
ServiceNow, Inc.'s Exhibit 1004001

O,P\E“_LY® Elliotte Rusty Harold (S W. Scott Means

001 SerwceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004002

XML in a Nutshell

by Elliotte Rusty Harold and W. Scott Means

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly 8:. Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Contributor: Stephen Spainhour

Editors: Laurie Petrycki and John Posner

Production Editor: Ann Schirmer

Cover Designer: Ellie Volckhausen

Printing History:

January 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O‘Reilly logo are registered
trademarks of O’Reilly 8: Associates, Inc. The association of the image of a peafowl
and the topic of XML is a trademark of O’Reilly 8: Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly 8: Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Library ofCongress Catalogt‘ng-in—Publtcation Data can befound at:
him-flwww.orez‘ibmom/camtog/mtnut.

ISBN: 0-596-00058—8

[M] [8/01]

002 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004003

Table of Contents

Preface ... 362'

Part 1: XML Concepts

Chapter I—Introducz‘ng XML ... 3

What XML Offers .. 3

Portable Data .. 6

How XML Works _.. 6

The Evolution of XML .. 8

Chapter 2-—XML Fundamentals ... I 1

XML Documents and XML Files .. 11

Elements, Tags, and Character Data .. 12
Attributes ... 15

XML Names ... 17

Entity References .. 18
CDATA Sections ... 19

Comments ... 20

Processing Instructions ... 20
The XML Declaration ... 21

Checking Documents for Well-Formedness 25

003 ServiceNow, Inc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004004

Chapter 3—Docamem‘ Type Defintttons 26

Validation .. 26

Element Declarations ... 34

Attribute Declarations ... 39

General Entity Declarations ... 46

External Parsed General Entities .. 48

External Unparsed Entities and Notations ... 49

Parameter Entities ... 51

Conditional Inclusion ... 55

Two DTD Examples ... 54

Locating Standard DTDs .. 56

Chapter 4—Namespaces .. 58

The Need for Namespaces ... 58

Namespace Syntax .. 61

How Parsers Handle Namespaces ... 66

Namespaces and DTDs .. 67

Chapter 5—Internattonalz‘zatz‘on ... 69

The Encoding Declaration ... 69

Text Declarations .. 7O

XML-Defined Character Sets .. 71

Unicode ... 72

ISO Character Sets .. 74

Platform-Dependent Character Sets ... 75

Converting Between Character Sets .. 76

The Default Character Set for XML Documents 77

Character References .. 78

xml:lang .. 81

Part II: Narrative-Centric Documents

Chapter 6——XML as a Document Format 85

SGML’s Legacy .. 85

Narrative Document Structures .. 86

TEI ... 88

DocBook ... 91

Document Permanence .. 94

Transformation and Presentation ... 96

W1004

ServiceNow, Inc.'s Exhibit 1004005

Chapter 7—le/IL on the Web .. 98

XHTML .. 99

Direct Display of XML in Browsers .. 105

Authoring Compound Documents with Modular XE-ITML 110

Prospects for Improved Web Search Methods 124

Chapter 8—XSL Transformations .. 129

An Example Input Document .. 129

xsl:stylesheet and xslztransform ... 130

Stylesheet Processors .. 152

Templates .. 153

Calculating the Value of an Element with xsl:value—of 134

Applying Templates with xsl:apply-templates 135

The Built-in Template Rules .. 158

Modes .. 142

Attribute Value Templates .. 144

XSLT and Namespaces ... 144
Other XSLT Elements ... 146

Chapter 9—XPath ... I4 7

The Tree Structure of an XML Document ... 147

Location Paths ... 150

Compound Location Paths ... 155
Predicates .. 157

Unabbreviated Location Paths ... 158

General XPath Expressions .. 160
)G’ath Functions .. 165

Chapter I0—XLz‘nks .. I68

Simple Links .. 169
Link Behavior ... 170

Link Semantics .. 173

Extended Links ... 173

Linkbases .. 180

DTDs for XLinks ... 181

Chapter 1 1 —XP0inters ... 182

XPointers on URLs .. 182

XPointers in Links ... 184

Bare Names ... 185

005 ServiceWflrrfifi’seE'Xhifiit 1004

ServiceNow, Inc.'s Exhibit 1004006

Child Sequences ... 186

Points .. 186

Ranges ... 189

Chapter 12—Cascading Stylesbeets (CSS) 19]

The Three Levels of CSS .. 193

CSS Syntax .. 193

Associating Stylesheets with XML Documents 195

Selectors .. 197

The Display Property ... 200

Pixels, Points, Picas, and Other Units of Length 201

Font Properties ... 202

Text Properties ... 203

Colors .. 204

Chapter 13 —XSL Formatting Objects (XSL-FO) 206

XSL Formatting Objects ... 208

The Structure of an XSL-FO Document ... 209

Master Pages ... 210

XSL—FO Properties .. 216

Choosing Between CSS and XSL-FO ... 221

Part III: Data-Centric Documents

Chapter I4—XML as a Data Format .. 225

Programming Applications of XML ... 225

Describing Data .. 227

Support for Programmers ... 229

Chapter I5—Programmz°ng Models .. 230

Event— Versus Object-Driven Models .. 230

Programming Language Support ... 251

Non-Standard Extensions ... 232

Transformations .. 232

Processing Instructions ... 255

Links and References ... 233

Notations ... 234

What You Get 15 Not What You Saw .. 254

viii Table ofConterits 006 SGNICGNOW, Inc. S EXlilblf I004

ServiceNow, Inc.'s Exhibit 1004007

Chapter I6—D0cament Object Mode! (DOM) 236
DOM Core ... 237

DOM Strengths and Weaknesses ... 237

Parsing a Document with DOM .. 238

The Node Interface .. 238

Specific Node Types ... 240

The DOMImplementation Interface .. 245

A Simple DOM Application ... 245

Chapter 1 7—SAX .. 250

The ContentHandler Interface ... 252

SAX Features and Properties .. 259

Part IV: Reference

Chapter 18—XML 1.0 Reference ... 265

How to Use This Reference ... 26S

Annotated Sample Documents .. 265

Key to XML Syntax ... 266
Well-Formedness .. 266

Validity .. 275

Global Syntax Structures .. 279

DTD (Document Type Definition) .. 285

Document Body ... 294
XML Document Grammar .. 295

Chapter IQ—XPath Reference ... 299

The XPath Data Model ... 299

Datatype .. 300
Location Paths ... 301

Predicates .. 305

XPath Functions .. 305

Chapter 20—XSLT Reference .. 315

The XSLT Namespace' ... 3 15
XSLT Elements .. 515

XSLT Functions ... 339

007 ServiceNBiR/F Mentalist 1004

ServiceNow, Inc.'s Exhibit 1004008

Chapter 21—DOM Reference ... 345

Object Hierarchy .. 346

Object Reference .. 346

Chapter 22—SAX Reference .. 400

The 0rg.xml.sax Package ... 400

The org.xml.sax.helpers Package .. 407

SAX Features and Properties .. 413

The org.xml.sax.ext Package ... 415

Chapter 23—Character Sets .. 41 7

Character Tables ... 419

HTML-4 Entity Sets .. 424

Other Unicode Blocks .. 432

Index .. 459

x Tahte ofComents 008 SGNICGNOW, Inc. S EXHIBIE I004

ServiceNow, Inc.'s Exhibit 1004009

Preface

XML is one of the most important developments in document syntax in the history

of computing. In the last few years it has been adopted in fields as diverse as law,
aeronautics, finance, insurance, robotics, multimedia, hospitality, travel, art,

construction, telecommunications, software design, agriculture, physics, journalism,

theology, retail, and medieval literature. XML has become the syntax of choice for
newly designed document formats across almost all computer applications. It's used
on Linux, Windows, Macintosh, and many other computer platforms. Mainframes

on Wall Street trade stocks with one another by exchanging XML documents. Chil-

dren playing games on their home PCs save their documents in XML. Sports fans
receive real-time game scores on their cell phones in XML. XML is simply the most
robust, reliable, and flexible document syntax ever invented.

XML in a Number? is a comprehensive guide to the rapidly growing world of XML.

It covers all aspects of XML, from the most basic syntax rules. to the details of
DTD creation, to the APIs you can use to read and write XML documents in a

variety of programming languages.

What This Book Covers

There are hundreds of formally established XML applications from the W3C and
other standards bodies, such as OASIS and the Object Management Group. There

are even more informal, unstandardized applications from individuals and corpora-

tions, such as Microsoft‘s Channel Definition Format and John Guajardo’s Mind

Reading Markup Language. This book cannot cover them all, any more than a
book on Java could discuss every program that has ever been or might ever be

written in Java. This book focuses primarily on XML itself. It covers the funda-
mental rules that all XML documents and authors must adhere to, whether a web

designer uses SMIL to add animations to web pages or a C++ programmer uses
SOAP to serialize objects into a remote database.

