Computer-Controlled Systems

Theory and Design

THIRD EDITION

Karl J. Åström

Björn Wittenmark

Prentice Hall, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Åström, Karl J. (Karl Johan)

Computer-Controlled systems: theory and design / Karl J. Åström

Björn Wittenmark. -- 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-314899-8

1. Automatic control--Data processing. I. Wittenmark, Björn.

II. Title.

TJ213.A78 1997 629.8'9--dc20 96-36745

CIP

Publisher: Tom Robbins

Associate editor: Alice Dworkin

Editorial production supervision: Joseph Scordato

Editor-in-chief: Marcia Horton

Managing editor: Bayani Mendoza DeLeon

Copyeditor: Peter J. Zurita Cover designer: Bruce Kenselaar

Director of production and manufacturing: David W. Riccardi

Manufacturing buyer: Donna Sullivan Editorial assistant: Nancy Garcia

©1997 by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

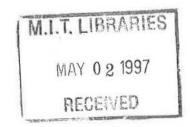
10 9 8 7 6 5 4 3 2

8-PP844E-E4-0 N8ZI

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto


Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Computer Control

1.1 Introduction

Practically all control systems that are implemented today are based on computer control. It is therefore important to understand computer-controlled systems well. Such systems can be viewed as approximations of analog-control systems, but this is a poor approach because the full potential of computer control is not used. At best the results are only as good as those obtained with analog control. It is much better to master computer-controlled systems, so that the full potential of computer control can be used. There are also phenomena that occur in computer-controlled systems that have no correspondence in analog systems. It is important for an engineer to understand this. The main goal of this book is to provide a solid background for understanding, analyzing, and designing computer-controlled systems.

A computer-controlled system can be described schematically as in Fig. 1.1. The output from the process y(t) is a continuous-time signal. The output is converted into digital form by the analog-to-digital (A-D) converter. The A-D converter can be included in the computer or regarded as a separate unit, according to one's preference. The conversion is done at the sampling times, t_k . The computer interprets the converted signal, $\{y(t_k)\}$, as a sequence of numbers, processes the measurements using an algorithm, and gives a new sequence of numbers, $\{u(t_k)\}$. This sequence is converted to an analog signal by a digital-to-analog (D-A) converter. The events are synchronized by the real-time clock in the computer. The digital computer operates sequentially in time and each operation takes some time. The D-A converter must, however, produce a continuous-time signal. This is normally done by keeping the control signal constant between the conversions. In this case the system runs open loop in the time interval between the sampling instants because the control signal is constant irrespective of the value of the output.

The computer-controlled system contains both continuous-time signals and sampled, or discrete-time, signals. Such systems have traditionally been called

Computer Control Chap. 1

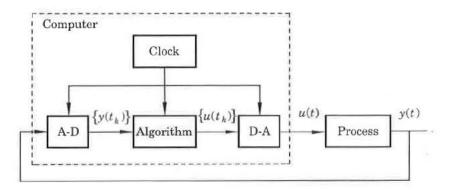


Figure 1.1 Schematic diagram of a computer-controlled system.

sampled-data systems, and this term will be used here as a synonym for computer-controlled systems.

The mixture of different types of signals sometimes causes difficulties. In most cases it is, however, sufficient to describe the behavior of the system at the sampling instants. The signals are then of interest only at discrete times. Such systems will be called *discrete-time systems*. Discrete-time systems deal with sequences of numbers, so a natural way to represent these systems is to use difference equations.

The purpose of the book is to present the control theory that is relevant to the analysis and design of computer-controlled systems. This chapter provides some background. A brief overview of the development of computer-control technology is given in Sec. 1.2. The need for a suitable theory is discussed in Sec. 1.3. Examples are used to demonstrate that computer-controlled systems cannot be fully understood by the theory of linear time-invariant continuous-time systems. An example shows not only that computer-controlled systems can be designed using continuous-time theory and approximations, but also that substantial improvements can be obtained by other techniques that use the full potential of computer control. Section 1.4 gives some examples of inherently sampled systems. The development of the theory of sampled-data systems is outlined in Sec. 1.5.

1.2 Computer Technology

2

The idea of using digital computers as components in control systems emerged around 1950. Applications in missile and aircraft control were investigated first. Studies showed that there was no potential for using the general-purpose digital computers that were available at that time. The computers were too big, they consumed too much power, and they were not sufficiently reliable. For this reason special-purpose computers—digital differential analyzers (DDAs)—were developed for the early aerospace applications.

The idea of using digital computers for process control emerged in the mid-1950s. Serious work started in March 1956 when the aerospace company Thomson Ramo Woodridge (TRW) contacted Texaco to set up a feasibility study. After preliminary discussions it was decided to investigate a polymerization unit at the Port Arthur, Texas, refinery. A group of engineers from TRW and Texaco made a thorough feasibility study, which required about 30 people-years. A computer-controlled system for the polymerization unit was designed based on the RW-300 computer. The control system went on-line March 12, 1959. The system controlled 26 flows, 72 temperatures, 3 pressures, and 3 compositions. The essential functions were to minimize the reactor pressure, to determine an optimal distribution among the feeds of 5 reactors, to control the hot-water inflow based on measurement of catalyst activity, and to determine the optimal recirculation.

The pioneering work done by TRW was noticed by many computer manufacturers, who saw a large potential market for their products. Many different feasibility studies were initiated and vigorous development was started. To discuss the dramatic developments, it is useful to introduce six periods:

Pioneering period ≈ 1955

Direct-digital-control period ≈ 1962

Minicomputer period ≈ 1967

Microcomputer period ≈ 1972

General use of digital control ≈ 1980

Distributed control ≈ 1990

It is difficult to give precise dates, because the development was highly diversified. There was a wide difference between different application areas and different industries; there was also considerable overlap. The dates given refer to the emergence of new approaches.

Pioneering Period

The work done by TRW and Texaco evoked substantial interest in process industries, among computer manufacturers, and in research organizations. The industries saw a potential tool for increased automation, the computer industries saw new markets, and universities saw a new research field. Many feasibility studies were initiated by the computer manufacturers because they were eager to learn the new technology and were very interested in knowing what a proper process-control computer should look like. Feasibility studies continued throughout the sixties.

The computer systems that were used were slow, expensive, and unreliable. The earlier systems used vacuum tubes. Typical data for a computer around 1958 were an addition time of 1 ms, a multiplication time of 20 ms, and a mean time between failures (MTBF) for a central processing unit of 50–100 h. To make full use of the expensive computers, it was necessary to have them perform many

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

