MAURIEL KAPOUYTIAN WOODS LLP
27 W. 24TH STREET
SUITE \#302
NEW YORK, NY 10010

In re Patent No. 7,218,313
Issued: May 15, 2007
Application No. 10/699,555
NOTICE
Filed: October 31, 2003
Attorney Docket No.: 10046-2000100

This is a notice regarding your request for acceptance of a fee deficiency submission under 37 CFR 1.28, filed September 23, 2013.

The Office no longer investigates or rejects original or reissue patent under 37 CFR 1.56. 1098 Off. Gaz. Pat. Office 502 (January 3, 1989). Therefore, nothing in this Notice is intended to imply that an investigation was done.

Your fee deficiency submission under 37 CFR 1.28 is hereby ACCEPTED.
Status as a small entity has been removed. Accordingly, all future fees paid in this patent must be paid at the undiscounted rate.
/SDB/

Sherry D. Brinkley
Paralegal Specialist
Office of Petitions

UNITED STATES PATENT AND TRADEMARK OFFICE
 CERTIFICATE OF CORRECTION

$\begin{array}{lll}\text { PATENT NO. } & : 7,218,313 \mathrm{~B} 2 & \text { Page } 1 \text { of } 1 \\ \text { APPLICATION NO. } & : 10 / 699555\end{array}$
DATED : May 15, 2007
INVENTOR(S) : Beth Marcus and David Lee
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In claim 37, at col. 20, line 3 (which is the 15 th line of the claim), the words --second surface-- should be inserted between "a" and "so."

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

First Named Inventor:
Beth Marcus
Application No.: 10/699,555
Hiling Date: October 31, 2003
Patent Number: 7,218,313
Issue Date: May 15, 2007
Title: HUMAN INTERFACE SYSTEM

FEE DEFICIENCY STATEMENT AND PAYMENT UNDER 37 C.F.R 1.28

Mail Stop

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

```
69/25/2013 HBAMGURA 880000188 \(564242 \quad 7218313\)
\(01 \mathrm{FC}: 1599 \quad 1110.00 \mathrm{DA}\)
```

Dear Sir:
Assignee has recently learned that the amount paid for the 3.5 year maintenance fee'for the above-referenced patent may have been deficient. In an abundance of caution, this paper hereby requests the Director to charge payment to Deposit Account No. 50-4242 in the amount of $\$ 1,110.00$, referencing docket number 10046-2000100. This payment amount is the difference between the amount paid and the current large entity fee amount for a 3.5 year maintenance fee. An -itemization as requircd under 37 C.F.R. 1.28(c) is provided below.

Fcc Type	Date Paid	Amount Paid	Current Large Entity Fee	Dcficiency Amount
3.5 Year Maintenance Fee	October 14, 2010	$\$ 490$	$\$ 1600$	$\$ 1110$

The Director is also hercby authorized to charge any additional fees which may be required by this paper to Deposit Account No. 50-4242, referencing docket no. 10046-2000100.

Datcd: September 23, 2013
Respectfully submitted,
By:/Michael Mauriel/Reg. No. 44,226
Michael Mauricl
Registration No.: 44,226
Mauriel Kapouytian Woods LI, P
27 West $24^{\text {th }}$ Street, Suite 302
New York, New York 10010
(212) 529-5131

Attorney for Applicant

Now York Office

Cabifornia Ofics
1.517 Narth Poiml Strect \#4.54

San Iranciscu, Culifurria 94123
Phone: 415-992-3420
Hax: 415-992-3421
Email: info cu@mkwllp.cinn

FAX COVER SHEET

DATE:

TO:

FAX:
FROM: Michael Mairiel

RE:
Fee Deficiency US Patent Application No. 10/699,555; Patent No. 7,218,313

PAGES: 3 (including cover)
Contents:

1. Fee Deficiency Statement and Payment under 37 C.F.R. 1.28

DATE : 0829-13
TOSPE OF : ART UNIT 2629.
SUBJECT : Request for Certificate of Correction for Appl. No.: $10 / 699555$ Patent No.: 7218313

CofC mailioom date:
08-01-13
Please respond to this request for a certificate of correction within 7 days.

FOR IFW FILES:

Please review the requested changes/corrections as shown in the COCIN document(s) in the IFW application image. No new matter should be introduced, nor should the scope or meaning of the claims be changed.

Please complete the response (see below) and forward the completed response to scanning using document code COCX.

FOR PAPER FILES:

Please review the requested changes/corrections as shown in the attached certificate of correction. Please complete this form (see below) and forward it with, the file to:

Certificates of Correction Branch (CofC)
Randojph Square-9D10-A
Palm Location 7580
Note: \qquad

Thank You For Your Assistance

The request for issuing the above-identified correction(s) is: hereby:
Nate your decision on the appropriate box:

XXY Approved

- Approved In Part
\square Denied

All changes apply:
Specify below which changes do not apply.
State the reasons for denial below.

Comments: \qquad
\qquad
\qquad
\qquad
\qquad
SPE

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PC Box 1450 Alexandria, Yirginia 22313-1450 www:uspto.gov	
PLICANT	ATTY. DOCKET NO./TITLE

CONFIRMATION NO. 3602
51417
POA ACCEPTANCE LETTER
Mauriel Kapouytian Woods LLP
27 W. 24th Street
Suite \#302
New York, NY 10010
Date Mailed: 08/16/2013

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 08/01/2013.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/rmturner myles/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office

APPLICATION NUMBER
10/699,555
FILING OR 371(C) DATE
10/31/2003
IRST NAMED APPLICANT
Beth Marcus

97075
Perkins Coie LLP - SDO General
PO Box 1247
Seattle, WA 98111-1247
Date Mailed: 08/16/2013

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 08/01/2013.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

> /rmturner myles/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventors:
Beth Marcus, David Lee
Patent Number: 7,218,313
Application No.: 10/699,555
Title: HUMAN INTERFACE SYSTEM
Issue Date: May 15, 2007

REQUEST FOR CORRECTION TO PATENT

Commissioner for Patents
Office of Data Management Attention: Certificates of Correction Branch
P.O. Box 1450

Alexandria, Virginia 22313-1450
Dear Sir:

Applicants hereby assert that an error appears in claim 37 on the printed patent. Specifically, at col. 20, line 3 (which is the 15 th line of the claim), the words "second surface" should be inserted between "a" and "so." Applicants respectfully request that a Certificate of Correction be issued as indicated in the attached form $\mathrm{PTO} / \mathrm{SB} / 44$. Applicants further submit remarks in support of this request beginning on page 2 of this paper. Applicants request correction of the error under 37 C.F.R. 1.322. However, in case the Patent Office determines that correction under 37 C.F.R. 1.323 is more appropriate, Applicants request correction thereunder and the corresponding fee is submitted herewith.

REMARKS

Applicants respectfully bring to the Commissioner's attention the following facts: Claim 37 of U.S. Patent No. 7,218,313 ("the '313 patent") corresponds to claim 29 from the prosecuted application, U.S. Application Serial No.: 10/699,555 ("the '555 application"). The final and correct wording of the claim was submitted in a preliminary amendment dated March 20, 2006. The claim language was not subsequently amended during the prosecution. The correct wording of the claim also appeared in a claim listing of a later preliminary amendment dated April 17, 2006. The claim was then allowed in an office action dated October 5, 2006. The claim listing included in an amendment dated February 2, 2007 inadvertently omitted the words "second surface" in line 10 of the claim as listed in that amendment. The claim was indicated to be "Previously Presented." Therefore, the February 2, 2007 paper did not amend the claim and the correct state of the claim remained as reflected in the preliminary amendments of March 20, 2006 and April 17, 2006. However, this error in the claim listing of February 2, 2007 was apparently copied into the issued patent.

In view of the above facts, Applicants respectfully submit that the error in the issued patent resulted at least in part from the Patent Office's failure to review the wording of the claim as submitted in the March 20, 2006 amendment. Therefore, Applicants respectfully request that the Certificate of Correction be issued under 37 C.F.R. 1.322 without requiring a fee. If the Patent Office determines that correction under 37 C.F.R. 1.322 is appropriate, then Applicants respectfully request a refund of the fee paid herewith.

However, if the Patent Office determines that the need for correction is due to Applicants' error, then Applicants' respectfully request correction under 37 C.F.R. 1.323. Applicants respectfully submit that the conditions for such correction under 35 U.S.C. 255 are clearly met in the case. Section 255 provides, in relevant part:

> Whenever a mistake of a clerical or typographical nature, or of minor character, which was not the fault of the Patent and Trademark Office, appears in a patent and a showing has been made that such mistake occurred in good faith, the Director may, upon payment of the required fee, issue a certificate of correction, if the correction does not involve such changes in the patent as would constitute new matter or would require reexamination.

In the present case, the error is clearly "a mistake of a clerical or typographical nature, or of minor character" and it is also the sort of error that on its face indicates that it occurred in good faith. It resulted simply from the inadvertent omission of two words in a claim listing. The omitted words were plainly present in the amendment of March 20, 2006 and were still present in the claim listing of April 17 2006. Therefore, the correct wording was present in the most recent claim listing of record when the claim was allowed on October 5, 2006.

Furthermore, correction of the error will not add new matter. Disclosure of a second input assembly that is on "a second surface" so as to optimize a biomechanical effect the human user's hand is present in several places in the ' 313 patent's specification as issued. For example, col. 8 lines 53-59 states: "A second input assembly 350 is disposed on the back-side surface 314 , left-side surface 316 and right side surface 318 . Alternatively, the second input assembly may be disposed on one of those surfaces or a combination of those surfaces. In this implementation, the first input assembly 340 is disposed relative to the second input assembly 350 to take advantage of the opposition of the human thumb and finger."

Finally, it is also clear that, in this case, correction will not require reexamination. The claim was allowed prior to the error being introduced into a later claim listing. Therefore, the error plainly did not impact allowance of the claim and reexamination would not be necessary.

In summary and in view of the above, Applicants respectfully request correction of the patent under 37 C.F.R. 1.322 or, alternatively, under 37 C.F.R. 1.323. If the Patent Office determines that correction under 37 C.F.R. 1.322 is appropriate for this case, then the Applicants respectfully request a refund of the fee submitted herewith.

In the unlikely event that the transmittal letter is separated from this document and the Patent Office determines that an extension and/or other relief is required, applicant petitions for any required relief including extensions of time. The Director is hereby authorized to charge any fees which may be required by this paper to Deposit Account No. 50-4242, referencing docket no.

10046-2000100.

Dated: August 1, 2013
Respectfully submitted, By:/Michael Mauriel/ Reg. No. 44,226

Michael Mauriel
Registration No.: 44,226
Mauriel Kapouytian \& Treffert LLP
27 West $24^{\text {th }}$ Street, Suite 302
New York, New York 10010
(212) 529-5131

Attorney(s) for Applicant

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. 7,218,313 B2

APPLICATION NO.: 10/699,555
ISSUE DATE : May 15, 2007
INVENTOR(S) : Beth Marcus; David Lee
It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In claim 37, at col. 20, line 3 (which is the 15 th line of the claim), the words "second surface" should be inserted between "a" and "so."

MAILING ADDRESS OF SENDER (Please do not use customer number below):
Michael Mauriel
27 West 24th Street, Suite 302, New York, New York 10010

[^0]
Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Application Number:	10699555			
Filing Date:	31-Oct-2003			
Title of Invention:	HUMAN INTERFACE SYSTEM			
First Named Inventor/Applicant Name:	Beth Marcus			
Filer:	Michael John Mauriel/Jasmine Habbas			
Attorney Docket Number:	09096-8001.US00			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Certificate of Correction	1811	1	100	100
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				

Payment information:

1	Change of Address	100462000100_Correspondenc eaddress.pdf	585779 7528acd728e2ade8887119a690ac52a6172 47358	no	2
Warnings:					
Information:					
2	Assignee showing of ownership per 37 CFR 3.73.	100462000100_POAtrans.pdf	503990 958881 94F5deb84788772 14569C38033ddas bCClc	no	4
Warnings:					
Information:					
3	Power of Attorney	100462000100_POA.pdf		no	1
Warnings:					
Information:					
4	Request for Certificate of Correction	100462000100_CorrectionReq uest.pdf	603478 234ed9446284del 13fte 3 e9efe893344225b ebc1	no	6
Warnings:					
Informa					
	Fee Worksheet (SB06)	fee-info.pdf	29985	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			1788304		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

I hereby revoke all previous powers of attorney given in the application identified in the attached statement under 37 CFR 3.73(b)
I hereby appoint:
Practitioners associated with the Customer Number: OR

Practitioner(s) named below (if more than ten patent practitioners are to be named, then a customer number must be used):

| Name | Registration
 Number | Name | | Registration
 Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73 (b).

Please change the correspondence address for the application identified in the attached statement under 37 CFR 3.73(b) to:

Assignee Name and Address:
Zeemote Technology Inc.
7F, No. 102, Sec. 4, Civic Blvd.
Daan District, Taipei, Taiwan, 106

A copy of this form, together with a statement under 37 CFR 3.73(b) (Form PTO/SB/96 or equivalent) is required to be filed in each application in which this form is used. The statement under 37 CFR 3.73 (b) may be completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.

SIGNATURE of Assignee of Record

The individual whose signature and title is supplied below is authorized to act on behalf of the assignee

Signature		Arron Fang	Telephone
Name			
Title		President	

This collection of information is required by 37 CFR $1.31,1.32$ and 1.33 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA $22313-1450$. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

CHANGE OF CORRESPONDENCE ADDRESS Patent

Address to:
Mail Stop Post Issue
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Patent Number	$7,218,313$
Issue Date	May 15,2007
Application Number	$10 / 699,555$
Filing Date	October 31,2003
First Named Inventor	Beth Marcus
Attorney Docket Number	$10046-2000100$

Please change the Correspondence Address for the above-identified patent to:
\square The address associated with Customer Number: \square
OR

Firm or Individual Name

Address

[^1]
Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

STATEMENT UNDER 37 CFR 3.73(c)

Applicant/Patent Owner: Beth Marcus; David Lee

Application No./Patent No.: 7,218,313 Filed/Issue Date: May 15, 2007
Titled: HUMAN INTERFACE SYSTEM
Zeemote Technology Inc. , a corporation
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)
states that, for the patent application/patent identified above, it is (choose one of options 1, 2, 3 or 4 below):

1. \square The assignee of the entire right, title, and interest.
2. \qquad An assignee of less than the entire right, title, and interest (check applicable box): \square The extent (by percentage) of its ownership interest is \qquad \%. Additional Statement(s) by the owners holding the balance of the interest must be submitted to account for 100% of the ownership interest.There are unspecified percentages of ownership. The other parties, including inventors, who together own the entire right, title and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. \square The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:
\square
Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \square The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad , or for which a copy thereof is attached.
B. \square A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows: 1. From: Beth Marcus, David Lee To: Marcus Enterprises, Ltd.

The document was recorded in the United States Patent and Trademark Office at
Reel 014752 , F , Frame 0408 , or for which a copy thereof is attached.
2. From: Marcus Enterprises, Ltd.

To: Zietoo, Inc.
The document was recorded in the United States Patent and Trademark Office at
Reel 016134 , Frame 0647 , or for which a copy thereof is attached.

[Page 1 of 2]

This collection of information is required by 37 CFR 3.73 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

STATEMENT UNDER 37 CFR 3.73(c)

3. From:

Zietoo, Inc.
To: Zeetoo, Inc.
The document was recorded in the United States Patent and Trademark Office at
Reel 019163 , Frame 0030 _, or for which a copy thereof is attached.
4. From:

Zeetoo, Inc. \qquad To: Zeemote, Inc.

The document was recorded in the United States Patent and Trademark Office at Reel 021574 Frame 0047 , or for which a copy thereof is attached.
5. From: Zeemote, Inc. To: Fish \& Richardson, P.C.

The document was recorded in the United States Patent and Trademark Office at Reel 023472 , Frame 0483 , or for which a copy thereof is attached.
6. From:

Fish \& Richardson, P.C. To: Zeemote, Inc.

The document was recorded in the United States Patent and Trademark Office at
Reel 023768 , Frame 0631 , or for which a copy thereof is attached.Additional documents in the chain of title are listed on a supplemental sheet(s).
(\checkmark As required by 37 CFR 3.73(c)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Michael Mauriel/ Reg. No. 44,226
Signature
Michael Mauriel
Printed or Typed Name

August 1, 2013
Date
Attorney for Applicant; Reg. No. 44,226
Title or Registration Number

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. $122(\mathrm{~b})$ or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.
10. From: Zeemote, Inc. To: Zeemote LLC

This document was recorded in the U.S.P.T.O at Reel: 023905, Frame: 0564
8. From: Zeemote LLC To: Zeemote Technology Inc.

This document was recorded in the U.S.P.T.O at

Reel: 025137, Frame: 0714

United States Patent and Trademark Office

APPLICATION NUMBER
10/699,555
FILING OR 371(C) DATE
IRST NAMED APPLICANT

97075
Perkins Coie LLP
PO Box 1247
Seattle, WA 98111-1247

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 11/03/2010.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/tmwilliams/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office

APPLICATION NUMBER \quad FLING OR 371(C) DATE
10/699,555
FILING OR 371(C) DATE \quad FIRST NAMED APPLICAN

20985
FISH \& RICHARDSON P.C. (SD)
P.O. BOX 1022

MINNEAPOLIS, MN 55440-1022

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 11/03/2010.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/tmwilliams/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

STATEMENT UNDER 37 CFR 3.73(b)

Applicant/Patent Owner:
Beth Marcus et al.
Application No./Patent No.:
$7,218,313$

Filed/Issue Date: \qquad
Titled: HUMAN INTERFACE SYSTEM

Zeemote Technology Inc. , a
$\frac{\text { Corporation }}{\text { (Type of Assignee, e.g., corporation, partnership, university, government agency, etc.) }}$
(Name of Assignee)
states that it is:

1. X the assignee of the entire right, title, and interest in;
2. \square an assignee of less than the entire right, title, and interest in
(The extent (by percentage) of its ownership interest is \qquad $\%$); or
3. \square an assignee of an undivided interest in the entirety of (a complete assignment from one of the joint inventors was made)
the patent application/patent identified above by virtue of either:
A.An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad , Frame \qquad , or for which a copy thereof is attached.
OR
B.

A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:

1. From: Beth MARCUS, W. David LEE

To: Marcus Enterprises, Ltd.
The document was recorded in the United States Patent and Trademark Office at
\qquad , Frame \qquad , or for which a copy thereof is attached.
2. From: Marcus Enterprises, Ltd. To: Zietoo, Inc.
The document was recorded in the United States Patent and Trademark Office at Reel 016134 , Frame 0647 , or for which a copy thereof is attached.
3. From: Zietoo, Inc. \qquad To: Zeetoo, Inc.
The document was recorded in the United States Patent and Trademark Office at Reel 019163 , Frame 0030 , or for which a copy thereof is attached.
X Additional documents in the chain of title are listed on a supplemental sheet(s).
As required by 37 CFR 3.73 (b)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.

/Hwa C. Lee 59,747/	November 3, 2010
	Date
Hwa Lee, Reg. No. 59,747	Attorney for Assignee
Printed or Typed Name	Title

STATEMENT UNDER 37 CFR 3.73(b) - Supplemental Sheet

Continuation of chain of title from the inventor(s) to the current assignee.
4. From: Zeetoo, Inc.

To: Zeemote, Inc.
The document was recorded in the United States Patent and Trademark Office at Reel $\quad 021574$, Frame 0047 , or for which a copy thereof is attached.
5. From: Zeemote, Inc. To: Fish \& Richardson, P.C.

The document was recorded in the United States Patent and Trademark Office at Reel $\quad 023472$, Frame 0483 , or for which a copy thereof is attached.
6. From: Fish \& Richardson, P.C. To: Zeemote, Inc.
The document was recorded in the United States Patent and Trademark Office at Reel 023768 , Frame 0631 , or for which a copy thereof is attached.
7. From: Zeemote, Inc. To: Zee Holding LLC

The document was recorded in the United States Patent and Trademark Office at Reel $\quad 023778$, Frame 0132 , or for which a copy thereof is attached.
8. From: Zeemote, Inc. To: Zeemote LLC

The document was recorded in the United States Patent and Trademark Office at Reel 023905 , Frame 0564 , or for which a copy thereof is attached.
9. From: Zeemote LLC \qquad To: Zeemote Technology Inc.
The document was recorded in the United States Patent and Trademark Office at Reel $\quad 025137$, Frame 0714 , or for which a copy thereof is attached.

S

Amemy mswns

NK
sises

,

 M

\% \% \% S

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Assignee showing of ownership per 37 CFR 3.73 (b).	2010-11-03_POA.PDF	363679	no	3
Warnings:					
Information:					

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Patent and Trademark Office

> UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450
> Alexandria, Virginia $22313-1450$ www.uspto.gov

APPLICATION NO.		ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/699,555		05/15/2007	7218313	19146-002001	3602
20985	7590	04/25/2007			
$\begin{aligned} & \text { FISH \& RICH } \\ & \text { P.O. BOX } 102 \\ & \text { MINNEAPOL } \end{aligned}$	$\begin{aligned} & \mathrm{RDS} \\ & , \mathrm{MN} \end{aligned}$	$0-1022$			

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)
The Patent Term Adjustment is 502 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Beth Marcus, Bedford, MA;
W. David Lee, Newton, MA;

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail
 or Fax
 Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 (571) 273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 4 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.
CURRENT CORRESPONDENCE ADDRESS (Note: Legibly mark-up with any corrections or use Block 1) Note: A certificate of mailing can only be used for domestic mailings

$$
\begin{array}{lll}
20985 & 7590 & 03 / 01 / 2007
\end{array}
$$

of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

FISH \& RICHARDSON P.C.

P.O. Box 1022

Minneapolis, MN 55440-1022

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$\mathbf{1 0 / 6 9 9 , 5 5 5}$	$\mathbf{B e t h}$ Marcus	$\mathbf{1 9 1 4 6 - 0 0 2 0 0 1}$		

TITLE OF INVENTION: HUMAN INTERFACE SYSTEM

Electronic Patent Application Fee Transmittal

Application Number:	10699555
Filing Date:	31 -Oct-2003
	HUMAN INTERFACE SYSTEM
Fitle Invention:	
First Named Inventor/Applicant Name:	Beth Marcus
Filer:	John P. Schnurer/Carroll Allman
Attorney Docket Number:	19146 -002001

Filed as Small Entity

Utility Filing Fees

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)

Basic Filing:

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Utility Appl issue fee	2501	1	700	700
Publ. Fee- early, voluntary, or normal	1504	1	300	300

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:				

Electronic Acknowledgement Receipt	
EFS ID:	1620659
Application Number:	10699555
International Application Number:	
Confirmation Number:	3602
Title of Invention:	HUMAN INTERFACE SYSTEM
First Named Inventor/Applicant Name:	Beth Marcus
Customer Number:	20985
Filer:	John P. Schnurer/mary ann reed
Filer Authorized By:	John P. Schnurer
Attorney Docket Number:	19146-002001
Receipt Date:	23-MAR-2007
Filing Date:	31-OCT-2003
Time Stamp:	18:57:55
Application Type:	Utility

Payment information:

Submitted with Payment	yes
Payment was successfully received in RAM	$\$ 1000$
RAM confirmation Number	1135
Deposit Account	061050

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)	Multi Part /.zip	Pages (if appl.)

1		19146002001IF.PDF	131313	yes	2
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Miscellaneous Incoming Letter		1	1	
	Issue Fee Payment (PTO-85B)		2	2	
Warnings:					
Information:					
2	Fee Worksheet (PTO-06)	fee-info.pdf	8263	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			139576		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant :	Beth Marcus, et al	Art Unit : 2629
Serial No. :	$10 / 699,555$	Examiner : Ricardo Osorio
Filed $:$	October 31, 2003	Confirmation No.: 3602
		Notice of Allowance Date: March 1, 2007

Title : HUMAN INTERFACE SYSTEM
MAIL STOP ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE TO NOTICE OF ALLOWANCE

In response to the Notice of Allowance mailed March 1, 2007, enclosed is a completed issue fee transmittal form PTOL-85b. Please apply the $\$ 1000$ required issue fee and publication fee to Deposit Account No. 06-1050.

COMMENTS ON EXAMINER'S REASONS FOR ALLOWANCE

It is agreed that the limitations recited in the examiner's Reasons for Allowance are not taught or suggested by the art of record, and that the allowed independent claims 1, 4-21 and 2363 are distinguished from the cited prior art for at least the reasons stated in the Reasons for Allowance. Applicant does not concede that the stated reasons are the only grounds for patentability of the allowed claims, that the limitations excluded from the Reasons for Allowance are taught or suggested by the art of record, or that all of the limitations are necessary for patentability of the allowed claims or other claims directed to the disclosed subject matter. For example, other claims including different limitations are patentable over the cited prior art.

Please apply any additional charges or credits to our Deposit Account No. 06-1050.

Respectfully submitted,

Date: March 23, 2007

Fish \& Richardson P.C.

PTO Customer No. 20985 12390 El Camino Real San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099
10720591.doc

NOTICE OF ALLOWANCE AND FEE(S) DUE

209857590 03/01/2007	EXAMINER	
FISH \& RICHARDSON, PC	OSORIO, RICARDO	
P.O. BOX 1022	ART UNIT	PAPER NUMBER
MNNNEAPOLIS, MN 55440-1022	2629	
	DATE MAILED: 03/01/2007	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$10 / 699,555$	Beth Marcus	$19146-002001$		

TITLE OF INVENTION: HUMAN INTERFACE SYSTEM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	date due
nonprovisional	YES	\$700	\$300	\$0	\$1000	06/01/2007

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5 a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): \square Individual \square Corporation or other private group entity \square Govemment

4a. The following fee(s) are submitted:
\square Issue Fee
\square Publication Fee (No small entity discount permitted)
\square Advance Order - \# of Copies \qquad
status indicated above)
\square a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.

Authorized Signature
Typed or printed name \qquad

Date \qquad
Registration No. \qquad
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandra, Virginia 22313-1450. DO NOTT SEND FEES OR COMPLETED FORMS TO'THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Determinatioń of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 502 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 502 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

.- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to $\underline{2 / 2 / 2007}$.
2. \triangle The allowed claim(s) is/are 1,4-21 and 23-63.
3. \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \square All
b) \squareSome*None of the:
4. Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
5.CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \square including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \square hereto or 2) \square to Paper No./Mail Date \qquad -.
(b) \square including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad _.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

Notice of References Cited (PTO-892)2.Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \boxtimes Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 10/27/2006
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material
5.Notice of Informal Patent Application
6.Interview Summary (PTO-413), Paper No./Mail Date \qquad _.
7. \boxtimes Examiner's Amendment/Comment
8. \boxtimes Examiner's Statement of Reasons for Allowance
9.Other \qquad -.

DETAILED ACTION

EXAMINER'S AMENDMENT

1. An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR
1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

The application has been amended as follows:
In claim 4, line 1, delete -3-- and add " 1 ".

Allowable Subject Matter

2. Claims 1, 4-21, and 23-63 are allowed.

The following is an examiner's statement of reasons for allowance: Claims 1, 4-21, and 23-63 are allowable since certain key features of the claimed invention are not taught or fairly suggested by the prior art. In claim 12, "at least one of the input elements of the first surface is further configured to selectively map to more than one text symbol function". In claim 17, "at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications". In claim 24 , "at least one of the input elements is further configured to map to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identifier". In claim 28, "at least one input element is mapped to more than one text function, and one or more selection elements in a finger-manipulated input assembly, wherein each selection element is mapped to a unique shift position". In claim 43, "at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications" The closest prior art Liebenow $(6,909,424)$ discloses a hand-held electronic device with first and second input assemblies on first and second surfaces, respectively, however singularly or in combination fails to anticipate or render the above underlined limitations obvious.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue
fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ricardo L. Osorio whose telephone number is 571-272-7676. The examiner can normally be reached on Monday through Thursday from 7:00 A.M. to 5:30 P.M. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Bipin Shalwala whose telephone number is 571-272-7681.

Any response to this action should be mailed to:
Commissioner of Patents and Trademarks
Washington, D.C. 20231
or faxed to: \quad 571-273-8300 (for Technology Center 2600 only)
Hand-delivered responses should be brought to the Customer Service Window at the
Randolph Building, 401, Dulany Street, Alexandria, VA 22314.
Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Technology Division: 2629
RLO
February 18, 2007

Sheet 1 of 1

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary)	Attomey's Docket No. 19146-002001	Application No. $10 / 699,555$
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2629

U.S. Patent Documents							
Examiner Inltial	Desig. ID	Document Number	Publication Date	Patentee	Class	Subclass	Filing Date If Appropriate
RO	AA	$2003 / 0048205$ A 1	$3 / 13 / 2003$	J. He			
	AB						
	AC						
	AD						
	AE						

| Foreign Patent Documents or Published Foreign Patent Applications | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Examiner
 Initial | Desig.
 ID | Document
 Number | Publication
 Date | Country or
 Patent Office | Class | Subclass | Translation | |
| RO | AF | $91 / 05303 \mathrm{~A} 1$ | $4 / 18 / 1991$ | PCT | | | | |
| RO | AG | 1293882 A 2 | $3 / 19 / 2003$ | EPO | | | | |
| | | | | | | | | |
| | AH | | | | | | | |

| Other Documents (include Author, Title, Date, and Place of Publication) | | |
| :---: | :---: | :---: | :---: |
| Examiner
 Initial | Desig.
 ID | |
| | AI | |
| | AJ | |
| | AK | |

Examiner Signature /Ricardo Osorio/	Date Considered $02 / 20 / 2007$
EXAMINER: next communitials citation considered. Draw line through cltation if not in conformance and not considered. Include copy of this form with	

Issue Classification	Application／Control No． $10 / 699,555$	Applicant（s）／Patent under Reexamination MARCUS ET AL．
	$\begin{aligned} & \text { Examiner } \\ & \text { RICARDO L. OSORIO } \end{aligned}$	$\begin{aligned} & \text { Art Unit } \\ & 2629 \end{aligned}$

Claims renumbered in the same order as presented by applicant								$\square \mathrm{CPA}$			\square T．D．		\square R．1．47	
$\begin{aligned} & \overline{\text { N }} \\ & \text { īㄹ } \end{aligned}$		픈	$\begin{aligned} & \overline{0} \\ & \stackrel{5}{0} \\ & \text { 응 } \end{aligned}$	产	$\begin{aligned} & \overline{0} \\ & \stackrel{C}{\overline{0}} \\ & \hline 0 \end{aligned}$	产	$\begin{aligned} & \overline{0} 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \overline{\widetilde{v}} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \overline{\text { N}} \\ & \text { 든 } \\ & \hline \end{aligned}$	$\underset{\text { 픈 }}{\stackrel{\rightharpoonup}{x}}$	$\begin{aligned} & \text { 픙 } \\ & \text { 든 } \end{aligned}$	离	－
1	1	11	31	51	61		91			121		151		181
V	2	38	32	59	62		92			122		152		182
\cdots	3	39	33	60	63		93			123		153		183
2	4	40	34		64		94			124		154		184
3	5	41	35		65		95			125		155		185
4	6	42	36		66		96			126		156		186
5	7	43	37		67		97			127		157		187
6	8	44	38		68		98			128		158		188
7	9	45	39		69		99			129		159		189
8	10	46	40		70		100			130		160		190
9	11	47	41		71		101			131		161		191
15	12	48	42		72		102			132		162		192
／16	13	52	43		73		103			133		163		193
17	14	53	44		74		104			134		164		194
18	15	54	45		75		105			135		165		195
19	16	55	46		76		106			136		166		196
21	17	56	47		77		107			137		167		197
22	18	57	48		78		108			138		168		198
23	19	12	49		79		109			139		169		199
24	20	20	50		80		110			140		170		200
25	21	26	51		81		111			141		171		201
3	22	34	52		82		112			142		172		202
27	23	36	53		83		113			143		173		203
30	24	49	54		84		114			144		174		204
31	25	58	55		85		115			145		175		205
32	26	13	56		86		116			146		176		206
33	27	14	57		87		117			147		177		207
35	28	28	58		88		118			148		178		208
37	29	29	59		89		119			149		179		209
10	30	50	60		90		120			150		180		210

Search Notes	Application/Control No.	Applicant(s)/Patent under Reexamination MARCUS ET AL.	
	10/699,555		
	Examiner RICARDO L. OSORIO	Art Unit 2629	

SEARCHED			
Class	Subclass	Date	Examiner
345	$\begin{aligned} & 156 \\ & 168,169 \\ & 173 \\ & \hline \end{aligned}$	$2 / 20 / 07$	$R<0$
400	472		
341	22	V	\downarrow

INTERFERENCE SEARCHED			
Class	Subclass	Date	Examiner
InterFerenc Search	Z/20/07	Rட0	

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant Beth Marcus, et al
Serial No.: 10/699,555
Filed: October 31, 2003
Title: HUMAN INTERFACE SYSTEM

Art Unit: 2629
Examiner: Ricardo Osorio
Conf. No.: 3602

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

REPLY TO ACTION OF OCTOBER 5, 2006

Please amend the above-identified application as follows:

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A hand-held electronic device comprising:
a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a processor configured to process a selected one of the plurality of applications;
a first input assembly having a plurality of input elements on a first surface configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements on the first surface is configured to selectivel. map to one or more input functions of the set of functions associated with the selected one of the plurality of applications;[[and]]
a second input assembly having one or more input elements on a second surface configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements on the second surface is further configured to be selectively mapped to one or more input functions of the set of functions corresponding to the selected one of the plurality of applications, further wherein the plurality of input elements on the first surface and the one or more input elements on the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand; and
wherein at least one of the input elements of the second input assembly is a sensor pad configured to selectively represent a plurality of delineated active areas, wherein manipulation of a delineated active area causes the input function of one or more input elements of the first input assembly o change.
2. (Cancelled).
3. (Cancelled).
4. (Previously Presented) The hand-held electronic device of claim 3, further comprising a shape changing media configured relative to the sensor pad so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.
5. (Previously Presented) The hand-held electronic device of claim 1, wherein the processor receives signals generated by the input elements of first or second input assemblies when manipulated by the human user.
6. (Previously Presented) The hand-held electronic device of claim 1 further comprising an input controller, wherein the input controller receives signals generated by the input elements of first or second input assemblies when manipulated by the human user and converts the signals into a form suitable to be interpreted by the processor.
7. (Previously Presented) The hand-held electronic device of claim 1, wherein at least one of the input elements of the second input assembly is a rotary sensor.
8. (Previously Presented) The hand-held electronic device of claim 1, wherein at least one of the input elements of second input assembly is a D-pad.
9. (Previously Presented) The hand-held electronic device of claim 1, further comprising at least one palpable detent, wherein the detent is associated with at least one of the input elements of the first or second input assemblies so as to provide tactile feedback to the human user when the human user manipulates the input element associated with the palpable detent.

10
(Previously Presented) The hand-held electronic device of claim 1 further comprising one or more vibratory or force producing units, at least one of the vibratory or force producing units configured to provide tactile feedback upon the human user's manipulation of at least one of the input elements of the first or second input assemblies.

11 (Previously Presented) The hand-held electronic device of claim 10, wherein at least one of the vibratory units provide tactile feedback in response to events occurring in the selected a-spare application running on the processor.
(Previously Presented) A hand-held electronic device comprising: a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a processor configured to process a selected one of the plurality of applications, wherein the set of functions associated with the selected application includes a plurality of text symbol functions and a plurality of shifting functions;
a first surface having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements of the first surface is further configured to selectively map to more than one text symbol function; and a second surface having one or more input elements, wherein at least one of the input elements of the second surface having one or more selectable active areas configured to be manipulated by one or more of the human user's fingers, each selectable active area configured to selectively map to a different shifting function, wherein manipulation of one of the selectable active area causes the text symbol function of the one or more input elements of the first surface to change, further wherein the plurality of input elements of the first surface and the one or more input elements of the secorid surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand.
13. (Previously Presented) The hand-held electronic device of claim 12 further comprising a controller, wherein the controller receives signals generated by the human user's manipulation of the input elements of the first surface or active areas.
14. (Previously Presented) The hand-held electronic device of claim 13 further comprising a dome cap positioned above at least one input element of the first surface or the second surface and capable of providing tactile feedback to the human user when the input element associated with the dome cap is manipulated.
15. (Previously Presented) The hand-held electronic device of claim 13 further comprising one or more vibratory units capable of providing tactile feedback.
16. (Previously Presented) The hand-held electronic device of claim 13 further comprisin! one or more force producing units capable of providing tactile feedback.
17. (Previously Presented) A method for configuring a human interface and input system for use with a hand-held electronic device configured to run a plurality of applications, each application associated with a set of functions, the method comprising:
disposing on a first surface a first input assembly having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications;
disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application; and
arranging the plurality of input elements of the first input assembly and the one or more input elements of the second input assembly to substantially optimize a biomechanical effect of the human user's hand.
18. (Previously Presented) The method of claim 17 further comprising: physically or electronically labeling at least one input element of the first input assembly or the second input assembly so as to visually indicate an input function that can be selectively accessed by actuating the input element.

19 (Previously Presented) The method of claim 17 further comprising connecting a controller to the input elements of the first input assembly or the second input assembly, wherein the controller is configured to receive signals generated by a manipulation of one or mo e of the input elements-of first input assembly or the second input assembly.
20. (Previously Presented) The method of claim 19, wherein at least one input element of second input assembly having a plurality of active areas configurable by the controller to form a plurality of delineated active areas.
21. (Previously Presented) The method of claim 20 further comprising positioning a shape changing media relative to the one input element of second input assembly having a plurality of active areas so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.

22 (Cancelled)

23 (Previously Presented) The method of claim 17 further comprising positioning a palpable detent with at least one input element of the first input assembly or the second input assembly so as to provide tactile feedback when manipulated by the human user.

24 (Previously Presented) A method for inputting data on a hand-held electronic device having a first surface with a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements is further configured to map to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identifier, and a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein each selection element corresponds to one of the unique index position identifiers, further wherein the plurality of input elements and the one or more selection elements are arranged to substantially optimize a biomechanical effect of the human user's hand, the method comprising:
executing a selected application from a plurality of applications, wherein the selected application is associated with a set of functions
determining the index position identifier of a desired symbol to be inputted based on the functions associated with the selected application;
pressing the selection element corresponding to the index position identifier of the desired symbol with any digit or object held in the human user's hand; and pressing the input element configured to map to the desired symbol with any digit or object held in the human user's hand. (page 14, lines 2-27).
25. (Previously Presented) The method of claim 24, wherein each input element is physically or electronically labeled indicating each symbol that is mapped to the input element and a positional order in which each symbol can be selectively accessed by actuating the input element. index position identifier of the desired character to be inputted comprises:
locating the input element configured to map to the desired symbol; and counting from left to right the number of symbols preceding the desired symbol labeled on the located input element, wherein the index position identifier of the desired symbol is the number of symbols preceding the desired symbol plus one.
27. (Previously Presented) The method of claim 24, wherein at least one of the input elements or selection elements is further configured to map to a plurality of modes corresponding to the selected application executing on the hand-held electronic device, at least one of the modes is the data input mode, the method further comprising enabling the data input mode.
28. (Previously Presented) A method for a human user to input data on a handheld electronic device using an interface and input system comprising a plurality of input elements in a thumb-manipulated assembly to substantially optimize a biomechanical effect of the humar user's thumb and fingers, wherein at least one input element is mapped to more than one text function, and one or more selection elements in a finger-manipulated input assembly, wherein each selection element is mapped to a unique shift position, the method comprising: executing a selected text application from a plurality of applications, wherein the selected application is associated with a set of functions pressing a desired selection element of the finger-manipulated input assembly with a human a finger to select a desired shift position the selected text application; and pressing a desired input element of the thumb-manipulated input assembly with a human thumb to input a desired text character.

29 (Previously Presented) A hand-held electronic device comprising: a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a processor configured to process a selected one of the plurality of applications; a first input assembly disposed on a first surface of the electronic device, wherein the first input assembly comprises a plurality of input elements configured to be actuated by a human user's hand, wherein at least one of the input elements of the first input assembly is configured to map to one or more input functions of the set of functions associated with the selected one of the plurality of applications; and
a second input assembly disposed on a so as to substantially optimize a biomechanical effect of the human user's hand, wherein the second input assembly comprises one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly is a selectively configurable sensing surface so as to provide a plurality of delineated active areas, further wherein one or more of the delineated active areas is mapped to one or more functions associated with the selected application, further wherein the memory is further configured to store for each application a mapping of the selectively configurable sensing surface to the plurality of delineated active areas. the selected one of the plurality of applications is a text application; and the one or more input elements on the second surface of the second input assembly comprises one or more selection elements, wherein manipulations of the one or more selection elements causes the input elements on the firs: surface of the first input assembly to be selectively mapped from one text function to another text function.

31 (Previously Presented) The hand-held electronic device of claim 1, wherein the selected one of the plurality of application is a game application, and at least one of the plurality of input elements of the first input assembly and at least one of the input elements of the second input assembly are each configured to selectively map to one or more game functions.

32 (Previously Presented) The hand-held electronic device of claim 29, further comprising: an input controller, wherein the input controller receives a plurality of signals generated by the input elements of the first input assembly and the second input assembly when manipulated by the human user, and converts the plurality of signals into a form suitable to be interpretec by the processor.
33. (Previously Presented) The hand-held electronic device of claim 32, wherein at least one input element of the first input assembly or the second input assembly is configured to map to one or more input functions associated with the selected application that control a cursor on a screen. wherein the selected one of the plurality of applications is a game application.

35 (Previously Presented) The hand-held electronic device of claim 34, wherein at least one input element of the first input assembly or the second input assembly is configured to map to one or more input functions associated with the game application that control a game character on a screen.

36 (Previously Presented) The hand-held electronic device of claim 34, wherein the input cont toller is further configured to interpret a movement of the human user's finger sliding across twc or more delineated active areas as a change in the mapped function of the two or more delineated active areas, wherein the mapped function is at least one of a speed control, a size control, a weapon fire control, and a position control. (page 16, lines 4-30).

37 (Previously Presented) The hand-held electronic device of claim 34, wherein the input controller is further configured to interpret a pressure applied by the human user's finger on a selected one of the delineated active areas as a change in the mapped function of the selected delineated active area, wherein the mapped function is at least one of a speed control, a size control, a weapon fire, and position control. (page 16, lines 4-30).
38. (Previously Presented) The hand-held electronic device of claim 34, wherein at least one of the functions mapped to the input element of the first input assembly is a game function that is substantially optimized for actuation by the human user's thumb. thumbs comprises a directional control.
40. (Previously Presented) The hand-held electronic device of claim 34, wherein at least one of the functions mapped to the delineated active areas is a game function that is substantially optimized for actuation by one or more of the human user's fingers.
41. (Previously Presented) The hand-held electronic device of claim 40, wherein the game function that is substantially optimized for actuation by one or more of the human user's fingers comprises a weapon fire control.
42. (Previously Presented) The hand-held electronic device of claim 40, wherein the game function that is substantially optimized for actuation by one or more of the human user's fingers comprises a game character jump control.

43 (Previously Presented) A method for configuring a human interface and input system for use with a hand-held electronic device configured to run a plurality of applications, each application associated with a set of functions, the method comprising:
disposing on a first surface a first input assembly having a plurality of input elements configured to receive input from a human user's hand through manipulation of the plurality of input elements, wherein at least one of the input elements of the first input assembly
is further configured to map to more than one input function associated with a selected one of the plurality of applications;
disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly is further configured to selectively map to onき or more input functions associated with the selected application; and
mapping the set of functions of the selected application to the one or more input elements of the first input assembly and the second input assembly to substantially optimize a biomechanical effect of the human user's hand.

44 (Previously Presented) The method of claim 43, wherein the selected application is at least one of a scrolling application, a text application and a game application.

45 (Previously Presented) The method of claim 44 further comprising: physically or electronically labeling at least one input element of the first input assembly or the second input assembly so as to visually indicate an input function that can be selectively accessed by actuating the input element.

46 (Previously Presented) The method of claim 44 further comprising connecting a controller to the input elements of the first input assembly or the second input assembly, wherein the controller is configured to receive signals generated by a manipulation of one or more of the input elements of first input assembly or the second input assembly. element of second input assembly having a plurality of active areas configurable by the controller to form a plurality of delineated active areas.
48. (Previously Presented) The method of claim 47 further comprising positioning a shape changing media relative to the one input element of second input assembly having a plurality of active areas so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.
49.
(Previously Presented) The hand-held electronic device of claim 1, wherein the processor is further configured to be communicatively coupled to a host electronic device.

