Everything you need to create powerful
Web-based applications

300 “The most complete and compelling
set of materials and information
on Cold Fusion.”
JJ Allaire
founder of Allaire Corp.
and creator of Cold Fusion

Ben Forta M

with ALLAIRE

Steven Drucker @
and David Watts cJ U E
ServiceNow, Inc.'s
Exhibit No. 1005

CD-ROM includes qu_d’ Fusion
Single-User Version’

About two years ago, when the Web was still in its infancy, I had the privi-
lege of being inspired by a small but strongly emergent group of developers.
These developers came from all walks of life; some were designers or college
students, many were computer professionals of some sort or another. It didn’t
matter where they came from, or what experience they had. What was com-
mon about them was that they were all fanatics. They had come into new
careers and new visions because of the simplicity and beauty of the Web, and
they were certain that the Web was going to change the world.

This group of fanatics inspired the creation of Cold Fusion, which aimed to be
the first tool available to enable any Web developer to build interactive Web
applications—to actually use the Web to build software—without having to
have been a professional programmer. By now it is commonly understood that
the Web is transforming computing and society, and that more than ever tools
are needed for the average person to be able to build these systems.

We're now shipping Cold Fusion 2.0, our third major release of this leading
Internet product. As I hope you'll find from this book, Cold Fusion 2.0 brings
together unparalleled features and functionality in an incredibly useable
environment for Web developers. Using our server-side markup language,
CFML, you should be able to rapidly begin building Web applications which
you never dreamed were possible, or which you thought could only be built
by advanced professional programmers.

With this book, Ben Forta has brought together the most complete and com-
pelling set of materials and information on Cold Fusion, and has presented it
in a logical and readable fashion.

As a learning tool for beginners, the book contains the key information you'll
need to get started, including the basics of Cold Fusion, an explanation of
databases and application design, and in-depth information on using SQL.
For experienced Cold Fusion developers, the depth of information about
CFML, including tips and tricks that I didn’t even know of myself, will make
it a phenomenal reference. And for those of you who want to be on the
cutting-edge of Web applications, advanced materials on the CFAPI, Java
integration, and dynamic VRML allow you to push the limits of the Web
platform.

With this book, we welcome you to a community of thousands of developers
worldwide who are powering their Web applications with Cold Fusion.

J.J. Allaire
Founder of Allaire Corp., and creator of Cold Fusion

002 ServiceNow, Inc.'s

Exhibit No. 1005

003 ServiceNow, Inc.'s
Exhibit No. 1005

THE
CoLD FusioN
~ WEBDATABASE
- CoNSTRUCTIONKIT|

004 ServiceNow, Inc.'s
Exhibit No. 1005

005 ServiceNow, Inc.'s
Exhibit No. 1005

THE
CoLD FusioN

-~ WEBDATABASE
- CONSTRUCTION KIT

Written by
Ben Forta
with
Steven D. Drucker David E. Crawford
David Watts Ronald E. Taylor
Leon Chalnick Jack Leblond

006 ServiceNow, Inc.'s
Exhibit No. 1005

The Cold Fusion Web Database Construction Kit

Copyright© 1997 by Que® Corporation

All rights reserved. Printed in the United States of America. No part of this book may be
used or reproduced in any form or by any means, or stored in a database or retrieval
system, without prior written permission of the publisher except in the case of brief
quotations embodied in critical articles and reviews. Making copies of any part of this
book for any purpose other than your own personal use is a violation of United States
copyright laws. For information, address Que Corporation, 201 W. 103rd Street, India-
napolis, IN, 46290. You may reach Que’s direct sales line by calling 1-800-428-5331.

Library of Congress Catalog No.: 96-071452
ISBN: 0-7897-0970-8

This book is sold as is, without warranty of any kind, either expressed or implied, re-
specting the contents of this book, including but not limited to implied warranties for
the book’s quality, performance, merchantability, or fitness for any particular purpose.
Neither Que Corporation nor its dealers or distributors shall be liable to the purchaser
or any other person or entity with respect to any liability, loss, or damage caused or
alleged to have been caused directly or indirectly by this book.

9998 97 654321

Interpretation of the printing code: the rightmost double-digit number is the year of
the book’s printing; the rightmost single-digit number, the number of the book’s print-
ing. For example, a printing code of 97-1 shows that the first printing of the book
occurred in 1997.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Que cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Screen reproductions in this book were created using Collage Plus from Inner Media,
Inc., Hollis, NH.

Composed in Stone Serif and MCPdigital by Que Corporation

007 ServiceNow, Inc.'s

Exhibit No. 1005

Contentsata Glance

Part I: Introduction

13 Web Application
1 Why Cold Fusion? Wizards 259
2 Introduction to Cold Fusion 14 The Report Writer 295
15 Debugging and Trouble-
shooting ’ 305

A
=
=1

5 -

S 2.

- S

: Vo

n ()

e (<)

(=} -

’ S

Part IV: Advanced

Part Il: Getting Up ey Cold Fusion 321
and Running 2 16 Advanced SQL 323
3 Prerequisites = 17 Advanced Cold
4 Installing and Administering = Fusion Templates 339
Cold Fusion -: | 18 Form Data Validation 371
= 19 Additional Form Data
= Validation Techniques 387 >
= 20 Advanced Form o
X Techniques 417 W
@ 21 Interacting with A
E-mail 459 :
22 Transaction Processing 481 .-}
Part lll': Cold Fusior.l . 63 23 Web Application o
5 Designing an Application 65 FEn Otk 501 S
6 Database Fundamentals 75 24 File Manipulation 519 §-
7 Creating Databases 25 MIME TYPES 535 =
and Tables 95 :
26 Data-Driven VRML 5589
8 Introduction to SQL 117
y : 27 CFAPI, the Cold
9 SQL Data Manipulation 141 Rision AL 597
10 Cold Fusion Basics 157 28 The Database Component
11 Cold Fusion Forms 189 Framework 635
12 Using Forms to Add or 29 Server Modules 663
Change Data 225
008 ServiceNow, Inc.'s

Exhibit No. 1005

Appendi

CD Chapters

Appendix 673
Cold Fusion Reference 675

index 745

CD Chapters

1

o W B

CGI Environmental Variables
Other Sources

Regular Expressions

SQL and ODBC Reserved Words

Upgrading to Cold Fusion
Professional

Working with Persistent
Client Cookies

009

ServiceNow, Inc.'s
Exhibit No. 1005

Contents

Part | Introduction 1
1 Why Cold Fusion? 9
Introdiicing Cold-FuSion ..caumusnessiiasumssssnaissmsrors 9

What iS COld FUSION? oeniieeieeeieiierieeenieeesessesnnsesnesnnresnssnnnes 10

Cold Fusion and Your INTTanet ...oceevveeeevrereereernseensereserseeens i i |

The Dynamic Page AAvantagecaauiasciniaveisssivssssiismsie 11

Powered by Cold FUSiON qismmssiissmsivsspmsissssmaisivins 12

1EC01 110 2 & (21 AU e o ISR WS oW e 13

2 Introduction to Cold Fusion 15
Understanding the Wotld Wikle Web ... 15

AN a7 Hia0E s 00t E N W IR S 16

Internet ApPUEaHONS crwmmmmisiimmms didearsfroed 19

DNS, the Domain Name SeIVICE....ccceeriierrrmecsiirsiiisserinnnisin 20

Intermebt OEIEAITEEY oot s e 21

WED SeIVELS oo amisms st s S s v P s sa s waiwe 21

WED PABOS covisisssvvvivisssmanvisimss smivss st xmsasis sosmssssxsbasimsans 24

L1 20 S e S S U= e = G 25

N D BIOWW SIS v uueerneeeeieieieeeunseennsnneesnsensannnsensnssnesssnssssesensenn 27

(2 e T 28

SEIVELAPIE: vt i e A S R s e 30

Introdiucing Cold PUSION i.ssimvsrssissssmimimsimisissasis 31

Cold Fusion COompONents uwsisommmsisivasisimsmsassssssonss 31

CFML—The Cold Fusion Markup Languageccoceunrnne 32

COld BUSIONL.ITRLS: . vee or exonsdansrspssssansssmasnssssnssssnssssintsniisossinssads 33

Linking to External Applications.......ccoceeereiiieniiiniinniniininienenne 34

Frorn HETE: o vuiimmiain s s i i s s e s e s v e s s ivieanss 34

Part Il Getting Up and Running 35
3 Prerequisites 37
Requirements for Using Cold Fusioncceveciiianinieiinnn 37

Operating SYStOITIS ..nvviscissisnsssisusiivessusmsersssssrsisnrssssorrusnses 37

5 1 B S0 o o O =S =S 38

Databases and ODBC DIIVETS viievvrrrrerrsrnrererneresessssasssensnes 39

010 ServiceNow, Inc.'s

Exhibit No. 1005

viii Contents

Checking What You Need to Know

Before YOU INStall ...vuveeeieiermiemsieerimmmisrstissenianssnnanissessisnnnes 40
Understanding Web Server BasiCscocuemiciimiimmmnenenss 42
TOPJIPcociissasisrassanissssisssssavssssasessasssrarsannsssnnssssssass ssansinns 42
FrOm HELO, . ciiiisiasssiissnsisiniors isauiasessasssnnonssarennrssssneviat faaasansapassesses 45
4 Installing and Administering Cold Fusion 47
Installing Cold FUSIONc.cccccsisusiniesunnmimonstssenssassrmmsaniansssasascvens 47
Verifying INstallationcocieeiiiiiniminsssimismnnnesesesnss 50
Writing a “Hello World” Template ..o 51
Installing Crystal REPOILSccciiiiniinieinmmienissinsisnisss s 52
Administering Cold FUSION ...c.ccvieniinmimmninisnnsneee 54
Administering the CF SeIVETcccociiiciiimimmiimmnissininnsininenes 55

Configuring Cold Fusion to Provide Debugging Information... 56
Configuring Cold Fusion to Send

SMTDP ML evveeirrreernrenrneemeresecsmecasseaessssasssassessnssasraasssnassesses 57
Installing Custom CFX Tagsccocvimmininninminiese: 58
Establishing Logical Template Mappingsc.ccccoceseimimiesssennens 60
Using CFADM20 to Remotely Administer CFooocvuneieereeenens 61
FrOm HETO. .. coiiccociviseesissscasinisasassssssresnssssrsassasssassssassssnsssossnsssasaivas 62
Part lll Cold Fusion 63
5 Designing an Application 65
Introducing Application DeSigIlceumimmrimenrinesiniasinnninssssnens 65
Introducing A2Z BOOKSccoceermeisriiimnissunsssnisssssnn 65
Educating YOUISelfcvveiniininiinninnins it 66
Putting It All TOethercocoiiiiniiiniieiininsieenes 68
The High-Level Design DOCUMENT ...ccovivnreninimennsnnnesiees 69
Determining the Data Requirementsc.cocoeeiieereannnennn: 70
Data Set Details ...uiviveeeriereiiinnirrirmerrsesianieas e 71
12550} s o0 5 L1 < <UD T RO PR P POPPPPPPS PSPPSRI PP SLI LY 73
6 Database Fundamentals 75
Understanding Databasescccoevermimiimmeninnnismnn e 75
Databases: A Definitioncccccueieemnnniiinnnnnimniei . 76
Where Are Databases Used?ccccieeiiiiminniiiin. 77
Clarification of Database-Related Termsccccceereecinene Vi
D717 W |4 o1 SRR R 77
Customm Data TYPES.....covvririrersremsstresniisiarmesnsisiassssssisnesnsees 80
Using @ Databasecoeeeeeiemnimimnminnsssisssiessissssssiissnes 81
A Database Prilmer.....ccccorecruiieirieiisissnianieisscesssssnasiasisees 82
Understanding Relational Databasescccoueeieinnimninnnnsnenes 83
Primary and FOreign Keys ... 84
Different Kinds of Relationshipsceoocmiaiman. 86
TIUAEKES .ivievecassssasnasssinrsssssrorsarsansosssessonnvanshsssssssesssmnsarasesiiania 87
011

ServiceNow, Inc.'s
Exhibit No. 1005

Contents
USING INAEXESoovvviireieiieecietee ettt 89
Indexing on More than One Colummccceeerveuevinnn... 90
Understanding the Different Types
of Database APPHCHEIONS o avimssmieigimsnsmssss 90
Shared-File:Based Databases wusasasnsssnsossnsmizes 91
Client/Server-Based Databasesccoeevivevcriveereernceenn. 92
Which Database Product to Usecccevevvreerrreeseenennn. 93
FROT OG0y o mnmioms s i stommanmensmsrssmavspessss rEssssm s s IR A HRSS 94
7 Creating Databases and Tables 95
Creathng DAtADASES oiiiimsmmestindisaiedosbsansmsonsiassilsbssovssssonsss sassmasd 95
Creating the A2Z Databasecccoeeeevvvevesreeeeereessnnn,s 96
Creating TaBIES .ot mamsssrmmmnstinsamscssminsant 97
Creating the Employee Tablescccoevvrvereeerereesssresnnn, 99
Creating the Inventory Tableccccccovvveceeervnesrenennnn. 104
Creating the Customer Tableccoeoiveeeeceeeeerenn, 107
Creating the Order Tablescccceceereveeeeieeereeeeeereerennn, 109
Understanding Table Relationshipscceeoveeceeveveerovonsinnn, 113
Adding Sample Data with Microsoft Accessocune....... 114
Adding Data to the Departments Table 114
Adding Data to the Employee Tablecccceverennn..... 114
FEOR) HEIC o conmiancininmmne ivbibsusnhvonsmmrmsmemensssreimasssssssssnssenss sl s 115
8 Introduction to SQL 117
Introducing SQL, the Structured Query Language.................... 117
Introducing ODBC, Open Database Connectivity 118
ODBC and Cold FUSIONcevuveuieieieiicerceeceee e 121
Creating an ODBC Data SOUICEccccvuervereeeereraresrreereseesreanes 121
The ODBC Data Source Control Panel Applet 122
Creating a Data Source for the A2Z Books Database........ 124
Using Microsoft QUETYcccvvevivieereneiriesieeecirieeeeesee e, 125
Preparing to Create QUEeTies..........ccccccevvveveveceeeeesereerennn. 127
BRI OIS s coonsrmois it sossiiinci e oes shre totrmmar s mesasns s s 128
Sorting Query ReSulls .ouvenaisimnimsmessimtiiimmmmesss s 131
BTG Dotn . ovommsommsconsunonisesssmmm oo s i s s s S 133
Filtering on a Single Columnmsminsssossosisssssssemsmis 133
Filtering on Multiple Columns............ccccevuevveveeernnennnnn. 134
The AND and OR OPETatOrSc.ccveeueeeueeeeeiieeeneeeeeesneas 134
Evaluation Precedencecocevuieeevreieeniecceeeeeeeeeseenens 135
WHERE. Con@iions ... asmmsirmse 137
= {(Testng tor BQuahity)..ouewsmmsmm s 137
< >(Testing 1ot Nonequallty) . s 137
< (Testing for Less Thamn)cccceeuvevivieieesreeeseessesseeeessneens 138
<= (Testing for Less Than or Equal TO)cc.ccvervrrveen.... 138
> (Testing for Greater Than)cocceevvveverseeeeesenesennenns 138
>= (Testing for Greater Than or Equal TO) 138
BEIWEEN. ..vonvcsrmunsvuostssomavns s oo s s s 138
012 ServiceNow, Inc.'s

Exhibit No. 1005

ix

Contents

EXISTS . ccivisssvnosamonneraesnoenssstissssibtssstassasornsavsvarsnnearsantbssiossd 138
1o £ 139