(309 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004010

This book also covers generic supporting technologies that have been layered on

top of XML and are used across a wide range of XML applications. These technol-

ogies include:

XLmks

An attribute-based syntax for hyperlinks between XML and non-XML docu-

ments that provide the simple, one-directional links familiar from HTML,

multidirectional links between many documents, and links between docu—

ments you don't have write access to.

XSLT

An XML application that describes transformations from one document to

another, in either the same or different XML vocabularies.

XPoimers

A syntax for identifying particular parts of an XML document referred to by a

URI; often used in conjunction with an XLink.

XPatb

A non-XML syntax used by both XPointers and XSLT for identifying particular

pieces of XML documents. For example, an XPath can locate the third

address element in the document, or all elements with an email attribute

whose value is elhaxotilmetalabmnc . edu.

Namespaces

A means of distinguishing between elements and attributes from different XML

vocabularies that have the same name; for instance, the title of a book and

the title of a web page in a web page about books.

SAX

The Simple API for XML, an event~based Java application programming inter-

face implemented by many XML parsers.

DOM

The Document Object Model, a tree-oriented API that treats an XML docu-

ment as a set of nested objects with various properties.

All these technologies, whether defined in XML (XLinks, XSLT, and Name-Spaces)

or in another syntax (XPointers, XPath, SAX, and DOM), are used in many

different XML applications.

This book does not specifically cover XML applications that are relevant to only
some users of XML. These include:

5VG

Scalable Vector Graphics is a Wfic-endorsed standard used for encoding line

drawings in XML.

Mathi

The Mathematical Markup Language is a WSC-endorsed standard XML appli-

cation used for embedding equations in web pages and other documents.

xii Preface 0 I0 86' WCENOW, II IC- S EXI'ibit I004

ServiceNow, Inc.'s Exhibit 1004011

CML

The Chemical Markup Language was one of the first XML applications. It

describes chemistry, solid-state physics, molecular biology, and the other
molecular sciences.

RDF

The Resource Description Framework is a WSC-standard XML application
used for describing resources, with a particular focus on the sort of metadata

one might find in a library card catalog.

GDP

The Channel Definition Framework is a nonstandard, Microsoft-defined XML

application used to publish web sites to Internet Explorer for offline browsing.

Occasionally we use one or more of these applications in an example, but we do
not cover all aspects of the relevant vocabulary in depth. While interesting and

important, these applications (and hundreds more like them) are intended prima-
rily for use with special software that knows their format intimately. For instance,
graphic designers do not work directly with SVG. Instead, they use their customary
tools, such as Adobe Illustrator, to create SVG documents. They may not even

know they’re using XML.

This book focuses on standards that are relevant to almost all developers working

with XML. We investigate XML technologies that span a wide range of XML appli-
cations, not those that are relevant only within a few restricted domains.

Organization of the Book

Part I, XML Concepts, introduces you to the fundamental standards that form the
essential core that all XML applications and software must adhere to. It teaches

you about well-formed XML, DTDs, namespaces, and Unicode as quickly as
possible.

Part II, Narrative-Centric Documents, explores technologies that are used mostly
for narrative XML documents, such as web pages, books, articles, diaries, and

plays. You’ll learn about XSLT, CSS, XSL-FO,)flinks, XPointers, and XPath.

One of the most unexpected developments in XML was its enthusiastic adoption
of data-heavy structured documents such as spreadsheets, financial statistics, math-
ematical tables, and software file formats. Part III, Dara-Centric Xflfl, explores the
use of XML for such data-intensive documents. This part focuses on the tools and

APIs needed to write software that process XML, including SAX, the Simple API for

XML, and the W305 Document Object Model.

Finally, Part IV, Reference, is a series of quick-reference chapters that form the
core of any Nutshell handbook. These chapters give you detailed syntax rules for
the core XML technologies, including XML, D'I‘Ds, XPath, XSLT, SAX, and DOM.
Turn to this section when you need to quickly find out the precise syntax for

something you know you can do but don‘t remember exactly how to do.

011 ServiceNow, Ineeaahttift 1004

ServiceNow, Inc.'s Exhibit 1004012

Conventions Used in This Book

Body text, like the text you‘re reading now, is written in Garamond.

Constant width is used for:

' Code examples and fragments.

- Anything that might appear in an XML document, including element names,

tags, attribute values, entity references, and processing instructions.

0 Anything that might appear in a program, including keywords, operators,

method names, class names, and literals.

Cmstant—width hold

I! User input.

'- Signifies emphasis should be deleted.

Constant—width italic is used for:

- Replaceable elements in code statements.

Jrah‘c is used for:

0 New terms where they are defined.

0 Pathnames. filenames, and program names. (However, if the program name is

also the name of a Java class, it is written in constant-width font, like other
class names.)

0 Host and domain names (wwwxmicom).

. URLs(bt¥1-//z'bz'blio.o7g/xmi/).

Significant code fragments, complete programs, and documents are generally

placed into a separate paragraph like this:

<?xml version="1.0"?>

<?xml—stylesheet href="person.css” type="text/css"?>
<person>

Alan Turing

<fperson>

XML is case sensitive. The PERSON element is not the same thing as the person or

Person element. Case-sensitive languages do not always allow authors to adhere

to standard English grammar. It is usually possible to rewrite the sentence _so the

two do not conflict, and when pOSSible we have endeavored to do so. However,

on rare occasions when there is simply no way around the problem, we let stan-

. dard English come up the loser.

Finally, although most of the examples used here are toy examples unlikely to be

reused, a few have real value. Please feel free to reuse them or any parts of them

in your own code. No special permission is required. As far as we are concerned,

they are in the public domain (though the same is definitely not true of the

explanatory text).

xiv prqace ervnce ow, nc.s x | | 04

COPYCTRHN
Typewritten Text

COPYCTRHN
Typewritten Text

ServiceNow, Inc.'s Exhibit 1004013

Requestfor Comments

We enjoy hearing from readers with general comments about how this book could

be better, specific corrections, or topics you would like to see covered. You can

reach the authors by sending email to elbam@metaiab.unc.edu and

smeans®emetpnlsewebmacbinescom. Please realize, however, that we each

receive several hundred pieces of email a day and cannot respond to every one

personally. For the best chances of getting a. personal response, please identify
yourself as a reader of this book. And please send the message from the account
you want us to reply to and make sure that your Reply-to address is properly set.
There's nothing quite so frustrating as spending an hour or more carefully

researching the answer to an interesting question and composing a detailed

response, only to have it bounce because the correspondent sent the message
from a public terminal and neglected to set the browser preferences to include
their actual email address.

The information in this book has been tested and verified, but you may find that

features have changed (or you may even find mistakes). We believe the old

saying, “If you like this book, tell your friends. If you don‘t like it, tell us." We're
especially interested in hearing about mistakes. As hard as the authors and editors
worked on this book, inevitably there are a few mistakes and typographical errors

that slipped by us. If you find a mistake or a typo, please let us know so we can
correct it. You can send any errorsyou find, as well as suggestions for future

editions, to:

O‘Reilly & Associates, Inc.
101 Morris Street

Sebastopol, CA 95472

1—800—998-9938 (in the United States or Canada)

1-707-829-051 5 (international/local)

1-707-829-0104 (fax)

We have a web site for the book, where we list errata, examples, and any addi-

tional information. You can access this site at:

farm/Aurora.oreilly.corn/cataiog/xminu:

Before reporting errors, please check this web site to see if we already posted a
fix. To ask technical questions or comment on the book, send email to:

bookquestions®orerfly com

For more information about our books, conferences, software, Resource Centers,

and the O‘Reilly Network, see our web site at:

brm://www.oreifly.com

Acknowledgments

Many people were involved in the production of this book. The original editor,
John Posner, got this book rolling and provided many helpful comments that
substantially improved the book. When John moved on, Laurie Petrycki shep-
herded this book to its completion. Stephen Spainhour deserves special thanks for

013 ServiceNow, Incs‘seEXhibtr 1004

ServiceNow, Inc.'s Exhibit 1004014

helped create a better book. We‘d like to thank Matt Sergeant and Didier P. H.
Martin for their thorough technical review of the manuscript and thoughtful
suggestions.

We‘d also like to thank everyone who has worked so hard to make XML such a
success over the last few years and thereby give us something to write about. There
are so many of these people that we can only list a few. In alphabetical order we’d
like to thank Tim Berners-Lee, Jon Bosak, Tim Bray, James Clark, Charles Gold—
farb, Jason Hunter, Michael Kay, Brett McLaughlin, David Megginson, David
Orchard, Walter E. Perry, Simon St. Laurent, C. M. Sperberg-McQueen, James
Tauber, B. Tommie Usdin, and Mark Wutka. Our apologies to everyone we unin-
tentionally omitted.

