Z‘ IBM

- MICROCOMPUTER
ARCHITECTURE AND

- ASSEMBLY |

LANGURGE

OB 2 FIILOER

IBM® Microcomputer
Architecture

and Assembly
Language

A Look Under the Hood

Norman S. Matloff

University of California, Davis

Prentice Hall
Englewood Cliffs, New Jersey 07632

002 ServiceNow's Exhibit No. 1013
IPR2015-00631

Library of Congress Cataloging-in-Publication Data

Matloff, Norman S.
IBM microcomputer architecture and assembly language : a look
under the hood / Norman S. Matloff.
; cm.
Includes index.
ISBN 0-13-451998-1
1. IBM microcomputers. 2. Computer architecture. 3. Assembler
language (Computer program language) I. Title.
QA76.8.1259193M38 1992
004.2’565—-dc20 91—2(7:994
P

Acquisitions editor: Marcia Horton
Editorial/production supervision

and interior design: Kathleen Schiaparelli
Copy editor: Brian Baker
Cover design: Lundgren Graphics
Prepress buyer: Linda Behrens
Manufacturing buyer: Dave Dickey
Editorial assistant: Diana Penha

© 1992 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this book. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Borland, Turbo-PASCAL, Turbo-C, Turbo Assembler, and Turbo-Debugger are trademarks of Borland International.

Codeview is a registered trademark.

Cray is a registered trademark of Cray Research.

IBM, PC-DOS, O0S/2, and PS/2 are registered trademarks of International Business Machines Corporation.

Microsoft, Microsoft-PASCAL, Microsoft-C, Microsoft Assembler, and MS-DOS are registered trademarks of Microsoft
Corporation.

Motorola is a registered trademark.

NEC is a registered trademark of Nippon Electric Company.

Sun and SPARC are trademarks for Sun Computers.

UNIX is a registered trademark of AT&T (Bell Labs).

VMS and VAX are registered trademarks of Digital Equipment Corporation.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN 0-13-451998-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericano, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de msiro ServiceNow's Exhibit No. 1013

IPR2015-00631

Contents

PREFACE ix
INTRODUCTION: WHY LOOK UNDER THE HOOD? 1
REPRESENTATION AND STORAGE OF INFORMATION 6
| Bits and Bytes 6
1.2 Representing Information as Bit Strings 9
1.2.1 Representing Integer Data, 9
1.2.2 Representing Real Number Data, 12
1.2.3 Representing Character Data, 14
1.24 Representing Machine Instructions, 15
1.2.5 What Type of Information Is Stored Here? 15
1.2 Organization of Main Memory 18
' 1.3.1 Words and Addresses, 18
1.3.2 Storage of Variables in HLL Programs, 21
Analytical Exercises, 29
Programming Projects, 33
MAJOR COMPONENTS OF COMPUTER “ENGINES” 34
2.1 Major Hardware Components of the “Engine” 35
2.1.1 System Components, 35
004 ServiceNow's Exhibit No. 1013/

