
 P1: KCU

Journal of VLSI Signal Processing KL430-05-Trainor April 9, 1997 12:28

Journal of VLSI Signal Processing 16, 41–55 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Architectural Synthesis of Digital Signal Processing Algorithms Using “IRIS”

D.W. TRAINOR, R.F. WOODS AND J.V. McCANNY
Department of Electrical & Electronic Engineering, The Queen’s University of Belfast, Ashby Building,

Stranmillis Road, Belfast BT9 5AH, Northern Ireland

Received March 4, 1996; Revised August 14, 1996

Abstract. In this paper, we present the IRIS architectural synthesis system for high-performance digital signal
processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level,
algorithmic representations, and provides a quick route to silicon implementation. By incorporating a novel synthesis
methodology, called the Modular Design Procedure, within the IRIS system, parameterised models of complex and
innovative DSP hardware can be derived and automatically assembled to create new DSP systems. The nature
of this synthesis methodology is such that designers can explore a large range of architectural alternatives, whilst
considering all the architectural implications of using specific hardware to realise the circuit. The applicability
of IRIS is demonstrated using the design examples of a second order Infinite Impulse Response filter and a one-
dimensional Discrete Cosine Transform circuit.

1. Introduction

In recent years, considerable research has been car-
ried out into the design of novel VLSI architectures for
digital signal processing (DSP) applications [1]. The
highly structured nature of many DSP functions makes
it possible to derive regular circuit architectures, such
as systolic arrays, that are ideal for VLSI implementa-
tion. Exploitation of algorithm parallelism, and using
techniques such as pipelining, can tailor architectures
to particular sampling rate, area and power require-
ments.

In the field of electronic systems design generally,
and DSP design in particular, systems are becoming
increasingly complex, performance specifications are
becoming more stringent, and time-to market pressures
are shortening design cycles. In response, attention
is now being directed at employing design automa-
tion to carry out more abstract, system-level design
tasks, by using CAD tools to automatically derive cir-
cuits from algorithmic descriptions and required per-
formance specifications. Since this process involves
translating a required behaviour into an equivalent cir-
cuit structure, it is referred to asarchitectural synthesis.

The purpose of this paper is to describe the IRIS ar-
chitectural synthesis tool for high performance DSP.
Unlike other approaches [1–7], the emphasis in IRIS is
to allow architectural exploration of algorithms. The
process involves using processing unit models to gen-
erate optimal architectures based on those units. The
main advantage of IRIS is that it offers the designer
full freedom to investigate a wide range of architec-
tures using user-preferred blocks or novel processing
techniques. It is also tightly coupled to conventional
VHDL synthesis tools, and has been used to produce
practical and realistic designs.

The remaining text of this paper describes the syn-
thesis methodology and the operation of the IRIS ar-
chitectural synthesis tool. In Section 2, an overview of
commonly applied architectural synthesis techniques is
given, together with some important limitations exhib-
ited by these techniques when applied to the synthesis
of novel, high performance DSP circuits. This is illus-
trated using an IIR filter example in Section 3. A solu-
tion to these difficulties is also presented in Section 3,
which introduces a radical new synthesis methodol-
ogy, the Modular Design Procedure, and discusses its
automation within IRIS. The capabilities of the IRIS

Magna 2034
TRW v. Magna
IPR2015-00436

0001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 P1: KCU

Journal of VLSI Signal Processing KL430-05-Trainor April 9, 1997 12:28

42 Trainor, Woods and McCanny

system are discussed during Section 4, and demon-
strated throughout Sections 3 and 5, by carrying out
novel implementations of second order recursive filter-
ing and Discrete Cosine Transform algorithms. Finally,
Section 6 offers some conclusions that can be drawn
from the results of this research.

2. Architectural Synthesis Methodologies

Considerable effort has been focused on deriving meth-
ods for mapping DSP algorithms onto VLSI archi-
tectures, including techniques based on sets of Re-
currence Equations [2], dependence graphs [1] and,
algebraic methods [3]. Whilst many of these spe-
cialist tools produce architectural representations from
high levels of abstraction, they are unable to produce
functionally-correct, implementable circuits, as issues
such as internal word growth, truncation and data or-
ganisation, have not been considered. These issues
affect the latency and timing of data and thereby in-
validate any derived architecture. It is left to the IC
designer to modify and refine the initial architectures
taking into considerations these design details. The
second order Infinite Impulse Response filter example
in Section 3 demonstrates the radical differences that
implementation-level performance criteria can create
between abstract algorithmic representations and a cor-
responding physical circuit.

Synthesis systems, such as CATHEDRAL,
PHIDEO, HYPER and MARS [4–7] can take algo-
rithmic descriptions and apply scheduling, assignment
and hardware mapping techniques to synthesize an ar-
chitecture. With these systems, hardware mapping, the
process that maps a flow graph onto the available hard-
ware blocks, is carried out after the various scheduling
and assignment procedures. The assumption is there-
fore made that hardware mapping does not alter the
structure or functionality of the design. For the hard-
ware units generally used in reported design examples
synthesized by these tools, this may be a valid assump-
tion. However, it has been demonstrated [8] that if
the hardware units are complex pipelined processors,
hardware mapping can invalidate the architecture. This
needs to be resolved if the circuit is to operate correctly
once implemented using the chosen hardware, and has
been shown to be a complex task [8].