Elliotte would like to thank his agent, David Rogelberg, who convinced him that it
was possible to make a living writing books like this rather than working in an
office. The entire Sunsite crew (now ibz‘blz'oorg) has also helped him to communi-
cate better with his readers in a variety of ways over the last several years. All
these people deserve much thanks and credit. Finally, as always, he offers his
largest thanks to his wife, Beth, without whose love and support this book would
never have happened.

Scott would most like to thank his lovely wife, Celia, who has already spent way
too much time as a “computer widow.” He would also like to thank his daughter
Selene for understanding why Daddy can’t play with her when he’s “working,”
and Skyler for just being himself. Also, he‘d like to thank the team at Enterprise
Web Machines for helping him make time to write. Finally, he would like to thank
John Posner for getting him into this and Laurie Petrycki for working with him
when things got tough.

Elliotte Rusty Harold
elbaro®metalab.unc.edu

W. Scott Means

meam©enterpnsmebmacbmescom

mu1004

ServiceNow, Inc.'s Exhibit 1004015

Introducing XML

XML, the Extensible Markup Language, is a W3C—endorsed standard for document

markup. It defines a generic syntax used to mark up data with simple, human-

readable tags. It provides a standard format for computer documents. This format
is flexible enough to be customized for domains as diverse as web sites, elec-

tronic data interchange, vector graphics, genealogy, real estate listings, object

serialization, remote procedure calls, and voice mail systems.

You can write your own programs that interact with, massage, and manipulate

data in XML documents. If you do, you'll have access to a wide range of free

libraries in a variety of languages that can read and write XML so that you can

focus on the unique needs of your program. Or you can use off-the—shelf software
like web browsers and text editors to work with XML documents. Some tools are

able to work with any XML document. Others are customized to support a partic-

ular XML application in a particular domain like vector graphics and may not be of
much use outside that domain. But in all cases, the same underlying syntax is

used, even if it’s deliberately hidden by more user-friendly tools or restricted to a

single application.

What XML Ofiers

XML is a meta-markup language for text documents. Data is included in XML

documents as strings of text, and the data is surrounded by text markup that

describes the data. A particular unit of data and markup is called an element. The

XML Specification defines the exact syntax this markup must follow: how elements

are delimited by tags, what a tag looks like, what names are acceptable for

elements, where attributes are placed, and so forth. Superficially, the markup in an
XML document looks much like that in an HTML document, but some crucial

differences exist.

Most importantly, XML is a meta-i-narkup language. That means it doesn't have a

fixed set of tags and elements that are always supposed to work for everyone in

><

E

"n

a..,
I:
:2.
t:
n"I-.
:3

(=1

5015 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004016

all areas of interest. Attempts to create a finite set of such tags are doomed to

failure. Instead, XML allows developers and writers to define the elements they

need as they need them. Chemists can use tags that describe elements, atoms,

bonds, reactions, and other items encountered in chemistry. Real estate agents can

use elements that describe apartments, rents, commissions, locations, and other

items needed in real estate. Musicians can use elements that describe quarter

notes, half notes, G clefs, lyrics, and other objects common in music. The X in

XML stands for Extensible. Extensible means that the language can be extended

and adapted to meet many different needs.

Although XML is flexible in the elements it allows to be defined, it is strict in

many other respects. It provides a grammar for XML documents that regulates

placement of tags, where tags appear, which element names are legal, how

attributes are attached to elements, and so forth. This grammar is specific enough

to allow development of XML parsers that can read and understand any XML

document. Documents that satisfy this grammar are said to be well-finned. Docu-

ments that are not well-formed are not allowed any more than a C program

containing a syntax error would be. XML processors reject documents that contain
well-formedness errors.

To enhance interoperability, individuals or organizations may agree to use only

certain tags. These tag sets are called ML applications. An XML application is not

a software application that uses XML, like Mozilla or Microsoft Word. Rather, it‘s

an application of XML to a particular domain, such as vector graphics or cooking.

The markup in an XML document describes the document‘s structure. It lets you

see which elements are associated with which other elements. In a well-designed

XML document, the markup also describes the document's semantics. For instance,

the markup can indicate that an element is a date, a person, or a bar code. In

well-designed XML applications, the markup says nothing about how the docu-

ment should be displayed. That is, it does not say that an element is bold,

italicized, or a list item. XML is a structural and semantic markup language, not a

presentation language.‘

The markup permitted in a particular XML application can be documented in a

document type definition (DTD). The DTD lists all legal markup and specifies

where and how the markup may be included in a document. Particular document

instances can be compared to the DTD. Documents that match the DTD are said

to be valid. Documents that do not match are invalid. Validity depends on the

DTD; whether a document is valid or invalid depends on which DTD you

compare it to.

Not all documents need to be valid. For many purposes, a well-formed document

is enough. DTDs are optional in XML. On the other hand, DTDs may not always

be sufficient. The DTD syntax is limited and does not allow you to make many

* A few XML applications, like XSL Formatting Objects, are designed to describe text presenta-.
tion. However, these are exceptions that prove the rule. Although XSL~FO describes presen-

tation. you‘d never write an XSL—FO document directly. Instead, you’d write a more
semantically marked-up XML document, then use an XSL Transformations stylesheet to
change the semantic-oriented XML into presentation—oriented XML.

4 Chapter 1 — Introducing XML 016 SerwceNow, |nc.'s Exfilfilf 1004

ServiceNow, Inc.'s Exhibit 1004017

useful statements such as, “This element contains a number" or “This string of text

is a date between 1974 and 2032.” If you're writing programs to read XML docu-

ments, you may want to add code to verify statements like these, just as you

would if you were writing code to read a tab-delimited text file. The difference is

that XML parsers present you with the data in a much more convenient format to

work with and do more of the work for you before you have to resort to your

own custom Code.

What XML Is Not

XML is a markup language, and only a markup language. It‘s important to

remember this fact. The XML hype has become so extreme that some people

expect XML to do everything up to, and including, washing the family dog.

First of all, XML is not a programming language. There’s no such thing as an XML

compiler that reads XML files and produces executable code. You might define a

scripting language that uses a native XML format and is interpreted by a binary

program, but even this application would be unusual.‘ XML can be used as an
instruction format for programs that make things happen. A traditional program,

for example, may read a text config file and take different actions, depending on

what it sees in the file. There's no reason why a config file can’t be written in XML

instead of unstructured text. Indeed, some recent programs are beginning to use

XML config files. But in all cases the program, not the XML document, takes

action. An XML document simply is. It does not do anything.

Furthermore, XML is nor a network-transport protocol. XML, like HTML, won’t

send data across the network. However, data sent across the network using HTTP,

FTP, NFS, or some other protocol might be in an XML format. XML can be the

format for data sent across the network, but again, software outside the XML docu-

ment must actually do the sending.

Finally, to mention the example in which the hype most often obscures reality,

XML is not a database. You won't replace an Oracle or MySQL server with XML. A

database can contain XML data as a VARCHAR, a BLOB, or a custom XML

datatype; but the database itself is not an XML document. You can store XML data
in a database or on a server or retrieve data from a database in an XML format, but

to do so you need to run software written in a real programming language like C

or Java. To store XML in a database, software on the client side sends the XML

data to the server using an established network protocol like TCP/IP. Software on

the server side reCeives the XML data, parses it, and stores it in the database. To

retrieve an XML document from a database, you generally pass through a middle-

ware product like Enhydra that makes SQL queries against the database and
formats the result set as XML before returning it to the client. Indeed, some data-

bases may integrate this software code into their core server or provide plug-ins,
such as the Oracle XSQL servlet, to do it. XML serves very well as a ubiquitous,

platform-independent transport format in these scenarios. However, XML is not the
database and shouldn‘t be used as one.

* At least one XML application, XSL Transformations, has been proven to be Turing complete.

..

E

as
"‘5:'-.:3

in:

017 ServiceNWngeahifiimom

ServiceNow, Inc.'s Exhibit 1004018

Portable Data

XML offers the tantalizing possibility of truly cross-platform, long-term data

formats. It‘s long been the case that a document written by one piece of software

on one platform is not necessarily readable on a different platform, by a different

program on the same platform, or even by a future or past version of the same

software on the same platform. When the document can be read, all the informa-

tion may not necessarily come across. Much of the data from the original moon

landings in the late 19603 and early 19705 is now effectively lost. Even if you can

find a tape drive that reads the now obsolete tapes, nobody knows what format

the data on the tapes is stored in!