IPR2015-00631

vi

2:2
2.3

2.1.2 General CPU Components, 38

2.1.3 IAPX CPU Components, 41

2.14 Motorola 68000 Family CPU Components, 48
2.1.5 The CPU Fetch/Execute Cycle, 49

Software Components of the Computer “Engine” 53

Speed of a Computer “Engine” 56

2.3.1 CPU Architecture, 56

2.3.2 Parallel Operations, 56

2.3.3 Clock Rate, 58

2.34 Memory-Access Time, 59

2.3.5 OS Efficiency, 62
Analytical Exercises, 63
Programming Projects, 65

INTRODUCTION TO THE iAPX INSTRUCTION SET
AND ADDRESSING MODES

3.1
32
3.3

An Introductory Program 68
A Brief Look at Instruction Formats 78

Allowable Combinations of Operations and Operands 83

Analytical Exercises, 85
Programing Projects, 86

GENERATING, LOADING, AND EXECUTING PROGRAMS

4.1
4.2

4.3
4.4

Use of DEBUG for Loading and Executing Programs 90

Introduction to iAPX Assembly Language 96

4.2.1 Hire a Clerk! 96

4.2.2 A First MASM Example, 98

4.2.3 Command Sequence and Syntax for MASM
and LINK, 118

4.24 Debugging Assembly Language Programs, 121

4.2.5 Further MASM Examples, 130

4.2.6 Tools Developed So Far, 138

More on Program Loading and Transfer of Control 139

Loading and Executing Programs Derived from HLL
Sources 143

Analytical Exercises, 144
Programming Projects, 147

MODULAR PROGRAMMING: SUBPROGRAMS, LINKERS,
AND MACROS

51

Stacks 152

Contents

68

89

151

005 ServiceNow's Exhibit No. 1013

IPR2015-00631

Contents vii

5.2 Procedures 156

5.3 Machine-Level Aspects of Procedures in High-Level
Languages 170

5.3.1 What the Compiler Produces from HLL Procedure
Calls, 171
5.3.2 Mixed-Language Programming, 179

54 Macros 193
545 MAKE: A Maintenance Utility for Program Modules 197

Analytical Exercises, 199
Programming Projects, 201

6 A FURTHER LOOK AT THE iAPX ARCHITECTURE 204

6.1 A Further Look at the iAPX Flags Register 204

6.1.1 The Carry Flag, 205
6.1.2 The Overflow Flag, 207
6.1.3 Other Flags, 211

6.2 A Further Look at iAPX Addressing Modes 212

6.2.1 Register Mode, 212

6.2.2 Immediate Mode, 214

6.2.3 Direct Mode, 214

6.2.4 Indirect Mode, 215

6.2.5 Indexed Addressing, 215

6.2.6 Based Mode, 221

6.2.7 Combined Indexed and Based Modes, 223

6.2.8 Use of the Addressing Modes in JMP and CALL
Instructions, 224

6.2.9 Segment Override, 224

6.3 A Further Look at the iAPX Instruction Set 226

6.3.1 Other Arithmetic Instructions, 226

6.3.2 Logical (Boolean) Operations, 233

6.3.3 String Instructions, 245

6.34 Loop Instructions, 251

6.3.5 Miscellaneous Instructions, 253
Analytical Exercises, 256
Programming Projects, 257

7 INPUT/OUTPUT 260

Tk Introduction to I/O Ports and Device Structure 261
7.1.1 110 Address Space Approach, 262

006 ServiceNow's Exhibit No. 1013
IPR2015-00631

viii Contents

7.1.2 Memory-Mapped I/O Approach, 263
7.1.3 1/O Ports and Device Structure in the IBM
Microcomputer Family, 266

7.2 Interrupt-Driven I/O 277

7.2.1 Basics of the Interrupt Sequence, 279
7.2.2 Arranging Priorities among Devices, 293

13 I/O through System Calls 296
74 1/OinHLLs 306

Analytical Exercises, 309
Programming Projects, 310

8 INTRODUCTION TO OPERATING SYSTEMS 315

8.1 Mechanisms to Call OS Services 316
8.2 “Cooking” Services 319

8.3 File Systems 320

8.4 Process Management 334

84.1 TSR Programming, 335
84.2 The Infrastructure of Time-Sharing, 340

8.5 Memory Management 345

8.5.1 Memory Sharing, 345

8.5.2 Virtual Addressing, 347
Analytical Exercises, 351
Programming Projects, 352

Appendices 354
I ASCII AND SCAN CODES 354
Il THE iAPX INSTRUCTION SET 359
Il COMMANDS FOR ASSEMBLING, COMPILING, LINKING
AND DEBUGGING 382
IV SELECTED DOS AND BIOS SERVICE ROUTINES 385
V PASCAL/C TUTORIAL 388
INDEX 395
007 ServiceNow's Exhibit No. 1013

IPR2015-00631

334 Introduction to Operating Systems Chap. 8

two sectors of the file PRIME.ASM happened to be adjacent on the disk. Thus, if we
access them sequentially, no seek will be needed to read the second sector after the first.
But in general, storage of consecutive portions of the file will not be in contiguous sec-
tors of the disk.

This problem can be solved by having, say, two sectors per cluster. Since the
several sectors in a cluster are contiguous by definition, having two sections per cluster
will force the desired contiguity. The drawback, though, is that if one has a large
number of small files—say, less than one sector in size—each file would take up two
sectors, since they could not occupy only part of a cluster. Thus, space on the disk
would be wasted.