IS INOT] NULL ...cissnsnsmionassoismsssmsnassnrsss i1 G pet R eLasw 139
TIRE oo erommesiissiciGaiinssianesissnmussmmensarmss A SRR TOT LIS i ans 139
T () 1 - 140
9 sQL Data Manipulation 141
AQAING DALA ..vecverirnsrraensassssessassssnsssssasssssssassesssmsmansscsssssssssssess 141
The INSERT Statementccccoevearnescerirsnesssssansnsascisenssssunasens 141
Understanding INSERTcccoconmimimmessiimsicnnnnssseses 144
Inserting and Setting Values for Multiple Columns 145
Adding MUltiple ROWS .c.cocurmimmmsesnmsssimninenssansnssssssssssssssess 147
o6 113 o7 3 D: - R INL 149
Understanding UPDATE ...c.ccoovnirniimmimmmmmnesssssnsenes 150
G1obal UDAALeS :ileveareensasmossssmrnsssassosssssssnisensasasasasnnasseassrsess 151
Deleting DAtaooruereeeusmsanmsssssstsssssssmssss s 154
FIOM HETE... cvruverrerseesessecissssssessstsnneinssnssssssssbsssasnssnssassanssasessenss 155
10 Cold Fusion Basics 157
Using TEMPIAes .cuevieureecurmumrsmssssssnsnmnsssssss s 157
Understanding Cold Fusion Templatescocoeuieeeresneeees 159
Passing Parameters tO TEMPIAteSc.cocorurenensusssnusmsmnensnsenssseenss 160
Creating Data-Driven Templatesococvermeunrsssensusnsesesessessererss 162
Static WED PAZES ..vcvevrrrresvesssmmnmmiessssssssssssssssisss s 163
Dynamic Web Pagesccoeseusiusmsmnsrssssssssimssismsssaseneees 163
Understanding Data-Driven Templatesc.cooerrmenseiseeseseees 165
The CFQUERY Tagccoovnrnuesesmssssmmsasssssssusssasasasassinassssnsaces 165
Displaying Query Results with the CFOUTPUT Tag 167
Using Database Table COIUMMDScooveuesnmnesenmssssmseesees 167
Using Drill-Down APPLCAtIONSc.cvuerrecssiecssemsmssmmmismsmeneseees 168
Building Dynamic SQL Statementscooeuseceesssunsnsmnsasmasesenees 169
Implementing Data DIill DOWIL cocoovuueesicuserrinsinsenesesesnes 171
Using Frames to Implement Data Drill Downcoeeneee 173
Creating Frames for Use with Cold FUSION .eeverereremmsanmennnerannsaes 173
Displaying Results in Tablesccuecumirurresinisssusmmssmmsimissesseeess 175
Creating Non-HTML Tables with CFTABLEcccoviinnnnnee 175
Creating HTML Tables with CFTABLEccccceerenranassssaraness 179
Creating HTML Tables Manuallyocooeeeecesensnseneneees 181
Grouping QUETY RESULEScoieuiuusimmmuimmsmssmmssussssrmsssesesscseeseeess 182
Specifying Field TYPeS ...ccooiumueussmmrmsssssimssasssssmssnsssssss s 185
s [i 186
11 Cold Fusion Forms 189
USINE FOITNS ...oorrmomsnisseasonsonsiasnsssssasinsessrasmssnsessensssmmssasiassasinseses 189
Creating FOTTIIS ...vueuuriesersiusmnsmssassssassssinsasisssssasessssnssssssss sy 190
HTML FORM Tag5 ..ecoreeueernseesissensassasasscssisassnsssssnsassanansssess 191
Cold Fusion Error MeSSagesccoomeuisesnssnssssnssnssnninsas 192

013

ServiceNow, Inc.'s
Exhibit No. 1005

Processing Form SUDOHSSIONS o unwnanssomes samses
Processing Text SUbmissionscccoccvevvvrrevenneeeneens
Processing Check Boxes and Option Buttons
Processing List BOXES ...ooneavinmsnsnmniamaaiins
Processityg TeXt ATGaS .. vmuinmnmrsmsmmiiisns
Processing Buttons:..caaasmunsmmnasasasisaiers

Creating Dynamic SO Statements ... ausorsmorarmses

Building Truly Dynamic Statementscccccceeeriiiinnne
Understanding Dynainic 3QL.oaavwmmanimarms
Processing Seatahy RESilS oovcsnumnnnnmmasnns
Concateniating SQL Clauses ..

Creating Dynamie Searchl SCHEBNE ... cumibibrsiarminasmss

EEOIRHIOE ... foncmenlicicmmvenmemmnsrinnmmiontasiaahomions s es

12 Using Forms to Add or Change Data

Using a Web Browser As a

Universal Clientcccoovviiiiiiiininnninninnnennes
Adding Data with Cold FUsionussessesssssassssssssises
Creating an “add recofd” FOrM ssavsvinssinsssssmmsms
Processing Additions ..o wnmnisssasnsvemasiie
Introdueing CEINSERT ..o siunnmmmasvissenmsommessmoss
When to Use CFINSERT FORMFIELDS
Collecting Data For More Than One INSERT
CFINSERT veisus SQL INSERT iuiesssosssusssniivsiossa
Updatitig Data with (Cold FUsIon ..uaaissvssisiines
Building a Data Update Formcccoceviiniiciinnnns
Processing LIpgukes o owcnumemmsmnmmasmm e
Introducing CFUPDATE........ccccovciiniiiiiiniiiiincnrecnne
CFUPDATE versus SQL UPDATEcooovvvveieiriivnennnns
Deletiiig Data with Cold Fusion .cussisusmunonasis
REUSING BOFNS «beiimmsimnsaiimnisinvismissi amaisn s
Understanding Conditional FOrmscccceeeuniee
Conditional INPUT Fieldscccccciimiininiiinnnnnnns
Processing Conditional FOrms........ccccceveeniceinnnnnnns
Creating a Complete AppUCAHION . ..:couwunminamnimns
Using CFIF to Create Conditional Code........ccccsersuneiies
Ftoiil Hete .. .onvumnaiinvinmsissswsvmssssnses s

13 Web Application Wizards

Introducing Web Application Wizards..........ccvvueerevnnene
The Cold Fusion Web Application Wizards
The Data Entry Application Wizardcccccevevvvenernneee
Creating a Data Entry Applicationcccceeeuneenn.

Testing the Generated Data Entry Application

The Data Drill-Down Application Wizardccccccce...
Creating a Data Drill-Down Application...............
Testing the Generated Data Drill-Down Application

Erons Hete. . cemmnasmansmmmsmasmasmnrssssisvmmmsmsmes

014

Contents

ServiceNow, Inc.'s
Exhibit No. 1005

xi

Contents

14 The Report Writer 295
Introducing Crystal Reports Professional ... 295
Creating Reports with Crystal

Reports Professional ... 296
Embedding Reports into Cold

Fusion TemPlatescoccvvirrrrineiiresieisiniiieeniss s 301
Customizing Reports On-the-F1ycccimmiinniinin. 302
FIOML HETE... oovveeeeiiiiorasiiiseesssssesassissssasusnmiesiossassasanssrsssssssnarsesaes 303

15 Debugging and Troubleshooting 305
Understanding What Can GO WIongcccevmmmminecnninninnnn 305
Debugging Web Server Configuration Problemsc.c.cceeene 306
Debugging ODBC Driver EITOIS c....ccovveiiininmniniinisiansi. 308
Debugging SQL Statement Or LOGIC EITOTS ...cooeirieenieiseninnens 310
Debugging Cold Fusion Syntax EITOTScocoonciiiininininn 312
Debugging URL and Path Problems ..o, 314
Using the Cold Fusion Debugging Optionsc.ooeumenicnnns LA
Using the Cold Fusion Log Filescccooiiiiininieninnn 315
Preventing Problems ... 317

The Ten Commandments of Cold
Fusion Developmentcoeieeeinienriniesiieminnsnienessi 318
FIOI HETE. .. vvereeerrereneeriecsesioissssssssnsssasnanssssanmssssassssssiiararnssasanses 319

Part IV Advanced Cold Fusion 321

16 Advanced SQL 323
Introducing SUb-QUETIEScueevirveemrimriniinininiss e 323

Using Sub-Queries as EXPressionsccocueiieenseninnans 325
Correlated SUb-QUETIEScccvriuiiersreniaiensoninnesisnerssasansanes 327
Using the EXISTS Predicate ..o 328
MOdifying Dataccoveieeineesicstinnisnises s 328
Nesting SUD-QUETIESccerererivrneimenniininiaisisis e 329
Using the DISTINCT Predicate ..o 330
Taking Advantage of Aggregates ... 331
AVIG csisossiniiviiniaivesessainmmrssssssostamanssommsasnes srassanseses ta s ppscets 331
COUNT .civinnsiisssvasssmsssomsosomssasssssrssangssonsssssonssbiissssssiicssssios 331
COUNT(*) covveeeenereerressesaesssnssssrsnssissssssssassssssessianassssasssssas 332
1, 0 0, S T L e 332
TIN50 A S A B oSBT S PR 332
SUINE - ovsssianssa s s G o s B s AR AR XTI PSS TR T AR 332
EXPIOTing JOINS .voveiieiiniinmeeniiiisiisinnss s 333
Joining Multiple Tables ..o 333
SEIF-JOINS vueierrrrrireeerireeerseeisssieninssessisnessssessauesssanssennsssssnaes 335
Comparing Joins to SUD-QUETIESiivemrereiiiniiiniicienens 335
Restricting Table Access wWith VIEWS ... 335
015

ServiceNow, Inc.'s
Exhibit No. 1005

Contents
Exploring Stored Proceduresooooovvovoovooooo 336
Integrating with Microsoft’s SQL Server............................._. 336
USTE THEEOIS «cc:criininposnnmmesasssssscssnsessosssssmsmassessssnisn. . 336
Taking Advantage of SQL Server’s Mail Interface 336
e 01 5 R 337
17 Advanced Cold Fusion Templates 339
Employing Cold Fusion Data Types, Variables, Functions, and
L 01Tt o B S T 339
Cold Fusion Data Types and Variables.................___ 339
Cold Fusion FUnctions..............o.eceeromeonooooo 342
Cold Fusion Expressions and CFOUTPUT..................._ 344
Understanding Cold Fusion’s Program Control Structures...... 345
CFML Branching Structures...............cooomvmvoooo 346
CFML LOOPIng Structuresovveevevmvrvonooooon 350
USING CFINCLUDEoouereenenerrnreeoesoes oo 366
Effectively Commenting Your Codeoorvovrvvrero 367
BROMN HETE. <. sz ssncmessassmmumesssssssinssonsssessssssesseststisn 370
18 Form Data Validation 371
Why Data Should Be Validatedcooooovveovoeoooooo 371
The Many Shapes and Sizes of Invalid Data................. . 372
b L 372
Data LeREHN...cocmimnmmiminsimmmmsomsmsmonmsssesoststsmes s 373
D18 RANGES ocoosrucaissssssimssssiissistsisss iismmennisnsasorss sessemssastosons 373
Required Datacccoovummvemmieeieeseee 374
Domain Maintenancecocooovooveoooo 374
Interdependent Validation Rules__ 374
What Can You Do with HTML? «......c.oovvoveorrooooo 374
Using HTML to Control Data TFBBE.. e cmsinimmmsimssosess 375
Using HTML to Control Data LEnghh .. .oommmmmronsemesssais 378
Using HTML to Control Data BB i mnrssasssneden 376
Maintaining Domains with HTML___ 377
Cold Fusion’s Built-in Validation Mechanisms............... . . 378
Enforcing Data Types with Cold Fusion 380
Enforcing Required Data with Cold Fusion 380
Enforcing Numeric Ranges with Cold Fusion 381
Rolling Your Own Data Validation Mechanisms with
BN 58655553 e st e S e 381
BEOOUEICIR .« wwcvosiversss s isssiaussisssisonamsmenstonoinssss snssnssebass o iins, 385
19 Additional Form Data Validation Techniques 387
Researching Data Validation Toehmiques ...cuwnsmanisc 387
Validating Data Using JavaScript ... 388
Implementing JavaScript in HTML Forms 389
JavaScript Data Types and Values.................o...........___ 392
JavaScript Objects, Properties, and Methods............. .. 393
016 ServiceNow, Inc.'s

Exhibit No. 1005

xiii

xiv Contents

Implementing Cold Fusion Validation Functions as

JAVASCIIPE cecovrermnienesosensensstsnsnasassssssassineaniussanansasasasssasnss 394
Additional JavaScript Validation FUnctionsc.eeees 405
Things You Can’t Do in JavaSCIIPL .oociveeenresaenneiiieecaies 407

Cold Fusion Interaction with Scripting Languagesc....... 409
Passing Values to Cold Fusion Using JavaScriptcccceeeees 410
Using Cold Fusion to Generate JavaScript ..covveeevrensiseannns 412

Combining Server and Client-Side Validation Techniques413

RO TIRTC. . ..o vesssissiiiissisasismassstamsronivmsencssansapsensponsavsa s eIV RENEN0S 415

20 Advanced Form Techniques 417

Formatting HTML Form ODJectsovienmimmiisncsnesnssnesees 417
Using Tables to Format YOur FOImMSc.coconimessssmnieenes 417
USING FTAMES ..ovoeiieieesieecnsanmnssi st s 419
Working with Select BOXESovveeuiiueiimsiiisnssimsssaenees 422
Working with BUTEONS .cceeuivnmmmmniicniinssssssees 427

Unleashing the Power Of JavaSCriptcocoeeieimimininmensesernsnnens 429
Updating Multiple Frames Simultaneouslyccoeeveeeinnes 430
Updating the Window Status MeSSagecooeesvusesusereess 431
Referencing Forms Using JavaSCIPtooourriniinnisneeennes 432
Referencing Form Elements and Updating Form Fields...433
Submitting Forms Using JAVASCIIPL «c.ecoiirnieirerarnssssnsasananne 434
Alerting the User and Confirming Form Submissions..... 435
Opening a New Window ..o 437

Applying Advanced Cold Fusion Techniquescccveeeenianneeess 439
Developing a Library of Functions Using

<CFINCLUDES ...cttoreriireseessssanessanesssassessssssassnsasssssssssses 439
Creating a Data Entry Screen for Inputting Batches 440
Using Sentinels to Create Compact COAE ..vveerrrssssassossisens 442

Creating an Advanced Data Entry Application in

COLA FUSIOM 11venvverererersnesseeseesnmessessssasesssssstssssssussssssssasasnssnees 443

2 eT:4 %1118 U) SO e T T 443

Using Frames to Present Related Information.........c.ceeeue. 444

Editing an OIderccccoreuenramsmmmnisnsnsrsismisninsnsssnsrsaccatases 444

Updating the Order Table.....coovviemmiminsimnesseseenes 454
Updating/Deleting Line Items in the Order Entry Table .455

Adding New Line IteImsccoomuniemssimsisinimminsmsensies 456

ApPDLCAtion NOES ...cceusisemerissmsssisusessnrasisssssscnsssnsesesnes 457

FIOM HETE. .. cocerrreersnensnsssarsssnssssnssnssssasessanensaassutsssneissanssansannessies 457

21 Interacting with E-mail 459

Generating SMTP Mailcooniiiimminnniiminnnees 460

Including Query Results in E-Mail ..o 462

Sending E-mail to a List Of PEOPIEcovuiiniiriiminiinmnincisusaenene: 464

Using HTML to Make Your E-mail Look Betterccooeoimueenniees 476

Sending Attachments with Your BAmailccvwsssissssismisniveies 479

FIOMY HETO. .. coveirrieraesrsaesneamsssisnnsssnssssesssanssasasansessassosanissssanisses 480

