your server that assigned a unique ID that was hidden in an HTML form

and track items on your server. Or, use cookies.

Cookies allow you to store information on a client’s browser that is not

part of the HTML content. You can set the persistence of cookies to last

throughout a single session, or for some arbitrarily large amount of time.
Many of you no doubt have seen customizable Web sites. These are

Web sites where you select what information you want to see, and how you
want to see it. Amazingly enough, when you come back to that same site

the next day, it remembers all of the preferences you set. These work with

cookies. The site maintains a database of your preferences and assigns your
browser a unique ID number. This number is hidden in your browser as a
cookie so anytime that you access the site, the server at the site can deter-

mine who you are, and what your preferences are.

So, how does it work? Simply, a cookie is set on a browser with a stan-

dard HTTP header. This works exactly the same as the mechanism we use

to tell the server what type of content we are sending. The cookie data, in

its simplest form, is formatted as a name/value pair. To clear things up a bit,
the following code bit is an HTTP header for an HTML document that will

set a cookie name “fname” and the value of “Troy” on the client‘s browser:
Content-type: text/html

Set-Cookie: fname=Troy

You can have an arbitrary number of “Set-Cookiez” lines in a single
HTTP header. The server distinguishes the header from the content by
looking for a blank line seperating the two. This is why an HTTP header

must always be followed by an extra blank line. For example, the following
ouput would set a number of cookies, and then begin sending content:
Content-type: text/htmt
Set-Cookie: name=Bob

Set-Cookie: add=Smith Street

Set—Cookie: phone=555—1212

¢HTflL>

<HEAD)

Notice the extra line between the header and the content. If this line is

omitted, this script will not work. The browser will be sent an error message
of the form “Server Error 500”, which doesn’t mean a whole lot to anyone.

Relevance

The next interesting part of a cookie is setting its relevance. By default,
the cookies that you set will only be sent to documents with the same base

064 ServiceNow, |nc.'s Exhibit §fl08

ServiceNow, Inc.'s Exhibit 1008065

VV E B P U B L | S H E R ’ S C ()IV S T R U CIT 1C) bl K IT VVI T H H T ha L 3 . 2

URL of the C61 application that set the cookie. So, normally, only the site
that set a cookie can get the data back. Sometimes, you may want to set the
cookies relevance to a specific path on your server. This is useful if you have
a number of applications that may use the same names for cookies. This is
done by adding a “path” attribute to the cookie header. The attributes in the
header are separated by semi—colons (‘,). So, to set the path of a cookie to be
relevant to /cgi-bin/downing/, you could use the following cookie header:
Set-Cookie: name=Troy; path=lcgi—binldouningf

Once issued, this cookie would only be sent to C61 applications in the

/cgi-bin/downing/ directory.

Persistence

By default, a cookie will remain in effect throughout the session that it was
created in. In other words, the cookie is forgotten once the client’s browser is

restarted. So, how do you set the persistence? Well, there is an “expires"
attribute that can be added to the cookie header. The expires attribute is in an

odd format. The format is in the form Wdy, 11-Jun-98 12:15:00 GMT. More

generically, “Weekday, DD-Mon»YR I-IH:MM:SS GMT”, where the first part is
the weekday, the DD is the day of the month, Mon is an abbreviation for the
name of the month, YR is the last 2 digits of the year and HH:MM:SS are the
hours, minutes, and seconds of the expiration. All times are recorded in
Greenwich Mean Time (GMT). So, the following cookie header would remain

persistent until June 11, 1998 at 12:15 Greenwich Mean Time:
Set—Cookie: name=Troy; expires=wdy, 11-Jun-98 12:15:00 GMT

Retrieving Cookie Data
So, now you know how to set cookies, the obvious question is: “How

do I get the data back from the browser?“ All relevant cookie data is auto-
matically sent to a C61 application through an environment variable called
“HTTP_COOKIE“. The form is “key=val; key=val; for an arbitrary
number of keys. So, getting cookie values is as simple as reading the
HTTP_COOK1E environment variable and parsing it into name/value pairs.

Using the cgiLib Library with Cookies
The cgiLib.c library has a number of functions for setting and retrieving

cookie values. Setting cookies can be as simple as calling a setcookieO func-
tion. The setcookieO function takes four parameters representing the name,

value, path, and expiration of a cookie. Here is a code sample for setting a
cookie with the library:

522 065 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008066

'I 5 CGI SCRIPTS

httpheader();

setcookie("name”, ”Troy“, “/cgi-binfdouningl","de, 11—Jun—98 12:15:00
GMT");

printf("\n");

Notice that the httpheaderO function was issued first to print a

“Contenntype” header, and that the entire HTTP header was followed by a

printh“\n”); to print an extra line after the header. Often, you only want to

set a temporary cookie, in which case you can use the setsimplecookieO

function with a name and value parameter. For example:

httpheaderC);

setsimpLecookie(”Name", "Troy");

setsimpLecookie("Phone","555—1212");

printf("\n”);

There is one other simple function that will create an HTTP header and

set a cookie value all in one fell swoop: cookieheaderO. This is sent a docu-

ment title parameter, and a cookie name and value. This function will auto-

matically print the “Content-type“ header, and follow the cookie with the

extra blank line. For example:

cookieheader("Cookie Page", "name", "Troy");
1* content foltous*/

So as you can see, setting cookies is pretty simple. Extracting cookies is

almost identical to extracting the urlencoded CGI data. The getcookiedataO

function returns the root of a linked list that can be used in any of the

getvalO, printlistO, or printnamelistO functions. So, here is a code fragment
that gets the cookie data from the HTTP_COOKIE environment variable,

parses it into a linked list, and prints the value of the cookie named “fnarne”:

node_t * cookie;

cookie = getcookiedata();

htmLheader(“test page”);

printf("The vaLue of the cookie fname = %s\n", getvaLtcookie,"fname));
htmlfooterC);

Couldn’t be simpler. Instead of using the getvalO function in a printh

statement, we could have printed all of the cookie namefvalue pairs with

the following statement:

printnameList(stdout,cookie);

The printnamelistO function takes a stream or file handle, and the root

of a linked list. It then traverses the linked list and prints out all of the
names and values that it contains.