Unix file systems are largely similar to the MS-DOS system we have been dis-
cussing. Both DOS and Unix treat a file merely as a long stream of consecutive bytes.
If the file is a text file, meaning that its bytes are supposed to be interpreted as charac-
ters, the user will think of the file as being broken down into lines of text, and utility
programs such as the VI text editor will display the file in this way on a monitor screen.
But from the OS’s point of view, the carriage return and line feed characters—which
define those lines that the user sees—are just characters, with the ASCII codes ODH
and OAH, respectively, and are no different from the alphabetical or other characters.
All that the OS must do is find space on the disk for these characters—in noncontigu-
ous sectors if necessary—and maintain a list of pointers showing where these sectors
are. There is no concept in DOS or Unix of lines in a file, even an ASCII file.

In some other OSs the structure of a file may be quite different: the OS itself may
keep track of “lines” within the file (called records), and keep pointers to each line. But
in the DOS system we have presented here, DOS does not record where, say, the 124th
line of a text file begins; all we can do is read the file from the beginning, counting car-
riage return and line feed characters until we accumulate 123 such pairs. Of course, we
can write our program so that it creates a table of correspondences between line
numbers and sectors for our file, if we will access the file by line number often enough
to make it worthwhile to create such a table. But the point is that DOS and Unix do not
do this for us, whereas some OSs do. On the other hand, those OSs may waste space,
either by storing such a table or by making sure that all lines are the same length, say,
80 characters per line (padded with blanks if necessary). Some OSs do the latter so that
we can find the position of a certain line just by multiplying by 80.

8.4 PROCESS MANAGEMENT

It is often very useful to have several user programs alternate execution. In Example (a)
of Section 7.2, for instance, we briefly discussed a situation in which one might run a
game program to entertain oneself while waiting for a print program to complete its
work of printing out a large file. An extension of this concept that will be familiar to
many readers is time-sharing, an environment in which many users (or one user run-
ning several programs) appear to be running programs simultaneously, but are actually
alternating the programs in execution.

008 ServiceNow's Exhibit No. 1013
IPR2015-00631

Sec. 8.4 Process Management 335

In this section, we will discuss how to set up the alternation of several such pro-
grams. MS-DOS offers the capability of writing terminate-and-stay-resident (TSR)
programs, which would enable us to run the previously mentioned game program and
print program “simultaneously.” We will present an example of TSR programming in
Section 8.4.1. MS-DOS does not offer time-sharing services, but the IBM microcom-
puter hardware is capable of them, and several OSs available for IBM microcomputers,
such as OS/2 and Xenix, MINIX, and other Unix OSs for PCs, do implement time-
sharing. We will show how time-sharing is done in Section 8.4.2.

First, we introduce the notion of a process. This might be defined as an instance
of execution of a program. The word “instance” is important, because if several users,
(say six) are currently using the same program, they account for six processes, rather
than one. Thus, in the discussion that follows, we will speak in terms of various
processes being active, instead of various programs.

Incidentally, a given user might have several different processes active at the same
time. For example, readers who have used Unix may have had some experience with
the ‘&’ command, such as in the command line

% cc g.c &

The ‘%’ is the prompt symbol on many Unix systems. The command
cc g.c

specifies that we want to run the C compiler on a source file named g.c. The symbol
‘&’ means that we wish to be able to submit new commands while the compilation is in
progress. If we now type

% vi x

to use the vi editor on the file x, we will initiate a new process, with the vi editor, in
addition to the process cc.

Again, process management strongly depends on the availability of interrupts,
both hardware and software, but especially hardware.

8.4.1 TSR Programming

In TSR programming, we terminate a program but tell the OS to keep it in memory.
Consider DOS service number 21/4C, which we have been using all along to terminate
our programs, i.e., with the familiar sequence

MOV AH, 4CH
INT 21H

Our program has finished execution, and we use this DOS service to return to DOS,
which will then print out the usual ‘>’ prompt, inviting us to submit our next command.

009 ServiceNow's Exhibit No. 1013
IPR2015-00631

336 Introduction to Operating Systems Chap. 8

But this service also does something else: it notifies DOS that we no longer need the
program in memory, and thus, DOS is free to overwrite it by loading some other pro-
gram in the same area of memory.