017

ServiceNow, Inc.'s
Exhibit No. 1005

22 Transaction Processing 481
Programming for Multiuser ACCeSSc.euvueeeereevreerereerernn. 481
CENCHHCREF Contial wmmssassmspemissms mmasismse 481
LOCTKIILE 1iiiieurnsensinnmensonasesnesesnsnensunnsanssssssassistsssssssasssssssasiins 483
Transactions, Commitments, and Rollbacks.................... 486
Implementing Transaction Processing Using Cold Fusion 487
Using Cold Fusion to Lock Data...........co.eeueeeersueerereesenonn 488
Using <CFTRANSACTION> to Retrieve a Newly Inserted
Identity Field Value........cccoeuririienereereeeeeeeserereennn 489
Configuring Your Database to Ensure
Diaba FOtBEOHY sovouminiiesissmmsmmsrssssssnmms oo isssissns 490
Building Referential Integrity into Your Database 490
Error Recovery Using Transaction Logs............................ 494
Multiuser Implementation Strategiesoco.oovvveveooo.. 494
Using a Timestamp to Arbitrate Updates 494
Using a Timestamp, Data Dictionary, and Cold Fusion to
Reconcile Data Conflictscevvuvveecrerererenrersrsesinnnn, 498
FEOIN FOPE. o cvesussssvassossssmsguuissssimasiinesmnessnsmssmsenmmssoenisonansiusssisonss 501
23 Web Application Framework 503
Introducing the Web Application Framework 503
Using the Application Template..............cooevevemvvereereeoeoon, 504
How Cold Fusion Locates the Application Template....... 504
Application Templates and Securitycoovrvr......... 506
Using Persistent Client Variables...............cccooeeveveererereonn, 507
Enabling the Use of Client Variables...............cccovvvevvnn.n.. 509
Setting Client Variablesccccovevereeveereeerereseoeennn 509
Accessing Client Variablesco.evvevveeervseeeooe 510
Obtaining a List of Client Variablesoooveoevonnnnn. 510
Deleting Client Variables...............ccceeueieeeeieeerenrsnnnns 511
Limiting the Scope of Client Variables............................. 511
Passing the Client Variable ID and Token 512
Customizing Error Messageso.cueeeeeeeremeoremesooooo 512
Creating Custom Error Message Templates...................... 512
Examples of Custom Error Message Templates................. 514
Using Enhanced Parameter Processing...............ccococvvevevnnn.... 516
Specifying Default Parameter Values...............o..ovve.... 516
Specifying Required Parameterscoooeurvererene..... 518
Prom HeTe. .. civscmesiasoviissonssmionssss st chisesssmensarananensasomsmsassmssssnsssan 518
24 File Manipulation 521
LS CRRILEL coovsaissiouisimn oo nirassrsisstessissoasiess 522
Uploading Files Using the CFFILE Tagoccocvvvvevsveveersonn, 523
Accessing the Local File System with the CFFILE Tag.............. 529
From Here... w.oocvviiicieeeeeeeeeeeee e, 535
018 ServiceNow, Inc.'s

Exhibit No. 1005

Contents

XV

xvi Contents

25

26

27

MIME Types 537
Defining MIMEcoccocsmsuessssesassinmsnsissasasisssuansseassoscasussenstsnsasiar 537
MIME Content TYPEScccoererusorminmrurmnsssssssensmnisnnsasee: 539
Configuring YOUT BIOWSETcouuimsmimsmrmnmsssnsssensisasssnsnssssssees 540
Netscape NaVIGatorocoeeucsmimsssssmsnsrsasssssnssssssssssissssees 540
Microsoft Internet-Enabled Applicationsc..cccoveeennee 542
Returning MIME Content Types with Cold Fusion
<CFCONTENTS ..cocvicteeesansssssrssssnssssnasssossnassssssssssssssssntsssansss 544
Example: Using Cold Fusion to Generate a Report in
Multiple FOIMAtS ...ccvoireriimninnnnssnnsssnsssnsassssssssees 544
Example: Using Cold Fusion to Format a Web Site
Server ACCESS LOZ .uveerrriermrunmmnmrnnisinssisnnsasssesssiunniasunses 5351
Configuring Your Web Server’s MIME Types and When
NOT to use <CFCONTENT> ...ccooiciiiiiiiiiiicninaninastiensessnees 556
Configuring O'Reilly Web SItesocorienisuinmnmmnnaeniieene: 557
Configuring Microsoft Internet Information Server 558
Configuring Netscape Enterprise SeIverooeueereeees 558
FTOTIL HETO. .. cuveecsrrresriresssessssunsssranmassasassssassssiesesssassansnassssssessssnns 560
Data-Driven VRML 561
TWHat IS VRML? ..eeviivreeiiieneessisasssinnsesssssssssssessnnssesnssansasasssssssssnns 561
S£577-074:0 | PR R R 561
Preparing for VRML ..ot 562
Navigating Through 3-D Spaceccovveiimniinicnieeens 563
Authoring Tools for VRML ...c...ooiiiiimmiininineens 565
VRML Language Specification ..o 567
VRML Design PhiloSOPIY ueueceeiiiemniissrianisieniininsnsnssaeens 567
N[0 120N) 8 B) 4 8 LD N P S R L S 568
VRML 1.0 NOGES ..vvveeesneeeiareeissseressnmenssnmesssiismssiansssssssesans 568
A Simple VRML PHMET .ouceeiiernimrinesnsnssssssssss s 578
Using VRML with Cold FUSION cueuuvieieieiiiiciinnstssnseesnees 583
Generating 3-D Table VIEWS ...t 583
Using VRML as @ Web Interface ... 590
FIOINL HETE. .. covvvereiessrernnstressesssssssssnnsansessasssisssanmunsanonsssssssssssansens 598
CFAPI, The Cold Fusion API 599
Getting Started with the CFAPL ... 599
Installing and Configuring Microsoft Visual C++....oeeenene 599
The Object-Oriented Paradigmccoovecisnsninnnninensnaneess 601
Building Your First CFX Tagccocevmummmmnrnnessinsnissnnnsssissnes 603
Getting Startedccoeecveninniinmniiniisss et 603
The MS Developer Studio Interfaceocevicrcvininninen 606
The CFX FramewWOTKcceeimurmiiummmsssmmmmsmsiimmmmmmsmmees. 607
Outputting a Query in Table FOrmatcc.cceeumerienerreees 608
Compiling and Debugging the CFX.....ccoccenniinennens 610
Transferring the CFX Tag to Your Production Server 611
Deploying the Custom Tag in a CFM Template 612
019

ServiceNow, Inc.'s
Exhibit No. 1005

Contents
The CFAPI ClassSccuiveeruiemernreiniesseissesseisesssisssesnaeees 613
T6122,08 7y OO 616
COEXSTHATESOY socvisiiminiviasmsinbimmnssntittsmsstsnmersonmsessment 623
B s | L 626
@150 oir2 o Uo; o TS —— 635
From HETE... c.oociiiiiiiiiiiiece ettt s e sve s 636
28 The Database Component Framework 637
Fusing Your Data with Java
and Cold FUSIONccceiiriiiieeiecec et eee e e s 637
A Brief Explanation of Javacccccccceevevveeecveceeereenennn. 637
Using Java Applets on Your Web Pages.............ccccuennenn... 638
The DCF—A Bridge Between Java and Cold Fusion......... 641
Using the Allaire DCF Graphlets ... s 642
Configuring Your Serverc.cccoioveeeiieeceiescvisseeeseeeenens 642
General Graphlet USeccoeveivueriereeviireiieiieeeceeeeeeeen 642
GEADDIEE TYDES iiiiciiincsinmmmeonsatmmmsasraniammsssspsrassssssrssaraesesass 645
Example of a Refreshing Graphlet............ccccceovveerurvuennnn.. 646
Developing Java Applets by Using DCFcccceevreeveereennn... 649
Using the Java Language ..coummusannissssas i 650
Building a Simple DCF Appletc.cccoeuvieeceeeeieeenennn.. 650
DCF Class DesCriptions.......cccceevieveeiuieieeiiiseesieeseeeree s 662
Using the DCF to Update Data...........cccceveevrrivreieneeennnen, 664
B BIOI0, worinsavmsesmssmmmssmmis st s B A dsrant s st patesrsmnesssmnmnd 664
29 Server Modules 665
Understanding the Difference Between CGI and Server API ... 665
Using Your Server API MOQUIEc.coveieeeeeereereeseesreeeeenees s 666
supported Web SEtVErS .ot it st 667
What is Document-Type Mapping?ccooccevereecvennennns 670
Using Cold Fusion Templates with Server API 671
FIOTL EVEBE v: o1 tosmrncsinonsimasammunssssesssnsnsnsn st nsmsicsmie s e 674
Appendix 675
Cold Fusion Reference 677
Cold FUusion Tags.......c.ccvueueirnieeniinienene e srecesessiceesresvesseseesneans 677
Cold Fusion FUNCHONSccuvevieiieeicriieiieiceceeeeeeee e een e 704
String Manipulation FUNCHONSccoveeveeeeeeieeeeeeenn.. 705
Date and Time FUnctions ..usisssassasimmisassemse 715
Data Formatting Punctons ..iusswsansnsimsmsamiis, 726
Mathematical FUNCHONScoovveeeevreriiiciiciciceeceseeveseene, 731
List Manipulation FUNCHONSccocoveireeeeeeceeseeeennn, 733
SYSTErn FUIICHONS iuiiivissiiisiissmssnssassasessnsesmmemssnmesesssmmmisse 137
Client Variable Manipulation Functions 739
Expression Evaluation Functionsccccoeveveevrevennnnnn, 740
020 ServiceNow, Inc.'s

Exhibit No. 1005

xvii

xviii

Contents

Bit and Set Manipulation Functionsccocevieiinnce
Miscellaneous FUNCHONSc.ccvvierimieeennmmeiasiiniien.
Cold Fusion EXPIESSIONScccoiuenuiriimrnismmnieimniiinssesssss:
Typeless EXPIESSIONSoveieveerurininimmsnmnsnissssssssnsnssnes

INDEX
CD Chapters

CGI Environmental Variables

Other Sources

Regular Expressions

SQL and ODBC Reserved Words
Upgrading to Cold Fusion Professional
Working with Persistent Client Cookies

021 ServiceNow, Inc.'s

Exhibit No. 1005

Chapter 1

Why Cold Fusion?

Ben Forta E

Over the past few years, the World Wide Web has become one of the most In this chapter:
accepted mediums for publishing information to the masses. Web pages that B What is Cold
combine text, images, animation, and even multimedia, have become com- Fusion?
monplace.

B Enhancing
your Internet

Cold Fusion is a complete development environment that provides the tools
and Intranet

you need to take your Web pages to a whole new dimension. With Cold Fu-
sion, you can create dynamic data driven Web sites instead of creating static =~ ® Dymamic

pages of fixed text and images. You can collect data, read and write informa- prblishing
rather than

tion in other applications, and even create full blown applications of your static text
own.

B Complete
In this chapter, you learn why your Web site should be powered by Cold Development
FUsion. Environment

Introducing Cold Fusion

The fact that you are reading this book suggests that you are interested in
publishing information on the World Wide Web and that you are part of a
growing number of developers interested in expanding the capabilities of
their Web sites beyond simple publishing.

What kind of capabilities?

There are now over 1/4 million Web sites that attract millions of visitors
daily. Most Web sites are being used as electronic replacements for newspa-
pers, magazines, brochures, and bulletin boards. The Web offers ways to en-
hance these publications using audio, images, animation, multimedia, and
even virtual reality.

No one will dispute that these sites add value to the Net because information
is knowledge, and knowledge is power. All this information is available at
your fingertips (literally). Web sites, however, are capable of being much
more than electronic versions of paper publications because of the underlying
technology that makes the Web tick. Users can interact with you and your

022 ServiceNow, Inc.'s
Exhibit No. 1005

10 Chapter T—Why Cold Fusion?

company, collect and process mission critical information in real time, provide new
levels of user support, and much more.

The Web is not merely the electronic equivalent of a newspaper or magazine—it is a
communication medium that is only limited by the lack of innovation and creativity of
Web site designers.

To help illustrate what Cold Fusion is and where it fits into your Web site strategy, let’s
look at a few of the more impressive and innovative sites on the World Wide Web:

B Dell Computer Corporation (http://www.dell.com)

Dell is a leading vendor of mail order computers. Their Web site, like many others,
enables you to shop for a new computer online. The big difference is that you may
customize the computer online. You are presented with a typical configuration
with a price tag attached. You may click on any of the components or peripherals
to add or change them. Click on the hard drive line item, for example, and you'll
be presented with other hard drive options and how they will effect the price. As
soon as any changes are made to the configuration, the price tag is updated auto-
matically.

B Federal Express (http://www.fedex.com)

The FedEXx site hosts a whole array of impressive and innovative features. The most
impressive is the online package tracking system. To test the system, I deposited a
package (containing chapters that are now part of this book) in a drop box at
9:55am. At 10:05am I checked the status of the package on the FedEx Web site. In
less time than it took to click the search button, [was informed that my package
was picked up at 10:02am from the Southfield, MI drop box. FedEx did not design
a complete package tracking system for the Web but cleverly linked their Web site
to an already existing application. In doing so, they provide superior customer
support and lowered their real time phone support costs.

B Ticketmaster (http://www.ticketmaster.com)

The Ticketmaster Web site is built around a massive database of every entertain-
ment event in every city at every venue in the United States. The database can be
searched by date, artist, event type, state, city, venue, category, and more. The site
even contains seating maps of venues hosting events.

These selected sites are truly taking advantage of the World Wide Web.

What is Cold Fusion?

Until recently, developing sites (like the ones mentioned earlier) was a difficult process.
Writing custom Web-based applications was a job for experienced programmers only. A
good working knowledge of UNIX was a prerequisite, and experience with traditional
development or scripting languages was a must.

http://www.mcp.com/que 023 ServiceNow. Inc.'s

Exhibit No. 1005

Introducing Cold Fusion 11

But all that has changed. Allaire’s Cold Fusion enables you to create sites every bit as
powerful and as capable as the ones listed earlier, without a long and painful learning
curve.

So, what is Cold Fusion? Simply put, Cold Fusion is a Web application development tool
that enables the rapid creation of interactive, dynamic, and information-rich Web sites.

Cold Fusion does not require coding in traditional programming languages. Instead, you
Create applications by extending your standard HTML files with high level formatting
functions, conditional operators, and database commands. These commands are instruc-
tions to the Cold Fusion processor and form the building blocks on which to build in-
dustrial strength applications.

This method of creating Web applications has significant advantages over conventional
application development.

B Cold Fusion applications can be developed rapidly because no coding is required
other than use of simple HTML style tags.

B Cold Fusion applications are easy to test and roll out.

B The Cold Fusion language contains all the processing and formatting functions
you'll need (and the ability to create your own functions if you really run into a
dead end).

M Cold Fusion applications are easy to maintain because there is no compilation or
linking step, so the files you create are the files used by Cold Fusion.

B Cold Fusion provides all the tools you need to be able to troubleshoot and debug
applications.

B Cold Fusion comes with all the hooks needed to link to almost any database appli-
cation.

M Cold Fusion is fast, thanks to its service-based architecture.

Cold Fusion and Your Intranet
Although all the examples mentioned so far have been Internet sites, the benefits of
Cold Fusion apply to Intranets, too.

Most companies have masses of information stored in different systems. Users often
don’t know what information is available or how to access it even if they do.

Cold Fusion bridges the gap between existing and legacy applications and your employ-
ees and empowers them with the tools to work more efficiently.

P» Chapter 2, “Introduction to Cold Fusion,” discusses Intranets in detail. M

The Dynamic Page Advantage
Linking your Web site to live data is a tremendous advantage, but the benefits of data-
base interaction go beyond extending the capabilities of your Web site.
024 ServiceNow, Inc.'s
Exhibit No. 1005

12 Chapter 1—Why Cold Fusion?

With Cold Fusion you can create dynamic, data-driven Web pages. Dynamic Web pages
are becoming the norm, and for a good reason. Consider the following:

Static Web pages

Static Web pages are made up of text and images, and HTML formatting tags. These
pages are manually created and maintained so when information changes, so must
the page. This usually involves loading the page into an editor, making the
changes, reformatting text if needed, and then saving the file. Of course, not every-
one in the organization can make these changes. The Webmaster, or Web design
team, is responsible for maintaining the site and implementing all changes and
enhancements. This often means that by the time information finally makes it
onto the Web site, it is out of date.

Dynamic Web pages

Dynamic Web pages contain very little actual text. Instead, they pull needed infor-
mation from other applications. Dynamic Web pages communicate with databases
to extract employee directory information, spreadsheets to display accounting
figures, client-server database management systems to interact with order process-
ing applications, and more. Because a database already exists, why re-create it for
Web page publication?

Cold Fusion provides you with a full range of database interaction functions to create
complete dynamic, data-driven Web pages. The features include:

The ability to query existing database applications for data.
The ability to create dynamic queries facilitating more flexible data retrieval.
The ability to execute stored procedures in databases that support them.

The ability to execute conditional code on-the-fly, to customize responses for spe-
cific situations.

The ability to enhance the standard HTML form capabilities with data validation
functions.

The ability to dynamically populate form elements.

The ability to customize the display of dates, times, and currency values with for-
matting functions.

The ability to ease the creation of data entry and data drill-down applications with
“Wizards.”

Powered by Cold Fusion

You were probably planning to use Cold Fusion to solve a particular problem or to fill a
specific need. While this book helps you solve that problem, I hope that your mind is
now racing and beginning to envision just what else Cold Fusion can do for your Web

site.

http://www.mcp.com/que 025 ServiceNow, Inc.'s

Exhibit No. 1005

From Here. .. 13

Cold Fusion is a remarkable tool that is easy to learn, fun to use, and powerful enough to
Create real-world Web based applications.