Finally, here is a simple program that sets a number of cookies and then

prints their values:

066 ServiceNow, |nc.'s Exhibit 1%?

ServiceNow, Inc.'s Exhibit 1008067

VV E B P U B L I S H E R ’ S C C)lfl S T R U C T l C)IQ K I'T VV | T H H T nA L 3 . 2

fiincLude <stdio.h>

#incLude "cgiLib.h"
void mainCvoid) {

node_t* cookie;

cookie=getcookiedata();

httpheaderC);

setsimpLecookie("name",”Troy");

setsimptecookie("add”, "719 Broadway”);
setsimplecooke(”phone", "555—1212”);

printf("\n”);

pri ntf ("<HTML><HEAD><TITLE>Cooki e Test<lTITLE><IHEAD>\n") ,-
printf("<BODY>\nThe submitted cookies foLlou:<PRE>/n");
printnameList(stdout,cookie);
printf(”<\PRE>\n");
htmLfooter();

As you can see, cookies are a powerful mechanism for storing informa-
tion on a user’s browser. They are also very simple to use, especially if you
use the prepackaged functions listed above. Common uses for cookies are
storing password information, keeping track of a particular user (look in
your browser's cookie database on your local machine, you may be
surprised to see how many services have assigned you an ID number so that
they can keep track or your browsing habits), or keeping track of items that
you may select during a shopping spree. The applications are enormous,
and I'm sure you'll come up with your own intriguing requirements for
client-side state tracking.

[ESSON #1: SAMPlE SCRIPTS FOR UNIX, WINDOWS,

MID MMINTOSH SERVERS
This final section offers a number of educational, useful, and/or interesting

CGI scripts, with something for whatever platform you’re likely to be using.
Most of them come from public archive sites around the Internet community,
and their authors deserve great thanks for making them publicly available.

Unix

Unix is generally the C61 programmer‘s operating system of choice. Most of
the more intriguing scripts seem to have been written for Unix servers. This
doesn‘t mean that they can’t be revised to run on other servers; in fact,
many of them can be modified to run on other platforms with very little
work. It may take some doing to convert a shell script to an AppleScnpt
program, but the C programs should port quite nicely. Note that any C

524 067 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008068

'l 5 CGI SCRIPTS

programs that are listed below that contain “#include “cgiLib.h”“ must be

linked with the cgiLibc functions listed earlier in this chapter. Well, enjoy!

fax_mailer.c
/* This works with a specific fax-modem terminal that

the author runs locally. The fax modem takes e—mail as

its input. This may need to be modified to work on your
system.

HTML Fax Utility. Should be run as a cgi file under

HTTPD. Takes the variable string supplied from the

HTML ”Form" submittaL and parses it into an e—mail

address.... The order that the variables appear in the

html form is important. They must appear in the form

in the same order that they are Listed in the defines

below, that is, AT..FROM. (Not the best approach for the

job; it'll get fixed at some point.) This will produce
an e-mail message of the form:

IFN=995-4122!AT=Troy_Downing/O=NYUlatext-fax.nyu.edu

text-fax.nyu will parse the "to“ line and create a fax
cover page and attempt to fax it to the number Listed

after IFN=. CurrentLy, aLL spaces are converted to

underscores in the address but not in the body.

The fax is mailed from nobodyayourserver.com and this

will appear on the header as the sender. So, Its

important to include the FROM string so that the
recipient will know who it came from....

*/

#include <stdio.h>

#include <stdlib.h>

#include "cgiLib.h“

fidefine MAILER “lusr/bin/mail"

#define LOGFILE "/usrflogs/fax.Log"

#define FAX "atext-fax.myserver.com"

void main(int argc, char *argv[])
{

node_t* data;

char addressEZSéJ;

FILE *mdata, *Log;

1* get form data *I

data = getcgidataC);

ConnnuedtNInextpage

068 ServiceNow, |nc.'s Exhibit 45998

ServiceNow, Inc.'s Exhibit 1008069

VV E B

526

P U B LI 5 H E R' 5 (2(3 N S T R U C T I() N Kl T VV IT Fl H T Nil

Continued from previous page

1* put together e—mail address. The getval() function is
passed the linked list that we created with the getcgidata()
function, and then the names of the input fields are passed to
retrieve the values that were input in the html form */

sprintf(address, ”Ks -s \"%s\“ \"IFN=Zs/AT=Zs/0=Zsf0U=Zsi\"Ks",
MAILER, getval(data,"subject"), getval(data,"FaxNo"),
getval(data,"addressee"),getval(data,"0rganization"),
getval(data,”address"),FAX);

I* open a pipe to the mailer */
if (!(mdata=popen(address,"w")))

errorpage("Couldn't open the mailer");

!* Send the mail message to the fax machine*/

fprintf€mdata,”%s\n", getval(data,"body”));
fprintf<mdata,"Hessage Sender: %s\n",

getval(data,"from"));

pclose(mdata);

[*write the data to the Log file*!