A vital issue relating to the various synthesis method-
ologies is the manner in which the design space may be
explored. Most of the current architectural synthesis
tools apply a fixed set of synthesis procedures, regard-

less of the different properties of the circuit in question.
Hence, with these tools, a number of algorithmic trans-
formation methods are derived and applied uniformly
to all problems. This approach may not be appropriate
for many designers, who explore design trade-offs in
different ways, depending on the specifications and de-
sign properties for the particular problem currently un-
der consideration. For these designers, a tool based on
fixed synthesis principles is undesirable, since what is
required is a system that allows the designer to explore
and trade-off different design issues in a completely
open manner.

We believe that there is considerable scope for a de-
sign methodology that allows designers to easily imple-
ment and optimise architectures based on processing
elements, and hence specific hardware, of their own
choosing. Designers could use favourite processing
units (which allows the re-use of previously optimised
circuit layouts) or clever novel technologies, such as
redundant arithmetic processors [9], which can offer
clear advantages for some applications. Therefore, the
IRIS synthesis system has been developed, which en-
ables the extraction of parameterised expressions from
complex VLSI processing elements, and uses these ex-
pressions to achieve functionally-correct solutions for
circuits built from these processors. Designers can
quickly create and evaluate architectures that utilise
existing hardware blocks and can be easily realised us-
ing commercial silicon design tools. Also, designers
can take advantage of novel circuit designs, gaining ar-
chitectural knowledge as well as synthesis capability.

3. Architectural Synthesis Using the IRIS System

The design input of the IRIS system is a Signal Flow
Graph (SFG) representation of the algorithm, consist-
ing of zero-delay processing nodes connected by edges
which may be weighted with an appropriate number of
delays. For example, consider the algorithm carried
out by a second order Infinite Impulse Response filter,
which is defined by Eq. (1).

yn = a0xn+a1xn−1+a2xn−2+b1yn−1+b2yn−2 (1)

Figure 1 shows a SFG that is functionally equivalent
to the algorithm of Eq. (1). Each processing node rep-
resents a Multiply/Accumulate (MAC) operation, and
the black circles on particular graph edges represents a
single delay, which is necessary to compute the algo-
rithm.

0002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 P1: KCU

Journal of VLSI Signal Processing KL430-05-Trainor April 9, 1997 12:28

Architectural Synthesis 43

Figure 1. SFG for second order IIR filter.

The synthesis technique involves replacing the
generic processing nodes of the SFG with models of
heavily-parameterised pipelined processing units from
a library and applying a methodology called the Modu-
lar Design Procedure (MDP) [8]. Unlike other systems
[4–7] within IRIS the processor parameters exactly
model the performance of the individual processor.

The process of synthesis thus involves replacing the
zero-delay nodes in the original signal flow graph by the
model of the practical processor. The original Signal
Flow Graph with zero-delay operators defines the algo-
rithmic functionality but this is changed when practical
processors are inserted that have different latencies. If
the timing effects of using practical processors is not
addressed then the resulting architecture will imple-
ment a different algorithm.

IRIS addresses this problem by retiming the cir-
cuit to preserve the original algorithm but in such a
way to minimise the number of delays that are added.
This is achieved by calculating the maximum num-
ber of delays within all the loops in the Signal Flow
Graph and then using retiming [10] to ensure the global
timing in the synthesized architecture is equivalent to
that in the original SFG. The circuit will then have
a maximum possible sampling rate. If this maxi-
mum possible sampling rate meets the specified sam-
pling rate, then the design has been successful and
the user has achieved an optimised solution for the
hardware used. If the maximum possible sampling
rate is in excess of the sampling rate required, then
the user can investigate alternative designs using dif-
ferent, namely slower and more hardware efficient,
blocks or using hardware sharing, to achieve a more ef-
ficient solution. Subsections 3.1 and 3.2 discuss these

issues, using the second order IIR filter as a design
example.

3.1. Derivation of IRIS Processor Models

In order to utilise complex processors as blocks that can
be used to synthesize DSP systems in IRIS, models of
the various processors need to be derived and placed in
a library within the tool. It is these models that replace
the mathematical operations of the SFG, and it is the
information contained within the models that is used by
IRIS to determine the data timing changes caused by
replacing the zero-delay SFG operation with complex,
pipelined hardware.

The processor models abstract much of the structural
detail of the processor architecture, but retain enough
performance-related information so that the effects of
placing the models into the SFG can be determined.
When a processor model is derived, the MDP demands
that two processor performance measurements must be
associated with the model. The first of these is the data
format, or “time shape” of data entering or leaving each
input or output of the processor. The time shape may
be defined as the position in time of the bits or digits
of the data value relative to each other [8]. Figure 2
shows some examples of typical data time shapes.