50 (Previously Presented) The hand-held electronic device of claim 12, wherein the processor is further configured to be communicatively coupled to a host electronic device.
51. (Previously Presented) The method of claim 19, wherein the controller is further configured to be communicatively coupled to a host electronic device.
52. (Previously Presented) The method of claim 24, wherein the hand-held electronic device is further configured to be communicatively coupled to a host electronic device.
53. (Previously Presented) The method of claim 28, wherein the hand-held electronic device is further configured to interface with a host electronic device.

54 (Previously Presented) The hand-held electronic device of claim 29, wherein the processor is further configured to interface with a host electronic device.

55 (Previously Presented) The method of claim 43, wherein the hand-held electronic device is configured to interface with a host electronic device.

56 (New) The hand-held electronic device of claim 1, wherein at least one of the input elements of the second input assembly comprises an accelerometer.

57 (New) The hand-held electronic device of claim 1, wherein at least one of the input elements of the second input assembly comprise a gyroscope
58. (New) The method of claim 17 further comprising disposing on one or more surfaces a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly comprises an accelerometer.
(New) The method of claim 17 further comprising disposing on one or more surfaces a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly comprises a gyroscope.
60. (New) The hand-held electronic device of claim 29, wherein at least one of the input elements of the second input assembly comprises an accelerometer.
61. (New) The hand-held electronic device of claim 29, wherein at least one of the input elements of the second input assembly comprise a gyroscope
62. (New) The method of claim 43 further comprising disposing on one or more surfaces a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly comprises an accelerometer.
63. (New) The method of claim 43 further comprising disposing on one or more surfaces a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly comprises a gyroscope.

REMARKS

Claims 1, 3-21 and 23-55 were pending before amendment with claims 1, 12, 17, 24, 28, 29 and 43 being independent. Claim 1 has been amended. Claim 3 has been cancelled. Claims $56-63$ have been added. Applicant's specification fully supports the subject matter of the newly added claims. For example, the claimed "accelerometer" and "gyroscope" are described at least on page 19, lines 25-32. No new matter has been added. Reconsideration and allowance of all pending claims are respectfully requested.

Allowable Subject Matter:

Applicants thank the Examiner for allowing claims 29, 32-42 and 54. Applicants also thank the Examiner for indicating claims $3,4,20,21,47$ and 48 as being allowable if rewritten in independent form. These claims are retained. While the Examiner states claims 36 and 37 as allowable (see Office Action Dated October 5, 2006 at 7), Applicants believe this to be in error since claims 32-42 depend from allowed claim 29. The Office Action Summary correctly identifies claims 29, 32-42 and 54 as allowed claims.

Rejections Under 35 U.S.C. $\$ 102$ (e):
Claims 1, 5, 6, 12-13, 17-19, 24-28, 30-31, 43, 49-53 and 55 stand rejected under 35 U.S.C. § $102(\mathrm{e})$ as allegedly being anticipated by U.S. Patent No. 6,909,424 to Liebenow et. al. ("Liebenow").

Claim 1 and its dependent claims
While Applicants disagrees with the Examiner's basis for his rejection, claim 1 has been amended to include all features of cancelled claim 3 to expedite the prosecution of the present application. Since claim 3 was identified by the Examiner as allowable subject matter, amended claim 1 is allowable over Liebenow for at least incorporating the allowable subject matter. Claims 4-11, 30-31 and 49 depend from claim 1 and thus are patentable over Liebenow for at least the reason similar to claim 1 .

Claim 12 and dependent claims

Claim 12 is allowable over Liebenow because, among other reasons, Liebenow fails to teach each or suggest and every feature of claim 12. In particular, Liebenow fails to teach \boldsymbol{a} second surface having one or more input elements, wherein at least one of the input elements of the second surface having one or more selectable active areas configured to be manipulated by one or more of the human user's fingers, each selectable active area configured to selectively map to a different shifting function, wherein manipulation of one of the selectable active area causes the text symbol function of the one or more input elements of the first surface to change as recited in claim 12. In contrast to the claimed features of claim 12, Liebenow teaches that the back surface of the device includes a conventional keyboard or touch pad mimicking a conventional keyboard designed to be manipulated by user's fingers. (See Liebenow at col. 4, 11. 33-43; col. 8, 11. 45-67; and col. 9, 11. 53-67.) "Turning now to FIGS. 2, 3 and 4, the input device 130 may be composed of a keyboard 132 having a plurality of key configuration....In this manner, the fingers of the user's left and right hands $122 \& 124$ may be positioned over the keys 134 of each key range $136 \& 138$ in a manner allowing the user of conventional touch-typing techniques." (See Liebenow at col. 4, 11. 33-48 and FIGS. 2-4.) The front surface of the device in Liebenow include keys corresponding to "shift", "space bar", "Ctrl", "Alt", etc. (See Liebenow at col. 5, 11. 36-64 and FIGS. 1, 3-4.) Thus, the input elements of the second surface in Liebenow are not selectively map to a different shifting function, wherein manipulation of one of the selectable active area causes the text symbol function of the one or more input elements of the first surface to change as recited in claim 12. Selecting one of the keys in the keyboard 132 in Liebenow does not cause the causes the text symbol function of the one or more input elements of the first surface to change. In fact, the input elements of the first surface in Liebenow are set to one of the "shift", "space bar", "Ctrl", "Alt", etc. (see Liebenow at col. 5, 11. 36-64 and FIGS. 1, 3-4), which do not change when one of the input elements in the second surface is manipulated by the user's finger.

This is not surprising since Liebenow also fails to teach wherein the plurality of input elements of the first surface and the one or more input elements of the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand. Optimizing the biomechanical effects of the human user's hand includes optimizing human thumb/finger opposition. (See Applicant's Specification at least at pg. 4, 11. 18-24; pg. 5, 11. 1521; pg. 11. 11. 11-13; pg. 14, 11. 10-32; pg. 19, 13-18.) For example, a selectable active area on the second surface configured to be manipulated by user's fingers through a sliding motion to activate a shift function as recited in claim 12 optimizes the human thumb/finger opposition. In contrast, Liebenow teaches use of discrete keys (even when using a sensor pad) designed to be manipulated by rigid tapping or pushing motions of the fingers. This does not optimize the biomechanical effects of the human user's hand since combining tapping motion with the thumb and the firgers as taught in Liebenow is difficult and inefficient to accomplish. In fact, Liebenow fails to teach or suggest that the plurality of input elements of the first surface and the one or more input elements of the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand as recited in claim 12. While Liebenow teaches that "[a]ny or all of the front and back surfaces 104 \& 106, the left and right side surfaces $108 \& 110 \mathrm{and} /$ or the top and bottom surfaces $112 \& 114$ may further be shaped to provide a comfortable gripping area for the user's hands," (see Liebenow at col. 4, 11. 13-16) a comfortable grip as disclosed in Liebenow is not equivalent to optimizing a biomechanical effect of tite human user's hand as recited in claim 12. The comfort level of a grip is not relevant to the arrangement of the input elements of the first and second surfaces to substantially optimize a biomechanical effect of the human user's hand as recited in claim 12.

For at least these reasons, claim 12 is allowable over Liebenow. Claims 13-16 and 50 depend from claim 12 and thus are allowable over Liebenow for at least the same reasons.

Claim 17 and its dependent claims
Claim 17 is allowable over Liebenow because, among other reasons, Liebenow fails to teach or suggest each and every feature of claim 17. In particular, Liebenow fails to teach disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly is further configured to map to more
than one input function associated with a selected one of the plurality of applications. To illustrate the claimed mapping to more than one input function, Application's specification describes in one aspect that an input function is a character that can be produced upon depressing one button in the front input assembly (e.g., "P" from the "7PQRS" key), and that the same key can produce multiple characters (7, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$) while executing the same application and the same data input mode, simply by using the input elements in the back as shift keys to index into the "7PQFS" string to select one of the possible characters. (See Applicant's Specification at pg. 6, 11. 8-12; pg. 14, 11. 6-27.)

In contrast to claim 17 and as set forth with respect to claim 12 above, Liebenow teaches a standard keyboard having discrete keys designed to be manipulated by a user's fingers. (See Liebenow at col. 4, 11. 33-43; col. 8, 11. 45-67; col. 9, 11. 53-67; and FIGS. 1, 2, 4, 7 and 8.) The discrete ktys of the standard keyboard in Liebenow are not mapped to more than one input function associated with a selected one of the plurality of applications as recited in claim 17. Liebenow teaches assigning one text or numeric character per key as long as the same application is executed in the same input mode. While the entire mapping of every key can be changed, for example from QWERTY mode to a DVORAK keyboard mode, even after the change, each key is assigned to only a single character. (See Liebenow at col. 15, 11. 12-20.) In addition, while Liebenow allegedly teaches a word processing application in FIG. 15 and a calculator application in FIG. 16, each key is still assigned to a single character only in each application. It is not surprising to see only a single input function assigned to each key in Liebenow since Liebenow teaches a standard full-size keyboard, which includes a key for each input character, i.e., a one to one mapping.

Similarly, Liebenow fails to teach wherein at least one of the input elements of the first input assembly is further configured to selectively map to one or more input functions associatea' with the selected application as recited in claim 12. The input elements on the front surface in Liebenow include keys corresponding to "shift", "space bar", "Ctrl", "Alt", etc. (See Liebenow at col. 5, 11. 36-64 and FIGS. 1, 3-4.) These keys in Liebenow only allow a single
function for an application. For example, the "shift" key in the word processing application in FIG. 15 of Liebenow allows for a single input function. Further, as set forth with respect to claim 12 above, the input elements on the front and back surfaces in Liebenow fails to teach substantially optimize a biomechanical effect of the human user's hand as recited in claim 17.

For at least these reasons, claim 17 is patentable over Liebenow. Claims 18-21, 23 and 51 depend from claim 17 and are patentable over Liebenow for at least the same reasons.

Claim 24 and its dependent claims

Claim 24 is allowable over Liebenow because, among other reasons, Liebenow fails to teach or suggest each and every feature of claim 24. In particular, Liebenow fails to teach wherein at least one of the input elements is further configured to map to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identifier, and a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein each selection element corresponds to one of the unique index position identifiers as recited in claim 24. The input elements and the selection elements as recited in claim 24 are designed for inputting data on a hand-held electronic device. The hand-held electronic device as recited in claim 24 has input elements that are configured to map to a plurality of symbols in a data input mode. In contrast to claim 24, Liebenow teaches a standard full-sized keyboard having a key for each character, i.e., it discloses a one for one correspondence between a key and a corresponding character. Thus, Liebenow does not disclose or suggest assigning multiple character symbols to at least one key. In addition, while Examiner states that Liebenow teaches the claimed features of claim 24, the cited portions of Liebenow fails to support such an assertion. (See Liebenow at col.4, 11. 33-43; col. 8, 11. 45-67, and col. 9, 11. 53-67.) The portions of Liebenow cited by the Examiner describes a standard full-sized keyboard, which does not assign multiple symbols to at least one key. Simply put, Liebenow does not disclose or suggest these claimed features.

Further, Liebenow teaches input elements (individual keys of the keyboard) on the back surface designed to be manipulated by user's fingers (see, Liebenow at FIGS. 1-4) and not selection elements as recited in claim 24. Therefore, even if the "shift", "CTRL", etc. keys on the front surface could reasonable be construed as selection elements (which is not conceded), Liebenow teaches that these keys are designed to be manipulated by the user's thumbs and not
the fingers as recited in claim 24. This is not surprising since Liebenow also fails to teach or suggest the claimed wherein the plurality of input elements and the one or more selection elements are arranged to substantially optimize a biomechanical effect of the human user's hand. For reasons similar to claim 12 above, the device in Liebenow is not designed to substantially optimize a biomechanical effect of the human user's hand.

For at least these reasons, claim 24 is patentable over Liebenow. Claims 25-27 and 52 depend from claim 24 and are patentable over Liebenow for at least the same reasons.

Claim 28 and its dependent claim

Claim 28 is allowable over Liebenow because, among other reasons, Liebenow fails to teach or suggest each and every feature of claim 28. In particular, Liebenow fails to teach wherein at least one input element is mapped to more than one text function, and one or more selection elements in a finger-manipulated input assembly as recited in claim 28. As set forth with respect to claim 17 above, the keys in Liebenow is assigned to produce a single character and thus a single text function. Also, as set forth with respect to claim 24 above, the "shift" and "CTRL" keys are not arranged in a finger-manipulated input assembly as recited in claim 28 since the device in Liebenow is not designed to substantially optimize a biomechanical effect of the human user's hand as recited in claim 28.

For at least these reasons, claim 28 is allowable over Liebenow. Claim 53 depends from claim 28 and is also allowable over Liebenow for at least the same reasons.

Claim 43 and dependent claims

Claim 43 is allowable over Liebenow for at least reasons similar to claim 17 above. In particular, Liebenow fails to teach or suggest the claimed disposing on a first surface a first input assembly having a plurality of input elements configured to receive input from a human user's hand through manipulation of the plurality of input elements, wherein at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications; disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application and mapping the set of functions of
the selected application to the one or more input elements of the first input assembly and the second input assembly to substantially optimize a biomechanical effect of the human user's hand as recited in claim 43. As set forth with respect to claim 17 above, Liebenow teaches a single input function assigned to each key for an application.

For at least these reasons, claim 43 is allowable over Liebenow. Claims 44-48 and 55 depend from claim 43 and are allowable over Liebenow for at least the same reasons.

New Claims 56-63
New claims 56-63 depend from claims 1, 17, 29 and 43, and are allowable over Liebenow for at least the same reasons set forth with respect to claims $1,17,29$ and 43.

Conclusion

It is believed that all of the pending claims have been addressed in this paper. However, failure to address a specific rejection, issue, or comment, does not signify agreement with or concession of that rejection, issue or comment. In addition, because the arguments made above are not intended to be exhaustive, there may be reasons for patentability of any or all pending claims (or other claims) that have not been expressed. Finally, nothing in this response should be construed as an intent to concede any issue with regard to any claim, except as specifically stated in this response, and the amendment of any claim does not necessarily signify concession of unpatentability of the claim prior to its amendment.

Claims 1, 4-21 and 23-55 are in condition for allowance, and a notice to that effect is respectfully request. If the Examiner has any questions regarding this response, the Examiner is invited to telephone the undersigned at (858) 678-5070.

Please apply $\$ 60$ for the one month extension of time fee and any other charges or credits to deposit account 06-1050.

Date: February 2, 2007
Respectfully submitted,

Fish \& Richardson P.C.
12390 El Camino Real
San Diegc, California 92130
Telephone: (858) 678-5070
Facsimile (858) 678-5099

JPS/HCL/jhg

10695424.doc

Electronic Patent Application Fee Transmittal

Application Number:	10699555
Filing Date:	31 -Oct-2003
Title of Invention:	
	Human interface system
First Named Inventor/Applicant Name:	Beth Marcus
Filer:	Hwa C. Lee/Julie Giordano
Attorney Docket Number:	19146 -002001

Filed as Small Entity

Utility Filing Fees

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)

Basic Filing:

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

$\left.\begin{array}{|l|c|c|c|c|}\hline & \text { Description } & \text { Fee Code } & \text { Quantity } & \text { Amount }\end{array} \begin{array}{c}\text { Sub-Total in } \\ \text { USD(\$) }\end{array}\right]$

Electronic Acknowledgement Receipt	
EFS ID:	1487374
Application Number:	10699555
International Application Number:	
Confirmation Number:	3602
Title of Invention:	Human interface system
First Named Inventor/Applicant Name:	Beth Marcus
Customer Number:	20985
Filer:	Hwa C. Lee/mary ann reed
Filer Authorized By:	Hwa C. Lee
Attorney Docket Number:	19146-002001
Receipt Date:	02-FEB-2007
Filing Date:	31-OCT-2003
Time Stamp:	16:01:00
Application Type:	Utility

Payment information:

Submitted with Payment	yes
Payment was successfully received in RAM	$\$ 60$
RAM confirmation Number	365
Deposit Account	061050

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)	Multi Part /.zip	Pages (if appl.)

1		19146002001 Reply.pdf	953338	yes	26
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Amendment - After Non-Final Rejection		1	1	
	Claims		2	18	
	Applicant Arguments/Remarks Made in an Amendment		19	26	
Warnings:					
Information:					
2	Fee Worksheet (PTO-06)	fee-info.pdf	8122	no	2
Warnings:					
Information:					
Total Files Size (in bytes)			961460		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Document code: WFEE
United States Patent and Trademark Office
Sales Receipt for Accounting Date: 02/14/2007

JWILLIA1 SALE \#00000001 Mailroom Dt: 02/02/2007 06105010699555 01 FC : 2202 175.00 DA

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Beth Marcus, et al
Serial No. : $10 / 699,555$
Filed : October 31, 2003
Title : HUMAN INTERFACE SYSTEM

Art Unit : 2629
Examiner : Ricardo Osorio
Conf. No. : 3602

MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Applicants request consideration of the references listed on the attached PTO-1449 form. Under 37 C.F.R. § 1.98 (a)(2)(ii), only copies of foreign patent documents and/or non-patent literature are enclosed. Copies of any listed U.S. patents or U.S. patent application publications can be provided upon request. A copy of a communication from a foreign patent office in a counterpart application is also enclosed.

This statement is being filed after a first Office action on the merits, but before receipt of a final Office action or a Notice of Allowance. I, the undersigned, hereby certify that each item of information contained in this statement was cited in a communication from a foreign patent office in a counterpart foreign application, the communication being dated July 31, 2006, which is not more than three months prior to the filing of this statement. Please apply any charges or credits to Deposit Account No. 06-1050.

Date: October 27, 2006
Respectfully submitted,

Fish \& Richardson P.C. PTO Customer No. 20985 12390 El Camino Real San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099

Sheet 1 of 1

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary) (37 CFR \$1.98(b))	Attorney's Docket No. $19146-002001$	Application No. 10/699,555
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2629

U.S. Patent Documents							
Examiner Initial	Desig. ID	Document Number	Publication Date	Patentee	Class	Subclass	Filing Date If Appropriate
	AA	$2003 / 0048205$ A 1	$3 / 13 / 2003$	$\mathrm{~J} . \mathrm{He}$			
	AB						
	AC						
	AD						
	AE						

Foreign Patent Documents or Published Foreign Patent Applications								
$\begin{gathered} \text { Examiner } \\ \text { Initial } \\ \hline \end{gathered}$	Desig.	Document	Publication	Country or			Translation	
	ID	Number	Date	Patent Office	Class	Subclass	Yes	No
	AF	91/05303 A1	4/18/1991	PCT				
	AG	1293882 A2	3/19/2003	EPO				
	AH							

Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	
	AI	
	AJ	
	AK	

Examiner Signature	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

(54) Title: DATA INPUT KEYBOARD

(54) Bezeichnung: TASTATUR ZUR DATENEINGABE

(57) Abstract

The data input keyboard (1) of the invention facilitates work with programs running on computer installations. This is achieved by the indication of the functions to which the function keys (3) are allocated. The markings (2) are directly above the keys (3) and may be different depending upon the application program running.

(57) Zusammenfassung

Die Tastatur zur Dateneingabe (1) gemäß der Erfindung erleichtert das Arbeiten mit Programmen die auf Rechenanlagen ablaufen. Dies geschieht durch das Anzeigen der Funktionen, denen Funktionstasten (3) zugeordnet sind. Die Anzeigen (2) befinden sich direkt über den Tasten (3) und können, je nach ablaufendem Anwendungsprogramm, verschiedene Inhalte anzeigen.

BENENNUNGEN VON "DE"

Bis auf weiteres hat jede Benennung von "DE" in einer internationalen Anmeldung, deren internationaler Anmeldetag vor dem 3. Oktober 1990 liegt, Wirkung im Gebiet der Bundesrepublik Deutschiand mit Ausnahme des Gebietes der früheren DDR.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	MG	Madagaskar
AU	Australien	FI	Finnland	ML	Mali
BB	Barbados	FR	Frankreich	MR	Mauritanien
BE	Belgien	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	Vereinigtes Königreich	NL	Niederlande
BG	Bulgarien	GR	Griechenland	NO	Norwegen
BJ	Benin	HU	Ungarn	PL	Polen
BR	Brasilien	IT	Italien	RO	Rumänien
CA	Kanada	JP	Japan	SD	Sudan
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SE	Schweden
CG	Kongo	KR	Republik Korea	SN	Senegal
CH	Schweiz	LI	Liechtenstein	SU	Soviet Union
CM	Kamerun	LK	Sri Lanka	TB	Tschad
DE	Deutschland	LU	Luxemburg	TG	Togo
DK	Dänemark		MC	Monac	oUS

Tastatur zur Dateneingabe

Beschreibung

Die Erfindung betrifft eine Tastatur gemäß dem Oberbegriff des Anspruchs 1.

Bei dem meisten sich im Gebrauch befindenden Tastaturen befinden sich über oder neben den Tastenfeld zur Eingabe von Schriftzeichen die sogenannten Funktionstasten. Diesen Funktionstasten ist, abhängig vom Programm das auf der Datenverarbeitungsanlage abläuft, eine bestimmte Funktion zugeordnet. Die Kennzeichnung der Funktionen die diesen Funktionstasten zugeordnet sind, wird durch Beschriftungen über den Funktionstasten, durch Aufkleben von Etiketten oder durch Auflegeschablonen ereicht. Dies hat in den ersten beiden Fallen den Nachteil, daß bei einem Programmwechsel auf der Datenverarbeitungsanlage und somit einer Anderung der Zuordnungen die Beschriftung nicht oder nur schwer geändert werden Kann. Die Lösung des Problems mit den Schablonen hat den Nachteil, daß Schablonen verloren gehen können und das versehentilich eine falsche Schablone aufgelegt werden kann.

Der Erfindung liegt die Aufgabe zugrunde eine Tastatur derart zu konstruieren, daß die den den Funktionstasten zugeordnete Funktionen jederzeit angezeigt werden und das die Anzeigen jederzeit und einfach zu ändern sind. Auch muß gewährleistet sein, daß die angezeigten Zuordnungen immer korrekt sind.

Die Erfindung löst die Aufgabe dadurch, daß sich aber den als Funktionstasten gekennzeichneten Tasten LCD-Anzeigeelemente befinden, deren Anzeigeinhalte geändert werden können, ohne einen Eingriff in die Tastatur vorzunehmen. Die Änderung kann automatisch oder manuell erfolgen.

Die Erfindung wird in der folgenden Beschreibung an Hand eines in der Zeichnung dargestellten bevorzugten Ausführungsbeispiels im einzelnen erläutert.

Gemäß der Zeichnung besteht die Tastatur im wesentichen aus dem Tastaturgehäuse (1), dem Tastenfeld zur Eingabe von Schriftzeichen (5), dem Tastenfeld zur Kursorsteuerung (6) und dem Tastenfeld zur Eingabe von Zahlen (4). über dem Tastenfeld zur Eingabe von Schriftzeichen (5) befinden sich die Funktionstasten (3). Über den Funktionstasten (3) sind die LED-Anzeigen (2) angebracht.
Die LED-Anzeigen (2) sind in dem Tastaturgehäuse (1) mit der Tastatursteuerelektonik verbunden die hier nicht dargestellt ist. Mit dieser Elektronik lassen sich die Inhalte der LED-Anzeigen (2) leicht ändern. Die manuelle Änderung geschieht mit Hilfe eines Schalters (4) , der Tastatursteuerelektronik und dem Tastenfeld zur Eingabe von Schriftzeichen (5).
Die Inhalte der LED-Anzeigen (2) können auch automatisch durch das Programm, das auf der Datenverarbeitungsanlage (7) abläuft, geändert werden. Die Tastatur (1) ist mit einem Kabel (8) mit der Datenverarbeitungsanlage (7) verbunden.

1. Tastatur (1) zur Dateneingabe dadurch gekennzeichnet, daß sick über den als Funktionstasten (3) gekennzeichneten Tasten LEDAnzeigeelemente (2) angebracht sind.
2. Tastatur (1) nach Anspruch 1 dadurch gekennzeichnet, daß die Anzeigen (2) für alle Funktionstasten (3) in einer sich uber al1. Funktionstasten (3) erstreckende LCD-Anzeige zusammengefasst sind.
3. Tastatur (1) nach einem der Ansprüche 1 bis 2 dadurch gekennzeichnet, daß die Inhalte der LCD-Anzeigen (2), beim Umschalten des Datensystems auf ein anderes Verarbeitungsprogramm, automatisch geändert werden.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 14/01/91
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A- 2167218	$21-05-86$	None	
EP-A- 0251477	$07-01-88$	US-A-	4823311

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 14/01/91 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB-A- 2167218	21-05-86	Keine		
EP-A- 0251477	07-01-88	$\begin{aligned} & \text { US-A- } \\ & \text { JP-A- } \end{aligned}$	$\begin{array}{r} 4823311 \\ 63059616 \end{array}$	$\begin{aligned} & 18-04-89 \\ & 15-03-88 \end{aligned}$

Europäisches Patentamt European Patent Office Office européen des brevets

EUROPEAN PATENT APPLICATION

(43) Date of publication:
(51) Int Cl.?: G06F 3/033
19.03.2003 Bulletin 2003/12
(21) Application number: 02019878.4
(22) Date of filing: 10.09.2002
(84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 11.09.2001 DE 10144634
(71) Applicant: TRW Automotive Electronics \& Components GmbH \& Co. KG
78315 Radolfzell (DE)
(72) Inventors:

- Baldauf, Siegfried 86150 Augsburg (DE)
- Bubb, Peter, Dr. 82194 Gröbenzell (DE)
- Götz, Matthias 80796 München (DE)
- Hafner, Ernst 88709 Hagnau (DE)
- Albrecht, Stephan 83703 Gmund am Tegernsee (DE)
(74) Representative: Degwert, Hartmut, Dipl.-Phys. Prinz \& Partner
Manzingerweg 7
81241 München (DE)
(54) Command input system
(57) The command input system has a display input field conveys tactile feedback about the available screen and a touch-sensitive input field. On the input field, there is a spatial relationship with control options shown on the display field of the display screen. The
and/or executed control actions. The command input system is especially well-suited for use in vehicles since it does not require constant eye contact with the display field.

Fig. 1a

Description

[0001] The present invention relates to a command input system with a display screen and a touch-sensitive input field.
[0002] Tactile command input systems are known especially from the realm of data processing equipment, particularly in so-called notebooks and laptops, where the touch-sensitive input field is generally referred to as a touchpad. In desktop systems, such a touchpad replaces the commonly employed computer mouse and serves to control the cursor and to trigger control actions. The cursor movements and the control actions are shown on the display field of the display screen. Since a touchpad only has a surface area of a few square centimeters, no spatial relationship exists between, on the one hand, the control options shown on the display field and the cursor movements and, on the other hand, the touch positions on the touchpads. As a result, in spite of the limited surface area of the touchpad, the cursor can be moved over the entire surface area of the display field.
[0003] With such command input systems, constant eye contact with the display field is needed in order to specifically select one of the control options shown there. Therefore, such a command input system is only suitable in environments that permit constant eye contact with the display field. Generally speaking, this condition cannot be met, for example, in vehicles, at least not for the control of vehicle features by the driver while driving.
[0004] The present invention provides a command input system that, due to tactile feedback about available or executed input functions, does not require constant eye contact with the display field of the display screen. Specifically, the invention provides a command input system with a display screen where command input options are displayed, and a touch-sensitive input field. A spatial correspondence exists between command input options shown on the display screen and the physical surface area on the touch-sensitive input field, as signalled to a user by tactile feedback from the input field. As used herein, "spatial correspondence" means that the display field where available command input options appear on the display screen and the input field are of a generally similar, if not identical, shape, although their seizes may be different (substantially congruent shapes), and commands referred to by command input options appearing at particular locations in the display field, are executed when similar locations are touched on the input field. Preferably, at least the contour of the input field is of a palpable structure such as a raised rim. Also, command input options are easily recognised on the input field by corresponding palpable structures.
[0005] Further details of the invention will ensue from the following description of several embodiments with reference to the accompanying drawings. In the drawings:

Figure 1a shows a first embodiment with an input field that is surrounded by an orientation frame;

Figure 1 b shows a second embodiment with an input field that is surrounded by an orientation frame;

Figure 2 shows an embodiment in which command input elements can be felt underneath a smooth, but flexibly yielding surface of the input field;

Figure 3 shows different three-dimensional shapes of the input field; and

Figure 4 shows an embodiment in which the input field has a plurality of local actuators situated beneath a flexible tensioned foil.
[0006] In the embodiment shown in Figure 1a, a flat display screen 10 has an irregular octogonal shape 2 close to that of a rectangle. A touch-sensitive input field 12 , also referred to as a touchpad below, has the same general shape as the display screen, although it is of a smaller size. Input field 12 is surrounded by a palpable, especially raised, continuous rim or frame 14. Frame 14 5 preferably has a relatively soft feel along its inner periphery and a relatively hard feel along its outer periphery. Near the right-hand and the left-hand lower corners of display screen 10 , symbolic "push-buttons" 16,18 are displayed, labelled " X " and " Y ", respectively. Similarly, input field (touchpad) 12 has sensitive locations 20, 22 near its right-hand and left-hand lower corners, as suggested by dotted lines. When input field 12 is touched at location 20 or 22 , a command is generated which is associated with "push-button" 16 or 18 appearing on display screen 10.
[0007] The Fig. 1b embodiment is generally similar, but has an irregular n-cornered shape (11 comers, actually). It also has a pair of "push-button" symbols 16 b , 18 b on the display screen 10 b and corresponding seno sitive locations $20 \mathrm{~b}, 22 \mathrm{~b}$ on input field 12 b .
[0008] It should be understood that in both embodiments, the number, shape and distribution of symbols on the display field of the display screen and of corresponding sensitive locations on the input field may vary 45 according to intended use.
[0009] In the embodiment shown in Figure 2, the input field (touchpad) 30 has a flexibly yielding tensioned foil 32 with a generally smooth outer surface. Beneath foil 32 , a plurality of palpable command input structures 34 are situated. These structures 34 are associated with corresponding command input options shown on the display field of the display screen.
[0010] In the embodiment shown in Figure 3, the input field or touchpad generally has a structured tree-dimensional surface wherein palpable structures are associated with corresponding command input options shown on the display field. The palpable structures can be of various kinds. Especially suitable types are raised, flat
shaped elements, indented flat shaped elements, bulges, geometric shaped elements such as circles, rectangles, triangles, roughened surfaces, smooth surfaces, palpable hard/soft material transitions and palpable rigid/flexible material transitions.
[0011] In the embodiment shown in Figure 4, actuators 40 are situated at specific locations beneath a flexible surface of the input field or touchpad 42. The actuators 40 are associated with command input options shown on the display field. These actuators 40 generate palpable, tactile feedback about the executed command actions or available command input options, corresponding to the contents on the display screen. The actuators can be made on the basis of different technologies, including electromechanic, electromagnetic, piezoelectric, pneumatic or hydraulic.

Claims

1. A command input system with a display screen where command input options are displayed and a touch-sensitive input field, characterized in that a spatial correspondence exists between command input options shown on the display screen and the physical surface area on the touch-sensitive input field, as signalled to a user by tactile feedback from the input field.
2. The command input system according to Claim 1, wherein the input field has a rim with a contour that palpably replicates the display screen.
3. The command input system according to Claim 2, wherein the rim is raised relative to the input field.
4. The command input system according to Claim 2 or 3 , wherein the rim continuously surrounds the input field.
5. The command input system according to Claim 1 , wherein the input field has palpable structures that are associated with the command input options shown on the display screen.
6. The command input system according to Claim 5, wherein the palpable structures are covered by a tensioned flexible foil that has a smooth surface on its side opposite to the palpable structures.
7. The command input system according to Claim 5, wherein the palpable structures comprise at least one of the following elements:

- raised, flat shaped elements,

55

- indented flat shaped elements,
- bulges,
- geometric shaped elements such as circles,
rectangles, triangles,
- roughened surfaces,
- smooth surfaces,
- palpable hard/soft material transitions
- palpable rigid/flexible material transitions.

8. The command input system according to Claim 1, wherein the input field has a flexibly yielding, smooth surface beneath which a plurality of actuators are situated that generate a palpable reaction in response to an executed command input or to an available command input option.
9. The command input system according to Claim 8, wherein the actuators are selected from among the following types:

- electromechanical,
- electromagnetic,
- piezoelectric,
- pneumatic
- hydraulic.

EP 1293882 A2

(19)

Europäisches Patentamt European Patent Office Office européen des brevets

EUROPEAN PATENT APPLICATION

(51) Int Cl.7: G06F 3/033, H01H 13/70, G06F 3/00
(43) Date of publication A2:
19.03.2003 Bulletin 2003/12
(21) Application number: 02019878.4
(22) Date of filing: 10.09.2002
(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 11.09.2001 DE 10144634
(71) Applicant: TRW Automotive Electronics \&

Components GmbH \& Co. KG
78315 Radolfzell (DE)
(72) Inventors:

- Baldauf, Siegfried

86150 Augsburg (DE)

- Bubb, Peter, Dr. 82194 Gröbenzell (DE)
- Götz, Matthias 80796 München (DE)
- Hafner, Ernst 88709 Hagnau (DE)
- Albrecht, Stephan 83703 Gmund am Tegernsee (DE)
(74) Representative: Degwert, Hartmut, Dipl.-Phys.

Prinz \& Partner
Manzingerweg 7
81241 München (DE)
(54) Command input system
(57) The command input system has a display screen and a touch-sensitive input field. On the input field, there is a spatial relationship with control options shown on the display field of the display screen. The input field conveys tactile feedback about the available and/or executed control actions. The command input system is especially well-suited for use in vehicles since it does not require constant eye contact with the display field.

Fig. 1a

European Patent
EUROPEAN SEARCH REPORT
Application Number
Office
P 02019878

CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing more than ten claims.

Only part of the ciaims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):

No claims tees have been paid within the prescribed time limit. The present European search report has been drawn up tor the first ten claims.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B

X
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

None of the further search fees have been paid within the fixed time limil. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-4

Command input system with a display screen displaying input options and a touch-sensitive input field, where a spatial correspondance exists between the displayed input options and the physical surface of the input field, as signalled by tactile feedback,
characterised in that the input field has a rim with a contour that palpably replicates the display screen.
2. Claims: 5-7

Command input system with a display screen displaying input options and a touch-sensitive input field, where a spatial correspondance exists between the displayed input options and the physical surface of the input field, as signalled by tactile feedback,
characterised in that the palpable structures are covered by a tensioned flexible foil.
3. Claims: 8-9

Command input system with a display screen displaying input options and a touch-sensitive input field, where a spatial correspondance exists between the displayed input options and the physical surface of the input field, as signalled by tactile feedback,
characterised in that the palpable structures are formed by active actuators.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.
08-04-2004

Patent document cited in search report		Publication date		Patent family member(s)	$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
EP 1014295	A	28-06-2000	JP	2000194483 A	14-07-2000
			JP	2000194502 A	14-07-2000
			EP	1014295 AZ	28-06-2000
W0 0154109	A	26-07-2001	US	2001035854 A1	01-11-2001
			AU	2954301 A	31-07-2001
			WO	0154109 A1	26-07-2001
			US	2003038776 Al	27-02-2003
			US	2002033795 A1	21-03-2002
W0 9718546	A	22-05-1997	US	6473069 Bl	29-10-2002
			AU	7726296 A	05-06-1997
			WO	9718546 A1	22-05-1997
US 5598527	A	28-01-1997	FR	2697935 Al	13-05-1994
			DE	69306228 D1	09-01-1997
			DE	69306228 T2	03-04-1997
			EP	0597753 A1	18-05-1994
			JP	6208433 A	26-07-1994
US 5717423	A	10-02-1998	NON		

$\frac{1}{4}$ For more details about this annex : see Official Journal of the European Patent OHfice, No. 12/82

Electronic Acknowledgement Receipt	
EFS ID:	1279730
Application Number:	10699555
International Application Number:	
Confirmation Number:	3602
Title of Invention:	Human interface system
First Named Inventor/Applicant Name:	Beth Marcus
Customer Number:	20985
Filer:	William E. Hunter/mary ann reed
Filer Authorized By:	William E. Hunter
Attorney Docket Number:	19146-002001
Receipt Date:	27-OCT-2006
Filing Date:	31-OCT-2003
Time Stamp:	19:54:35
Application Type:	Utility

Payment information:

Submitted with Payment	no		
File Listing:			
Document Number Document Description File Name File Size(Bytes) Multi Part /.zip Pages (if appl.) 1 Information Disclosure Statement (IDS) Filed 19146002ids.PDF 516081 no 12 Warnings:		$.$	
:---			

Information:					
This is not an USPTO supplied IDS fillable form					
2	Foreign Reference	19146002WO1991005303.p df	492347	no	10
Warnings:					
Information:					
3	Foreign Reference	19146002EP1293882.pdf	260443	no	13
Warnings:					
Information:					
Total Files Size (in bytes):			1268871		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. New Applications Under 35 U.S.C. 111 If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. National Stage of an International Application under 35 U.S.C. 371 If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
Address: COMMISSIO
P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No. $10 / 699,555$	Applicant(s) MARCUS ET AL.	
	Examiner	Art Unit RICARDO L. OSORIO	2629

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) \boxtimes Responsive to communication(s) filed on 31 October 2003.
$2 \mathrm{a}) \square$ This action is FINAL. $\mathrm{2b}$. \boxtimes This action is non-final.
2) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) \boxtimes Claim(s) 1,3-21 and 23-55 is/are pending in the application.

4a) Of the above claim(s) \qquad is/are withdrawn from consideration.
5) \boxtimes Claim(s) 29,32-42 and 54 is/are allowed.
6) Claim(s) 1,5-19,23-28,30,31,43-46, 49-53 and 55 is/are rejected.
7) Claim(s) $3,4,20,21,47$ and 48 is/are objected to.
8) \square Claim(s) \qquad are subject to restriction and/or election requirement.

Application Papers

9) \square The specification is objected to by the Examiner.
10) \square The drawing(s) filed on \qquad is/are: a) \square accepted or b) \square objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119
12) \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

b)Some * c) None of:

1. \square Certified copies of the priority documents have been received.
$2 . \square$ Certified copies of the priority documents have been received in Application No. \qquad .
2. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) \boxtimes Notice of References Cited (PTO-892)
4)Interview Summary (PTO-413) Paper No(s)/Mail Date. \qquad .
2) Notice of Informal Patent Application
3) Other: \qquad -.
\square Notice of Draftsperson's Patent Drawing Review (PTO-948)
区 Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date 10/31/03; 5/9/05; 5/15/06.

DETAILED ACTION

Election/Restrictions

1. Applicant's election with traverse of species \# 1 in the reply filed on $7 / 14 / 2006$ is acknowledged. The traversal is on the ground(s) that Figures $4 a-4 b, 5 a-5 b, 6 a-6 b$, and $7 a-7 b$, are only illustrative of the above mentioned variations in the input elements disposed on the first and second assembly of the human interface device. This is found persuasive and all claims 1, 3-21, and 23-55 will be examined as follows.

Claim Rejections - 35 USC § 102

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -
(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.
2. Claims $1,5,6,12,13,17-19,24-28,30,31,43,49-53$, and 55 are rejected under 35
U.S.C. 102(e) as being anticipated by Liebenow et al. $(6,909,424)$.

Regarding claims 1, 12, 17, and 43, Liebenow teaches of a hand-held electronic device (Fig. 1, reference character 100) comprising a memory configured to store a plurality of applications, wherein each application is associated with a set of functions (Fig. 13, reference character 504); a processor configured to process a selected one of the plurality of applications (Fig. 13, reference character 502); a first input assembly having a plurality of input elements on a first surface configured to receive input from a human user through manipulation of the plurality of
input elements, wherein at least one of the input elements on the first surface is configured to selectively map to one or more input functions, including more than one text input functions, of the set of functions associated with the selected one of the plurality of applications (col. 4, lines 33-43, col. 8, lines 45-67, and col. 9, lines 53-67); and a second input assembly having one or more input elements on a second surface configured to be manipulated by one or more of the human user's fingers, wherein each one of the input elements on the second surface is further configured to be selectively mapped to one or more input functions of the set of functions, or to a different shifting function, corresponding to the selected one of the plurality of applications wherein manipulation of one of the selectable active area causes the text symbol function of the one or more input elements of the first surface to change (col. 5 , line 36 -col. 6 , line 17 , col. 8 , lines 45-67, and col. 9, lines 53-67) further wherein the plurality of input elements on the first surface and the one or more input elements on the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand (see Figs. 3, 4, and 7, and col. 4, line 13-25).

Regarding claim 24, Liebenow further, teaches of a method for inputting data on a hand-held electronic device, wherein at least one of the input elements is further configured lo map to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identifier (col. 4, lines 33-43, col. 8, lines 45-67, and col. 9, lines 53-67), and a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein each selection element corresponds to one of the unique index position identifiers (col. 5 , line 36 -col. 6 , line 17 , col. 8 ,
lines 45-67, and col. 9, lines 53-67), further wherein the plurality of input elements and the one or more selection elements are arranged to substantially optimize a biomechanical effect of the human user's hand (see Figs. 3, 4, and 7, and col. 4, line 13-25), the method comprising executing a selected application from a plurality of applications, wherein the selected application is associated with a set of functions; determining the index position identifier of a desired symbol to be inputted based on the functions associated with the selected application; pressing the selection element corresponding to the index position identifier of the desired symbol with any digit or object held in the human user's hand; and pressing the input element configured to map to the desired symbol with any digit or object held in the human user's hand (col. 4, lines 33-43, col. 5, line 36-col. 6, line 17, col. 8, lines 45-67, and col. 9, lines 53-67).

Regarding claim 28, Liebenow, further, teaches of a method of inputting data on a hand-held electronic device comprising a plurality of input elements in a thumb-manipulated assembly to substantially optimize a biomechanical effect of the human user's thumb and fingers (see Figs. 3, 4, and 7, and col. 4, line 13-25), wherein at least one input element is mapped to more than one text function, and one or more selection elements in a finger-manipulated input assembly, wherein each selection element is mapped to a unique shift position (col. 4, lines 33-43, col. 5, line 36-col. 6, line 17), the method comprising executing a selected text application from a plurality of applications, wherein the selected application is associated with a set of functions; pressing a desired selection element of the finger-manipulated input assembly with a human finger to select a desired shift position the selected text application; and pressing a desired input element of the thumb-manipulated input assembly with a human thumb to input a desired text
character (col. 4, lines 33-43, col. 5, line 36-col. 6, line 17, col. 8, lines 45-67, and col. 9 , lines 53-67).

Regarding claim 5, Liebenow, further, teaches that the processor receives signals generated by the input elements of first or second input assemblies when manipulated by the human use (Although not specifically mentioned, it is inherent that processor (Fig. 13, character 502) will receive the signals generated by the input elements since the selection is related to a specific software included in said processor and because the processor interprets the input signal and formulates a response or output related to the input).

Regarding claims 6, 13, and 19, Liebenow, further, teaches of an input controller, wherein the input controller receives signals generated by the input elements of first surface or active areas input assembly, or second input assemblies, when manipulated by the human user and converts the signals into a form suitable to be interpreted by the processor (Fig. 13, reference character 24).

Regarding claims 18 and 25, Liebenow teaches of physically or electronically labeling at least one input element of the first input assembly or the second input assembly so as to visually indicate an input function that can be selectively accessed by actuating the input element (see Figs 15 and 16).

Regarding claim 26, Liebenow teaches of that determining the index position identifier of the desired character to be inputted comprises locating the input element configured to map to the desired symbol; and counting from left to right the number of symbols preceding the desired symbol labeled on the located input element, wherein the index position identifier of the desired symbol is the number of symbols preceding the desired symbol plus one (see Figs. 15 and 16).

Regarding claim 27, Liebenow teaches of at least one of the input elements or selection elements is further configured to map to a plurality of modes corresponding to the selected application executing on the hand-held electronic device, at least one of the modes is the data input mode, the method further comprising enabling the data input mode (see Fig. 2, and col. 8, lines 45-67, and col. 9, lines 53-67).

