
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:
1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Design and Performance of MedJava

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
Washington University

Apple/Twitter
Ex. 1017

IPR1 of U.S. Pat. No. 7,765,482
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The Design and Performance of MedJava
A Distributed Electronic Medical Imaging System

Developed with Java Applets and Web Tools

Prashant Jain, Seth Widoff, and Douglas C. Schmidt
fpjain,sbw1,schmidtg@cs.wustl.edu

Department of Computer Science

Washington University

St. Louis, MO 63130, (314) 935-4215�

This paper appeared in the4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS), Sante
Fe, New Mexico, April 1998.

Abstract

The Java programming language has gained substantial popu-
larity in the past two years. Java’s networking features, along
with the growing number of Web browsers that execute Java
applets, facilitate Internet programming. Despite the popu-
larity of Java, however, there are many concerns about its ef-
ficiency. In particular, networking and computation perfor-
mance are key concerns when considering the use of Java to
develop performance-sensitive distributed applications.

This paper makes three contributions to the study of Java for
performance-sensitive distributed applications. First, we de-
scribe an architecture using Java and the Web to develop Med-
Java, which is a distributed electronic medical imaging sys-
tem with stringent networking and computation requirements.
Second, we present benchmarks of MedJava image processing
and compare the results to the performance of xv, which is an
equivalent image processing application written in C. Finally,
we present performance benchmarks using Java as a transport
interface to exchange large medical images over high-speed
ATM networks.

For computationally intensive algorithms, such as image
filters, hand-optimized Java code, coupled with use of a JIT
compiler, can sometimes compensate for the lack of compile-
time optimization and yield performance commensurate with
identical compiled C code. With rigorous compile-time opti-
mizations employed, C compilers still tend to generate more
efficient code. However, with the advent of highly optimiz-
ing Java compilers, it should be feasible to use Java for the

�This research is supported in part by a grant from Siemens Medical En-
gineering, Erlangen, Germany.

performance-sensitive distributed applications where C and
C++ are currently used.

1 Introduction

Medical imaging plays a key role in the development of a reg-
ulatory review process for radiologists and physicians [1]. The
demand for electronic medical imaging systems (EMISs) that
allow visualization and processing of medical images has in-
creased significantly [2]. The advent of modalities, such as
angiography, CT, MRI, nuclear medicine, and ultrasound, that
acquire data digitally and the ability to digitize medical images
from film has heightened the demand for EMISs.

The growing demand for EMISs has been coupled with a
need to access medical images and other diagnostic informa-
tion remotely across networks [3]. Connecting radiologists
electronically with patients increases the availability of health
care. In addition, it can facilitate the delivery of remote diag-
nostics and remote surgery [4].

As a result of these forces, there is also increasing de-
mand fordistributedEMISs. These systems supply health care
providers with the capability to access medical images and re-
lated clinical studies across a network in order to analyze and
diagnose patient records and exams. The need for distributed
EMISs is also driven by economic factors. As independent
health hospitals consolidate into integrated health care deliv-
ery systems [2], they will require distributed computer systems
to unify their multiple and distinct image repositories.

Figure 1 shows the network topology of a distributed EMIS.
In this environment, medical images are captured by modali-
ties and transferred to appropriate Image Stores. Radiologists
and physicians can then download these images to diagnos-
tic workstations for viewing, image processing, and diagnosis.
High-speed networks, such as ATM or Fast Ethernet, allow the

1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DDIIAAGGNNOOSSTTIICC

SSTTAATTIIOONNSS

AATTMM
MMAANN

AATTMM
LLAANN

AATTMM
LLAANN

MMOODDAALLIITTIIEESS

((CCTT,, MMRR,, CCRR))
 CCEENNTTRRAALL

IIMMAAGGEE
SSTTOORREE

CCLLUUSSTTEERR
IIMMAAGGEE
SSTTOORREE

DDXX
IIMMAAGGEE
SSTTOORREE

Figure 1: Topology of a Distributed EMIS

transfer of images efficiently, reliably, and economically.
Image processing is a set of computational techniques for

enhancing and analyzing images. Image processing tech-
niques apply algorithms, calledimage filters, to manipulate
images. For example, radiologists may need to sharpen an
image to properly diagnose a tumor. Similarly, to identify a
kidney stone, a radiologists may need to zoom into an image
while maintaining high resolution. Thus, an EMIS must pro-
vide powerful image processing capabilities, as well as effi-
cient distributed image retrieval and storage mechanisms.

This paper describes the design and performance ofMed-
Java, a distributed EMIS developed using the Java environ-
ment and the Web. The paper examines the feasibility of us-
ing Java to develop large-scale distributed medical imaging ap-
plications with demanding performance requirements for net-
working speed and image processing speed.

To evaluate Java’s image processing performance, we con-
ducted extensive benchmarking of MedJava and compared the
results to the performance ofxv , an equivalent image process-
ing application written in C. To evaluate the performance of
Java as a transport interface for exchanging large images over
high-speed networks, we performed a series of network bench-
marking tests over at 155 Mbps ATM switch and compared the
results to the performance of C/C++ as a transport interface.