With a minimal investment of your time, your Web site can be powered by Cold Fusion.

From Here...

In this chapter you were introduced to Cold Fusion. Cold Fusion is a remarkable tool
that helps you create powerful Web based applications.

B Chapter 2, “Introduction to Cold Fusion,” teaches you how Cold Fusion works and
discusses the underlying technologies that Cold Fusion uses.

B Chapter 3, “Prerequisites,” teaches the basic requirements that need to be in place
to successfully install and run Cold Fusion.

W Chapter 4, “Installing and Administering Cold Fusion,” walks you through the
complete Cold Fusion installation process.

026 ServiceNow, Inc.'s
Exhibit No. 1005

027 ServiceNow, Inc.'s
Exhibit No. 1005

Chapter 8

Introduction to S

Ben Forta

In Chapter 7, “Creating Databases and Tables,” you created a database and
tables for A2Z Books. In this chapter, you will learn how to retrieve data from
those tables.

Structured Query Language is the language used by Cold Fusion for all data-
base interaction. To harness the power of Cold Fusion you need a thorough
understanding of SQL. The SQL statement you use to retrieve data from a
table is the SELECT statement. Using SELECT, you also can sort and filter data
to retrieve exactly the information you need.

Introducing SQL, the Structured
Query Language

SQL, pronounced sequel, is an acronym for Structured Query Language. SQL is
a language you use to access and manipulate data in a relational database. It is

designed to be both easy to learn and extremely powerful, and its mass accep-
tance by so many database vendors proves that it has succeeded in both.

In 1970, Dr. E. F. Codd, the man credited with being the father of the rela-
tional database, described a universal language for data access. In 1974, engi-
neers at IBM’s San Jose Research Center created the Structured English Query
Language, or SEQUEL, built on Codd’s ideas. This language was incorporated
into System R, IBM’s pioneering relational database system.

Toward the end of the 1980s, two of the most important standards bodies, the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO), published SQL standards, opening the door to mass ac-
ceptance. With these standards in place, SQL was poised to become the de
facto standard used by every major database vendor.

Although SQL has evolved a great deal since its early SEQUEL days, the basic
language concepts and its founding premises have remained the same. The

beauty of SQL is its simplicity. But don’t let that simplicity deceive you. SQL
is a powerful language, and it encourages you to be creative in your problem

028

In this chapter:
|

Introducing
sQL

ODBC: link-
ing it all
together

Creating
ODBC data

sources

Testing SQL
statements

The SQL
SELECT state-
ment

Sorting and
filtering
query results

ServiceNow, Inc.'s

Exhibit No. 1005

118

http://www.mcp.com/que 029

Chapter 8—Introduction to SQL

solving. You can almost always find more than one way to perform a complex query or
to extract desired data. Each solution has pros and cons, and no solution is explicitly
right or wrong.

Before you panic at the thought of learning a new language, let me reassure you that SQL
really is easy to learn. In fact, you need to learn only four statements to be able to per-
form almost all the data manipulation that you will need on a regular basis. Table 8.1
lists these statements.

Table 8.1 SQL-Based Data Manipulation Statements

Statement Description

SELECT Query a table for specific data.
INSERT Add new data to a table.
UPDATE Update existing data in a table.
DELETE Remove data from a table.

Each of these statements takes one or more keywords as parameters. By combining differ-
ent statements and keywords, you can manipulate your data in as many different ways as
you can imagine.

Cold Fusion provides you with all the tools you need to create Web-based interaction to
your databases. Cold Fusion itself, though, has no built-in database. Instead, it commu-
nicates with whatever database you select, passing updates and requests and returning
query results.

Introducing ODBC, Open Database
Connectivity

The communication between Cold Fusion and the database is via a database interface
called Open Database Connectivity, or ODBC. ODBC is a standard application pro-
gramming interface (API) for accessing information from different database systems

and different storage formats. The purpose of ODBC is to enable you to access a diverse
selection of databases and data formats without having to learn the features and pecu-
liarities of each. ODBC provides a layer of abstraction, accomplished using database driv-
ers, between your client application and the underlying database. The database

drivers create a database-independent environment, as illustrated in Figure 8.1. This way,
you can write one program and have it work with almost any major database system.

Of course, differences exist between database systems. Microsoft SQL Server, for example,
requires you to log in to the database server before you are able to manipulate any data.
Based on your login, you are granted or denied access to specific tables or other objects.
Microsoft Access, on the other hand, has no concept of login-based security. If you have
access to the data file (the MDB file), then you have full access to all data in it.

ServiceNow, Inc.'s
Exhibit No. 1005

Introducing ODBC, Open Database Connectivity 119

CLIENT APPLICATION
ODBC MANAGER
v 1 i
A A
ODBC DRIVER ODBC DRIVER
b1 !
Y
DATA STORE DATA STORE

Figure 8.1 ODBC creates a database-independent development environment.

There are other differences, too. To access Microsoft SQL Server, your client application
must know the address of the server. This might be an IP address or an NT Server name.
To use Microsoft Access data files, you just need to know the drive and path to the data
file.

Part of the job of ODBC is to hide these differences from your client application. And to
accomplish this, each ODBC driver has its own configuration options. When you select
the SQL Server ODBC driver, you are asked for a server name, a server login name, and a
password, as shown in Figure 8.2. When you select the Access ODBC driver, you are
prompted for a file path, as shown in Figure 8.3.

Figure 8.2 The Microsoft SQL Server ODBC driver prompts you for login information.

030 ServiceNow, Inc.'s
Exhibit No. 1005

120

http://www.mcp.com/que 031

Chapter 8—Introduction to SQL

Figure 8.3 The Microsoft Access ODBC driver prompts you for the file path to the Access data
file.

This way, your client software can load any ODBC driver and connect to a database. The
ODBC driver you select will handle opening the database, whether it’s opening a net-
work file or logging in to a server. All your client software knows is that it must connect
to a database; the details of how this process occurs are all hidden.

The ODBC Story

ODBC was created in an effort to allow Mlcrosoft Excel, Microsoft’s popular spreadsheet program,
to access diverse data stores.

In April 1988, Microsoft's Kyle Geiger proposed a model that used database drivers to isolate the
native data types of different database applications. This model, in conjunction with a standard
application interface, would allow client software to communicate with any message store. To
access a particular data store, all that would be required is a driver designed speciﬁcally. for that
data store.

While Ceiger worked on his proposal, engineers at DEC, Lotus, and Sybase were working on much
the same ideas. The four companies joined forces, and between 1988 and 1992 they helped shape
the specification.

The original name for this project was Microsoft Data Access API. In early 1989, the effort was
renamed Open SQL, and then in the summer of 1989, it was renamed again to SQL Connectivity.
Finally, in the winter of 1992, the name was changed one last time to Open Database Connectiv-
ity, or ODBC.

The beta version of ODBC 1.0 was released in March 1992, and in September 1992, version 1.0
finally was released. Shortly thereafter, in October 1992, the specification was reviewed and ac-
cepted by the ANSI SOL committee.

ODBC itself is not a language; the language used by ODBC is SQL. Part of the magic of
the ODBC database driver is that it understands SQL and converts it to whatever is ap-
propriate for that specific database. This way, you can use SQL commands to work with
xBASE-based databases, such as Microsoft FoxPro and Borland dBASE, even though they
have an entirely different native language.

ServiceNow, Inc.'s
Exhibit No. 1005

Creating an ODBC Data Source 121

Herein lies the power of ODBC. The combination of database independence and a com-
mon standard language grants ODBC clients. . . a tremendous level of freedom—freedom
to use any database they want, freedom to use different databases for different tasks
seamlessly and simultaneously, and the freedom to concentrate on application develop-
ment without having to learn database-specific languages and APIs.

ODBC and Cold Fusion

Cold Fusion is an ODBC client. ODBC enables you to use Cold Fusion with whatever
database you choose. If you're using Microsoft Access, then Cold Fusion uses the Access
driver; if you're using Oracle, then the Oracle ODBC driver is used instead. You can even
use ODBC to read and write plain-text files. As long as you have the correct ODBC driver,
Cold Fusion will support that data store.

Because Cold Fusion is an ODBC client, the database language used by Cold Fusion is
SQL. To truly exploit the power of Cold Fusion, you must have a thorough understand-
ing of SQL. Fortunately, by the end of this chapter, you should be enough of a SQL ex-
pert to start generating world-class Cold Fusion applications.

Creating an ODBC Data Source

ODBC client applications do not directly load ODBC drivers. In fact, they have no
knowledge of what driver to use with any specific database. Rather, the application con-
nects to a data source. A data source appears to your application as a virtual database.
Within the data source, all the ODBC settings are configured, including specifying which
ODBC driver to use.

Before your application can use an ODBC driver, you must create a data source. Doing so
involves the following steps:

1. Select the ODBC driver that is appropriate for the database you plan to use. You
have to install the driver if it is not already present on your computer.

2. Name your data source with a unique, and preferably descriptive, name.
3. Configure the driver-specific settings via the ODBC driver’s configuration options.

After you create your data source, any ODBC client application can use it to access or
manipulate the database with which it is associated.

T
e

The ODBC Control Panel applet and basic ODBC drivers are installed by many applications.
If you have Microsoft Office installed, then you should have the applet and half dozen drivers
installed, too.

If you need to obtain the applet, new ODBC drivers, or updated versions of existing drivers, the
best place to start is the Microsoft FTP server at ftp.microsoft.com.

032 ServiceNow, Inc.'s
Exhibit No. 1005

122

http://www.mcp.com/que

Chapter 8—Introduction to SQL

The ODBC Data Source Control Panel Applet

You configure ODBC data sources from within the ODBC applet in the Windows Control
Panel. Try bringing up the Windows Control Panel. You should see an applet called
ODBC or 32bit ODBC. Double-click the ODBC applet to open the ODBC Data Sources
dialog box, as shown in Figure 8.4.

|
..'
i

Figure 8.4 In the ODBC Data Sources dialog box, you can create and configure data sources and
obtain driver version information.

The User Data Sources box shows the currently installed ODBC data sources, including
generic data sources for accessing Microsoft Excel, Microsoft FoxPro, and Text Files.
Double-clicking any data source opens the ODBC Setup window for the driver associated
with that data source.

Figures 8.5, 8.6, and 8.7 show the Microsoft Excel Setup window, the dBASE Setup win-
dow, and the Microsoft SQL Server Setup window, respectively. Each Setup window has a
required Data Source Name field and an optional Description field. All other options are
driver-specific, and, therefore, vary from one driver to the next.

Figure 8.5 The Microsoft Excel ODBC driver setup prompts for Excel-specific information,
including the version of Excel and worksheet-related options.

033 ServiceNow, Inc.'s
Exhibit No. 1005

Creating an ODBC Data Source 123

Figure 8.6 The dBASE ODBC driver setup prompts for dBASE-specific information, including the
dBASE version.

Figure 8.7 The Microsoft SQL Server ODBC driver setup prompts for network login and address
information.

The ODBC Data Sources dialog box is also used to configure system wide ODBC options.
These options are all accessed via the buttons listed in Table 8.2.

Table 8.2 ODBC Data Source Buttons :

Button Description

Options... Configure system-wide ODBC options, such as tracing.

System DSN... Set up data sources that the system, or any user, can use, rather than the
local user.

Close Close the ODBC Data Source dialog box.

Help Obtain help.

Setup... Configure the selected data source, which is the same as double-clicking a
data source.

Delete Permanently remove the selected data source.

Add... Add a new data source using an existing ODBC driver.

Drivers... Display a list of available ODBC drivers.

034 ServiceNow, Inc.'s

Exhibit No. 1005

124

Chapter 8—Introduction to SQL

Try clicking the Drivers... button now. A Drivers dialog box similar to the one shown in
Figure 8.8 should appear. In this dialog box, select any driver by clicking it, and then
click the About... button. An About dialog box like the one shown in Figure 8.9 should
then appear.

Figure 8.8 You can check to see what ODBC drivers are installed on your system by clicking the
Data Source dialog box’s Drivers button.

Figure 8.9 ODBC drivers include descriptions of themselves, vendor information, the release
date, and a version number.

If you look at the About information for the Access, dBASE, Excel, FoxPro, Paradox, and Text driv-

ers, you may notice that they are all in fact the same driver. Microsoft supplies all these drivers as
part of its ODBC Desktop Driver Pack, and they are installed automatically with the ODBC applet.

Creating a Data Source for the A2Z Books Database

Now that you've learned about data sources, you're ready to put all this newly acquired
knowledge to use. In Chapter 8, “Creating Databases and Tables,” you created a
Microsoft Access database called A2Z. Now you’re going to create an ODBC data source
for this data file. Here are the steps:

1. Select the ODBC applet from the Windows Control Panel.
2. Click the Add... button to open the Add Data Source dialog box.

3. Select Microsoft Access Driver from the Installed ODBC Drivers list, and click OK to
open the ODBC Microsoft Access Setup dialog box.

4. Name the data source by typing A2Z in the Data Source Name field.

http://www.mcp.com/que 035 ServiceNow, Inc.'s

Exhibit No. 1005

Using Microsoft Query 125

5. Click the Select... button to locate the A2Z.MDB file.
6. Click OK to save your new data source.

That’s all there is to it. The ODBC Data Sources dialog box now shows the new data
source, A2Z, in the list of available User Data Sources, as shown in Figure 8.10.

Figure 8.10 When you add new data sources, they appear in the list of available User Data
Sources.

Don‘t confuse ODBC data sources and ODBC drivers. ODBC drivers are dynamic link libraries, or
DLLs, that communicate with a specific data store type. A data source is a complete database
configuration that uses an ODBC driver to communicate with a specific database.

A data source communicates with only one database. To use an ODBC driver to communicate with
two or more of the same types of databases, you need to create multiple data sources that all use
the same ODBC driver.

Using Microsoft Query

Now that you have a data source, all you need is a client application with which to ac-
cess the data. Ultimately, the client you will use is Cold Fusion—after all, that is why
you're reading this book. But to start learning SQL without having to learn Cold Fusion,
you need to start with Microsoft Query.

Microsoft Query is an SQL query utility. It is a simple ODBC database front end that
Microsoft supplies with many of their other applications, including Microsoft Office.
With Microsoft Query, you can test ODBC connectivity, interactively build SQL
statements, and view the results of SQL queries, all in an easy-to-use environment.
Microsoft Query is therefore a useful development and prototyping tool, and one well
worth learning.

If you set up Microsoft Office using the minimum setup, then you might not have Microsoft Query
installed. If this is the case, run the Office setup program again and select Microsoft Query from
the database tools option.

036 ServiceNow, Inc.'s
Exhibit No. 1005

126 Chapter 8—Introduction to SQL

Tip

As you start developing Cold Fusion applications, you will find that most data-retrieval problems
are in fact caused by incorrect SQL statements. Microsoft Query is a useful debugging tool because
it enables you to test SQL statements interactively. Using Microsoft Query is a powerful way to
validate SQL queries and to isolate data-retrieval problems.

Now run Microsoft Query. When the program loads, you should see a screen similar to
the one shown in Figure 8.11. Along the top of the screen is the toolbar that gives you
quick access to commonly used functions. The toolbar buttons are described in Table 8.3.

Figure 8.11 Microsoft Query is a multiple document interface (MDI) application. Using it, you
can open multiple documents, or in this case queries, at once.

Table 8.3 The Microsoft Query Toolbar

Button Effect

Create a new query.

Open a saved query.

Save the currently selected query.

View or edit a query’s SQL statement directly.

T Show or hide the available tables pane.

Show or hide the selection criteria pane.

Bl i S £ 037 ServiceNow, Inc.'s

Exhibit No. 1005

Using Microsoft Query 127

Button Effect

Include additional tables in the currently selected query.

Show only records that match the value of the selection.

Cycle through available for the currently selected column.

Sort the table via the currently selected column in ascending order.

Sort the table via the currently selected column in descending order.

Execute the query immediately.

Automatically execute the query as it is created and changed, and show
results immediately.

Display Microsoft Query online help.

Preparing to Create Queries
You are now ready to create your first query. Click the New Query button to open the
Select Data Source dialog box, as shown in Figure 8.12.

Figure 8.12 In the Microsoft Query Select Data Source dialog box, you can select the data source
for your new query.

