pattern all the way down the runway. This lighting pattern could be turned-on as a plane is cleared for landing and then turned-off after the aircraft has touched down. A pilot approaching the runway along an intersecting taxiway would be alerted in a clear and unambiguous way that the runway was active and should not be crossed.

If an incursion was detected the main computers 26,28 could switch the runway strobe lights 48 from the "rabbit" pattern to a pattern that alternatively flashes either side of the runway in a wig-wag fashion. A switch to this pattern would be interpreted by the pilot of an arriving aircraft as a wave off and a signal to go around. The abrupt switch in the pattern of the strobes would be instantaneously picked up by the air crew in time for them to initiate an aborted landing procedure.

During Category III weather conditions both runway and taxiway visibility are very low. Currently radio based landing systems are used to get the aircraft from final approach to the runway. Once on the runway it is not always obvious which taxiways are to be used to reach the airport terminal. In system 10 the main computers $\mathbf{2 6 , 2 8}$ can control the taxiway lamps 40 as the means for guiding aircraft on the ground during CAT III conditions. Since the intensity of the taxiway lamps 40 can be controlled remotely, the lamps just in front of 15 an aircraft could be intensified or flashed as a means of guiding it to the terminal.

Alternatively, a short sequence of the "rabbit" pattern may be programmed into the taxiway strobes just in front of the aircraft. At intersections, either the unwanted paths may have their lamps turned off or the entrance to the proper section of taxiway may flash directing the pilot to head in that direction. Of course in a smart system only those lights directly in front of a plane would be controlled, all other lamps on the field would remain in their normal mode.

Referring now to FIG. 9, a block diagram is shown of the data flow within the system 10 (as shown in FIG. 1 and FIG. 5). The software modules are shown that are used to process the data within the computers 26. 28 of the central computer system 12. The tracking of aircraft and other vehicles on the airport operates under the control of a sensor fusion software module 101 which resides in the computers $\mathbf{2 6}, 28$. The sensor fusion light assembly 20 which reports the heat level detected, and this software module 101 combines this infor mation through the use of rule based artificial intelligence to create a complete picture of all ground traffic at the airport on a display 30 of the central computer system 12.

The tracking algorithm starts a track upon the first report of a sensor 50 detecting a heat level that is above the ambient background level of radiation. This detection is then verified by checking the heat level reported by the sensor directly across the pavement from the first reporting sensor. This secondary reading is used to confirm the vehicle detected and to eliminate false alarms. After a vehicle has been confirmed the sensors adjacent to the first reporting sensor are queried for changes in their detected heat level. As soon as one of the adjacent sensors detects a rise in heat level a direction vector for the vehicle can be established. This procinues as the vehicle is handed off from sensor to sensor in a bucket brigade fashion as shown in FIG 7. Vehicle speed can be roughly determined by calculating the time between vehicle detection by adjacent sensors. This information is combined with information from a system data base on the location of each sensor to calculate the velocity of the target. Due to hot exhaust or jet blast, the sensors behind the vehicle may not return to a background level immediately. Because of these condition, the algorithm only uses the first four
to be on the centerline of the pavement and between the first four reporting sensors.
Vehicle identification can be added to the track either manually or automatically by an automated source that can identify a vehicde by its position. An example would be prior knowledge of the next aircraft to land on a particular runway. Tracks are ended when a vehicle leaves the detection system. This can occur in one of two ways. The first way is that the vehicle leaves the area covered by the sensors 50 . This is determined by a vehicle track moving in the direction of a gateway sensor and then a lack of detection after the gateway sensor has lost contact. A second way to leave the detection system is for a track to be lost in the middle of a sensor array. This can occur when an aircraft departs or a vehicle runs onto the grass. Takeoff scenarios can be determined by calculating the speed of the vehicle just before detection was lost. If the vehicle speed was inassumed to have gone on to the grass and an alarm is sounded.

Referring to FIG. 5 and FIG. 9, the ground clearance routing function is performed by the speech recognition unit 33 along with the ground clearance compliance verifier software module 103 running on the computers $\mathbf{2 6}, \mathbf{2 8}$. This software module 103 comprises a vehicle identification routine, clearance path routing, clearance checking routine and a path checking routine.

The vehicle identification routine is used to receive the airline name and flight number (i.e. "Delta 374") from the speech recognition unit 33 and it highlights the icon of that aircraft on the graphic display of the airport on display 30.

The clearance path routine takes the remainder of the controller's phrase (i.e. "outer taxiway to echo, hold short of runway 15 Left") and provides a graphical display of the clearance on the display 30 showing the airport.

The clearance checking routine checks the clearance path for possible conflict with other clearances and vehicles. If a conflict is found the portion of the path that would cause an incursion is highlighted in a blinking red and an audible indication is given to the controller via speaker 32.

