COMPUTER-CONTROLLED SYSTEMS

Theory and Design

COMPUTER CONTROLLED SYSTEMS

Theory and Design

Karl J. Åström Björn Wittenmark

Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

Library of Congress Cataloging in Publication Data

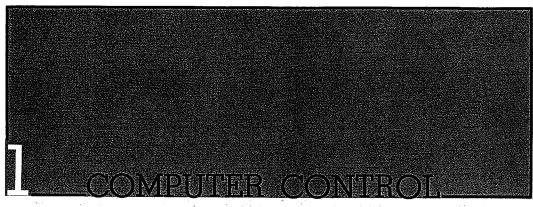
ÅSTRÖM, KARL J. (Karl Johan). (date) Computer controlled systems.

Includes bibliographies and index.
1. Automatic control—Data processing.
1. Wittenmark, B. II. Title.
171213.A78 1984 629.8'95 83-17643
ISBN 0-13-164319-3

Editorial/production supervision and interior design: Karen Skrable Manufacturing buyer: Anthony Caruso

©1984 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher.


Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-164319-3

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

GOAL To Introduce the Subject and to Give Some Historical
Background on the Development of Computer-Control
Technology and Theory.

1.1 Introduction

Digital computers are increasingly being used to implement control systems. It is therefore important to understand computer-controlled systems well. One can view computer-controlled systems as approximations of analog-control systems, but this is a poor approach because the full potential of computer control is not used. At best the results are only as good as those obtained with analog control. Alternatively, one can learn about computer-controlled systems, so that the full potential of computer control is used. The main goal of this book is to provide the required background.

A computer-controlled system can be schematically described as in Fig. 1.1. The

1

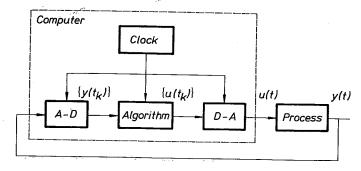


Figure 1.1 Schematic diagram of a computer-controlled system.

output from the process y(t) is a continuous-time signal. The output is converted into digital form by the analog-to-digital (A-D) converter. The A-D converter can be included in the computer or regarded as a separate unit, according to one's preference. The conversion is done at the sampling times, t_k . The computer interprets the converted signal, $\{y(t_k)\}$, as a sequence of numbers, processes the measurements using an algorithm and gives a new sequence of numbers, $\{u(t_k)\}$. This sequence is converted to an analog signal by a digital-to-analog (D-A) converter. Notice that the system runs open loop in the interval between the A-D and the D-A conversion. The events are synchronized by the real-time clock in the computer. The digital computer operates sequentially in time and each operation takes some time. The D-A converter must, however, produce a continuous-time signal. This is normally done by keeping the control signal constant between the conversions. The computer-controlled system contains both continuous-time signals and sampled, or discrete-time signals. Such systems have traditionally been called sampled-data systems, and this term will be used here as a synonym for computer-controlled systems.

The mixture of different types of signals sometimes causes difficulties. In most cases it is, however, sufficient to describe the behavior of the system at the sampling instants. The signals are then of interest only at discrete times. Such systems will be called *discrete-time systems*. Discrete-time systems deal with sequences of numbers, so a natural way to represent these systems is to use difference equations.

The purpose of the book is to present the control theory that is relevant to the analysis and design of computer-controlled systems. This chapter provides some background. A brief overview of the development of computer-control technology is given in Sec. 1.2. The need for a suitable theory is discussed in Sec. 1.3. Examples are used to demonstrate that computer-controlled systems cannot be *fully* understood by the theory of linear, time-invariant, continuous-time systems. An example shows not only that computer-controlled systems can be designed using continuous-time theory and approximations, but also that substantial improvements can be obtained by other techniques that use the full potential of computer control. Sec. 1.4 gives some examples of inherently sampled systems. The development of the theory of sampled-data systems is outlined in Sec. 1.5.

2

Computer Control Chap. 1

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