The first time Microsoft Query uses a data source you need to add it to the Select Data
Source dialog box. To do so, click the Other... button to view the currently available data
sources, then select the A2Z data source that you just created and click OK.

038 ServiceNow, Inc.'s
Exhibit No. 1005

128 Chapter 8—Introduction to SQL

The A2Z data source then appears in the Select Data Source dialog box, as shown in Fig-
ure 8.13. At this point, select the A2Z data source, and then click Use.

Figure 8.13 The first time Microsoft Query uses a data source you need to add it to the Select
Data Source dialog box.

Creating Queries

With all the preliminaries taken care of, you can roll up your sleeves and start writing
SQL. The SQL statement that you will most use is the SELECT statement. You use
SELECT, as its name implies, to select data from a table.

Most SELECT statements require at least the following two parameters:

B What data you want to select, known as the select list. If you specify more than one
item, then you must separate each with a comma.

H The table (or tables) to select the data from, specified with the FROM keyword.

When you click Use in the Select Data Source dialog box to open a data source in a new
query, Microsoft Query prompts you for the tables to include in this query. This feature
is useful for interactively building queries. But because you're going to learn how to cre-
ate queries by writing SQL statements yourself, don't select any tables now. Just click the
Close button.

Once you have selected your data source, Microsoft Query will display the Query win-
dow, as shown in Figure 8.14. The top half is used by Microsoft Query to show tables in
use and to display their relationships graphically if any are defined. In the bottom half of
the screen, the results of your query are displayed.

http://www.mcp.com/que 039 ServiceNow, Inc.'s
Exhibit No. 1005

Creating Queries 129

Data pane

Current record
indicator

Figure 8.14 The Microsoft Query window is split into a table pane and a data pane.

Click the View SQL button (or choose SQL... from the View menu) to open the SQL win-
dow. Here, you can view the SQL statement that produced the query results shown, and
you also can create and modify SQL statements directly.

The first. SQL SELECT you will create is a query for a list of employees’ last names and
phone extensions. Type the code in Listing 8.1 into the SQL Statement box, as shown in
Figure 8.15, and then click OK.

Listing 8.1 Simple SELECT Statement

SELECT
Employees.lLastName,
Employees.FirstName,
Employees.PhoneExtension

FROM A2Z.Employees

Figure 8.15 In the SQL window, you can view generated SQL or enter SQL statements directly.

040 ServiceNow, Inc.'s
Exhibit No. 1005

130

http://www.mcp.com/que 041

Chapter 8—Introduction to SQL

That's it! You’ve written your first SQL statement. Microsoft Query shows the table you
are using in the top half of the screen, and the results of your query appear in the bot-
tom half. You should have 10 records listed, the same 10 records you entered into
Microsoft Access directly, as shown in Figure 8.16.

Figure 8.16 Microsoft Query displays query results in the data pane, the bottom part of the
Query window.

You an enter SQL statements on one long line or break them up over multiple lines. All white-
space characters (spaces, tabs, new-line characters) are ignored when the command is processed.
If you break a statement onto multiple lines and indent parameters, you make the statement easier
to read and debug.

Before going any further, take a closer look at the SQL code you entered. The first param-
eter you pass to the SELECT statement is a list of three columns you want to see. A col-
umn is specified as table.column, such as Employees.LastName, where Employees is the
table name and LastName is the column name.

Because you want specify three columns, you have to separate them with commas. No
comma appears after the last column name, so if you have only one column in your
select list, you don’t need a comma.

Right after the select list, you specify the table on which you want to perform the query.
You always precede the table name with the keyword FROM. The table name itself is
fully qualified, meaning it is specified as database.table, or in this case A2Z.Employees.

ServiceNow, Inc.'s
Exhibit No. 1005

Sorting Query Results 131

SQL statements are not case-sensitive; that is, you can specify the SELECT statement as SELECT,
select, Select, or however you want. Common practice, however, is to enter all SQL keywords in
uppercase and parameters in lowercase or mixed case. This way, you can read the SQL code and
spot typos more easily.

Now modify the SELECT statement so it looks like the code in Listing 8.2. Click the SQL
button to make the code changes, and then click OK.

Listing 8.2 SELECT All Columns

SELECT
Employees.*
FROM A2Z.Employees

This time, instead of specifying explicit columns to select, you use an asterisk. The aster-
isk is a special select list option that represents all columns. The data pane now shows
every column in the table in the order in which they appear in the table itself.

Generally, you should not use an asterisk in the select list unless you really need every column.

Each column you select requires its own processing, and retrieving unnecessary columns can
dramatically affect the retrieval times as your tables get larger.

Sorting Query Results

When you use the SELECT statement, the results are returned to you in the order in
which they appear in the table. This is usually the order in which the rows were added
to the table, typically not a sort order that is of much use to you. More often than not,
when you retrieve data with a SELECT statement, you want to sort the query results. To
sort rows, you need to add the ORDER BY clause. ORDER BY always comes after the table
name; if you try to use it before, you generate an SQL error.

Now click the SQL button, and enter the SQL code shown in Listing 8.3. Then click OK.

Listing 8.3 SELECT with Sorted Output

SELECT
Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension

FROM A2Z.Employees

ORDER BY PhoneExtension

Your output is then sorted by the PhoneExtension column, as shown in Figure 8.17.

042 ServiceNow, Inc.'s
Exhibit No. 1005

132

http://www.mcp.com/que 043

Chapter 8—Introduction to SQL

Sorted by phone
extension

Figure 8.17 You use the ORDER BY clause to sort SELECT output.

What if you need to sort by more than one column, as you did in the beginning of
Chapter 7? No problem. You can pass multiple columns to the ORDER BY clause. And
once again, if you have multiple columns listed, you need to separate them with a
comma. The SQL code in Listing 8.4 demonstrates how to sort on more than one column
by sorting the employee list by last name plus first name. The sorted output is shown in
Figure 8.18.

Listing 8.4 SELECT with Output Sorted on More than One Column

SELECT

Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension
FROM A2Z.Employees

ORDER BY LastName, FirstName

Sorted by last
name plus first
name

Figure 8.18 Using the ORDER BY clause, you can sort output by more than one column.

You also can use ORDER BY to sort data in descending order (from Z to A). To sort
a column in descending order, just use the DESC (short for descending) parameter.
Listing 8.5 retrieves all the employee records and sorts them by extension in reverse
order. Figure 8.19 shows the output that this SQL SELECT statement generates.

ServiceNow, Inc.'s
Exhibit No. 1005

Filtering Data 133

Listing 8.5 SELECT with Output Sorted in Reverse Order

SELECT

Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension
FROM A2Z.Employees

ORDER BY PhoneExtension DESC

= Queyl

Sorted in
reverse order

Figure 8.19 Using the ORDER BY clause, you can sort data in a descending sort sequence.

Filtering Data

So far, all your queries have retrieved all-the rows in the table. You also can use the
SELECT statement to retrieve only data that matches a specific search criteria. To do so,
you must use the WHERE clause and provide a restricting condition. If a WHERE clause is
present, when the SQL SELECT statement is processed, every row is evaluated against the
condition. Only rows that pass the restriction are selected.

If you use a WHERE clause, it must appear after the table name. If you use both the
ORDER BY and WHERE clauses, the WHERE clause must appear after the table name but
before the ORDER BY.

Filtering on a Single Column

To demonstrate filtering, modify the SELECT statement to retrieve only employees
whose last name is Smith. Listing 8.6 contains the SELECT statement, and the resulting
output is shown in Figure 8.20.

Listing 8.6 SELECT with WHERE Clause

SELECT
Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension

FROM A2Z.Employees

WHERE LastName = "Smith"

044 "~ ServiceNow, Inc.'s
Exhibit No. 1005

134 Chapter 8—Introduction to SQL

Figure 8.20 Using the WHERE clause, you can restrict the scope of a SELECT search.

Filtering on Multiple Columns

The WHERE clause also can take multiple conditions. To search for Jack Smith, you can
specify a search condition in which the last name is Smith and the first name is Jack, as
shown in Listing 8.7. As Figure 8.21 shows, only Jack Smith is retrieved.

Listing 8.7 SELECT with Multiple WHERE Clauses

SELECT
Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension

FROM A2Z.Employees
WHERE LastName = "Smith" AND FirstName = "Jack"

Figure 8.21 Using multiple WHERE clauses, you can narrow down your search.

The AND and OR Operators
Multiple WHERE clauses can be evaluated as AND conditions or OR conditions. The

example in Listing 8.7 is an AND condition. Only rows in which both the last name is

http://www.mcp.com/que 045 ServiceNow, Inc.'s
Exhibit No. 1005

Filtering Data 135

Smith and the first name is Jack will be retrieved. If you change the clause to the follow-
ing, other employees with a last name of Smith are retrieved no matter what the first
name:

WHERE LastName = “Smith” OR FirstName = “Jack”
Similarly, any employee named Jack is retrieved, regardless of the last name.

You can combine the AND and OR operators to create any search condition you need.
Listing 8.8 and 8.9 show two different WHERE clauses that accomplish the exact same
thing—specifically, retrieving only Jack Smith and Kim Black.

Listing 8.8 Combining WHERE Clauses with AND and OR Operatofs

SELECT
Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension
FROM A2Z.Employees
WHERE (LastName = "Smith" AND FirstName = "Jack")
OR (LastName = "Black" AND FirstName = "Kim")

Listing 8.9 Combining WHERE Clauses with AND and OR Operators

SELECT
Employees.LastName,
Employees.FirstName,
Employees.PhoneExtension

FROM A2Z.Employees

WHERE (LastName = "Smith" OR LastName
AND (FirstName "Jack" OR FirstName

"Black")
!lKim n)

no
n o

Evaluation Precedence
When a WHERE clause is processed, the operators are evaluated in the following order of
precedence:

B Parentheses have the highest precedence.
B The AND operator has the next level of precedence.
B The OR operator has the lowest level of precedence.

What does this mean? Well, look at the WHERE clause in Listing 8.9. The clause reads
WHERE (LastName = “Smith” OR LastName = “Black”) AND (FirstName = “Jack” OR
FirstName = “Kim”). This clause evaluates to the following:

(LastName = “Smith” OR LastName = “Black”). This clause retrieves only people
whose last name is Smith or Black.

AND (FirstName = “Jack” OR FirstName = “Kim”). Of the names retrieved, this
clause keeps only those whose first name is Jack or Kim. The rest are discarded.

The results of this query are shown in Figure 8.22. As you can see, only Jack Smith and
Kim Black are retrieved, which is exactly the result you want.

046 ServiceNow, Inc.'s
Exhibit No. 1005

136 Chapter 8—Introduction to SQL

Figure 8.22 With parentheses, you can control the precedence with which operators are
evaluated.

Without the parentheses, the clause would read WHERE LastName = “Smith” OR
LastName = “Black” AND FirstName = “Jack” OR FirstName = “Kim”. Because the
AND operator takes precedence over the OR operator, this clause would be evaluated
as follows:

WHERE LastName = “Smith”. This clause retrieves anyone whose last name is
Smith, regardless of first name.

OR LastName = “Black” AND FirstName = “Jack”. This clause also retrieves anyone
whose last name is Black and whose first name is Jack.

OR FirstName = “Kim”. And finally, this clause also retrieves anyone whose first
name is Kim.

The results of this query are shown in Figure 8.23. As you can see, Jane Smith is also re-
trieved. Because no parentheses bind the Smith restriction with the Jack restriction, the
Smith restriction is evaluated by itself. Jane Smith is therefore a valid match.

This row
should not
have been

retrieved

Figure 8.23 Without parentheses, the default order of precedence is used, and the results might
not be what you expect.

http://www.mcp.com/que 047 ServiceNow. Inc.'s

Exhibit No. 1005

Filtering Data 137

Obviously, this result is not what you want. To force the correct evaluation precedence
for your operators, you must use parentheses. This way, there is no doubt as to what you
are trying to retrieve.

Tip

Always using parentheses whenever you have more than one WHERE clause is good practice. They
make the SQL statement easier to read and easier to debug.

WHERE Conditions

For the examples to this point, you have used only the = (equal) operator. You filtered
rows based on their being equal to a specific value. Many other operators and conditions
can be used with the WHERE clause; they're listed in Table 8.4.

Table 8.4 WHERE Clause Search Conditions

Condition Description

= Equal to. Tests for equality

<> Not equal to. Tests for nonequality.

< Less than. Tests that the yalue on the left is less than the value on the
right.

o Less than or equal to. Tests that the value on the left is less than or
equal to the value on the right.

> Greater than. Tests that the value on the left is greater than the value
on the right.

>= Greater than or equal to. Tests that the value on the left is greater than
or equal to the value on the right.

BETWEEN Tests that a value is in the range between two values; the range is
inclusive.

EXISTS Tests for the existence of rows returned by a subquery.

IN Tests to see whether a value is contained within a list of values.

IS [NOT] NULL Tests to see whether a column contains a NULL value (or a non-NULL
value).

LIKE Tests to see whether a value matches a specified pattern.

NOT Negates any test.

= (Testing for Equality)
You use the = operator to test for value equality. The following example retrieves only
employees whose last name is Smith:

WHERE LastName = “Smith”

< > (Testing for Nonequality)
You use the < > operator to test for value nonequality. The following example retrieves
only employees whose first name is not Kim:

WHERE FirstName < > “Kim”

048 ServiceNow, Inc.'s
Exhibit No. 1005

138 Chapter 8—Introduction to SQL

< (Testing for Less Than)
Using the < operator, you can test that the value on the left is less than the value on the
right. The following example retrieves only employees whose last name is less than C,
meaning that their last name begins with an A or a B:

WHERE LastName < “C”
<= (Testing for Less Than or Equal To)
Using the <= operator, you can test that the value on the left is less than or equal to the
value on the right. The following example retrieves only employees whose phone exten-
sion is 4500 or less:

WHERE PhoneExtension < “4500”
> (Testing for Greater Than)
You use the > operator to test that the value on the left is greater than the value on the
right. The following example retrieves only employees whose phone extension is greater
than 4800:

WHERE LastName > “4800”
>= (Testing for Greater Than or Equal To)
You use the <= operator to test that the value on the left is greater than or equal to the
value on the right. The following example retrieves only employees whose first name
begins with the letter J or higher:

WHERE FirstName >= “J"
BETWEEN
Using the BETWEEN condition, you can to test whether a value falls into the range be-
tween two other values. The following example retrieves only employees whose phone
extensions are between 4500 and 4600. Because the test is inclusive, extensions 4500 and
4600 are also retrieved.

WHERE PhoneExtension BETWEEN “4500” AND “4600”
The BETWEEN condition is actually nothing more than a convenient way of combining
>= and <= conditions. You also could specify the preceding example as follows:

WHERE PhoneExtension >= “4500” AND PhoneExtension <= “4600”
The advantage of using the BETWEEN condition is that it makes the statement easier to
read.
EXISTS
Using the EXISTS condition, you can check whether a subquery returns any rows.
Subqueries are explained in Chapter 16, “Advanced SQL.”

http://www.mcp.com/que 049 ServiceNow, Inc.'s

Exhibit No. 1005

Filtering Data 139

IN

You can use the IN condition to test whether a value is part of a specific set. The set of
values must be surrounded by parentheses and separated by commas. The following
example retrieves employees whose last names are Black, Jones, or Smith:

WHERE LastName IN (“Black”, “Jones”, “Smith")

The preceding example is actually the same as the following:

WHERE LastName = “Black” OR LastName = “Jones” OR LastName = “Smith”

Using the IN condition does provide two advantages. First, it makes the statement easier
to read. Second, and more important, you can use the IN condition to test whether a
value is within the results of another SELECT statement. This issue is explained in Chap-
ter 18.

IS [NOT] NULL

A NULL value is the value of a column that is empty. The IS NULL condition tests for
rows that have a NULL value; that is, the rows have no value at all in the specified col-
umn. IS NOT NULL tests for rows that have a value in a specified column.

The following example retrieves all employees whose PhoneExtension is left empty:

WHERE PhoneExtension IS NULL

To retrieve only the employees who do have a phone extension, use the following
example:

WHERE PhoneExtension IS NOT NULL

LIKE

Using the LIKE condition, you can test for string pattern matches using wild cards.
Two wild-card types are supported. The % character means that anything from that
position on is considered a match. You also can use [] to create a wild card for a
specific character.

