Filed: November 20, 2015

UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE PATENT TRIAL AND APPEAL BOARD
MYLAN PHARMACEUTICALS INC.
Petitioner,
v.
YEDA RESEARCH & DEVELOPMENT CO. LTD.
Patent Owner.
Case IPR2015-00644
Patent No. 8,399,413

UPDATED LIST OF PATENT OWNER'S EXHIBITS

Pursuant to 37 C.F.R. § 42.63(e), Patent Owner submits the following current exhibit list.

Exhibit No.	Description
2001	Teva Provides Update on Forte Trial (July 7, 2008)
2002	Franscisco J. Quintana et al., Systems Biology
	Approaches for the Study of Multiple Sclerosis, 12 J. Cellular &
	Molecular Med. 1087 (2008)
2003	David Virley, Developing Therapeutics for the
	Treatment of Multiple Sclerosis, 2 J. Am. Soc. Experimental
	Neurotherapeutics 638 (Oct. 2005)
2004	Manuel A. Friese et al., The Value of Animal Models For Drug
	Development in Multiple Sclerosis, 129 Brain 1940 (2006)
2005	Copaxone Prescribing Information (Jan. 2014)
2006	Dvora Teitelbaum et al., Suppression of Experimental
	Allergic Encephalomyelitis by a Synthetic Polypeptide, 1
	Eur. J. Immunology 242 (1971)
2007	Jill Conner, Glatiramer Acetate and Therapeutic Peptide
	Vaccines for Multiple Mclerosis, 1 J. Autoimmun. &
	Cell Responses 3 (2014)
2008	Copaxone, Physicians Desk Reference 3231 (62 ed. 2008)
2009	Wiebke Schrempf and Tjalf Ziemssen, Glatiramer
	Acetate: Mechanisms of Action In Multiple Sclerosis, 6
	Autoimmun. Rev. 469 (2007)
2010	V.Wee Yong, Differential Mechanisms of Action of
	Interferon-β and Glatiramer Acetate in MS, 59
	Neurology 802 (2002)
2011	Suhayl Dhib-Jalbut, Mechanisms of Action of
	Interferons and Glatiramer Acetate in Multiple Sclerosis,
	58 Neurology S3–9 (Supp. 4 2002)
2012	O. Neuhaus et al., Pharmacokinetics and Pharmacodynamics of the
	Interferon-Betas, Glatiramer Acetate, and Mitoxantrone in Multiple
	Sclerosis, 259 (1-2) J. Neurol. Sci. 27-37 (2007)

(005 1)
(COP 1)
minated
s with a
n. Neurol.
J.
8)
patients
lind,
ways 40
J
cetate in
<i>reatment</i>

2026	K.P. Johnson et al., Copolymer 1 reduces relapse rate
	and improves disability in relapsing-remitting multiple sclerosis:
	Results of a phase II1 multicenter, double-blind, placebo-
	controlled trial, 45 Neurology 1268 (1995)
2027	Intentionally left Blank
2028	G. Comi, Forte: Results from a phase II, 1-year, Randomized,
	Double-blind, Parallel-Group, Dose Comparison Study with
	Glatiramer Acetate in Relapsing-remitting Multiple Sclerosis,
	Presented at World Congress on Treatment and Research in
	Multiple Sclerosis: 2008 Joint Meeting of the American, European,
	and Latin America Committees on Treatment and Research in
	Multiple Sclerosis, San Raffaele, Italy (ACTRIMS, ECTRIMS,
	LACTRIMS) (2008)
2029	Jerry S. Wolinsky et al., GLACIER: An open-label, randomized,
	multicenter study to assess the safety and tolerability of glatiramer
	acetate 40 mg three times weekly versus 20 mg daily in patients with
	relapsing-remitting multiple sclerosis, 4 Multiple Sclerosis and
	Related Disorders 370 (2015)
2030	C. Farina et al., Treatment of multiple sclerosis with Copaxone
	(COP): Elispot assay detects COP-induced interleukin-4 and
	interferon-gamma response in blood cells. 124 Brain 705 (2001).
2031	PRA, Multiple Sclerosis: Transform Your Clinical Trial with PRA
	(2012) (Peroutka Dep. Ex. 4)
2032	Opinion, Endo Pharmaceuticals, Inc. v. Mylan Pharmaceuticals,
	<i>Inc.</i> , No. 11-cv-00717, Document 226 (Jan. 28, 2014) (Peroutka
	Dep. Ex. 6)
2022	Danie Olaseka atal Asia I. i i III.
2033	Donna Oksenberg et al., A single amino acid difference confers
	major pharmacological variation between human and rodent 5-HT-
	1B receptors, 360 Nature 161 (1992) (Peroutka Dep. Ex. 9)
2034	Shalit et al., Copolymer-1 (Copaxone®) induces in non-
200.	immunologic activation of connective tissue type mast cells, 97(1) J.
	Allergy And Clinical Immunology 345 (1996) (Peroutka Dep. Ex.
	12)

2035	Order, Endo Pharmaceuticals, Inc. v. Mylan Pharmaceuticals, Inc., No. 11-cv-00717, Document 310 (Apr. 8, 2014) (Peroutka Dep. Ex. 15)
2036	M. Fridkis-Hareli et al., <i>Binding motifs of copolymer 1 to multiple sclerosis- and rheumatoid arthritis-associated HLA-DR molecules</i> 15;162(8):4697-704. (Apr. 1999)
2037	Notice of Abandonment APN 11/651,212 (03-09-10)
2038	B. Meibohm & H. Derendorf, <i>Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling</i> .35(10), 401-413 (1997)
2039	P.H. Lambert & P.E. Laurent, <i>Intradermal vaccine delivery: will new delivery systems transform vaccine administration?</i> 26(26) Vaccine, 3197-208 (2008)
2040	G. Glenn et al., <i>Transcutaneous immunization and immunostimulant strategies</i> , 23(4) Immunology And Allergy Clinics Of N. Am., 787-813 (2003)
2041	C.D. Partidos et al., Immunity under the skin: potential application for topical delivery of vaccines, 21Vaccine 776 (2003)
2042	C. Ghose et al., Transcutaneous immunization with Clostridium difficile toxoid A induces systemic and mucosal immune responses and toxin A-neutralizing antibodies in mice, 75 Infection & Immunity 2326 (2007)
2043	G. Glenn et al., <i>Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge</i> , 161(7) J. Immunology 3211 (1998)
2044	R. Aharoni et al., Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1, 97 Proc. Nat'l Acad. Sci. U.S.A., 11472 (2000)

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