Regarding claim 30, Liebenow teaches of the selected one of the plurality of applications is a text application; and the one or more input elements on the second surface of the second input assembly comprises one or more selection elements, wherein manipulations of the one or more selection elements causes the input elements on file first surface of the first input assembly to be selectively mapped from one text function to another text function (see Fig. 2, and col. 8, lines 45-67, and col. 9, lines 53-67).

Regarding claims 49-53, and 55, Liebenow teaches of the processor is further configured to be communicatively coupled to a host electronic device (col. 12, lines 31-40).

Regarding claims $7-11,14-16,23,41$, and 44-46, applicant admits in the REMARKS filed $7 / 14 / 2006$, page 2 , lines $13-15$, that Figures $4 a-4 b, 5 a-5 b, 6 a-6 b$, and $7 a-7 b$, are only illustrative of the above mentioned variations in the input elements disposed on the first and second assembly of the human interface device.

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have the limitations of claims $7-11,14-16,23,41$, and $44-46$, as taught by applicant, in the device of Liebenow, which are related to Figures $4 a-4 b, 5 a-5 b, 6 a-6 b$, and $7 a-7 b$ of the instant application, because they are obvious differences, or variations of the input
elements disposed on the first and second assembly of the human interface device of Figures 3a3d, as admitted by applicant.

Allowable Subject Matter

3. Claims $3,4,20,21,36,37,47$, and 48 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.
4. Claims 29,32, and 54 are allowed.

The following is an examiner's statement of reasons for allowance: Claims 29, 32, and 54 are allowable since certain key features of the claimed invention are not taught or fairly suggested by the prior art. In claim 29, "wherein at least one of the input elements of the second input assembly is a selectively configurable sensing surface so as to provide a plurality of delineated active areas, further wherein one or more of the delineated active areas is mapped to one or more functions associated with the selected application". The prior art of record however singularly or in combination fails to anticipate or render the above underlined limitations obvious.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."
5. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ricardo L. Osorio whose telephone number is 571-272-7676. The examiner can normally be reached on Monday through Thursday from 7:00 A.M. to 5:30 P.M. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Bipin Shalwala whose telephone number is 571-272-7681.

Any response to this action should be mailed to:
Commissioner of Patents and Trademarks

Washington, D.C. 20231
or faxed to: $\quad 571-273-8300$ (for Technology Center 2600 only)

Hand-delivered responses should be brought to the Customer Service Window at the Randolph Building, 401, Dulany Street, Alexandria, VA 22314.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Technology Division: 2629
RLO
October 1, 2006

Sheet 1 of 8

	Attorney's Docket No. $19146-002001$	Application No. 10/699,555
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673

U.S. Patent Documents							
Examiner Initial	Desig. ID	Document Number	Publication Date	Patentee	Class	Subclass	Filing Date If Appropriate
RO	AA	5,365,589	11/15/1994	Howard A. Gutowitz			
	AB	5,432,510	7/11/1995	Walter S. Matthews			
	AC	5,782,642	7/21/1998	Michael Goren			
	AD	6,115,028	9/5/2000	Balakrishnan et al.			
	AE	6,219,731	4/17/2001	Howard A. Gutowitz			
	AF	6,228,709	5/8/2001	Wen-Yi Hsieh			
	AG	6,512,511	1/28/2003	Willner et al.			
	AH	6,573,844	6/3/2003	Venolia et al.			
	AI	6,606,486	8/12/2003	Cubbage et al.			
	AJ	6,654,733	11/25/2003	Goodman et al.			
-	- AK	- 6,703,963	-3/9/2004 -	Timothy-B-Higginson-			
	AL	6,738,045	5/18/2004	Hinkley et al.			
	AM	6,741,235	5/25/2004	Michael Goren			
	AN	6,760,013	7/6/2004	Willner et al.			
	AO	6,865,718	3/8/2005	Levi Montalcini			
	AP	6,885,317	4/26/2005	Howard A. Gutowitz			
	AQ	6,885,318	4/26/2005	Matthew J. Bickerton			
	AR	6,911,608	6/28/2005	David H. Levy			
	AS	6,980,200	12/27/2005	Michael Goren			
	AT	RE37723	6/4/2002	Michael Goren			

Foreign Patent Documents or Published Foreign Patent Applications

Examiner I nitial	Desig. ID	Document Number	Publication Date	Country or Patent Office	Class	Subclass	Translation	
							Yes	No
	AU							

Other Documents (include Author, Title, Date, and Place of Publication)

Examiner Initial	Desig. ID

Examiner Signature /Ricardo Osorio/	Date Considered $10 / 01 / 2006$
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

Substitute Disclosure Form (PTO-1449)

Sheet 3 of 8

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary)	Attorney's Docket No. $19146-002001$	Application No. 10/699,555
	Applicant Beth Marcus, et a	
	Filing Date October 31, 2003	Group Art Unit 2673

Other Documents (include Author, Title, Date, and Place of Publication)			
Examiner Initial		Document	
RO	AHH	Andriy Pavlovych, Wolfgang Stürzlinger: Less-Tap: A Fast and Easy-to-learn Text Input Technique for Phones. Graphics Interface 2003, 97-104 http://www.graphicsinterface.org/cgi-bin/DownloadPaper?name=2003/170/paper170.pdf	
	All	Scott MacKenzie, Hedy Kober, Derek Smith , Terry Jones, Eugene Skepner, LetterWise: prefixbased disambiguation for mobile text input, Proceedings of the 14th annual ACM symposium on User interface software and technology, November 11-14, 2001, Orlando, Florida	
	AJJ	H. Kober, E. Skepner, T. Jones, H. Gutowitz, S. MacKenzie, 2001. Linguistically Optimized Text Entry on a Cell Phone. In Proceedings of the CHI 2001. http://www.eatoni.com/research/chi.pdf	
	AKK	Mikael Goldstein and Didier Chincholle The Finger-Joint-Gesture Wearable Keypad. Ericsson Radio Systems.	
	ALL	Rosenberg, R. (1998). Computing without Mice and Keyboards: Text and Graphic Input Devices for Mobile Computing. Ph.D. Thesis, Dept. of Computer Science, University College, London, 1998. http://www.obscure.org/rosenberg/	
	AMM	MacKay, B., Dearman, D., Inkpen, K., and Watters, C. 2005. Walk 'n scroll: a comparison of software-based navigation techniques for different levels of mobility. In Proceedings of the 7th international Conference.on.Human.Computer-interaction-with Mobile Devices-\&Amp; Services(Salzburg, Austria, September 19-22, 2005). MobileHCI '05, vol. 111. ACM Press, New York, NY, 183-190. http://portal.acm.org/citation.cfm?id=1085808\&coll=GUIDE\&dI=GUIDE\&CFID=66591340\&CFT OKEN=6294934	
	ANN	Kranz, M., Holleis, P., Schmidt, A. "DistScroll - a new one-handed interaction device". In Proceedings of the 5th International Workshop on Smart Appliances and Wearable Computing, June 10, 2005. http://www.hcilab.org/documents/DistScrollAnewOneHandedInteractionDevice- KranzHolleisSchmidt-IWSAWC2005.pdf	
	AOO	Daniel Fällmana, Andreas Lund, Mikael Wiberg, ScrollPad: Tangible Scrolling with Mobile Devices, Proceedings of the Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04) - Track 9, p.90286.3, January 05-08, 2004. $\mathrm{http}: / /$ portal.acm.org/citation.cfm? $\mathrm{id}=963347$ \&coll=GUIDE\&dl=GUIDE\&CFID=66483658\&CFTO KEN=36023921 http://daniel.fallman.org/resources/papers/fallman-hicss37.pdf	
	APP	Chipman, L. E., Bederson, B. B., and Golbeck, J. A. 2004. SlideBar: analysis of a linear input device. Behav. Inf. Tech. 23, 1 (Jan. 2004), 1-9. http://portal.acm.org/citation.cfm?id=993182.993184\# http://www.cs.umd.edu/Library/TRs/CS-TR-4471/CS-TR-4471.pdf	
	AQQ	Orientation-based interaction for Mobile Devices. J. Darnauer, S. Garrity and T. Jim, Stanford University. http://hci.stanford.edu/srk/cs377a-mobile/project/final/darnauer-garrity-kim.pdf	
	ARR	Rekimoto, J. Tilting operations for small screen interfaces. Proceedings of the 9th annual ACM symposium on User Interface software and technology, pp. 167-168, November 06-08, 1996, Seattle. http://portal.acm.org/citation.cfm?id=237115\&coll=GUIDE\&dl=GUIDE\&CFID=66483658\&CFTO KEN=36023921	
Examiner Signature		/Ricardo Osorio/	Date Considered 10/01/2006
EXAMINER: next commun	ion to ar	considerèd. Draw line throu	

Other Documents (include Author, Title, Date, and Place of Publication)		
$\begin{gathered} \text { Examiner } \\ \text { Initial } \end{gathered}$	$\begin{gathered} \text { Desig. } \\ \text { ID } \end{gathered}$	Document
RO	ASS	Hinckley, K., Pierce, J., Horvitz, E., Sinclair, M. Foreground and Background Interaction with Sensor-enhanced Mobile Devices, ACM TOCHI (Transactions on Computer-Human Interaction) Special Issue on Sensor-Based Interaction, 12 (1), March 2005, pp. 31-52. http://portal.acm.org/citation.cfm?id=1057240\&coll=GUIDE\&dl=GUIDE\&CFID=66591340\&CFT OKEN $=6294934$
	ATT .	Hinckley, K., Cutrell, E., Bathiche, S., and Muss, T. 2002. Quantitative analysis of scrolling techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves (Minneapolis, Minnesota, USA, April 20-25, 2002). CHI '02. ACM Press, New York, NY, 65-72. http://doi.acm.org/10.1145/503376.503389
	AUU	Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., and Want, R. 1998. Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Los Angeles, Califomia, United States, April 18-23, 1998) C. Karat, A. Lund, J. Coutaz, and J. Karat, Eds. Conference on Human Factors in Computing Systems. ACM Press/Addison-Wesley Publishing Co., New York, NY, 17-24. http://portal.acm.org/citation.cfm?id=274647\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN=73460863\&CFID $=66588306 \&$ CFTOKEN $=73460863 \#$
	AVV	Kiyokuni Kawachiya, Hiroshi Ishikawa, NaviPoint: an input device for mobile information browsing, Proceedings of the SIGCHI conference on Human factors in computing systems, p. 1-8, April 18-23, 1998, Los Angeles, Califomia, United States http://portal. acm.org/citation.cfm?id=274645\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN=73460863
	AWW	Hinkley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing Techniques for Mobile Interaction. UIST 2000: ACM Symposium on User Interface Software and Technology, pp. 91-100. http://portal.acm.org/citation.cfm?id=354417\&coll=GUIDE\&dl=GUIDE\&CFID=66483658\&CFTO KEN $=36023921$
	AXX	Baillie, L., Kunczier, H., and Anegg, H. 2005. Rolling, rotating and imagining in a virtual mobile world. In Proceedings of the 7th international Conference on Human Computer interaction with Mobile Devices \&Amp; Services (Salzburg, Austria, September 19-22, 2005). MobileHCI '05, vol. 111. ACM Press, New York, NY, 283-286. http://doi.acm.org/10.1145/1085777.1085833
	AYY	Amy K. Karlson, Benjamin B. Bederson, John SanGiovanni, 2004. AppLens and LaunchTile: Two Designs for One-Handed Thumb Use on Small Devices hitp://hcil.cs.umd.edu/trs/2004-37/2004-37.html
	AZZ	Virpi Roto, Nokia Research. Browsing on Mobile Phones. http://www.research.att.com/~rjana/WF12 Paperl.pdf
	AAAA	Qualcomm.Slingshot hitt:///wireless.ign.com/articles/657/657041pl.html
	ABBB	GamePad http://www.mobilemag.com/content/100/345/C5578/
\downarrow	ACCC	Kyocera Candid KX16 http://www.mobilemag.com/content/100/340/C4392/

Examiner Signature $/$ Ricardo Osorio/	
	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

Sheet 5 of 8

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary) (37 CFR $\$ 1.98(\mathrm{~b})$)	Attomey's Docket No. $19146-002001$	Application No. 10/699,555
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673

Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
R0	ADDD	XEG Mobile Phone Pad http://us.gizmodo.com/gadgets/cellphones/gaming-on-the-go-with-xeg-136414.php http://www.akihabaranews.com/en/news-10615-XEG\%2C+the+mobile+phone+pad.html
	AEEE	Samsung Game Pad http://www.cellphonemall.net/wireless/store/accessorydetail.asp?id=23198\&.phoneid=334
	AFFF	Thumbscript http://www.thumbscript.com/index.html http://www.thumbscript.com/howitworks.html http://www.thumbscript.com/technotes.html
	AGGG	Exideas hitp://www.exideas.com/ME/index.html http://www.exideas.com/ME/HardKey.html
	AHHH	NE-Ware http://www.n-e-ware.com/Downloads/KeyStick/330/KSUserManual330 01.pdf
	AIII '	Synaptics http://www.synaptics.com/products/pdf/mobiletouch pb.pdf
	AJJJ	Atrua: sensor-company http://www.atrua.com/s-mobilephones.html
	AKKK	Varatouch: sensor company http://www.esato.com/news/article.php/id=388
	ALLL	Eleksen www.eleksen.com
	AMMM	SHARP Vodafone ZTCJO1 http://www.slashphone.com/93/3123.html
	ANNN	The GamePad http://www.kotaku.com/gaming/cell-phones/killer-cell-phone-game-controller-1 30968.php
	A000	Sony Clie game controller PEGA-GC10 http://www.palminfocenter.com/view story.asp?ID=4295
	APPP	Bluetooth GPS hitp://mobilitytoday.com/news/005986/mobility buyGPSnow i-Blue bluetooth GPS
	AQQQ	Alphagrip http://www.alphagrips.com/AlphagripAGSUsersManual.pdf
	ARRR	Tegic - T9 http://www.tegic.com/pdfs/salessheetsìT9\%20Adaptive\%20Text\%20Input\%20Sales\%20Sheet\%201 .pdf hitp://www.tegic.com/pdfs/salessheets/T9\%20Adaptive\%20Text\%20Input\%20Sales\%20Sheet\%202 .pdf hitp://www.tegic.com/pdfs/salessheets/T9\%20Adaptive\%20Text\%20Input\%20Sales\%20Sheet\%203 .pdf hitp://www.tegic.com/pdfs/salessheets/Sloppy\%20Type\%20Sales\%20Sheet.pdf
	ASSS	Zicorp - eZiTap htp://www.zicorp.com/eZiTap.htm
V	ATTT	Motorola - iTAP http://news.zdnet.co.uk/hardware/mobile/0,39020360,39118435,00.htm
Examiner Signature /Ricardo Osorio/		icardo Osorio/ ${ }^{\text {a }}$ (Date Considered $10 / 01 / 2006$

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary)	Attorney's Docket No. $19146-002001$	Application No. $10 / 699,555$
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673

Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
R0	AUUU	DigitWireless: FastTap http://www.digitwireless.com/flash/download/fastap.pdf
	AVVV	Microth KeyWheel http://www.microth.com/circumscript/overview.asp
	AWWW	Yuvee: special keypad layout www.yuvee.com http://www.yuvee.com/builtin1.shtml http://www.yuvee.com/built in b.shtml http://www.yuvee.com/testdrive 2. shtml
	AXXX	Twiddler http://www.handykey.com/ http://www.handykey.com/Keymap.pdf
	AYYY	Sengital Ltd. Tilt sensor replacement for PDA http://sengital.manufacturer.globalsources.com/si/6008823523892/ProductDetail/PDAkeyboard/product id-1001050135/action-GetProduct.htm .
	AZZZ	Howard.co.kr - The mouse phone http://www.woward.co.kr/computer/mouse/mousephone.htm
	AAAAA	Nokia 6620 with a control stick http://nds2.nokia:com/files/support/nam/phones/guides/6620.US en.PDF
	ABBBB	Sega into cell phones bttp://www.phoneyworld.com/newspage.aspx?n=1745
	ACCC'C	Prevalent Devices LLC http://www.prevalentdevices.com/manual3-5-06.pdf
	ADDDD	M. Kolsch, M. Turk, 2002. Keyboards without Keyboards: A Survey of Virtual Keyboards. UCSB Technical Report 2002-21, July 12, 2002. http://www.cs.ucsb.edu/research/tech reports/reports/2002-21.pdf
	AEEEE	Jeong-Hoon Shin and Kwang-Seok Hong. An improved alphanumeric input algorithm using gloves. http://www.complexity.org.au/conference/upload/shin01/shin01.pdf
	AFFFF	C. Metzger, M. Anderson, T. Starner; 2004. FreeDigiter: A Contact-Free Device for Gesture Control. Eighth IEEE International Symposium on Wearable Computers (ISWC'O4) pp. 18-21. http://www.wirelessrerc.gatech.edu/projects/development/D1files/iswc04-freedigiter.pdf
	AGGGG	Rakkolainen, I. (2003). MobiVR - a novel user interface concept for mobile computing. In: Bieber, K. \& Kirste, T. (eds.), Proceedings of the 4th International Workshop on Mobile Computing, IMC 2003, 17-18 June 2003, Rostock, Germany, pp. 107-112. http://www.cs.tut.fi/~ira/lMC2003.pdf
	AHHHH	Lumsden, J., Gammell, A. (2004). Mobile Note Taking: Investigating the Efficacy of Mobile Text Entry. In Proc. of Mobile Human-Computer Interaction (MobileHCI 2004), Glasgow, UK, Sept. 2004: In S. Brewster and M. Dunlop (Eds.). Mobile Human-Computer-Interaction - MobileHCI 2004, Lecture Notes in Computer Science, Vol. 3160, Berlin: Springer, 156--168.
	AIIII	MacKenzie, I. S., \& Soukoreff, R. W. Phrase sets for evaluating text entry techniques. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems - CHI 2003, pp. 754755 New York: ACM

| Examiner Signature | Date Considered $10 / 01 / 2006$ |
| :--- | :--- | :--- |

Sheet 7 of 8

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary)	Attorney's Docket No. 19146-002001	Application No. 10/699,555
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673

Other Documents (include Author, Title, Date, and Place of Publication)		
$\begin{gathered} \text { Examiner } \\ \text { Initial } \\ \hline \end{gathered}$	Desig.	Document
RO	AJJJJ	MacKenzie, I. S. (2002). KSPC (keystrokes per character) as a characteristic of text entry techniques. Proceedings of the Fourth International Symposium on Human-Computer Interaction with Mobile Devices, pp. 195-210. Heidelberg, Germany: Springer-Verlag
	AKKKK	Soukoreff, R. W. and MacKenzie, I. S. (2004). Recent Developments in Text-Entry Error Rate Measurement. CHI 2004, Late Breaking Results Paper, Vienna Austria, April 24-29, 2004.
	ALLLL	Lee, S. and Hong S.H.. Chording as a Text Entry Method in Mobile Phones. In Proceedings of the MobileHCI 2004: 6th International Symposium, Glasgow, UK, September 13-16, 2004.
	AMMMM	Green, N., Kruger, J., Faldu, C., and St. Amant, R. 2004. A reduced QWERTY keyboard for mobile text entry. In CHI '04 Extended Abstracts on Human Factors in Computing Systems (Vienna, Austria, April 24-29, 2004). CHI '04. ACM Press, New York, NY, 1429-1432. http://portal.acm.org/citation.cfm?id=986082\&coll=GUIDE\&dl=GUIDE\&CFID=66591340\&CFTO KEN $=6294934$
	ANNNN	Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., and Want, R. TiltType: accelerometersupported text entry for very small devices, Proceedings of the 15th annual ACM symposium on User interface software and technology, October 27-30, 2002, Paris, France
	A0.000	Mikael Goldstein, Didier Chincholle, Morten Back (2000). Assessing Two New Wearable Input Paradigms:The-Finger-Joint-Gesture Palm-Keypad Glove-and-the-Invisible-Phone-Clock. Personal and Ubiquitous Computing, Volume 4, Issue 2/3.
	APPPP	Bartlett, J. F. 2000. Rock 'n' Scroll Is Here to Stay. IEEE Comput. Graph. Appl. 20, 3 (May. 2000), 40-45. http://portal.acm.org/citation.cfm?id=618728\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN $=73460863$ \#
	AQQQQ	Eslambolchilar, P., Murray-Smith, R. (2004). Tilt-Based Automatic Zooming and Scaling in Mobile Devices - A state-space implementation. In Proc. of Mobile Human-Computer Interaction (MobileHCI 2004), Glasgow, UK, Sept. 2004: In S. Brewster and M. Dunlop (Eds.). Mobile Human-Computer-Interaction - MobileHCI 2004, Lecture Notes in Computer Science, Vol. 3160, Berlin: Springer, 120-131.
	ARRRR	Zhai, S., Smith, B.A., and Selker, T. Improving Browsing Performance: A study of four input devices for scrolling and pointing tasks, Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction, p.286-293, July 14-18, 1997.
	ASSSS	Wobbrock, J. O., Forlizzi, J., Hudson, S. E. and Myers, B. A. WebThumb: interaction techniques for small-screen browsers. Proc. UIST, ACM Press (2002), 205-208.
	ATTTT	Lee, S., Hong, S. H., and Jeon, J. W. 2002. Designing a universal keyboard using chording gloves. SIGCAPH Comput. Phys. Handicap. , 73-74 (Jun. 2002), 142-147. hitp://doi.acm.org/10.1145/960201.957230
	AUUUU	Pirhonen, A., Brewster, S., and Holguin, C.2002. Gestural and audio metaphors as a means of control for mobile devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves (Minneapolis, Minnesota, USA, April 20-25, 2002). CHI '02. ACM Press, New York, NY, 291-298. http://doi.acm.org/10.1145/503376.503428
V	AVVVV	Kjeldskov, J. and Graham, C. (2003). A Review of Mobile HCI Research Methods. In Proc. of Mobile Human-Computer Interaction (MobileHCI 2003), Udine Italy, Sept. 2003: In L. Chittaro (Ed.). Mobile Human-Computer-Interaction - MobileHCI 2003, Lecture Notes in Computer Science, Vol. 2795, Berlin: Springer, 317-335.

[^2]| Substitute Form PTO-1449U.S. Department of Commerce
 (Modified)\quad Patent and Trademark Office | Attorney's Docket No. $19146-002001$ | $\begin{aligned} & \text { Application No. } \\ & 10 / 699,555 \end{aligned}$ |
| :---: | :---: | :---: |
| Information Disclosure Statement by Applicant (Use several sheets if necessary) | Applicant
 Beth Marcus, et al | |
| | Filing Date October 31, 2003 | Group Art Unit 2673 |

Other Documents (include Author, Title, Date, and Place of Publication)

Examiner Initial	Desig. ID	
		Donner, J. (2005). Research Approaches to Mocile Use in

Donner, J. (2005). Research Approaches to Mobile Use in Developing World: A Review of the Literature. International Conference on Mobile Communication and Asian Modemities City University of Hong Kong, June 7-8 2005.
Min, Lin and Sears, Andrew (2005). Graphics Matter: A Case Study of Mobile Phone Keypad
Design for Chinese Input. CHI 2005, Late Breaking Results: Posters, Portland, Oregon. April 2-7, 2005.

MacKenzie, S., \& Soukoreff, W. (2002). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction. 17. p. 147-198.
http://www.yorku.ca/mack/hci3-2002.pdf
Starner, T. "Keyboards Redux: Fast Mobile Text Entry". Pervasive Computing, July - September http://www.cc.gatech.edu/fac/Thad.Staruer/p/magazine/2004-3-keyboard-redux.pdf
Lee Butts, Andy Cockburn, An evaluation of mobile phone text input methods, Third Australasian
conference on User ịterfaces, p.55-59, January 01, 2002, Melbourne, Victoria, Australia
http://www.crpit.com/confpapers/CRPITV7Butts.pdf
Chording and Tilting - Daniel Wigdor (thesis) - 2004- describes chordtap and tiltap (also covered in depth in the paper referenced below).
http://www.dgp.toronto.edu/~dwigdor/research/thesis/submitted.html
Wigdor, D. and Balakrishnan, R. "A Comparison of Consecutive and Concurrent Input Text Entry Techniques for Mobile Phones", Conference on Human Factors, April 24-29, 2004, Volume 6, Number 1, pp. 81-88
http://portal.acm.org/citation.cfm?id=985703
http://www.dgp.toronto.edu/~ravin/papers/chi2004 concurrentrextinput.pdf
Oniszczak, A., \& MacKenzie, I, S. (2004). A comparison of two input methods for keypads on mobile devices. Proceedings of NordiCHI 2004, pp. 101-104. New York: ACM. http://www.yorku.ca/mack/nordichi2004.pdf
K. Lyons. Everyday wearable computer use: A case study of an expert user. In Proceedings of Mobile HCl 2003, pages 61-75, 2003.
http://www.cc. gatech.edu/ccg/publications/everyday case.pdf
K. Lyons, T. Starner, D. Plaisted, J. Fusia, A. Lyons, A. Drew, E. W. Looney, 2004. "Twiddler Typing: One-Handed Chording Text Entry for Mobile Phones," Proc. Conf. Human Factors in Computing Systems (SIGCHI 01), ACM Press, 2004, pp. 671-678.
http://www.cc.gatech.edu/fac/Thad.Starner/p/030 $10 \mathrm{MTE} /$ /widdler-chi04.pdf
Daniel Wigdor, Ravin Balakrishnan, TiltText: using tilt for text input to mobile phones,
Proceedings of the 16th annual ACM symposium on User interface software and technology, p.81-
AFF 90, November 02-05, 2003, Vancouver, Canada
hitp://portal.acm.org/citation.cfm?id=964705
http://www.dgp.toronto.edu/-ravin/papers/uist2003 tilttext.pdf
M. D. Dunlop and A. Crossan, "Dictionary based text entry method for mobile phones", published in Brewster, S.A., and Dunlop, M.D., (editors). Proceedings of Second Workshop on Human Computer Interaction with Mobile Devices, August 1999.
http://www.cis.strath. ac..uk/~mdd/research/publications/99dunlopcrossan.pdf

Examiner Signature /Ricardo Osorio/	Date Considered $10 / 01 / 2006$
EXAMINER: Initals citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

Sheet 8 of 8

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Information Disclosure Statement by Applicant (Use several sheets if necessary)	Attomey's Docket No. 19146-002001	Application No. 10/699,555
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673

Other Documents (include Author, Title, Date, and Place of Publication)			
Examiner Initial	Desig. ID	Document	
RO	AWwww	Kjeldskov, J. Stage, J. (2004). New Techniques for Usability Evaluation of Mobile Systems.	
International Joumal of Human-Computer Studies, May 2004, 60 (5-6): 599.-620.			

Examiner Signature \quad /Ricardo Osorio/	Date Considered 10/01/2006
EXAMINER: Initiats ctation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

Sheet \qquad 1

U.S. Patent Documents							
Examiner Initial	Desig. ID	$\begin{aligned} & \text { Document } \\ & \text { Number } \\ & \hline \end{aligned}$	Publication Date	Patentee	Class	Subclass	Filing Date If Appropriate
RO	AA	2003/020692	1/30/2003	Griffin, et al.			
	$A B$	2003/193418	10/16/2003	Shi			
	AC	2002/163504	11/7/2002	Pallakoff			
	AD	2003/169188	9/11/2003	Chang et al.			
∇	AE	2003/061 103	3/27/2003	Kanai			
	AF						
	AG						
	AH						
	AI						
	AJ						
	AK						

Foreign Patent Documents or Published Foreign Patent Applications									
Examiner Initial	Desig. ID	Document Number	Publication Date	Country or Patent Office	Class	Subclass	Yes	No	
RO	AL	1103883	$5 / 30 / 2001$	EPO					
RO	AM	0585730	$3 / 9 / 1994$	EPO					
RO	AN	$03 / 042805$	$5 / 22 / 2003$	WIPO					
	AO								
	AP								

Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	
	AQ	
	AR	
	AS	
	AT	

[^3]Sheet 1 of 2

Substitute Form PTO-1449 (Modified)Information Disclosure Statementby Applicant(Use several sheets if necessary)Patent and Trademank Office	Attorney's Docket No. $16300-002001$	Application No. to be assigned
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit to be assigned

U.S. Patent Documents							
$\begin{gathered} \text { Examiner } \\ \text { Initial } \end{gathered}$	Desig. ID	Document Number	Publication Date	Patentee	Class	Subclass	Filing Date If Appropriate
RO	AA	4,793,312	12/27/1988	Doinaga et al.			
	AB	4,867,028	09/19/1989	Peter S. Jones			
	AC	4,891,777	01/02/1990	James M. Lapeyre			
	AD	4,896,554	01/30/1990	Craig F. Culver			
	AE	4,912,462	03/27/1990	Washizuka et al.			
	AF	5,189,416	02/23/1993	Mark D. Estes			
	AG	5,473,325	12/05/1995	Peter J. McAlindon			
	AH	5,512,919	04/30/1996	Yoshitsugu Araki			
	AI	5,612,690	03/18/1997	David Levy			
	AJ	5,824,931	10/20/1998	M. G. Papadopoulos			
	AK	5,859,629	01/12/1999	Bruce Tognazzini			
	AL	5,900,864	05/04/1999	Bruce W. Macdonald			
	AM	5,973,621	10/26/1999	David Levy			
	AN	6,005,496	12/21/1999	Hargreaves et al.			
	AO	6,084,576	07/04/2000	Leu et al.			
	AP	6,184,804	02/06/2001	Shelton E. Harrison			
	AQ	6,232,956	05/15/2001	Daniel S. Mailman			
	AR	6,377,685	04/23/2002	Ravi C. Krishnan			
	AS	6,520,699	02/18/2003	Toshiyasu Abe			
	AT	6,541,715	04/01/2003	Philip Swanson			
	AU	6,542,091	04/01/2003	Wayne Allen Rasanen			
V	AV	6,546,239	04/08/2003	Pazdersky et al.			

Foreign Patent Documents or Published Foreign Patent Applications									
Examiner Initial	Desig. ID	Document Number	Publication Date	Country or Patent Office	Class	Subclass	Translation		
	AW								

Examiner Signature /Ricardo Osorio/	Date Considered $10 / 01 / 2006$
EXAMINER: next communitals citation considered. Draw line through citation if not in conformance and not considered. Indude copy of this form with	

Substitute Form PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Inf rmati n Discl sure Statement by Applicant (Use several sheets if necessary)	Attomey's Docket No. $16300-002001$	Application No. to be assigned
	Applicant Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit to be assigned

Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
RO	AX	Buxton, "A Directory of Sources for Input Technologies", 10/1/2003, http://www.billbuxton.com/InputSources.html
	AY	"Introducing the Dvorak Keyboard", http://www.mwbrooks.com/dvorak/
	AZ	Innovative Ergonomic Solutions, Cirque Pocket Keyboard, http://www.iesproducts.com/key-miscpocket.html
	AAA	Buxton, "Human Input to Computer Systems: Theories, Techniques and Technology", http://billbuxton.com/inputManuscript.htlm
	ABB	Buxton, "An Introduction to Human Input to Computers", 6 April 1999, http://www.billbuxton.com/input01.Introduction.pdf
	ACC	Unidentified and Undated Document discussing alternative designs to QWERTY Keyboard, pages 2-10
	ADD	
∇	AEE	

Examiner Signature /Ricardo Osorio/	Date Considered $10 / 01 / 2006$
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

Notice of References Cited	Application/Control No. 10/699,555	Applicant(s)/Patent Under Reexamination MARCUS ET AL.	
	$\begin{aligned} & \text { Examiner } \\ & \text { RICARDO L. OSORIO } \end{aligned}$	Art Unit 2629	Page 1 of 1

U.S. PATENT DOCUMENTS

\star		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	Classification
\star	A	US-2004/0208681	$10-2004$	Dechene, Joseph Fernand	$400 / 472$
\star	B	US-6,947,028	$09-2005$	Shkoinikov, Mark	$345 / 156$
\star	C	US-6,107,988	$08-2000$	Phillipps, John Quentin	$345 / 156$
\star	D	US-6,909,424	$06-2005$	Liebenow et al.	$345 / 169$
\star	E	US-5,515,305	$05-1996$	Register et al.	$708 / 145$
\star	F	US-6,297,752	$10-2001$	Ni, Xuan	$341 / 22$
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

\star		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	\cup	

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

SERIAL NUMBER $10 / 699,555$	FILING OR 371(c) DATE $10 / 31 / 2003$ RULE	CLASS	GROUP ART UNIT 2629	ATTORNEY DOCKET NO. $19146-002001$

APPLICANTS

Beth Marcus, Bedford, MA;
W. David Lee, Newton, MA;

IF REQUIRED, FOREIGN FILING LICENSE GRANTED ** SMALL ENTITY **
${ }^{* *} 02 / 02 / 2004$,

	STATE OR COUNTRY MA	$\begin{aligned} & \text { SHEETS } \\ & \text { DRAWING } \end{aligned}$ 9	$\begin{aligned} & \text { TOTAL } \\ & \text { CLAIMS } \\ & 29 \end{aligned}$	INDEPENDENT CLAIMS 6