Log=fopenCLOGFILE, "a");

fprintf(log,”----------\n“);

printnamelist(Log,data);
fprinthlog,"----------end-—\n");
fcloseClog);

/* send a response page to the user */
htmlheader("Fax Sentl”);

printf("<h1>MaiL sent!</h1>\n");
printf("content folLows:<p><hr><PRE>\n”);
printnamelist(stdout,data);

printf("</PRE>");

/* end html document *I

htmlfooter();

}

fax mailer.html
<HTHL>

<HEAD>

<title>FAX Utility<ltitle>
<IHEAD>

<BODY>

<h1>FAX Mailer<lh1>

<hr>

This form will send a FAX to the fax numberirecipient that is

supplied. Currently it will only work with area codes 212 and 718. If

069 ServiceNow, |nc.'s Exhibit 1008

3. 2

ServiceNow, Inc.'s Exhibit 1008070

'I 5 CG! SCRIPTS

you haven't used this before, please read the instruc—
tions<la>_<p>

***REQUIRED fields are marked with a *<p>
<hr>

<form action="http:[/found.cs.nyu.edu/cgi-bin/douning/fax"
METHOD=”P05T”>

<pre>

To:* <input

Sub:* <input

Fax number:* <input

Organization: <input

Address: <input
<lpre>
<hr>

Body:<p>

type=“text"

type="text"

type="text”

type=”text“

type=“text"

name=”addressee" size=30><p>

name=”subject" size=30><p>

name="FaxNo" size=15><p>

name="0rganization“ size=30><p>

name=”address" size=30><p>

<TEXTAREA name=”body" COLS=80 ROHS=10><ITEXTAREA>
<p>
<hr>

From:<input type="text" name="from" size=35><p>
<input type="submit" ualue="submit”>
slform>

<IBODY>

</HTML>

mailer.c

This next script will send e-mail submitted via a form. It can be useful if

users can’t use mailto: URLs with their browsers.

/* This is a simple mail program. It uses the cgiLib Library
and is configurable in the html, so it's useful for a number
of users at a site. It expects a form such as:

<FORM ACTION=http:l/foo.com/cgi-bin/mailer/douningafoo.com>
<INPUT name="email“ >
<INPUT ...>

<FORH>

there can be an arbitrary number of input elements in the

form. If one of the input fields has the name "email", then
the contents of the field will be used as a return address,
otherwise the server's address will be used. The email

address that will be sent the results of the form submission

is appended to the URL in the ACTION attribute. This makes it

possible for a number of users to use this same program by
only changing the URL in the ACTION attribute to point to
their particular email address

*/

#include <stdio.h>

fiinclude <stdlib.h>

#include "cgiLib.h"

070 Servicefibwefhb’.’§’f£3€fiibit 19978

ServiceNow, Inc.'s Exhibit 1008071

VV E B

528

P U B LI 5 H E R ' S C (DIV 3 T R U CCT IC) bl K |1' VV IT Fl H T AA L

Cbnfinuedjronlpreflouspage

#define MAILER "lusr/Lib/sendmail”

void main(void){

node_t* root;

FILE *mail;

char addressEBUFSIZJ;

root=getcgidata();

/* put the user response page together */
htmlheader("Test Page“);

printf("<BODY><PRE)");
printf("Thanks for your submission Z5
\n",

getval(root, "fname"));

printf(”He have your email address as: Zs
\n“,
getval(root,"email”));

printf(“The contents of your submission follou:\n”);

printnamelist(stdout,root);
htmlfooter();

{*construct the mail address *I

sprinti<address,"%s Zs",HAILER, getenv("PATH_INFO")+1);

/* if an email address Hasn't provided, send an error*/

if(getenv("PATH_INFO" ==NULL)
errorpage(”You must supply an email address \

appended to the action url. Otherwise, \
this mailer has no idea who to mail to...");

mail=popen(address,"u"); /* open a pipe to mail *I

if(mail==NULL)

errorpage("CouLdn't open mailer\n");
/* send a page if the mail pipe failed*f

fprintf(mail,"Subject: HebMail!\n“);
/* set the subject line in the mailer */

if(getval(root,"email")!=NULL)
I* if email is 3 var, make that the rat. add*I

fprintf(maiL,"RepLy-to: %s\n",
getvaltroot,"email”));

printnamelist(maiL,root);
[*print all of the cgi data to the mailer *!

folose<maiL); I* close the mail pipe *I

071 ServiceNow, |nc.'s Exhibit 1008

3 .2

ServiceNow, Inc.'s Exhibit 1008072

'l 5 CGI SCRIPTS

mailer.html
<HTML>

<HEAD>

<TITLE>MaiL Interface<ITITLE>
</HEAD>

<BODY>

<H1>Mailer<IH1>

<P>Please send us a message:</P>

<FORM ACTION=”http:f/foo.eom/cgi—bin/maiLer/douningafoo.com"
METHOD="POST">

<PRE>

Name: <INPUT name=“name">

Email: <INPUT name=“emaiL”>

<TEXTAREA rous=1fl cols=60 name=”message">

Type your message here
</TEXTAREA>

<INPUT type="submit">
</PRE>

</FORM>

<IBODY>

<1HTML>

names.c

/* This program parses a form that contains 3 input fields: a

name suggestion for my expected new baby, a sex which couLd

be maLe/femaLe/either, and a comment

the suggestions are added to a database that I'm keeping
untiL I actuaLly have to name the kid.

addendum: The baby was born 3-25—95 and named Morgan
*/

#include <stdio.h>

#inelude <stdLib.h>

flincLude ”cgiLib.h"

#define NAMES "/usripubfnames”

void main(void)

{

char addressE256];

FILE *names;

node_t* data;

data=getcgidata();

names = fopen<NAMES, “a");

htmLheader("Name Submission");

CDHUHHEdINIHEXEpflgE

O72 ServiceNow, |nc.'s Exhibit 10%.)

