
Pergamon 
Pattern Recognition, Vol. 30, No. 5, pp. 751-768, 1997 

© 1997 Pattern Recognition Society. Published by Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0031-3203/97 $17.00+.00 

PII: S0031-3203(96)00104-5 

TEMPLATE MATCHING: MATCHED SPATIAL FILTERS 
AND BEYOND 

R. BRUNELLI~'* and T. POGGIO$ 

tlstituto per la Ricerca Scientifica e Tecnologica, 1-38050 Povo, Trento, Italy 
eArtificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 

Massachusetts 02139, U.S.A. 

(Received 27 November 1995; in revised form 1 July 1996; received for publication 15 July 1996) 

Abstract--Template matching by means of cross-correlation is common practice in pattern recognition in spite 
of its drawbacks. This paper reviews some results on how these shortcomings can be removed. Several 
techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and 
Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. 
New variants are also proposed and compared: least squares Discriminant Functions and the combined use of 
projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks 
are introduced in an attempt to improve filter design by the introduction of nonlinearity. © 1997 Pattern 
Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

The detection and recognition of objects from their 
images, irrespective of their orientation, scale, and view, 
is a very important research subject in computer vision, if 
not computer vision itself. Several techniques have been 
proposed in the past to solve this challenging problem. In 
this paper we will focus on a subset of these techniques, 
those employing the idea of projection to match image 
patterns. The notion of Matched Spatial Filter (MSF) is a 
venerable one with a long history. °)  While by itself it 
cannot account for invariant recognition, it can be 
coupled to invariant mappings or signal expansions, 
and is therefore able to provide invariance to rotation 
and scaling in the image plane. In order to cope with more 
general variations of the object's views more sophisti- 
cated approaches have to be employed. Among them, the 
use of Synthetic Discriminant Functions ~2-~4) is one of 
the more promising so far developed. In these paper we 
will follow a path from MSF, to expansion matching 
through different variant of SDFs. Section 2 describes 
the basic properties of MSF, their optimality and their 
relation to the probability of misclassification. The gen- 
eralization of MSF to a linear combination of example 
images is introduced next. Several shortcomings of the 
basic approach are outlined and a set of possible solutions 
is presented in the subsequent section. We discuss a 
relation of the resulting class of filters to nonorthogonal 
image expansion. A generalization to projections on 
multiple directions and the use of the projection residual 
for pattern matching is then investigated. °5-2°) Finally, a 
more powerful, nonlinear framework is introduced in 
which template matching can be looked at as a problem 

* Author to whom correspondence should be addressed. 

of function approximation. Network architectures and 
training strategies are proposed within this new general 
framework. 

2. MATCHED SPATIAL FILTER 

Template matching is extensively used in low-level 
vision tasks to localize and identify patterns in images. 
Two methods are commonly used: 

1. Image subtraction: images are considered as vectors 
and the norm of their difference is considered as a 
measure of dissimilarity; 

2. Correlation: the dot product of two images is con- 
sidered as a measure of their similarity (it represents 
the angle between the images when they are suitably 
normalized and considered as vectors). 

When the images are normalized to have zero average 
and unit norm, the two approaches give the same result. 
The usual implementation of the above methods relies on 
the Euclidean distance. Other distances can be used and 
some of them have better properties such as increased 
robustness to noise and minor deformationsJ 2~) The next 
sections are mainly concerned with the correlation ap- 
proach. The idea of image subtraction is introduced again 
in the more general nonlinear framework. 

2.1. Optimality 

One of the reasons for which template matching by 
correlation is commonly used is that correlation can be 
shown to be the optimal (according to a particular 
criterion) linear operation by which a deterministic signal 
corrupted by additive white Gaussian noise can be 
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detected31) Let the signal be 

g(x) = (~(x) + A(x), (1) 

where 0(x) is the original, uncorrupted, signal and A(x) is 
noise with power spectrum S(co). The noise is assumed to 
be wide-sense stationary with zero average so that 

e{;~(x)} = 0, e{;~(x + ,,);~(x)} = R(a). 