ADDRESS
20985
TITLE
Human interface system

FILING FEE RECEIVED 1245	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	\square All Fees
		1.16 Fees (Filing)
		```1.17 Fees (Processing Ext. of```
		1.18 Fees ( Issue)
		$\square$ Other
		$\square$ Credit





INTERFERENCE SEARCHED			
Class	Subclass	Date	Examiner


SIEARCH NOTES   (INCLING GEARCH STRATEGY			
	DATE	EXMR	
EAST Search	$1 / 1 / 03$	RLO	

EAST Search History

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
$\begin{aligned} & \text { S17 } \\ & 7 \end{aligned}$	342343	(input or pointing or interface) adj (apparatus or system or device)	US-PGPUB;   USPAT;   USOCR;   EPO; JPO;   DERWENT;   IBM_TDB	OR	ON	2006/09/30 11:59
$\begin{aligned} & \text { S17 } \\ & 8 \end{aligned}$	9133	S177 and (multiface $\$ 1$ or double adj (face 1 or side $\$ 1$ ) or dual adj (face $\$ 1$ or side\$1) or two adj (side\$1 or face $\$ 1$ ) or two-sided or double-sided)	US-PGPUB;   USPAT;   USOCR;   EPO; JPO;   DERWENT;   IBM_TDB	OR	ON	2006/09/30 12:49
$\begin{aligned} & \text { S17 } \\ & 9 \end{aligned}$	2296	S178 and (front or first) adj (side or face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:51
$\begin{aligned} & \mathrm{S} 18 \\ & 0 \end{aligned}$	1675	S179 and (rear or back or second) adj (side or face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:06
$\begin{aligned} & \text { S18 } \\ & 1 \end{aligned}$	2902	S178 and (front or first) adj (side or \$3face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:52
$\begin{aligned} & \text { S18 } \\ & 2 \end{aligned}$	1815	S181 and (rear or back or second) adj (side or face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:06
$\begin{aligned} & \text { S18 } \\ & 3 \end{aligned}$	1845	S182 biomechanical near3 hand	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:07
$\begin{aligned} & \mathrm{S} 18 \\ & 4 \end{aligned}$	0	S182 and biomechanical near3 hand	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:07

EAST Search History

$\begin{aligned} & \text { S18 } \\ & 5 \end{aligned}$	66	S182 and ergonomic	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:07											
$\begin{aligned} & S 18 \\ & 6 \end{aligned}$	19		US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 12:34											
$\begin{aligned} & \text { S18 } \\ & 7 \end{aligned}$	36		US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 12:35											
$\begin{aligned} & \text { S18 } \\ & 8 \end{aligned}$	23		US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 12:37											
$\begin{aligned} & \text { S18 } \\ & 9 \end{aligned}$	35		US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 12:43											
$\begin{aligned} & \text { S19 } \\ & 0 \end{aligned}$	75	("2498105" \| "3972628"	"4780707"	"4862165"	"4917517"	"5137384"	"5157381"	"5160919"	"5287090"	"5296871"	"5355147"	"D302426"	"D328597").PN. OR ("5576733"). URPN.	US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 12:46
$\begin{aligned} & \mathrm{S} 19 \\ & 1 \end{aligned}$	10462	S177 and (multiface $\$ 1$ or double adj (\$4face\$1 or side\$1) or dual adj ( $\$ 4$ face $\$ 1$ or side $\$ 1$ ) or two adj (side $\$ 1$ or $\$ 4$ face $\$ 1$ ) or two-sided or double-sided)	US-PGPUB;   USPAT;   USOCR;   EPO; JPO;   DERWENT;   IBM_TDB	OR	ON	2006/09/30 12:50											

EAST Search History

$\begin{aligned} & \text { S19 } \\ & 2 \end{aligned}$	2585	S191 and (front or first) adj (side or face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:51
$\begin{aligned} & \text { S19 } \\ & 3 \end{aligned}$	3456	S191 and (front or first) adj (side or \$3face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:52
$\begin{aligned} & 519 \\ & 4 \end{aligned}$	3456	S193 and (front or first) adj (side or \$3face)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:52
$\begin{aligned} & \text { S19 } \\ & 5 \end{aligned}$	15	S194 and biomechanical	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:53
$\begin{aligned} & \text { S19 } \\ & 6 \end{aligned}$	171	S194 and ergonomic\$3	US-PGPUB;   USPAT;   USOCR;   EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:54
$\begin{aligned} & \text { S19 } \\ & 7 \end{aligned}$	15	S194 and biomechanical\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:53
$\begin{aligned} & \text { S19 } \\ & 8 \end{aligned}$	0	S197 and ergonomic\$3	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:53
$\begin{aligned} & \text { S19 } \\ & 9 \end{aligned}$	105	S196 not S185	US-PGPUB;   USPAT;   USOCR;   EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 12:54

## EAST Search History

$\begin{aligned} & \mathrm{S} 20 \\ & 0 \end{aligned}$	15	S199 and 345/156-173.ccls.	US-PGPUB;   USPAT;   USOCR;   EPO; JPO;   DERWENT;   IBM_TDB	OR	ON	2006/09/30 13:04				
$\begin{aligned} & \mathrm{S} 20 \\ & 1 \end{aligned}$	2	"6947028".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/09/30 13:04				
$\begin{aligned} & \text { S20 } \\ & 2 \end{aligned}$	7	("20020057259" \| "20020097227"	"5818437"	"5854624"	"6164853"	"6573883").PN. OR ("6947028"). URPN.	US-PGPUB; USPAT; USOCR	OR	ON	2006/09/30 13:07

# OFFICIAL COMMUNICATION FACSIMILE: 

OFFICIAL FAX NO: (571) 273-8300
RECEIVED

## Number of pages including this page 5

Applicant : Beth Marcus, et al
Serial No. : 10/699.555
Filed : October 31, 2003

Title : Human Interface System

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Art Unit : 2629
Examiner : Ricardo Osorio

A RESPONSE TO RESTRICTION REQUIREMENT daled July 14, 2006 is altached. Respectfully submitted,

Date: July 14, 2006


Fish \& Richardson P.C.
12390 El Camino Real
San Diego, Califomia 92130
Telephonc: (858) 678-5070
Fax: (858) 678-5099
10648486.doc

NOTE: This facsimile is intended for the addressee only and may contain privileged or confidential information. If you have received this facsimile in error, please immediately call us collect at (858) 678-5070 to arrange for its returin. Thank you.

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Applicant : Beth Marcus, ct al Serial No. : $10 / 699,555$<br>Filled : October 31, 2003<br>Title : HUMAN INTERFACE SYSTEM<br>Arl Unit : 2629<br>Examiner : Ricardo Osorio<br>Conf. No. : 3602<br>\title{ RECEIVED CENTRAL FAX CENTER<br><br>JUL 142006 }<br>\section*{Mail Stop Amendment}<br>Commissioner for Patents<br>P.O. Box 1450<br>Alexandria, VA 22313-1450

## RESPONSE TO RESTRICTION REQUIREMENT

Responsive to the action mailed June 14. 2006, applicant clects the invention of Group I drawn to species 1 of the embodiment of Figs. 3a-3d. The election is made with traverse.

Certificattol transmhssion by bacsimile


Applicant : Beth Marcus, de al Scrial No. : 10/699.555
Filed : October 31, 2003
Page : 2 of 4

REEEAME
GENTMALEAK OENTER JUL 142006

The Office Action identified the following allegedly patentably distinct species: Figs. 3a3d directed to species 1: Figs. 4a-4b directed to species 2; Figs. 5a-5b directed to specics 3; Figs. 6a-6b directed to species 4, and Figs. 7a-7b directed to species 5. See Office Action at page 2 \% 1. Claims 1, 3-6, 9-21, 23-55 fall within Group 1 drawn to spocics 1. Claim 8 falls within Group 2 drawn to species 4 . Claim 7 falls within Group 3 drawn to species 5 . No claims fall within species 2 or species 3 . Claims 2 and 22 were cancelled in the previous preliminary amendment. Claims $1,12,17,24,28,29$, and 43 are generic to all species. Applicants elect Group 1 drawn to the specics 1 of Figs. 3a-3d with traverse. Sec Office Action at page 2 91 1.

## Traversing Restriction/Election Under 37 C.F.R. $\$ 1.143$

Applicants request reconsideration of the restriction requirement pursuant to 37 C.F.R. § 1.143 and respectfilly request that the requirement be withdrawn since the Office Action fails to clearly outline the reasons for holding that the alleged distinct species are present.

The Office Action alleges that Figures $3 \mathrm{a}-3 \mathrm{~b}, 4 \mathrm{a}-4 \mathrm{~b}, 5 \mathrm{Sa}-5 \mathrm{~b}$, $6 \mathrm{a}-6 \mathrm{~b}, 7 \mathrm{a}-7 \mathrm{~b}$ comprise 5 patentably distinet species. The Examiner has the burden to concisely state, " $[$ t]he particular reasons relied on ... for holding that the inventions as claimed are independent or distinct." See: M.P.E.P. $\$ 808.01$. However, the Office Action fails to state any such reasons, apparently basing the restriction solely on the cited Figures. See Office Action at page 2 all. As such. Applicants respectfully request that Examiner conciscly state the particular reasons for holding the inventions independent and distinct.

Each of the figures cited in the Oflice Action depiets a hand-held electronic device wherein a second input assembly of the device inclades different types of input elements: Figures 3a-3b depiet a "pressure sensitive pad," Figures 4a-4b depiet a "touch pad," Figures 5a-5b depiet "two dimensional rockers," Figures 6a-6b depict a "D-pad and two contact sensors." Figures 7a-7b depict "rotary dials." See Specification at page 8 lines 13-22. The specification discloses, "a flexible and efficient human interface and input sysitm ... that utilize[s] the opposed thumb and finger ergonomics inherent in the hand..." See Specificaiton at page 5 lines 20-23. The human interface implemented as a device having two input assemblies: ". . the first input assembly 340 on the front-side surface 312 and the second inpul assembly 350 on the back-

Applicant: Beth Marcus, et al
Altomey's Docket No.; 19146-002001
Surial No. : 10/699,555
Filed : October 31, 2003
Page : 3 or 4
side surface 314 , lefl-side surface 316 and right-side surface 318 . is configured to take advantage of the biomechanics of the hand..." See Specification at page 13 lines 19-23; emphasis added.

The first and second assemblies can include a number of various input elements. For example in Figures 3a-b, the specification describes implementing the second input assembly 350 to include a pressurc sensor pad 354. Sec id. at page 11, lines 2-28. However, the input elements 352 and 354 disposed on the first and second assemblies of Figure $3 a-b$ can include a other suitable input elements including, for example, a pressure sensitive pad, a touch pad, rockers, a D-pad, and/or rotary dials. Sce id. at page 12 lincs 3-8. Any of the disclosed input elements may be used on the second surface: "[i]t is to be understood that the input elements [on the second surfacel ... could be analog and/or digital butons, keys, rockers (which may be a one or more position buttons or an analog joystick-type button), sliders, dials or touch pads ... positional sensors (such as rotary encodes. linear potentiometers and the like) or other sensors or combinations of them." See id.; cmphasis added. Thus, the Figures 4a-4b, 5a-5b, 6a-6b, and 7a7b, are only illustrative of the above mentioned variations in the input ciements disposed on the first and second assembly of the human interface device.

For at least these reasons. the election/restriction of species requirement is improper and should be withdrawn.

Upon the allowance of gencric claims $1,12,17,24,28,29$, and 43 , Applicants reserve the right to consideration of claims to additional species which depend from or otherwise require all the limitations of an allowable generic claim as provided by 37 CFR 1.141.
Applicant : Reth Marcus, et al
Sersal No. : $106694.555,2003$
Filed $:$ October 31,2003
Page $: 4$ olt 4

## CONCIUSION

Please apply any charges or credits to Deposil Account No. 06-1050.

Date: $\qquad$
Respectfully submilled,

Fish \& Richardson P.C.
PTO Customer No. 20985
12390 El Camino Real
San Diego. Califomia 92130
Tclephone: (858) (678-5070
Facsimile: (858) 678-5099
$101447716.16 x$

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$10 / 699,555$	$10 / 31 / 2003$	Beth Marcus	$19146-002001$	
20985	$06 / 14 / 2006$		3602	
FISH \& RICHARDSON, PC		EXAMINER		
P.O. BOX 1022				
MINNEAPOLIS, MN 550	$5540-1022$	OSORIO, RICARDO		

Please find below and/or attached an Office communication concerning this application or proceeding.


## DETAILED ACTION

## Election/Restrictions

1. This application contains claims directed to the following patentably distinct species: Figs. $3 \mathrm{a}-3 \mathrm{~d}$ are directed to species 1 ; Figs. $4 \mathrm{a}-4 \mathrm{~b}$ are directed to species 2 ; Figs. $5 \mathrm{a}-5 \mathrm{~b}$ are directed to species 3; Figs. $6 \mathrm{a}-6 \mathrm{~b}$ are directed to species 4, and Figs. 7a-7b are directed to species 5 . Applicant is required under 35 U.S.C. 121 to elect a single disclosed species for prosecution on the merits to which the claims shall be restricted if no generic claim is finally held to be allowable. Currently, there are no generic claims.

Applicant is advised that a reply to this requirement must include an identification of the species that is elected consonant with this requirement, and a listing of all claims readable thereon, including any claims subsequently added. An argument that a claim is allowable or that all claims are generic is considered nonresponsive unless accompanied by an election.

Upon the allowance of a generic claim, applicant will be entitled to consideration of claims to additional species which depend from or otherwise require all the limitations of an allowable generic claim as provided by 37 CFR 1.141. If claims are added after the election, applicant must indicate which are readable upon the elected species. MPEP § 809.02(a).

Applicant is advised that the reply to this requirement to be complete must include (i) an election of a species or invention to be examined even though the requirement be traversed ( 37 CFR 1.143) and (ii) identification of the claims encompassing the elected invention.

The election of an invention or species may be made with or without traverse. To reserve a right to petition, the election must be made with traverse. If the reply does not distinctly and
specifically point out supposed errors in the restriction requirement, the election shall be treated as an election without traverse.

Should applicant traverse on the ground that the inventions or species are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the inventions or species to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C.103(a) of the other invention.
2. Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).
3. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ricardo L. Osorio whose telephone number is 571-272-7676. The examiner can normally be reached on Monday through Thursday from 7:00 A.M. to 5:30 P.M. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Bipin Shalwala whose telephone number is 571-272-7681.

Any response to this action should be mailed to:
Commissioner of Patents and Trademarks
Washington, D.C. 20231
or faxed to: $\quad 571-273-8300$ (for Technology Center 2600 only)
Hand-delivered responses should be brought to the Customer Service Window at the Randolph Building, 401, Dulany Street, Alexandria, VA 22314.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be
obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).


Technology Division: 2629
PRIMARY EXAMINER
RLO
June 12, 2006

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Beth Marcus, et al
Serial No. : 10/699,555
Filed : October 31, 2003
Title : HUMAN INTERFACE SYSTEM
MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

## INFORMATION DISCLOSURE STATEMENT

Applicants request consideration of the references listed on the attached PTO-1449 form. Under 37 C.F.R. § 1.98 (a)(2)(ii), only copies of foreign patent documents and/or non-patent literature are enclosed. Copies of any listed U.S. patents or U.S. patent application publications can be provided upon request.

This statement is being filed within three months of the filing date of the application or before the receipt-of-a-first Office-Action ${ }^{-}$-the-merits. ${ }^{-}$Please apply any charges $\overline{\text { or }} \overline{\text { coredits }}$ to Deposit Account No. 06-1050.

Date:_May 10,2006

Fish \& Richardson P.C. 12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099
10512416.doc

Respectfully submitted,


JefilP. Schnurer
Reg. No. 52,196

CERTIFICATE OF MAILING BY FIRST CLASS MAIL
I hereby certify under $37 \mathrm{CFR} \S 1.8(\mathrm{a})$ that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

May 10,2005


Typed or Printed Name of Person Signing CertificateCEA Ex. 1002 Page 147

Sheet 1 of


## U.S. Patent Documents

U.S. Patent Documents							
Examiner   Initial	Desig.   ID	Document   Number	Publication   Date	Patentee	Class	Subclass	Filing Date   If Appropriate
	AA	$5,365,589$	$11 / 15 / 1994$	Howard A. Gutowitz			
	AB	$5,432,510$	$7 / 11 / 1995$	Walter S. Matthews			
	AC	$5,782,642$	$7 / 21 / 1998$	Michael Goren			
	AD	$6,115,028$	$9 / 5 / 2000$	Balakrishnan et al.			
	AE	$6,219,731$	$4 / 17 / 2001$	Howard A. Gutowitz			
	AF	$6,228,709$	$5 / 8 / 2001$	Wen-Yi Hsieh			
	AG	$6,512,511$	$1 / 28 / 2003$	Willner et al.			
	AH	$6,573,844$	$6 / 3 / 2003$	Venolia et al.			
	AI	$6,606,486$	$8 / 12 / 2003$	Cubbage et al.			
	AJ	$6,654,733$	$11 / 25 / 2003$	Goodman et al.			
-	AK	$6,703,963$	$--3 / 9 / 2004-$	Timothy B-Higginson	$-\cdots$	-	-
	AL	$6,738,045$	$5 / 18 / 2004$	Hinkley et al.			
	AM	$6,741,235$	$5 / 25 / 2004$	Michael Goren			
	AN	$6,760,013$	$7 / 6 / 2004$	Willner et al.			
	AO	$6,865,718$	$3 / 8 / 2005$	Levi Montalcini			
	AP	$6,885,317$	$4 / 26 / 2005$	Howard A. Gutowitz			
	AQ	$6,885,318$	$4 / 26 / 2005$	Matthew J. Bickerton			
	AR	$6,911,608$	$6 / 28 / 2005$	David H. Levy			
	AS	$6,980,200$	$12 / 27 / 2005$	Michael Goren			
	AT	$R E 37723$	$6 / 4 / 2002$	Michael Goren			

Foreign Patent Documents or Published Foreign Patent Applications

Examiner   I nitial	Desig.   ID	Document   Number	Publication   Date	Country or   Patent Office	Class	Subclass	Translation	
	AU							


Other Documents (include Author, Title, Date, and Place of Publication)			
Examiner   Initial	Desig.   ID	Document	

[^4]| Substitute Form PTO-1449 (Modified) <br> U.S. Department of Commerce Patent and Trademark Office <br> Information Disclosure Statement by Applicant (Use several sheets if necessary) | Attorney's Docket No. $19146-002001$ | Application No. $10 / 699,555$ |
| :---: | :---: | :---: |
|  | Applicant <br> Beth Marcus, et al |  |
|  | Filing Date October 31, 2003 | Group Art Unit $2673$ |


Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial		Document
	AHH	Andriy Pavlovych, Wolfgang Stürzlinger: Less-Tap: A Fast and Easy-to-learn Text Input Technique for Phones. Graphics Interface 2003, 97-104   http://www.graphicsinterface.org/cgi-bin/DownloadPaper?name=2003/170/paper170.pdf
	AII	Scott MacKenzie , Hedy Kober , Derek Smith , Terry Jones, Eugene Skepner, LetterWise: prefixbased disambiguation for mobile text input, Proceedings of the 14th annual ACM symposium on User interface software and technology, November 11-14, 2001, Orlando, Florida
	AJJ	H. Kober, E. Skepner, T. Jones, H. Gutowitz, S. MacKenzie, 2001. Linguistically Optimized Text Entry on a Cell Phone. In Proceedings of the CHI 2001. http://www.eatoni.com/research/chi.pdf
	AKK	Mikael Goldstein and Didier Chincholle The Finger-Joint-Gesture Wearable Keypad. Ericsson Radio Systems.
	ALL	Rosenberg, R. (1998). Computing without Mice and Keyboards: Text and Graphic Input Devices for Mobile Computing. Ph.D. Thesis, Dept. of Computer Science, University College, London, 1998. http://www.obscure.org/rosenberg/
	AMM	MacKay, B., Dearman, D., Inkpen, K., and Watters, C. 2005. Walk 'n scroll: a comparison of software-based navigation techniques for different levels of mobility. In Proceedings of the 7th international Conference-on Human Computer interaction-with Mobile Devices-\&Amp; Services(Salzburg, Austria, September 19-22, 2005). MobileHCI '05, vol. 111. ACM Press, New York, NY, 183-190.   http://portal.acm.org/citation.cfm? $\mathrm{id}=1085808 \& \mathrm{coll}=\mathrm{GUIDE} \& \mathrm{dl}=\mathrm{GUIDE} \& \mathrm{CFID}=66591340 \& \mathrm{CFT}$ OKEN=6294934
	ANN	Kranz, M., Holleis, P., Schmidt, A. "DistScroll - a new one-handed interaction device". In Proceedings of the 5th International Workshop on Smart Appliances and Wearable Computing, June 10, 2005.   http://www.hcilab.org/documents/DistScrollAnewOneHandedInteractionDevice-   KranzHolleisSchmidt-IWSAWC2005.pdf
	AOO	Daniel Fällmana, Andreas Lund, Mikael Wiberg, ScrollPad: Tangible Scrolling with Mobile Devices, Proceedings of the Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04) - Track 9, p.90286.3, January 05-08, 2004.   http://portal.acm.org/citation.cfm?id=963347\&coll=GUIDE\&dl=GUIDE\&CFID=66483658\&CFTO KEN=36023921   http://daniel.fallman.org/resources/papers/fallman-hicss37.pdf
	APP	Chipman, L. E., Bederson, B. B., and Golbeck, J. A. 2004. SlideBar: analysis of a linear input device. Behav. Inf. Tech. 23, 1 (Jan. 2004), 1-9.   http://portal.acm.org/citation.cfm?id=993182.993184\#   http://www.cs.umd.edu/Library/TRs/CS-TR-4471/CS-TR-4471.pdf
	AQQ	Orientation-based interaction for Mobile Devices. J. Darnauer, S. Garrity and T. Jim, Stanford University.   http://hci.stanford.edu/srk/cs377a-mobile/project/final/darnauer-garrity-kim.pdf
	ARR	Rekimoto, J. Tilting operations for small screen interfaces. Proceedings of the 9th annual ACM symposium on User Interface software and technology, pp. 167-168, November 06-08, 1996, Seattle.   http://portal.acm.org/citation.cfm? $\mathrm{id}=237115 \& c o l l=G U I D E \& d l=G U I D E \& C F I D=66483658 \& C F T O$ $\mathrm{KEN}=36023921$
Examiner Signature		Date Considered
EXAMINER: next commun		


Sheet 4 of 8		
Substitute Form PTO-1449   (Modified) U.S. Department of Commerce   Patent and Trademark Office	Attorney's Docket No. $19146-002001$	Application No. $10 / 699,555$
Information Disclosure Statement by Applicant (Use several sheets if necessary)	Applicant   Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673


Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
	ASS	Hinckley, K., Pierce, J., Horvitz, E., Sinclair, M. Foreground and Background Interaction with Sensor-enhanced Mobile Devices, ACM TOCHI (Transactions on Computer-Human Interaction) Special Issue on Sensor-Based Interaction, 12 (1), March 2005, pp. 31-52.   http://portal.acm.org/citation.cfm?id=1057240\&coll=GUIDE\&dl=GUIDE\&CFID=66591340\&CFT OKEN=6294934
	ATT	Hinckley, K., Cutrell, E., Bathiche, S., and Muss, T. 2002. Quantitative analysis of scrolling techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves (Minneapolis, Minnesota, USA, April 20-25, 2002). CHI '02. ACM Press, New York, NY, 65-72.   http://doi.acm.org/10.1145/503376.503389
	AUU	Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., and Want, R. 1998. Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Los Angeles, California, United States, April 18-23, 1998). C. Karat, A. Lund, J. Coutaz, and J. Karat, Eds. Conference on Human Factors in Computing Systems. ACM Press/Addison-Wesley Publishing Co., New York, NY, 17-24.   http://portal.acm.org/citation.cfm?id=274647\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN $=73460863 \&$ CFID $=66588306 \&$ CFTOKEN $=73460863 \#$
	AVV	Kiyokuni Kawachiya, Hiroshi Ishikawa, NaviPoint: an input device for mobile information browsing, Proceedings of the SIGCHI conference on Human factors in computing systems, p.1-8, April 18-23, 1998, Los Angeles, California, United States http://portal.acm.org/citation.cfm? id=274645\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN $=73460863$
	AWW	Hinkley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing Techniques for Mobile Interaction. UIST 2000: ACM Symposium on User Interface Software and Technology, pp. 91-100. http://portal.acm.org/citation.cfm?id=354417\&coll=GUIDE\&dl=GUIDE\&CFID=66483658\&CFTO KEN=36023921
	AXX	Baillie, L., Kunczier, H., and Anegg, H. 2005. Rolling, rotating and imagining in a virtual mobile world. In Proceedings of the 7th international Conference on Human Computer interaction with Mobile Devices \&Amp; Services (Salzburg, Austria, September 19-22, 2005). MobileHCI '05, vol. 111. ACM Press, New York, NY, 283-286. http://doi.acm.org/10.1145/1085777.1085833
	AYY	Amy K. Karlson, Benjamin B. Bederson, John SanGiovanni, 2004. AppLens and LaunchTile: Two Designs for One-Handed Thumb Use on Small Devices http://hcil.cs.umd.edu/trs/2004-37/2004-37.html
	AZZ	Virpi Roto, Nokia Research. Browsing on Mobile Phones. http://www.research.att.com/~rjana/WF12 Paperl.pdf
	AAAA	Qualcomm. Slingshot http://wireless.ign.com/articles/657/657041p1.html
	ABBB	GamePad http://www.mobilemag.com/content/100/345/C5578/
	ACCC	Kyocera Candid KX16 http://www.mobilemag.com/content/100/340/C.4392/


Examiner Signature	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with   next communication to applicant.	



Sheet 6 of 8		
Substitute Form PTO-1449   (Modified) U.S. Department of Commerce   Patent and Trademark Office	Attorney's Docket No. $19146-002001$	Application No. $10 / 699,555$
Information Disclosure Statement by Applicant	Applicant   Beth Marcus, et al	
(Use several sheets if necessary)   (37 CFR § 1.98 (b))	Filing Date October 31, 2003	Group Art Unit 2673


Other Documents (include Author, Title, Date, and Place of Publication)				
$\begin{array}{c}\text { Examiner } \\ \text { Initial }\end{array}$	$\begin{array}{c}\text { Desig. } \\ \text { ID }\end{array}$	Document	$] \left.$	AUUU
:---		DigitWireless: FastTap		
:---				
http://www.digitwireless.com/flash/download/fastap.pdf	\right\rvert\,	AVVV		
:---				


Examiner Signature	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with   next communication to applicant.	


Substitute Form PTO-1449   U.S. Department of Commerce   (Modified)   Patent and Trademark Office   Information Disclosure Statement by Applicant   (Use several sheets if necessary)	Attorney's Docket No. $19146-002001$	Application No. $10 / 699,555$
	Applicant   Beth Marcus, et al	
	Filing Date   October 31, 2003	Group Art Unit 2673


Other Documents (include Author, Title, Date, and Place of Publication)		
$\begin{gathered} \text { Examiner } \\ \text { Initial } \\ \hline \end{gathered}$	$\begin{gathered} \text { Desig. } \\ \text { ID } \end{gathered}$	Document
	AJJJJ	MacKenzie, I. S. (2002). KSPC (keystrokes per character) as a characteristic of text entry techniques. Proceedings of the Fourth International Symposium on Human-Computer Interaction with Mobile Devices, pp. 195-210. Heidelberg, Germany: Springer-Verlag
	AKKKK	Soukoreff, R. W. and MacKenzie, I. S. (2004). Recent Developments in Text-Entry Error Rate Measurement. CHI 2004, Late Breaking Results Paper, Vienna Austria, April 24-29, 2004.
	ALLLL	Lee, S. and Hong S.H.. Chording as a Text Entry Method in Mobile Phones. In Proceedings of the MobileHCI 2004: 6th International Symposium, Glasgow, UK, September 13-16, 2004.
	AMMMM	Green, N., Kruger, J., Faldu, C., and St. Amant, R. 2004. A reduced QWERTY keyboard for mobile text entry. In CHI '04 Extended Abstracts on Human Factors in Computing Systems (Vienna, Austria, April 24-29, 2004). CHI '04. ACM Press, New York, NY, 1429-1432.   http://portal.acm.org/citation.cfm?id=986082\&coll=GUIDE\&dl=GUIDE\&CFID=66591340\&CFTO KEN=6294934
	ANNNN	Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., and Want, R. TiltType: accelerometersupported text entry for very small devices, Proceedings of the 15th annual ACM symposium on User interface software and technology, October 27-30, 2002, Paris, France
	A0.000	Mikael Goldstein, Didier Chincholle, Morten Back (2000). Assessing Two New Wearable Input Paradigms:-The-Finger-Joint-Gesture Palm-Keypad Glove-and-the Invisible -Phone-Glock.-Personal and Ubiquitous Computing, Volume 4, Issue $2 / 3$.
	APPPP	Bartlett, J. F. 2000. Rock 'n' Scroll Is Here to Stay. IEEE Comput. Graph. Appl. 20, 3 (May. 2000), 40-45.   http://portal.acm.org/citation.cfm?id=618728\&coll=Portal\&dl=GUIDE\&CFID=66588306\&CFTOK EN=73460863\#
	AQQQQ	Eslambolchilar, P., Murray-Smith, R. (2004). Tilt-Based Automatic Zooming and Scaling in Mobile Devices - A state-space implementation. In Proc. of Mobile Human-Computer Interaction (MobileHCI 2004), Glasgow, UK, Sept. 2004: In S. Brewster and M. Dunlop (Eds.). Mobile Human-Computer-Interaction - MobileHCl 2004, Lecture Notes in Computer Science, Vol. 3160, Berlin: Springer, 120-131.
	ARRRR	Zhai, S., Smith, B.A., and Selker, T. Improving Browsing Performance: A study of four input devices for scrolling and pointing tasks, Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction, p. 286-293, July 14-18, 1997.
	ASSSS	Wobbrock, J. O., Forlizzi, J., Hudson, S. E. and Myers, B. A. WebThumb: interaction techniques for small-screen browsers. Proc. UIST, ACM Press (2002), 205-208.
	ATTTT	Lee, S., Hong, S. H., and Jeon, J. W. 2002. Designing a universal keyboard using chording gloves. SIGCAPH Comput. Phys. Handicap. , 73-74 (Jun. 2002), 142-147.   http://doi.acm.org/10.1145/960201.957230
	AUUUU	Pirhonen, A., Brewster, S., and Holguin, C. 2002. Gestural and audio metaphors as a means of control for mobile devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves (Minneapolis, Minnesota, USA, April 20-25, 2002). CHI '02. ACM Press, New York, NY, 291-298. http://doi.acm.org/10.1145/503376.503428
	AVVVV	Kjeldskov, J. and Graham, C. (2003). A Review of Mobile HCI Research Methods. In Proc. of Mobile Human-Computer Interaction (MobileHCI 2003), Udine Italy, Sept. 2003: In L. Chittaro (Ed.). Mobile Human-Computer-Interaction - MobileHCI 2003, Lecture Notes in Computer Science, Vol. 2795, Berlin: Springer, 317-335.

Examiner Signature
Date Considered

EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Sheet 2 of 8		
Substitute Form PTO-1449   (Modified)   U.S. Department of Commerce Patent and Trademark Office   Information Disclosure Statement by Applicant (Use several sheets if necessary)   (37 CFR 81 98(b))	Attorney's Docket No. $19146-002001$	Application No. 10/699,555
	Applicant   Beth Marcus, et al	
	Filing Date October 31, 2003	Group Art Unit 2673


Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
	AV	Donner, J. (2005). Research Approaches to Mobile Use in Developing World: A Review of the Literature. International Conference on Mobile Communication and Asian Modernities City University of Hong Kong, June 7-8 2005.
	AW	Min, Lin and Sears, Andrew (2005). Graphics Matter: A Case Study of Mobile Phone Keypad Design for Chinese Input. CHI 2005, Late Breaking Results: Posters, Portland, Oregon. April 2-7, 2005.
	AX	MacKenzie, S., \& Soukoreff, W. (2002). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction. 17. p. 147--198.   http://www.yorku.ca/mack/hci3-2002.pdf
	AY	Starner, T. "Keyboards Redux: Fast Mobile Text Entry". Pervasive Computing, July - September 2004, Pp. 97-101.   http://www.cc.gatech.edu/fac/Thad.Starner/p/magazine/2004-3-keyboard-redux.pdf
	AZ	Lee Butts, Andy Cockburn, An evaluation of mobile phone text input methods, Third Australasian conference on User ịnterfaces, p.55-59, January 01, 2002, Melbourne, Victoria, Australia http://www.crpit.com/confpapers/CRPITV7Butts.pdf
	AAA	Chording and Tilting - Daniel Wigdor (thesis) - 2004- describes chordtap and tilttap (also covered in depth in the paper referenced below)   http://www.dgp.toronto.edu/~dwigdor/research/thesis/submitted.html
	ABB	Wigdor, D. and Balakrishnan, R. "A Comparison of Consecutive and Concurrent Input Text Entry Techniques for Mobile' Phones", Conference on Human Factors, April 24-29, 2004, Volume 6, Number 1, pp. 81-88   http://portal.acm.org/citation.cfm?id=985703   http://www.dgp.toronto.edu/~ravin/papers/chi2004 concurrenttextinput.pdf
	ACC	Oniszczak, A., \& MacKenzie, I, S. (2004). A comparison of two input methods for keypads on mobile devices. Proceedings of NordiCHI 2004, pp. 101-104. New York: ACM. http://www.yorku.ca/mack/nordichi2004.pdf
	ADD	K. Lyons. Everyday wearable computer use: A case study of an expert user. In Proceedings of Mobile HCI 2003, pages 61--75, 2003.   http://www.cc. gatech.edu/ccg/publications/everyday case.pdf
	AEE	K. Lyons, T. Starner, D. Plaisted, J. Fusia, A. Lyons, A. Drew, E. W. Looney, 2004. "Twiddler Typing: One-Handed Chording Text Entry for Mobile Phones," Proc. Conf. Human Factors in Computing Systems (SIGCHI 01), ACM Press, 2004, pp. 671-678.   http://www.cc.gatech.edu/fac/Thad.Starner/p/030 10 MTE/twiddler-chi04.pdf
	AFF	Daniel Wigdor, Ravin Balakrishnan, TiltText: using tilt for text input to mobile phones, Proceedings of the 16th annual ACM symposium on User interface software and technology, p.8190, November 02-05, 2003, Vancouver, Canada   http://portal.acm.org/citation.cfm?id=964705   http://www.dgp.toronto.edu/~ravin/papers/uist2003 tilttext.pdf
	AGG	M. D. Dunlop and A. Crossan, "Dictionary based text entry method for mobile phones", published in Brewster, S.A., and Dunlop, M.D., (editors). Proceedings of Second Workshop on Human Computer Interaction with Mobile Devices, August 1999.   htp://www.cis.strath.ac.uk/~mdd/research/publications/99dunlopcrossan.pdf


Examiner Signature	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with   next communication to applicant.	

Sheet 8 of 8

Substitute Form PTO-1449   (Modified) U.S. Department of Commerce   Patent and Trademark Office    Information Disclosure Statement   by Applicant    (Use several sheets if necessary)	Attorney's Docket No. 19146-002001	Application No. 10/699,555
	Applicant   Beth Marcus, et al	
	Filing Date   October 31, 2003	$\begin{aligned} & \text { Group Art Unit } \\ & 2673 \end{aligned}$


Other Documents (include Author, Title, Date, and Place of Publication)			
Examiner   Initial	Desig.   ID	Document	
	AWWWw	Kjeldskov, J. Stage, J. (2004). New Techniques for Usability Evaluation of Mobile Systems.   International Journal of Human-Computer Studies, May 2004, 60 (5-6): 599--620.	

## OFFICIAL COMMUNICATION FACSIMILE:

OFFICIAL FAX NO: (571) 273-8300
Number of pages including this page 19

Applicant : Beth Marcus, et al
Serial No. : $10 / 699,555$
Filed : October 31, 2003

Title : Human Tnterface System

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Apt Unit : 2629
Examiner : Richard Hjerpe

Attached to this facsimile communication cover sheet is SUPPLEMENTAI, PRELIMINARY AMENDMENT, faxed this $17^{\text {th }}$ day of April, 2006, to the United States Patent and Trademark Oflice.

Date: April 17,2006


Reg. No. 52,196

Fish \& Richardson P.C. 12390 El Camino Rcal
San Diego. Califomia 92130
Telephonc: (858) 678-5070
Fax: (858) 678-5099
10620920.doc

NOTE: This facsimile is intended for the addressee only and may contain privileged or confidential information. If you have received this facsimile in error, please immedintely call us collect at (858) 678-5070 to arrange for its return. Thank you.

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Bcth Marcus, ct al<br>Serial No. : 10/699,555<br>Art Unil : 2629<br>Filed : October 31.2003<br>Title : HUMAN INTERFACE SYSTEM<br>Commissioner for Patents<br>P.O. Box 1450<br>Alexandria, VA 22313-1450

## SUPPLEMENTAL PRELIMINARY AMENDMENT

Prior to examination, please amend the application as indicated on the following pages.

## CHRTHICNJF OF TRANSMISSION DY FACSIMILE

I hereby certify that this correqundence is being tansmilled by focsinile to the Palenl and Trudernark Ufire on the date indicatced helow.


## Amendments to the Claims:

This listing of clams replaces all prior versions and listings of clams in the application:

## Listing of Claims:

1. (Previously Presented) A hand-held electronic device comprising: a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a processor configured to process a selected one of the plurality of applications; a first input assembly having a plurality of input elements on a first surface configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements on the first surface is configured to selectively map to one or more input functions of the set of functions associated with the selected onc of the plurality of applications; and
a second input assembly having one or more input elements on a second surface configured to be manipulated by one or more of the human user`s fingers, wherein at least one of the input elements on the second surface is further configured to be selectively mapped to one or more input functions of the set of functions corresponding to the selected one of the plurality of applications, further whercin the plurality of input elements on the first surface and the one or more input elements on the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's hand.

Applicant : Beth Marcus, et al
2. (Cancelled).
3. (Previously Presented) The hand-held electronic device of claim 1, wherein at least one of the input cloments of the second input assembly is a sensor pad configured to selectively represent a plurality of delineated active areas. whercin manipulation of a delineated active area causes the inpul function of one or more input clements of the first input assembly to change.
4. (Ptcviously Presented) The hand-held clectronic device of claim 3, further comprising a shape changing media configured relative to the sensor pad so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.
5. (Previously Presented) The hand-held electronic device of claim 1, whercin the processor receives signals generated by the input elements of first or second input assemblies when manipulated by the human user.
6. (Previously Presented) The hand-held electronic device of claim I further comprising an input controller, wherein the input controller receives signals generated by the input elements of first or second input assemblics when manipulated by the human user and converts the signals into a form suitable to be interpreted by the processor.

Applicant : Beth Mareus, et al
Attomey's Dockel No.: 19146-002001
Serial No. : 10/609,555
Filed : October 31. 2003
Page: 4 of 18
7. (Previously Presented) The hand-held electronic device of claim 1, wherein at least one of the inpat elements of the second input assembly is a rotary sensor.
8. (Previously Presented) The hand-held clectronic device of claim 1, wherein at least one of the input elements of second input assembly is a D-pad.
9. (Previously Presented) The hand-held clectronic device of claim 1, further comprising at least one palpable detent, wherein the detent is associated with at least one of the input clements of the first or second input assemblies so as to provide tactile fecdback to the human user when the human user manipulates the input elenent associated with the palpable detent.
10. (Previously Presented) The hand-held electronic device of claim 1 further comprising one or more vibratory or force producing units, at least one of the vibratory or force producing units configured to provide tactile feedback upon the human user's manipulation of at least one of the input elements of the first or second input assemblies.
11. (Previously Presented) The hand-held electronic device of claim 10, whercin at least one of the vibratory units provide tactile feedback in response to events oecurring in the selected application running on the processor.

Applicant : Beth Marcus, or al
Atomey's Docket No.: 19146-002001
Serial No. : 10/699,55s
Filed : October 31. 2003
Page : Sof 18
12. (Previously Presented) $\triangle$ hand-held electronic device comprising:
a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a proccssor configured to process a selected one of the plurality of applications, wherein the set of functions associated with the selected application includes a plurality of text symbol functions and a plurality of shifting functions;
a first surface having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements of the first surface is further configured to selectively map to more than one text symbol function; and
a second surface having one or more input elements, whercin at least one of the input elements of the second surface having one or more selectable active areas configured to be manipulated by one or more of the human user's fingers, each selectable active area configured to selectively map to a different shifting function, wherein manipulation of one of the selectable active area causes the text symbol function of the one or more input elements of the first surface to change. further wherein the plurality of input elements of the first surface and the one or more input elements of the second surface are arranged so as to substantially optimize a biomechanical effect ol the human user's hand.

Applicant : Beth Marcus, et al
Attorncy's Docket No.: 19146-002001
Serial No. : 101699,555
liled : October 31, 2003
Page : 6 of 18
13. (Previously Presented) The hand-held electronic device of claim 12 further comprising a controller, wherein the controller receives signals generated by the human user's manipulation of the input elements of the first surface or active areas.
14. (Previously Presented) The hand-held electronic device of claim 13 further comprising a dome cap positioned above at least one input element of the first surface or the second surface and capable of providing tactile feedback to the human user when the input clement associated with the dome cap is manipulated.
15. (Previously Presented) The hand-held electronic device of claim 13 further comprising one or more vibratory units capable of providing tactile feedback.
16. (Previously Presented) The hand-held electronic device of claim 13 further comprising one or more force producing units capable of providing tactile feedback.
17. (Previously Presented) A method for configuring a human interface and imput system for use with a hand-held electronic device configured to run a plurality of applications, each application associated with a set of functions, the method comprising:
disposing on a first surface a first input assembly having a plurality of input elements configured to reccive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elements of the first input assembly is further
configured to map to more than one input function associated with a selected onc of the plurality of applications;
disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user`s fingers, wherein at Ieast one of the input elements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application; and arranging the plurality of input elements of the first input assembly and the one or more input elements of the second input assembly to substantially optimize a biomechanical elfect of the human user's hand.
18. (Previously Presented) The method of claim 17 further comprising: physically or electromically labeling al least onc input clement of the first input assembly or the second input assembly so as to visually indicate an input function that can be selectively accessed by actuating the input element.
19. (Previously Presented) The method of claim 17 further comprising connecting a controllor to the input elements of the first inpul assembly or the second input assembly, wherein the controller is configured to receive signals gencrated by a manipulation of one or more of the input elements of first input assembly or the second input assembly.

Applicant : Beth Marcus, et al
Scrial No. : $10 / 699,555$
Filed : Octoher 31, 2003
Page : 8 of 18
20. (Previously Presented) The method of claim 19, wherein at least one input element of second input assembly having a plarality of active areas configurable by the controller to form a plurality of delineated active arcas.
21. (Previously Presented) The method of claim 20 further comprising positioning a shape changing media relative to the one input element of scond input assembly having a plurality of active areas so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.

## 22. (Cancelled)

23. (Previously Presented) The method of claim 17 further comprising positioning a palpable detent with at least one input element of the first input assembly or the second input assembly so as to provide tactile feedback when manipulated by the human user.
24. (Currently Amended) A method for inpulting data on a hand-held elcetronic device having a first surface with a plurality of input elements configured to reccive input from a human user through manipulation of the plurality of input elements, wherein at least one of the input elcments is further configured to map to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identilicr, and a second surface having one or more selection clements configured to be manipulated by one or

Applicant : Beth Marcus, et al
Attomey's Docket No.: 19146-002001
Surial No. : 10/609.555
Filed : Octuber 31, 2003
Page : 9 of 18
more of the human user's fingers, wherein cach selection element corresponds to one of the unique index position identifiers, further wherein the plurality of input elements and the one or more selection clements are arranged to substantially optimize a biomechanical effect of the human user's hand, the method comprising:
executing a selected application from a plurality of applications, whercin the selected application is associated with a set of functions;
deternining the index position identifier of a desired symbol to be inputted based on the functions associated with the selected application;
pressing the selection element corresponding to the index position identifier of the desired symbol with any digit or object held in the human user's hand; and pressing the input clement contigured to map to the desired symbol with any digit or object held in the human user s hand. (fune 14, lines 27).
25. (Previously Presented) The method of claim 24, wherein each input element is physically or electronically labeled indicating each symbol that is mapped to by the input element and a positional order in which cach symbol can be selectively accessed by actuating the input element.
26. (Previously Presented) The method of clain 24, wherein determining the index position identifier of the desired character to be inputted comprises:
locating the input element configured to map to the desired symbol; and
counting from lefl to right the number of symbols preceding the desired symbol labeled on the located input element, wherein the index position identifier of the desired symbol is the number of symbols preceding the desired symbol plus one.
27. (Previously Presented) The method of claim 24, wherein at least one of the input elements or selection clements is further configured to map to a plurality of modes corresponding to the selected applicalion executing on the hand-held electronic device, at least one of the modes is the data input mode, the method further comprising enabling the data input mode.
28. (Previously Presented) A method for a human user to input data on a handheld electronic device using an interface and input system comprising a plurality of input elements in a thumb-manipulated assembly to substantially optimize a biomechanical effect of the human user's thumb and fingers, wherein at least one input element is mapped to more than one text function, and one or more selection clements in a finger-manipulated input assembly, wherein each selection element is mapped to a unique shif position, the method comprising:
executing a selected text application from a plurality of applications, wherein the selected application is associated with a set of functions;
pressing a desired selection element of the finger-manipulated input assembly with a human a finger to select a desired shift position the selected text application; and
pressing a desired input element of the thumb-manipulated input assembly with a human thamb to imput a desired text character.
29. (Previously Presented) A hand-held clectronic device comprising:
a memory configured to store a plurality of applications, wherein each application is associated with a set of functions;
a processor configured to process a selected one of the plurality of applications;
a first input assembly disposed on a first surface of the electronic device, wherein the first input assembly comprises a plurality of input elements configured to be actuated by a human user's hand, wherein at least one of the input clements of the lirst input assembly is configured to map to one or more input functions of the set of functions associated with the selceled one of the plurality of applications; and
a sccond input assembly disposed on a second surface so as to substantially optimize a biomechanical effect of the human user's hand, wherein the sccond input assembly comprises one or more input elements configured to be manipulated by one or more of the human uscr's fingers, wherein at least one of the input elements of the second input assembly is a selectively configurable sensing surface so as to provide a plurality of delineated active areas, further whercin onc or more of the delineated active areas is mapped to one or more functions associated with the selected application, further wherein the memory is further configured to store for each application a mapping of the selectively configurable sensing surface to the plurality of delineated active arcas.
30. (Previously Presented) The hand-held elcetronic device of claim 1, wherein the selected one of the plurality of applications is a text application; and the one or more input. elements on the second surface of the second input assembly comprises one or more selection elements, whercin manipulations of the one or more selection clements causes the input elements on the first surface of the first input asscmbly to be selectively mapped from one text function to another text function.
31. (Previously Presented) The hand-held electronic device of claim 1, wherein the selected one of the plurality of applicalion is a game application, and at least one of the plurality of input clements of the first input assembly and at least one of the input elements of the second input assembly are cach configured to selectively map to one or more game functions.
32. (Previously Presented) The hand-held electronic device of claim 29, further comprising: an input controller, wherein the input controller receives a plurality of signals generated by the input elements of the first input assembly and the second input assembly when manipulated by the human uscr, and converts the plurality of signals into a form suitable to be intepreted by the processor.
33. (Previously Presented) The hand-held clectronic device of claim 32, wherein at least one input clement of the first input assembly or the second inpul assembly is configured to

Applicant : Beth Marcus, et al
Altorncy's Docket No.: $19140-002001$ Serial No. : $10 / 699,555$
Filed : October 31, 2003
Page : i3 olls
map to one or more input functions associated with the selected application that control a cursor on a screen.
34. (Prcviously Presented) The hand-held electronic device of claim 32, wherein the sclected one of the plurality of applications is a game application.
35. (Previously Presented) The hand-held electronic device of claim 34, wherein at least one input element of the first input assembly or the second input assembly is configured to map to one or more input functions associated with the game application that control a game character on a screen.
36. (Currently Amended) The hand-held electronic device of claim 34, whercin the input controller is further configured to interpret a movement of the human user's finger sliding across two or more delineated active areas as a change in the mapped function of the two or more delineated active arcas, wherein the mapped function is at least one of a speed control, a size control, a weapon fire control, and a position control. (faye 16, (ines-40).
37. (Currently Amended) The hand-held clectronic device of claim 34, wherein the input controller is further configured to interpret a pressure applied by the human user's finger on a selected onc of the delineated active areas as a change in the mapped function of the selected delineated active area, wherein the mapped function is at least one of a speed control, a size control, a weapon fire, and position control. fpage-16-4ines-4-30).
38. (Proviously Prcsented) The hand-held electronic device of claim 34, wherein al least one of the functions mapped to the input element of the first input assembly is a game function that is substantially optimized for actuation by the human user's thumb.
39. (Previously Presented) The hand-held electronic device of claim 38, wherein the game function that is substantially optimized for actuation by the human user's thumbs comprises a directional control.
40. Previously Presented) The hand-held clectronic deviec of claim 34. wherein at least one of the functions mapped to the delineated active areas is a game function that is substantially optimized for actuation by one or more of the human user's fingers.
41. (Previously Presented) The hand-held electronic device of claim 40, whercin the game function that is substantially optimized for actuation by one or more of the human user's fingers comprises a weapon fire control.
42. (Previously Presented) The hand-held electronic device of claim 40, whercin the game function that is substantially optimized for actuation by onc or more of the human user's fingers comprises a game character jump control.

Applicint	Beth Marcus, et al	Attorncy's Docket No.: 19146-002001
Scrial No.	10/699.555	
Filed	October 31, 2003	
Pape	15 or 18	

43. (Previously Presented) Amethod for configuring a human interface and input system for use with a hand-held electronic device configured to run a plurality of applications, cach application associated with a set of functions, the method comprising:
disposing on a first surface a first input assembly having a plurality of input elements configured to receive input from a human user's hand through manipulation of the plurality of input elements, whercin at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications;
disposing on a second surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input clements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application; and
mapping the set of lunctions of the selected application to the one or more input elements of the first input assembly and the second input assembly to substantially optimize a biomechanical eflect of the human user's hand.
44. (Previously Presented) The method of claim 43, wherein the selected application is al least one of a scrolling application, a text application and a game application.
45. (Previously Presented) The mcthod of claim 44 further comprising: physically or electronically labeling at least one input element of the first input assembly or the second input
Applicant: Beth Marcus. et al
Serial No.: $10 / 099,555$
Filed : October 31, 2003
Page : 16 of 18

Attorney's Docket No.: 19146-002001 Serial No. : $10 / 099,555$

Page : 16 of 18
assembly so as to visually indicate an input function that can be selectively aceessed by actuating the input element.
46. (Previously Presented) The method of claim 44 further comprising connecting a controller to the input elements of the first input assembly or the second input assembly, whercin the controller is configured to reccive signals generated by a manipulation of one or more of the input clements of first input assembly or the sccond input assembly.
47. (Previously Presented) The method of claim 46, wherein at least one input element of second input assembly having a plurality of active areas configurable by the controller to form a plurality of delincated active areas.
48. (Previously Presented) The method of claim 47 further comprising positioning a shape changing media relative to the one input element of second input assembly having a plurality of active arcas so as to permit the human user to tactilely discriminate betwecn the plurality of delincated active areas.
49. (Previously Presented) The hand-hcld clectronic device of claim 1 , wherein the processor is further configured to be communicatively coupled to a host electronic device.

Applicant : Beth Marcus, et al
Filed : October 31, 2003
Page : 17 of 18
50. (Previously Presented) The hand-held electronic device of claim 12, wherein the processor is further configured to be communicatively coupled to a bost electronic dovice.
51. (Previously Presented) The method of claim 19, wherein the controller is further conligured to be communicatively coupled to a host electronic device.
52. (Previously Presented) The method of claim 24, wherein the hand-held electronic device is further configured to be communicatively coupled to a host electronic device.
53. (Previously Presented) The method of claim 28, wherein the hand-held electronic device is further configured to interface with a host electronic device.
54. (Previously Prescnted) The hand-held elcetronic device of claim 29, whercin the processor is further configured to interface with a host electronic device.
55. (Previously Presented) The method of claim 43, whercin the hand-held clectronic device is configured to interface with a host electronic device.

Filed : October 31, 2003
Page : 18 of 18

## REMARKS

Claims 1, 3-21, 23-55 are pending. Claims 24 and 36-37 have been amended to correct typographical issucs. No new matter has been added.

No fees are believed to be due. Please apply any other required fees, or any credits to deposit account 06-1050, referencing the attorney docket number shown above.

Respectfully submitted.

Date: April 17, 2006


Fisla \& Richardson P.C. 12390 El Camino Real
San Diego, Califomia 92130
Tclephone: (858) 678-5070
Facsimile: (858) 678-5099
$10 \mathrm{t2} 20263 . \mathrm{kec}$


## OFFICIAL COMMUNICATION FACSIMILE:

OFFICIAL, FAX NO: (571) 273-8300

## Number of pages including this page 2

Applicant : Beth Marcus, ct al
Scrial No. : $10 / 699,555$
Filed : Octobser 31, 2003
Tille : Human Intorface Syslem

Commissioner for Patents
Art Unit : 2629
Examiner : Richard Hjerpe
P.O. Box 1450

Alexandria, VA 22313-1450
Attached to this facsimile communication cover sheet is a Request To Correct Attomey
 Trademark Office.

fohn P. Schnurer
Reg. No. 52,196

Fish \& Richardson P.C.
PTO Customer No. 20985
12390 El Camino Real
San Diego, Califomia 92130
Telephonc: (858) 678-5070
Fax: ( 858 ) (678-5099
10613595.doc

NOTE: This facsimite is intended for the adolessee only and may contain privideged or confidential information. If you have received this facsimile ta error, please immediately eall us collect at ( 858 ) 678-5070 to arrange for its return. Thank you.

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE


P.O. Box 1450

Alexandria, VA 22313-1450

## REQUEST TO CORRECT ATTORNEY DOCKET NUMBER

Applicants request that the Attorney Docket No. for the above application be changed from 16300-002001 to 19146-002001.

No tee is believed to be due. If, however, there are any charges or credits, please apply them to Deposit Account No. 06-1050.

Respectfully submitted,

Date: $\qquad$


Reg. No. 52,196
Fish \& Richardson P.C. PTO Customer No. 20985 12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099

10, 13553. d m
('HRTHKATH OF TKANSMISSIGAN RY FAESIAII.F


# frceived <br> Central fax center <br> MAR 202006 

Attoney"s Docket No.: 19146-002001

## OFFICLAL COMMUNICATION FACSIMLLE:

OFFICIAL FAX NO: (571) 273-8300
Number of pages including this page 21

Applicant : Beth Marcus, et al
Serial No. : 10/699,555
Filed : October 31, 2003
Title : Human Interface System

MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Attached to this facsimile communication cover sheet is a Preliminary Amendment, faxed this $20^{\text {th }}$ day of March. 2006 , to the United States Patent and Trademark Office.

Respectfully submitted,

Date: March 20, 2006


Fish \& Richardson P.C.
12390 El Camino Real
San Diego, Califomia 92130
Telephone: (858) 678-5070
Fax: (858) 678-5099
$10611243 . \mathrm{doc}$

NOTE: This facsinile is intended for the addressec only and may contain privileged or confidential information. If yon have received this facsimile in error, please immediately call us collect at (858) 678-5070 to arrange for its return. Thank you.

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

## RECEIVED

Applicant : Beth Marcus, et at
Serial No. : 10/699,555
Filed : October 31, 2003
Title : HUMAN INTERFACE SYSTEM

## Mail Stop Amendment

Commissioncr for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Art Unit : 2673
Examiner : Unknown

## PRELIMINARY AMENDMENT

Please amend the above-identified application as follows:

CERTIFICATE OF TR.ANSMISSION BY FACSIMLLE


Typed or Printed Name of Persom Signing Cerificale