By contrast, DOS offers terminate-and-stay-resident services, such as DOS service
number 21/31 and DOS service number 27. (We will use the latter, but the two are very
similar.) These services enable us to return to DOS but tell DOS not to overwrite the
area of memory occupied by our program.

For instance, in the game-and-printer example mentioned earlier, the printer pro-
gram would initiate the printing of the first character and then terminate and stay
resident. The terminate action would allow us to submit another command at the ‘>’
prompt, in this case, the command to run the game program. But the stay-resident
action would mean that the printer program would stay resident in memory: once the
printer was ready for more characters to print, the printer program would be right there
in memory, ready to supply the printer. We are, in effect, telling the OS not to
overwrite the printer program with anything else.

As outlined earlier, the key to switching back and forth between the new program
and the TSR program is interrupts. In the game-and-printer example, we would start the
printer program first. It would then start the printing of the first character and perform a
TSR exit. We would then start the game program. When the printer became ready for
more characters, it would send an interrupt, which would suspend execution of the game
program. The printer program would then initiate some more printing and, subse-
quently, let the game resume. And the person playing the game would probably not
notice any slowdown in computer response during this switching between programs.

Program 8.3 is a program that constantly displays the time of day at the top-right
corner of the monitor screen—no matter what program we are running. The display is
done by a TSR program that runs whenever there is an interrupt from the Intel 8253
timer chip, which occurs 18.2 times per second. DOS’s ISR for this chip includes a call
to BIOS service number 1CH, which is actually a dummy procedure consisting only of
an IRET instruction. (The reader is urged to verify this by using DEBUG.) We will
instead point the interrupt vector for INT 1CH toward our TSR, which will refresh and
update the time-of-day display at the top-right corner of our screen.

Let us suppose Program 8.3 is in the file TOD.ASM. We would assemble and link
the program. Then we would produce a .COM file from the .EXE file, using the
EXE2BIN utility:

> EXE2BIN TOD TOD.COM

(For technical reasons we will not present here, TSR programs should be run as .COM
files instead of as .EXE files.)
We would then run TOD, typing

> TOD.COM

upon which the program will almost instantly “finish” (it is not really finished, since it
will be repeatedly reactivated, 18.2 times per second), and we will see the DOS >’
again. Suppose we then use the VI editor, typing

010 ServiceNow's Exhibit No. 1013
IPR2015-00631

Sec. 8.4 Process Management 337
> VI B.C

to edit some file Z.C (having no relation to TOD.ASM). Then, while viewing the file
Z.C on our screen, the time of day would appear there, too, even as the time changes,
because our TSR will update the displayed time every five seconds.

The reader should assemble, link, and run the TOD program to get a feel for what
it does. The latter is extremely important; make sure to run this program before reading
about it. Especially vital are the interrupts, so make sure you understand their role
thoroughly.

CSG SEGMENT
ASSUME CS:CSG,DS:CSG
ORG 100H

NTRYPT: JMP INIT
NTICKS DW (?) ; number of timer ticks
INT1C PROC

; since this procedure is called by an INT, we need to reallow interrupts
STI

; save registers
PUSH AX
PUSH BX
PUSH CX
PUSH SI

; increment count of clock ticks, and check if ready to redisplay time
INC NTICKS

CMP NTICKS, 100D

JL XIT

; read real-time clock
MOV AH, 2
INT 1AH

; display time
MOV BX,CX

MOV SI, 152D
CALL ADISPBX

; start over
MOV NTICKS, 0

XIT:
POP SI
POP CX
POP BX

011 ServiceNow's Exhibit No. 1013
IPR2015-00631

338 Introduction to Operating Systems Chap. 8

POP AX
IRET
INT1C ENDP

ADISPBX PROC ; adaptation of DISPBX in Program 4.1

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH ES

; point ES to screen memory
MOV AX, OB800OH
MOV ES, AX

; each nibble to be printed will be taken from bits 15-12 of BX
; so0 we will keep rotating BX by 4 bits at a time, each time
: moving a new nibble into bits 11-8

; this will have to be done 4 times, for the 4 nibbles of BX,
3 and we will use DH as the loop counter, starting at 4,