We assume that 0(x) is known and we want to establish 
its presence and location. To do so we apply to the 
process g(x) a linear filter with impulse response h(x) 
and system function H(co). The resulting output is 

z(x) = g(x) * h(x) = f g(x - a)h(a) do (2) 

o c  

= z~(x) + z~(x). (3) 

Using the convolution theorem for the Fourier transform 
we have that 

zo(x) : 7 0 ( x  - a)h(a) do 
- -  , o c  

= 2 ~ f  • (co)H (~o)exp[iwx] dco. 

- - o c  

We want to find H(~o) so as to maximize the following 
signal to noise ratio (SNR): 

r 2 -  IZ¢(X°)[2 (4) 
E{z~(x0)}' 

where Xo is the location of the signal. The SNR represents 
the ratio of the filter responses at the uncorrupted signal 
and at the noise. It is defined at the true location of the 
signal (usually the correlation peak) therefore not taking 
into account the off-peak response of the filter. 

Two cases of particular interest are those of white and 
colored noise: 

White Noise: This type of noise is defined by the 
following condition: 

S(~o) = S0, 

which corresponds to a flat energy spectrum. The 
Schwartz inequality states that 

f f(x)g(x) <_ [f(x)l 2 Ig(x)l 2 
a a a 

and the equality holds iff f ( x ) =  k~,(x) (we use - to 
represent complex conjugation). This implies the follow- 
ing bound for the signal to noise ratio r: 

r2 _< f ]~(co) exp[i~oxol[ 2 dw f IH(w)l 2 dw 

27rSo f [H(w)I 2 dco 

and then 

rZ < E2_ ~ 
- -  S o '  

where 

1 f 
g~ = ~ J I~b(w)l 2 d~ 

represents the energy of the signal. From the Schwartz 
inequality the equality holds only if 

H(co) = k/~(co) exp[-i~ox0]. 

The spatial domain version of the filter is simply the 
mirror image of the signal: 

h(x) = kO(xo - x) 

which implies that the convolution of the signal with the 
filter can be expressed as the cross-correlation with the 
signal (hence the name Matched Spatial Filter). 

Colored Noise: If the noise has a nonflat spectrum S(co) 
it is said to be colored. In this case the following holds: 

2rrz0(x0) = f ~(aJ)H(w) exp[icox] dw, 

< - . s  [ IO(W)S(u;)exp[i~x] 12 dw 

× [ s(.~)lu(~)l 2 d~, 
J 

hence 

1 f I~(co)exp[icox]l 2 
r2 <-- ~ S(~) d~ 

with equality holding only when 

~ H ( ~ )  = k ~ exp[-i~ox0] 

The main consequence of the color of noise is that the 
optimal filter corresponds to a modified version of the 
signal 

k ~ exp[-iwx0] 
n(~)  -- s(~) ' 

which emphasizes the frequencies where the energy of 
the noise is smaller. The optimal filter can also be 
considered as a cascade of a whitening filter S-1/2(co) 
and the usual filter based on the transformed signal. 

In the spatial domain, correlation amounts to project- 
ing the signal g(x) onto the available template O(x). If the 
norm of the projected signal is not equal to that of the 
template, the value of the projection can be meaningless 
as the projection value can be large without implying that 
the two vectors are close in any reasonable sense. The 
solution is to compute the projection using normalized 
vectors. In particular, if versors are used, computing the 
projection amounts to computing the cosine of the angle 
formed by the two vectors, which is an effective measure 
of similarity. In vision tasks, vector normalization corre- 
sponds to adjusting the intensity scale so that the corre- 
sponding distribution has a given variance. Another 
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useful normalization is to set the average value of the 
vector coordinates to zero. This operation corresponds to 
setting the average of the intensity distribution for 
images. These normalizations are particularly useful 
when modern cameras are used, as they usually operate 
with automatic gain level (acting on the scale of the 
intensity) and black level adjustment (acting as an offset 
on the intensity distribution). 