XML is an incredibly simple, well-documented, straightforward data format. XML

documents are text, and any tool that can read a text file can read an XML docuv

ment. Both XML data and markup are text, and the markup is present in the XML

file as tags. You don’t have to wonder whether every eighth byte is random

padding, guess whether a four-byte quantity is a two’s complement integer or an

IEEE 754 floating point number, or try to decipher which integer codes map to

which formatting properties. You can read the tag names directly to see exactly

what’s in the document. Similarly, since tags define element boundaries, you aren’t

likely to get tripped up by unexpected line ending conventions or the number of

spaces mapped to a tab. All the important details about the document‘s structure

are explicit. You don't have to reverse engineer the format or rely on question-

able, and often unavailable, documentation.

A few software vendors may want to lock in their users with undocumented,

proprietary binary file formats. However, in the long run we are all better off if we

can use the cleanly documented, well-understood, easy to parse, text-based

formats that XML provides. XML allows documents and data to move from one

system to another with a reasonable hope that the receiving system can make

sense out of it. Furthermore, validation lets the receiving side ensure that it gets

what it expects. Java promised portable code. XML delivers portable data. In many

ways, XML is the most portable and flexible document format designed since the
ASCII text file.

How XML Works

Example 1~1 shows a simple XML document. This particular XML document might

appear in an inventory control system or a stock database. It marks up the data

with tags and attributes describing the color, size, bar code number, manufac-

turer, and product name.

Example 1-1.- An ML Document

<?xml version="l . U "?>

<product barcode;"2394287410">

manufacturer>Verbatim<manufacturer)

<name>DataLife ME 2HD€Iname>

<quantity>10<lquantity>

<size>3.5“</size>

6 Chapter 1 — Introducing XML 018 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004019

Example 1-1: An XML Document (continued)

coolor>black< /color>

<description>floppy disks<ldescription>

(/productbv

This document is text and might well be stored in a text file. You can edit this file

with any standard text editor, such as BBEdit, UltraEdit, Emacs, or vi. You do not

need a special XML editor; in fact, we find that most general-purpose XML editors
are far more trouble than they’re worth and much harder to use than a simple text
editor.

Then again, this document might not be a file at all. It might be a record in a
database. It might be assembled on the fly by a C61 query to a web server and

exist only in a computer‘s memory. It might even be stored in multiple files and
assembled at runtime. Even if it isn’t in a file, however, the document is a text

document that can be read and transmitted by any software capable of reading

and transmitting text.

Programs that actually try to understand the contents of the XML document, that is,
do not merely treat it as any other text file, use an XML parser to read the docu-

ment. The parser is responsible for dividing the dOCument into individual

elements, attributes, and other pieces. It passes the contents of the XML document

to the application piece by piece. If at any point the parser detects a violation of

XML rules, it reports the error to the application and stops parsing. in some cases

the parser may read past the original error in the document so it can detect and

report other errors that occur later in the document. However, once it has detected
the first error, it no longer passes along the contents of the elements and attributes

it encounters to the application.

Individual XML applications normally dictate precise rules about which elements
and attributes are allowed where. You wouldn’t expect to find a G_Clef element

when reading a biology document, for instance. Some of these rules can be speciw

fled precisely using a DTD. A document may contain either the DTD itself or a

pointer to a URI where the DTD is found. Some XML parsers notice these details
and compare the document to its DTD as they read it to see if the document satis-

fies the specified constraints. Such a parser is called a vaiidating parser: A
violation of those constraints is a validity error, and the whole process of checking

a document against a D'I'D is called vaiidation. If a validating parser finds a

validity error, it reports it to the application on whose behalf it parses the docu-

ment. This application can then decide whether it wishes to continue parsing the

document. However, validity errors, unlike well-formedness errors, are not neces-

sarily fatal; an application may choose to ignore them. Not all parsers are

validating parsers. Some merely check for well-formedness.

The application that receives data from the parser may be:

- A web browser, such as Netscape or Internet Explorer, that displays the docu-
ment to a reader

. A word processor, such as StarOffice Writer, that loads the XML document for

editing

- A database server, such as Oracle, that stores XML data in a database

‘—

E><ea

3%I“'Ir-i
'5.In

019 ServiceNoW,“1Pf£41s‘@réfiibii 1004

ServiceNow, Inc.'s Exhibit 1004020

0 A drawing program, such as Corel Draw, that interprets XML as two-dimen-

sional coordinates for the contents of a picture

. A spreadsheet, such as Gnumeric, that parses XML to find numbers and func—
tions used in a calculation

0 A personal finance program, such as Microsoft Money, that sees XML as a
bank statement

- A syndication program that reads the XML document and extracts the head-

lines for today’s news

. A program that you wrote in java, C, Python, or some other language that

does exactly what you want it to do

- Almost anything else

XML is an extremebx flexible format for data. It can be used in all of these

scenarios and many more. These examples are real. In theory, any data that can

be stored in a computer can be stored in XML format. In practice, XML is suitable

for storing and exchanging any data that can be plausibly encoded as text. Its use

is unsuitable only for multimedia data, such as photographs, recorded sound,

video, and other very large bit sequences.

The Evolution ofXML

XML is a descendant of the Standard Generalized Markup Language (SGML). The

language that would eventually become SGML was invented by Charles Goldfarb,

Ed Mosher, and Ray Lorie at IBM in the 19705 and developed by several hundred

people around the world until its eventual adoption as ISO standard 8879 in 1986.

SGML was intended to solve many of the same problems XML solves. It was and is

a semantic and structural markup language for text documents. SGML is extremely

powerful and achieved some success in the US. military and government, the

aerospace sector, and other domains that needed ways of managing technical

documents that were tens of thousands of pages long efficiently.

SGML’s biggest success was HTML, an SGML application. However, HTML is just

one SGML application. It does not have or offer the full power of SGML. Since

HTML restricts authors to a finite set of tags designed to describe web pages in a

fairly presentationally oriented way, it’s really little more than a traditional markup

language that has been adopted by web browsers. It simply doesn’t lend itself to

use beyond the single application of web page design. You would not use HTML

to exchange data between incompatible databases or send updated product cata-

logs to retailer sites, for example. HTML is useful for creating web pages, but it

isn’t capable of much more than that.

The obvious choice for other applications that took advantage of the Internet, but

were not simple web pages, was SGML. SGML‘s main problem is its complexity.

The official SGML specification is more than 150 very technical pages. It covers

many special cases and unlikely scenarios. It is so complex that almost no soft-

ware has ever implemented it fully. Programs that implemented or relied on

different subsets of SGML were often incompatible with one another. The special

feature one program considered essential would be considered extraneous fluff

and omitted by the next program. '

8 Cbapteri-Imroducmgmr ervnce ow, nc.s x | | 04

COPYCTRHN
Typewritten Text

COPYCTRHN
Typewritten Text

COPYCTRHN
Typewritten Text

ServiceNow, Inc.'s Exhibit 1004021

In 1996 Jon Bosak, Tim Bray, C. M. Sperberg-McQueen, James Clark, and several
others began work on a “lite” version of SGML. This version retained most of

SGML’s power, but trimmed many features that were redundant, too complicated

to implement, confusing to end users, or that had simply not been proven useful
over the previous 20 years of experience with SGML. The result, in February 1998,,
was XML 1.0, and it was an immediate success. Many developers who knew they

needed a structural markup language but couldn’t bring themselves to accept

SGML‘s complexity adopted XML wholeheartedly. It was ultimately used in

domains ranging from legal court filings to hog farming.

.3.

kg
5.5:,--.

::
tn:

However, XML 1.0 was just the beginning. The next standard out of the gate was

Namespaces in XML, an effort to allow conflict-free use of markup from different

XML applications in the same document. A web page about books, for example,
could have a title element that referred to the page‘s title and title elements

that referred to the book's title, and the two would not conflict.

The Extensible Stylesheet Language, an XML application that transforms other XML
documents into a form that is viewable in web browsers, was the next develop-

ment. This language soon split into XSL Transformations (XSLT) and XSL

Formatting Objects (XSL—FO). XSLT has become a general-purpose language for

transforming one XML document into another for web page display and other

purposes. XSL-FO is an XML application that describes the layout of both printed
and web pages. This application rivals PostScript for its power and expressiveness.

However, XSL is not the only option for styling XML documents. The Cascading

Stylesheet Language (CSS) was already in use for HTML documents when XML
was invented, and it was a reasonable fit to XML, as well. With the advent of CSS

Level 2, the W3C made styling XML documents an explicit goal for CSS and gave it

equal importance to HTML. The preexisting Document Style Sheet and Semantics

Language (DSSSL) was also adopted from its roots in the SGML world to style XML

documents for print and use on the Web.