; then 3, 2, and 1

MOV DH, 4

; the rotation of 4 bits will be indicated by CL, so put 4 there
MOV CL, 4

LP: MOV DL,BH ; put a copy in DL, to work on it there

; prepare the nibble for printing

AND DL,0OFOH ; put 0’s in the lower 4 bits of DL, leaving our nibble unchanged
ROR DL,CL ; rotate so that the nibble is in bits 3-0 of DL

CALL APRNIB ; print that nibble

ROL BX,CL ; rotate BX to get to next nibble

; decrement loop count and check if we are done with all nibbles yet
DEC DH
JNZ LP

POP ES

POP DX

POP CX

POP BX

POP AX

RET ; return to calling program
ADISPBX ENDP

APRNIB PROC ; adaptation of PRNIB in Program 4.1

; must convert numeric value in DL, which is in the range 0-F, to ASCII

012 ServiceNow's Exhibit No. 1013
IPR2015-00631

Sec. 8.4 Process Management

CMP DL,9 ; is it 0-9 or A-F?

JG A F ; if so, go to the code to handle the A-F case

; 1if not, we are in the 0-9 case

339

ADD DL, 30H H ASCII codes for the characters '0’'-'9" are 30H-39H
JMP WR_CHAR ; OK, ready to write to screen
A F: ADD DL,37H ; ASCII codes for the characters 'A’'—'F’ are 41H-46H

; here is where the actual writing to the screen takes place

WR_CHAR:
MOV BYTE PTR ES:[SI],DL
ADD SI,2

; OK, nibble printed, so return to caller
RET
APRNIB ENDP

INIT PROC NEAR

; set DS
PUSH CS
POP DS

; point ES to low memory
MOV AX,0
MOV ES, AX

; set vector for INT 1C

CLI ; don’'t allow interrupts while changing vector
MOV WORD PTR ES:[4*1CH],OFFSET INTI1C

MOV WORD PTR ES:[4*1CH+2],CS

STI ; reallow interrupts

MOV NTICKS,0 ; start count

; OK, terminate program but stay resident
; first set program size
MOV DX,OFFSET INIT
INT 27H
INIT ENDP

CSG ENDS

END NTRYPT
Program 8.3

A requirement for .COM files is that they fit into a single segment. Thus, no
separate data segment is declared in Program 8.3; instead, the data (here consisting of
only one item, NTICKS) is simply declared in the code segment. Another requirement
is that the code begin at offset 100 of the segment, which the pseudo-op ORG 100H

accomplishes.

013

ServiceNow's Exhibit No. 1013
IPR2015-00631

340 Introduction to Operating Systems Chap. 8

DOS service 27, at the end of the program, performs the TSR operation. Its
parameter in DX is the number of bytes to be reserved in memory. Since the INIT pro-
cedure, as indicated by its name, does only initialization, we do not need it to stay in
memory; we only need what precedes it, and there are OFFSET INIT bytes in that por-
tion of the program.

Now let us look at INT1C, our ISR for INT 1CH. The 8253 timer issues an inter-
rupt 18.2 times per second. Whatever program we are running at the time—say, VI—
will thus be interrupted 18.2 times per second, and the procedure INT1C will run each
time. INTI1C keeps track of how many timer ticks have occurred, and after every 100th
tick—approximately every five seconds—it prints the time of day on the screen. It
acquires the time of day from the real-time clock, via BIOS service number 1A/02.
(The real-time clock is available on most machines; however, even those machines
which do not have a real-time clock can still keep track of the time by using the 8253
timer itself, again by counting ticks within the 8253’s ISR.)

Many popular commercial products are TSR programs. For example, the so-called
“hot key” applications, in which a certain key can be used to suspend the current pro-
gram suddenly and temporarily take some other action, rely on the TSR approach. One
could make a TSR program that provides access to a dictionary stored on disk. Then
the person writing the “Great American Novel” using a word-processor program, or the
person playing a word-game program, could quickly access the dictionary by typing a
given key—say, F1—without having to “pack up and leave” the program he or she was
using.