ServiceNow, Inc.'s Exhibit 1008073

VV E B

P U B L | S H E R ’ S C (DIV S T RlJ C T ICD bl K IT VVI T H H T An L

Chafinuedfnnngnevmuspage

fprintf(names,“%s\t\t%s\t%s\n“,getvaL(data,"name"),
getual(data,"sex"),getval(data,"comment"));

choseCnames);

printf(”<h1>Thanks for your suggestionl<Ih1> \n");
printf(”<h2>l uiLL take the name \”%s\" into serious \

consideration!<p>”,getval(data,”name")3;

printf(””);
printf(”List of names<p>”);

htmlfooter();

names.form
<form action="http:Ilmyserver.comfegi-binlnames” METHOD="POST">
PLease help suggest a name. Enter a name, comment if you want, and
sex.

name:<input type="text” NAME=“name" size=15>
<seleet name=“sex">

<option>MaLe

<option>FemaLe

<option>Either
<lseLect>

comment:<input type="text” name=”comment” size=30>
<input type="submit" value="submit name">
List of names so far...<fa>
<lform>

Easy Counter

530

Most Web servers support server-side programs, which are a way of creating
small bits of HTML on-the-fly. These are similar to cgi scripts, but they do
not need to be called via a form or hyperlink#they can be called from the

source of your HTML document.

Server-side scripts are a marvelously easy way of adding a counter to your

Web page. A counter is a simple program that keeps track of how many
people have visited your site. Whenever your Web page is loaded, the counter
is incremented. You can then print a message onto your page similar to:

1,238 foLk have visited this Web page since January 1, 1996.

STYLE TIP: Counters are highly over-used. Given that warning, you’re still
welcome to use one but be aware that some people find them annoying.

To add a counter to your Web page, split your HTML document into
two documents. The first file should contain all the HTML markup you

want to appear before the counter appears. The second file should contain
the rest of the markup.

073 ServiceNow, |nc.'s Exhibit 1008

3 . 2

ServiceNow, Inc.'s Exhibit 1008074

'IS CGI SCRIPTS

For instance, you might have two files as follows:

filelhtml
<HTML>

<HEAD>

<TITLE>My counter Page</TITLE>
</HEAD>

<BODY>

A counter page. <P>
<HR>

file2.html

faLk have visited this Web page since January 1, 1996.<P>
<HR>

Pretty neat, eh?
</BODY>

</HTML>

Now create a text file which contains the initial counter value Ge, 0).
This file shold be named counttxt.

Mil-iii
0

NOTE: Make sure that all the tiles are readable and writable by the Web sewer.
Use the chmad 644 command to give the file the correct made. For example:
chmad 644 counter.txt

You’ll now use a simple server-side program to stitch these three files
together. The C code for such a program is as follows:
I***

caunter.c:

A script to add a counter to your Web page.
***I

#define HTML_HEADER "(entire local path to)/test.head"

fidefine HTML_£0UNTER "(entire local path to)/test.count"
#define HTML_FOOTER "(entire Local path ta)/test.foot“

void print_file(char *file)
{

FILE *fp = fopen(file,"r+");

char LineE1024J;

LineEUJ = '\fl';

while (fscanf(fp, “ZE*\n]s", Line) != EOF)
{

fgetc(fp);

printf("Zs\n", line);

lineEU] = ‘\0‘;
}

fclose(fp);

Confinucdtnrnextpagc

074 ServiceNow, |nc.'s Exhibit 39108

ServiceNow, Inc.'s Exhibit 1008075

VV E B

532

P U B L | 5 H E R ' S C (DIV S T R U CCT |() bl K IT VV lT rl H T AA L

Cmmnmdfimnpmwmwmge

void incrementfipounter<char *fiLe)
{

int counter;

FILE *fp = fopen<file,"r+");

fscanf(fp, "1d”, Ecounter);

/* Increment the counter */

counter++;

1* Save the new value to the count.txt fiLe. *!

fseek(fp, UL, 0);

fprintf(fp, ”Zd\n", counter);
chosetfp);

/* Spit out the count number. */
printf(”%d", counter);

}

void mainCint argc, char **argv)
{

printf(”Content-type: text!html\n\n”);
print_fiLe(”fiLe1.html");
increment_counter(“count.txt");

print_fiLe("file2.html”);
}

You can compile the program (assuming you’re using the Unix cc

compiler) as follows:

cc counter.c -o fcgi-binfcounter.htmt

Modify the output path, if necessary, so that the output is put in your
server‘s cgi-bin directory. You can name this file anything you want,
counterhtml is just a suggestion.