The Extensible Linking Language (XLL) defined more powerful linking constructs

that could connect XML documents in a hypertext network, vastly overpowering

HTML‘s A tag. It also divided into two separate standards: XLink, which described
connections between documents, and X'Pointer, which addressed the individual

pans of an XML document. At this point, it was noticed that both XPointer and
XSLT were developing fairly sophisticated, yet incompatible, syntaxes to do exactly

the same thing: identify particular elements of an XML document. Consequently,
the addressing parts of both specifications were split off and combined into a third

specification, XPath.

A similar phenomenon occurred when it was noticed that XML 1.0, XSLT, XML
Schemas, and the Document Object Model (DOM) all had similar, but subtly

different, conceptual models of the structure of an XML document. For instance,
XML 1.0 considers a document‘s root element as its root, while XSLT uses a more

abstract root that includes the root element and several other pieces. Thus the

W3C XML Core Working Group began work on an XML Information Set that all

these standards could rely on and refer to.

Another piece of the puzzle was a uniform interface for accessing the contents of
the XML document from inside a Java, JavaScript, or C++ program. The simplest

021 Servfiietfi‘talr,tinrc0f§@khi%it 1004

ServiceNow, Inc.'s Exhibit 1004022

API was to merely treat the document as an object that contained other objects.

Indeed, work was already underway inside and outside the W3C to define such a

Document Object Model for HTML. Expanding this effort to cover XML was not
difficult.

Outside the W3C, Peter Murray—Rust, David Megginson, Tim Bray, and other

members of the xml—dev mailing list recognized that XML parsers, while all

compatible in the documents they could parse, were incompatible in their APIs.

This observation led to the development of the Simple API for XML, SAX. SAXZ

was released in 2000 to add greater configurability, namespace support, and

several optional features.

Development of extensions to the core XML specification continues. Future direc-
tions include:

XFmgmem

An effort to make sense out of XML document pieces that may not be consid-
ered well-formed documents in isolation.

XML Scbemas

An XML application that can describe the allowed content of documents

conforming to a particular XML vocabulary.

XHYML

A reformulation of HTML as a well-formed, modular, potentially valid XML

application.

XML Query Language

A language for finding the elements in a document that meet specified
criteria.

Canonical XML

A standard algorithm used for determining whether two XML documents are

the same after throwing away insignificant details, such as whether single or

double quotes are used around attribute values.

XML Signatures

A standard means of digitally signing XML documents, embedding signatures

in XML documents, and authenticating the resulting documents.

Many new extensions of XML remain to be invented. XML has proven itself a solid

foundation for many other technologies.

10 Chapter 1 - Introducing ML 022 ServiceNow, |nc.'s EXHIBIT 1004

ServiceNow, Inc.'s Exhibit 1004023

XML Fundamentals

This chapter shows you how to write simple XML documents. You’ll see that an
XML document is built from text content marked up with text tags, such as <SKU>,

<Record_ID>, and <author>, that look superficially like HTML tags. However, in

HTML you’re limited to about a hundred predefined tags that describe web page
formatting; in XML you can create as many tags as you need. Furthermore, these
tags usually describe the type of content they contain, rather than formatting or
layout information. In XML you don’t say that something is a paragraph or an
unordered list. You say that it’s a book, a biography, or a calendar.

Although XML is looser than HTML in which tags it allows, it is much stricter about
where those tags are placed and how they’re written. In particular, all XML docu-
ments must be well-firmed. Well—formedness rules specify constraints such as, “All

opened tags must be closed” and “Attribute values must be quoted.” These rules
are unbreakable, which makes parsing XML documents easier and writing them a

little harder, but still allows an almost unlimited flexibility of expression.

XML Documents and XML Files

An XML document contains text, never binary data. It can be opened with any

program that knows how to read a text file. Example 2-1 is close to the simplest
XML document imaginable. It is nonetheless a well-formed XML document. XML

parsers can read and understand it (at least as far as a computer program can be
said to understand anything).

Example 2-1: A Very Simple, Yet Complete, XML Document

(person?

Alan Turing

< /pers0n>

><

:5
=11"II.-

as
‘9

623 ServiceNow, |nC.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004024

In the mOst common scenario, this document would be the entire content of a

file named personxml, or perhaps 2-1.xml. However, XML is not picky about the

filename. As far as the parser is concerned, this file could be called persontxt,

person, or Hey you, there’s some XML in this berefite! Your operating system may

not like these names, but an XML parser won’t care. The document might not
even be in a file. It could be a record or a field in a database. A CGI program

could generate it on the fly in response to a browser query. It could even be

stored in more than one file, though that’s unlikely for such a simple document.

If it’s served by a web server, it will probably be assigned the MIME media type

application/x1111 or text/x1111. However, specific XML applications may use more

specific MIME media types, such as application/mathml+xml, application/

XSLT+xml, image/svgfirml, text/vnd.wap.wml, or text/html (in special cases).

Elements, Tags, and Character Data

The document in Example 2-] is composed of a single element whose type is

person. This element is delimited by the start tag <person> and the end tag </

person>. Everything between the element’s start tag and end tag (exclusive) is the

element’s content. The content of this element is the text string:

Alan Turing

The whitespace is part of the content, though many applications will choose to

ignore it. <person> and <fperson> are markup. The string Alan Turing and its

surr0unding whitespace are cbaracter data. The tag is the most common form of

markup in an XML document, but there are other kinds we’ll discuss later.

Tag Syntax

Superficially, XML tags look like HTML tags. Start tags begin with a < and end tags

begin with a </. Both of these are followed by the name of the element and are

closed by a >. However, unlike HTML tags, you are allowed to make up new XML

tags as you go along. To describe a person, use <person> and </person> tags.

To describe a calendar, use <calendar> and <fcalendar> tags. The names of

the tags reflect the type of content inside the element, not how that cement will be
formatted.

Empty elements

There‘s a special syntax for empty elements, elements without content. These

elements can be represented by tags that begin with < but end with />. For

instance, in XHTML, an XMLiZed reformulation of standard HTML, the line break

and horizontal rule elements are written as
 and <hr/> instead of
 and

<hr>. These elements are exactly equivalent to
</br> and <hr></h:r>,

however. You decide which form to use for empty elements. However, what you

cannot do in XML and XI-ITML (unlike HTML) is use only the start tag, such as

or <hr>, without using matching end tags. That would be a well—formedness error.

Case sensitivity

XML, unlike HTML, is case sensitive. <Person> is not the same as <PERSON>, and

neither is the same as <person>. If you open an element with a <person> tag,

12 Chapter 2— XML Fundamentals
024 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004025

you can't close it with a </PERSON> tag. You‘re free to use upper— or lowercase, or
both, as you choose. You just have to be consistent within any one element.

XML Trees

XML documents are trees. To explain this concept, let's look at a slightly more

complicated XML document. Example 2-2 is a person element containing informa—
tion suitably marked up to show its meaning.

Example 2—2: A More Complex ML Document Describing a Person

<person>
<name>

<first_name>Alan</first_name>

<last_name>Turing</last_name>

<fna1ne>

<profession>computer scientist<fprofession>

<profession>mathematician</profession>

(profession>cryptographer</profession>

<fperson>

Parents and children

This XML document is still composed of one person element. However, now this
element doesn’t merely contain undifferentiated character data. It contains four
child elements: a name element and three profession elements. The name

element contains two child elements of its own, first_name and last._name.

The person element is called the parent of the name element and the three

profession elements. The name element is the parent of the first_name and
last_name elements. The name element and the three profession elements are

sometimes called one another’s siblings. The first_name and last_name

elements are also siblings.

As in human society, any one parent may have multiple children. However, unlike

human society, XML gives each child exactly one parent, not two. Each element

(with one exception that we'll note shortly) has exactly one parent element. That

is, it is completely enclosed by another element. If an element’s start tag is inside
an element, then its end tag must also be inside that element. Overlapping tags, as

in this common example from H'I'MI'.., are prohib—

ited in XML. Since the em element begins inside the strong element, it must also

finish inside the strong element.

The root element

Every XML document has one element without a parent. This is the first element in
the document that contains all other elements. In Example 2—1 and Example 2-2

the person element fills this role and is called the document’s root element. It is

sometimes also called the document element. Every well-formed XML document

has exactly one root element. Since elements may not overlap and since all
elements except the root have exactly one parent, XML documents form a data

Elements Tag5, and CbamcterDatn

Sn:
:3u...
a:"I.
m 'L’HUNJTWX

ServiceNow, Inc.3 Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004026

structure that programmers call a tree. Figure 2—1 diagrams this relationship for

Example 2-2. Each gray box represents an element. Each black box represents

character data. Each arrow represents a containment relationship.

person

profession profession I profession I

firsLaume lusLnome -! -I trylogmpher I

m;
Figure 2—1: A free diagramfor Example 2-2

Mixed Content

In Example 2-2, the contents of the first_name, last_name, and profession

elements were character data: text that does not contain any tags. The contents of

the person and name elements were child elements and some whitespace that

most applications ignore. This dichotomy between elements that contain only

character data and elements that contain only child elements (and possibly a little

whiteSpace) is common in data—oriented documents. However, XML can also be

used for free-form, narrative documents, such as business reports, magazine arti-

cles, student essays, short stories, and web pages, as shown in Example 2-5.