The detailed structure of the particular processor,
and particularly the placement of internal pipelining
latches, will determine the data time shape at each pro-
cessor input and output. It is necessary to maintain
information on the processor time shapes to determine
what extra circuitry, if any, needs to be placed between
connected processors to convert between the format of
the data at the output of the first processor, and the
format expected at the input of the second.

The second processor performance issue that must
be addressed by the equivalent IRIS processor model
is the latency through each datapath in the processor.
These latency values must be incorporated in the pro-
cessor model since the number of clock cycles required
for a particular processor to produce its results has pro-
found effects on the timing of data throughout the entire
circuit.

An important design feature of the IRIS system is
that the information on data time shapes and data-
path latencies within the processor model can be pa-
rameterised in terms of other important processor de-
sign criteria, such as the data wordlengths used and
the number of internal pipelining stages. Therefore,
design changes, such as changes in data wordlengths,

0003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 P1: KCU

Journal of VLSI Signal Processing KL430-05-Trainor April 9, 1997 12:28

44 Trainor, Woods and McCanny

Figure 2. Typical data time shapes.

can be easily taken into account. This parameterisa-
tion is also complementary to the recent trend of the
production, and purchase, of libraries of parameterised
“mega-functions” [11], which are usually written in a
Hardware Description Language. These libraries can
increase design re-use and reduce time to market, by
allowing systems to be constructed by connected com-
plex re-usable blocks of hardware.

Whilst a library of processor elements is available
to the user, a processor interface capability is available
to allow the incorporation of new processing blocks
within IRIS. These blocks could be application-speci-
fic components from commercial vendors, allowing a
tight coupling between IRIS and conventional compil-
ers. Alternatively, these processors could use novel
processing techniques, such as redundant arithmetic
[9], which would be difficult to capture using conven-
tional synthesis tools.

3.1.1. Derivation of IRIS Processor Models for the
Second Order IIR Filter. In order to demonstrate the
construction of IRIS processor models, consider the
implementation of the second order IIR filter SFG
shown in Fig. 1. This design requires the insertion of
blocks of hardware, capable of the MAC operation,
into the processing nodes of the SFG. Examples of
high-performance modules, structurally defined at the
bit level, that could be used to realise the filter circuit
are the Carry-Save and Signed Binary Number Repre-
sentation (SBNR) MAC processors [9] shown in Figs. 3
and 4.

In Fig. 3, the two signalp andq are multiplied, and
the result added to the signals. The labelspi , qi andsi ,
refer to data entering the processor, whilstpo, qo and
so refer to output data. The superscript of each label
refers to the significance of the data bit to which that

Figure 3. Structure of carry-save MAC processor.

0004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 P1: KCU

Journal of VLSI Signal Processing KL430-05-Trainor April 9, 1997 12:28

Architectural Synthesis 45

Figure 4. Structure of SBNR MAC processor.

superscript is attached e.g., if a bit is identified with
a superscript, “1”, that bit is of significance 2−1, i.e.,
0.5. The subscript of each label indicates the relative
clock cycle at which the bit signal enters or leaves the
processor e.g., a bit labelled “n− 1” enters or leaves
the processor one clock cycle after a bit labelled “n”.
This notation defines the timing of the various bits of
data as they pass through the processor.

The scheduling of the various operations in the
Carry-Save MAC processor results in a number of
pipeline stages, implemented by the addition of latches,

depicted by black dots in Fig. 3. These latches define
the timing of the various operations within the MAC
processor. An important point to notice is the extra
latches that are added to the datapath of thes signal
at the right hand side of the structure. These latches
ensure that each bit of the inputsi travels through the
same number of pipeline stages before emerging atso,
therefore the relative timing of the various bits of data
enteringsi is maintained atso. This allows several
MAC processors to be cascaded without having to con-
vert the data timing from the output of one processor
to the input of the next. This arrangement is useful for
several important DSP circuits, particularly digital fil-
ters, which can be easily implemented using cascaded
MAC processors.

Figure 1 shows that the IIR filter SFG exhibits re-
cursion, where previously generated results form the
inputs for future iterations of the algorithm. Previous
research has shown that for such structures, processors
that exhibit low, wordlength-independent latency and
use redundant number systems to produce results most
significant digit first can produce more efficient imple-
mentations of the feedback paths [9]. The SBNR MAC
processor shown in Fig. 4 represents such a structure,
multiplying thepi signal and theqi signal (which is rep-
resented by the dotted lines in the figure) and adding
the si signal. The use of SBNR allows the removal
of carry propagation chains within the processor and
hence the production of results in a most significant
digit first format.

Examples of IRIS processor models are shown in
Figs. 5 and 6. These models have been derived from
the MAC structures of Figs. 3 and 4, and will be used

Figure 5. Carry-save MAC model.

0005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