The typical pattern is to replace a DOS or BIOS ISR. For example, consider the
disk cache application discussed in Section 2.3.5.1. BIOS service number 13 reads and
writes disk sectors. We could record the original value of this interrupt vector, so that
we remember where the BIOS ISR for INT 13H is, but change the vector to point to
our TSR. The TSR would check to see whether the given sector is in the cache (which
itself would be an array declared within the TSR); if not, the TSR would relay the
request to the original BIOS ISR for INT 13H, which would do the work of accessing
the sector on disk. (The TSR would “call” the original BIOS 13 routine by simulating
an INT, via a PUSHF and a far CALL.)

A caveat is necessary here: do not make calls to any DOS services from within
your ISR in a TSR program. If a DOS service is in progress when an interrupt occurs,
and then the ISR calls a DOS service too, there is a high risk that the stack will be
ruined. It is possible to write the program to sense whether another DOS procedure is in
progress before entering DOS, but the code is extremely delicate; it is better to limit
calls for OS services in your TSR program’s ISR to BIOS routines.

8.4.2 The Infrastructure of Time-Sharing

In time-sharing, the most important hardware interrupt is that of a timer, such as the
Intel 8253 timer. This chip will generate periodic interrupts, and since in a time-sharing
OS the timer’s interrupt service routine (ISR) is part of the OS, the OS has periodic
opportunities in which to “take a look around” and decide whether to switch control of
the CPU to another process.

014 ServiceNow's Exhibit No. 1013
IPR2015-00631

Sec. 8.4 Process Management 341

Let us make the latter notion more concrete. Suppose that users X and Y are
using the same computer, from different terminals attached to that computer. Suppose
also that user X requests a program to be run that will have an execution time of five
hours, and a split second after X hits the return key, user Y requests a program to be
run that will finish after only one second. It would be terribly unfair to have Y wait five
hours for X’s program to finish.

To avoid such an inequity, time-sharing systems make processes take turns run-
ning. A turn is called a time slice, or a quantum. The quantum size is a fixed time
interval, say 50 milliseconds (ms). In the example in the last paragraph, suppose, for
simplicity, that neither X’s nor Y’s program has any system calls and that those two
programs are the only two processes in the system right now. Then X’s process would
run for 50 ms, then Y’s process would run for 50 ms, then X would have another 50-ms
turn, then Y again, and so on. This scheduling policy, which is called round robin,
will result in Y’s program being done after 20 turns and with Y being delayed only by
one second (due to waiting during X’s first 20 turns), instead of having to undergo a
five-hour delay.

The other big advantage to time-sharing is that the computer is not wasting time
in wait-loop 1/O operations. If, say, user X’s program has reached a readln operation in
its Pascal source code, we certainly do not want our expensive computer to waste its
time looping until the user types a key. Instead, we give some other program a turn and
rely on the keyboard interrupt to notify the OS when user X finally gets around to hit-
ting a key. In other words, time-sharing generalizes the ideas suggested in example (a)
in Section 7.2.

Note again that even in single-user systems, the typical case in PC applications,
the one user could have several programs active at once. This is in fact one of the major
reasons for the interest in extensions of MS-DOS such as OS/2 and Windows 3.0—a
desire for easily setting up several program executions at once. Thus, even though we
have been speaking in terms of several users, what really counts is that several pro-
grams are active at once, whether they are invoked by different users or all by the same
user. So we will just refer to programs X and Y in what follows rather than to users X
and Y. (Referring to processes X and Y would be even better.)

To see why the timer interrupt is so important, suppose that the OS, during its ini-
tialization period, programs a timer to interrupt 60 times per second. Then three such
interrupts will occur during a 50-ms turn. Thus, we can write our timer ISR to count
these interrupts and to end the turn when the count reaches 3.

The reader should convince him- or herself that we simply could not implement
this taking-turns policy without timer interrupts. For example, without the timer inter-
rupts, once program X got control of the CPU, it would simply run for five hours to
completion. The OS could not intervene and stop that program, since that program
would be running, not the OS. The CPU would be, as always, simply stepping repeat-
edly through its step A, step B, step C, etc., cycle, so without interrupts, X would con-
tinue to run, and the OS would be completely dormant—completely powerless to stop
X. The timer interrupt is thus crucial in forcing the process to relinquish the CPU to the
OS.

