PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 98/28636
G01V 1/38		(43) International Publication Date:	2 July 1998 (02.07.98)

(21) International Application Number:

PCT/GB97/03507

(22) International Filing Date:

19 December 1997 (19.12.97)

(30) Priority Data:

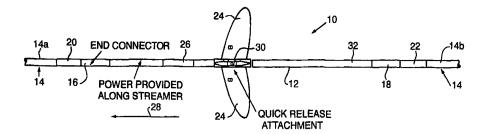
9626442.9

20 December 1996 (20.12.96) GB

(71) Applicant (for all designated States except US): GECO AS [NO/NO]; Schlumberger House, Solbraveien 23, N-1370 Asker (NO).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BITTLESTON, Simon, Hastings [GB/NO]; Bjornsvikveien 27, N-1312 Slependen (NO).


(74) Agent: STOOLE, Brian, David; Geco-Prakla Technical Services Inc., Schlumberger House, Buckingham Gate, Gatwick, West Sussex RH6 0NZ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: CONTROL DEVICES FOR CONTROLLING THE POSITION OF A MARINE SEISMIC STREAMER

(57) Abstract

A control device (10) (or "bird") for controlling the position of a marine seismic streamer is provided with an elongate, partly flexible, body (12) which is designed to be connected electrically and mechanically in series with the streamer (14). In its preferred form, the bird has two opposed wings (24), which are independently controllable in order to control the streamers lateral position, as well as its depth.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AТ	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	· PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/28636 PCT/GB97/03507

CONTROL DEVICES FOR CONTROLLING THE POSITION OF A MARINE SEISMIC STREAMER

This invention relates to control devices for controlling the position of a marine seismic streamer.

A marine seismic streamer is an elongate cable-like structure, typically up to several thousand metres long, which contains arrays of hydrophones and associated electronic equipment along its length, and which is used in marine seismic surveying. In order to perform a 3D marine seismic survey, a plurality of such streamers are towed at about 5 knots behind a seismic survey vessel, which also tows one or more seismic sources, typically air guns. Acoustic signals produced by the seismic sources are directed down through the water into the earth beneath, where they are reflected from the various strata. The reflected signals are received by the hydrophones, and then digitised and processed to build up a representation of the earth strata in the area being surveyed.

The streamers are typically towed at a constant depth of about ten metres, in order to facilitate the removal of undesired "ghost" reflections from the surface of the water. To keep the streamers at this constant depth, control devices known as "birds", attached to each streamer at intervals of 200 to 300 metres, are used.

Current designs of birds are battery-powered, and comprise a relatively heavy body which is suspended beneath the streamer, and which has a pair of laterally projecting wings (hence the name "bird"), one on each side. The combination of streamer and birds is arranged to be neutrally buoyant, and the angle of attack of both wings is adjusted in unison from time to time to control the depth of the streamer.

Birds in accordance with these current designs suffer from a number of disadvantages. Because they are battery-powered, the batteries can run out before the survey is completed, necessitating either retrieval of the streamer for battery replacement, or deployment of a work boat to replace the battery in the water. The former operation is very time consuming, while

- 1 -

WO 98/28636 PCT/GB97/03507

the latter can be hazardous. Further, because the birds hang beneath the streamer, they produce considerable noise as they are towed through the water, which noise interferes with the reflected signals detected by the hydrophones in the streamers. The hanging of the birds from the streamers also means that the birds need to be detached each time the streamer is retrieved and re-attached each time it is re-deployed, which is again rather time consuming.

During the seismic survey, the streamers are intended to remain straight, parallel to each other and equally spaced. However, after deploying the streamers, it is typically necessary for the vessel to cruise in a straight line for at least three streamer lengths before the streamer distribution approximates to this ideal arrangement and the survey can begin. This increases the time taken to carry out the survey, and therefore increases the cost of the survey. But because of sea currents, the streamers frequently fail to accurately follow the path of the seismic survey vessel, sometimes deviating from this path by an angle, known as the feathering angle, of up to 10°. This can adversely affect the coverage of the survey, frequently requiring that certain parts of the survey be repeated. In really bad circumstances, the streamers can actually become entangled, which though rare, causes great damage and considerable financial loss. Current designs of birds can do nothing to alleviate any of these lateral streamer positioning problems.

It is therefore an object of the present invention to provide novel streamer control devices which alleviate at least some of the disadvantages of the current designs, and/or which possess more functionality than the current designs.

According to the present invention, there is provided a control device for controlling the position of a marine seismic streamer, the device comprising a body mechanically connected in series between two adjacent sections of the streamer, sensor means in the body for determining its angular position in a plane perpendicular to the longitudinal axis of the streamer, two opposed control surfaces projecting outwardly from the body, each control surface being rotatable about an axis which in use extends transversely of the streamer, and control means responsive to control signals and the sensor means for independently adjusting the respective angular positions of said two control surfaces so as to control the lateral position of the streamer as well as its depth.

WO 98/28636 PCT/GB97/03507

In a preferred embodiment of the invention, for use with a multi-section streamer which includes an electric power line, the control means is at least partly electrical and arranged in use to receive electric power from said electric power line.

When the streamer also includes a control line, the control means is preferably arranged in use to receive control signals from the control line.

The control means preferably includes at least one electrical motor, and may also include means for sensing the respective angular positions of the two control surfaces.

Conveniently, said two control surfaces rotate about a common axis.

Advantageously, each of the two control surfaces comprises a respective wing-like member which is swept back with respect to the direction of tow of the streamer.

Preferably, said control surfaces are releasably secured to the body, which may be adapted to be non-rotatably coupled to the streamer.

The invention will now be described, by way of example only, with reference to the accompanying drawings, of which:

Figure 1 is a somewhat schematic representation of a preferred embodiment of a streamer control device in accordance with the present invention;

Figure 2 is a simple schematic of a control system forming part of the streamer control device of Figure 1; and

Figures 3 to 5 illustrate the operation of the streamer control device of Figure 1.

The streamer control device, or "bird", of Figure 1 is indicated generally at 10, and comprises an elongate streamlined body 12 adapted to be mechanically and electrically connected in series in a multi-section marine seismic streamer 14 of the kind which is towed by

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