```
Applicant : Beth Marcus, et at
Scrial No. : 10/690.555
Filed : October 31, 2003
Page : 2 of 20
```


## Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

## Listing of Claims:

1. (Currently Amended) A hand-held electronic device comprising: a mentory configured to store a plurality of applications, wherein cach application is associated with a set of functions;
a processor configured to process a selcctod one of the plurality of applicalions: a first input assembly strfaedhaving a plurality of input elemens on a first surface configured to receive input from a human user through manipulation of the plurality of
 input dements on the first surface is configured to selectively man fathereenfyured to provide setertive-regess to one or more thatyone input functions of the set of functions associated with the selected one of the plurality of applications; and
a second input assembly suffeo having one or more selection inputelements ons second sutfaceconfigured to be manipulated by one or more of the human user's fingers, wherein matatethation of at least one of the telection input elements on the second surface is furlhar configured to be selectively mapped to one or more input functions of the set of functions corresponding to the selccted one of the plurality of applications eaters inturfanetionef er-mor-inputelements techange, furiher wherein the plurality of ingut elements on the first
surface and the one or more input elements on the second surface are arranged so as to Substantially optimize a biomechanical effect of the human user's hand.
2. (Cancelled)
3. (Currently Amended) The hand-held electronic device of elaim 1 , wherein at least one or the seleetientinput elements of the second input assembly surfaee is a pressure sensor pad configurad to selcctively configurable so represent a plurality of delineated active areas, wherein manipulation of a delineated active area causes the input function of one or more input elements of the first input assembly to change.
4. (Curently Amended) The hand-held electronic device of chaim 3, further comprising a shape changing media configured relative to the presemfe sensor pad so as to permil We human uscr to lactilely discriminate between the plurality of delineated active areas.
5. (Currently Amended) The hand-held electronic deviec of ctam 1 futher eomprising apreesser, whercin the processor receives signals gencrated by the input elements ard selection elementeof first or second input assemblies whon manipulated by the human user.
6. (Curtently Amended) The hand-held electronic device of claim I further comprising an input controller, wherein the input controller receives signals gencrated by the

Applicant: Beth Marcus et al
Filed : October 31, 2003
Page : 4 of 20
imput clements and selevionelements-of first or second inpul assemblies when manipulated by the human user and converts the signals into a form suitable to be interpreted by the [[a]] processor.
7. (Currently Amended) The hand-held electronic device of claim 1, wherein at least one of the seferion input elements of the second input assembly is a rotary scnsor diat.
8. (Currently Amended) The hand-held electronic device of claim 1 , wherein at least one of the seletien-input elements of second impul assembly is a D-pad.
9. (Currenlly Amended) The hand-held clectronic device of claim 1, further comprising at least one palpable delent, wherein the detent is associated with at least one of the imput elements of-seleetiefrobements-of the first or second input assemblies so as to provide tactile feedback to the human user when the human user manipulates the input element associated with the palpable detent.
10. (Currently Amended) The band-held electronic device of clam 1 further comprising onc or more vibratory or force producing units, at least one of the vibratory or fores
 user's manipulation of at least one of the input clements ofseterion-eternettre of the limst or second input assemblies.

Applicant : Beth Marcus, et al
Altorney's Docket No.: 19146-002001
Serial No. : 10/699,555
Filed : October 31. 2003
Page : 5 of 20
11. (Currently Amended) The hand-held electronic deviec of claim 10, whercin at least one of the vibratory units provide tactile feedback in response to events occurring in the sclected atoftwre application running on [[a]] the processor.
12. (Curtently Amended) A hand-held electronic device comprising:
a memory configured to store a plurality of applications, wherein each application is associated with a set of functions:
a processor conligured to process a selected one of the plurality of applications, wherein the set of functions associated with the selected application includes a plurality of text symbol functions and a plurality of shifting functions;
a lirst surface having a plurality of input elements conligured to reccive input from a human user through manipulation of the plurality of input clements by both-of the humatueris-thathe ofatsytus, wherein at least one of the input elements of the first surface is further conligured to provide seleetite-acess- selectively map to more than one text symbol function; and
a second surface having one or more input elements, wherein at least onc of the imput elements of the second surface with one or more-inputeratent having one or more selectable active arcas configured to be manipulated by one or more of the human user's fingers, cach selcelable active area configured to selectively map to a different shifting function, wherein manipulation of [[an|] one of the selectable active area causes the text symbol function of the one
or more input elements of the first surface to change, further wherein the plurality of innut elcments of the first surface and the one or more input elements of the second surface are arranged so as to substantially optimize a biomechanical effect of the human user's band.
13. (Currently Amended) The hand-held electronic device of claim 12 further comprising a controller, wherein the controller receives signals generated by the human user's manipulation of the input elements of the first surface or active areas.
14. (Currently Amended) The hand-held electronic device of claim 13 further comprising a dome cap positioned above at least one input element of the first surface or the second surface and capabte of providing tactile feedback to the human user when the input clement associated with the dome cap is manipulated.
15. (Currently Amended) The hand-held electronic device of claim 13 further comprising one or more vibratory units capable of providing tactile feedback.
16. (Currently Amended) The band-held clectronic device of claim 13 further comprising one or more force producing units capable of providing tactile fecdback.
17. (Currently Amended) A method for contiguring a human interface and input system for use with a hand-held electronic device configured to rum a plurality of applications, each application associated with a set of functions, the method comprising:
disposing on a first surface a first input assembly having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of
 input clements of the lirst input assembly is further configured to provide selective acees-map to more than one input function associated with a selected one of the plurality of applications; and disposing on a second surface a second inputassembly having one or more sel input clements configured to be manipulated by one or more of the human user's
 Hepterements fooherge at least onc of the input clements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application; and
arranging the plurality of input clements of the first inpul assembly and the one or more input elements of the second input assembly to substantially optimize a biomechanical effect of the buman user's hand.
18. (Currently Amended) The method of claim 17 further comprising:-whereif physically or electronically labeling at least one eteh-input clement of the first input assembly or

Applicant : Beth Marcus et al
Attorney's Docket No.: 19146-002001
Serial No. : $10 /(099,555$
liled : October 31, 2003
Page : 8 ot 20
the scond input assembly is-ratheled so as to visually indicate indieating each an inpul function that can be selectively accessed by actuating the input clement.
19. (Currently Amended) The method of claim 17 further comprising connecting a controller to the input elements afti-selection-elemeratsor the lirst input assembiy or the second input assembly, wherein the controller is configured in receive eqpebloffreeeivink signals gencrated by the-htatanusers a manipulation of one or more of the input elements-arselection thent of first input assembly or the secondinput assembly.
20. (Cumently Amended) The method of claim 1!, whercin at least onc seleetem input element of sccond input asscmbly having a plumaty of active arcas configurable by the controller to form a plurality of delineated active areas.
21. (Cumently Amended) The method of claim 20 further comprising positioning a shape changing media relative to the one-seleotion input element of sceond input assembly having a plurality of active areas so as to pemit the human user to tactilely discriminate between the plurality of delineated active areas.
22. (Cancellcd)

Applicant: Beth Marcus, et al
Altorncy's Dockel No.: 19146-002001
Serial No. : 10/699,555
Filed : October 31, 2003
Page : 9 or 20
23. (Currently Amended) The method of claim 17 futher comprising positioning a palpable detent with at least one input elenent-selection-tement of the first input assembly or the second input assembly so as to provide tactile feedback when manipulated by the human user.
24. (Currenlly Amended) A method for inpulting data on a band-held electronic devicc having a first surface with a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements anementan Hexf'shthens-or in-stylus, wherein at least one of the input elements is further configured to presernap to a plurality of symbols in a data input mode, wherein cach of the plurality of symbols is associated with a unique index position identifier, and a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, whercin each selection element corresponds to one of the unique index position identifiers, further wherein the plurality of input elements and the one or more solection dements are arranged to substantially optimize a bionechanical effect of the human user's hand, the method comprising:
exceuting a selected application from a plurality of applications, whercin the selected application is associated with a set of functions
determining the index position identificr of a desired symbol to be inpulted based on the functions associated with the selected application;

Applicant: Beth Marcis, ct al
pressing the selection element corresponding to the index position identifier of the desired symbol with any digit or object held in the human user's hand fanger; and
 desired symbol with any digit or object hetd in the human user's hand theor the stytus. (page 14, lines 2-27).
25. (Currently Amended) The method of claim 24, wherein each input element is physically or clectronically labeled indicating cach symbol that eat-be-selectively acoessed is mapped to by the input element and a positional order in which each symbol can be selectively accessed by actuating the input element.
26. (Currently Amended) The method of claim 24, wherein determining the index position identilier of the desired character to be inputted comprises:
locating the input eloment configured to mapprovide selective-aeous to the desired symbol; and
counting from lef to right the number of symbols preceding the desired symbol labeted on the located input clement, wherein the index position identifier of the desired symbol is the number of symbols preceding the desired symbol plus onc.
27. (Currently Amended) The method of claim 24, wherein at least one of the input clements or selection elements is further conligured to providenelectiveaceess-man to a plurality

Applicant : Beth Marcus, ct al
Athorncy's Dockel No.: 19146-002001
Serial No. : 10/690.555
Filed : October 31, 2003
Page : 11 of 20
of modes corresponding to the selected application executing on the hand-held elcetronic device, at least one of the modes is the data input mode, the method further comprising enabling the data input mode.
28. (Currently Amended) A method for a human user to input data on a hand-held electronic device using an interface and input system comprising a plurality of input clements in a thumb-manipulated assembly 10 substantially optimize a biomechanical effect of the human user's thumb and fingers, wherein at least one input element is mapped to more than onc text function, and one or more selection elements in a finger-manipukted input assembly, wherein each selection element is mapped to a unique shift position, the nethod comprising:
executing a selected text application from a plurality of applications, wherein the selected application is associated with a set of functions
pressing a desired selection clement of the finger-manipulated input assembly with a human a linger to select a desired shift position the selected lext application; and pressing a desired input element of the thumb-manipulated input assembly with a human thumb to input a desired text character,
29. (Currently Amended) A hand-held clectronic device comprising: a memory configured to store a plurality of applications, whercin each application is associatcd with a sel of functions;
a processor configured to process a selected one of the plurality of applications;
a first input assembly disposed on a first surface of the electronic device, whercin the first input assembly comprises a plurality of input elements configured to be actuated by a human user's hand thanib, wherein at least one of the input elements of the first input assembly is configured to map to one or more input functions of the set of functions associated with the selected one of the plurality of applications; and
a second input assembly disposed on a differentscond surface frem-Hze-frist inputasiembly so as to substantially optimize a biomechanical effect of the human user's hand
 configured to be manipulated by one or more of the human user's fingers, wherein at least one of the input elements of the second input asscmbly is a sclectively being a configurable sensing surface so as to provide a plurality of delineated active areas, further wherein one or more of the delineated active areas is mapped to onc or more functions associated with the selected application, further wherein the memory is further configured to store for cach applicationa mapping of the selcetively configurable sensing surface to the plurality of delincated active areas. ;and
 pheratity of delineated aetive areas.
30. (New) The hand-held electronic device of claim 1, whercin the solected one of the plurality of applications is a text application; and the one or more input clements on the second surface of the second input assembly comprises one or more selection elements, wherein

Applicant : Beth Marcus, et a!
Attorney's Docker No.: 19146-002001.
Scrial No. : 10/699.55S
piled : October 31, 2003
Page : 33 of 20
manipulations of the one or more selection elements causes the input elements on the first surface of the first input assembly to be sclectively mapped from one text function to another text function.
31. (New) The hand-held electronic device of claim 1, whorcin the selected one of the plurality of application is a game application, and at least one of the plurality of input elements of the first input assembly and at least one of the input elements of the second input assembly are each configured to selectively map to one or more game functions.
32. (New) The hand-held electronic device of claim 29, further comprising: an input controller, wherein the input controller receives a plurality of signals generated by the input elements of the first input assembly and the second input assembly when manipulated by the human user, and converts the plurality of signals into a form suitable to be interpreted by the processor.
33. (New) The hand-held electronic device of claim 32. whercin at lcast onc input element of the first input assembly or the second input assembly is configured to map to one or more input finctions associated with the selected application that control a cursor on a screen.
34. (New) The hand-hcld electronic device of claim 32, wherein the selected one of the plurality of applications is a game application.
35. (Ncw) The hand-held electronic device of claim 34, wherein at least one input element of the first input assembly or the second input asscmbly is configured to map to onc or more input finctions associated with the game application that control a game character on a screen.
36. (New) The hand-held electronic device of claim 34, wherein the input controller is further configured to interpret a movement of the human user's finger sliding across two or more delineated active areas as a change in the mapped function of the two or more delineated active areas, wherein the mapped function is at least one of a speed control, a size control, a weapon fire control, and a position control. (page 16, lines 4-30).
37. (New) The hand-held electronic device of claim 34, wherein the input controller is further configured to interpret a pressure applied by the human user's finger on a selected one of the delineated active areas as a change in the mapped function of the selected delineated active area, wherein the mapped function is at least one of a speed control, a size control, a weapon firc, and position control. (page 16, lines 4-30).
38. (New) The hand-held electronic device of claim 34, wherein at least one of the functions mapped to the input element of the first input assembly is a game function that is substantially optimized for actuation by the human user's thumb.