Example 2-3: A Abwatiue-Orgam'zea XML Document

<biography>

<name><first4name>Alan</first_name> <last_name}Turing<flashfiname>

</name> was one of the first people to truly deserve the name

<emphasize>computer soientist<femphasize>. Although_his contributions

to the field are too numerous to list, his best—known are the

eponymous <emphasize>Turing Test</emphasize> and

<emphasize>Turing'Machinec/emphasize>.

<definition>The <term>Turing Test<fterm> is to this day the standard

test for determining whether a computer is truly intelligent. This

test has yet to be passed. </definition>

<definition>The <term>Turing Maohine<fterm> is an abstract finite

state automaton with infinite memory that can.be proven equivalent

to any any other finite state automaton with arbitrarily large memory.

14 Cbapter2—XML Fundamentalpzs SeerCéNUW, INC. 3 EXIlibit I004

ServiceNow, Inc.'s Exhibit 1004027

Example 2-3: A Narrative—Oganized XML Document (continued)

Thus what is true for a Turing machine is true for all equivalent

machines no matter how implemented.

<fdefinition>

<name><last_name>Turing</last_name><£name> was also an accomplished

(profession>mathematicianc/profession> and

<profession>cryptographer</profession>. His assistance

was crucial in helping the Allies decode the German Enigma

machine. He committed suicide on <date><month>June</month>

<dayv?</day>, <year>l954<fyear></date> after being

convicted of homosexuality and forced to take female

hormone injections.

</biography>

This document's root element is biography. The biography contains name,

definition, profession, and emphasize child elements. It also contains a lot of
raw character data. Some elements, such as last_name and profession, contain

only character data. Others, such as name, contain only child elements. Still others,
such as definition, contain both character data and child elements. These

elements are said to contain mixed content. Mixed content is common in XML

documents used for anything organized as a written narrative, such as articles,

essays, stories, books, novels, reports, and web pages. Mixed content is less
common and harder to work with in the computer-generated and processed XML

documents used for database exchange, object serialization, or persistent file

formats. One of 'XML's strengths is the ease with which it can be adapted to the

very different requirements of human-authored and computergenerated
documents.

Attributes

XML elements can have attributes. An attribute is a name-value pair attached to the

element‘s start tag. Names are separated from values by an equals sign, and

possibly optional whitespace. Values are enclosed in single or double quotation
marks. For example, this person element has a born attribute with the value
1912/06f23 and a died attribute with the value 1954/06/07:

<person.born="1912/06/23“ died="1954/06/07">

Alan Turing

</person>

This next element is exactly the same to an XML parser. It simply uses single

quotations instead of double quotations and puts some extra whitespace around
the equals signs:

<person born = '1912/06/23' died = ‘1954/06/07')
Alan Turing

< /person:-

The whitespace around the equals signs is purely a matter of personal aesthetics.
The single quotes may be useful in cases in which the attribute value itself
contains a double quote.

s:

afi
s:
a":
as

“R

027 ServiceNow, InfltlstlxhiUlf 1004

ServiceNow, Inc.'s Exhibit 1004028

Example 24 shows how attributes might be used to encode much of the same

information given in Example 2—2’5 data-oriented document.

Ext; mp1s 2-4: An XML Document The! Describes a Person Using Attributes

<person>

we first: “Alan" last: " Turing" />

<profession value: " computer scientist " />

<profession value: " mathematician“ />

<pro fess ion value: " cryptographer " />

< fpersom-

This example raises the question of when and whether one should use child

elements or attributes to hold information. This is a subject of heated debate. Some

informaticians maintain that attributes are for metadata about the element, while

elements are for the information itself. Others point out that it’s not always easy to

identify what is data and what is metadata. Indeed the answer may depend on the

uses to which the information is put.

The fact that each element may have no more than one attribute with a given

name is undisputed. This is unlikely to be a problem for a birth or death date, but

it would be an issue for a profession, name, address, or anything elso of which an

element might plausibly have more than one. Furthermore, attributes are quite

limited in structure. An attribute’s value is simply a text string The division of a

date into a year, month and day with slashes is at the limit of the substructure that

can be reasonably encoded in an attribute. Consequently, an element-based struc-

ture is much more flexible and extensible. Nonetheless, attributes are certainly

more convenient in some applications. Ultimately, if you’re designing your own

XML vocabulary, you decide when to use elements and when to use attributes.

Attributes are also useful in narrative-oriented documents, as Example 2-5 demon-

strates. Here what belongs to elements or attributes is perhaps a little more

obvious. The narrative’s raw text is presented as character data inside elements.

Additional information that annotates the data is presented as attributes. This infor—

mation includes source references, image URLs, hyperlinks, and birth and death

dates. Even here, however, there's more than one way to do it. For instance, the
footnote numbers could be attributes of the footnote element rather than char-

acter data.

Example 2-5: A Narrative XMI. Document The! Uses Attributes

<biography xmlns :xlink: "http: / /www. w3 . org/ 1999 /x1irfl</namespace/ " >

<image source="http: Hm. turing. org.uJ</turingfpil/bus . jpg"

width="152 " height="345 .. />

<person born='1912/06/23'

died: ' 1954/06/07 ' ><first_name>Alan</first_name>

<last_name>Iuring</last_name> </person> was one of the first people

to truly deserve the name <errphasize>computer scientist-C/etrtphasize).

Although his contributions to the field were too numerous to list,

his best—known are the eponymous <emphasize flink:type="simple"

xlink : href= "http: / /cogsoi .uosd. edu/~asaygin/tt/ttest . html " >Turing

6 b 2—

1 ”PM ”mundmemiiza ServiceNow, |nc.'s Exhibit1004

ServiceNow, Inc.'s Exhibit 1004029

Exampie 2-5: A Narrative XML Document Thar Uses Attributes (continued)

Test</emphasize> and <emphasize xlink:type=“simple"

xlink:href="http:/{mathworld.wolfram.comeuringMachine.html">Turing

machine</emphasize>.

<last;name>Turing</last_name) was also an accomplished

<profession>mathematicians/profession> and

<profession>cryptographer</profession>. His assistance
was crucial in helping the Allies decode the German Enigma

machine.<footnote source="The Ultra Secret, F.W. Winterhotham,

1974">l</footnote>

He committed suicide on <date><month>June</month> <day>7</day>,

<year>1954<fyear></date> after being convicted of homosexuality
and forced.to take female hormone injections.<footnote

source="Alan Turing: the Enigma, Andrew Hodges. 1983">2</footnote>

</biography>

XML Names

The XML specification can be quite legalistic and picky at times, but it tries to be
efficient when possible. One way it tries to increase its efficiency is by reusing the
same rules for different objects when possible. For example, the rules for XML
element names are also the rules for XML attribute names and the names of several

less common constructs. Generally, these names are referred to as XML names.

Element and other XML names may contain any alphanumeric character. These

characters include the standard English letters A through 2 and a through 2, as

well as the digits 0 through 9. XML names may also include non-English letters,
numbers, and ideograms, such as o, c, 13, and 1p. They may also include these

three punctuation characters:

Underscore

- Hyphen

Period

XML names may not contain other punctuation characters, such as quotation

marks, apostrophes, dollar signs, carets, percent symbols, and semicolons. The
colon is allowed, but its use is reserved for namespaces, as discussed in Chapter 4,

Namespaces. XML names may not contain whitespace of any kind, whether a
space, a carriage return, a line feed, or a nonbreaking space.

XML names may start only with ietters, ideograms, or the underscore character. They
may not start with a number, a hyphen, or a period. There is no limit to the length
of an element or other XML name. The following elements are all well—formed:

0 <Drivers_License_Nurrber>9 8 NY 3 2 < /Drivers_License_Number>

0 month—day~year>'7 / 2 3 /' 2 0 0 l< /month—day—year>

- <firs t_name>Alan</ f irst_name>

- <_4—lane>I—510</_4—lane>

><

3%
gr“
a?
51::can.