To test the file, just run the counterzhtml file by typing its name. The
correct HTML output should appear on your screen if everything seems
fine. You can now have people access your counter directly. For example. if
your cgi-bin directory is at: http://www.smartypants.com/cgi-bin then your
new counting Web page can be accessed at: http:/fwwwsmartypants.com/cgi-
bin/counterhtml

If you wish, you can create an alias so that when people seem to be
accessing a Web page from your regular Web directory they‘ll actually be
accessing the counteizhtml program in the cgi—bin directory

Move to the config directory of your Web server and edit the srmtonf
file. Add this line to the ScriptAlias section:

ScriptALias lmypage.htmL lcgi-binlcounter.htmt

The first value should be the directory where your Web pages are stored.

You can change mypage.html to any name you’d like people to access. The
second value should be the actual cgi-bin directory on your Web server.

075 ServiceNow, |nc.'s Exhibit 1008

3. 2

ServiceNow, Inc.'s Exhibit 1008076

‘I 5 CGI SCRIPTS

Once your server is restarted, your counter page will be accessed when-

ever somebody calls http://www.smartypants.com/mypage.html

Server Push

Most late-model browsers, such as the Netscape Navigator and Microsoft’s
Internet Explorer, allow dynamic content in the form of a “Server Push" or a

“Client Pull.” What the Server Push allows you to do is send a series of

objects to the client rather than a single one. Normally, a C61 script sends a
single type of data, say a text/html document or a GIF image and once this
object has been passed on to the client, the connection is broken. With a

Server Push, the connection is left open while the server sends a series of

objects and is not closed until the script terminates. This is particularly
useful using the multipart/x—mixed—replace MIME type with graphic images.
This will allow you to send a graphic image to the client browser and then

immediately replace it with another. By stringing a series of images like this
together, you can create a sort of inline animation on the client’s browser

without using an external “helper application.”

The Client Pull is similar to the Server Push but rather than having the
server send another object, the client requests a series of objects after a
specified interval. This comes in handy if you want the client to keep
checking a document or script for changes automatically and for orches-
trating “guided tours" without requiring user intervention. The Client Pull

is implemented as an HTML tag that is interpreted by the client’s browser.
An example of a Server Push and a Client Pull follow.

Slide Show Animation—The following is the code for an inline anima-

tion script. It will send a series of GIF files to a browser, replacing each
image with a subsequent one. It can easily be modified to use JPEG or XBM
images as well. To work as intended, it should be called with an HTML

document similar to the one that follows.

movie.c

/* Muitipart-mixed cgi demo.

Troy Downing 1995

This was written to demonstrate the muLtipart/mixed—repLace
capabilities that are now available with HTML 3.0 compLiant
browsers.

This uiLL send a series of images to a browser. Each image
wilL replace the previous image giving the iLlusion of an

Continued on next page

076 ServiceNow, |nc.'s Exhibit 1%)38

ServiceNow, Inc.'s Exhibit 1008077

VV E B

534

P U B LI 5 H E R’ S (ICD N S T R U C TI C)T4 K [T \V IT H H T Nil

Continued from premous page

animation. This will work best on fast networks with smaLL

images of the same size/resolution.

Just to make things simple, I've named the images 1..8.gif;
this could be easily modified to deaL with other

filenames/types.
*!

#include <stdio.h>

#define BOUNDARY “——ThisRandomString\n" {*marks beginning of file*/
#define ENDING "—-ThisRandomString—-\n"l*marks end of file*f
fidefine HEADER "Content-typezmultipart/x-mixed

replace;boundary=ThisRandomString”
#define TYPE "Content-type: imagelgif" {*mime type of fiLe*l
#define IMAGETYPE "gif" {*filename suffix*!
#define IMAGEDIR "lusridowninglgifsl" /*contains the images*l
#define NAHELEN 256

fidefine REPEAT 8 {*number of images to send*i
#define BUE_§IZE 1024 /*number of bytes to read at

once*/

void main(void)

{

FILE *{_spew; {*points to image files*!
char fileENAHELEN]; {*holds image file name for use with J

fopen()*!
char bufferEBUF_§IZE]; {*bufier for reading file*l
int counter,count,tries;

printf("%s\n\n“,HEADER); {*print the multipart header*!

oounter=REPEAT+1;

while(counter--) {*cyole through images*!
{

printf(”%s",BOUNDARY); /*print beginning boundary*!
printf("Zs\n\n",TYPE); /*print mime type for image*{

sprintf(fiLe,”Zde.Zs”,IHAGEDIR,counter,IMAGETYPE);
{*construct fiLename*/

while((f_spew = fopen(file,"r"))==NULL) {*open file*!
{

if(tries--<U) break;

}

while (!feof(f_spew)) 1*send data while not EOF*!
{

count = fread(buffer, 1, BUF_§IZE, f_spew);

fwrite(buffer, 1, count, stdout);
J.

fclose(f_spew);

077 ServiceNow, Inc.'s Exhibit 1008

3 . 2

ServiceNow, Inc.'s Exhibit 1008078

'I 5 CGI SCRIPTS

printf("%s",ENDING); /*print ending boundary*/

}

Now, here is the HTML page that calls this program. I’m assuming that the
code was compiled as “moviecgi” and placed in the cgi-bin directory.
<HTML>

<HEAD>

<TITLE>Movie Test<lTITLE>
<IHEAD>

<body>

The following box should show a series of images. Click the
“reload” button to restart it.

