Cost-effectiveness of Fingolimod, Teriflunomide, Dimethyl Fumarate and Intramuscular Interferon Beta-1a in Relapsing-remitting Multiple Sclerosis

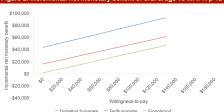
Xinke Zhang, MS, Joel W. Hay, PhD

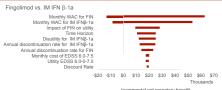
USC School of Pharmacy

USC Schaeffer

To compare the cost-effectiveness of fingolimod, teriflunomide, dimethyl fumarate and IM IFN β-1a as first-line therapies in treatment of patients with relapsing-remitting multiple sclerosis (RRMS).

- A Markov model was developed to evaluate the cost-effectiveness of disease-modifying drugs from a US societal perspective. Time horizon in base case was 5 years [Figure 1].
- Model parameters were obtained from randomized controlled surveys and federal supply schedule drug prices [Table 1].
- Outcomes included quality-adjusted life years (QALYs), incremental net monetary benefit (INMB) and incremental cost-effectiveness ratio (ICER). The societal willingness-to-pay (WTP) threshold was assumed to be \$100,000 per QALY.
- Costs were reported in 2012 US dollars and both costs and outcomes were discounted at 3% annual rate in base case
- One-way sensitivity analyses and probabilistic sensitivity analyses were conducted to test the robustness of the model results.




lonthly probability of disease progression (SM) EDSS 0.0-2.5 EDSS 3.0-6.5 EDSS 6.0-7.5 EDSS 6.0-7.5	0.005760			
EDSS 3.0-5.5 EDSS 6.0-7.5				
EDSS 6.0-7.5				1
	0.007194	N/A		1
onthly probability of progressing to death	0.005760			1
FDSS 0.0-2.5	0.001684			- 1
EDSS 3.0-5.5	0.002348			- 2
EDSS 6.0-7.5	0.003121	N/A		- 1
EDSS 8.0-9.5	0.004457			- 2
nnual relapse rate for SM	0.400	N/A		- 1
nnual relapse rate for FIN	0.160	0.128	0.192	4
nnual relapse rate for IM IFNS-1a	0.330	0.264	0.396	4
R of disease progression				
FIN vs. SM	0.700	0.560	0.840	- 1
IM IFNB-1a vs. FIN	1.353	1.083	1.624	4
TER vs. SM	0.700	0.560	0.840	
DF vs. SM	0.620	0.496	0.744	
NAT vs. SM	0.580	N/A		- 1
R of annual relapse rate				
TER vs. SM	0.720	0.576	0.864	
DE vs. SM	0.510	0.408	0.612	
NAT vs. SM	0.410	N/A	١	- 7
nnual discontinuation rate for FIN	0.103	0.082	0.123	4
nnual discontinuation rate for IM IFNS-1a	0.118	0.095	0.142	4
iscontinuation rate for TER. 2vr	0.265	0.212	0.318	
iscontinuation rate for DF. 2vr	0.310	0.248	0.372	- 6
iscontinuation rate for NAT, 2vr	0.083	N/A		- 1
ssignment ratio between NAT and SM	0.5:0.5	0:1	1:0	
tilities estimates				
Utility EDSS 0.0-0-2.5	0.899	0.719	1	
Utility EDSS 3.0-0-5.5	0.821	0.657	1	
Utility EDSS 6.0-0-7.5	0.769	0.615	0.923	
Utility EDSS 8.0-0-9.5	0.491	0.393	0.589	
Disutlity for Relapse	-0.094	-0.075	-0.113	
Disutility for IM IFN6-1a	-0.115	-0.092	-0.138	
impact of FIN on utility	0	-0.03	0.03	10
Impact of TER on utility		-0.03	0.03	1
Impact of DF on utility	0.01	-0.03	0.03	1
impact of NAT on utility	0	N/A		1
Ionthly costs, 2012 US dollar				
WAC for FIN	\$4,164	\$ 3,331	\$ 4,996	1
WAC for IM IFNβ-1a	\$3,835	\$ 3,068	\$ 4,602	1
WAC for NAT	\$3,320	\$ 2,656	\$ 3,984	1
WAC for TER	\$3,704	\$ 2,963	\$ 4,444	- 1
WAC for DF	\$3,346	\$ 2,676	\$ 4,015	1
Cost of EDSS 0.0-2.5	\$1,730	\$ 1,384	\$ 2,076	
Cost of EDSS 3.0-5.5	\$3,691	\$ 2,953	\$ 4,430	
Cost of EDSS 6.0-7.5	\$5,395	\$ 4,316	\$ 6,475	
Cost of EDSS 8.0-9.5	\$10,791	\$ 8,633	\$12,949	
Cost of relapse	\$5,008	\$ 4,006	\$ 6,009	1
iscount Rate	0.03	0	0.05	
ime Horizon	5 years	2 years	10 years	

- The 5 years' total costs per patient were estimated at \$322,694, \$339,457, \$324,512 and \$298,875 for IM IFN β -1a, fingolimod, teriflunomide, and dimethyl fumarate, respectively. The accumulated QALYs associated with each drug were 3.34, 3.69, 3.68 and 3.72, respectively [Table 2].
- Compared with IM IFN β-1a, at the WTP of \$100,000, INMBs were estimated at \$18,510, \$33,021, and \$61,290 for fingolimod, teriflunomide, and dimethyl fumarate, respectively. Compared with IM IFN $\beta\text{-}1a\text{, ICERs}$ were \$47,523 and \$5,218 for fingolimod and teriflunomide, respectively [Table 2].
- · Dimethyl fumarate dominated all other drugs over the range of WTPs from \$0 to \$180,000 [Figure 2].

- One-way sensitivity analyses found model results were robust to most parameter variations. When the monthly cost of fingolimod was beyond \$4,654 or the monthly cost of IM IFN β -1a was below \$3,304, then fingolimod would no longer be cost-effective compared with IM IFN β -1a [Figure 3]. Other one-way sensitivity analysis comparison figures are available on request.
- Probabilistic sensitivity analysis showed that for more than 90% of the simulations, dimethyl fumarate was the optimal therapy across all willingness-to-pay values [Figure 4].

	Cost	QALY	NMB	INMB vs. IM IFN β-1a	CER	ICER vs. IM IFN β-1a
IM IFN β-1a	\$322,694	3.34	\$10,873		\$96,741	
Fingolimod	\$339,457	3.69	\$29,382	\$18,510	\$92,034	\$47,523
Teriflunomide	\$324,512	3.68	\$43,894	\$33,021	\$88,085	\$5,218
Dimethyl fumarate	\$298,875	3.72	\$72,792	\$61,920	\$80,415	Dominant

The oral therapies were favored in the cost-effectiveness analysis. Of the four disease-modifying drugs, dimethyl fumarate was the dominant therapy to manage RRMS. Apart from dimethyl fumarate, teriflunomide was the most cost effective therapy compared with IM IFN beta-1a.

- crability. Brain 2010;133:1914-1929.

 Hoyer DL, Vu J. Deaths: preliminary data for 2011. Natl Vital Stat Rep 2012;61:1-65.

 Kappol. Rades PW, O'Conner P, et al. A placebo-controlled trial of oral fingolimod in rela

