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Chapter 9

Imaging and Partial Subsurfacevlllumination

Introduction

In Chapter 8, we analyzed how the spatial sampling
rate influences image quality. If data sampling is not suffi-

ciently dense, the seismic image may lose resolution and/or
it may be affected by artifacts.

Unfortunately, however, density of spatial sampling is

not the only problem encountered with realistic 3D acquisi-

tion geometries. An even more common problem is irreg-
ularity of the spatial sampling. Often, irregular sampling in
space is a product of practical constraints, examples of which
include cable feathering in marine acquisition and surface

obstacles in land acquisition. In other cases (e.g., with but—

ton-patch geometries), irregular sampling geometry might
be inherent in the survey design.

The main effect of irregular sampling geometries is

either uneven illumination or incomplete illumination of the

subsurface. Such partial illumination causes distortions in

the image. In milder cases, distortions are limited to the

image amplitudes, and they are clearly visible in depth or
time slices. Those distortions often are called acquisition

footprint. Figure 1 shows an example of acquisition foot-
prints in a migrated depth slice taken from a marine data set.
On the right-hand side, horizontalstriping is clearly visible,
superimposed over the image of a complex turbidite sys-
tem with crossing channels. The horizontal striping is not

linked to geology; it is along the direction of the sailing
lines of the recording vessel.

When subsurface illumination is not only uneven but is

also incomplete, the phase of the image is distorted, and
strong artifacts are created. At the limit, when the acquisi—
tion geometry has holes, the data are aliased, at least 10-
cally. In such cases, a distinction between the effects of
coarse sampling (which we called aliasing in Chapter 8)
and the effects of irregular geometries obviously is artifi-

cial. However, it helps to analyze such effects separately

and to develop independent methods for alleviating the

problems.

Either uneven or incomplete illumination can be caused

by complexity of the velocity function in the overburden,
as well as by irregular acquisition geometries. Imaging under

123

salt edges is an example Of an important task that suffers
from partial illumination of the reflectors. The problem
often is caused by sharp velocity—model variations that pre—

vent the seismic energy either from reaching the reflectors

or from propagating back to the surface. Although the im—
mediate causes of partial illumination differ in the two

cases — irregular acquisition geometry versus complex over—
burden —- the final manifestation is the same: The wave-

field is not sampled sufficiently at depth for migration to

image the reflectors without artifacts. The concepts and
methods used to address the uneven—illumination problem

are similar, regardless of its origin, and consequently I pres-
ent them in a unified manner.

When illumination is uneven but without gaps, the

image can be improved substantially by a simple normal—
ization of the imaging operator or, as it often is called, by

an operator equalization. In this chapter, we introduce the
basic concepts of operator equalizations, using a simple

imaging operator — interpolation followed by partial stack-
ing — as a proxy for more complex imaging operators. In
cases when uneven illumination of the reflectors relates

mostly to irregular acquisition geometry and the velocity in
the overburden is fairly simple, the DMO or AMO opera-

tors (Chapter 3) are normalized (Beasley and Mobley,
1988; Canning and Gardner, 1998; Chemingui, 1999). In

more complex situations, in which the velocity in the over—
burden is sufficiently Complex to distort the wavefield or

even to cause illumination gaps, normalization should be

applied in the image domain after full prestack migration
(Bloor et a1., 1999; Rickett, 2003).

Simple normalization of the imaging operators is not
sufficient to remove imaging artifacts when illumination

gaps are large. In such conditions, the data-modeling op-
erator —— which usually is defined as the adjoint of the im-

aging operator —— should be inverted by a regularized inver-
sion methodology. As is true for operator equalization, the

methods proposed in the literature for inverting imaging
operators can be divided‘into algorithms based on partial
prestack migration (Ronen, 1987; Ronen and Liner, 2000;
Chemingui and Biondi, 2002) and those based on full
prestack migration. The methods use either a Kirchhoff

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


4

'l 24 3D Seismic Imaging

operator (Nemeth et al., 1999; Duquet et al., 2000) or a

wavefield~continuation operator (Prucha and Biondi, 2002;

Kuehl and Sacchi, 2002).

Iterative inversion is expensive, especially when a full

prestack~migration operator is inverted. In this chapter, I

present a noniterative method for regularizing the model

space. It improves the quality of the reconstructed data

without the computational cost of an iterative inversion.

However, when there are large acquisition gaps or when the

complexity of the overburden is responsible for incomplete

illumination of the reflectors, expensive iterative regular-

ized inversion is unavoidable. At the end of this chapter, we

discuss some potential applications of iterative inversion.

Equalization of imaging operators

To explore the methods used to equalize imaging op-

erators, I employ interpolation followed by partial stacking

as a proxy of more complex imaging operators. As a proxy,

interpolation has the advantage of being simple, easy to

understand, and easy to manipulate analytically. Its analy-

sis will lead us to discuss fundamental issues regarding

spatial interpolation of seismic traces and normalization, or

equalization, of imaging operators. The lessons we learn by

using interpolation are applicable to the equalization of

several imaging operators.

Stacking is the operation of averaging seismic traces

by summation. It is an effective way to reduce the size of

data sets and to enhance reflections while attenuating

noise. To avoid attenuating the signal along with the noise,

the reflections need to be coherent among the traces that

are being stacked. To increase trace coherency, we can
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Figure 1. Example of acquisition footprint in a migrated

depth slice. The horizontal stripes are related to the acquisi-

tion sail lines. Notice that the stripes bend when the reflectors

start to dip in the vicinity of the salt (xm z 5500 m).

apply simple normal moveout (NMO) before stacking, or a

partial—prestack—migration operator such as DMO or AMO

(Chapter 3).

Global stacking of all the traces recorded at the same

midpoint location, regardless of their offset and azimuth, is

the most common type of stacking. Partial stacking aver-

ages only those traces with their offset and azimuth within

a given range. Partial stacking is useful if we want to pre-

serve differences among traces when those differences are
functions of the trace offset and azimuth and thus we must

avoid global averaging. AVO studies are a useful applica-

tion of partial stacking. Partial stacking also is useful when

simple transformations, such as NMO, are not sufficient to

correct for the differences in time delays among traces with

very different offsets and azimuths. Such a situation is com-

mon when velocity variations cause nonhyperbolic move—

outs in the data. Because data redundancy is low in partial

stacking, the results of partial stacking are more likely to be

affected by artifacts related to irregular acquisition geom-

etries than are the results of global stacking. Thus, in this

section, I will focus my analysis on partial stacking, but the

methods I present here obviously can be applied to global

stacking operators too.

To start our analysis, I define a simple linear model

that links the recorded traces (at arbitrary midpoint loca-

tions) to the stacked volume (defined on a regular grid).

Each data trace is the result of interpolating the stacked

traces and is equal to the weighted sum of the neighboring

stacked traces. The interpolation weights are functions of

the distance between the midpoint location of the model

trace and the midpoint location of the data trace. The sum

of all the weights corresponding to one data trace usually is

equal to one. Because the weights are independent of time

along the seismic traces, for notational simplicity, we col-

lapse the time axis and consider each element d,- of the data

space (recorded data) (1 and each element mj of the model
space In (stacked volume) as representing a whole trace.

The relationship between data and model is linear and can

be expressed as

d, = 21- 1,]- m], subject to the constraint Zj lij = 1. (9.1)

In matrix notation, equation 9.1 becomes

d = Lm. (9.2)

The simplest and crudest spatial interpolation is a near—

est—neighborhood interpolation. For example, if we have

three model traces and four data traces and we use a simple

nearest-neighborhood interpolator, equation 9.2 becomes
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