<CENTER>

(TABLE border = 1D><td><img src = "http:flyourserver.com/cgi-bin/
movie.cgi"></td>
<ITABLE>

</CENTER>

<IBODY>

The following is an example of a Client Pull. The Client Pull is specified
with an HTML <META> tag. For more information on the HTML 3 specs,
see Chapter 10. This page will automatically reload itself every 30 seconds.
<HTHL>

<HEAD>

<TITLE> Client PuLl demo </TITLE>

<HETA httpeequiv=“Refresh” content=30>
</HEAD>
<BODY>

The foLlouing is a picture of our Lab. It will
refresh every 30 seconds.

<fBODY>

Perl

Perl is a very popular scripting language for creating CGI applications. Since
it is beyond the scope of this book to teach you the “Practical Expression
and Report Language” (PERL), here are some code examples in Perl for
creating simple CGI applications.

In the cgiLib.c library earlier in this chapter, there were a number of

common functions for creating simple html documents and decoding URL
data. The following code example is an almost identical library, but
designed to be included in Perl scripts.

078 ServiceNow, |nc.'s Exhibit 1008
535

ServiceNow, Inc.'s Exhibit 1008079

VV E B P U B Li S H E R’ 5 C (Did 5 T R U C TI CJPJ K IT VVI Tli H Tin L 3 .2

Perl is much slower than compiled C code, but has one advantage. It has

a very powerful regular expression model for easily manipulating strings. So,
the getcgidataO funcuon in Perl, as you will soon see, is much shorter and
more elegant than its C equivalent. Well enough talk, here’s the library:

chLIb.p|
cgiLib.pL

Troy Downing

downinganyu.edu
#

#

#

This is a package or core subroutines that are heLpfuL when
writing cgi appLications

the foLLouing Line must be present for ”require"
to succeed

1;

htmlheader prints out a standard header, and <HEAD>... tags.
syntax htmlheader("titLe”);
sub htmlheader {

LocaL($titLe) = a_;

print "Content—type: text!htmt\n\n";
print ”<HTML><HEAD><TITLE>$titLe<ITITLE><IHEAD>\n";

}

textheader prints out a textipLain http header
sub textheader {

print(“Content—type: textIpLain\n\n”);
}

imageheader prints out a standard http gif header
#syntax imageheader(”gif”);
sub imageheader {

Local($type) = fi_;

print ”Content—type: image!$type\n\n";
}

htmLfooter prints out a standard htmL doc cLosure
sub htmlfooter {

print ”\n<fBODY><IHTML>\n";
}

getcgidata uiLL decode the urLencoded data from a form or
query submission
it uiLl return the decoded namelvalue pairs as a alist.

536 079 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008080

‘l 5 CGI SCRIPTS

By default, it

will determine how to get the data

(ie POST or GET) by examining the

REQUEST_METHOD environment variable.
It can be forced to use either

3 POST or GET by passing it the value ”POST" or

#"GET" as a parameter. ie:

ZaList — getcgidata(”POST”);

sub getcgidata {

Local($method) = a_;

if($method eq ””) { # check to see if a value was passed
$method = SENV‘E'REQUESTHMETHOD'};

J.

if (($method eq ”POST") 1| ($method eq "post")) {

readtSTDIN, $buffer, $ENV{'CONTENT_LENGTH'});
} else {

$buffer = SENV{‘QUERY_STRING'};
}

anameVaLue split(/&/, Sbuffer);

#break up the urlencoded block

foreach Spair (anameVaLue) {

($name, $vaLue) = split(/=/, Spair);
fidivide the name/value pairs

$value " tr/+/ /; #repLace aLL + with a space

$value " s/Z(Ea—fA-FOH9JEa-fA-FU—9J)Ipack("C",

hex($1))/eg;

fidecode any escaped hex characters
if ($value ne "”) {

$form£$name} = Svalue;
}

}

return Zform;
}

simplePage generates a simple html page.
It expects a title and

a message string to use when generating the page

sub simpLePage {

LocaL($titLe,$message) = a_;

htmlheader£$title);

print(”$message\n");

htmlfooter();

O80 ServiceNow, |nc.'s Exhibit 19978

ServiceNow, Inc.'s Exhibit 1008081

VV E B

538

P U B L l S H E R ’ S C (DIV S T R U CLT l<3 P4 K IT VVI T H H T AA l

Phew! That was almost as ugly as the cgiLib.c file! Well, the nice thing

about it is, like the cgiLib.c file, you don‘t ever need to look at it again. Just

include it in any CGI programs that you write in Perl. Here is an example

program written in Perl that generates a simple HTML page:

#E/usrllocal/binlperl

require 'cgiLib.pl‘;

htmlheader("Test page");

print "<H1>Hhoopy! A generated page!\n“;

htmlfooter();

That wasn‘t so bad now was it? Here’s a more complicated example.

This is the equivalent to the mailerc program earlier in this chapter. This

will parse nearly any HTML form input, and send it as e-mail to an address

specified in the ACTION attribute as path information. (ie:

ACTION=http://foo.com/cgi—bin/mailit.deowning@foo.com)
O O

mallit.pl
#E/usr/local/bin/perl
#

Troy Downing

downinganyu.edu
#

This is a basic mail application. It is generic and can be used by a

variety

of installations using different recipient email addresses.
#

the destination address is passed in the PATH,INFO variable, so the
form that

uses this would look something like:a:

<FORH action=/cgi—binlmaiLit/downinganyu.edu>
emaiL: <INPUT name=email>

name: <INPUT name=name>

Mess: <INPUT name=message>
</FORM>

if the name of one of your input fields is called ”email” ,

then this mailer will use that as the ”Reply-To“ field,

otherwise, the server's return address will be used.