015 ServiceNow's Exhibit No. 1013
IPR2015-00631

342 Introduction to Operating Systems Chap. 8

Program 8.4 is an outline of how the timer’s ISR might be written for a time-
sharing OS for an IBM microcomputer. As indicated earlier, it keeps a count of timer
interrupts that have occurred so far in the current program’s turn and ends the turn when
this count reaches 3. This is evident in the code

INC TICKS ; TICKS contains # of timer interrupts so far this turn
CMP TICKS,3 ; see if this is the third timer interrupt
JE ENDTRN ; if so, then end current program’s turn

When a turn is over, say, for program X, OS will record X’s current values of IP,
CS, FR, AX, BX, etc.—that is, all the registers in the CPU. Clearly, recording these
values is necessary, so that when X’s next turn comes, X will be able to resume execu-
tion in precisely the same setting as existed when its last turn ended. The OS keeps a
record of all processes in a table; we will call this table the process table. For each pro-
cess, the process table will include a pointer to a “save area” in memory for that pro-
cess; all the register values will be saved there.

After saving X’s register values, the OS will look at its process table to determine
which process should be given a turn next. If program Y is due to run, the OS will need
to restore all of Y’s saved register values first, as indicated in the comments in the latter
portion of Program 8.4. After restoring these values, the OS will give control of the
CPU to Y, and Y’s turn will begin.

It is worth noting how the OS passes control to Y. As can be seen at the end of
Program 8.4, control is passed via an IRET instruction. But the operation is not quite as
simple as it may seem. To see why, look at the KISR procedure in Program 7.6. It, too,
ends with an IRET instruction. But the difference is that KISR is entered when Pro-
gram 7.5 is interrupted, and the IRET in KISR will make us return to Program 7.5. In
other words, our entry to and return from KISR involve the same program, Program 7.5.

By contrast, when CLKINT in Program 8.4 executes for the third time during X’s
turn, we will refurn from CLKINT to Y’s program, even though we entered CLKINT
from X’s program! This may seem strange at first, but it becomes clear if one notes by
that before the IRET there is code in which the OS restores Y’s SS and SP values.
Thus, it will be Y’s stack that will be popped during the execution of IRET, not X’s
stack, and we will return to Y, not X, since Y’s stack will contain Y’s IP and CS values
that were saved at the end of Y’s previous turn.

This whole sequence of ending X’s turn and starting a turn for Y is called a con-
text switch: we have changed the “context” of the machine—i.e., the set of values in all
the registers—from that of X to that of Y. Note that this switch-over period is time
that is unproductive—necessary overhead in order to achieve the illusion of simul-
taneity between X and Y. Some CPUs, such as those of VAX machines, have the capa-
bility to do all the saving and restoring within the same single special instruction, thus
reducing the overhead.

The code in Program 8.4 has been simplified, to make the presentation easier to
follow. The use of the word “restore” in the comments (e.g., just above MOV TICKS,0)
assumes that all the processes that are currently running programs (actually, taking turns
running programs) have already had at least one turn. So there should be code to check

016 ServiceNow's Exhibit No. 1013
IPR2015-00631

Sec. 8.4 Process Management 343

CLKINT: PUSH DS
; move OS’'s data segment location into DS (code not shown),
; 80 that OS can access its own variables, e.g., Process Table,
; TICKS, etc.
INC TICKS ; TICKS contains # of timer interrupts so far this turn
CMP TICKS,3 ; see if this is the third timer interrupt
JE ENDTRN ; if so, then end current process’ turn
POP DS ; i1f not, then restore current process’ DS value
IRET ; and return to current process

ENDTRN: PUSH BX
;7 look at process table and determine where current process’ save area
; 1s, and point BX to it (code not shown)

PUSH BX
MOV [BX],AX ;save current process’ AX value
ADD BX, 2
POP AX; ;recover current process’ BX value
MOV [BX],AX ;save current process’ BX value
ADD BX, 2

; save current process’ CX, DX, DI, SI in the same way (code not shown)
; save current process’ DS, SS, and SP values (code not shown)

; note that at this point, SS and SP are still pointing to

; current process’ stack, and current process’ values of IP, CS

; and the flags register are still on current process’ stack

; so we do not have to save those as we did the other registers

; look on the process table for a new job, the “next” process

; to start a turn for (code not shown)