2.2. Distorted templates 

The previous analysis was focused on the detection of 
a deterministic signal corrupted by noise. An interesting 
extension is the detection of a signal belonging to a given 
distribution of signals. (2) As an example, consider the 
problem of locating the eyes in a face image. We do not 
know who's face it is so that we cannot select the 
corresponding signal (the eyes of that person). A whole 
set of different eyes could be available, possibly includ- 
ing the correct ones. 

Let {~b(x)} denote the class of signals to be detected. 
We want to find the filter h which maximizes the SNR r 2 
over the class of signals { O(x) }. The input signal ~b(x) can 
be modeled as a sample realization of the stochastic 
process { q~(x)}. The ensemble-average correlation func- 
tion of the stochastic process is defined by 

roc~(x,y ) = Ee,{~(x)~(y)} (5) 

and represents the average over the ensemble of signals 
(and not over the coordinates of a signal). What we want 
to maximize is the ensemble average of the signal to 
noise ratio: 

E~{r 2} E{lzo(x°)12} -- ~ .  (6) 

Assume, without loss of generality, that x0=0. The 
average SNR can then be rewritten as 

E6{r2} = f fh ( -x )h( -y)K~o(x ,y )dxdy  (7) 
f f h(-x)h(-y)Ka~ (x, y) dx dy' 

where the ensemble autocorrelation function of the signal 
and noise have been used. The autocorrelation function 
of the white noise is proportional to a Dirac delta func- 
tion: 

Kaa(x,y) = N6(x - y) (8) 

so that the average signal to noise ratio can be rewritten as 

E~{r2} = f f h(-x)h(-y)K~¢(x,y) dxdy 
N f h(_x)2 dx (9) 

Pre-whitening operators can be applied as preprocessing 
functions when the assumption of white noise does not 
hold. The denominator of the RHS in equation (9) re- 
presents the energy of the filter and we can require it to be 
1: 

f h(-x)2dx = (10) 1. 

To optimize equation (9) we must maximize the numera- 
tor subject to the energy constraint of the filter. The 

ensemble autocorrelation function can be expressed in 
terms of the orthonormal eigenfunctions of the integral 

kernel Ke)~(x, y) 

K~o(x,y) = Z .~iOi(x)@i(Y), (1 l)  
i 

where the Ai are the corresponding eigenvalues. The filter 
function h can also be expanded in the same basis 

h(-x) = Z Cdi~Ji(X)" (12) 
i 

Using the inner product notation and the orthonormality 
of the ~i(x) we can state the optimization problem as 
finding 

arg max  ~-~)~i(h.~i) 2. (13) 
~,4:1 "-7" 

If we order the eigenvalues so that/~1 >_A2>.. ">_Ak2" ", 
we have 

N . E~{r 2} = ~ Ai(h " ~i) 2 
i 

= ~ .~ iw~ < )q Z a;~= A, (14) 
i i 

and the maximum value is achieved when the filter 
function is taken to be the dominant eigenvector. 

2.3. Signal to noise ratio and classification error 

Several performance metrics are available for correla- 
tion filters that describe attributes of the correlation 
plane. The signal to noise ratio (SNR) is just one of 
them. Other useful quantities are the peak-to-correlation 
energy, the location of the correlation peak and the 
invariance to distortion. As correlation is typically used 
to locate and discriminate objects, another important 
measure of a filter's performance is how well it discri- 
minates between different classes of objects. The sim- 
plest case is given by the discrimination between the 
signal and the noise. In this section we will s h o w  (14'22) 

that for the classical matched filter maximizing the SNR 
is equivalent to minimizing the probability of classifica- 
tion error Pe when the underlying probability distribution 
functions (PDFs) are Gaussians. 

The classifier which minimizes the probability of error 
is the Bayes classifier. If we consider two normal dis- 
tributions A and B, according to the Bayes decision rule, 
the observed vector x E A if 

(X - mA)'r~Al (X -- mA) -- (X -- ms) ' r~ l  (x -- mB) 

1-[EAI PA (15) + n ~ - ~  < 21n p~ 

and x E B otherwise, where mA, me are the distribution 
means, Za, EB the covariance matrices and PA, PB the 
occurrence probabilities. 