%%%1k¥th:2th=lfl:3t
require 'cgiLib.pL';

Zlist = getcgidata();

if ($Listlmessage} eq ””) {

simplePage("MaiLit Error”, "<H1>You Must supply a message!</H1>”);

exit();

081 ServiceNow, |nc.'s Exhibit 1008

3

n
. I

ServiceNow, Inc.'s Exhibit 1008082

'I 5 CGI SCRIPTS

htmlheader(”Form Submission");

print ”<H1 aLign=center>Thanks for your submission<lH1>\n”;

print ”The file contents of your submission foLlou:
\n<PRE>\n";

$maiLaddr= SENV{'PATHHINFO'};

$maiLaddr =” tr/\/f I; # This will repLace the first I

open (MAIL,”| maiL $maiLaddr”);

if<$list£email} ne "") {

print MAIL "RepLy-To: $List£email}\n";
}

foreach (keys Zlist) {

print ”$_ = $List{$_}\n";

print (MAIL "$_ = $list{$_}\n“);
}

print ”<fpre>”;

close (MAIL);

htmLfooter();

Now, you‘ve got to admit that was pretty simple! All of the dirty work is

hidden in the cgiLibpl functions. This leaves you, the programmer, free to

concentrate on what you want to program, rather than the tedious part of

decoding urlencoded data streams. So, try taking the mailitpl program

above and modify it for your own needs. Once you start to play with it a
bit, it should become clear how the cgiLib.pl functions work. Enjoy!

DOSlWindows Scripts
There are a number of DOS and Windows scripts available on the Internet

archives. Many are written as batch files, C programs, compiled BASIC

programs, or PASCAL programs. Since most of the C programs written for

Unix can easily be modified to work on a DOS system, this section will
concentrate on the batch files.

A few notes about file location: The standard directory for CGI scripts on

a Unix server is in the cgi-bin directory relative to the server root directory. As
described in Chapter 21, HTML Assistant, the HTTPD server is installed rela-

tive to a directory specified in the configuration files for a particular installa-

tion. This directory is usually something like C:\I-ITTPD and all of the docu-

ment, configuration, and CGI files are in directories relative to this. Any refer-

ence to “server root" is referring to this directory For example: Given the

above installation, to say that the cgi-bin directory is relative to the server root

directory is the same as saying C:\HTTPD\CGI-BIN. Likewise, the document

082 ServiceNow, |nc.'s Exhibit 1008539

ServiceNow, Inc.'s Exhibit 1008083

VV E B P U B L | 5 H E R ’ S C C)!“ 5 T R U C T l(3 hl K [T VVI T H H T fin L 3 . 2

root directory is the directory that you have configured your server to look for
HTML documents in. Normally this would be something like
C:\HTTPD\HTDOCS. The HTTPD server for Windows is very similar to the

Unix version. Relative to server root, there is normally a cgi-win and a cgi-dos

directory You should place your DOS and Windows CGI scripts into one of
these corresponding directories.

args.bat
rem

rem ************

rem * ARGS.BAT *

rem ************
rem

rem Script used in args.htm to iLLustrate argument transfer
rem

rem Bob Denny <rdennyanetcom.com>

rem 30-Apr—94
rem

rem Echo is OFF at script entry
rem

set of=Zoutput_fiLeZ

echo Content~type:text/plain > Zofx
echo. >> Zofz

echo CGI/1.U test script report: >> Zofz

echo. >> Zofz

echo argc = Z# argv: >> Zofz
if NOT %#== echo Z1 22 23 24 KS 26 Z? 28 >> Zofz

if Zfl==0 echo {empty} >> Zofz
echo. >> Zon

echo environment variables: >> Zon

echo REQUEST_NETHOD=ZREQUEST_HETHODZ >> Zofz

echo SCRIPT_NAME=ZSCRIPT_NAME% >> Zofz

echo GUERY_STRING=ZGUERY_STRINGZ >> Zofz

echo PATH_INFO=ZPATH_INFOZ >> Zofz

echo PATH_IRANSLATED=ZPATH_IRANSLATEDZ >> Zon
echo. >> Zofz

if NOT ZREQUEST_METHODZ==POST goto done

echo CONTENT_TYPE=ZCONTENT_IYPEZ >> Zon

echo CONTENT_FILE=ZCONTENT_FILEZ >> Zofz

echo CONTENT_LENGTH=XCONTENT_LENGTH >> Zon

echo ---- begin content ---- >> Zofz

type XCONTENI_FILEZ >> Zofz
echo. >> Zofz

echo ----- and content ————— >> Zofz
echo. >> Zon

:done

echo -- end of report -- >> Zofz

540 083 ServiceNow, |nc.'s Exhibit 1008

ServiceNow, Inc.'s Exhibit 1008084

'I 5 CGI SCRIPTS

demoindx.bat
rem

rem ****************

rem * DEMOINDX.BAT *

rem ****************
rem

rem Offers an ISINDEX document if no query arguments,
rem else reports on the "resuLts" of the query.
rem

rem Bob Denny <rdennyanetcom.com>

rem 28-Apr-94
rem

set of=Zoutput_fileZ

if NOT %#==D goto shoquery
rem

rem No query, signal server to do redirect to ISINDEX demo doc.
rem

echo Location: Idemo/isindex.htm > Zofz

echo. >> Zon

goto done
rem

rem There were query arguments. Generate pLain text report
(COMMAND . COM: BAH I)
rem