Our empirical measurements reveal that an imaging system
implemented in C/C++ always out-performs an imaging sys-
tem implemented using interpreted Java by 30 to 100 times.

However, the performance of Java code using a “just-in-time”
(JIT) compiler is�1.5 to 5 times slower than the performance
of compiled C/C++ code. Likewise, using Java as the transport
interface performs 2% to 50% slower than using C/C++ as the
transport interface. However, for sender buffer size close to
the network MTU size, the performance of using Java as the
transport interface was only 9% slower than the performance
of using C/C++ as the transport interface. Therefore, we con-
clude that it is becoming feasible to use Java to develop large-
scale distributed EMISs. Java is particularly relevant for wide-
area environments, such as teleradiology, where conventional
EMIS capabilities are too costly or unwieldy with existing de-
velopment tools.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the object-oriented (OO) design and features
of MedJava; Section 3 compares the performance of MedJava
with an an equivalent image processing application written in
C and compares the performance of a Java transport interface
with the performance of a C/C++ transport interface; Section 4
describes related work; and Section 5 presents concluding re-
marks.

2 Design of the MedJava Framework

2.1 Problem: Resolving Distributed EMIS De-
velopment Forces

A distributed electronic medical imaging system (EMIS) must
meet the following requirements:

� Usable: An EMIS must be usable to make it as convenient
to practice radiology as conventional film-based technology.

� Efficient: An EMIS must be efficient to process and de-
liver medical images rapidly to radiologists.

� Scalable: An EMIS must be scalable to support the grow-
ing demands of large-scale integrated health care delivery sys-
tems [2].

� Flexible: An EMIS must be flexible to transfer different
types of images and to dynamically reconfigure image pro-
cessing features to cope with changing requirements.

� Reliable: An EMIS must be reliable to ensure that medi-
cal images are delivered correctly and are available when re-
quested by users.

� Secure: An EMIS must be secure to ensure that confiden-
tial patient information is not compromised.

� Cost-effective: An EMIS must be cost-effective to mini-
mize the overhead of accessing patient data across networks.

Developing a distributed EMIS that meets all of these re-
quirements is challenging, particularly since certain features

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

conflict with other features. For example, it is hard to develop
an EMIS that is efficient, scalable, and cost-effective. This is
because efficiency often requires high-performance computers
and high-speed networks, thereby raising costs as the number
of system users increases.

2.2 Solution: Java and the Web

Over the past two years, the Java programming language has
sparked considerable interest among software developers. Its
popularity stems from its flexibility, portability, and relative
simplicity compared with other object-oriented programming
languages [5].

The strong interest in the Java language has coincided with
the ubiquity of inexpensive Web browsers. This has brought
the Web technology to the desktop of many computer users,
including radiologists and physicians.

A feature supported by Java that is particularly relevant to
distributed EMISs is theapplet. An applet is a Java class that
can be downloaded from a Web server and run in a context
application such as a Web browser or an applet viewer. The
ability to download Java classes across a network can simplify
the development and configuration of efficient and reliable dis-
tributed applications [6].

Once downloaded from a Web server, applets run as appli-
cations within the local machine’s Java run-time environment,
which is typically a Web browser. In theory, therefore, applets
can be very efficient since they harness the power of the local
machine on which they run, rather than requiring high latency
RPC calls to remote servers [7].

The MedJava distributed EMIS was developed as a Java ap-
plet. Therefore, it exploits the functionality of front-ends of-
fered by Web browsers. An increasing number of browsers
(such as Internet Explorer and Netscape Navigator and Com-
municator) are Java-enabled and provide a run-time environ-
ment for Java applets. A Java-enabled browser provides a Java
Virtual Machine (JVM), which is used to execute Java applets.
MedJava leverages the convenience of Java to manipulate im-
ages and provides image processing capabilities to radiologists
and physicians connected via the Web.

In our experience, developing a distributed EMIS in Java is
relatively cost effective since Java is fairly simple to learn and
use. In addition, Java provides standard packages that support
GUI development, networking, and image processing. For
example, the packagejava.awt.image contains reusable
classes for managing and manipulating image data, including
color models, cropping, color filtering, setting pixel values,
and grabbing bitmaps [8].

Since Java is written to a virtual machine, an EMIS devel-
oper need only compile the Java source code to Java bytecode.
The EMIS applet will execute on any platform that has a Java

Virtual Machine implementation. Many Java bytecode com-
pilers and interpreters are available on a variety of platforms.
In principle, therefore, switching to new platforms or upgraded
hardware on the same platform should not require changes to
the software or even recompilation of the Java source. Conse-
quently, an EMIS can be constructed on a network of hetero-
geneous machines and platforms with a single set of Java class
files.

2.3 Caveat: Meeting EMIS Performance Re-
quirements

Despite the software engineering benefits of developing a dis-
tributed EMIS in Java, there are serious concerns with its per-
formance relative to languages like C and C++. Performance
is a key requirement in a distributed EMIS since timely diag-
nosis of patient exams by radiologists can be life-critical. For
instance, in an emergency room (ER), patient exams and med-
ical images must be delivered rapidly to radiologists and ER
physicians. In addition, an EMIS must allow radiologists to
process and analyze medical images efficiently to make ap-
propriate diagnoses.