“3

029 ServiceNow, Ws‘fifiib‘lfl 004

ServiceNow, Inc.'s Exhibit 1004030

0 <téléphone>011 33 91 55 27 55 27</téléphone>

. <0V0pfl>Melina Merkouridovom

These elements are not well-formed:

- <Driver ‘ s_License_Nurnber>9 8 NY 3 2</Driver ' s_License_Nmnber>

- month/day/year>'7 /2 3 /2 D 01</month/day/year>

- <first name>Alan</ first name>

I <4—1ane>I—610</4—lane>

Entity References

The character data inside an element may not contain a raw unescaped opening

angle bracket <. This character is always interpreted as the beginning of a tag. If

you need to use this character in your text, you can escape it using the < entity

reference. When a parser reads the document, it replaces the < entity refer-

ence with the actual < character. However, it does not confuse 5:11;; with the start

of a tag. For example:

<SCRIPT LANGUAGE:"JavaSCIipt“)

if (location.host.toLowerCase().index0f("ibiblio") &1t; 0} {

location.href=”http://www.ibiblio.org/xml/";
}

</SCRIPT>

The character data inside an element may not contain a raw unescaped amper—

sand 5: either. This character is always interpreted as the beginning of an entity or

character reference. However, the ampersand may be escaped using the stamp;
entity reference like this:

<publisher>0 'Reilly Scamp; Associatesdpublisher;

Entity references such as & and < are considered markup. When an appli-

cation parses an XML document, it replaces this particular markup with the actual

characters the entity reference refers to. The result, O’Reilly 8; Associates in the

previous example, is called parsed character data; that is, the character data that’s

left after the document is parsed and the entities are resolved.

XML predefines exactly five entity references:

<

The less—than sign, or opening angle bracket (<)

scans):

The ampersand (8t)

>

The greater—than sign, or closing angle bracket (>)

chuot;

The straight, double quotation marks C”)

'

The apostrOp-he, or single quote C)

18 CbaPet2-WLFW-rmm’eso ServiceNow, |nc.'s Exhibit1004

ServiceNow, Inc.'s Exhibit 1004031

Only Salt; and Scam); must be used in place of the literal characters in element
content. The other references are optional. squot; and scapos; are useful inside
attribute values, where a raw “ or ' might be misconstrued as ending the attribute
value. For example, this image tag uses the scapos; entity reference to fill in the

apostrophe in O‘Reilly:

(hinge source:'oreilly_kosla3.gif1 width=‘l22' height=‘66'
a1t='Powered by 0'Reilly Books'

/>

Although misinterpreting an unescaped greater-than sign > as closing a tag it
wasn’t meant to close is impossible, sgt; is allowed for symmetry with <.

In addition to these five predefined entity references, you can define others in the
document type definition. We‘ll discuss how to do this in Chapter 3, Document

Type Definitions.

CDATA Sections

When an M document includes samples of XML or HTML source code, the <
and 8.: characters in those samples must be encoded as sit; and &,-. The
more sections of literal code a document includes and the longer they are, the
more tedious this encoding can become. To facilitate the process, you can enclose

each sample of literal code in a CDATA section. A CDATA section is set off by a
<! [CDATA[and]]>. Everything between the <! [CDATAI and the]]> is treated as
raw character data. Less—than signs don't start tags. Ampersands don't start entity

references. Everything is simply character data, not markup.

For example, in a Scalable Vector Graphics (SVG) tutorial written in XHTML, you

might see something like this:

<p>You can use a default <c0de>xmlns<fcode> attribute to avoid
having to add the svg prefix to all your elements:</p>

<1[CDATA[

<svg munsfl'http://ww.w3.org/2000/svg"

width: " 12mm" height: " 10cm" >-

<ellipse rx:"110" ry:"130” cx:“lcm" cy:"1cm" {>

«crept x="4om" y=”1cm" width="3cm" height="6cm" />

</evg>

ll>

The SVG source code was included directly in the XI-ITML file without having to

carefully replace each < with <. The result is a sample SVG document, not an
embedded SVG picture, as would happen if this example were not placed inside a
CDATA section.

The only thing that cannot appear in a CDATA section is the CDATA section end
delimiter]]>.

CDATA sections are convenient for human authors, not programs. Parsers are not

required to tell you whether a particular block of text came from a CDATA section,
from normal character data, or from character data that contained entity references

such as alt; and samp;. By the time you get access to the data, these differences

may have been washed away.

><

ag
e:
a“:
are

”P

031 SewiceNofiiZAIfit§sefifiibiP1004

ServiceNow, Inc.'s Exhibit 1004032

Comments

XML documents can be commented so coauthors can leave notes for each other

documenting why they’ve done what they‘ve done or items that remain to be

done. XML comments are syntactically similar to HTML comments; they begin with

< I —— and end with the first occurrence of ——>. For example:

<!—— I need to verify and.update these links when I get a chance. ——>

The double hyphen —-— should not appear anywhere inside the comment until the

closing ——>. In particular, a three-hyphen close like ———> is specifically forbidden.

Comments may appear anywhere in the document’s character data. They may also

appear before or after the root element. (Comments are not elements, so this does

not violate the tree structure or the one-root element rules for XML.) However,

comments may not appear inside a tag or another comment.

XML parsers may or may not pass along information included in comments. They

are certainly free to drOp them out if they choose. Do not write documents or

applications that depend on the availability of comments. Comments are strictly for

making the raw source code of an XML document more legible to human readers.

They are not intended for any computer program. If you need such a feature for a

computer program, use a processing instruction instead.

Processing Instructions

In HTML comments are sometimes abused to support nonstandard extensions. For

instance, the contents of the style element are sometimes enclosed in a comment

to protect it from display by a nonscript-aware browser. The Apache web server

parses comments in .sbtmi’ files to recognize server-side includes. Unfortunately

these documents may not survive being passed through various HTML editors and

processors with their comments and associated semantics intact. Worse yet, it’s

possible for an innocent comment to be misconstrued as input to the application.

XML provides the processing instruction as an alternative means of passing infor-

mation to particular applications that may read the document. A processing

instruction begins with <? and ends with ?>. Immediately following the <? is an

XML name called the target, possibly the name of the application for which this

processing instruction is intended, or perhaps just an identifier for this particular

processing instruction. The rest of the processing instruction contains text in a

format appropriate for the applications the instruction is intended for.

For example, HTML uses a Robots ME‘I‘A tag to tell search engines and other robots

whether and how they should index a page. The following processing instruction

has been proposed as an equivalent for XML documents:

<?robots indexz"yes ” follow: "no" ?>

The target of this processing instruction is robots. The syntax of this particular

processing instruction is two pseudoattributes, one named index and one named

follow, whose values are either yes or no. The semantics of this particular

processing instruction are that if the index attribute has the value yes, then this

page will be indexed by a search engine robot. If index has the value no, then it

20 CMP’W‘ XML Fundamem‘tiaz ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004033

won’t be. Similarly, if follow has the value yes, then links from this document

will be followed. Otherwise, they won’t be.

Other processing instructions may have totally different syntaxes and semantics.
For instance, processing instructions can contain an unlimited amount of text. PI-IP

includes large programs in processing instructions:

< ?php

mysql_connect("database.unc.edu", "clerk", "password"};

$result : mysql("CYNW". “SELECT LastName, FirstName FROM Employees
ORDER BY LastName, FirstName");

$i = 0:

while ($i < mysql_numrows ($reeulti) {

sfields = mysq1_fetch_row($result);

echo "<person>$fields[1] $fields[0] </person>\r\n";

$i++;

}

mysql$close{l;
?>

Processing instructions are markup, but not elements. Consequently, like
comments, processing instructions may appear anywhere in an XML document

outside of a tag, including before or after the root element. The most common

processing instruction, xml—stylesheet attaches stylesheets to documents. it
always appears before the root element, as Example 2-6 demonstrates. In this
example, the xml—etyleeheet processing instruction tells browsers to apply the
CSS stylesheet personcss to this document before showing it to the reader.

Example 2—6: An Xflfl Document with an xmi—styiesbeet Processing Instruction

<?ml-styleshaet href="person. oss" type: "text/ears“ ?>

<person>

Alan Turing

< {persorp

The processing instruction name xml, in any combination of case, (that is, xml,
XML, Xml, etc.) is resolved for use by the W3C. Otherwise, you‘re free to pick any

legal XML name for your processing instructions.

Tbe XML Declaration

XML documents should, but do not have to, begin with an XML declaration. The

XML declaration iooks like a processing instruction with the name xml and

version, standalone, and encoding attributes. Technically, it’s not a processing

instruction though, just the XML declaration; nothing more, nothing less.

Example 2-7 demonstrates.