The path checking routine checks the actual path of the vehicle as detected by the sensors 50 after the clearance path has been entered into the computers 26,28 and it monitors the actual path for any deviation. If this routine detects that a vehicle has strayed from the assigned course, the vehide icon on the graphic display of the airport flashes and an audible indicator is given to the controller via speaker 32 and optionally the vehicle operator via radio 37.

The airport vehicle incursion avoidance system 10 operates under the control of safety logic routines which reside in the collision detection software module 104 running on computers 26,28 . The safety logic routines receive data from the sensor fusion software module 101 location program via the tracker software module 102 and interpret this information through the use of rule based artificial intelligence to predict possible collisions or runway incursions. This information is then used by the central computer system 12 to alert tower controllers, aircraft pilots and truck operators to the possibility of a runway incursion. The tower controllers are alerted by the display 30 along with a computer synthesized voice message via speaker 32 . Ground traffic is alerted by a combination of traffic lights, flashing lights, stop bars and other alert lights 34, lamps 40 and 48, and computer generated voice commands broadcast via radio 36.

Knowledge based problems are also called fuzzy problems and their solutions depend upon both program logic and an interface engine that can dynamically create a decision tree, selecting which heuristics are most appropriate for the specific case being considered. Rule based systems broaden the scope of possible applications. They allow designers to incorporate judgement and experience, and to take a consistent solution approach across an entire problem set.

The programming of the rule based incursion detections software is very straight forward. The rules are written in English allowing the experts, in this case the tower personnel and the pilots, to review the system at an understandable level. Another feature of the rule based system is that the rules stand alone. They can be added, deleted or modified without affecting the rest of the code. This is almost impossible to do with code that is created from scratch. An example of a rule we might use is:

If (Runway_Status = Active) then (Stop_Bar_Lights = RED).
This is a very simple and straight forward rule. It stands alone requiring no extra knowledge except how Runway_Status is created. So let's make some rules affecting Runway_Status.

If (Departure $=$ APPROVED) or (Landing $=$ IMMINENT). then (Runway_Status = ACTIVE).
For incursion detection, another rule is:
If (Runway_Status = ACTIVE) and (Intersection = OCCUPIED), then (Runway_Incursion = TRUE).
Next, detect that an intersection of a runway and taxiway are occupied by the rules:
If (Intersection_Sensors = DETECT), then (Intersection = OCCUPIED).
To predict that an aircraft will run a Hold Position stop, the following rule is created:
If (Aircraft_Stopping_Distance > Distance_to_Hold_Position), then (Intersection = OCCUPIED).
In order to show that rules can be added without affecting the reset of the program, assume that after a demonstration of the system 10 to tower controllers, they decided that they wanted a "Panic Button" in the tower to override the rule based software in case they spot a safety violation on the ground. Besides installing the button, the only other change would be to add this extra rule.

If (Panic_button = PRESSED), then (Runway_Incursion = TRUE).
It is readily seen that the central rule based computer program is very straight forward to create, understand and modify. As types of incursions are defined, the system 10 can be upgraded by adding more rules.

Referring again to FIG. 9, the block diagram shows the data flow between the functional elements within the system 10 (FIG. 1). Vehides are detected by the sensor 50 in each of the edge light assemblies 20 . n. This information is passed over the local operating network (LON) via edge light wiring $21_{1 \text {-n }}$ to the LON bridges 22_{1-n}. The individual message packets are then passed to the redundant computers 26 and 28 over the wide area network (WAN) 14 to the WAN interface 108. After arriving at the redundant computers 26 and 28, the message packet is checked and verified by a message parser software module 100 . The contents of the mes-

EP 0613109 A1

sage are then sent to the sensor fusion software module 101. The sensor fusion software module 101 is used to keep track of the status of all the sensors 50 on the airport; it filters and verifies the data from the airport and stores a representative picture of the sensor array in a memory. This information is used directly by the display 30 to show which sensors 50 are responding and used by the tracker software module 102. The tracker
5 software module 102 uses the sensor status information to determine which sensor 50 reports correspond to actual vehicles. In addition, as the sensor reports and status change, the tracker software module 102 identifies movement of the vehicles and produces a target location and direction output. This information is used by the display 30 in order to display the appropriate vehicle icon on the screen.

The location and direction of the vehicie is also used by the collision detection software module 104. This
10 module checks all of the vehicles on the ground and plots their expected course. If any two targets are on intersecting paths, this software module generates operator alerts by using the display 30 , the alert lights 34 , the speech synthesis unit 29 coupled to the associated speaker 32, and the speech synthesis unit 31 coupled to radio 37 which is coupled to antenna 39.