The following example retrieves employees whose last name begins with the letter S. To
match the pattern, a last name must have an § as the first character and anything at all
after it.

WHERE LastName LIKE “S%”

To retrieve employees with an S anywhere in their last names, you can use the following:

WHERE LastName LIKE “%S%”

You also can retrieve just employees whose last name ends with S, as follows:

WHERE LastName LIKE “9%S”

050 ServiceNow, Inc.'s
Exhibit No. 1005

140

Chapter 8—Introduction to SQL

The LIKE condition can be negated with the NOT operator. The following example
retrieves only employees whose last name does not begin with S:

WHERE LastName NOT LIKE “S%”

Using the LIKE condition, you also can specify a wild card on a single character. If you
want to find all employees named Smith but are not sure if the one you want spells his
or her name Smyth, you can use the following:

WHERE LastName LIKE “Sm[iy]th”

This example retrieves only names that start with Sm, then have an i or y, and then a
final th. With this example, as long as the first two characters are Sm and the last two are
th, and as long as the middle character is i or y, the name is considered a match.

Tip

Using the powerful LIKE condition, you can retrieve data in many different ways. But everything
comes with a price, and the price here is performance. Generally, LIKE conditions take far longer
to process than other search conditions, especially if you use wild cards at the beginning of the
pattern. As a rule, use LIKE and wild cards only when absolutely necessary.

From Here...

You covered a lot of ground in this chapter. You learned about SQL and ODBC and how
to create ODBC data sources. You also learned how to use Microsoft Query to create and
test SQL statements. The most used SQL statement is the SELECT statement, which you
use to retrieve data from a table. Using the SELECT statement, you can specify from
where the data should be retrieved, exactly what data to retrieve, and how to sort the
resulting output.

For more information about topics mentioned in this chapter, see the following
chapters:

B Chapter 6, “Database Fundamentals,” teaches you what databases are and intro-
duces you to important database terms and concepts.

B Chapter 7, “Creating Databases and Tables,” teaches you how to take the design
document created in this chapter and turn it into an actual set of database tables.

B Chapter 9, “SQL Data Manipulation,” teaches you three other important SQL state-
ments: the INSERT statement used to add new rows to a table, the UPDATE state-
ment used to modify one or more rows in a table, and the DELETE statement used
to delete one or more rows from a table.

B Chapter 10, “Cold Fusion Basics,” teaches you how to create Cold Fusion code
using the SQL you learned here.

B Chapter 16, “Advanced SQL,” teaches the use of advanced SQL concepts, including
views and table joins.

http://www.mcp.com/que 051 ServiceNow, Inc.'s

Exhibit No. 1005

Chapter 10
Cold Fusion

Ben Forta
In Chapter 8, “Introduction to SQL,” and Chapter 9, “SQL Data Manipula- In this chapter:
tion,” you learned the basics of SQL and interaction with SQL data sources. B Understand-
Now you're ready to start writing Cold Fusion applications. A Cold Fusion ing Cold
application is made up of one or more templates. A template is a file that Fusion
contains HTML code as well as Cold Fusion Markup Language (CFML) code. templates

B Using Cold
In this chapter, you do not learn how Cold Fusion works and what the vari- F:suilfn fc;el ds
ous components that make up a Cold Fusion application are. That informa-
tion is covered in detail in Chapter 2, “Introduction to Cold Fusion.” In this ™ g;::t;:igv =
chapter, you learn how to create a Cold Fusion template to present dynamic templates
data output. You also learn different techniques for displaying and formatting .
data and how to implement a “drill-down” interface. = dD:rnd'm'

In this chapter, I introduce important Cold Fusion fundamentals. I encourage g Displaying

you to try every one of the examples here yourself because the lessons they results in
demonstrate are the basis for everything covered in the remaining chapters. tables

. B Grouping
Using Templates BRI

As you learned in Chapter 2, all Cold Fusion interaction is via templates
rather than HTML files. Templates can contain HTML, Cold Fusion tags and
functions, or both.

Cold Fusion templates are plain-text files, just like HTML files are. But unlike
HTML files, which are sent to the user’s browser, templates are first processed
by Cold Fusion. This way, you can embed instructions to Cold Fusion within
your templates. If, for example, you want to process user-supplied parameters,
retrieve data from a database, or conditionally display certain information,
you can instruct Cold Fusion to do so.

But instead of just reading about templates, why don’t you create one? The
first template you will create just says “Hello” to you. Yes, I know that you
can create the same response with any HTML file, but along with saying
“Hello,” this template also identifies your IP address and the browser you're
using. You can’t do that with plain HTML.

052 ServiceNow, Inc.'s
Exhibit No. 1005

158 Chapter 10—Cold Fusion Basics

So, create a text file containing the code in Listing 10.1, and save it in your
C:\A2Z\SCRIPTS directory as HELLO1.CFM.

Listing 10.1 HELLO1.CFM—"Hello World” Cold Fusion Templates
<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>
<BODY>
<CFOUTPUT>
Hello,

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>
</CFOUTPUT>
</BODY>

</HTML>

After you create and save the file, load your browser and type http://yourserver.comnt/
a2z/hellol.cfm in the URL field (replacing yourserver.com with your own server name).
Your browser should display a page that looks similar to the one shown in Figure 10.1.
Of course, your IP address and browser information will be different.

Figure 10.1 Using Cold Fusion templates, you can display dynamic data in your Web pages.

http://www.mcp.com/que 053 ServiceNow, Inc.'s
Exhibit No. 1005

Using Templates 159

Understanding Cold Fusion Templates

Now take a look at the code in Listing 10.1. Most of the code should be familiar to you as
standard HTML. The tags for head, title, line breaks, and bold text are all the same HTML
that you would use in any other Web page. What is not standard HTML is the <CFOUTPUT>
tag and fields surrounded by pound signs (the # character).

All Cold Fusion-specific tags begin with CF; CFOUTPUT therefore is a Cold Fusion-
specific tag. You use CFOUTPUT (or Cold Fusion Output) to mark a block of code that
Cold Fusion should itself process prior to submitting it to the Web server for sending to
your browser. When Cold Fusion encounters a <CFOUTPUT> tag, it scans all the text until
the next </CFOUTPUT> for Cold Fusion functions or fields delimited by pound signs.

In Listing 10.1, you use two fields, #REMOTE_ADDR# and #HTTP_USER_AGENT#. They are CGI
variables that the HTTP server makes available to CGI applications such as Cold Fusion.
#REMOTE_ADDR# contains the IP address of your browser, and #HTTP_USER_AGENT# contains
the string with which your browser identifies itself, When Cold Fusion encounters the
text #REMOTE_ADDR# in the CFOUTPUT block, it replaces the text with the value in the
REMOTE_ADDR CGI variable. And when Cold Fusion encounters #HTTP_USER_AGENT# on
the next line, it replaces that text with the appropriate CGI variable, too. Instead of send-
ing the text you entered back to your browser, Cold Fusion replaces the file names with
the field values and sends those values back to you instead.

<4« See the “Understanding Cold Fusion Fundamentals” section in Chapter 2 for a detailed
discussion of CGl applications and variables.

P> See the CD for “CGl Environment Variables,” for a complete list of all CG| variables and
descriptions of each. i

So why do you need the <cFOUTPUT> block? Well, take a look at what Cold Fusion would
have done without it. Listing 10.2 contains a modified version of the code you used
earlier; the output appears twice this time, once within a CFOUPUT block and

once not.

Listing 10.2 HELLO2.CFM—Demonstration of the Use of CFOUTPUT
<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>

<I>The next 3 lines are not within a CFOUTPUT block.</I>

Hello,

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>

(continues)

054 ServiceNow, Inc.'s
Exhibit No. 1005

160 Chapter 10—Cold Fusion Basics

Listing 10.2 Continued

<CFOUTPUT>
<I>The next 3 lines are within a CFOUTPUT block.</I>

Hello,
 '

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>

</CFOUTPUT>
</BODY>

</HTML>

Figure 10.2 Fields not contained within a CFOUTPUT block are output as you enter them, not
replaced with their values.

As you can see from the browser output in Figure 10.2, if you use fields outside a
CFOUTPUT block, Cold Fusion displays the field name as you entered it, complete
with the delimiting characters. More often than not, this result is not what you want.

Every <CFOUTPUT> must have a corresponding </CFOUTPUT> tag, and vice versa. If you omit either
tag, Cold Fusion returns a syntax error. '

Passing Parameters to Templates

In the first example, you used Cold Fusion to display dynamic data by specifying the
field names for two CGI variables. You also can use Cold Fusion to display process
parameters passed to a URL in exactly the same way.

http://www.mcp.com/que 055 ServiceNow, Inc.'s
Exhibit No. 1005

Passing Parameters to Templates 161

To pass a parameter to a template, you could specify the parameter name and value
within the URL. For example, to pass a parameter NAME with a value of BEN, you add
&NAME=BEN to the URL. If you specify multiple URL parameters, then you must separate
each one with an ampersand character (the & character).

Try this example yourself. Listing 10.3 contains a template that displays the value of a
parameter called NAME, if it exists. To display the value, you use the <CFIF> tag to create
a condition and a Cold Fusion function called ParameterExists, If the parameter NAME
exists, then its value is displayed; otherwise, you are notified that the parameter is not
passed.

PP See the “Using Conditions” section in Chapter 12, “Using Forms to Add or Change Data,” for a
complete explanation of the CFIF tag and its usage. |
»» See the “Using Optional Fields” section in Chapter 11, “Cold Fusion Forms,” for an explanation
of the ParameterExists function.

Listing 10.3 HELLO3.CFM
<HTML>

—Demonstration of URL Parameter Processing

On the CD

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>
Hello,

<CFIF #ParameterExists(name)# IS "Yes'>
<CFOUTPUT>

The name you entered is #name#
</CFOUTPUT>
<CFELSE>

You did not pass a parameter called NAME
</CFIF>

</BODY>

</HTML>

After you create and save the file as HELLO3.CFM in the C:\A2Z\SCRIPTS directory, load
your browser and type http://yourserver.com,/ a2z/hello3.cfm&NAME=BEN (you
don’t have to use my name, any name will do). Your browser display should look like the
one shown in Figure 10.3. Now try the example again, this time without any NAME
parameter. You then should see a display like the one shown in Figure 10.4.

056 ServiceNow, Inc.'s
Exhibit No. 1005

162 Chapter 10—Cold Fusion Basics

Figure 10.3 Cold Fusion converts parameters passed to a URL into fields that you can use within
your template.

Figure 10.4 Whenever fields are optional, you should verify that they exist before using them.

So why go to the bother of testing for #ParameterExists(name)#? Well, try removing the
<CFIF> statement (you have to remove the <CFELSE> and </CFIF> lines, too) and then type
http://yourserver.com/ a2z/hello3.cfm without any NAME parameter. Cold Fu-
sion returns an error message because it has no idea what #name# is. If you instruct Cold
Fusion to process a field that does not exist, it complains.

Creating Data-Driven Templates

Now that you've seen what Cold Fusion templates look like and know how to create,
save, and test them, return to the A2ZZ Books example.

hitps/furww.mep.com/que 057 ServiceNow, Inc.'s

Exhibit No. 1005

Creating Data-Driven Templates 163

Your employee database is set up and populated with data, so your next task is to publish
this information on your intranet. This way, your users can access an up-to-date em-
ployee list at all times without needing any special software to do so. All they need to
access the data is a Web browser.

Static Web Pages

Before you create a Cold Fusion template for your database, first take a look at how not
to create this page. Listing 10.4 contains the HTML code for the employee list Web page.
The HTML code is relatively simple; it contains header information and then a list of
employees in an HTML unordered list .

Listing 10.4 EMPLOY.HTM—HTML Code For Employee List
<HTML>

<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>

<BODY>
<H1>Employees</H1>

Black, Kim - Ext. 4565
Gold, Marcy - Ext. 4912
Green, Adrienne - Ext. 4546
Johnson, Dan - Ext. 4824
Jones, Steven - Ext. 4311
Smith, Jack - Ext. 4545
Smith, Jane - Ext., 4876
Stevens, Adam - Ext. 4878
White, Jennifer - Ext. 4345
Wilson, Lynn - Ext. 4464

</BODY>

</HTML>

Figure 10.5 shows the output that this code listing generates.

Dynamic Web Pages

Why, then, is a static HTML file not the way to create the Web page? Well, what would
you do when a new employee is hired or when an employee leaves the company? What
would you do if phone extensions change?

You could directly modify the HTML code to reflect these changes, but you already have
all this information in a database. Why would you want to have to enter it all again?
You would run the risk of making mistakes, misspelling names, getting entries out of
order, and possibly even losing names altogether. And as the number of names in the
list grows, so will the potential for errors occurring. Plus, during the period between
updating the table and updating the Web page, employees will be looking at inaccurate
information.

058 ServiceNow, Inc.'s
Exhibit No. 1005

164 Chapter 10—Cold Fusion Basics

Figure 10.5 You can create the employee Web page as a static HTML file.

An easier and more reliable solution would be to have the Web page display the contents
of your Employee table. This way, any table changes are immediately available to all
employees. You can build the Web page dynamically based on the contents of the Em-
ployee table.

And so you create your first Cold Fusion template. Enter the code as it appears in Listing
10.5, and save it in the C:\A2Z\SCRIPTS as EMPLOY1.CFM. (Don’t worry if the Cold
Fusion code does not make much sense yet; [explain it in detail later in this chapter.)

Listing 10.5 EMPLOY1.CFM—Sample Cold Fusion Template

On the CD

CFQUERY
DATASOURCE="A2Z"
NAME="Employees"
>
SELECT FirstName, LastName, PhoneExtension
FROM Employees
ORDER BY LastName, FirstName
</CFQUERY>

<HTML>

<HEAD>

<TITLE>Employee List</TITLE>
</HEAD>

<BODY>

<H1>Employees</H1>

<yUL>

<CFOUTPUT QUERY="Employees">

#LastName#, #FirstName# - Ext. #PhoneExtension#
</CFOUTPUT>

http://www.mcp.com/que 059 ServiceNow, Inc.'s

Exhibit No. 1005

Understanding Data-Driven Templates 165

</BODY>

</HTML>

Next, load your browser and type http://yourserver.com/ a2z/employl.cfm in the
URL field (again, replace yourserver.com with your own server name). The results are
shown in Figure 10.6.

Figure 10.6 Ideally, the employee Web page should be generated dynamically, based on live
data.

Now, compare Figure 10.5 and Figure 10.6. Can you see the difference between them?
Look carefully.

Give up? Well, the truth is that they are not at all different. The screen shots are identi-
cal. If you were to look at the HTML source code that generated Figure 10.6, you would
see that aside from lots of extra white space, the dynamically generated code is exactly
the same as the static code you entered in Listing 10.4, and nothing like the dynamic
code you entered in Listing 10.5.

Understanding Data-Driven Templates

So, how does the code in Listing 10.5 become the HTML source code that generates
Figure 10.6? In the following sections, I help you review the code listing carefully.

The CFQUERY Tag

The first lines in Listing 10.5 are a Cold Fusion tag called CFQUERY. CFQUERY (or Cold
Fusion Query) is the tag you use to submit any SQL statement to an ODBC data source.
The SQL statement is usually an SQL SELECT statement but also can be INSERT, UP-
DATE, DELETE, or any other SQL statement. y

060 ServiceNow, Inc.'s
Exhibit No. 1005

166 Chapter 10—Cold Fusion Basics

44 See the “Creating an ODBC Data Source” section in Chapter 9 for a more detailed discussion of
ODBC data sources.

44 See the “Creating Queries” section in Chapter 9 for a detailed discussion of SQL statements and
specifically the SQL SELECT statement.

PP See the “CFQUERY” section of Appendix A, “Cold Fusion Reference,” for a detailed discussion
of the CFQUERY tag, with examples showing the use of all attributes, because this chapter
teaches how to use the CFQUERY tag but does not explain every attribute and feature.

The CFQUERY tag has several attributes, or parameters, that are passed to it when used.
The CFQUERY in Listing 10.5 uses the following attributes:

B The NAME attribute is used to name the query and any returned data.

B The DATASOURCE attribute contains the name of the ODBC data source to be
used.

Any text that appears between the <CFQUERY> and </CFQUERY> tags is the SQL code that
will be passed to the ODBC driver for processing.

Note
The CFQUERY name passed to the NAME attribute must be unique in each Cold Fusion template. If
you try to reuse a query name, Cold Fusion returns an error message.