```
Applicant: Beth Marcus, et al
Serial No. : 10/699,555
Haled : Ocrober 31. 2003
Page : 15 of 20
```

Altorney's Docket No.: 19146-002001
39. (New) The hand-held electronic device of claim 38, wherein the game function that is substantially optimized for actuation by the human user's thumbs comprises a directional control.
40. (New) The hand-held electronic device of ctaim 34, wherein at least one of the functions mapped to the delineated active arcas is a game function that is substantially optimized for actuation by one or more of the human user's fingers.
41. (New) The hand-held electronic device of elaim 40, wherein the game function that is substantially optimized for actuation by one or more of the human uscr's fingers comprises a weapon fire control.
42. (New) The hand-held electronic device of claim 40, wherein the game function that is substantially optimized for actuation by one or more of the human user's fingers comprises a game character jump control.
43. (New) A method for configuring a human interface and input system for use with a hand-held electronic device configured to run a plurality of applications, cach application associated with a set of functions, the method comprising:
disposing on a first surface a first input asscmbly having a plurality of input elements configured to receive input from a human user's hand through manipulation of the

Applicant: Beth Marcus, et al
Attorney`s Docket No.: 19146.002001
Scrial No. : 10/699.555
Filed : Octnber 31, 2003
Page: 16 of 20
plurality of input elements, wherein at least one of the input elements of the first input assembly is further configured to map to more than one input function associated with a selected one of the plurality of applications;
disposing on a sccond surface a second input assembly having one or more input elements configured to be manipulated by one or more of the human user"s fingers, whercill at least one of the input elements of the second input assembly is further configured to selectively map to one or more input functions associated with the selected application; and
mapping the set of functions of the selected application to the one or more input clements of the first input assembly and the second input asscmbly to substantially optimize a biomechanical effect of the human user's hand.
44. (Now) The method of claim 43, whercin the selected application is at least one of a scrolling application, a text application and a game application.
45. (New) The method of claim 44 further comprising: physically or electronically labeling at least one input element of the first input assembly or the second input assembly so as to visually indicate an input function that can be sclectively accessed by actuating the input element.
46. (Ncw) The method of claim 44 further comprising connecting a controller to the input elements of the first input assembly or the second input assembly, wherein the controller is

Applicant : Beth Marcus, et al
Serial No. : $10 / 699,555$
Fited : Oetober 31,2003
Patge : 17 of 20
configured to receive signals generated by a manipulation of one or more of the input elements of first input assembly or the second input assembly.
47. (New) The method of chaim 46, wherein at least one input element of second input assembiy having a plurality of active areas configurable by the controller to form a plurality of delineated active arcas.
48. (New) The method of chaim 47 further comprising positioning a shape changing media relative to the one input element of second input assembly having a plurality of active areas so as to permit the human user to tactitely discriminate between the plurality of delineated active areas.
49. (New) The hand-held electronic device of claim 1, wherein the processor is lurther configured to be communicatively coupled to a host electronic device.
50. (New) The hand-hed electronic device of claim 12, wherein the processor is further configured to be communicatively coupled to a host electronic device.
51. (New) The method of claim 19, wherein the controller is further conligured to be commanicatively coupled to a host electronic device.

Applicant : Beth Marcus, et al
Attorney's Docket No.: 19146-002001
Serial No. : 10/690,555
filed : October 31, 2003
Page : 18 of 20
52. (New) The method of claim 24, whercin the hand-held elcetronic device is further configured to be communicatively coupled to a host clectronic device.
53. (New) The method of claim 28, wherein the hand-held elcetronic device is further conligured to interface with a host clectronic device.
54. (New) The hand-held electronic device of claim 29, whercin the processor is furthor configured to interface with a host electronic device.
55. (New) The method of claim 43, whetein the hand-held electronic device is configured to interface with a host electronic device.

Applicamt: Beth Marcus, et al Serial No. : 101699.555
Filed : October 31, 2003
Prage : 19 ot 20

Altormey's Focker No.: 19146-002001

## REMARKS

Claims 1-29 were pending prior to this preliminary amendment. Claims 1, 3-21 and 2329 have been amended. Claims 2 and 22 have been cancolled. Now claims $30-55$ have been added. No new matter has been added.

The specification supports the claim amendments. Support for amended claims 1 and 329 and new claims $30-5.5$ can be found at least on page 5, lines 9-26: page 6, line 28 - page 7, line 3; page 7, lines 13-31; page 9, lines 17-22; page 10 , line 9 - page 11, line 7; page 13, lines 28-29; page 15 , lines $11-19$; page 16 , lines $4-30$; page 19 , line $0-$ page 20 , line 4 ; and page 21 , lines $3-5$; page 8 , line $28-$ page 9 , line 11; page 9, line 14 - page 11 , line 3 ; page 12, lines $9-12$; page 13 , lines 17.22 ; page 13 , line 30 - page 14 , line 27 ; page 20 , lines $12-17$; page 16 , lines $4-$ 30: page 17. lines 1-22; page 18, line 24 - page 19, line 11 and FIGS. 2-3 and 8 .

A processor and a memory for storing and processing a selected one of a plurality of applications as recited in claims 1, 12, 17.24, 28-29, and 43 are described at least on page 9 , lines $16-30$. A first input assembly and a second input assembly configured to selectively map to a selection of input functions as recited in clams $1,12,17,24,28-29$, and 43 are described at least on page 10, linc $9-$ page 11, line 3; page 12, lines $9-11$; page 13 , line $30-$ page 14, line 27; and FIG. 2. Arranging a plurality of input elements to substantially optimize biomechanics of the hand as recited in claims $1,12,17,24,28-29$, and 43 was previously recited in cancelled claim 2 and 22 and supported in the specification at least on page 8 , line 28 - page 9 , line 11 and page 20, lines 12-17. Physically and electronically labeling input elements as recited in claims 18, 25, and 45 is described at least on page 12, line $9-$ page 14, line 27. A text application selcctively mapped to a plurality text functions as recited in claims 30 is described at least on page 13, line 30 - page 14, line 27. A game application as recited on claims $31,34-42$ and 44 is described at least on page 5, lines 9-26; page 7 , lines 13-31; page 9, lines 17-22; page 10, line 27 - page 11, line 3; page 13. lines $28-29$; page 15, lines $11-19$; page 16 , lines $4-30$; page 19 , line 6 - page 20, line 4; and page 21, linces 3-5. An input controller as recited in claims 32-33 and 4648 is described at least on page 6, line 28 - page 7 , line 3 ; page 10 , line 9 - page 11, linc 7 ; page

Applicant : Beth Marcus, et al

16, lines $4-30$; and page 17, lines 1-22. Support for new claims 49-55 can be found at least on page 18, line 24 - page 19, line 11 and FIG. S.

Please apply the excess claims fee of $\$ 6.50 .00$, and any other required fees, or any credits to deposit account 06-1050, referencing the attorney docket number shown above.

Respectfully submitted,

Date:_March 20. 2006

Fish \& Richardson P.C. 12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099
$10611088 . d x=$


Ton P. Schnurer
Reg. No. 52,196


Applicant : Beth Marcus, et al
Serial No. : 10/699,555
Filed : October 31, 2003
Title : HUMAN INTERFACE SYSTEM

Art Unit : 2673
Examiner : Unknown

MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

## INFORMATION DISCLOSURE STATEMENT

Applicants request consideration of the references listed on the attached PTO-1449 form. Under 37 C.F.R. § 1.98 (a)(2)(ii), only copies of foreign patent documents and/or non-patent literature are enclosed. Copies of any listed U.S. patents or U.S. patent application publications can be provided upon request. A copy of a communication from a foreign patent office in a counterpart application is also enclosed.

This statement is being filed within three months of the filing date of the application or before the receipt of a first Office Action on the merits. Please apply any charges or credits to Deposit Account No. 06-1050.

Date: May 6,2005
Respectfully submitted,
$\qquad$


John P. Schnurer
Reg. No. 52,196
Fish \& Richardson P.C.
12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099



U.S. Patent Documents							
Examiner   Initial	Desig.   ID	Document   Number	Publication   Date	Patentee	Class	Subclass	Filing Date   If Appropriate
	AA	$2003 / 020692$	$1 / 30 / 2003$	Griffin, et al.			
	AB	$2003 / 193418$	$10 / 16 / 2003$	Shi			
	AC	$2002 / 163504$	$11 / 7 / 2002$	Pallakoff			
	AD	$2003 / 169188$	$9 / 11 / 2003$	Chang et al.			
	AE	$2003 / 061103$	$3 / 27 / 2003$	Kanai			
	AF						
	AG						
	AH						
	AI						
	AJ						
	AK						

Foreign Patent Documents or Published Foreign Patent Applications

Examiner   Initial	Desig.   ID	Document   Number	Publication   Date	Country or   Patent Office	Class	Subclass	Translation	
	AL	1103883	$5 / 30 / 2001$	EPO				
	AM	0585730	$3 / 9 / 1994$	EPO				
	AN	$03 / 042805$	$5 / 22 / 2003$	WIPO				
	AO							
	AP							


Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner   Initial	Desig.   ID	Document
	AQ	
	AR	
	AS	
	AT	

[^5](11)

## EUROPEAN PATENT APPLICATION

(43) Date of publication:
(51) Int Cl.?: G06F 1/16, G06K 11/18 30.05.2001 Bulletin 2001/22
(21) Application number: 00310527.7
(22) Date of filing: 28.11.2000
(84) Designated Contracting States: AT BE CH CY DE DK ES FIFR GB GRIE IT LI LU MC NL PT SETR
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 29.11.1999 US 450238
(71) Applicant: Xerox Corporation, Patent Department Rochester, New York 14644 (US)
(72) Inventors:

- Gujar, Anuj Uday

Mountain View, California 94040 (US)

- Goldberg, David Palo Álto, California 94301 (US)
- Fishkin, Kenneth P.

Redwood City, California 94063 (US)

- Harrison, Beverly L.

Palo Alto, California 94306 (US)

- Want, Roy

Los Altos, California 94024 (US)
(74) Representative: Rackham, Stephen Neil GILL JENNINGS \& EVERY, Broadgate House,
7 Eldon Street
London EC2M 7LH (GB)
(54) Input mode selection on a palmtop computer
(57) A palmtop computer (100) for entering characters using one or more input modes (such as alpha, numeric, caps, punctuation). In one example, a physical sensor is coupled to select the input mode. The physical sensor may be in the form of a button (118, 122, 124, 126,128 ), rocker switch (200), dial (402), pressure strip $(302,306)$, moveable bar $(612,814,832)$, or acceleromerer mounted to the device. The physical sensor may also be mounted to a pen $(900,1002)$. In another example, a ridge $(502,512)$ is formed on the digitizer pad (103) and positioned to define input regions $(504,506)$ associated with particular input modes. In another example, a border (602) is formed around the digitizer pad. The border includes a ridge $(604,606,608,610)$ coupled to select the input mode. The digitizer pad may also be textured (616). A first lextured region (702) may be associated with one input mode and a second textured region (704) may be associated with another input mode.


## Description

[0001] The present invention relates to the field of palmtop computers and more particularly, though not solely, to the selection of input modes for entering alphanumeric characters on palmtop computers.
[0002] The palmtop computer has evolved as a portable device which provides for easy storage, organization, and recollection of information. Palmtop computers are small, compact computers that generally fit in the palm of a person's hand. The palmtop computer allows for easy operation, as a user simply holds the palmtop computer in one hand (the "non-writing hand") while entering information with the other hand (the "writing hand"). Because of the small size of the palmtop computer, the user may simply place the device in a pocket or briefcase when not in use.
[0003] When the user wishes to enter information, it is desirable to record the information promptly and accurately. Otherwise, a broad range of problems might occur when the user needs to recall the information. A busy professional might miss an important deadline or meeting. A grocery shopper might buy only a portion of the items needed to prepare a meal.
[0004] Conventional palmtop computers generally employ a digitizer pad upon which a user may write with a pen or finger. A handwriting recognition system is generally incorporated to recognize strokes and presses made by the user upon the digitizer pad as individual characters. The handwritten characters are then converted into a machine-readable format such as ASCII code.
[0005] One problem associated with conventional palmtop computers has been the poor performance of handwriting recognition systems. Characters input by the user are often improperly identified. For example, a user may attempt to write the number " 1 ," but the letter " 1 " is recognized. Similar, the letter "s" may be confused for the number " 5 ." When the user recalls what was entered, the palmtop computer returns the erroneous information. The user must then waste time and energy in attempting to ascertain what he originally wrote.
[0006] Techniques have been developed to differentiate between characters written on the digitizer pad. One way has been to provide for different "modes" of input. In one embodiment, one node allows for only lowercase letters to be inpul ("alpha mode"), a second mode is for only uppercase letters ("caps mode"): a third mode is for numbers ("numeric mode"), and a fourth mode is for punctuation ("punctuation mode") . When input modes are used, the number of possible characters which may be confused for a particular stroke is greatly reduced. For example, if alpha mode is selected, the recognition system will not recognize the letter " $s$ " as the number " 5 ." similarly, a lowercase " $c$ " will not be recognized as an uppercase "C."
[0007] Selecting and switching among various input modes using conventional means takes time and effort
on the part of the user. The user must take some action to switch from one mode to another, in addition to the strokes and motions he would otherwise have to make to input the actual characters. For example, some con5 ventional schemes involve the use of "mode change" strokes which the user makes on the digitizer pad to change input modes. These mode change strokes must be interspersed with strokes the user ordinarily would make to enter characters. Such systems present various problems. Additional time is required to make the mode change strokes. The mode change strokes themselves are often confused for input characters. Also, it is often not immediately clear to the user which input mode is being used. The particular mode may be displayed on a display area of the digitzer pad, but the user must still look at the device to determine which mode is active.
[0008] Thus, conventional methods for input mode selection introduce such discontinuiries into the input activity that the quality of interaction is reduced. Users often compromise what is input for the ease of inputting it. For example, users may choose not to take the time to capitalize or punctuate when they enter notes because of the time and effort required to change modes. While such informal data entry may be acceptable for personal notes, it may not be acceptable if the user is creating or editing a document that is to be distributed to others.
[0009] The present invention relates to a palmtop computer. Characters may be entered using one or more input modes. The computer includes a casing and a digitizer pad coupled to the casing.
[0010] According to one aspect of the present invention, the computer includes a physical sensor coupled to select an input mode.
[0011] According to another aspect of the present invention, a ridge is formed on the digitizer pad. The ridge is positioned on the pad to define a first input region associated with one input mode and a second input region associated with another input mode.
[0012] According to yet another aspect of the present invention, a border is formed around the digitizer pad. The border includes a ridge coupled to select an input mode.
5 [0013] According to yet another aspect of the present invention, the digitizer pad has a first textured region associated wilh one input mode and a second textured region associated with another input mode.
[0014] According to yet another aspect of the present invention, a pen is incorporated. A physical sensor is mounted to the pen and coupled to select an input mode.
[0015] Particular embodiments of the present invention will now be described with reference to the accompanying drawings in which:-

Fig. 1 a is a front view of a palmtop computer 100 constructed according to an exemplary embodiment of the present invention;

Fig. 1 b is a top view of a plurality of mechanical buttons, mounted to palmtop computer 100, constructed according to a further exemplary embodiment of the present invention;
Figs. $2 \mathrm{a}, 2 \mathrm{~b}$ and 2 c are side views of a rocker switch 200, mounted to palmtop computer 100, constructed according to a further exemplary embodiment of the present invention;
Fig. 3 is a front view of a palmtop computer 300 incorporating pressure strips constructed according to a further exemplary embodiment of the present invention.
Fig. 4 is a side view of a dial, mounted to palmtop computer 100, constructed according to a further exemplary embodiment of the present invention; Figs. 5 a and 5 b are front views of user input areas 500a and 500b of palmtop commuters constructed according to further exemplary embodiments of the present invention;
Figs. $6 \mathrm{a}, 6 \mathrm{~b}$ and 6 c are front views of user input $a r$ eas 600a, 600b and 600c of palmtop computers constructed according to further exemplary embodiments of the present invention;
Figs. 7 a and 7 b are front viows of user input areas 700a and 700b of palmtop computers constructed according to further exemplary embodiments of the present invention;
Figs. $8 a$ and $8 b$ are partial front views of palmtop computers 800a and 800 b with moveable bars constructed according to exemplary embodiments of the present invention;
Fig. 9 shows an exemplary pen 900 for use as part of a paimtop computer system constructed according to a further exemplary embodiment of the present invention; and
Figs. 10a and 10b show exemplary pens 1000a and 1000b for use as part of palmtop computer systems. constructed according to further exemplary embodiments of the present invention.
[0016] Fig. 1a shows a palmtop computer 100 which includes a casing 108 made of plastic or any suitable material. Casing 108 has a front panel 110, a left side panel 112 , a right side panel 114 and a back panel. Fitted to front panel 110 is a touch sensitive digitizer pad 103 which is capable of detecting presses and movements of a pen or finger. In the embodiment of Fig. 1a, digitizer pad 103 covers a display screen 102 and a user input area 104. Display screen 102 displays information to a user. User input area 104 is used to input text. In one alternative embodiment, digitizer pad 103 covers only user input area 104. In another alternative embodiment, digitizer pad 103 covers a homogenous area which serves as both a display screen and user input area. Other assignments of areas to regions under digitizer - pad 103 may be used as should be recognized by those skilled in the art.
[0017] In Fig. 1a, palmtop computer 100 includes a
plurality of mechanical buttons 106a-106g mounted to front panel 110. Buttons 106a-106g provide the user with various functions for operating palmtop computer 100. In the embodiment of Fig. 1a, button 106a is a pow-
of a right-handed user's left hand when holding the device, to facilitate easy switching between modes. A lefthanded user may use the same device and switch modes with the thumb of his right hand. In an alternative embodiment, button 118 is positioned along left panel 112 of casing 108, rather than right panel 114. Such is desirable for the left-handed user who holds palmtop computer 100 with his right hand. The user may then operate button 118 with the forefinger or middle finger of his right hand.
[0023] In one exemplary embodiment, button 118 is coupled to the processor within palmtop computer 100. Pressing button 118 sends a signal to the processor instructing the processor to select an input mode. In other exemplary embodiments, software programmed into the processor is used to identify the selection of input modes. In one example, pressing button 118 sends a signal to a register to change one or more status bits representing the parlicular inpul mode. Responsive to some external action like lifting the pen, the software checks the status bit and selects the input mode accordingly. In another example, the software simply checks the status bit periodically to determine the input mode. Other implementations for coupling button 118 to select input modes will be recognized by one skilled in the art. [0024] Particular input modes are selected by pressing mechanical button 118. In one embodiment, successively pressing mechanical button 118 causes computer 100 to cycle through the available input modes: caps, numeric, punctuation, alpha, caps, numeric, etc. In another embodiment, specific combinations or sequences of motions cause system 100 to select particular modes. For example, a press and hold selects caps mode, similar to a "CAPS" key on a typewriter. A double press and hold selects numeric mode. When the button is released, the device returns to alpha mode. Other implementations may be used as should be recognized by the skilled artisan.
[0025] Fig. 1b is a top view of a plurality of mechanical buttons 122, 124, 126, 128 which are mounted to palmtop computer 100. The buttons are mounted along side panel 114 of casing 108, preferably proximate the user's fingers when holding the device. Each of the four mechanical buttons is assigned a particular input mode. In one example, button 122 is designated as alpha mode, button 124 is for caps mode, button 126 is for numeric mode, and button 128 is for punctuation mode. Each of the buttons is coupled to select input modes similar to button 118 of Fig. 1a. In this way, pressing any one of the buttons switches to the respective input mode assigned to that button.
[0026] Figs. 2a-2c illustrate another exemplary embodiment of a physical sensor constructed according to the present invention, in the form of a rocker switch 200. The rocker switch is preferably mounted on a side panel 114 or 112 of palmtop computer 100 and positioned along the side panel similar to mechanical button 118. The rocker switch 200 is coupled to select input modes
for palmtop computer 100, using techniques described above with respect to Figs. 1a and 1 b .
[0027] In Fig. 2a, switch 200 sits in a neutral position 202 when not acted upon by external forces. As shown
5 in Fig. 2b, the user may force the switch into an "up" position 204 by rocking the switch in one direction with his finger. As shown in Fig. 2c, the user may also force the switch into a "down" position 206 by rocking the switch in the opposite direction. When the user releases rocker switch 200, the switch springs back to neutral position 202 of Fig. 2a.
[0028] In one exemplary embodiment, alpha mode is selected as the input mode when rocker switch 200 is in neutral position 202. Moving rocker switch 200 to up
$\qquad$ 1103883A2_I_
palmtop computer 100, constructed according to an exemplary embodiment of the present invention. Dial 402 is coupled to select input modes for paimtop computer 100 using similar techniques as described above. Dial 402 rests in a neutral position when not acted upon by external forces. Dial 402 may be rotated in one direction to define an "up" position and in the opposite direction to define a "down" position. Preferably, the up and down positions are offset by about 15 degrees from neutral position. One or more springs are preferably incorporate to cause dial 402 to return to neutral position when the user releases the dial.
[0033] In Fig. 4, dial 402 is configured, in one example, so that neutral position is associated with alpha mode. Moving dial 402 to the up position changes modes to numeric mode, and moving dial 402 to the down position changes the input mode to caps mode. Similar to rocker switch 200, dial 402 may be pressed into side panel 11.4 to define a pressed position 410 for switching to another input mode, such as punctuation mode. Various other assignments of particular input modes to the available positions for dial 402 are possible, as will be recognized by those skilled in the art.

## Haptic Feedback

[0034] In some of the following exemplary embodiments, the input area of the palmtop computer is divided into input mode regions for entering particular kinds of characters. Boundaries between these regions are often delineated by surface textures or ridges, described in more detail below. These boundaries are advantageous as they allow the user to "feel" his way from region to region as he moves a pen or his finger over the input area. The user can thus quickly and easily learn to as sociate particular input modes with the particular regions so that when using the device, the user will know the region in which he is entering characters without having to look at the device.
[0035] There are several variations on the haptic feedback technique. One variation involves ridges which serve as boundaries to differentiate between input mode regions or zones. In one embodiment, shown in Fig. 5a, a ridge 502 extends vertically across a user input area 500a of a palintop computer from a top side 508 to a bottom side 510 of input area 500a. In this way, ridge 502 defines a first input zone 504 and a second input zone 506. In an alternative embodiment, (not shown) ridge 502 extends horizontally along input area 500a such that input zones 504 and 506 are defined on upper and lower sides of ridge 502. Ridge 502 is prefcrably molded as part of the digitizer pad of input area 500a, although ridge 502 may also be formed separately of some suitable material such as plastic and affixed to the digitizer pad by an adhesive.
[0036] In one implementation of input area 500a of Fig. 5a, first input zone 504 is designated as alpha mode, and second input zone 506 is designated as nu-
meric mode. The palmtop computer is programmed so that the regions of the digitizer pad underlying these input zones recognize characters of only that particular mode. Other designations of particular modes may be defined by the user as desired. In addition, a physical sensor such as mechanical button 118 of Fig. 1 may be incorporated to provide for other modes of input. For example, a user may press mechanical button 118 to switch the designations of input zones 504 and 506 from o alpha mode and numeric mode to caps mode and punctuation mode, respectively.
[0037] Fig. 5b illustrates an incur area 500b, constructed according to a further exemplary embodiment of the present invention, incorporating a second fidge 15512 passing across input area 500b from a left side 514 to a right side 516 . Thus, when second ridge 512 is used in conjunction with ridge 502, four input zones are defined. In one example, zone 504 is for alpha mode, zone 506 is for numeric mode, zone 518 is for caps mode, and zone 520 is for punctuation mode. Other designations may be made, as will be recognized by those skilled in the art.
[0038] Fig. 6a illustrates a user input area 600a with a border 602 formod around the input area. The border 602 includes a plurality of ridges $604,606,608,610$. A top ridge 604 is positioned along the top of input area 600a, and a bottom ridge 606 lies along the bottom of input area 600a. Left and right tidges 608 and 610 are positioned at the left and right sides of input area 600a, 6a, each ridge is made of plastic or some similar material and flexible or moveable in a direction away from the opposite ridge on the other side of the input area. In this example, the ridges are preferably not connected to one
another at their respective ends so the ridges can move independently of one another. Each of the ridges is positioned proximate to a pressure or contact sensor. The contact sensors are indemendently coupled to the palmtop computer processor. A spring or some other expandable device is preferably situated between each ridge and its associared sensor to separate the two during normal operation. To select an input mode, the user activates the appropriate sensor by touching the associated ridge and pressing it into contact with the sensor. [0042] As shown in Fig. 6a, user input area 600a further includes a relatively smaller inner border 613 formed inside border 602. The inner border 613 may be molded as part of the digitizer pad of input area 600a or formed separately and affixed to the digitizer pad. Inner border 613 is preferably shaped with graded or angled sides similar to ridges 502 and 512 of Figs. 5a and 5b, as opposed to the stepped inner edges 612 of border 602. The inner border 613 thus provides haplic feedback, as the user feels a slight bump when he drags his pen or finger over the inner border towards border 602. In this way, the user can recognize when he is approaching border 602 and avoid inadvertently touching one of ridges 604, 606, 608, 610 when he does not want to change input modes.
[0043] Fig. 6b illustrates another exemplary user input area 600 b incorporating border 602 of Fig. 6 a for selecting input modes. Border 602 may be realized using the examples described above with respect to Fig. 6a. User input area 600 b includes a textured region 616 formed around the input area proximate the ridges that comprise border 602. Textured region 616 provides haptic feedback similar to inner ridge 613. That is, the region provides a warning to the user when he drags his pen or finger close to any of the ridges. The user can recognize when he is approaching border 602 and avoid inadvertently touching one of the ridges to change input modes.
[0044] Fig. 6c illustrates yet another exemplary user input area 600 c incorporating ridges. In particular, a top ridge 620 is positioned along the top side of input area 600 c , and a bottom ridge 622 is positioned along the bottom of input area 600c. Left and right ridges 624 and 626 are positioned at the left and right sides of input area 600 c , respectively. Unlike the stepped ridges of Figs. 6 a and 6 b , ridges $620,622,624$, and 626 are shaped with slanted sides similar to ridges 502 and 512 of Figs. 5a and 5 b . The ridges of Fig. 6 c are preferably moveable independent of one another. Each of ridges 620, 622, 624, and 626 is assigned a particular input mode and coupled to select the mode in similar fashion to the ridges of Figs. 6 a and 6 b .
[0045] Other exemplary input areas 700a and 700b of palmtop computers constructed according to further embodiments of the present invention are shown in Figs. 7a and 7b, respectively. Input regions 700a and 700b have textured zones or regions to provide haptic feedback so the user can easily determine the region in
which he is writing without having to look at the palmtop computer.
[0046] In Fig. 7a, input area 700a is divided into two input regions, input region 702 and input region 704. The 5 respective regions are demarcated by different textures. In one example, input region 704 has a smooth texture and input region 702 has a relatively rough texture. The palmtop computer is programmed to recognize characters entered in input region 702 as being of one particular mode, and those entered in input region 704 as those of another input mode. In one example, alpha mode is assigned to input region 702, and numeric mode is assigned to input region 704. Other assignments of particular modes to regions 702,704 may be made as understood by those skilled in the art.
[0047] In Fig. 7b, input area 104 is divided into four regions to provide for additional input regions 706 and 708. Caps mode and punctuation mode are assigned to regions 706 and 708 , respectively. Each of input regions $702,704,706$ and 708 has a distinct texture to distinguish that region from the other regions. The surface textures of Fig. 7b provide haptic feedback as to the particular input region in which the user is writing, so the user can be looking at other things than the palmtop 25 computer when entering characters.
[0048] Fig. 8 a is a partial front view of a palmtop computer 800a constructed according to an exemplary embodiment of the present invention. The palmtop computer includes a casing 802 similar to casing 108 of palm30 top computer 100 shown in Fig. 1. Fitted to casing 802 is a digitizer pad 803 having a left side 806 and a right side 808. A left trench 810 is formed in an inner wall of casing 802 proximate left side 806 of digitizer pad 803. The left trench 810 runs parallel to left side 806 of digitizer pad 803. Similarly, a right trench 812 is formed in an inner wall of casing 802 proximate to right side 808 of digitizer pad 803 and runs parallel to right side 808. [0049] in Fig. 8a, a moveable bar 814 is positioned across digitizer pad 803 to define a first input region 804 a and a second input region 804b. The palmtop computer 800a is programmed to recognize characters input in region 804a as being of one particular mode such as alpha mode, and characters input in region 804 b as of another mode such as caps mode. The bar 814 is made of plastic or any suitably rigid material. In one embodiment, bar 814 is in contact with the user input area, while in other embodiments bar 814 is floating above user input area 804 by the positioning of trenches 810 and 812 . [0050] In Fig. 8a, bar 814 has a left end 816 which fits 0 in left trench 810 and a right end 818 which fits in right trench 812. Two springs are situated on either side of left end 816 in left trench 810 . Similarly, two springs are situated on either side of right end 818 in right trench 812. A first pressure sensor 820 is positioned in left trench 810 as shown in Fig. 8a, and a second pressure sensor 822 is positioned as shown in Fig. 8a. Each pressure sensor 820,822 is coupled to select and switch between modes of input using techniques described
$\qquad$ $1103883 A 2$ I_>
above.
[0051] As the userwrites on digitizer pad 803 in input area 804a and input area 804b, he simply pushes bar 814 with his pen or finger in the appropriale direction to select a particular input mode. When the user releases the bar, it springs back to its position as shown in Fig. 8a. In one example, moving bar 814 in the "up" direction to activate pressure sensor 820 selects alpha mode for first input region 804a and caps mode for second input region 804b. Similarly, when bar 814 is pushed in the opposite direction to activate pressure sensor 822, numeric mode is selected for first input region 804a and punctuation mode is seected for second input region 804b. In another example, sensor 820 is used to cycle "up" through a series of input modes with successive presses (e.g., alpha, caps, numeric, punctuation, alpha, etc.), and sensor 822 is for cycling "down" through the input modes (e.g., alpha, punctuation, numeric, caps, alpha, elc:).
[0052] Fig. 8b is a partial front view of another palmtop computer 800b constructed according to an exemplary embodiment of the present invention. Paimtop computer 800 b is similar to computer 800 a of Fig. 8 a in most respects although, in Fig. 8b, moveable bar 852 is positioned across digitizer pad 823 substantially perpendicular with respect to bar 814 of Fig. 8a. A top trench 854 is formed in an inner wall of casing 802 proximate a top side 856 of digitizer pad 803 . Similarly; a bottom trench 858 is formed in an inner wall of casing 802 proximate to the bottom side 860 of digitizer pad 803 .
[0053] In Fig. 8b, moveable bar 852 has ends which fit into trenches 854 and 858 . By positioning the bar 852 in this manner, a first input region 862a and a second input region 864 b of digitizer pad 803 are defined. Input regions 862 and 864 are designated for entering characters using particular modes of input, similar to input regions $804 a$ and 804 b of Fig. 8 a. Springs and pressure sensors are positioned in trench 858 similar to trench 810 of Fig. 8 a for selecting and switching among various input modes.

## Pen Pressure

[0054] Fig. 9 illustrates an exemplary pen 900 for use as part of a palmtop computer system constructed in accordance with a further embodiment of the present invention. The pen 900 includes a retractable tip 902 which is shown in contact with the surface of digitizer pad 103 of the palmtop computer of Fig. 1. A switch 903 is mounted in an inner cavity 904 of pen 900 . The switch 903 is in communication with the palmop computer for selecting and switching among input modes. In one example, communications are supported by a wire coupled between the pen and the palmtop computer. In other examples, wireless communications devices such as RF transmitters and receivers are employed to achieve communications between the pen and palmtop computer.
[0055] When pressure is exerted on pen 900 against the surface of digitizer pad 103, as shown in Fig. 9, tip 902 temporarily retracts into inner cavity 904 of pen 900 until the pressure is released. Retraction of tip $902 \mathrm{ac}-$
5 tivates the switch in inner cavity 904, causing a signal to be sent from pen 900 to the paimtop computer. The signal calls for a particular input mode or changes from one input mode to another. Alternatively, the number of presses may signal a particular input mode.
[0056] In an alternative embodiment, the magnitude of the pressure exerted on the pen controls which input mode is selected. In one example, a "hard" press signals the palmtop computer to change to caps mode. Two hard presses signals the palmtop computer to change to alpha mode. A relatively light press signifies numeric mode. Preferably, the presses are made by tapping the pen on the casing. In other embodiments, the presses are made while writing, preferably at the beginning of a stroke. in these examples, a pressure sensor is mounted in inner cavity 904 instead of the switch to differentiate between the magnitudes of presses.

## Active Pens

[0057] In Fig. 10a, a button 1004 is mounted on a pen 1002. Button 1004 is preferably positioned near a writing end 1006 of the pen; as shown in Fig. 10a, such that button 1004 is proximate the user's fingers or thumb when he grips the pen.
[0058] Pressing the button toggles a switch inside pen 1002, causing a signal to be sent to the paimtop computer. Communications between the pen and the palmtop computer are established using techniques similar to those described above with respect to Figs. 9a and 96 . Successive presses of button 1004 cause the computer to cycle through the various input modes, similar to the implementation of mechanical button 118 of Figs. 1a and 1b. Other assignments of button presses and holds to select and switch input modes such as those described above with respect to other embodiments of the present invention, may be implemented as will be appreciated by one skilled in the art.
[0059] In an alternative embodiment, shown in Fig. 10b, a dial 1008 is mounted to the side of pen 1002 in place of button 1004. Rotating the dial causes the palmtop computer to cycle through the various input modes. Pressing dial 1008 selects a particular mode for inputting characters. Other techniques for assigning presses and rotations to select and switch input modes may be implemented as described above, particularly with reference to Figs. 4, 8a, 8b; and 9a.

## Tilt Control

[0060] Another exemplary embodiment of a palmtop computer constructed according to the present invention provides for the selection of input modes by tilting the computer in one or more directions. To provide this
functionality, one or more accelerometers are preferably incorporated in the palmtop computer. The ADXL202 accelerometer manufactured by Analog Devices is one model which may be used, although other accelerometers may be used as will be appreciated by one skilled in the art.
[0061] In one embodiment, one or more ADXL202 acceterometers are mounted to casing 108 of palmtop computer 100 of Fig. 1. The accelerometer may be used in place of button 118. The accelerometer or accelerometers are positioned with respect to a longitudinal Y axis 140 and an $X$ axis 142 substantially perpendicular to the $Y$ axis for two-axis tilt sensing. In this way, for example tilting the computer 100 in one direction (e.g., clockwise) with respect to $Y$ axis 140 selects one input mode, while titting the computer 100 in the other direction (e.g., coun-ter-clockwise) with respect to $Y$ axis 140 selects another input mode. Similarly, tilting palmtop computer 100 about $X$ axis 142 in clockwise or counter-clockwise djrections selects additional input modes. The inclusion and proper positioning of additional accelerometers allows for the selection of additional input modes by tilting the device with respect to the $X, Y$ and other axes. Various assignments of particular input modes to tilting directions may be made, as will be recognized by one skilled in the art.
[0062] The accelerometer or accelerometers are coupled to select input modes using software and/or hardware configurations similar to those described above with respect to other exemplary embodiments of the present invention. Using the ADXL202 accelerometer, digital $X$ and $Y$ output pins are provided which identify the most recent mode selected. These outputs may be coupled directly to the processor within paimtop computer 100 to select and switch input modes. Alternatively, the bits output on the $X$ and $Y$ pins may be clocked and stored as status bits in a register for software-controlled switching.

## Audio Feedback

[0063] In the exemplary embodiments described above, audio feedback may be used to signal an input mode change to the user. A speaker mounted to the casing of the palmtop computer serves this purpose. The user can turn on or turn off the speaker, depending on the desired operating environment. In one example, a "beep" is emitted through the speaker anytime the input mode changes. In another example, beeps having different frequencies from one another are associated with the various input modes. The user will know which input mode he has selected upon hearing the particular tone associated with that mode. Such audio feedback facilitates the "heads up" nature of palmtop computers constructed according to the present invention, as the user does not need to look at the device during operation to determine what input mode he has selected.

## Conclusion

[0064] The exemplary embodiments described above reduce the task discontinuities associated with conven-
5 tional palmtop computers which result from having to use specialized strokes to change input modes. The various techniques for selecting input modes and switching among these modes provides for fast, accurate, and easy entering of characters on a palmtop computer. Al-
6. A palmtop computer system as claimed in claim 5, wherein the physical sensor is mounted proximate a writing end of the pen (1002), or wherein the physical sensor is a retractable tip (902) of the pen.
7. A palmtop computer system as claimed in claim 5; wherein the physical sensor is a button (1004) or a dial (1008).
8. A palmtop computer (100) for entering characters using a first input mode and a second input mode. the palmtop computer comprising:
a casing (108) ;
a digitizer pad (103) coupled to the casing; and a ridge $(502,512)$ formed on the digitizer pad to define a first input region (504) associated with the first input mode and a second input region (506) associated with the second input mode.
9. A palmtop computer (100) for entering characters using an input mode comprising:
a casing (108);
a digitizer pad (103) coupled to the casing; and a border (602) formed around the digitizer pad, the border including a ridge (604, 606, 608, 610) coupled to select the input mode.
10. A palmtop computer (100) as claimed in claim 1 , wherein the ridge $(604,606,608,610)$ includes pressure sensitive material and/or the ridge is moveable.
11. A palmtop computer (100) for entering characters comprising:
a casing (108) ;
a digitizer pad (103) coupled to the casing and. having a textured region (616).
12. A palmiop computer as claimed in claim 11, wherein characters are entered using a first input mode and a second input mode, and
wherein the textured region of the digitizer pad is divided into a first textured region (702) associated with the first input mode and a second textured region (704) associated with the second input mode.
13. A palmiop computer (100) for entering characters using an input mode, the palmtop computer comprising:
a casing (108)
a digitizer pad (103) coupled to the casing; and an accelerometer coupled to select the input mode.

EP 1103883 A2


## EP 1103883 A2



FIG. 2b


FIG. 2c


FIG. 3


FIG. 4


FIG. 5a


FIG. 5b


EP 1103883 A2


FIG. 6c


FIG. 7b
$\qquad$

EP 1103883 A2


FIG. 8b


THIS PAGE BLANK (USPTO)
(88) Date of publication A3:
31.07.2002 Bulletin 2002/31
(43) Date of publication A2:
30.05.2001 Bulletin 2001/22
(21) Application number: 00310527.7
(22) Date of filing: 28.11.2000
(84) Designated Contracting States:

AT BE CH CY DEDK ES FIFR GB GRIEIT LILU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 29.11.1999 US 450238
(71) Applicant: Xerox Corporation

Rochester, New York 14644 (US)
(72) Inventors:

- Gujar, Anuj Uday

Mountain View, California 94040 (US)

- Goldberg, David

Palo Alto, California 94301 (US)

- Fishkin, Kenneth P. Redwood City, California 94063 (US)
- Harrison, Beverly L.

Palo Alto, California 94306 (US)

- Want, Roy

Los Altos, California 94024 (US)
(74) Representative: Rackham, Stephen Neil

GILL JENNINGS \& EVERY,
Broadgate House,
7 Eldon Street
London EC2M 7LH (GB)
(54) Input mode selection on a palmtop computer
(57) A palmtop computer (100) for entering characters using one or more input modes (such as alpha, numeric, caps, punctuation). In one example, a physical sensor is coupled to select the input mode. The physical sensor may be in the form of a button (118, 122, 124, 126, 128), rocker switch (200), dial (402), pressure strip ( 302,306 ), moveable bar $(612,814,832)$, or acceleromerer mounted to the device. The physical sensor may also be mounted to a pen $(900,1002)$. In another example, a ridge $(502,512)$ is formed on the digitizer pad (103) and positioned to define input regions $(504,506)$ associated with particular input modes. In another example, a border (602) is formed around the digitizer pad. The border includes a ridge (604, 606, 608, 610) coupled to select the input mode. The digitizer pad may also be textured (616). A first textured region (702) may be associated with one input mode and a second textured region (704) may be associated with another input mode.

$\qquad$ 1103883A3_1_>

$\qquad$

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00310527

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search repor. The members are as contained in the European Patent Office EDP file on
The European Patent Oftice is in no way iable for these particulars which are merely given for the purpose of intormation.
07-06-2002

Patent document ciled in search report		Publication date		Patent family member(s)	Publication date
US 2001035854	A1	01-11-2001	US	6184868 B1	06-02-2001
			US	6088019 A	11-07-2000
			US	6243078 Bl	05-06-2001
			AU	2954301 A	31-07-2001
			$\begin{aligned} & \text { AU } \\ & \text { WO } \end{aligned}$	0154109 Al	26-07-2001
			US	2002033795 Al	21-03-2002
			$A \cup$	2342400 A	26-04-2000
				4707499 A	10-01-2000
			AU	2300899 A1	29-12-1999
			CA	29923332 U1	07-12-2000
			DE	29923933 U1	05-07-2001
			EP	1005690 Al	07-06-2000
			GB	2343499 A , B	10-05-2000
				9966997 Al	29-12-1999
			WO	0021071 A2	13-04-2000
			US	2002054011 Al	09-05-2002
			US	2001000663 Al	03-05-2001
			US	2001019324 A1	06-09-2001
			US	6211861 B1	03-04-2001
				6353427 B1	05-03-2002
			US	2001026264 A1	04-10-2001
				2001010513 Al	02-08-2001
			US	29922298 U1	02-03-2000
			GB	2346952 A	23-08-2000
US 5889888	A	30-03-1999	US	6188789 B1	13-02-2001
GB 2234102	A	23-01-1991	SG	54994 G	17-03-1995
			US	4972496 A	20-11-1990
			GB	$2234101 . A^{\text {, }}$ B	23-01-1991
			CA	1302572 Al.	02-06-1992
			$C A^{-}$	1325481 Al	21-12-1993
			EP	0254561 A2	27-01-1988
			EP	0645730 A1	29-03-1995.
			EP	0645731 Al	29-03-1995
			FR	2602069 A1	29-01-1988
			GB	2193827 A , B	17-02-1988
			JP	3135747 B2	19-02-2001
			JP	6259184 A	16-09-1994
			JP	6005498 B	19-01-1994
			JP	63184130 A	29-07-1988
			US	5157737 A	20-10-1992
			US	5297216 A	22-03-1994
			US	5365598 A	15-11-1994
			DE	3752121 D1	06-11-1997
			DE	3752121 T2	16-64-1998

$\qquad$ $1103883 A 31$ I $>$

## ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family members relating to the palent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP fite on
The European Patent Office is in no way liable for these partisulars which are merely given for the purpose of information.
07-06-2002

$\qquad$

Europäisches Patentamt European Patent Office Office européen des brevets

## EUROPEAN PATENT APPLICATION

$\square$

Application number: 93113186.6
(51) Int. Cl.5: G06F 3/023, G06K 11/18Date of filing: 18.08.93
(3) Priority: 21.08.92 AR 323028
(43) Date of publication of application:
09.03.94 Bulletin 94/10
(8) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
(71) Applicant: Gilligan, Federico, Gustavo 25 de Mayo 277, Piso 12
Buenos Aires(AR)
Applicant: Falcon, Fernando, Diego
25 de Mayo 277,
Piso 12
Buenos Aires(AR)
(2) Inventor: Gilligan, Federico, Gustavo

25 de Mayo 277,

## Piso 12

Buenos Aires(AR)
Inventor: Falcon, Fernando, Diego
25 de Mayo 277,
Piso 12
Buenos Aires(AR)
(44) Representative: Schubert, Siegmar, Dipl.-Ing.
et al
Patentanwälte Dr. V. Schmied-Kowarzik
Dr. P. Weinhold
Dipl.-Ing. G. Dannenberg
Dr. D. Gudel
Dipl.-Ing. S. Schubert
Dr. P.
Barz
Grosse Eschenheimer Strasse 39
D-60313 Frankfurt (DE)

Computer keyboard with dial for entering repetitive data and commands.

A computer keyboard (10) with a dial (30) for entering repetitive commands and data units into a computer system. It is useful for many computer applications, such as programming and file editing, and affords the user an easier, comfortable and straightforward way of replacing repetitive single-key pressing to send burts of unitary or inverse information to the system. The dial is rotatably mounted on the keyboard frame (12) and has an exposed operating surface (74) which the user may rotate endlessly with just one finger. A rotational transducer (40) senses dial rotation to generate an output signal representing incremental rotation amounts. The keyboard also includes a device (42) for modifying said repeated commands and data units if certain keys (32, 34) are pressed while the dial is being turned.


Fig. 1
$\qquad$

This invention relates to computer input devices, in particular to keyboards. This invention relates to a new computer keyboard comprising additional non-binary means to improve the working condition of a keyboard operator and accelerate some tasks during operation of computer programmes.

A computer keyboard generally comprises a plurality of keys mounted on a substantially horizontal panel, for entering commands and data units (i.e. characters) into a computer or computer display terminal Each key is mechanically engaged with a binary switch (i.e., on-off switch) configuring a switch array that is periodically scanned by an electronic circuit to sense the key's status and transmit a corresponding code (called scan code) to a computer system, when a change in the switch array status is detected.

Computer keyboards are used in almost any kind of computer application. Compared to other computer peripherals, computer keyboards have not evolved significantly from the first specimen up to the present state of the art, the only changes being limited to varying key layouts and modifications in key shapes and switching mechanisms. At the time of the present invention, we know of no significant keyboard improvements on operational features or functional enhancements.

Computer keyboards generally include: a first group of alphanumeric keys, used for entering textual, numeric and punctuation data, a second group of keys generally called "control keys", used for controlling some programme functions implemented in most of the contemporary programmes (e.g., HOME, END, (generally labeled F1, F2, F3 to) , keys", generally used to select an item from group comprising a set of four keys generally called "arrow
 the computer that a certain data entry or control task is completed.
 interfaces to more frima because user interfaces had evolved from command line keyword oriented by another kind of computer input device e.g., a mouse)

For example, in former editing applications, a special screen area was assigned to enter programme commands by typing one or more keywords in it. However, contemporary editing applications tend to use a single key to switch a main menu displaying all available command options, and a particular command can be selected by typing the arrow keys repeatedly until a desired option is highlighted. This interface concept has been almost uniformly adopted in the software industry.

On the other hand, when tasks included in the first group are performed, this phenomenon is not as frequent, because the statistical distribution of alphanumeric keystrokes in most applications is substantially constant so that the probability of repeated keystrokes of the same key is far lower.

We have also noted that repeated activation of the same key in a computer keyboard causes an uncomfortable tension in the operator's hands and wrists that frequently causes fatigue in the operator and results in productivity loss. It is believed that this tension excess is due to the lack of movement compensation between fingers and other parts of the hand when performing repetitive typing. This belief is supported by the fact that this tension does not appear when typing a piece of text for instance, which normally has a relatively uniform letter probability distribution function.

A widely used approach for this problem is the auto-repeat method (generally known as "typematic") implemented in almost all computer keyboard application. The auto-repeat method consists in automatically
repeating the scan code corresponding to the key being pressed at a fixed rate; when the key is kept pressed at least for a pre-determined time period.

Although it represents an improvement, significant enough for it to become widely accepted, this method is not all that comfortable and efficient, mainly because the auto-repeat rate is given by a fixed time reference and hence it is not capable of providing speed and precision simultaneously. That is, a high autorepeat rate sacrifices precision and a low one gives good precision but is slow. This unavoidable speedprecision trade-off leads the operator back to repetitive typing because usually it is the only way to get enough precision in most tasks. Moreover, throughout a certain computer operation session, different autorepeat speeds are needed depending on the particular task being performed; this is a requirement not satisfied by the auto-repeat method which lacks this flexibility. Still another disadvantage of the auto-repeat method is that the initial period preceding the auto-repetition function produces some uncertainty in the number of repetitions generated. This is because if the delay is too short it may produce undesired keystrokes, and if it is too large, it produces an uncertainty about the instant in which the repetition will begin, reducing the chances of precise control even more.

- This accumulation of effects leads average keyboard operators to perform, or at least complete, a lot of operations with repetitive typing, since it appears as mentally less distressing although, in the long run, it strains one physically and psychologically, perhaps unconsciously.

Consequently, there is a need of an improved computer keyboard, capable of performing this kind of operations more efficiently, to improve the work conditions of a computer keyboard operator and enhance productivity.

## Disclosure of the Invention

It is a basic object of the present invention to improve the work condition of a computer keyboard operator, replacing vertical up and down finger and hand movements (due to repetitive typing) with a more ergonomic and comfortable movement.

Another object of the present invention is to reduce time spent in some tasks while operating a computer programme with a keyboard.

Another basic object of the present invention is to improve the user interiace provided by a computer keyboard, by enhancing its command and data entering capabilities.

Another object of the present invention is to reduce the risk of hand, finger and wrist diseases associated with computer keyboard operation, by providing an improved and more ergonomic way of entering repetitive commands and data.

Another object of the present invention is to provide an improved keyboard having all the features stated above that can be manufactured at a substantially low incremental cost.

Another object of the present invention is to provide a computer keyboard having all the teatures stated above but substantially maintaining the format and operating characteristics of a conventional keyboard.

According to the invention, the improved keyboard having the features set forth above comprises a conventional keyboard in which the fixed time reference of the auto-repeat function has been replaced by a manually generated timing signal through operation of a dial engaged with a rotation transducer. The dial is rotatably mounted with its rotation axis substantially perpendicular to the keyboard plane, exposing one of its surfaces so as to be engagable by a finger of an operator's hand at a number of radial positions spaced from its centre, so that the sensitivity of the device, i.e., response per finger travel distance, depends on the radial position contacted. In other words, the farther the radial position of finger contact from the centre of the dial, the less sensitive the response to a given amount of finger travel.

A pulsing signal is derived from the output of the rotation transducer representing the angular speed of the dial measured in predetermined incremental angular units, plus an additional binary signal giving the sign of the rotation (i.e., clockwise or counterclockwise). The dial can be rotated endlessly and operated in combination with one or more keys for entering bursts of repeated commands and data units into a Furthermore, the dial can be rotated back and forth to switch between two scan codes associated with each key, so that the scan code generated in repetition mode is dependent on the dial rotation direction, enabling fast switching between two different commands associated with a single key (useful for commands having inverse responses to each other).

Auxiliary keys may be used in combination with the dial for performing special functions. A pair of default scan codes can be generated when the dial is rotated without pressing any key, for fast issuing of very frequently used commands.

Figure 1 is a plan view of a personal computer keyboard incorporating a dial and other features according to a preferred embodiment of the invention.

Figure 2 is an enlarged perspective view of a portion of the keyboard of figure 1 including the dial.
Figure 3 is a cross-sectional view of the dial according to an embodiment of the invention.
Figure 4 is a time-chart showing binary signal waveforms and phase relationships at the output of the transducer associated with the dial.

Figure 5 is a block diagram of the keyboard of the invention, including the dial and associated transducer hardware according to a first embodiment of the invention.

Figure 6 is a flow-chart illustrating a programme routine embodying the operational aspects of the keyboard of the invention.

Figure 7 is a block diagram of the keyboard of the invention, including the dial and associated transducer hardware according to a second embodiment of the invention.

Figure 8 is a schematic representation of a possible trajectory of a finger point of contact through a plurality of radial positions.

Figure 9 is a plan view of the keyboard portion of figure 2, representing a particular arrangement according to a preferred embodiment of the invention.

Figure 1 shows a preferred embodiment of a keyboard 10 according to the invention, based on a typical key layout widely used in PC keyboards. In particular, the keyboard 10 includes keyboard supporting frame 12, a main alphanumeric pad 20, a numeric panel 22 located to the right of panel 20 , generic function-key main 24 placed above the main panel 20, arrow key panel 26 and control key panel 27 placed between the Acolic panel 22.
According to the present invention, the keyboard 10 includes a rotatable dial 30 mounted on the keyboard frame 12 with its rotation axis 29 oriented substantially perpendicular to the plane defined by the 10 also comprises an auxiliary key 32 for switching a pair of scan codes associated with very frequently used commands, specially shaped to be operated by the thumb of the operator's hand in a way that both dial 30 and key 32 can be simultaneously operated with the thumb and fingers of the same (e.g. right) hand. Also shown in figure 1 is an extra key set comprising auxiliary keys 34 used for switching special 34 is placed on the left-hand side of the keyboard 10 so as the prefer operator.

Figure 2 shows a more detailed view of the dial 30 and the auxiliary keys 32, mounted on the keyboard frame 12 and surrounded by the main key panel 20, the arrow keys panel 26 and the numeric key panel 22,
403 , the dial 30 is mounted over a stepped opening will be explained further on herein. As illustrated in figure has a concentric outer step where dial 30 just 31 housing 10.

Figure 3 also shows a preferred embodiment of the dial and rotational transducer advantageously using a single piece of material and taking advantage of computer keyboard structures well known in the art. The peripherical portion 74 so as to approxima shaped with an elevated top flat portion 70 and a sloped conical dial 30 with any or all fingers of the right hand of the operator. Since the conical portion 74 has been designed to enable precise and slow operation of the dial, it has proven useful to use a rugged surface or a surface (e.g., acrylic) is preferable, since it allows a the like. However, for the central portion 70, a polished and uniform contact surface.

Inside, the dial 30 comprises a shaft 52 posted on the centre of internal surface 54 of the knob part. The shaft 52 is mounted on a bushing 56, fixed to the bottom 62 of keyboard housing 10. The dial mounting preferably includes a circumpherencial recess 58 in the shaft 56 which receives a resilient latch 59 so that together they hold the dial 30 in place on the keyboard. This mountage has the advantages that, for one, it is easy to insert and remove, enabling nearly instant mounting in the keyboard manufacture and assembly process and, furthermore, features low static friction which gives it just the right resistance so that it can be easily and precisely turned by the operator with hardly any effort.

Going back to the shape of the dial 30 , the conical portion 74 folds back at the outer edge and then downwards at a right angle to form a lower cylindrical skirt 57 which is supported above a printed circuit board 66. The bottom edge of the skirt 57 is slotted so as to form a continuous line of rectangular openings all the way round the skirl 57.

As is conventional, this circuit board 66 houses the electronics which interface the computer keyboard 10 with a port of the computer system. According to the preferred embodiment of this invention, the circuit board 66 also supports a pair of opto-couplers 68 (only one of which can be seen in figure 3 ) for sensing dial rotation. More precisely, the opto-couplers 68 are placed on the board 66 relative to the opening 31 so that the cylindrical skirt 56 fits into opto-coupler gaps. Thus, any rotation of the dial 30 results in passage of openings through the opto-coupler gaps. Each of the opto-couplers 68 issue pulse trains contains information regarding direction, rate of turn and incremental angle of turn.

Therefore, the slotted skirt 57 together with opto-couplers 68 form a rotational transducer 40 represented in the block diagram of figure 5 . As the dial 30 is rotated, the opto-couplers 68 generate a pair of signals X1-X2 representing signed incremental rotational movement of dial 30. The opto-couplers 68 are mounted on printed circuit board 66, for instance by soldering, at two angularly spaced locations relative to the dial shaft 52 so as to generate synchronous quadrature pulse signals according to a widely known rotation transducer technique displayed in figure 4.

Every quarter-cycle of signals X1-X2 represents an elementary angle DA according to a predetermined resolution. As can be seen in figure 4, the variation of the signal status taken together in each quarter-cycle gives all the motion information. A change in the status of signals $\times 1-\times 2$ at two different points in time defines a transition and provides motion direction information as summarized in the following Table 1.

TABLE 1

$X 1_{n}, X 2_{n}$	$X 1_{n+1}, X 2_{n+1}$	Motion Direction
00	00	0
00	01	-1
00	10	+1
00	11	$x$
01	00	+1
01	01	0
01	10	$x$
01	11	-1
10	00	-1
10	01	$x$
10	10	+1
10	11	$x$
11	00	-1
11	01	0
11	10	11

In Table $I$, the column marked " $X 1_{n}, X 2_{n}$ " represents the signal status prior to detection of the transition and the column marked " $\mathrm{X} 1_{n+1}, \mathbf{X} 2_{n+1}$ " represents the status after transition. The third column shows the incremental signed value of the motion detected. Transitions marked with an "x" are not possible in the scheme of figure 5 and may be used as an error signal indicating a transducer malfunction.

Figure 5 shows a block diagram of a preferred embodiment of the electronic circuit onboard the keyboard 10. As shown in figure 5, signals X1-X2 are read by parallel inputs P0 and P1 of logic circuit means 42, which processes the signals to detect the dial rotation according to Table 1 and calculate the angular units rotated according to a predetermined resolution. The logic circuit 42 derives an internal timing signal for each rotation angular unit detected for triggering transmission of the corresponding scan codes when a key is pressed (or the default scan-codes if no key is pressed). The logic circuit 42 derives an code from the set of scan codes associated with each key according to the dial rotation direction, as explained further on herein.

In the preferred embodiment, the logic circuit 42 is the same means used for scanning key array 44 of keyboard 10, since it only requires the availability of input ports P0 and P1 and some extra programming to
$\qquad$
include the transition detection routines and link them to the already available scan code generating means and routines (naturally built into the circuit 42). Circuit 42 can be embodied by means of a microcomputer such as the Motorola 6809 with associated hardware for scanning the key array 44 and transmitting scan