Exampie 2- 7.- A Veiy Simple XML Document with an XML Declaration

(haul version="1. O" encoding="US—ASCII" stmfialona=“yes"?>

<person>

Alan Turing

</per50n>

3ch

3..
5‘...M 'EPUNJTWX

033 Serviééfi’liiv?ifi%f’%”fii<h56it 1004

ServiceNow, Inc.'s Exhibit 1004034

XML documents do not have to have an XML declaration. However, if an XML

document does have an XML declaration, then the declaration must be the first

thing in the document. It must not be preceded by comments, whitespace, or

processing instructions. The reason is that an XML parser uses the first five charac-

ters (<?xml) to make reasonable guesses about the encoding, such as whether the

document uses a single— or multibyte character set. An invisible Unicode byte

order mark is the only thing that may precede the XML declaration. We’ll discuss

this further in Chapter 5, Internationalization.

version

The version attribute of the XML declaration always has the value 1.0. It is plau—

sible that at some future time this value may change, and then the version

attribute will be used to distinguish between documents that adhere to XML 1.0

and documents that adhere to a later version of the specification. However, it’s

also plausible that this will never happen. XML 1.0 is a fairly robust specification

designed for extensibility. Most efforts to improve it—namespaces and schemas,

for example—are built as layers on top of the infrastructure that XML 1.0 provides.

They do not require breaking existing parsers or documents. Parsers that read XML

1.0 documents can still read documents that use namespaces, schemas, or hypo—

thetical future developments. They may not understand the extra semantics that

these new developments offer, but they can still read the documents. XML is

designed to be both forward and backward compatible.

encoding

So far we’ve been a little cavalier about encodings. We’ve said that XML docu~

ments are composed of pure text; but we haven’t said what encoding that text

uses. Is it ASCII? Latin-1? Unicode? Something else?

The short answer to this question is “Yes.” The long answer is that, by default, XML

documents are assumed to be encoded in the UTF-8 variable length encoding of the

Unicode character set. This encoding is a strict superset of ASCII, so pure ASCII text

files are also UTF—8 documents. However, most XML processors can handle a much

broader range of encodings. All you have to do is give the name of the encoding in

the XML declaration. Example 2-8 shows how you’d indicate that a document was

written in the ISO 88594 (Latin—1) character set. This set includes characters needed

for many non-English Western European languages, such as o and c.

Example 2-8: An XML Document Encoded in Latin-1

<?xml version="1 . 0 " encoding="ISO-8859-l" standalone: "yes" ?>

(persom

Erwin Schrodinger

< fpersorp

The encoding attribute is optional in an XML declaration. If it is omitted, the

Unicode character set is assumed. The parser may use the first several bytes of the

file to guess which form of Unicode is in use.

Chapter 5 discusses the different encodings and proper handling of non-English

XML documents in much greater detail.

22 Cbapter2—XML Fundamennfls4 ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004035

standalone

If the standalone attribute has the value no, then an application may have to

read an external DTD (that is, a DTD in a file other than the one it’s reading now)

to determine the proper values for parts of the document. For instance, a DTD

may provide default values for attributes a parser is required to report, though
they aren't actually present in the document.

Documents that do not have DTDs, like all the documents in this chapter, can use

the value yes for the standalone attribute. Documents that do have DTDs can

also use the value yes for the standalone attribute if the DTD doesn’t change the
content of the document or if the DTD is purely internal. Chapter 3 provides

details for documents with DTDs.

The standalone attribute is optional in an XML declaration. If it is omitted, the

value no is assumed.

Checking Documentsfor Well-Formedness

Every legal XML document, without exception, must be well-formed. This means it
must adhere to a number of rules, including:

. Every start tag must have a matching end tag

- Elements may not overlap

. There must be exactly one root element

- Attribute values must be quoted

- An element may not have two attributes with the same name

0 Comments and processing instructions may not appear inside tags

0 No unescaped < or 5: signs may occur in the element's or attribute’s char—
acter data

This list is not exhaustive. A document can be malformed in many ways. You'll

find a complete list in Chapter 18, X1141 1.0 Reference. Some of these malforma~
tions involve constructs we have not yet discussed, such as DTDs. Others are very

unlikely to occur if you follow the examples in this chapter (for example,
including whitespace between the opening < and the element name in a tag).

Whether the error is small or large, likely or unlikely, an XML parser reading a

document must report it. It may report multiple well-formedness errors it detects in
the document. However, the parser is not allowed to fix the document and make a
best faith effort of providing what it thinks the author really meant. It can't fill in

missing quotes around attribute values, insert an omitted end tag, or ignore the
comment that’s inside a start tag. The parser is required to return an error. The

objective here is to avoid the bug-for—bug compatibility wars that plagued early
web browsers and continues to this day. Consequently, before you publish an

XML document, whether that document is a web page, input to a database or

something else, you should check it for well-formedness.

5n:

E
9..VJ 'WUFHTWX

Cbefifi‘sg Docs’gix’iféieONWi‘l‘r’m’é’ifidfihdi 1004

ServiceNow, Inc.'s Exhibit 1004036

The simplest way to check the d0cument is by loading it into a web browser that

understands XML documents, such as Opera or Mozilla. If the document is well-

formed. the browser will diSplay it. If it isn‘t, then it will show an error message.

Instead of loading the document into a web browser, you can use an XML parser

directly. Most XML parsers are not intended for end users; they are class libraries

designed to be embedded into a more user-friendly program like Internet

Explorer. They provide a minimal command—line interface, if that; and that inter-

face is often not well documented. Nonetheless, running a batch of files through a

command—line interface is sometimes faster than loading each of them into a web

browser. Once you learn about DTDs, you can use the same tools to validate
documents.

Many XML parsers are available in a variety of languages. Here we’ll demonstrate

checking well-formedness with the Apache XML Project's Xerces-J, which you can

download from waif/xml.apacbe.org/xercesjz/mdexbrmt This open source

package is written in pure Java, so it should run across all major platforms. The

procedure should be similar for other parsers, though details vary.

To use this parser you‘ll first need to install a Java 1.1 or later compatible virtual

machine. Virtual machines for Windows, Solaris, and Linux are available from bap.-/

fiavasuncomfl To install Xerceer just add the xercesjar and xercesSampiesJar

files to your Java class path. In Java 2 you can simply put those Jar files into your

jre/lz'b/ext directory.

The class that actually checks files for well-formedness is called sax.SAXCount.

It’s run from a Unix shell or DOS prompt, like any other standalone Java program.

The commandeline arguments are the URLs to or filenames of the clOCuments you

want to check. Here’s the result of running SAXCoum against the original version

of Example 2—5. The first line of output locates the file’s first problem. The rest of

the output is an irrelevant stack trace:

D:\xian\examples\02>jara sax.SAXCount 2-5.xml

[Fatal Error] 2-5.xml:3:30: The value of attribute "height" must not
contain the '<' character.

Stopping after fatal error: The value of attribute "height" must not
contain the '<' character.

at org.apache.xerces.framework.XMLParser.reportError(XMLParser.java:1282)

at org.apache.xerces.framework.XMLDocumentScanner.reportFatalXMLError{KM

LDocumentScanner.java:644)

at org.apache.xerces.framework.XMLDocumentScanner.scanAttValue(XMLDocume

ntScanner.java:519l

at org.apache.xerces.framework.XMLParser.scanAttvalue(XMLParser.

java:1932)

at org.apache.xerces.framework.XMLDocumentScanner.scanElement(XMLDocumen

tScanner.java:1800)

at org.apache.xerces.framework.XMLDocumentScanner$ContentDispatcher.disp

atcthMLDocumentScanner.java:1223)

at org.apache.xerces.framework.XMLDocumentScanner.parseSome(XMLDocumentS

canner.java:381}

at org.apache.xerces.framework.XMLParser.parse{XMLParser.java:1138}

at org.apache.xerces.framework.XMLParser.perse(XMLParser.java:ll77)

at sax.SAXCount.print[SAXCount.java:135}

at sax.SAXCount.main(SAXCount.java:331)

24 CMP’P’Q‘WL Fundamem‘ilias ServiceNow, |nc.'s Exhibit 1004

ServiceNow, Inc.'s Exhibit 1004037

As you can see, the program found an error. In this case the error message wasn’t
particularly helpful. The actual problem wasn’t that an attribute value contained a
< character. It was that the closing quote was missing from the attribute value. Still

that information was sufficient to locate and fix the problem. Despite the long list

of output in this example, SAXCoum reports only the first error in the file, so you
may have to run it multiple times until all mistakes are fOund and fixed. Once we
fixed Example 2—5 to make it well-formed, SAXCoum simply reported how long it

took to parse the document and what it saw when it did:

D:\xian\e.xamples\02>java sax.SAXCount 2-5.2:1111

2—5.}anl: 140 ms (17 alarms. 12 attrs, 0 spaces, 564 chars)

Once the document has been made wellwformed, it can be passed to a web

browser, :1 database, or whatever other program is waiting to receive it. Almost any
nontrivial document crafted by hand contains well«formedness mistakes. That’s why

it‘s important to check your work before you publish it.

5tn

3
93..VJ {pang7W)!

Cbee’svg DocsawtseNWW-fiaeaimifir’i 1 004