Meeting the performance demands of a large-scale dis-
tributed EMIS requires the following support from the JVM.
First, its image processing must be precise and efficient. Sec-
ond, its networking mechanisms must download and upload
large medical images rapidly. Assuming that efficient image
processing algorithms are used, the performance of a Java ap-
plet depends largely on the efficiency of the hardware and the
JVM implementation on which the applet is run.

The need for efficiency motivates the development of high-
speed JIT compilers that translate Java bytecode into native
code for the local machine the browser runs on. JIT compil-
ers are “just-in-time” since they compile Java bytecode into
native code on a per-method basis immediately before calling
the methods. Several browsers, such as Netscape and Internet
Explorer, provide JIT compilers as part of their JVM.

Although Java JIT compilers avoid the penalty of interpreta-
tion, previous studies [9] show that the cost of compilation can
significantly interrupt the flow of execution. This performance
degradation can cause Java code to run significantly slower
than compiled C/C++ code. Section 3 quantifies the overhead
of Java and C/C++ empirically.

2.4 Key Features of MedJava

MedJava has been developed as a Java applet. Therefore, it
can run on any Java-enabled browser that supports the standard
AWT windowing toolkit. MedJava allows users to download
medical images across the network. Once an image has been
downloaded, it can be processed by applying one or more im-
age filters, which are based on algorithms in the C source code

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

from xv . For example, a medical image can be sharpened by
applying the Sharpen Filter. Sharpening a medical image en-
hances the details of the image, which is useful for radiologists
who diagnose internal ailments.

Although MedJava is targeted for distributed EMIS require-
ments, it is a general-purpose imaging tool that can process
both medical and non-medical images. Therefore, in addition
to providing medical filters like sharpening or unsharp mask-
ing, MedJava provides other non-medical image processing
filters such as an Emboss filter, Oil Paint filter, and Edge De-
tect filter. These filters are useful for processing non-medical
images. For example, edge detection serves as an important
initial step in many computer vision processes because edges
contain the bulk of the information within an image [10]. Once
the edges of an image are detected, additional operations such
as pseudo-coloring can be applied to the image.

Image filters can be dynamically configured and re-
configured into MedJava via theService Configuratorpattern
[6]. This makes it convenient to enhance filter implementation
or install new filters without restarting the MedJava applet. For
example, a radiologist may find a sharpen filter that uses the
unsharp mask algorithm to be more efficient than a sharpen
filter that simply applies a convolution matrix to all the pixels.
Doing this substitution in MedJava is straightforward and can
be done without reloading the entire applet.

Once an image has been processed by applying the filter(s),
it can be uploaded to the server where the applet was down-
loaded. HTTP server implementations, such as JAWS [11, 12]
and Jigsaw, support file uploading and can be used by MedJava
to upload images. In addition, the MedJava applet provides a
hierarchical browser that allows users to traverse directories
of images on remote servers. This makes it straightforward to
find and select images across the network, making MedJava
quite usable, as well as easy to learn.

To facilitate performance measurements, the MedJava ap-
plet can be configured to run in benchmark mode. When
the applet runs in benchmark mode, it computes the time (in
milliseconds) required to apply filters on downloaded images.
The timer starts at the beginning of each image processing al-
gorithm and stops immediately after the algorithm terminates.

2.5 The OO Design of MedJava

Figure 2 shows the architecture of the MedJava framework de-
veloped at Washington University to meet distributed EMIS
requirements. The two primary components in the architecture
include the MedJava client applet and JAWS, which is a high-
performance HTTP server also developed at Washington Uni-
versity [12, 11]. The MedJava applet was implemented with
components from Java ACE [13], the Blob Streaming frame-
work [14], and standard Java packages such asjava.awt

FFiilltteerr
RReeppoossiittoorryy

GGUUII

UURRLL
LLooccaattoorr

IImmaaggee
PPrroocceessssoorr

FFiilltteerr
CCoonnffiigguurraattoorr

IImmaaggee
DDoowwnnLLooaaddeerr

IImmaaggee
UUppLLooaaddeerr

CCoommmmuunniiccaattiioonn PPrroottooccoollss
ee..gg..,, HHTTTTPP,, DDIICCOOMM,, HHLL77

MMeeddJJaavvaa JJAAWWSS

JJaavvaa AACCEEBBlloobb
SSttrreeaammiinngg

BBlloobb
SSttrreeaammiinngg

IImmaaggee
RReessppoossiittoorryy

Figure 2: MedJava Framework

and java.awt.image . Each of these components is out-
lined below.

2.5.1 MedJava Applet

The MedJava client applet contains the following components
shown in Figure 2:

Graphical User Interface: which provides a front-end to
the image processing tool. Figure 3 illustrates the graphical
user interface (GUI) used to display a podiatry image. The

Figure 3: Processing a Medical Image in MedJava

MedJava GUI allows users to download images, apply image
processing filters on them, and upload the images to a server.

4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