The query NAME you specify is Employees. You will use this name later when you pro-
cess the results generated by the query.

For the DATASOURCE attribute, you specify A2Z, the name of the data source you cre-
ated in Chapter 9.

The SQL code we specified was:

SELECT FirstName, LastName, PhoneExtension FROM Employees ORDER BY LastName,
FirstName

This statement selects the columns you need from the Employee table and sorts them by
last name plus first name. The SQL statement, like all other passed values, is enclosed
within quotation marks.

Tip

The SQL statement in Listing 10.5 is broken up over many lines to make the code more readable.
Although you can write a long SQL statement that is wider than the width of your browser win-
dow, generally you should break up these statements over as many lines as you need.

When Cold Fusion processes the template, the first item it finds is the Cold Fusion tag
CFQUERY. Cold Fusion knows which tags it itself must process and which it must pass to
the server directly. CFQUERY is a Cold Fusion tag and therefore must be processed by
Cold Fusion.

http://www.mcp.com/que 061 ServiceNow. Inc.'s

Exhibit No. 1005

Understanding Data-Driven Templates 167

When Cold Fusion encounters a CFQUERY tag, it creates an ODBC request and submits
it to the specified data source. The results, if any, are stored in a temporary buffer and are
identified by the name specified in the NAME attribute. This process happens before
Cold Fusion processes the next line in the template.

The CFQUERY code, and indeed all Cold Fusion markup code, never gets sent on to the
server for transmission to the browser. Unlike HTML tags that are browser instructions,
CFML tags are instructions to Cold Fusion.

The next lines in the template are standard HTML tags: headers, title, and headings.
Because they are not Cold Fusion tags, they are sent to the Web server and then to the
client browser.

Displaying Query Results with the CFOUTPUT Tag
Next, in Listing 10.5, you create an HTML unordered list using the tag. The list is
terminated a few lines later with a tag.

The list of employees itself goes between the and tags. Each name is a separate
list item and therefore begins with an HTML tag. But instead of listing the employ-
ees as shown in Figure 10.5, you use a CFOUTPUT tag.

CFOUTPUT is the same Cold Fusion output tag you used earlier. But this time you use it
to create a code block that outputs the results of a CFQUERY. For Cold Fusion to know
which query results to output, the query name is passed to CFOUTPUT in the QUERY
attribute. The name you provide is the same name assigned to the NAME attribute of the
CFQUERY tag. In this case, the NAME is Employees.

The code between the <CFOUTPUT QUERY="Employees"> and </CFOUTPUT> is the output code
block. Cold Fusion uses this code once for every row that is retrieved. As 10 rows cur-
rently appear in the Employee table, the CFOUPUT code is looped through 10 times.
And any HTML or CFML tags within that block are repeated as well, once for each row.

with examples showing the use of all attributes, because this chapter explains how to use the

PP See the “CFOUTPUT” section of Appendix A for a detailed discussion of the CFOUTPUT tag, @
CFOUTPUT tag and introduces only the features needed for the examples presented here.

Using Database Table Columns

As I explained earlier, Cold Fusion uses # to delimit fields. In addition to CGI variables
and URL parameters, which you used at the beginning of this chapter, Cold Fusion fields
can also be columns retrieved by a CFQUERY. Whatever field you use, Cold Fusion re-
places the field name with the actual value. So when Cold Fusion processes the output
block, it replaces #LastName# with the contents of the LastName column retrieved in the
Employee query. Each time the output code block is used, that row’s LastName value is
inserted into the HTML code.

Cold Fusion fields can be treated as any other text in an HTML document. You can apply
any of the HTML formatting tags to them. In the example, the query results need to be

062 ServiceNow, Inc.'s
Exhibit No. 1005

168

Chapter 10—Cold Fusion Basics

displayed in an unordered list. Each employee’s name and phone extension is a list
item and, therefore, is preceded by the tag. As the tag is included within
the CFOUTPUT block, Cold Fusion outputs it along with every row.

So, for employee Kim Black at extension 4568, the line
 #lLastName#, #FirstName# - Ext. #PhoneExtension#
becomes
 Black, Kim - Ext. 4565

Only the tag is within the CFOUPUT block, and not the and , because
you want only one list, not many. If the and are within the CFOUPUT block,
you have a new list created for each employee—definitely not the desired result

at all.

Figure 10.6 shows the browser display that this template creates. It is exactly the same
result as Figure 10.5, but without any new data entry whatsoever.

Welcome to Cold Fusion and the wonderful world of dynamic data-driven Web pages!

Using Drill-Down Applications

The nature of the World Wide Web places certain restrictions on data interaction. Every
time a Web browser makes a request, a connection is made to a Web server, and that
connection is maintained only for as long as it takes to retrieve the Web page. Subse-
quent selections and Web requests create yet another connection—again, just for the
specific request.

Simple user interfaces that you may take for granted in most commercial software, such
as scrolling through previous or next records with the cursor keys, become quite complex
within the constraints of Web pages and how they interact with Web servers.

One elegant and popular form of Web-based data interaction is the “drill-down” ap-
proach. Drill down is designed to break up data so that only what is needed on a single
page is displayed. Selecting an item in that page causes details about that item to be dis-
played. The processes is called drilling down because you drill through the data layer by
layer to find the information you need.

The employee page you just created, for example, displays a simple list of employees and
extensions. What if you want to display more information such as title, department, and
e-mail address? You can just select more columns in the CFQUERY and display them in
the CFOUTPUT code, but doing so would clutter the screen, making it hard to use. A
better approach would be to display less information on a page and allow the user to
click an employee’s name to display more information about that employee. This ap-
proach, gradually digging deeper into a data set to find the information you want, is
known as drilling down.

http://www.mcp.com/que 063 ServiceNow, Inc.'s

Exhibit No. 1005

Building Dynamic SQL Statements

Building Dynamic SQL Statements

Creating a drill-down application in Cold Fusion involves creating multiple templates.
For example, one template should list the employees, and a second template should
display an employee’s details.

First, create the detail template. The SQL query in this template has to select detailed user
information for a specific user. Obviously, you don’t want to create a template for every
employee in your database. Doing so would totally defeat the purpose of using templates
in the first place. Rather, the template needs to be passed a parameter, a value that
uniquely identifies an employee. Fortunately, when you created the Employee table, you
created a column called EmployeelD, which contains a unique employee ID for each
employee in the table. The code in Listing 10.6 demonstrates how to pass parameters.

Listing 10.6 EMPDTL1.CFM—Passing Dynamic Parameters

<
CFQUERY
DATASOURCE="A2Z"
NAME="Employee"
>
SELECT LastName,
FirstName,
MiddleInit,
Title,
PhoneExtension,
PhoneCellular,
PhonePager,
EMail
FROM Employees
WHERE EmployeelID = #EmployeelID#
</CFQUERY>

<CFOUTPUT QUERY="Employee">

<HTML>

<HEAD>

<TITLE>#LastName#, #FirstName# #MiddleInit#</TITLE>
</HEAD>

<BODY>

<H1>#LastName#, #FirstName#</H1>

<HR>

Title: #Title#

Ont

Extension: #PhoneExtension#

Cellular: #PhoneCellular#

Pager: #PhonePager#
(continues)
064 ServiceNow, Inc.'s

Exhibit No. 1005

(3

169

B,
he CD

170

Chapter 10—Cold Fusion Basics

Listing 10.6 Continued

E-Mail: #EMail#

</BODY>

</CFOUTPUT>

Before you look at the Web page produced by this code, take a look at the SQL statement
in this CFQUERY tag. The SQL SELECT statement selects the columns needed and uses a
WHERE clause to specify which row to select. The WHERE clause cannot be hard-coded
for any particular employee ID and therefore uses a passed field, #EmployeeID#. The
#EmployeelD# field is passed to the template as part of the URL.

If an EmployeeID of 7 is passed with the URL, therefore, the WHERE clause WHERE
EmployeeID = #EmployeeID# becomes WHERE EmployeeID = 7—exactly what you need to
select the correct row. As you learned earlier, parameters are passed to URLs after the
template name, and each parameter is separated by an ampersand character. So, to
specify employee ID 7, you add &EmployeeID=7 to the URL.

Now try this example. Type the URL http://yourserver.com/ a2z/
empdtll.cfm?EmployeelD=7 in the URL field (once again, replace yourserver.com with
your own server name) in your browser. The resulting output is shown in Figure 10.7.

Figure 10.7 If you want to create truly dynamic pages, parameters can be passed to Cold Fusion
templates and used to create dynamic SQL statements.

To display the details for another employee, you just need to change the value passed
to the URL EmployeelD parameter. Try replacing EmployeeID=7 with EmployeelID=5.
Changing the parameter displays information on a different employee. You can now
use the same template to display details for any employee in the database because the
Web page is data driven.

http://www.mcp.com/que 065 ServiceNow, Inc.'s

Exhibit No. 1005

Building Dynamic SQL Statements 171

Implementing Data Drill Down

To complete the drill-down application, you need to modify the employee list page to
include links to the employee details page. The code for the updated template is shown
in Listing 10.7.

Listing 10.7 EMPLOY2.CFM—Building Dynamic SQL Statements

<
CFQUERY
DATASOURCE="A2Z"
NAME="Employees"
>
SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName
</CFQUERY>

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employees</H1>

<CFOUTPUT QUERY="Employees">

#lLastName#, #FirstName# - Ext. #PhoneExtension#
</CFOUTPUT>

</BODY>

</HTML>

Listing 10.7 is the same as Listing 10.5, with two exceptions. First, you now need the
EmployeelD value, so you change the SQL SELECT statement in the CFQUERY to also
include this column. Second, you modify the employee’s name in the CFOUTPUT code
block so that it is a hyperlink to the employee detail page.

The new employee name code reads

 #LastName#, #FirstName#</
A> - Ext. #PhoneExtension#

When Cold Fusion processes employee 7, this line becomes

 Black, Kim - Ext. 4565

066 ServiceNow, Inc.'s
Exhibit No. 1005

172 Chapter 10—Cold Fusion Basics

This way, the URL needed for the hyperlink is dynamic, too. The URL built for each
employee also contains the correct employee ID, which can be passed to the employee
detail template.

So now try out this example. Go to URL hitp://yourserver.com/ a2z/employ2.cfm
(again, replace yourserver.com with your own server name). Figure 10.8 shows what the
output looks like. The only difference between this display and the one in Figure 10.6 is
that now the employee names are hyperlinks. You can click any one of these links to
display employee details, as shown in Figure 10.9.

Figure 10.9 By passing parameters to a Cold Fusion template, you can use the same template to
display different records without requiring a different HTML page for each.

http://www.mcp.com/que 067 ServiceNow, Inc.'s
Exhibit No. 1005

Creating Frames for Use with Cold Fusion

Using Frames to Implement Data Drill Down

One problem with the drill-down templates you just created is that every time you view
an employee’s details you have to click your browser’s Back button to return to the em-
ployee list page. A more usable approach would be to display the employee list and de-
tails at the same time. Fortunately, you can do so easily by using a browser feature called
frames. Using frames, you can split your browser window in two or more windows and
control what gets displayed within each. And Cold Fusion templates are well suited for
use within frames.

Creating frames involves creating multiple templates (or HTML pages). Each window in
a frame typically displays a different template. If you have two windows, you need two
templates. In addition, you always need one more page that is used to lay out and create
the frames.

When you create the frames, each window is named with a unique name. In a
nonframed window, every time you select a hyperlink, the new page is opened in the
same window, replacing whatever contents were there previously. In a framed window,
you can use the window name to control the destination for any output.

Creating Frames for Use with Cold Fusion

So, now that you have an idea how frames work, the first thing you need to do is create
the template to define and create the frames. The code for template EMPLFRAM.CFM is
shown in Listing 10.8.

Listing 10.8 EMPLFRAM.CFM—Employee Frame Definition and Creation
<HTML>

<HEAD>
<TITLE>Employees</TITLE>
</HEAD>

<FRAMESET COLS="50%,50%">

<FRAME SRC="/cgi/cf.exe?template=employ3.cfm" NAME="employees">

<FRAME SRC="/cgi/cf.exe?template=empdtll.cfm?EmployeeID=0" NAME="details">
</FRAMESET>

</HTML>

This template first defines the frames. <FRAMESET COLS="50%,50%"> creates two columns
(or windows), each taking up 50 percent of the width of the browser window.

Then the two columns are defined. The line <FRAME SRC="employ3.cfm"NAME="employees">
creates the left frame. The NAME attribute names the window, and the SRC attribute
specifies the name of the template to initially display within the window when the frame
is first displayed.

When the frame is first displayed, no employee is selected yet. Therefore, no information
is available for display in the details window, the right frame. The simplest way to dis-
play an empty frame is to specify an inexistent EmployeelD in the URL. We specified an

068 ServiceNow, Inc.'s
Exhibit No. 1005

173

174 Chapter 10—Cold Fusion Basics

EmployeelD of 0, and so Cold Fusion finds no rows and does not display anything there
at all.

Now, the next thing to do is to create the employee list template. Actually, it is the same
as the one in Listing 10.7, with one important difference. The URL to display the em-
ployee details must include a TARGET attribute to designate which window to display
the URL in. If the TARGET is omitted, the new data is displayed in the frame from which
it is selected.

The modified code is shown in Listing 10.9. As you can see, the URL has been modified
to include the attribute TARGET="details". This attribute specifies that the new URL should
be displayed in the frame named details, the right window.

Listing 10.9 EMPLOY3.CFM—Using Frames for Data Drill Down

CFQUERY
DATASOURCE="A2Z"
NAME="Employees"
-
SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName
</CFQUERY>

<HTML>

<HEAD>

<TITLE>Employee List</TITLE>

</HEAD>

<BODY>

<H1>Employees</H1>

<CFOUTPUT QUERY="Employees">

<A HREF="empdtli.cfm?EmployeeID=#EmployeeID#"
TARGET="details">#LastName#, #FirstName# - Ext. #PhoneExtension#

</CFOUTPUT>

</BODY>

</HTML>

That’s all there is to it. To try out this example, go to URL http://yourserver.com/
a2z/emplfram.cfm. (I am no longer going to remind you to replace yourserver.com
with your own server name.) Figure 10.10 shows the output as it appears in framed win-
dows. Try clicking any employee’s name in the left window, and the right window then
displays employee details.

http://www.mcp.com/que 069 ServiceNow, Inc.'s
Exhibit No. 1005

Displaying Results in Tables 175

Figure 10.10 Cold Fusion is well suited for use within HTML frames.

Displaying Resulits in Tables

Most Web browsers now support tables. By using the HTML <TABLE> tag, you can display
data in a two-dimensional grid. Tables are useful for presenting lists in a clean,
columnar display.

Because HTML tables are used so often to display query results in data-driven pages, and
the <TABLE> syntax can be confusing at times, the makers of Cold Fusion created a Cold

Fusion tag called CFTABLE. The CFTABLE tag is designed to conceal the details involved
in creating HTML tables. All you have to do is tell Cold Fusion what data to put in each

column, and Cold Fusion generates the <TABLE> markup code for you.

The CFTABLE tag has another important advantage. It enables you to create tables that
can be viewed by all browsers, even those that do not support HTML tables. To do this,
Cold Fusion renders the output in a nonproportional font and pads fields with spaces so
that they line up in columns. Although the resulting table might not look as good as a
true HTML table, it is functional and is supported by all browsers.

‘ 'examples shoﬂ' ving the use of all attr

FTABLE tag and intr 'dui:es only the features needed

Creating Non-HTML Tables with CFTABLE

For an example of the places where you can use CFTABLE, look at the browser output
shown in Figure 10.8. Notice how the phone extension is right next to the name and in
a different location on the screen depending on how long the employee’s name is. If the
employees were listed in a table, the data could be presented in a cleaner and more orga-
nized fashion.

070 ServiceNow, Inc.'s
Exhibit No. 1005

176 Chapter 10—Cold Fusion Basics

Listing 10.10 is based on Listing 10.7, but instead of using an unordered list and present-
ing each employee as a list item, the list is displayed in a table.