codes to the computer systern. It will be apparent to those skilled in the art that all accessory elements and means are well known in the industry and are common practice in manufacturing today's computer keyboards. For instance, the key array 44 of figure 5 represents the set of keys of a conventional keyboard, including main alphanumeric panel 20, numeric panel 22, generic function keys panel 24, arrow keys panel 26 and control keys panel 27. Arrays 44 and 34 are cross-scanned by respective lines connected to generic input ports P2 through Pn of circuit means 42.

Figure 6 is a flow diagram of the functions carried out by circuit means 42. The part of the diagram inside the dotted line shows a method similar to that used in a conventional keyboard, the only difference being that in a conventional keyboard, only a single scan code is associated with each key, generated when a key status change is detected. In the keyboard 10 of the invention, however, each key is associated with more than one scan code, the additional scan codes being generated by the dial rotation and depending on the dial rotation direction. The scan code generated when a key is pressed without rotating the dial is called "static scan code", while the additional scan codes defined for the corresponding dial rotation directions are called "dynamic scan codes". Each time a key array 44 status change is detected, circuit means 42 looks up in a table the new scan codes according to the new activation status of key array 44 (keys pressed or released) and fills in a one-dimensional data structure called "scan code vector". When a key is pressed from a released position, circuit means 42 generates the corresponding static scan code. If the key is held in an active position and the dial is rotated, circuit means 42 generates repeatedly the dynamic scan code present in the scan code vector, according to the dial rotation direction and upon detection of each incremental angular unit rotated by the dial.

Table 2 gives an example of a possible scan code assignment table to illustrate this principle.
TABLE 2

Key Label	Static Scan Code	Dynarnic Scan Codes	
		$(-)$	$(+)$
TAB	21	33	21
SPACE	$6 B$	$7 D$	$6 B$
AUX 1	-	$9 C$	$B 4$

If the keyboard in which the invention is to be practiced is a double code keyboard (i.e., a keyboard that generates a first scan code when a key is pressed and a second scan code when the key is released) as is the case for example of contemporary "PC" keyboards, almost the same scheme may be implemented, the difference being that two scan codes are generated for each dial rotation transducer transition detected, with a suitable delay in between, so as to simulate repeated keystrokes of the same key while maintaining full compatibility with existing applications.

Moreover, Table 2 can be further enhanced to contain not only single scan codes, but a combination of them, so as to simulate repeated keystrokes of a key combination or macro rather than of a single key. For example, "TAB" and "SHIFT + TAB" can be assigned to a certain key of group 34, respectively as the positive and negative dynamic scan codes, so as to use the dial as an option selector in applications that use these key combinations for that purpose.

Although Table 2 has been dimensioned to contain scan code information for each key (i.e., the static scan code and both dynamic scan codes), it may be enhanced to contain additional key-specific information. For example, for some particular keys, a different effective resolution (i.e., the number of dynamic scan codes generated in a complete turn of the dial) may be desirable so as to reduce the dial's sensibility for that particular key. An example of this case is the "PAGE UP" - "PAGE DOWN" function, in which a user needs a certain time period between two successive commands so as to recognize the successive displayed images while browsing a certain file or document. This can be done by providing an additional column in Table 2 containing a number representing a different angular unit value for each key.

If internal skirt 57 is dimensioned to allocate for example 20 slots, a wide range of repetition rates may be easily obtained, from nearly nought (by operating the dial from ils periphery) to approximately 200 Hz (by sliding the fingers towards the dial's centre to gain rotational speed). This is illustrated in fig. 8 which sketches a clockwise rotation A1 during a repetition operation. An example of a finger point of contact
trajectory has been represented as curve $T$ in figure 8 . As may be seen in fig. 8, to generate an approximately complete turn, just a relatively small amount of finger travel is needed by turning the dial, first sliding the finger from starting point $S$ towards the centre of the dial and then sliding the finger back towards the ending point $E$ at the dial periphery. In this elementary operation performed very frequently while using the dial, since the point of contact evolves through a number of radial positions, from radial position $\mathbf{r 2}$ to radial position r 1 and then back again to radial position r2, different angular speeds are obtained as the dial rotates a greater or lower number of angular units $A U$ in a given time interval, thereby varying the repetition speed and the perceived effective resolution for a given point of contact travel. The result is that the operator can tightly control a certain repetition operation with both speed and precision at the same time, which in the long run results in a comfortably and efficient operation of the computer.

Moreover, if a wider repetition rate range is wished, the effective resolution may be varied dynamically to produce an acceleration effect. In other words, the function relating the number of rotation transducer transitions detected in a certain time period to the effective repetition timing signal cycles generated in the same time period need not be linear, so that a higher number of transitions detected produces an even higher effective repetition timing signal cycles, widening the effective repetition timing signal range. This can be done for example by dynamically altering the instantaneous angular unit as a function of the rotating speed of dial 30. The processing needed to perform the acceleration effect may be done by circuit means 42, using routines widely known in the art. An additional advantage of implementing the acceleration effect is that it lowers the number of slots of skirt 57 and tolerances requirements in mounting of opto-couplers 68 and dial 30 , while still allowing a relatively wide repetition rate range.

In a second embodiment of the invention, the processing means that process the signals generated by the dial rotation transducer and perform the disclosed functions may be inside the computer system, as shown in figure 7. The advantage of this alternative embodiment is that the scan-code table may reside in the computer's memory and hence may be easily configurable for user customization. On the other hand, the disadvantage is that it is not independent of the computer operating system running in the computer
and may not guarantee immediate $100 \%$ compatibility since modifications need to be introduced at operating system level so as to simulate repeated keystrokes upon dial rotation, in a way that it is transparent to any application programme running in the computer. On the other hand, in the first embodiment, the signals generated by the keyboard 10 when the dial is rotated are always identical to those generated by the effective activation of the physical keys, so that the keyboard of the first embodiment of the invention is fully transparent to any programme running in the computer, even to the operating system itself.

In the preferred embodiment, the horizontal arrow key scan codes are assigned as respective default dynamic scan codes, and the vertical arrow key scan codes are assigned as respective dynamic scan codes of auxiliary key 32. With these assignments and since dial 30 and auxiliary key 32 are simultaneously operable, the combination of both elements behaves in some applications as a two-dimensional, one-dimension-at-a-time cursor control device of an extremely wide speed range and of unlimited trajectory extent due to the operational characteristics of the dial mentioned hereinbefore. For example, when editing a text file in a contemporary word processing application, activation of the right or left arrow keys causes a At that point, the dial 30 can be used as a right-left cursor control device capable of traveling without limit and continuously over the text file with significantly little effort and-hand movement. Furthermore, if the auxiliary key 32 is pressed, the dial 30 can be used as an up-down cursor control device, shifting the cursor across successive lines of text allowing to reach any part of the text file in the same way.

Moreover, if both dial 30 and auxiliary key 32 are placed on the keyboard panel to the right of the ENTER key 21, as shown in figures 1 and 8 , the resulting arrangement inside the dotted line in figure 8 allows a tast, relaxed and efficient programme control in many of contemporary computer applications, programme flow. For example, in an application based in a pull-down menu structure, the dial may be first 50 used to select a sub-menu by generating the horizontal arrow keys (default dynamic scan codes), and further used to select a certain command within the selected sub-menu by simultaneously pressing auxiliary key 32 to generate the vertical arrow key dynamic scan codes. When the desired command is reached, the ENTER key may be pressed to complete the selection. In this way, the dial 30 combined with auxiliary key 32 and the ENTER key work together as a programme control device, eliminating the need for repeatedly pressing the arrow keys to navigate through the menu tree nodes and branches.

Furthermore, auxiliary keys 34 may be advantageously used to issue pairs of commands frequently used in a repetitive fashion and that produce opposite effects to each other. For example, if the "Page Up" and "Page Down" key scan codes are assigned to one of auxiliary keys 34 as its respective dynamic scan

## EP 0585730 A1

codes, when said key is pressed while the dial is rotated the dial behaves in many applications as a rotary scrolling device, very useful for browsing for example a long text file or data base file at the computer screen, allowing inspection of the file in a forward or backward direction efficiently and comfortably.

Table 3 is an example of how scan codes may be assigned, thus summarising this disclosure.

TABLE 3

Pressed Key	Dynamic Scan Codes	
	Counterclockwise	Clockwise
None (Default)	Left Arrow	Right Arrow
Auxiliary Key 32	Up Arrow	Down Arrow
Aux. Key 34 (1)	Page Up	Page Down
Aux. Key 34 (2)	Space Bar	Delete Character
Aux. Key 34 (3)	Shift + Tab	Tab
Aux. Key 34 (4)	Gen. Inv. Fn.	Gen. Direct Fn.
Alphanumeric Keys	Back Space	Key Static Code

As another example, the scan codes of "DELETE" and "SPACE" keys may be assigned to another key in the set 34 as its respective dynamic scan codes, to let entire strings of characters to be rubbed out as the dial is turned in a clockwise direction and otherwise inserting space characters when the dial is rotated in a counter-clockwise direction.

While the invention has been illustrated and embodied in a keyboard comprising a dial for entering repetitive data and commands to a computer, it is not intended that it should be restricted to the details given, since various modifications and structural changes may be made without departing in any way from the nature of the present invention. Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it to various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.

## Claims

1. A computer keyboard (10) for connection to a computer system for entering commands and data units into said computer system; said keyboard including a plurality of keys (20,22,24,26,27) mounted in a supporting frame (12), scanning means (42) to sense activation of said keys, processing means (42) to generate said commands and said data units on detecting of a status change of said keys and communication means for transmitting said commands and said data units to said computer system; and characterised by comprising a rotatable dial (30) for manually entering sequences of repeated commands and data units to said computer system, said dial being rotatably mounted in said supporting frame and having a centre (70), a rotation axis (29) passing through said centre and an exposed operating surface (74) engagable by at least one finger of an operator at a plurality of radial positions from said centre so that said dial can be rotated without limit by said at least on finger; rotational transducer means $(56,68)$ for detecting rotation of said dial and generating an output signal indicative of incremental rotation said dial in pre-defined angular units; means (42) for using said output signal to generate said repeated commands and data units for entry into said computer system upon detection of said incremental rotation angular units, means (42) for modifying said repeated commands and data units by activation of said keys while said dial is rotated by said operator.
2. The keyboard of claim 1, characterised in that said supporting frame is substantially planar; said keyboard including an alphanumeric key panel (20), an arrow key panel (26) and a numeric key panel (22); said dial is mounted with said rotation axis substantially perpendicular to said frame and said dial is located adjacent to at least one of said key panels.
3. The keyboard of claim 2, characterised in that said dial is substantially circular and has a substantially flat circular elevated central portion (70) for ease of operation so as to reach any of said plurality of radial positions on said dial and obtain different rotation speeds of said dial for equal finger travel rates by contacting said dial at different radial positions.
$\qquad$ O585730A1_I_>

## EP 0585730 A1

4. The keyboard of claim 3, characterised in that said dial has a sloped substantially conical peripheral portion (74) ergonomically adapted to a human hand to ease operation of said dial.
5. The keyboard of claim 4, characterised by further comprising a plurality of auxiliary keys (32, 34) for switching frequently used commands or data units, at least one of said auxiliary keys (32) being positioned alongside said dial so as to enable simultaneous operation of said dial and said at least one auxiliary keys with a single hand by said operator.
6. The keyboard of claim 5, characterised in that at least one of said auxiliary keys (32) is located adjacent to a left lower quadrant of said circular dial so as to allow operation of said auxiliary key by a thumb of said hand, said auxiliary key having an approximately circular arc shape, said arc being coaxial to said dial.
7. The keyboard of claim 6, characterised by further comprising a printed circuit board (66) including at least a portion of said rotational transducer means including a pair of opto-couplers (68); and characterised in that said dial is shaped like a knob having: a top portion (70) formed by said flat circular elevated central portion and said substantially conical peripheral portion (74) around said central portion, a lower cylindrical skirt (57) extending downwards from said substantially conical peripheral portion and having a bottom edge spaced from said printed circuit board means and a plurality of slots in said bottom edge, said opto-couplers being positioned on said printed circuit board so that said bottom edge of said lower cylindrical skirt passes through said opto-couplers when said dial is rotated, and a central shaft (52) extending downwards from said central portion, said shaft being engagable rotatably, but axially securable, in a bushing (59) fixed to said supporting frame.
8. The keyboard of claim 7, characterised in that said central shaft has a circumpherential recess (58) and said bushing has a resilient latch (59) positioned to engage in said recess when said shaft is inserted in said bushing so as to retain said knob in place and enable said knob to be swiftly fitted into and removed from said supporting frame.
9. A computer system including a computer keyboard (10) for entering commands for controlling a computer programme running in said computer system and entering data units into said computer programme; said keyboard including a plurality of keys ( $20,22,24,27$ ) mounted on a supporting frame (12), scanning and processing means (42) to sense activation of said keys to generate said commands and said data units in response thereto and communication means (42) for transmitting said commands and said data units to said computer system; and characterised by including an arrangement for improving and speeding up operation of said programme comprising a rotatable dial (30) for manually entering sequences of repeated commands and data units to said computer system, said dial being rotatably mounted on said supporting: frame and having a centre, a rotation axis (59) passing through said centre and an exposed operating surface (74) engagable by at least one finger of a hand of an operator at a plurality of radial positions from said centre so that said dial can be rotated without limit by said at least one finger of said hand; transducer means $(57,68$ ) for detecting rotation of said dial and generating an output signal indicative of incremental rotation of said dial in pre-defined angular units; means (42) for using said output signal to generate said repeated commands and said data units for entry into said computer system upon detection of said incremental angular units; a plurality of keys (26) positioned in proximity to said dial so as to allow easy access of said keys by said fingers of said hand; a plurality of auxiliary keys $(32,34)$ for switching frequently used commands and data units, at least one (32) of said auxiliary keys being positioned alongside said dial so as to allow simultaneous operation of said dial and said at least one auxiliary key by said operator with a same hand; and means (42) for modifying said repeated commands and data units by activation of said keys while said dial is rotated by said operator.



Fig. 2


Fig. 3


Fig. 4


Fig. 5


Fig. 6


Fig. 7


Fig. 8


Fig. 9


## THIS PAGE BLANK uspto)

(19) World Intellectual Property Organization International Burcau
(43) International Publication Date 22 May 2003 (22.05.2003)


PCT
(10) International Publication Number WO 03/042805 A1
(51) International Patent Classification ${ }^{7}$ : G06K 11/18
(21) International Application Number: PCT/T102/00889
(22) International Fiting Date:

11 November 2002 (11.11.2002)
(25) Filing Language:

English
(26) Publication Language:
(30) Priority Data:
$20012187 \quad 12$ November 2001 (12.11.2001)
FI
(71) Applicant (for all designated States except US): MYORIGO OY [FIF/FI]; Kasarmintie 28 H 25, FIN-90230 OULU (FI).

G06F 3/033, (72) Inventors; and
(75) Inventors/Applicants (for US only): MOILANEN, Hannu [IT/IT]; Myorigo Oy (Lid.), Kasarmintie 28 H 25, FIN-90230 Oulu (IT). KAMPMAN, Ville [IT/FI]; Myorigo Oy (Ltd.), Kasarmintic 28 H 25, FIN-90230 Oulu (II). VÄÄNÄNEN, Johannes [IT/III]; Myorigo Oy (IId.), Kasarmintic 28 H 25, FIN-90230 Oulu (IT).
(74) Agent: PATENT AGENCY COMPATENT LTD.; Hämeentic 20, 4Lh Floor, FiN-00500 Helsinki (FI).
(81) Designated States (national): AE, AG, AL, AM, AT, AU , $\mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BY}, \mathrm{BZ}, \mathrm{C} \Lambda, \mathrm{CH}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}$, CZ, DE, DK, DM, DZ, EC, ELE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT', RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, $\mathrm{UZ}, \mathrm{VC}, \mathrm{VN}, \mathrm{YU}, \mathrm{ZA}, \mathrm{ZM}, \mathrm{ZW}$.
[Continued on next page]
(54) Title: METHOD AND DEVICE FOR GENERATING FEEDDBACK

(57) Abstract: - The present invention describes a method, a dynamic user interface and an electronic device for generating user detectable multi-functional feedback with a single component in response to a stimulus signal. In the invention, one or more resonating vibrating element(s), e.g. piezo-bender, are attached to a certain component of the device. A conventional electronic device comprises different components for generating a haptic feedback signal, a buzzer signal, a vibratory alert signal or an audio signal. All the above-mentioned feedback signals can be gencrated with the piezo-element attached to, e.g. a lens or a housing. This means significant decrement in the space needed and in the power consumption compared to the situation, where the feedback signals are generated with separate components.
(84) Designated States (regional): ARIPO patent (Gll, GM, Published: KIE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), -- with international search report Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Luropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EEI, IES, IT, FR, GB, GR, IIE, IT, IU, MC, NL, PI, SE, SK, TR), OAPI patent (BI, BJ, CI, CG, CI, CM, G^, GN, GQ, GW, ML, MR, NEB, SN, T1), TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

## METHOD AND DEVICE FOR GENERATING FEEDBACK

## FIELD OF THE INVENTION

The present invention relates to electronic devices. In particular, the present invention relates to a novel and improved method, a dynamic user interface and an electronic device for generating user detectable multifunctional feedback.

## BACKGROUND OF THE INVENTION

In information technology, the user interface (UI) is everything designed into an information device with which a human being may interact, including display screen, keyboard, mouse, light pen, the appearance of a desktop, illuminated characters, help messages, and how an application program or a Web site invites interaction and responds to it. In early computers there was very little user interface except for a few buttons at an operator's console. The user interface was largely in the form of punched card input and report output.

Personal Digital Assistants (PDA) typically comprise a large display area in proportion to the size of the device. Most PDAs include only a few mechanical buttons in order to provide as large display area as possible. Therefore, the display area is also used as an input device. The display area is usually touch-sensitive so that information can be transferred into the device just by touching the display or using a special tool, e.g. a special pen.
U.S. Patent 5,241,308 (Paragon Systems) describes a touch sensitive panel for generating selected ones of any of a plurality of different signals, each of which is generated by touching a different location on the panel. The apparatus includes also force sensing means for sensing the magnitudes of the forces that are applied to each panel member support by the panel member when the member is touched at a selected location.

Touch-sensitive displays have many advantages over conventional information input methods. The display size can be made bigger when only few mechanical buttons are present. Above all, all the needed buttons can be generated by program basis in an applicable place. There are, however, several problems when a touch-sensitive display is used as a primary information input device. When a user uses his/her finger to touch the display, the problem is that the user does not necessarily receive any haptic
feedback as to whether his/her selection is acceptable or whether the selection is made at all. A traditional keyboard always gives some kind of mechanical response to a press of a button.

The main problem is that there is no solution for electronic devices for generating feedback for various stimulus signals with a single integrated component, the following conditions being fulfilled:

- Cost-effective solution, and
- Minimal power consumption.
U.S. Patent No. 5,245,245 (Motorola) describes an electronic device comprising a piezo-bender. The device is preferably a pager. When a signal is received, an electrical drive circuit electrically coupled to the piezobender drives the piezo-bender with a drive signal to generate vibratory motion in the piezo-bender, and a vibratory alert is thus provided. The device comprises also tuning means slidably coupled to the piezo-bender for mechanically tuning the resonance frequency of vibration of the piezo-bender by varying the length of the piezo-bender that can vibrate. It must be noted that the piezo-bender is mechanically tuned so the tuning must be made by a competent technician. It is also difficult to manufacture devices with exactly same (resonance) characteristics because of the mechanical tuning feature. The solution in U.S. Patent No. $5,245,245$ is also bound to a certain fixed resonance frequency. U.S. Patent No. 5,245,245 represents a low-profile and reliable vibrator for a selective call receiver. However, the reference publication does not present any connection between user actions and vibratory alert. The solution is not applicable for generating feedback for various stimulus signals with a single integrated component.

Reference publication WO01/54109 (Immersion) represents a solution of haptic feedback for touchpads and other touch controls. In the publication, a user uses a touch-input device for entering control instructions. Moreover, at least one actuator is coupled to the touch input device and outputs a force to provide a haptic sensation to the user contacting the touch surface. In other words, the user receives feedback from the input device itself. The actuator is situated under the touch-sensitive display. The problem is that the solution presented in the reference publication is not applicable for generating feedback for various stimulus signals with a single integrated component.

The expression "touch-sensitive display" refers preferably to such displays that are being used in current PDAs. These displays, however, have weaknesses. The display is vulnerable to external impacts. The display may also be temperature sensitive, i.e. the use of a device with a touch-sensitive display may be restricted to a certain temperature range.

## SUMMARY OF THE INVENTION

The present invention describes a method and an electronic device for generating user detectable multi-functional feedback with a single component in response to a stimulus signal. In the preferred embodiment, the electronic device is a hand-held device comprising at least a housing, electronic circuitry located in said housing, a display, said housing comprising at least a partially transparent lens, the transparent lens area covering at least the display.

The electronic device in the present invention comprises one or more resonating vibrating elements attached to the housing or on the electronic circuitry. In a preferred embodiment, one or more resonating vibrating elements are attached to an area of the lens not covering the display. The lens is not necessarily a touch-sensitive display as represented in the background of the invention section. Instead, the lens may be more like a panel where the lens itself is not touch-sensitive. When the resonating element(s) are attached to the lens, the feedback is transmitted to the user of the electronic hand-held device effectively through the lens. With the resonating vibrating elements, the feedback is produced to the user in response to the stimulus signal. The resonating vibrating element is preferably a piezoelectric bender.

The touch-sensitive feature is achieved with special detecting means. In a preferred embodiment, the detecting means refer to one or more force sensors attached to the lens. In one embodiment, the electronic device comprises at least force sensors with which the location of a touch on the display can be determined.

In the present invention, an electrical drive circuit is electrically coupled to the resonating vibrating element(s) for electrically driving the resonating vibrating element(s) with a drive signal. The drive signal is constituted based on the stimulus signal. The stimulus signal is preferably a useractuated signal, a radio signal received with a radio receiver of said elec-
tronic device or an electronic device induced signal. It is also possible that one or more different stimulus signals are detected at the same time. When the drive signal is supplied in the resonating vibrating elements, preferable one or more of the following feedback signals are generated: a haptic feed- back signal, a vibratory alert signal, an audio signal or a buzzer signal.

The present invention describes also a dynamic user interface for generating user detectable multi-functional feedback with a single component in response to a stimulus signal in a device, the user interface comprising at least a housing and electronic circuitry located in the housing. The dynamic user interface further comprises means for detecting the stimulus signal, one or more resonating vibrating elements attached to the housing or on the electronic circuitry, and an electrical drive circuit electrically coupled to the resonating vibrating element(s) for electrically driving the resonating vibrating element(s) with a drive signal, the drive signal being constituted based on the stimulus signal.

The present invention has several advantages over the prior-art solutions. In the present invention, the resonating vibrating element(s) may be used in several different functions. In the prior-art solutions, each function requires a dedicated component in the implementation. This is a clear advantage.

The present invention represents a solution where the power consumption is low. This is a very important feature in electronic hand-held devices. In the prior-art solutions, each feedback signal (a haptic feedback signal, a vibratory alert signal, an audio signal or a buzzer signal) is generated with a dedicated component. In the present invention, all the aforementioned feedback signals are generated with a single component, and therefore, there is only one power-consuming component. This enables easier minimisation of the power consumption.

The present invention describes also a solution where it is not necessary to use conventional touch-sensitive displays. Electronic hand-held devices can be made much more durable because it is not necessary to use any elastic membranes or touch-sensitive displays. Instead, a rigid transparent lens covers the actual display device.

The solution represented in the present invention is simple. Further, the present invention is not prone to manufacturing differences because the feedback can be adjusted easily.

The present invention has still further advantages. Because the solution uses only single component to generate feedback, this means significant space saving in the Printed Circuit Board (PCB). The number of components needed on the PCB is thus reduced. The solution represented in the present invention is also a low-cost solution because of the savings in the components.

## BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and constitute a part of this specification, illustrate embodiments of the invention and together with the description help to explain the principles of the invention. In the drawings:

Fig 1 is a simplified block diagram of an electronic hand-held device, according to the present invention,
Fig 2 is a top plan view of an electronic hand-held device, according to the present invention,
Fig 3 is a graph illustrating the resonance frequency, according to the present invention, and
Fig 4 is a side view of a parallel type mass-loaded piezo-bender, according to the preferred embodiment of the present invention.

## DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

Figure 1 is an electrical block diagram of an electronic hand-held device, e.g. a Personal Digital Assistant (PDA) or a mobile phone. Figure 1 does not comprise all the elements required in the electronic hand-held device but only the relevant elements required in the present invention. The electronic hand-held device comprises a central processing unit CPU for controlling the electronic hand-held device. A memory MEM is associated with the CPU to store relevant software applications and other relevant information. The electronic hand-held device comprises at least a partially transparent lens TP, the transparent lens area covering at least the display.

Also the term touch panel can be used when referring to the lens. The actual display DSP is located under the transparent lens TP area.

The lens TP is also used as a primary input device. User actions are detected with means IM for detecting stimulus signals. Means IM for de- tecting in one embodiment refers preferably to force sensors PS attached directly or indirectly to the lens TP. With three force sensors any location (a touch) on the lens TP area can be recognised and a relevant procedure started. Means IM for detecting stimulus signals together with the lens TP and the display DSP may refer to a conventional touch-sensitive display. In general, means IM for detecting stimulus signals may refer to several different physical or software components with which the stimulus signal(s) can be detected.

Figure 1 also comprises a drive circuit $D C$ and vibrating element(s) VIB. The drive circuit (DC) is electrically coupled to said resonating vibrating element(s) (VIB) and electrically drives the resonating vibrating element(s) (VIB) with a drive signal, the drive signal being constituted based on the stimulus signal. A vibrating element is preferably a piezo-electric element attached directly to the lens TP. The CPU controls the drive circuit DC which itself supplies a drive signal to the vibrating element(s) VIB. The piezoelectric element is attached to the lens TP, e.g. by gluing, welding, screwing etc.

The CPU comprises means DM for determining the source of the stimulus signal, means TM for determining the resonance frequency by producing a bursted frequency sweep, means LM for detecting the vibration level with said force sensors PS, and means OM for feeding the obtained frequency to the resonating vibrating element(s) VIB. The above mentioned means are preferably implemented with the CPU and/or relevant software application(s).

The drive circuit DC in one embodiment comprises several components. It can comprise, e.g. an analog to digital converter (A/D), a digital signal processor, a digital to analog converter (D/A) and an amplifier. When, e.g. a radio signal is received with the radio receiver $R F$, the radio signal is input to a digital signal processor. The digital signal processor processes the radio signal and inputs the signal to the D/A-converter. The analog signal is then amplified with the amplifier and finally the amplified signal is input to the piezo-bender. Because the piezo-bender is attached to the lens TP, the
whole system acts like an audio speaker and is able to produce an audio signal.

In one embodiment of Figure 1, the vibrating element, e.g. a piezo-bender, is used as means $I M$ for detecting the user stimulus signal. Therefore, both detecting the user stimulus signal and generating a feedback signal is produced by an integrated component.

In one embodiment, the piezo-bender is also used in measuring acceleration. Preferably there is an external mass attached to the piezobender. When a hand-held device comprising a mass attached piezo-bender is moved along the z-axis, the z-axis being essentially perpendicular to the $x / y$-plane of the display of the hand-held device, the piezo-bender measures force changes (acceleration) resulting from the inertia. Several functions can be linked to the measurement. One example is that the zooming factor of the material on the display of the hand-held device depends on the measured acceleration information. The zooming example is described in more detail in the patent application WO0127735 (Myorigo).

If the electronic hand-held device is a mobile phone and/or a radio, the device comprises also a radio receiver RF part for sending and receiving radio frequency signals.

Figure 2 is a top plan view of an electronic hand-held device HD. The device is preferable a Personal Digital Assistant (PDA) or a mobile phone. Figure 2 is a simplified example of an electronic hand-held device so the device may comprise also other features or functional buttons. The electronic hand-held HD device comprises a housing HS. The housing HS comprises at least a partially transparent lens. TP covering the actual display DSP.

In a preferred embodiment, the lens/touch panel TP itself is not touch-sensitive. The force sensors PS are directly or indirectly attached to the lens TP. In Figure 2 there are three force sensors PS attached to the lens TP. The force sensors PS are in a preferred embodiment attached to the housing HS as in a triangular form. The force sensors PS can be attached in any other appropriate way.

With three or more force sensors PS it is possible to accurately calculate and determine a place where the lens TP is touched. With the above-mentioned arrangement, the lens TP itself does not have to contain any touch-sensitive membrane or any other touch-sensitive features. In-
stead, a touch is detected with the force sensors PS. The force sensors can sense a user input also outside the transparent lens area. Therefore, certain areas of the housing HS or non-transparent areas of the lens TP can also be used as a part of the user interface.

Figure 2 comprises also a resonating vibrating element VIB. The resonating vibrating element VIB is attached to an area of the lens TP not covering the display DSP. The lens TP is preferably impervious outside the display DSP area. The vibrating element VIB is preferably a piezo-electric element and is of unimorph, bimorph or multilayer structure. The multilayer structure is the preferred solution because of the low input voltage required. The piezo-bender is preferably formed of three parts: an upper part, a lower part and a metal element between those parts. The metal element significantly strengthens the overall structure. The drive circuit DC of Figure 1 applies the desired drive signal to the resonating vibrating element VIB, thus causing the vibrating element VIB to vibrate/resonate at a certain frequency.

In one embodiment of Figure 2, the resonating vibrating elements are used to provide multiple feedback signals. The resonating vibrating element is preferably a piezo-bender of unimorph, bimorph or multilayer structure. The stimulus signal can originate from different sources. The stimulus signal can be a user-actuated signal, e.g. a touch on the lens. It can also be a radio frequency signal received with the radio receiver of the electronic device. This is the case when the electronic device is, e.g. a mobile phone. Alternatively, the stimulus signal can be an electronic device induced signal, e.g. operating system originated signal. Therefore, each stimulus signal may cause a different feedback signal.

When the piezo-bender is used to response to, e.g. a touch on the lens, a pulsed or continuous haptic feedback signal occurs. The haptic feedback signal is typically a short signal, e.g. $200-300 \mathrm{~Hz}$ of frequency and, e.g. $5-100 \mathrm{~ms}$ of duration, or a continuous signal. This signal is typically a plain or modulated resonance frequency of the piezo-bender. However, the feedback signal does not have to be restricted only to the haptic feedback. With a piezo-bender, practically any required frequency bandwidth can be produced. The feedback signal can additionally be a buzzer signal, a vibratory alert signal or an audio signal. This means that a piezo-bender attached to the lens of the electronic hand-held device can act as a speaker. Producing of an audio signal may require that the audio bandwidth is flattened by digital
signal processing in order to reduce the effect of the cantilever resonance frequencies. Certain criteria must be satisfied when generating audio signals. Especially in the buzzer feature, the sound pressure level (in Pascals) has to be adequate. The frequency band has to be broad enough. Also the har- monic multifold frequencies of the resonance frequency can be made use of when generating the feedback signal.

A conventional electronic device comprises different components for generating a haptic feedback signal, a buzzer signal, a vibratory alert signal or an audio signal. A buzzer signal is generated with a buzzer, an audio signal is generated, e.g. with a speaker, a vibratory alert signal is generated, e.g. with an electromagnetic motor and a haptic feedback signal, e.g. with a DC motor, a solenoid, moving magnet actuator etc. All the above-mentioned feedback signals can be generated with the piezo-element in the present invention. This means significant decrement in the power consumption compared to the situation, where the feedback signals are generated with separate components.

Figure 1 and 2 represents only one embodiment of the dynamic user interface described in the present invention. The dynamic user interface is not restricted to any special devices. The dynamic user interface is able to generate user detectable multi-functional feedback with a single component in response to a stimulus signal. The stimulus signal can be a user actuated signal, a radio signal received with a radio receiver or a device induced signal. The user interface comprises at least a housing and electronic circuitry located in the housing. The shape of the housing is not restricted. With means for detecting the stimulus signal a stimulus signal source is defined. One or more resonating vibrating elements is attached to the housing or on the electronic circuitry, e.g. a PCB board located in the housing. An electrical drive circuit electrically coupled to the resonating vibrating element(s) electrically drives the resonating vibrating element(s) with a drive signal, the drive signal being constituted based on the stimulus signal.

The resonating vibrating element is preferably a piezo-bender of unimorph, bimorph or multilayer structure. It is very crucial to define the type of the stimulus signal, because the feedback signal generated by the piezobender solely depends on the stimulus signal. The feedback signal is a haptic feedback signal, a vibratory alert signal, an audio signal or a buzzer signal. It is very important to carefully define the attachment point of the piezo-
bender to the housing or to the electronic circuitry. The piezo-bender component itself does not produce all the needed feedback signals but attached to the housing of to the electronic circuitry it is able to produce multifunctional feedback.

There are numerous devices where the dynamic user interface described can be used. The devices include, e.g. joysticks, keyboards, ebooks, or practically any device, where multi-functional feedback can be used.

Figure 3 shows the acceleration and the current-frequency response of an exemplary electronic hand-held device. The upper graph represents the acceleration factor of the lens as a function of frequency. The bigger the acceleration value, the stronger the feedback to the user. The lower graph represents the current as a function of frequency. In a preferred embodiment of Figure 3, an external mass is attached to the vibrating element. The use of an external mass increases the force obtained at the clamp point of the piezo-bender and also improves the low-frequency audio bandwidth. The reason why the frequency area for a haptic feedback is quite low, e.g. $200-300 \mathrm{~Hz}$, is that normally a human being is not so sensitive to higher frequencies, e.g. with a hand. The peak current value is slightly higher in the resonance than in the immediate surroundings of the resonance frequency. The acceleration and the current values in Figure 3 are not necessarily real values but merely exemplary values.

The resonance frequency can be made use of yet another way. In the manufacturing phase, the lens or the overall housing may be manufactured in such a way that one of the resonance frequencies of the lens or of the housing is in the same frequency range as that of the vibrating element. Therefore, the overall effect of the haptic feedback is more efficient.

It may occur that the resonance frequency must be individually seeked. The electronic hand-held device comprises a feature where the optimal frequency may be determined. This is done by determining the resonance frequency by producing a bursted frequency sweep. The force sensors can be made use of in another situation. The responses of the vibrating element(s) (haptic feedback) can be detected with the force sensors. With the force sensors it is possible to determine the individual resonance frequency. When the measurement is made, the drive circuit is set to feed the obtained frequency to the vibrating element(s).

The feedback parameters can also be individually tuned for each person using it. The main parameters that the user can control are, for example:

- amplitude
interface and an integrated low-cost and low power solution for producing multi-functional feedback.

It must be noted that the piezo-bender component itself is not necessarily able to generate all the feedback signals (a haptic feedback sig- nal, a buzzer signal, a vibratory alert signal or an audio signal) described in the present invention. However, the situation is different when the piezobender is attached, e.g. to a lens, a certain part of a housing, or a PCB board. Together with the component on which the piezo-bender is attached, it is possible to generate multi-functional feedback as described in the present invention.

It is obvious to a person skilled in the art that with the advancement of technology, the basic idea of the invention may be implemented in various ways. The invention and its embodiments are thus not limited to the examples described above, instead they may vary within the scope of the claims.

## CLAIMS

1. An electronic device for generating user detectable multifunctional feedback with a single component in response to a stimulus signal, said electronic device (HD) comprising at least a housing (HS) and elec- tronic circuitry located in said housing (HS),
characterised in that said electronic device further comprises:
means (IM) for detecting said stimulus signal;
at least one resonating vibrating element (VIB) attached to said housing (HS) or on said electronic circuitry, the resonating vibrating element having the ability to produce at least two feedback signals selected from a group consisting of a haptical feedback signal, a vibratory alert signal, an audio signal, and a buzzer signal; and
an electrical drive circuit (DC) electrically coupled to said resonating vibrating element(s) (VIB) for electrically driving said resonating vibrating element(s) (VIB) with a drive signal, said drive signal being constituted based on said stimulus signal.
2. The electronic device according to claim 1, characteri s e $d$ in that the electronic device comprises a display (DSP) and a partially transparent lens (TP), the transparent lens area covering at least said display (DSP), said resonating vibrating element(s) (VIB) being attached to an area of said lens (TP) not covering said display (DSP).
3. The electronic device according to claim 1 or 2 , char a c $t$ erised in that said stimulus signal is one or more of the following signals:
a user actuated signal;
a radio signal received with a radio receiver (RF) of said electronic device; and
an electronic device induced signal.
4. The electronic device according to any of the claims 1,2 or 3 , ch aracterised in that said feedback comprises one or more of the following signals:
a haptic feedback signal;
a vibratory alert signal;
an audio signal; and
a buzzer signal.
5. The electronic device according to any of the claims 1,2,3 or 4, characterised in that the means (IM) for detecting said stimulus signal comprises one or more sensors (PS) for detecting user input.
6. The electronic device according to any of the claims $1,2,3,4$ or 5 , characterised in that the electronic device comprises means (DM) for determining the source of said stimulus signal.
7. The electronic device according to any of the claims $1,2,3,4,5$ or 6, characterised in that the electronic device comprises:
means (TM) for determining the resonance frequency by producing a bursted frequency sweep;
means (LM) for detecting the vibration level with said sensor(s) (PS); and
means (OM) for feeding the obtained frequency to said resonating vibrating element(s) (VIB).
8. The electronic device according to any of the claims $1,2,3,4$, 5,6 or 7 , characterised in that said resonating vibrating element (VIB) is used as an acceleration sensor.
9. The electronic device according to any of the claims $1,2,3,4$, $5,6,7$ or 8 , characterised in that said resonating vibrating element (VIB) is a piezo-bender of a unimorph, bimorph or multilayer structure.
10. The electronic device according to claim 9, charac$t$ erised in that the electronic device comprises an external mass attached to said piezo-bender.
11. The electronic device according to claim 1 or $2, \mathrm{ch}$ a rac $t$ erised in that said housing (HS) and/or said lens (TP.) is manufactured so that at least one of its resonating frequencies is within the same frequency range as the frequency range of said resonating vibrating element(s) (VIB).
12. The electronic device according to any of the claims $1,2,3,4$, $5,6,7,8,9,10$ or 11 , characterised in that the electronic device is a hand-held electronic device.
13. A method for generating user detectable multi-functional feedback with a single component in response to an stimulus signal with an electronic device, said electronic device comprising at least a housing and electronic circuitry located in said housing,
characterised in that said electronic device comprises at least one resonating vibrating element (VIB) attached to said housing or on said electronic circuitry, the resonating vibrating element producing at least two feedback signals selected from a group consisting of a haptical feedback signal, a vibratory alert signal, an audio signal, and a buzzer signal;
the method further comprising the steps of:
detecting said stimulus signal; and
electrically driving said resonating vibrating element(s) with a drive signal with an electrical drive circuit electrically coupled to said resonating vibrating element(s), said drive signal being constituted based on said stimulus signal.
14. The method according to claim 13 , characterised in that the electronic device comprises a display and a partially transparent lens, the transparent lens area covering at least said display, said resonating vibrating element(s) being attached to an area of said lens not covering said display.
15. The method according to claim 13 or 14 , characteris ed in that said stimulus signal comprises one or more of the following signals:
a user actuated signal;
a radio signal received with a radio receiver of said electronic device; and
an electronic device induced signal.
16. The method according to any of the claims 13,14 or 15, characterised in that said feedback comprises one or more of the following signals:
a haptic feedback signal;
a vibratory alert signal;
an audio signal; and
a buzzer signal.
17. The method according to any of the claims $13,14,15$ or 16 , ch hracterised in that detecting user input with one or more sensors.
18. The method according to any of the claims $13,14,15,16$ or $17, \mathrm{ch}$ aracterised in that the method comprises the step of: determining the source of said stimulus signal.
19. The method according to any of the claims $13,14,15,16,17$ or 18 , ch aracterised in that the method comprises the steps of:
determining the resonance frequency by producing a bursted frequency sweep;
detecting the vibration level with said sensor(s); and
feeding the obtained frequency to said resonating vibrating element(s).
20. The method according to any of the claims $13,14,15,16,17$, 18 or $19, \mathrm{ch}$ aracterised in that using said resonating vibrating element as an acceleration sensor.
21. The method according to any of the claims $13,14,15,16,17$, 18, 19 or 20 , characterised in that said resonating vibrating element is a piezo-bender of a unimorph, bimorph or multilayer structure.
22. The method according to claim 21, characterised in that the method comprises the step of:
attaching an external mass to said piezo-bender.
23. The method according to any of the claims $13,17,21$ or 22 , characterised in that detecting said stimulus signal with said piezo-bender.
24. The method according to claim 12 or 13 , characterised in that the method comprises the step of:
manufacturing said housing and/or said lens so that at least one of its resonance frequencies is within the same frequency range as the frequency range of said resonating vibrating element(s).
25. The method according to any of the claims $13,14,15,16,17$, $18,19,20,21,22,23$ or $24, \mathrm{ch}$ aracterised in that the electronic device is a hand-held electronic device.
26. A dynamic user interface for generating user detectable multifunctional feedback with a single component in response to a stimulus signal in a device, said user interface comprising at least a housing (HS) and electronic circuitry located in said housing (HS),
ch aracterised in that said dynamic user interface further comprises:
means (IM) for detecting said stimulus signal;
at least one resonating vibrating element (VIB) attached to said housing (HS) or on said electronic circuitry; the resonating vibrating element
having the ability to produce at least two feedback signals selected from a group consisting of a haptical feedback signal, a vibratory alert signal, an audio signal, and a buzzer signal; and
an electrical drive circuit (DC) electrically coupled to said resonat- ing vibrating element(s) (VIB) for electrically driving said resonating vibrating element(s) (VIB) with a drive signal, said drive signal being constituted based on said stimulus signal.
27. The dynamic user interface according to claim 26, chara cterised in that the device comprises a display (DSP) and a partially transparent lens (TP), the transparent lens area covering at least said display (DSP), said resonating vibrating element(s) (VIB) being attached to an area of said lens (TP) not covering said display (DSP).
28. The dynamic user interface according to claim 26 or 27 , characterised in that said stimulus signal is one or more of the following signals:
a user actuated signal;
a radio signal received with a radio receiver (RF); and
a device induced signal.
29. The dynamic user interface according to any of the claims 26, 27 or 28 , characterised in that said feedback comprises one or more of the following signals:
a haptic feedback signal;
a vibratory alert signal;
an audio signal; and
a buzzer signal.
30. The dynamic user interface according to any of the claims 26, 27,28 or 29 , characterised in that the means (IM) for detecting said stimulus signal comprises one or more sensors (PS) for detecting user input.
31. The dynamic user interface according to any of the claims 26, $27,28,29$ or 30 , characterised in that the dynamic user interface comprises means (DM) for determining the source of said stimulus signal.
32. The dynamic user interface according to any of the claims 26 , $27,28,29,30$ or $31, \mathrm{ch}$ aracterised in that the dynamic user interface comprises:
means (TM) for determining the resonance frequence by producing a bursted frequency sweep;
means (LM) for detecting the vibration level with said sensor(s)
(PS); and
means (OM) for feeding the obtained frequency to said resonating vibrating element(s) (VIB).
33. The dynamic user interface according to any of the claims 26, $27,28,29,30,31$ or 32 , characterised in that said resonating vibrating element (VIB) is used as an acceleration sensor.
34. The dynamic user interface according to any of the claims 26, $27,28,29,30,31,32$ or $33, \mathrm{ch}$ a racterised in that said resonating vibrating element (VIB) is a piezo-bender of a unimorph, bimorph or multilayer structure.
35. The dynamic user interface according to claim 34, characterised in that the dynamic user interface comprises an external mass attached to said piezo-bender.
36. The dynamic user interface according to claim 26 or 27 , characterised in that said housing (HS) and/or lens (TP) is manufactured so that at least one of its resonating frequencies is within the same frequency range as the frequency range of said resonating vibrating element(s) (VIB).
37. The dynamic user interface according to any of the claims 26, $27,28,29,30,31,32,33,34,35$ or 36, ch aracterised in that the device is a hand-held electronic device.
$1 / 4$


Fig. 1

## BEST AVAILABLE COPY

$2 / 4$

BEST AVAILABLE COPY


Fig. 2


BEST AVAILABLE COPY
$4 / 4$


Fig. 4

## INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 02/00889

## A. CLASSIFICATION OF SUBJECT MATTER

IPC7: G06F 3/033, G06K 11/18
According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC7: G06F, G06K
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ
C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| :--- | :---: | :---: | :---: |
| X | WO 9200559 A1 (HEWLETT-PACKARD CO), 9 January 1992 | $1-6,11-18$, |
|  | $(09.01 .92)$, page 6, line 1-7ine 26, claims 1,4, | $24-31,36-37$ |

X US 4885565 A (EMBACH, J.T.), 5 December 1989 ( 05.12 .89 ), column 1, line 20 - line 45, claim 1,

1-6,11-18, abstract

00152029 A2 (SONY COMPUTER ENTERTAINMENT INC), 19 July 2001 (19.07.01), page 2, line 1 - page 3, line 25, abstract

Special categories of cited documents:
"A" docurnent defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
" $O$ " document referring to an oral disclosure, use, exhibition or other means
" $P$ " docurnent published prior to the international filing date but later than the priority date claimed
Date of the actual completion of the international search

10 February 2003
Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +4686660286
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"\&" document member of the same patent family
Date of mailing of the international search report

## 13-02-2003

Authorized officer
Pär Heimda 7/LR
Telephone No. +4687822500

Telephone No. +4687822500

Form PCT/ISA/210 (second sheet) (July 1998)

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages ${ }^{\text {a }}$ R	Relevant to claim No.
X	DE 4323863 A1 (ANDROMEDA GESELLSCHAFT FüR COMPUTER- UND ROBOTER PRODUKTE MBH), 19 January 1995 (19.01.95), column 1, line 1 - line 56, claims 1-2, abstract	$\begin{aligned} & 1-6,11-18 \\ & 24-31,36-37 \end{aligned}$
P, X	US 2002033795 AI (SHAHOIAN, E.J. ET AL),   21 March 2002 (21.03.02), [0007] - [0014]	$\begin{aligned} & 1-6,11-18 \\ & 24-31,36-37 \end{aligned}$



## THIS PAGE BLANK uSPTO

## FR

BOSTON DALlas

SAN DIEGO SILICON VALley

TWIN CITIES
WASHINGTON, DC

## Fish \& Richardson p.c.

October 31, 2003

Attorney Docket No.: 16300-002001
Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Presented for filing is a new original patent application of:

12390 El Camino Real San Diego, California 92130

Telephone 858 678-5070

Facsimile 858 678-5099

Web Site www.fr.com.

Applicant: BETH MARCUS AND W. DAVID LEE
Title: HUMAN INTERFACE AND INPUT SYSTEM
Enclosed are the following papers, including those required to receive a filing date under 37 CFR §1.53(b):

	$\frac{\text { Pages }}{21}$
Specification	7
Claims	1
Abstract	2
Declaration	9

Enclosures:

- Assignment cover sheet and an assignment, 2 pages, and a separate $\$ 40$ fee.
- New disclosure information, including:

Information disclosure statement, 1 page.
PTO-1449, 2 pages.
References, 28 items cited ( 6 references enclosed).

- Postcard.
- Power of Attorney by Assignee and Election of Assignee to Conduct Prosecution to Exclusion of Inventors.

Fish \& Richardson p.c.
Commissioner for Patents
October 31, 2003
Page 2

This application is entitled to small entity status. See 37 CFR 1.27.
Basic filing fee \$385
Total claims in excess of 20 times $\$ 9$ \$81
Independent claims in excess of 3 times \$43 \$129
Fee for multiple dependent claims \$0
Total filing fee: \$595
A check for the filing fee is enclosed. Please apply any other required fees or any credits to deposit account 06-1050, referencing the attorney docket number shown above.

If this application is found to be incomplete, or if a telephone conference would otherwise be helpful, please call the undersigned at (858) 678-5070.

Kindly acknowledge receipt of this application by returning the enclosed postcard.
Please direct all correspondence to the following:

PTO Customer Number
Respectfully submitted,


John P. Schnurer
Reg. No. 52,196
Enclosures
JPS/nsg
10342174.doc

## FR

BOSTON DALlas

SAN DIEGO SILICON VALley

TWIN CITIES
WASHINGTON, DC

## Fish \& Richardson p.c.

October 31, 2003

Attorney Docket No.: 16300-002001
Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Presented for filing is a new original patent application of:

12390 El Camino Real San Diego, California 92130

Telephone 858 678-5070

Facsimile 858 678-5099

Web Site www.fr.com.

Applicant: BETH MARCUS AND W. DAVID LEE
Title: HUMAN INTERFACE AND INPUT SYSTEM
Enclosed are the following papers, including those required to receive a filing date under 37 CFR §1.53(b):

	$\frac{\text { Pages }}{21}$
Specification	7
Claims	1
Abstract	2
Declaration	9

Enclosures:

- Assignment cover sheet and an assignment, 2 pages, and a separate $\$ 40$ fee.
- New disclosure information, including:

Information disclosure statement, 1 page.
PTO-1449, 2 pages.
References, 28 items cited ( 6 references enclosed).

- Postcard.
- Power of Attorney by Assignee and Election of Assignee to Conduct Prosecution to Exclusion of Inventors.

Fish \& Richardson p.c.
Commissioner for Patents
October 31, 2003
Page 2

This application is entitled to small entity status. See 37 CFR 1.27.
Basic filing fee \$385
Total claims in excess of 20 times $\$ 9$ \$81
Independent claims in excess of 3 times \$43 \$129
Fee for multiple dependent claims \$0
Total filing fee: \$595
A check for the filing fee is enclosed. Please apply any other required fees or any credits to deposit account 06-1050, referencing the attorney docket number shown above.

If this application is found to be incomplete, or if a telephone conference would otherwise be helpful, please call the undersigned at (858) 678-5070.

Kindly acknowledge receipt of this application by returning the enclosed postcard.
Please direct all correspondence to the following:

PTO Customer Number
Respectfully submitted,


John P. Schnurer
Reg. No. 52,196
Enclosures
JPS/nsg
10342174.doc

# APPLICATION 

FOR

# UNITED STATES LETTERS PATENT 

## TITLE: <br> HUMAN INTERFACE AND INPUT SYSTEM

APPLICANT: BETH MARCUS AND W. DAVID LEE

# Human Interface System 

## BACKGROUND

The following description relates to human interface and input systems for electronic devices, particularly hand-held electronic devices, such as cell phones, personal digital assistants ("PDAs"), pocket personal computers, smart phones, hand-held game devices, bar-code readers, remote controls, and other similar input devices having a keypad or one or more input elements.

Electronic devices have become increasingly sophisticated and physically smaller due in part to a decrease in the price of processing power and a concurrent increase in demand by consumers for smaller devices. Such devices, however, tend to be limited in function and utility by the user's ability to interface with the device for data input (e.g., text, numeric, and functional input) and/or device control, which becomes increasingly more difficult to do as the available space on the device's surface for positioning the input elements, which are used for data input and/or device control, continues to decrease.

Various human interface and input systems and techniques for hand-held electronic devices have been developed for data input and device control. These include miniature keyboards and keypads used in combination with chordal input techniques, modal input techniques and/or smart keys; and touch screens used in combination with on-screen keyboard or keypad software or hand-writing recognition software.

## Keyboard or Key pad Used With Chordal, Modal and Smart Key Techniques

Miniature keyboards and keypads are similar to their standard full-size versions-i.e., a keyboard generally has a full set or substantially full set of numeric, character, and functional input elements, while key pads typically have a reduced set of numeric, character and/or functional input elements compared to keyboards. These miniature input devices typically are designed to fit the available space on one surface of a hand-held electronic device or are designed as small, easily transportable, external plug-in devices. Thus, as hand-held electronic devices become smaller, the size of the input elements typically has been reduced in order for the desired number of input elements to fit on one surface of the electronic device.

For data input and device control, miniature keyboards and keypads typically either require one of two input techniques-- use of one or more thumbs or fingers to press the desired input elements or use of a stylus to "peck" the desired input elements (which is usually done
where the input element is of smaller size). Various techniques, such as chordal input techniques, modal input techniques and smart keys, have been developed and implemented to improve the efficiency and effectiveness of using miniature keyboards and keypads.

## - Chordal Input Techniques

Chordal input techniques generally are based upon the principle that characters, symbols, words, phrases or concepts can be represented by a reduced set of input elements. Thus, by only having to press a reduced combination of input elements, functionality can be increased and quicker and more accurate data input can be realized. Chordal input techniques can be used on any keyboard or keypad configuration or any device having more than one input element, and typically results in fewer input elements or more functions compared to conventional keyboards or keypads. An example of an electronic device using two-handed chordal input techniques is a court reporter or stenographer's typewriter. One chordal input technique using a keypad to decrease the number of actuations to achieve a large number of functions is described in U.S. Patent No. 5,973,621 to Levy, entitled "Compact Keyed Input Device," which is incorporated herein by reference.

## - Modal Input Techniques

Modal input techniques are based on the concept that functions of the electronic device, e.g., text messaging in a cell-phone or PDA, can be accessed by pressing a particular input element (or combination of elements) on a keyboard or keypad. Once that particular input element is pressed, the functionality of all or a portion of the input elements on the keyboard or keypad may change. Modal techniques typically are used in calculators, cell-phones, and PDAs. For example, in cell phones, a modal technique called multi-tap is common, in which individual input elements on the keypad are associated with multiple symbols, such as characters, letters, numbers, icons or other types of symbols, which tends to reduce the number of input elements required to achieve the desired functions, e.g., a twelve-input-element keypad can be used to represent all letters of the English alphabet and the decimal digits. A user can input a desired symbol within a set of symbols associated with a certain input element by tapping on that particular input element with a thumb, finger, or stylus, one or more times to input the desired character. Thus, if a user desires to send a text message, the user may press a functional input element, e.g., a mode key, to access the text messaging functionality of the cell phone and then tap an individual input element one or more times to select the associated symbol for input. The
number of taps needed to input a particular symbol may differ depending on the language character set chosen. For example, Japanese keypad or keyboards typically require a minimum set of 46 characters for text input, while English or American keyboards and keypads usually require a minimum set of 26 characters for text input. These modal input techniques have gained some popularity as users perform more text functions.