Let us consider two classes: a deterministic signal 
corrupted with white Gaussian noise as class A and 
the noise itself as class B. In this case mA = q~, 
me = 0 and ~A = ~B = I. This means that the compo- 
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Fig. 1. The probability of error, represented by the shaded area, 
when the distributions are Gaussian with the same covafiance. 

nents of the signal are uncorrelated and have unit var- 
iance. If we further assume that the a priori probabilities 
of occurrence of these classes are equal, the probability 
of error (see also Fig. 1) is given by 

? exp( -u2/2)du ,  (16) 
1 

Pe--v~ 
r/ 

where ~? = ½ (1/2, with ( being the Mahalanobis distance 
between the PDFs of the two classes: 

: (raA -- mB)Tl(raA -- m/~) = ~bTq5 (17) 

and the Bayes decision rule simplifies to 

x E A if ~bTx > ~ ,  (18) 

1 
x C B if ~Tx < ~ .  (19) 

The input vector x is then classified as signal or noise 
depending on the value of the correlation with the un- 
corrupted signal. We have already shown that correlation 
with the signal maximizes the signal to noise ratio, so 

when the noise distribution is Gaussian maximizing the 
SNR is equivalent to minimizing the classification error 
probability. When the noise is not white, the signal can be 
transformed by applying a whitening transformation A: 

ATEA = I (20) 

and the previous reasoning can be applied. 

3. S Y N T H E T I C  D I S C R I M I N A N T  F U N C T I O N S  

While correlators are optimal for the recognition of 
patterns in the presence of white noise they have three 
major limitations: the output of the correlation peak 
degrades rapidly with geometric image distortions, the 
peak is often broad (see Fig. 2), making its detection 
difficult, and they cannot be used for multiclass pattern 
recognition. It has been noted that one can obtain better 
performance from a multiple correlator (i.e. one comput- 
ing the correlation with several templates) by forming a 
linear combination of the resulting outputs instead of, for 
example, taking the maximum value. (23"24) The filter 
synthesis technique known as Synthetic Discriminant 
Functions (SDF) starts from this observation and builds 
a filter as a linear combination of MSFs for different 
patterns. (3'4) The coefficients of the linear combination 
are chosen to satisfy a set of constraints on the filter 
output, requiring a given value for each of the patterns 
used in the filter synthesis. By forcing the filter output to 
different values for different patterns, multiclass pattern 
recognition can be achieved. Let { 0i (x) }i 1 ...... be a set of 
(linearly independent) images and u = {u j , . . . ,  un} T be 
a vector representing the required output of the filter for 
each of the images: 

~i @ h = ui (21) 

where ® represents correlation (not convolution). The 
filter h can be expressed as a linear combination of the 
images ~hi: 

h(x) = E biOi(x) (22) 
i=l, . . . ,n 

10 0 

N.I . 
X 0.0 

Fig. 2. The cross-correlation of the template reported on the right. Note the diffuse shape of the peak that 
makes its localization difficult. 
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as any additional contribution from the space ortho- 
gonal to the images would yield a zero contribution 
when correlating with the image set. If we denote by 
X the matrix whose columns represent the images (re- 
presented as vectors by concatenating their rows), by 
enforcing the constraints we obtain the following set of 
equations: 

b = ( x T x )  lu, (23) 

which can be solved as the images are linearly indepen- 
dent. The resulting filter is appropriate for pattern re- 
cognition applications in which the input object can be a 
member of several classes and different distorted ver- 
sions of the same object (or different objects) can be 
expected within each class. If M is the number of classes, 
ng the number of different pattern within each class i, N 
the overall number of patterns, M filters can be built by 
solving 

bi = (xTx) - Ig i ,  i = I , . . . , M ,  (24) 

where 

{ ~  i-I 
~ik : ~-~j::l /'/J < k < ~ j : l  I/j, (25) 

otherwise, 

k = 1 , . . . ,  N and image Ck belongs to class i if ~Sik = 1. 
Discrimination of different classes can be obtained also 
using a single filter and imposing different output values. 
However the performance of such a filter is expected to 
be inferior to that of a set of class specific filters due to 
the high number of  constraints imposed on the filter 
outputs. (3) While this approach makes it easy to obtain 
predefined values on a given set of patterns it does not 
allow to control the off-peak filter response. This can 
prevent reliable classification when the number of con- 
straints becomes large. 