; restore next process’ AX,BX,CX,DX,DI,SI,SS, and SP (code not shown)
MOV TICKS,0 ; initialize the number of interrupts this process’ turn
; restore next process’ DS value (code not shown)

; next process’ values of IP, CSs, and the flags register are still

; on next process’ stack, left over from this user’s last turn

i (so no code needed for restoring values of these from the

; process’ entry in the 0OS process table)

; so the IRET below will take us back, exactly to the point

; which was executing when this user’s last turn ended

;but first, send EOI to 8259A (code not shown)

IRET

Program 8.4

whether the next process has already had a turn, and if it has not, then other code would
be executed, with all the references to “restore” changed to “initialize” instead.

In illustrating round robin scheduling with programs X and Y, we made the sim-
plifying assumption that neither of the programs makes any system calls and that no
other processes are currently in the system. Let us now discuss what happens in gen-
eral.

Clearly, there may be more than just two processes in the system, perhaps many
more. In its simplest form, round robin scheduling will service each process in turn, in

017 ServiceNow's Exhibit No. 1013
IPR2015-00631

344 Introduction to Operating Systems Chap. 8

circular fashion. In more sophisticated OSs, more complicated priority systems might be
imposed.

Furthermore, a process’ turn often ends early, before 50 ms have elapsed. Sup-
pose X occasionally makes system calls. Since such calls execute procedures within the
OS, X is voluntarily relinquishing control of the CPU to the OS. This ends X’s turn
early, before 50 ms are up. Since most system calls deal with I/O, and since I/O is a
relatively slow operation, it makes sense to start a new turn for another process—say
Y —rather than to wait patiently for X’s I/O request to be completed. In fact, after the
new turn for Y is completed, X’s I/O request may still not be complete, so we could
then give Y another turn or a give a turn to some third process. Of course, another pos-
sibility is that X’s system call is, say, in MS-DOS, to DOS service number 21/4C. In
that case, X will have finished execution and will not need the rest of its turn.

More detailedly, in addition to its process table, the OS will keep a ready list.
This list shows which processes are ready to get another turn. Those which are not
ready are waiting for something, e.g., completion of an I/O operation. Assuming an
equal-priority system, the OS would simply continue to gives turns cyclically to all
processes on the ready list. When a process’ turn ends—due to 50 ms elapsing, not due
to making a system call—it simply joins the end of a queue, and the OS gives a turn to
whichever process is currently at the head of the queue.

As an example, suppose that the system currently has three processes, A, B, and
C, and that A is executing and B and C are on the ready list. Suppose A reaches a sys-
tem call, say, to read a character from the keyboard. The system call, in the form of a
software interrupt as in Section 8.1, transfers control to the OS. The OS ends A’s turn
and puts A on a blocked list, where blocked refers to the fact that A could not run right
now even if the OS were to give it another turn—A is blocked by its pending 1/O
action. The OS then looks on the ready list for a program that is ready to start a new
turn. The OS then starts a turn for B, since B is at the head of the list. After that, the
ready list consists of C only.

Suppose that B’s turn ends after the normal 50 ms—that is, B had no system calls
during this time. Then again, the OS takes over, due to the interrupt from the timer, and
again, the OS looks at the ready list, seeing C. The OS starts a turn for C and puts B on
the ready list; now the ready list consists of B only.

Suppose now that during the middle of C’s turn, the user running process A
finally types a character. The keyboard will generate an interrupt, and again, the inter-
rupt routine will be some section of the OS. The OS notes from the blocked list that A
was waiting for this I/O, and thus, the OS puts A back on the ready list. Then C’s turn
will be resumed, and after C has run 50 ms, the turn will be over, and B’s next turn will
start. Then the next turn will be A’s, since it has now rejoined the ready list.

Once again, it is very important to keep in mind the role of interrupts in passing
control from a user program to the OS. Control can be passed via a hardware interrupt,
either from the timer or from an I/O device, or via a software interrupt, when the
currently executing process makes a system call. Keep in mind that the OS has no
power whatsoever when a user program is running. The OS cannot simply “step in”
and stop a user program,; either an I/O device forces the user program to relinquish con-
trol of the CPU, or the program voluntarily does so, via an INT instruction.

018 ServiceNow's Exhibit No. 1013
IPR2015-00631