## - Smart Keys

Smart keys are typically used on keypads and refer to a single key or combination of keys that, when pressed, predict the users next logical action. Some implementations work better than others and some applications reduce the number of keystrokes required to complete a function better than others. Word-predictor software, for example, attempts to predict the word or character the user intends to input based upon one or more letters inputted by the user and the likely probabilities within a given language. The probability of the software guessing correctly increases with the length of the word or number of letters or characters inputted. In a device using smart keys on the keypad, a user may tap the keys 2,2 and 8 in sequence to generate the word "cat" and the device would display that word first because it is usually the most common combination, whereas the word "bat," which can be generated by pressing the same keys, would not be displayed first because it is not as common. Also, the word "cat" may be displayed after pressing the 2 key the second time based on a guess by the word-predictor software.

Smart keys also are typically used for Japanese data input where a user phonetically inputs letters representing the sound of the Japanese character (e.g., a Kanji character). Based on the inputted letters, the predictor software guesses the Japanese character. To select the character, a user would press the accept button or use the scrolling function to go to the next character with a similar set of phonetic inputs.

## Touch Screen Using On-Screen Keyboard or Handwriting Recognition Software

Using on-screen keyboard or keypad software with a touch screen offers users the ability to enter data with fingers or thumbs on a screen-sized keyboard or buttons, allowing faster data input without a stylus or physical keyboard or keypad accessory; while using handwriting recognition software with a touch screen, such as GraffitiÔ on the Palm operating system, offers users the ability to enter text with a stylus by writing the text directly on the touch screen. Touch screens usually consume more power and are more expensive than non touch-sensitive screens. This higher power consumption can be a problem for hand-held electronic devices, which
typically have limited power resources. Moreover, touch screens usually require the user to use both hands (e.g., one hand is used to hold and steady the device while the other hand is used to grasp the stylus), which is generally undesirable for interfacing with and controlling one handed hand-held electronic device, such as cell phones. Handwriting recognition software has improved the slowness and awkwardness inherent in stylus, finger or thumb input but other drawbacks still remain, such as high power consumption, the necessity to use both hands, and lack of tactile feedback to inform a user when an input element has been. Moreover, recognition software requires training to use properly, and, even then, still results in a high error rate. Game Control

For game control, many of the above approaches have been used, but in most hand-held electronic devices, a user typically controls game play through the use of some form of input element, such as on a miniature keypad and/or directional pad ("D-pad"), which typically is located on the front surface of the device. Game control on some hand-held electronic devices, such as cell phones, is inherently one handed or at most two thumbed because of the size of the device, while game control on other hand-held electronic devices, such as PDAs and conventional game console controllers, is typically two-handed. The input elements associated with game control on these devices are typically digital even though analog input elements have been used on game controllers for PC and console game systems, such as Microsoft's Xbox or Sony's Play Station 2.


#### Abstract

SUMMARY The present inventors recognized that conventional human interface and input systems for hand-held electronic devices tended to be relatively inflexible, cumbersome, and inefficient to use, among other reasons, because they were not designed to take advantage of the biomechanics of the human hand, particularly the advantages associated with the opposition of the thumb to the fingers and the beneficial attributes of the thumb, e.g., its large range of motion and ability to impart large sustained forces, and the beneficial attributes of the fingers, e.g., their fine motor control, spatial memory and rapidity of motion.

The present inventors also recognized that the input techniques developed to improve the efficiency of data input and device control, such as chordal and modal techniques, were limited by the inefficiencies inherent in conventional input systems. For example, miniature keyboards


and keypads used in combination with chordal input techniques not only required the user to memorize numerous input combinations and develop the necessary motor skills to control a reduced number of input elements to provide even more complex functionality compared to typical QWERTY keyboards, but also did not use or allocate input tasks to the fingers and thumb of the human hand effectively. Moreover, miniature keyboards and keypads used in combination with modal input techniques tended to limit the user's ability to efficiently input data depending on the number of taps required to input a particular symbol and how fast the user could tap the input element with his thumb or a stylus to select the particular symbol.

The present inventors also recognized that a user's ability to control game play in such devices was greatly limited. For example, while analog game control has been available to users of PC and console game systems, analog game control generally has not been widely available on hand-held electronic devices, such as cell phones and PDAs. Moreover, because the game controls for conventional hand-held electronic devices were typically positioned on the front surface of the device, the user's hand typically obscured the user's view of the video screen. Also, the "fast twitch" control (e.g., a trigger) for shooting or activating special purpose game controls, which users have come to expect in console and PC game systems, generally has not been available to users of such hand-held electronic devices due in part to the nature of conventional interface and input systems, which were optimized for data input rather than for game control.

Consequently, the present inventors developed a flexible and efficient human interface and input system and techniques for hand-held electronic devices (whether one handed or two handed) that utilize the opposed thumb and finger ergonomics inherent in the hand and the skills already developed for using conventional input techniques to accomplish data input, device control and game control in a timely, efficient, comfortable and intuitive manner. Thus, no specialized training beyond that normally expected with any newly purchased hand-held device is expected.

Implementations of the human interface and input system for hand-held electronic devices described here may include various combinations of the following features.

The human interface and input system for a hand-held electronic device may be configured to include on a first surface a plurality of input elements that can be manipulated by one or both of a human user's thumbs or a stylus. At least one of the input elements may be
configured in software to provide access to a plurality of input functions. For example, one of the input elements may provide access to the text symbols $5, \mathrm{j}, \mathrm{k}$ and l , while another input element may provide access to the text symbols 3 , d , e and f , such as is found on a typical cell phone keypad. The human interface and input system also includes on a second surface one or more selection elements that may be manipulated by any of the human user's fingers. The selection elements may be associated with one or more input functions, which may be configured in software. For example, the selection elements may be configured to correspond to a particular shift position. Therefore, when a user manipulates a selection element, which is configured to correspond to a third shift position, for example, then the input function that may be accessed by a particular input element will be the third input function associated with the input element. In the example provided above, the third input function may be the text symbol " $k$ " for the input element that provides access to the text symbols $5, \mathrm{j}, \mathrm{k}$ and l .

One of the selection elements may be a pressure sensor pad that can be configured to represent a plurality of delineated active areas, as well as inactive areas. These delineated active areas likewise can be configured in software to represent one or more input functions. A shape changing media also may be provided with the pressure sensor pad so as to permit a human user to tactilely discriminate between the plurality of delineated active areas and/or inactive areas.

The input elements and/or selection elements also may be associated with a palpable detent, vibratory unit and/or force producing unit, which may provide tactile feedback to the user when the user manipulates the elements or in response to events occurring in a software application running on a processor.

The human interface and input system also may be configured to include a first input assembly and a second input assembly. The first input assembly may include a plurality of input or selection elements situated on one or more surfaces of the electronic device and configured to be easily and comfortably actuated by one or both of a human user's thumbs or a stylus. The second input assembly may include one or more input or selection elements situated on one ore more surfaces of the electronic device and configured to be easily and comfortably actuated by one or more of the human user's fingers. The first input and second input assemblies may be disposed on one or more surfaces of the hand-held electronic device to take advantage of the full range of opposition configurations of the thumb and the fingers. Sensing circuitry, such as an input controller, may be provided to receive signals generated by the elements of the first and/or
second input assemblies when the elements are manipulated by the human user and convert those signals in a form suitable to be received by a processor running application software, which based on the received signals, can determine the type of input provided by the human user.

The first input assembly may be situated on a front surface of the electronic device, while the second input assembly may be situated on the back surface of the electronic device to take advantage of the thumb/finger opposition. As configured, a user may manipulate input elements in the first input assembly with one or both thumbs or a stylus, while, manipulating elements in the second input assembly with one or more fingers.

The input function of the input elements of the first and/or the second input assembly may change depending on the application running on the electronic device. When a text application (e.g., e-mail, word processing, or text messaging) is running on the electronic device, the elements of the first and/or second input assembly may be associated with data input keys, such as symbols. When a game application is running on the electronic device, the input elements of the first and/or second input assembly may be associated with game controls, such as a directional control, action buttons, and trigger buttons. The mapping of one ore more of the input elements of the first and/or second input assembly to a software application, i.e., whether one ore more of the input elements will operate as data input keys, game controls or device controls can be customized by the software application developer or the user through downloads or other programming modalities. Moreover, to reduce the cost of manufacturing hand-held electronic devices that will be used in multiple countries, input element sets particular to the language of a desired country can be implemented in software.

The systems and techniques described here may provide one or more of the following advantages. The human interface and input system and associated techniques offer the functionality of a high performance game controller, which can support the most demanding game input requirements, and the speed and accuracy of data input that can be obtained with the use of a conventional standard QWERTY keyboard, but without the large footprint. Also, the human interface and input system and associated techniques can increase the number of functions that may be associated with a given number of input elements without increasing the number of keystrokes or taps that is required. Moreover, it allows the input element size to remain consistent with the ergonomics of the human hand without increasing the time it takes to learn how to use the input system compared to conventional input systems.

Details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.

## DESCRIPTION OF DRAWINGS

Fig. 1 is a block diagram of a typical hand-held electronic device upon which the human interface and input system may be implemented.

Fig. 2 is a block diagram of an implementation of the human interface and input system.
Figs. 3 a and 3 b show front and back isometric views, respectively, of a hand-held electronic device wherein the second input assembly includes a pressure sensor pad having a plurality of configurable active areas.

Fig. 3c illustrates an exploded view of an example of an input element of the first input assembly.

Fig. 3d depicts one implementation of how the plurality of configurable active areas of the pressure sensor pad of the second input assembly may be configured.

Figs. 4 a and 4 b depict front and back isometric views, respectively, of $a$ hand-held electronic device wherein the second input assembly includes three touch pads.

Figs. 5a and 5b depict front and back isometric views, respectively, of a hand-held electronic device wherein the second input assembly includes three two-position rockers.

Figs. 6a and 6b illustrate front and back isometric views, respectively, of a hand-held electronic device wherein the second input assembly includes a D-pad and two contact sensors.

Figs. 7a and 7b show a two-handed hand-held electronic device wherein the second input assembly includes two rotary dials.

Fig. 8 is a block diagram of a hand-held electronic device in the context of a communication system that may be used to implement the human interface and input systems and techniques described here.

Like reference symbols in the various drawings indicate like elements.

## DETAILED DESCRIPTION

## Biomechanics of the Human Hand

The human hand comprises an opposable thumb and four fingers, i.e., the thumb may be used in opposition, in concert, in combination or functional relation with any of the four fingers.

Compared to the human fingers, the human thumb may be characterized as having larger range of motion, stronger sustaining force actuation and poorer dexterity. The human base joint of the thumb has three degrees of freedom, such as side-to-side movement, up and down movement, and rotation about the thumb's long axis; while the base joint of the fingers has two degrees of freedom, such as side-to-side and up and down movement. Thus, the thumb typically is considered to have better range of motion than any of the fingers. Also, because the human thumb has a bigger actuation muscle than any of the fingers, it can provide larger sustaining forces than the fingers. But also because of the larger muscle, the human thumb may suffer from diminished fine motor control and rapidity of motion that can be exerted compared to the fingers. Thus, the human fingers are more suitable for performing tasks that require fine motor coordination or the ability to pinpoint or rapidly repeat actuation.

## Hand-Held Electronic Device Hardware Overview

FIG. 1 is a block diagram that illustrates a hand-held electronic device 100 , such as a cellphone, PDA, pocket PC, or smart phone, or other similar input devices upon which the human interface and input system and associated input techniques described herein may be implemented. Electronic device 100 may include a bus 102 or other communication mechanism for communicating information, and a processor 104, such as an ARM, OMAP or other similar processor, coupled with bus 102 for processing information, such as one or more sequences of one or more instructions, which may be embedded software, firmware, or software applications, such as a text messaging application or video game. Electronic device 100 also may include a main memory 106, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 102 for storing information and instructions to be executed by processor 104 . Main memory 106 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 104. Electronic device 100 further may include a read only memory (ROM) 108 or other static storage device coupled to bus 102 for storing static information and instructions for processor 104. A storage device 110 may be provided and coupled to bus 102 for storing information and instructions. Electronic device 100 may also include a display 112, such as a liquid crystal display (LCD), for displaying information to a user, and a human interface and input system 114 for communicating information and command selections to processor 104. Electronic device 100 also may include a communication interface 118 coupled to bus 102 . Communication interface 118 provides a two-
way data communication coupling to a base station. For example, communication interface 118 may be a wireless link, a modem to provide a data communication connection to a corresponding type of telephone line or any other communication interface known to one of ordinary skill. As another example, communication interface 118 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. In the wireless link implementation, communication interface 118 may send and receive electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.

## Human Interface and Input System Overview

FIG. 2 is a block diagram illustrating the major subsystems of the human interface and input system 114. The input system 114 may include a first input assembly 206, a second input assembly 208, and an input controller 216. The first input assembly 206 and the second input assembly 208 may include one or more input or elements. The input or selection elements, which may be keys, buttons, pressure sensor pads, touch pads or other actuators, associated with one or more sensors, which produce one or more electrical signals 214 when the input or selection elements are actuated. The input controller 216, which may include one or more processors, receives the one or more electrical signals 214 and converts them into a form suitable to be received and interpreted by processor 104 after passing through bus 102 .

One or more context signals 222 are provided to input controller 216 through bus 102 in response to processor 104 executing embedded software, firmware, or software applications, such as a text messaging application. The context signals 222 are received and used by input controller 216 to map input or selection elements in the first input assembly 206 and/or the second input assembly 208 to one or more application input functions and responses. For example, if a text application is being executed by processor 104, then the input controller 216 may map one or more input elements of the first input assembly 206 to one or more symbols, such as characters, letters, numbers, icons, other types of symbols, or combinations of different types of symbols, and map one or more input or selection elements of the second input assembly 208 to a shifting or indexing functionality. If processor 104 is executing a game application, then the input controller 216 may map the input or selection elements of the input assemblies 206, 208 to game functions. The mapping of the input or selection elements to particular input functions for a given software application, whether done by the input controller 216 or processor 104, may be customized by the application developer or the user through downloads or other
programming modalities. Moreover, the mapping of the input or selection elements may be done for language key set changes, which may reduce the cost of manufacturing hand-held electronic devices for manufacturers servicing multiple countries.

Alternative implementations of the input system 114 need not have the input controller 216, particularly where cost is of a concern. In those instances, processor 104 may assume the functions of the input controller 216. Thus, processor 104 can perform the mapping function described above.

## Human Interface and Input System and Techniques Implementations

Figs. 3a and 3 b illustrates front and back isometric views, respectively, of a hand-held electronic device 302 upon which an implementation of the human interface and input system may be implemented. Electronic device 302 may include six planar or contoured surfaces: a front-side surface 312 , a back-side surface 314 , a left-side surface 316 , a right-side surface 318 , a top-side surface 320, and a bottom-side surface 322. Although, in other implementations, electronic device 302 may have more or fewer planar and/or contoured surfaces. On the frontside surface 312 , a display 330 , such as an LCD, and a first input assembly 340 is disposed adjacent to each other. Alternatively, display 330 may be on a separate assembly such as those displays for PDA's and cell phones with a swivel-mounted screen or flip-phone configurations. Also, the first input assembly 340 may be disposed on more than one surface. The first input assembly may be a typical cell-phone keypad, which may include twelve input elements 342, although any number of input elements may be provided. A user's thumb or thumbs or a stylus may actuate the input elements 342 .

A second input assembly 350 is disposed on the back-side surface 314 , left-side surface 316 and right side surface 318. Alternatively, the second input assembly may be disposed on one of those surfaces or a combination of those surfaces. In this implementation, the first input assembly 340 is disposed relative to the second input assembly 350 to take advantage of the opposition of the human thumb and finger. The second input assembly 350 includes a pressure sensor pad 354 having a plurality of software configurable active areas, which may be actuated by one or more of the user's fingers. The pressure sensor pad 354 in this implementation may include an actuator, such as an elastomeric material, attached to a force sensitive resistor array, a capacitive mat or array, or other similar pressure sensitive device or grid that can provide multiple outputs corresponding to the pressure readings of the plurality of active areas on the
pad's 354 surface. Here, the pressure sensor pad 354 wraps around from the left-side surface 316 across the back-side surface 314 to the right-side surface 318 .

It is to be understood that the input elements 342,354 in this implementation and any other implementation could be analog and/or digital buttons, keys, rockers (which may be a one or more position buttons or an analog joystick-type button), sliders, dials or touch pads used in combination with pressure sensors (such as force sensitive resistors, piezo resistive sensors, and capacitive sensors), positional sensors (such as rotary encoders, linear potentiometers and the like) or other sensors or a combination of them.

Fig. 3c depicts an exploded view of an input element 342 of the first input assembly 340 , which is mapped to represent one or more text functions. Here, the input element is mapped to represent the number 7 and letters $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s , as is found on a typical keypad of a cell phone. Other input elements 342 may be associated with other letters, numbers and/or icons. For example, one input element may be associated with the number 4 and letters $g$, $h$ and $i$, while another input element may be associated with the number 2 and the letters $a, b$ and $c$.

As shown in FIG. 3d, the pressure sensor pad 354 may be configured in software to represent one or more delineated active areas corresponding to different programmable functions depending on the application. In this case, inverted U-shaped active area 360 forms an active area-- the vertical sides 362 of the inverted U-shaped active area 360 are on the left-side surface 316 and the right-side surface 318 and the horizontal side 364 of the inverted $U$-shaped active area 360 is along the top edge of the pressure sensor pad 354 on the back-side surface 314 . Below the inverted U-shaped active area 360 on the back-side surface 314 are five oblongshaped active areas 372 labeled from 1 to 5 . On the bottom of both the left-side surface 316 and the right-side surface 318 and stretching to the back-side surface 314 of the pressure sensor pad 354 are rectangular-shaped active areas $374,376,378,380$. The remaining area of the pressure sensor pad 354 may be configured to be inactive.

In this implementation, inverted U-shaped active area 360 may be used for navigation-the vertical sides 362 for $y$-directional movement and the horizontal side 364 for x -directional movement. The oblong-shaped active areas 372 may be used for shifting or indexing between symbols, such as characters, letters and/or numbers, or text input. The rectangular-shaped active areas $374,376,378,380$ may be used for shifting between modes-two of the active areas 374 , 376 for left-handed users and the other two active areas 378,380 for right-handed users. In
another configuration of the pressure sensor pad 354, the entire surface of the pressure sensor pad 354 may be covered by horizontal rectangular active areas interspersed between small rectangular horizontal inactive areas to achieve any desired number of active areas. Other configurations of the pressure sensor pad 354 may be realized depending on the requirements of the desired application.

The delineated active areas of the pressure sensor pad 354 may be actuated by one or more of the user's fingers, such as by applying pressure against the delineated active areas of the pad 354 beyond a pre-defined or user-adjustable threshold pressure. Likewise, the absence of pressure may be used as an actuation event. The pressure sensor pad 354 also may contain or be mounted above or below a shape-changing media such as an electrorheastatic fluid, shape memory metal array or similar material, which can permit the user to tactilely discriminate between the one or more delineated active areas. Thus, the user will be able to perceive the one or more delineated active areas as if they were physical buttons. Also, a computer graphical representation (not shown) of the configuration of the delineated active areas of the pad 354 may be displayed temporarily (or some predetermined time) on a portion of the display 330 to visually assist the user in locating where the delineated active areas of the pad 354 are positioned. Moreover, an input element 342 of the first input assembly 340 may be mapped to activate and/or deactivate the displaying of the computer graphical representation.

The input architecture described above, with the first input assembly 340 on the frontside surface 312 and the second input assembly 350 on the back-side surface 314 , left-side surface 316 and right-side surface 318 , is configured to take advantage of the biomechanics of the hand, whether the user is left-handed or right-handed. This configuration, for example, can reduce the number of thumb taps required to input a particular symbol compared to the number of thumb taps or stylus presses required using only a typical key pad with modal input techniques, such as is found in conventional text input systems. Moreover, this configuration can permit full keyboard capability with fewer input elements on the first input assembly 340 and with greater spacing between input elements to enhance the ease of input compared to typical keypads for existing cell phones. Also, this configuration can permit full functionality of a high performance game controller, which can support the most demanding game input requirements.

A method to implement full keyboard capability and reduce the number of thumb taps is to map in software the delineated active areas of the pressure sensor pad 354, such as the oblong-
shaped active areas 372 , to an indexing or shifting functionality to take advantage of the capability of the human finger, i.e., rapidity of motion, spatial memory and fine motor control, and to map in software the input elements 342 of the first input assembly 340 to text functionality to take advantage of the capability of the human thumb, i.e., range of motion and sustained force actuation.

When a text messaging application is running on the electronic device 302 and displayed on the screen 330 , the first input assembly 340 and the second input assembly 350 are used together to perform the text messaging functions. Each input element 342 of the first input assembly 340 may represent one or more text functions, e.g., one input element may be associated with the decimal digit 2 and letters $\mathrm{a}, \mathrm{b}$ and c , while another input element may be associated with the decimal digit 7 and letters $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s (as shown in Fig. 3c), such as is found on typical keypads.

In this implementation, the input elements 342 are configured the same as a typical keypad on a cell phone. The specific text function inputted by a user for a particular input element 342 is determined by which delineated active area of the pressure sensor pad 354 is pressed. For example, going from left to right, each oblong-shaped active area 372 may be mapped to represent a separate index or shift position such that index position 1 may be assigned to the left-most oblong-shaped active area (labeled 1), index position 2 may be assigned to the adjacent oblong-shaped active area 372 (labeled 2 ) and so on, where index position 5 may be assigned to the right-most oblong-shaped active area 372 (labeled 5). Thus, to input the word "yes", the user may press the oblong-shaped active area 372 representing index position 4 with any of his fingers and press the particular input element 342 representing the letter " $y$ " with his thumb; then the user may press the oblong-shaped active area 372 representing index position 3 with any of his fingers and press the input element 342 representing the letter "e" with his thumb; and then the user may press the oblong-shaped active area 372 representing index position 5 with any of his fingers and press the input element 342 representing the letter " s " with his thumb.

The coordination of finger motions and thumb motions in other than a grasping motion may be difficult for most people. Generally, doing two separate types of motions simultaneously can be difficult. However, the human interface and input system described herein does not require those types of motions due to the flexibility of the system. Generally, it is easier to tap
both the fingers and thumbs or leave either the thumb or fingers in contact with an input element or delineated active area while moving the other. For example, a user's finger may press an oblong-shaped active area 372 at the same time or nearly the same time the user's thumb taps an input element 342 in the first input assembly 340.

Also, a user may tap an input element 342 with his thumb while pressing an oblongshaped active area 372. Pressing or touching an oblong-shaped active area 372 while tapping on an input element 342 in the first input assembly 340 typically is natural, comfortable and easy to do. Likewise, the same holds true where the index finger moves substantially linearly from one oblong-shaped active area 372 to the next, generally a left to right motion or vice versa, while the thumb taps an input element 342 in the first input assembly 340.

Another way to implement finger/thumb coordination would be to permit asynchronous or sequential tapping between the finger tap and the thumb tap. For example, pressing an input element 342 within a pre-determined time (e.g., one second) after pressing and depressing a oblong-shaped active area 372 would constitute the same action as if both were pressed simultaneously. This time window could be configured by the user to facilitate different proficiencies in typing or different types of applications-for game applications, the time window could be quite short, whereas for text input applications, the time window could be much longer. The time window also could be different for different delineated active areas based on their intended function in a given application.

Another method to implement full keyboard capability and reduce the number of thumb taps is map in software the delineated active areas of the second input assembly 350 as follows: left vertical side 362 of the inverted U-shaped active area 360 to be shift position 1 ; anywhere along the horizontal side 364 to be shift position 2 ; the top-left rectangular-shaped active area 378 to be shift position 3; the top-right rectangular-shaped active area 374 to be shift position 4; the bottom-left rectangular-shaped active area 380 to be shift position 5; and, if needed, the bottom-right rectangular-shaped active area 376. The input elements 342 of the first input assembly 340 may again be mapped to text functionality.

Thus, to input the word "yes", the user may press the top-right rectangular-shaped active area 374 representing shift position 4 with any of his fingers and press the particular input element 342 representing the letter " $y$ " with his thumb; then the user may press the top-left rectangular-shaped active area 378 representing index position 3 with any of his fingers and
press the input element 342 representing the letter "e" with his thumb; and then the user may press the bottom-left rectangular-shaped active area 380 representing index position 5 with any of his fingers and press the input element 342 representing the letter " $s$ " with his thumb.

A method of implementing the functionality of a game controller is to assign in software the input elements 342 of the first input assembly 340 specific game functions to take advantage of the capability of the human thumb, i.e., range of motion and sustained force actuation, and to map in software the delineated active areas of the pressure sensor pad 354 of the second input assembly 350 analog control to take advantage of the capability of the human finger, i.e., rapidity of motion, spatial memory and fine motor control. Thus, as a user's index finger or middle finger slides from left to right across the oblong-shaped active areas 372, the horizontal side 364 of the inverted U-shaped active area 360, and/or the rectangular active area 370, the input controller (not shown) may interpret the motion as "increasing" a parameter such as speed, size, position, etc. Alternatively, the input controller may be programmed to interpret different levels of applied pressure to these delineated active areas as the "increasing" parameter, i.e., increased pressured may represent increased speed, size, position, etc.

In this implementation, the vertical side 362 of the inverted U-shaped active area 360 may be programmed to represent the y-directional (vertical) movement of control of a character in a game, while the horizontal side 364 of the U-shaped active area 360 may be programmed to represent the x-directional (horizontal) movement. Movement into or out of the field of view may be controlled by the left and right rectangular buttons $374,376,378,380$, thereby allowing 3-D control. Rapid firing of weapons may be accomplished by using the input elements 342 of the first input assembly 340 or one of the five oblong-shaped active areas 372 , with each one representing a different weapon or action. Complex moves or mode shifts could be accomplished by combining input elements 342 of the first input assembly 340 with any delineated active area of the second input assembly 350. In this way, a game developer may optimize the mapping of delineated active areas based on the best configuration for a particular game. For example, a game developer could set up control configurations for novice users differently than for advanced users, such as mapping different numbers or sizes of delineated active areas, in order to reduce the learning time to be proficient and make game control easier for first time players.

Figs. 4 a and 4 b illustrate front and back isometric views, respectively, of a hand-held electronic device 402 similar to the device shown in Figs. 3a and 3b, except the second input assembly 450 includes three input or selection elements $454,456,458$, which may be rectangular-shaped touch pads. Each touch pad 454, 456, 458 may transduce the location of the contact of an object or a user's finger anywhere on its surface. Also each touch pad 454, 456, 458 may correspond to different programmable functions. Here, touch pad 454 may be disposed on the back-side surface 414 ; touch pad 456 may be disposed on the left-side surface 416 ; and touch pad 458 may be disposed on the right-side surface 418.

In a hand-held device such as a cell-phone or PDA, the second input assembly 450 may include a touch-pad located diagonally on the back-side surface 414 with another touch-pad on the left-side surface 416 because a right-handed user's index finger typically is placed along a diagonal path on the back-side surface 414 wrapping around to the left-side surface 416 . In that case, second input assembly 450 may include touch pad 454 and touch pad 456. A user's finger may finger may move along the length of the touch-pad strip 454 in order to select the desired function. For example, a far left portion of touch-pad 454 may be mapped to be index position 1, a far right portion of touch-ad 454 may be mapped to be index position 5 , and portions between the far-left portion and the far right portion of the touch-pad 454 may be mapped to intervening index positions. Alternatively, index position 1 may be mapped to touch pad 456 for righthanded users and mapped to touch pad 458 for left-handed users. Thus, in this implementation, text input is similar to that as described with respect to Figs. 3a and 3b. Other configurations of the active areas of the touch pads $454,456,458$ are possible and can be tailored to specific applications.

Figs. 5 a and 5 b illustrate front and back isometric views, respectively, of a hand-held electronic device 502 similar to the device shown in Figs. 3a and 3b, except the second input assembly 550 includes three input or selection elements 554 , which may be actuated by any of the user's fingers, typically the user's index finger or middle finger or a combination of both. The input elements 554 in this implementation are conventional two-position rockers. Thus, the second input assembly 550 can provide six index positions at a relatively low cost with passive tactile feedback built in.

Figs. 6a and 6b illustrate front and back isometric views, respectively, of a hand-held electronic device 602 similar to the device shown in Figs 3a and 3b, except the second input
assembly 650 includes three input or selection elements $654,656,658$. Input element 654 may be a D-pad input device and input elements 656, 658 may be either digital or analog contact sensors. The D-pad 654 may be mounted on the center of the back-side surface 614 and mapped in software to represent one or more index or shift positions. For example, the D-pad 654 may be mapped to represent four index positions with each compass heading of the D-pad (e.g., North, South, East and West) representing a different index position. A fifth index position could be mapped to orthogonal movement of the center of the D-pad 654 into the device 602.

Alternatively, the D-pad 654 may be mapped to represent eight index positions, e.g., the compass directions North, South, East, West, Northeast, Northwest, Southeast and Southwest may be mapped. The contact sensors 656,658 may be used as mode functions, for firing weapons, or any other functionality specified by an application developer.

Figs. 7a and 7b illustrate front and back isometric views, respectively, of a two-handed hand-held electronic device 702. A first input assembly 740 including a plurality of input elements 742 is disposed on the front-side surface 712. A second input assembly 750 , including two input or selection elements 754,756 , is disposed on the back-side surface 714. In this implementation, the two input elements 754,756 are rotary dials. Alternatively, rotary dial 754 may be disposed on the left-side surface 716 and rotary dial 756 may be disposed on the rightside surface 718. In a one-handed hand-held electronic device, such as a cell-phone, typically one rotary dial is needed if placed on the back-side surface 714 or two rotary dials are needed if placed on the left and right side surfaces 716,718 . Rotation of the rotary dials 754,756 may be mapped in software to represent one or more index positions. The rotary dials 754,756 may be implemented with detents so that the user can distinguish between separate index positions, i.e., tactile feedback may be provided to the user's finger(s).

FIG. 8 is a block diagram that illustrates a hand-held electronic device 800, such as a cell-phone or PDA, upon which the human interface and input system and associated techniques described herein may be implemented in a communication system. Network link 820 typically provides data communication through one or more networks to other devices. For example, network link 820 may provide a connection through local network 822 to a host computer 824 or to data equipment operated by an Internet Service Provider (ISP) 826. ISP 826 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the "Internet" 828 . Network link 820 also could provide data
communication directly to the ISP 826 and Internet 828. Local network 822 and Internet 828 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 820 , which carry the digital data to and from electronic device 800, are exemplary forms of carrier waves transporting the information.

Electronic device 800 can send messages and receive data, including program code, which includes one or more sequences of one or more instructions, through the network(s) and network link 820. In the Internet example, a server 830 might transmit a requested code for an application program through Internet 828, ISP 826, local network 822 and network link 820. In one aspect, one such downloaded application may be for software games to be played on electronic device 800 , which may obtain application code in the form of a carrier wave.

In any of the above implementations, active and/or passive tactile feedback may be implemented. To provide passive tactile feedback, the input elements of the first and/or second input assemblies may be combined with a palpable detent, such as a dome cap or dome spring so that a user can tactilely perceive, through his fingers or thumbs, activation and/or deactivation of an input element. In one implementation, among others, the palpable detent may be positioned between the actuator and sensor components of the input elements. To provide active tactile feedback, one ore more vibratory units or force producing units may be mounted in the handheld electronic device and activated to provide tap or index level or other information to a user. The vibratory unit may be an electric motor with an eccentric mass attached to the motor's shaft, a solenoid, a variable reluctance device, a loud speaker or any other vibrator that can provide tactile feedback. A force producing unit may be a solenoid in non-vibratory mode, a motor, nonvibratory actuators or any other actuator that can produce forces. A vibratory unit and/or force producing unit may be provided for each input element. In that case, the vibratory unit and/or force producing unit may be mounted below the input element so that when the vibratory unit and/or force producing unit is activated, the vibratory unit and/or force producing unit can push out the surface of the electronic device to a different level or position depending on the information to be communicated. Thus, in implementations using a pressure sensor pad or touch-pad as the input element, a stepped array may be configured to indicate higher and higher levels of index positions across the touch pad or pressure sensor pad. The vibratory units and/or force producing units may also be used to provide tactile feedback to indicate the momentary
achievement of an objective, such as target lock in game applications. Tactile feedback may also be accomplished by actuators, such as a solenoid, which changes the stiffness of the input element electronically or pushes against the user's hand or fingers to indicate an event of interest in the software application.

The computational aspects described here can be implemented in analog or digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Where appropriate, aspects of these systems and techniques can be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a programmable processor; and method steps can be performed by a programmable processor executing a program of instructions to perform functions by operating on input data and generating output.

The systems and techniques described above utilize the biomechanics of the thumb and fingers, i.e., it uses the function of opposition, the fine motor control of the fingers, and the larger range of motion and stronger actuation provided by the thumb. By using the fingers and thumb in concert, the number of taps and time needed to accomplish a given function is reduced, the accuracy is improved, and the natural programming inherent in the human hand replaces the training required for other systems.

A number of implementations have been described. Other implementations may include different or additional features. For example, other configurations of the one or more input elements of the first and second input assemblies may be realized. Also, the hand-held electronic devices described herein may have more or less than six planar or contoured surfaces. Moreover, the number of input elements in the first and second input assemblies are not limited to the number of input elements described in the implementations above.

Also, the one or more input elements of the first and second input assemblies may be any input or selection type known to one of skill in the art, such as keys, buttons, touch pads, other types of pads, rockers, sliders, dials, contact sensors or other actuators associated with any sensor. Each sensor associated with an actuator may include digital momentary on/off switches or analog sensors, such as pressure sensors (e.g., force sensitive resistors, piezo film sensors, or capacitive sensors), or positional sensors (e.g., rotary or linear potentiometers or encoders), or other analog sensors known to those of ordinary skill, or accelerometers or gyroscopes. The first and second input assemblies may include a combination of these different types of input or
selection elements, which may be mounted in the configurations shown in the figures or imbedded within the device to permit control through motion of the overall device.

Moreover, the methods to provide data input, device control or game control may be performed in a different order and still achieve desirable results. Accordingly, other implementations are within the scope of the following claims.

## WHAT IS CLAIMED IS:

1. A hand-held electronic device comprising:
a first surface having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements by one or both of the human user's thumbs or a stylus, wherein at least one of the input elements is further configured to provide selective access to more than one input function; and
a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein manipulation of a selection element causes the input function of one or more input elements to change.
2. The device of claim 1, wherein the first and second surfaces are arranged so as to optimize a biomechanical effect of the human user's opposing thumb and fingers.
3. The device of claim 1 , wherein at least one of the selection elements is a pressure sensor pad configurable to represent a plurality of delineated active areas, wherein manipulation of a delineated active area causes the input function of one or more input elements to change.
4. The device of claim 3, further comprising a shape changing media configured relative to the pressure sensor pad so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.
5. The device of claim 1 further comprising a processor, wherein the processor receives signals generated by the input elements and selection elements when manipulated by the human user.
6. The device of claim 1 further comprising an input controller, wherein the input controller receives signals generated by the input elements and selection elements when manipulated by the human user and converts the signals into a form suitable to be interpreted by a processor.
7. The device of claim 1, wherein at least one of the selection elements is a rotary dial.
8. The device of claim 1, wherein at least one of the selection elements is a Dpad.
9. The electronic device of claim 1, further comprising at least one palpable detent, wherein the detent is associated with at least one of the input elements or selection elements so as to provide tactile feedback to the human user when the human user manipulates the element associated with the palpable detent.
10. The electronic device of claim 1 further comprising one or more vibratory or force producing units, at least one of the vibratory or force producing units capable of providing tactile feedback upon the human user's manipulation of at least one of the input elements or selection elements.
11. The electronic device of claim 10 , wherein at least one of the vibratory units provide tactile feedback in response to events occurring in a software application running on a processor.
12. A hand-held electronic device comprising:
a first surface having a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements by one or both of the human user's thumbs or a stylus, wherein at least one of the input elements is further configured to provide selective access to more than one text symbol; and a second surface with one or more input element having one or more selectable active areas configured to be manipulated by one or more of the human user's fingers, wherein manipulation of an active area causes the text symbol of one or more input elements to change.
13. The device of claim 12 further comprising a controller, wherein the controller receives signals generated by the human user's manipulation of the input elements or active areas.
14. The device of claim 13 further comprising a dome camp positioned above at least one input element and capable of providing tactile feedback to the human user when the input element associated with the dome cap is manipulated.
15. The electronic device of claim 13 further comprising one or more vibratory units capable of providing tactile feedback.
16. The electronic device of claim 13 further comprising one or more force producing units capable of providing tactile feedback.
17. A method for configuring a human interface and input system for use with a hand-held electronic device, the method comprising:
disposing on a first surface a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements by one or both of the human user's thumbs or a stylus, wherein at least one of the input elements is further configured to provide selective access to more than one input function; and
disposing on a second surface one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein manipulation of a selection element causes the input function of one or more input elements to change
18. The method of claim 17, wherein each input element is labeled indicating each input function that can be selectively accessed by the input element.
19. The method of claim 17 further comprising connecting a controller to the input elements and selection elements, wherein the controller is capable of receiving signals generated by the human user's manipulation of one or more of the input elements or selection elements.
20. The method of claim 19, wherein at least one selection element having a plurality of active areas configurable by the controller to form a plurality of delineated active areas.
21. The method of claim 20 further comprising positioning a shape changing media relative to the one selection element having a plurality of active areas so as to permit the human user to tactilely discriminate between the plurality of delineated active areas.
22. The method of claim 17, wherein the first and second surfaces are disposed so as to optimize a biomechanical effect of the human user's opposing thumb and fingers.
23. The method of claim 17 further comprising positioning a palpable detent with at least one input element or selection element so as to provide tactile feedback when manipulated by the human user.
24. A method for inputting data on a hand-held electronic device having a first surface with a plurality of input elements configured to receive input from a human user through manipulation of the plurality of input elements by one or both of the human user's thumbs or a stylus, wherein at least one of the input elements is further configured to provide selective access to a plurality of symbols in a data input mode, wherein each of the plurality of symbols is associated with a unique index position identifier, and a second surface having one or more selection elements configured to be manipulated by one or more of the human user's fingers, wherein each selection element corresponds to one of the unique index position identifiers, the method comprising:
determining the index position identifier of a desired symbol to be inputted;
pressing the selection element corresponding to the index position identifier of the desired symbol with any finger; and
pressing the input element configured to provide selective access to the desired symbol with any thumb or the stylus.
25. The method of claim 24, wherein each input element is labeled indicating each symbol that can be selectively accessed by the input element and a positional order in which each symbol can be selectively accessed.
26. The method of claim 24, wherein determining the index position identifier of the desired character to be inputted comprises:
locating the input element configured to provide selective access to the desired symbol; and
counting from left to right the number of symbols preceding the desired symbol labeled on the located input element, wherein the index position identifier of the desired symbol is the number of symbols preceding the desired symbol plus one.
27. The method of claim 24 , wherein at least one of the input elements or selection elements is further configured to provide selective access to a plurality of modes, at least one of the modes is the data input mode, the method further comprising enabling the data input mode.
28. A method for a human user to input data on a hand-held electronic device using an interface and input system comprising a plurality of input elements in a thumbmanipulated assembly, wherein at least one input element is mapped to more than one text function, and one or more selection elements in a finger-manipulated input assembly, wherein each selection element is mapped to a unique shift position, the method comprising: pressing a desired selection element with a human a finger to select a desired shift position; and
pressing a desired input element of the thumb-actuated input assembly with a human thumb to input a desired text character.
29. A hand-held electronic device comprising:
a first input assembly disposed on a surface of the electronic device, wherein the first input assembly comprises a plurality of input elements configured to be actuated by a human user's thumb;
a second input assembly disposed on a different surface from the first input assembly so as to optimize a biomechanical effect of the human user's opposing thumb and fingers, wherein the second input assembly comprises one or more input elements configured to be manipulated by one or more of the human user's fingers, wherein at least one input element being a configurable sensing surface so as to provide a plurality of delineated active areas; and
a memory comprising a mapping of the configurable sensing surface to the plurality of delineated active areas.


#### Abstract

A human interface configured to optimize a biomechanical effect of a human user's opposing thumb and fingers by including, on one surface, one or more software configurable input elements manipulatable by a user's thumb(s) or a stylus, and, on another surface, one or more software configurable selection elements manipulatable by a user's finger(s). A selection element may be a pressure sensor pad configurable to represent delineated active areas that are mapped to one or more input functions. Shape changing media may be provided to permit a user to tactilely discriminate between delineated active areas. Tactile feedback may be provided to a user through palpable detents, vibratory or force producing units. Inputting data may include mapping each selection element to a shift function, mapping each input element to text functions, and using the selection elements to shift between text functions associated with an input element to input a desired text function.







Fig 3d


Fig 3c



Applicant(s): Beth Marcus, et al HUMAN INTERFACE AND INPUT SYSTEM

Fig. 7b
Fig 7a


## COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:
My residence, post office address and citizenship are as stated below next to my name.
I believe I am an original, first and joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled HUMAN INTERFACE SYSTEM, the specification of which:
[ X ] is attached hereto.
[] was filed on $\qquad$ as Application Serial No. $\qquad$ and was amended on $\qquad$
[] was described and claimed in PCT International Application No. $\qquad$ filed on
$\qquad$ and as amended under PCT Article 19 on $\qquad$ .

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose all information I know to be material to patentability in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim the benefit under Title 35, United States Code, §119(e)(1) of any United States provisional application(s) listed below:
U.S. Serial No. Filing Date $\quad$ Status

I hereby claim the benefit under Title 35, United States Code, $\S 120$ of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose all information I know to be material to patentability as defined in Title 37, Code of Federal Regulations, $\S 1.56(a)$ which became available between the filing date of the prior application and the national or PCT intemational filing date of this application:

$$
\text { U.S. Serial No. } \quad \text { Filing Date } \quad \text { Status }
$$

I hereby claim foreign priority benefits under Title 35, United States Code, $\S 119$ of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:
Country $\quad$ Application No. $\quad$ Filing Date $\quad$ Priority Claimed

I hereby appoint the following attorneys and/or agents to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

Scott C. Harris, Reg. No. 32,030
David L. Feigenbaum, Reg. No. 30,378
Hans R. Troesch, Reg. No. 36,950
Bing Ai, Reg. No. 43, 312
Frederick H. Rabin, Reg. No. 24,488
John C. Philips, Reg. No. 35,322
Alexander C. Chen, Reg. No. 45,591
Denis Maloney, Reg. No. 29,670; including

John Hayden, Reg. No. 37,640
Dorothy Whelan, Reg. 33,814
Linda G. Gunderson, Reg. No. 46,341
Richard J. Anderson, Reg. No. 36,732
Samuel Borodach, Reg. No. 38,388
Kenyon Jenckes, Reg. No. 41,873
William Hunter, Reg. No. 47,671

# Combined Declaration and Power of Attorney 

Page 2 of 2 Pages

Direct all telephone calls to JOHN P. SCHNURER at telephone number (858) 678-5070.

## Direct all correspondence to the following:

20985
PTO Customer Number
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information: and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patents issued thereon.


Full Name of Inventor: W. DAVID LEE
Inventor's Signature:
Residence Address:
Citizenship:
Post Office Address:
343 Otis Street
Newton, MA 02165
United States
343 Otis Street
Newton, MA 02165 Date: Ceptenles 19,2003
10327279.doc

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Beth Marcus, et al<br>Art Unit : Unknown<br>Examiner : Unknown<br>Serial No. : To be assigned<br>Filed : October 31, 2003<br>Title : HUMAN INTERFACE AND INPUT SYSTEM<br>Commissioner for Patents<br>P.O. Box 1450<br>Alexandria, VA 22313-1450

## POWER OF ATTORNEY BY ASSIGNEE AND ELECTION OF

 ASSIGNEE TO CONDUCT PROSECUTION TO EXCLUSION OF INVENTORSThe undersigned, as authorized representative of the assignee of the entire right, title and interest in the above-identified application, hereby appoints

John P. Schnurer, Reg. No. 52,196
Scott C. Harris, Reg. No. 32,030
David L. Feigenbaum, Reg. No. 30,378
Hans R. Troesch, Reg. No. 36,950
Bing Ai, Reg. No. 43,312
Frederick H. Rabin, Reg. No. 24,488
John C. Phillips, Reg. No. 35,322
Alexander C. Chen, Reg. No. 45,591
Joseph R. Baker, Jr., Reg. No. 40,900
Christopher S. Marchese, Reg. No. 37,177
Dwight U. Thompson, Reg. No. 53,688

Michael Reed, Reg. No. 45,647
John Hayden, Reg. No. 37,640
Dorothy Whelan, Reg. 33,814
Linda G. Gunderson, Reg. No. 46,341
Richard J. Anderson, Reg. No. 36,732
Samuel Borodach, Reg. No. 38,388
Kenyon Jenckes, Reg. No. 41,873
William Hunter, Reg. No. 47,671
Gregory P. Einhorn, Reg. No. 38,440
Todd G. Miller, Reg. No. 42,003
John F. Conroy, Reg. No. 45,843
of Fish \& Richardson P.C., as its attorneys to prosecute the application and to transact all business in the Patent and Trademark Office connected therewith with full powers of substitution and revocation, said appointment to be to the exclusion of the inventors and their attorney(s) in accordance with the provisions of 37 CFR $\S 3.71$ et seq. of the Patent Office Rules of Practice.

Ownership is in the assignee by virtue of the assignment documents filed on October 31, 2003. The documents evidencing ownership have been reviewed and to the best of the assignee's knowledge and belief, title is in the assignee.

Applicant : Beth Marcus, et al
Serial No. :
Filed : October 31, 2003
Page : 2 of 2

Please direct all communications regarding the application to PTO Customer No.
20985.


Signature: $\qquad$
Typed name: Beth Marcus
Title: President
Assignee: Marcus Enterprises, Ltd.

JPS/nsg
Fish \& Richardson P.C.
12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099
pow.doc

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE<br>Applicant : Beth Marcus, et al<br>Sèrial No. : To be assigned<br>Art Unit : Unknown<br>Examiner : Unknown<br>Filed : October 31, 2003<br>Title : HUMAN INTERFACE AND INPUT SYSTEM<br>Commissioner for Patents<br>P.O. Box 1450<br>Alexandria, VA 22313-1450

## INFORMATION DISCLOSURE STATEMENT

Applicant submits the references listed on the attached form PTO-1449.
This statement is being filed with the application. Accordingly, only copies of foreign patent documents and non-patent literature are enclosed. Please apply any charges or credits to Deposit Account No. 06-1050.

Respectfully submitted,

Date: $10 / 31 / 03$

lohm P. Schnurer
Reg. No. 52,196
Fish \& Richardson P.C.
12390 El Camino Real
San Diego, California 92130
Telephone: (858) 678-5070
Facsimile: (858) 678-5099
10342152.doc

Sheet $\qquad$


U.S. Patent Documents							
Examiner   Initial	Desig.   ID	Document   Number	Publication   Date	Patentee	Class	Subclass	Filing Date   If Appropriate
	AA	$4,793,312$	$12 / 27 / 1988$	Doinaga et al.			
	AB	$4,867,028$	$09 / 19 / 1989$	Peter S. Jones			
	AC	$4,891,777$	$01 / 02 / 1990$	James M. Lapeyre			
	AD	$4,896,554$	$01 / 30 / 1990$	Craig F. Culver			
	AE	$4,912,462$	$03 / 27 / 1990$	Washizuka et al.			
	AF	$5,189,416$	$02 / 23 / 1993$	Mark D. Estes			
	AG	$5,473,325$	$12 / 05 / 1995$	Peter J. McAlindon			
	AH	$5,512,919$	$04 / 30 / 1996$	Yoshitsugu Araki			
	AI	$5,612,690$	$03 / 18 / 1997$	David Levy			
	AJ	$5,824,931$	$10 / 20 / 1998$	M. G. Papadopoulos			
	AK	$5,859,629$	$01 / 12 / 1999$	Bruce Tognazzini			
	AL	$5,900,864$	$05 / 04 / 1999$	Bruce W. Macdonald			
	AM	$5,973,621$	$10 / 26 / 1999$	David Levy			
	AN	$6,005,496$	$12 / 21 / 1999$	Hargreaves et al.			
	AO	$6,084,576$	$07 / 04 / 2000$	Leu et al.			
	AP	$6,184,804$	$02 / 06 / 2001$	Shelton E. Harrison			
	AQ	$6,232,956$	$05 / 15 / 2001$	Daniel S. Mailman			
	AR	$6,377,685$	$04 / 23 / 2002$	Ravi C. Krishnan			
	AS	$6,520,699$	$02 / 18 / 2003$	Toshiyasu Abe			
	AT	$6,541,715$	$04 / 01 / 2003$	Philip Swanson			
	AU	$6,542,091$	$04 / 01 / 2003$	Wayne Allen Rasanen			
	AV	$6,546,239$	$04 / 08 / 2003$	Pazdersky et al.			


Foreign Patent Documents or Published Foreign Patent Applications									
Examiner   Initial	Desig.   ID	Document   Number	Publication   Date	Country or   Patent Office	Class	Subclass	Translation		
	AW								

[^6]| Substitute Form PTO-1449 <br> (Modified) <br> U.S. Department of Commerce Patent and Trademark Office <br> Inf rmati $n$ Discl sure Statement by Applicant <br> (Use several sheets if necessary) | Attorney's Docket No. $16300-002001$ | Application No. to be assigned |
| :---: | :---: | :---: |
|  | Applicant <br> Beth Marcus, et al |  |
|  | Filing Date October 31, 2003 | Group Art Unit to be assigned |


Other Documents (include Author, Title, Date, and Place of Publication)		
Examiner Initial	Desig. ID	Document
	AX	Buxton, "A Directory of Sources for Input Technologies", 10/1/2003, http://www.billbuxton.com/InputSources.html
	AY	"Introducing the Dvorak Keyboard", http://www.mwbrooks.com/dvorak/
	AZ	Innovative Ergonomic Solutions, Cirque Pocket Keyboard, http://www.iesproducts.com/key-miscpocket.html
	AAA	Buxton, "Human Input to Computer Systems: Theories, Techniques and Technology", http://billbuxton.com/inputManuscript.htlm
	ABB	Buxton, "An Introduction to Human Input to Computers", 6 April 1999, http://www.billbuxton.com/input01.Introduction.pdf
	ACC	Unidentified and Undated Document discussing alternative designs to QWERTY Keyboard, pages 2-10
	ADD	
	AEE	


Examiner Signature	Date Considered
EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with   next communication to applicant.	

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

$01 \mathrm{FC}: 2001$
02
02
$\mathrm{FC}: 2201$
$03 \mathrm{FC}: 2002$
385.00 OP $129.000 p$ 01.00 OP

PATENT APPLICATION FEE DETERMINATION RECORD Effective October 1, 2003

Application or Docket Number
(6300-002001

CLAIMS AS FILED - PART I
(Column 1) (Column 2)

TOTAL CLAIMS	28	
FOR	NUMBER FILED	NUMBER EXTRA
TOTAL CHARGEABLE CLAIMS	29 minus 20 $=$	$\star .9$
INDEPENDENT CLAIMS	6 minus $3=$	3

MULTIPLE DEPENDENT CLAIM PRESENT
*If the difference in column 1 is less than zero, enter " 0 " in column 2
CLAIMS AS AMENDED - PART II





[^7]The "Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.


[^0]:    This collection of information is required by 37 CFR $1.322,1.323$, and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^1]:    This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 3 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Post Issue, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^2]:    Examiner Signature
    /Ricardo Osorio/
    Date Considered
    10/01/2006
    EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[^3]:    Examiner Signature
    /Ricardo Osorio/

[^4]:    Examiner Signature
    Date Considered

    EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[^5]:    Examiner Signature Date Considered

    EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[^6]:    Examiner Signature
    Date Considered

    EXAMINER: Initials citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

[^7]:    * If the entry in column 1 is less than the entry in column 2 , write " 0 " in column 3 .
    * If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20."
    "my the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter "3."