The effect of filter clutter can also appear in the 
construction of a filter giving a fixed response over a 
set of images belonging to the same class (the Equal 
Correlation Filter introduced in reference (3)). 

In order to minimize this problem we propose a new 
variant of SDFs: least squares SDFs. These filters are 
computed using only a subset of the training images 1 and 
the coefficient of the linear combination is chosen to 
minimize the square error of the filter output on all of the 
available images. In this case the matrix R = x T x  is 
rectangular and the estimate of the b relies on the 
computation of the pseudoinverse of R: 

R t = (RTR) IRT. (26) 

The dimension of the matrix to be inverted is n × n, where 
n represents the number of images used to build the filter 
and not the (greater) number of training images. By using 
a reduced number of building templates the problem of 

~The subset of training images can be chosen in a variety of 
ways. In the reported experiments they were chosen at random. 
Another possibility is that of clustering the available images, 
the number of clusters being equal to the number of images 
used in filter synthesis. 

filter cluttering is reduced. A different use of least square 
estimation for filter synthesis can be found in reference 
(4) where it is coupled to Karhunen-Loeve expansion for 
the construction of correlation SDFs. 

The results for a sample application are reported in 
Fig. 3. Note that by using a least square estimate a good 
performance can be achieved using a small number of 
templates. This has a major influence on the appearance 
of the resulting MSF as can he seen in Fig. 4. 

Another variant is to use symbolic encoded filters. (3~ In 
this case a set of k filters is built whose outputs are 0 or 1 
and can be used to encode the different patterns using a 
binary code. In order to use the filter for classification, 
the outputs are thresholded and the resulting binary 
number is used to index the pattern class. 

Synthesis of the MSF from a projection SDF algo- 
rithm can achieve distortion invariance and retain 
shift invariance. However, the resulting filter cannot 
prevent large sidelobe levels from occurring in the 
correlation plane for the case of false (or true) targets. 
The next section will detail the construction of filters 
which guarantee controlled sharp peaks and good noise 
immunity. 

4. ADVANCED SDFs 

The signal to noise ratio maximized by the MSF is 
limited to the correlation peak: it does not take into 
account the off-peak response and the resulting filters 
often exhibit a sustained response welt apart from the 
location of the central peak. This effect is usually am- 
plified in the case of SDF when many constraints are 
imposed on the filter output. In order to locate the 
correlation peak reliably, it should be very localized. (5) 
However, it can be expected that the greater the localiza- 
tion of the filter response (approaching a ~ function) the 
more sensitive the filter to slight deviations from the 
patterns used in its synthesis. This suggests that the best 
response of the filter should not really be a function, but 
some shape, like a Gaussian, whose dispersion can be 
tuned to the characteristics of the pattern space. In this 
section we will review the synthesis of such filters in the 
frequency domain. (12) 

Let us assume for the moment that there is no noise. 
The correlation of the ith pattern with the filter h is 
represented by 

z i ( n ) - ~ i ( n ) ® h ( n ) ,  n = 0  . . . . .  d - l ,  (27) 

where d is the dimension of the patterns. In the following, 
capital letters are used to denote the Fourier transformed 
quantities. The filter is also required to produce an output 
ui for each training image: 

zi(O) = ui, (28) 

which can be rewritten in the Fourier domain as 

H+X = du, (29) 

where + denotes complex conjugate transpose. Using 
Parseval's theorem, the energy of the ith circulant cor- 
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