:shoquery

echo Content-type:text/ptain > Zofz
echo. >> Zofz

echo Here is what the server uouLd have fed to the back-end program:
>> Xon

echo. >> Zofz

echo Number of query arguments = Z# >> Zofz
echo. >> Zofz

echo Arguments: >> Zon

echo Z1 22 23 24 KS 26 Z? 28 29 >> Zofz
:done

echo —— end of report -- >> Zofz

Macintosh Scripts
Most Macintosh scripts are written as AppleScript programs. Here is an

AppleScript CGI script and an HTML file to give you an idea of how

Macintosh CGI scripting works. Dennis Wilkinson wrote the code you see
here as an example of how to get Macl-ITTP to deal with data from forms

supported by clients like XMosaic 2.0.

queryapplescript
teLL window 1 of appLication ”Scriptable Text Editor"

set contents to http_search_args

return ”<titLe>Server Query Response<ltitte><h1>Hi!</h1>He get
the picture. Thanks for the feedback.<P><address>Here<lAddress>”

end tell

084 ServiceNow, |nc.'s Exhibit 100584]

ServiceNow, Inc.'s Exhibit 1008085

VV E B

P U B LI 3 H E R’ S C CDIQ S T R U C TI C)r4 K IT VVI T H FiT NflL

query.htm|
<titLe>Feedback Form<ltitLe>

<h2>Submit your feedback<lh2>
<form method=GET action=”http:lform.script">

Name: <input name="username"><p>

E—MaiL: <input name="

<seLect name="feedback"r

<option seLected>I Love It!
<option>1'm Lost!

<option>I Hate It!
<fseLect><p>

usermaiL"><p>

<input type=submit vaLue=“Submit your feedback now"><p>
<input type=reset value=”Reset this form"><p>
<Iform>

Kathie—154 MIME types

HIM! Type

upplitntion/udivemessuge

upplitution/undrew-inset

upplicution/upplefile

uppiicalion/ulomicmuil

upplituiion/dtu-rh

upplicution/dec-dx

opplicu1ion/muc-hinhex40

application/mumrileii

application/msword

upplicufion/news-messuge—id

appliculion/news—Irunsmission

upplitution/oclel-streum

upplitutionXodu

application/pt”

application/postscript

upplitution/remote—priniing

upplicufionfm‘

uppliculion/slule

uppiiculion/x-mif

application/Mia

uppliculion/wordperfectS.I

uppliculiunfx-csh

uppiituiion/x-dvi

542

File Exiensionls)

bin

odu

pdf

ui eps ps

rif

mif

(sh

dv

085 ServiceNow, |nc.'s Exhibit 1008

3 .2

MWWWWWWMW—'=.fiflvffim

ServiceNow, Inc.'s Exhibit 1008086

-. 'fllfli'm»

uppiicaiion/x-hdf

applitnlion/x-Iulex

upplitufion/x-neitdf

upplicufiun/x-sh

upplituliun/x-tcl

application/Hex

upplicafion/x-Iexinfo

uppficufion/x-Iroff

upplicufion/x-Iroff-mun

upplitulion/x-Troff-me

upplicution/x-Iroff-ms

uppliculinn/xmis—source

application/zip

uppiicutinn/x-bcpio

upplitulion/x-tpio

upplicution/x-gtur

upplituiion/x-shar

upplitution/x-sv‘ltpie

uppiicution/x-sv4crt

upplitalion/x-tur

uppiicution/x—ustur

audio/basic

uudio/x—aiff

uudio/x-wuv

image/gif

image/ief

image/ipeg

image/tiff

imuge/x-cmu-raster

imuge/x-ponabIe-anymup

image/x—porlubIe-bifmup

image/x-ponuble-gruymup

image/x-porlnhIe-pixmup

image/x-rgb

image/x-xbitmup

image/x-xpixmup

'IS CGI SCRIPTS

File Extenflbnm - 'j ..

hdf

latex

nt cdf

sh

1d

Iex

Iexinfo Iexi

1 tr roff

mun

me

ms

src

zip

hcpio

(pin

gtur '

shur

sv4tpio

swim

fur

uslur

au snd

uif cliff uift

WOV

gi

ief

km ing in

riff Iif

rus

pnrn

pbm

pgm

ppm

rgb

xbm

xpm

O86

Continued on ncxt page

ServiceNow, |nc.'s Exhibit 1008
543

ServiceNow, Inc.'s Exhibit 1008087

WEB PUBLISHER’S CONSTRUCTION KIT WITH HTML 3.2

Continuedfrom previous page

imageXx-xwindnwdump xwd

message/exiernuI-hody

message/news

messagefpurfiul

message/rft822

mullipurI/ulternutive

mulfipurt/uppledouble

multipnrtfdigesl

multipun/mixed

multipufl/purullel

text/html html

Iext/pluin le

text/richtext nx

text/Inb—sepnmted-vulues lsv

lexIXx-seiexl elx

video/mpeg mpeg mpg mpe

videquuitinme ql mov

video/x-msvitleo uvi

video/x—sgi-movie

WHAT NOW!
There are popular services that you can use in your Web publishing. The
next chapter looks at some of the major non-HTTP services available
through WWW browsers.

movie

544 087 ServiceNow, |nc.'s Exhibit 1008