Listing 10.10 EMPLOY4.CFM—Using CFTABLE to Display Data in Tables

<

CFQUERY

DATASOQURCE="A2Z"

NAME="Employees"

>

SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName

</CFQUERY>

<HTML>

<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>

<BODY>
<H1>Employees</H1>

<
CFTABLE
QUERY="Employees"
COLHEADERS

>
<
CFCOL
HEADER="Employee"
TEXT="#LastName#,
#FirstName#"
>
<
CFCOL
HEADER="Extension"
TEXT="Ext. #PhoneExtension#"
>
</CFTABLE>

</BODY>

</HTML>

To create the table, you use the tag <CFTABLE QUERY="Employees" COLHEADERS>. The
CFTABLE tag is a special type of CFOUTPUT and, therefore, requires that you specify

a QUERY attribute, just like the one you would provide to CFOUTPUT. You use
CFTABLE only to display query results, and the QUERY attribute specifies which result
set to process.

You use the COLHEADERS attribute to instruct Cold Fusion to create optional column
headers for each column in the table.

http://www.mcp.com/que 071 ServiceNow. Inc.'s

Exhibit No. 1005

Displaying Results in Tables 177

Next, Cold Fusion needs to know what columns you want to include in your table. You
specify each column by using the CFCOL tag. You specify two columns here, one for the
employee name and one for the phone extension.

The code for the phone extension column is
<CFCOL HEADER="Extension" TEXT="Ext. #PhoneExtension#">

The HEADER attribute specifies the text to use in the column header. This column has a
header with the text Extension in it. The TEXT attribute is required; every CFCOL tag
must have one. It tells Cold Fusion what you want to display in this column. The TEXT
attribute here contains the expression "Ext. #PhoneExtension#"'. As Cold Fusion processes
each row, it replaces the #PhoneExtension# field with the value of the PhoneExtension
column retrieved.

The employee name column may look more complicated, but it really isn't at all. The
source for the column is

<CFCOL HEADER="Employee" TEXT="#LastName#, #FirstName#">

Again, you first specify the text for the optional header in the HEADER attribute. The
TEXT attribute contains the text to-display, and because the name has to be a hyperlink,
you must specify the A HREF link tag, too.

In fact, the contents of the TEXT attribute are almost the same as the hyperlink tag you
used in Listing 10.7 earlier—with one notable exception. Notice that the link tag has
double quotation marks around the URL instead of the usual single set of quotation
marks. You need the double quotation marks to tell Cold Fusion to treat this as a quote,
not as the end of the TEXT attribute. If you were to enter a single quotation mark, Cold
Fusion would think that the TEXT attribute ends right after the HREF=. And because it
would not know what to do with the text after the quotation mark, Cold Fusion would
report a syntax error. This process of using double quotes to indicate an actual quote
character is called escaping, and the quote character is said to have been escaped.

So, now that you understand the code listing, go ahead and run the template. Go to URL
http://yourserver.com/ a2z/employ2.cfm. As you can see in Figure 10.11, the
employee names and phone extensions are now displayed in clearly labeled columns.

How is this table created without using the HTML <TABLE> tag? Look at the source code
generated by Cold Fusion to find out. Select the View Source option in your browser (in
Netscape, choose Document Source from the View menu; in Microsoft Internet Explorer,
choose Source from the View menu).

As you can see in Figure 10.12, Cold Fusion uses the HTML <PRe> tag, which displays text
exactly as it appears in the source code. Usually, Web browsers ignore white-space char-
acters, such as spaces and line feeds. The <PRE> tag instructs the browser to maintain all
spacing and line feeds, allowing Cold Fusion to lay out the data exactly as it wants the
browser to display it.

072 ServiceNow, Inc.'s
Exhibit No. 1005

178 Chapter 10—Cold Fusion Basics

Figure 10.12 To see how Cold Fusion interprets your template, view the generated markup
language code with your browser’s View Source option.

http://www.mcp.com/que 073

ServiceNow, Inc.'s
Exhibit No. 1005

Displaying Results in Tables 179

Creating HTML Tables with CFTABLE

Tables created with the HTML <TABLE> tag, of course, look much better. So Cold Fusion
supports HTML tables, too. As you can see in Listing 10.11, to create HTML tables, you
just need to specify the HTMLTABLE attribute in the CFTABLE tag.

Listing 10.11 EMPLOY5.CFM—Create HTML Tables with CFTABLE

<
CFQUERY
DATASOURCE="A2Z"
NAME="Employees"
>
SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName
</CFQUERY>

<HTML>

<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>

<BODY>
<H1>Employees</H1>

<
CFTABLE
QUERY="Employees"
COLHEADERS
HTMLTABLE

>
<
CFCOL
HEADER="Employee"
TEXT="#LastName#,
#FirstName#"
>
<
CFCOL
HEADER="Extension"
TEXT="Ext. #PhoneExtension#"
>
</CFTABLE>

</BODY>

</HTML>

Figure 10.13 shows the same employee list screen rendered in an HTML table. Note that
when you're displaying data in an HTML table, standard fonts are used, not the fixed
font used when the <PRE> tag is specified. Therefore, you can safely use any other HTML
formatting options in the CFCOL TEXT attribute if required. If you want the name in
bold, for example, you can specify

074 ServiceNow, Inc.'s
Exhibit No. 1005

180 Chapter 10—Cold Fusion Basics

TEXT="#LastName#, #FirstName#</
B>"

And Cold Fusion still can display the table correctly. The and tags are HTML
tags, not CFML tags, so Cold Fusion just passes them through to the Web server to be
sent to your Web browser.

Figure 10.13 You can use the CFTABLE tag to create HTML tables.

To create this table, Cold Fusion generates HTML table code. This source code, as dis-
played by the browser’s view source function, is shown in Figure 10.14.

Figure 10.14 Cold Fusion can generate all the required code to create HTML tables.

e e 075 ServiceNow, Inc.'s
Exhibit No. 1005

Displaying Results in Tables 181

Creating HTML Tables Manually

As good as the Cold Fusion <CFTABLE> tag is, it is very limited. HTML tables support many
advanced features such as table headers, cells that span multiple rows or columns, bor-
ders and border colors, background colors and images, and more. If you really want to
control how your tables are displayed, you must resort to creating your tables manually.
Listing 10.12 demonstrates how to create a bordered table manually for the employee
list.

Listing 10.12 EMPLOY6.CFM—Creating Tables Manually

<
CFQUERY
DATASOURCE="A2Z"
NAME="Employees"
>
SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName
</CFQUERY>

£

e CD

On th

<HTML>

<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>

<BODY>
<CENTER>
<TABLE BORDER=5>

<TR>

<TH COLSPAN=2>
<H1>Employees</H1>
</TH>

</TR>

<CFOUTPUT QUERY="Employees">
<TR>
<TD> .
#LastName#, #FirstName#
</TD>
<TD>
Ext. #PhoneExtension#
</TD>
</TR>
</CFOUTPUT>

</TABLE>
</CENTER>

</BODY>

</HTML>

076 ServiceNow, Inc.'s
Exhibit No. 1005

182 Chapter 10—Cold Fusion Basics

Figure 10.15 shows the output for this listing.

Figure 10.15 Creating tables manually gives you a greater degree of control over table
appearance.

Now look at the code in Listing 10.12. First, you create the table with the <TABLE> tag and
specify an optional border. HTML. tables can have borders of varying thicknesses, and the
BORDER attribute specifies the border to use. Then you create a table title and place it in
a header cell (specified with the <TH> tag) that spans two columns.

Next comes the CFOUTPUT. As each query row is output, a new table row is created. For
this reason, you include a complete table row (the <TR> tag) and cells (the <TD> tag)
within the CFOUTPUT code block. And finally, you close the table with a </TABLE> tag.

As you can see, manually creating tables requires more effort and a better understanding
of HTML tables, but the rewards are well worth your time.

Using HTML tables is a useful way to format data, but a cost is associated with using tables. For a
browser to display a table correctly, it cannot display any part of that table until it receives the
entire table from the Web server. This happens because any row, even one near the end of the
table, can have an effect on the width of columns and how the table is formatted. Therefore, if you
display data in a table, the user doesn’t see any data at all until all the data is present. If you use
another type of display—for example, a list—the data is displayed as it is received. The reality is,
the page may likely take as long to fully load with or without tables. The downside of using tables
is that it takes longer for any data to appear. This, however, does not apply to tables created with-
out the <TABLE> tag.

Grouping Query Results

Before I introduce a new level of complexity, let me review how Cold Fusion processes

queries for you. In Cold Fusion, you create data queries by using the <CFQUERY> tag.
RS pResT G 077 ServiceNow, Inc.'s
Exhibit No. 1005

Grouping Query Results 183

CFQUERY performs an SQL operation and retrieves results, if any. Results are stored tem-
porarily by Cold Fusion, and they remain around only for the duration of the processing
of the template that contains the query.

To output query results, you use the <CFOUTPUT> tag. CFOUTPUT takes a query name as
an attribute and then loops through all the rows that are retrieved by the query. The
code block between the <CFOUTPUT> and the </CFOUTPUT> is repeated once for every row
retrieved.

All the examples you created to this point displayed results in a single list or a single
table. But what do you do if you want to process the results in subsets? For example,
suppose you want to list the employees by department. You could just change the SQL
statement in the CFQUERY to set the sort order to be department and then, perhaps, by
name within each department.

This approach, however, would retrieve the data in the correct order, but how would you
display it? If you use CFOUTPUT like you have until now, then every row created by the
CFOUTPUT block has to be the same. If one has a department name, then all have to,
because every row that is processed is processed with the same block of code. So how do
you create the output shown in Figure 10.16?

Figure 10.16 You can use the CFOUTPUT tag to group query results and display them
accordingly.

The solution is to group the data results. By grouping, you can have more than
one CFOUTPUT loop. To understand how grouping works, look at the template
in Listing 10.13.

078 ServiceNow, Inc.'s
Exhibit No. 1005

184 Chapter 10—Cold Fusion Basics

Listing 10.13 EMPLOY7.CFM—Employee List Grouped by Department

<

CFQUERY

DATASOURCE="A2Z"

NAME="Employees"

>

SELECT DepartmentID, FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY DepartmentID, LastName, FirstName

</CFQUERY>

<HTML>

<HEAD>

<TITLE>Employee List</TITLE>
</HEAD>

<BODY>

<H1>Employees</H1>

<CFOUTPUT QUERY="Employees" GROUP="DepartmentID">
<H2>Department #DepartmentID#</H2>

<CFOUTPUT>
#LastName#,
#FirstName# - Ext. #PhoneExtension#
</CFOUTPUT>

</CFOUTPUT>
</BODY>

</HTML>

The first changes you make are adding the DepartmentID column to the SQL SELECT
statement and modifying the sort sequence with ORDER BY DepartmentID, LastName,
FirstName. To group results by a column, that column must be the first in the sort
sequence. As you want to sort by DepartmentID, that column is now the first in the
ORDER BY list.

The big change, however, is the CFOUTPUT block. You now have two of them,

one nested inside the other. The outer CFOUTPUT tag also has a new attribute:
GROUP="DepartmentID". A CFOUTPUT tag creates a loop that executes once for each row
retrieved by a query. When you add the GROUP attribute, you instruct Cold Fusion to
execute the CFOUPUT block only when the group value changes.

If you have seven employees with the exact same DepartmentID, the GROUP CFOUTPUT
block is executed just once. In the list, you have 10 employees who work in two

http://www.mcp.com/que 079 ServiceNow. Inc.'s

Exhibit No. 1005

Specifying Field Types 185

departments. The outer CFOUPUT block gets executed twice, once for each department.
The first row processed has a DepartmentID of 2, so the CFOUTPUT block is executed.
The next six rows processed also have a DepartmentID of 2, so the CFOUTPUT block is
not executed for them. The eighth row has a different DepartmentID, with a value of 4,
so the CFOUTPUT block is executed. The next two rows also have a DepartmentID of 4,
so no CEOUTPUT block is executed for them. That’s just the outer CFOUTPUT block. The
inner block gets executed for every row, just like the CFOUTPUT blocks you used earlier.

Now look at the output code in Listing 10.13. The outer CFOUTPUT creates a header for
each new group and then starts a new unordered list. The inner CFOUTPUT populates
that list until the group is completed. Then the outer CFOUTPUT terminates the list, and
the process loops to the next DepartmentID. The results are shown in Figure 10.16.

Groups may be nested by creating additional CFOUTPUT blocks, one for each group. There is no
limit to the number of groups that may be nested as long as these two conditions are met. First,
every group must be part of the sort sequence used to retrieve the data. Second, the order that
the columns appear in the ORDER BY clause must match the order of the groupings.

Now you can see why the column you want to group on must be the first in the ORDER
BY list. For grouping to work, all rows with the same value in the grouping column must
be processed as a group. If the group is broken up, as could happen if you do not sort by
the grouping column, Cold Fusion executes the outer block at the wrong times, and the

resulting groups are fragmented.

L] L] 9
Specifying Field Types
You have now used two different types of fields: CGI variables and URL parameters. Cold
Fusion supports several field types, as shown in Table 10.1, and fields that are database
table columns retrieved with a CFQUERY.

Table 10.1 Cold Fusion Field Types

Field Description

cal HTTP CGl variables (see The CD, “CGl Environment Variables”)

CLIENT Client variables (see Chapter 23, “Web Application Framework”)

COOKIE HTTP client-side cookies (see the CD for “Persistent Client Cookies™)

FORM HTML form fields (see Chapter 11, “Cold Fusion Forms")

URL Parameters passed to a URL

VARIABLES Cold Fusion variables (see Chapter 17, “Advanced Cold Fusion Templates”)

In this chapter, you used two of these field types and CFQUERY results. By the time
you finish reading this book, you’ll be using them all regularly. And sooner or later,
you’re going to run into a name collision. For example, you may have a form field
with the exact same name as a table column or a variable with the same name as a URL

080 ServiceNow, Inc.'s
Exhibit No. 1005

186 Chapter 10—Cold Fusion Basics
parameter. When this situation occurs, how does Cold Fusion know which one to use?
Well, the answer is that Cold Fusion doesn’t know. You must specify which to use. And
the way you specify is by qualifying the field name with the field type.
Listing 10.14 is the same template you created in Listing 10.3, with one difference. The
references to field name are fully qualified as URL.name. This way, even if you have any
other field called name, Cold Fusion still knows which field you are referring to.
Listing 10.14 HELLO4.CFM—Avoiding Name Conflicts
<HTML>
<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>
<BODY>
Hello,

<CFIF #ParameterExists(URL.name)# IS "Yes">
<CFOUTPUT>
The name you entered is #URL.name#
</CFOUTPUT>
<CFELSE>
You did not pass a parameter called NAME
</CFIF>
</BODY>
</HTML>
Use your browser to view this template. The resulting display should be exactly the same
as shown in Figure 10.3.
From Here...
The information in this chapter is very important. I strongly urge you not to go any
further until you understand all the examples presented here. Cold Fusion field process-
ing, queries, and output form the basis for almost any application you will develop.
In this chapter, you created your first real Cold Fusion application. I introduced the
CFQUERY and CFOUTPUT tags and explained examples of each. You learned how to use
Cold Fusion fields and how to pass fields as parameters to a URL. You also learned how
to create a drill-down application and how you can use HTML frames to make drill down
even more usable. You also learned about the Cold Fusion CFTABLE tag and how to
create dynamic tables with and without this tag. You learned how to group output re-
sults into organized and logical data sets. And finally, you learned how to specify field
types to prevent field name collisions.
http://www.mcp.com/que . '
P preomi 081 ServiceNow, Inc.'s

Exhibit No. 1005

From Here... 187

For more information about topics mentioned in this chapter, see the following
chapters:

B Chapter 9, “SQL Data Manipulation,” teaches you three other important SQL state-
ments: the INSERT statement used to add new rows to a table, the UPDATE state-
ment used to modify one or more rows in a table, and the DELETE statement used
to delete one or more rows from a table.

B Chapter 11, “Cold Fusion Forms,” builds on what you learned here by showing you
how you can use forms to search for specific data.

B Chapter 13, “Web Application Wizards,” teaches you how to jump-start the devel-
opment process by using the Application Wizards to create a base from which you
can build your application.

B Chapter 16, “Advanced SQL,” teaches the use of advanced SQL concepts, including
views and table joins.

B Chapter 17, “Advanced Cold Fusion Templates,” teaches the use of advanced Cold
Fusion template techniques to help you get the most out of your application devel-
opment effort.

082 ServiceNow, Inc.'s
Exhibit No. 1005

	Blank Page
	Blank Page

