[54] ENDODONTIC INSTRUMENT

[75] Inventors: E. Steve Senia; William L. Wildey, both of San Antonio, Tex.
[73] Assignee: Board of Regents, The University of Texas System, Austin, Tex.
[21]
Appl. No.: 152,464
[22] Filed:
Feb. 5, 1988
[51] Int. Cl. ${ }^{4}$ \qquad A61C 5/02
[52] U.S. Cl. \qquad 433/102
[58] Field of Search
References Cited U.S. PATENT DOCUMENTS

D. 283,840	5/1986	Mats
636,359	11/1899	Schultz 433
4,299,571	11/1981	McSpadden 433/102
4,443,193	4/1984	Roane 433/102
4,536,159	8/1985	

FOREIGN PATENT DOCUMENTS

631469 5/1936 Fed. Rep. of Germany 433/102
2524105 4/1976 Fed. Rep. of Germany 433/102

OTHER PUBLICATIONS

ISO Standard 3630/2, First edition-1986-05-01.
ANSI/ADA Specification No. 28-1981, approved Oct. 9, 1981.
Mani Apical Reamer.
Caulk Gates-Glidden drills.
Caulk Dynatrak.
Hygenic Endodontic Cutting Instruments.
flex-R.
Photograph of unknown endodontic instrument.
Brochure for the Mani Apical Reamer.
Pathways of the Pulp, pp. 340-242 (1980).
The American Textbook of Operative Dentistry, pp. 452-463 (1900).
Journal of Endodontics 12:293-300 (1986), Powell et al.

Journal of the American Dental Association 113:(596-597) 1986, Roane et al.
The Dentists Desk Reference, pp. 248-262 (1981).
Journal of the American Dental Association 58:85-92
(1959), Luks.

Clinical Endodontics, pp. 301-318 (1956).
The Dental Cosmos 54:56 (1912).
The Dental Cosmos 64:113-1148 (1922).
Oral Surgery 14:83-91 (1961), Ingle.
Journal of Endodontics 11:435-441 (1985), Miserendino et al.
Journal of Endodontics 11:212-217 (1985), Anderson et al.
Journal of Endodontics 11:110-116 (1985), Boger et al. Journal of Endodontics 8:253-259 (1982), Felt et al. Journal of Endodontics 8:260-264 (1982), Dolan et al. Oral Surgery 50:566-568 (1980), Martin et al. Oral Surgery 8:1211-1213 (1955), Ingle.
British Dental Journal 137:239-244 (1974), Harty et al. The Dental Cosmos 65:1072-1091 (1923), Kells.
ISO Standard 3630, First edition-1984-02-15.
Jun. 1988, Dental Products Report.
Johnson paper, p. 185.
Primary Examiner-Robert Peshock
Attorney, Agent, or Firm-Arnold, White \& Durkee

[57]

ABSTRACT
An endodontic instrument in accordance with the present invention includes a substantially non-cutting pilot segment, a relatively short cutting segment, and a flexible shaft segment, which can have a handle at its distal end for manual manipulation, or an adapter for attachment to a mechanical handpiece. The non-cutting pilot, the short length of the cutting segment, and the flexibility of the shaft combine to allow the instrument to be used in curved root canals without causing undue change in the natural root canal contours.

13 Claims, 3 Drawing Sheets

$$
\frac{s_{0}}{\text { (PRIOR ART) }}
$$

F配 $2 \boldsymbol{2}$

and therefore cause much less unintended cutting of dentin and change of the natural curvature.
A variation of the present invention comprises a cutting segment whose length is no greater than about 14 mm ; and a shaft whose proximal end is attached to the distal end of the cutting segment. This particular variation is suited for cleaning the apical 0.75 mm of the root canal of a human tooth, i.e., the most apical part of the root canal not cleaned by the non-cutting pilot of the previous embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the use of a prior art endodontic instrument and an inherent problem in its use.

FIG. 2 shows four different problems caused by prior art instruments.
FIG. 3 shows an endodontic instrument in accordance with the present invention.

FIG. 4 shows an endodontic instrument in accordance with the present invention with a handle mounted on its distal end.
FIG. 5 shows an end view of an instrument such as that shown in FIG. 4, with the instrument's proximal end being frontmost.
FIG. 6 shows an endodontic instrument in accordance with the present invention which does not have at its proximal end a non-cutting pilot segment.

DETAILED DESCRIPTION OF A SPECIFIC EMBODIMENT

FIG. 1 shows how a prior art endodontic instrument is inserted into the root canal of a tooth. In FIG. 1A, the instrument has a small enough diameter so that it is sufficiently flexible to bend around the curvature of the root canal. FIG. 1B illustrates the forces at work when the instrument is at rest in a curved root canal. Under basic lever and fulcrum principles, the inherent rigidity of the instrument causes a force 1 to be exterted on the root canal wall in its middle. A corresponding forcre 2 is exerted on the opposite root canal wall near the apex of the canal. When the instrument is withdrawn, as shown in FIG. 1C, these forces are effectively increased and applied in a way that causes undesired cutting of the root canal walls. The force 3 acting near the middle of the root canal causes greatly enhanced cutting at that point during withdrawal. Even worse, the lever arm length below this fulcrum point is being decreased as the instrument is withdrawn, thereby increasing the force acting at the lower end. This increased force 450 digs away dentin at the apical end of the root canal, as can be seen in FIG. 1C.

FIG. 2 shows several problems that result from prior art instruments. FIG. 2A shows a typical curved root canal. FIG. 2B shows that instruments which have insufficient flexibility in relation to the diameter of their cutting segment, as mahy prior art instruments do, tend to form a ledge. Once such a ledge is formed, it is very difficult to advance an instrument beyond it. In FIG. 2C, the phenomenon shown in FIG. 1 has caused transportation of the apical foramen. This tends to make the filling that will be inserted into the tooth spill out into the surrounding tissue, which is very undesirable. In FIG. 4D, a similar effect known as zipping has occurred. In FIG. 4 E the zipping is so pronounced that the side of the root has actually been perforated, which again will cause filling to spill out into the surrounding tissue.