Still referring to FIG. 9, another user of target location and position data is the ground clearance compliance verifier software module 103. This software module 103 receives the ground clearance commands from the controller's microphone 35 via the speech recognition unit 33 . Once the cleared route has been determined, it is stored in the ground clearance compliance verifier software module 103 and used for comparison to the actual route taken by the vehicle. If the information received from the tracker software module 102 shows that the vehicle has deviated from its assigned course, this software module 103 generates operator alerts by using the display 30, the alert lights 34, the speech synthesis unit 29 coupled to speaker 32, and the speech synthesis unit 31 coupled to radio 37 which is coupled to antenna 39.

The keyboard 27 is connected to a keyboard parser software module 109. When a command has been verified by the keyboard parser software module 109, it is used to change display 30 options and to reconfigure the sensors and network parameters. A network configuration data base 106 is updated with these reconfiguration commands. This information is then turned into LON message packets by the command message generator 107 and sent to the edge light assemblies 20_{1-n} via the WAN interface 108 and the LON bridges 221-n.

Referring now to FIG. 1 and FIG. 10. FIG. 10 shows a pictorial diagram of an infrared vehicle identification system 109 invention comprising an infrared (IR) transmitter 112 mounted on an airplane 110 wheel strut 111 and an IR receiver 128 which comprises a plurality of edge light assemblies 20_{1-n} of an airport lighting system also shown in FIG. 1. The combination of the IR transmitter 112 mounted on aircraft and/or other vehicles and a plurality of IR receivers 128 located along runways and taxiways form the infrared vehicle identification system 109 for use at airports for the safety, guidance and control of surface vehicles in order to provide positive detection and identification of all aircraft and other vehicles and to prevent runway incursions. Runway incursions generally occur when aircraft or other vehicles get onto a runway and conflict with aircraft cleared to land or takeoff on that same runway. All such incursions are caused by human error.

Referring now to FIG. 11, a block diagram of the IR transmitter 112 is shown comprising an embedded microprocessor 118 having DC power 114 inputs from the aircraft host or vehicle on which the IR transmitter 112 is mounted and an ID switch 116 within the aircraft for entering vehicle identification data which is received by the IR transmitter 112 on a serial line. Vehicle position information is provided to the \mathbb{R} transmitter 112 from a vehicle position receiver 117 which may be embodied by a global positioning system (GPS) receiver readily known in the art. The output of embedded microprocessor 118 feeds an IR emitter comprising a light emitting diode (LED) array 120. When power is applied to the IR transmitter 112, the microprocessor continuously outputs a coded data stream 121 (FIG. 13) which is transmitted by the IR LED array 120. The embedded microprocessor 118 may be embodied by microprocessor Model MC 6803 or equivalent manufactured by Motorola Microprocessor Products of Austin; Texas. The IR LED array 120 may be embodied by IR LED Devices manufactured by Harris Semiconductor of Melborne, Florida.

Referring now to FIG. 12, a top view of the IR transmitter 112 comprising the IR LED array 120 mounted on an airplane wheel strut 111 is shown. The IR LED array 120 comprises a plurality of high power LEDs each red. The IR LED array 120 illuminates edge light assemblies 20_{1-4} along the edges of the runway 64 . Each of the edge light assemblies 20_{1-4} comprises an IR receiver 128.

Referring now to FIG. 13, the coded data stream emitted from the IR transmitter 112 comprises six separate fields. The first field is called timing pattern 122 and comprises a set of equally spaced pulses. The second field is called unique word 123 which marks the beginning of a message. The third field is called character count 124 which specifies the number of characters in a message. The fourth field is called vehicle identification number 125 . The fifth field is called vehicle position 126 and provides latitude and longitude information.

The sixth field is called message checksum 127. The equally spaced pulses of the timing pattern 122 allow the IR receiver 128 to calculate the baud rate of a transmitted message and automatically adjust its internal timing to compensate for either a doppler shift or an offset in clock frequency. The checksum 126 field allows the IR receiver 128 to find the byte boundary. The character count 124 field is used to alert the IR receiver 128 in the edge light assemblies 20_{1-4} as to the length of the message being received. The IR receiver 128 uses this field to determine when the message has ended and if the message was truncated.

The vehicle identification number 125 field comprises an airline flight number or a tail number of an aircraft or a license number of other vehicles. The actual number can be alpha-numeric since each character will be allocated eight (8) bits. An ASCll code which is known to those of ordinary skill in the art is an example of a ade type that may be used. The only constraints on the vehicle iD number is that it be unique to the vehicle and that it be entered in the airport's central computer data base to facilitate automatic identification. The checksum 127 guarantees that a complete and correct message is received. If the message is interrupted for any reason, such as a blocked beam or a change in vehicle direction, it is instantly detected and the reception voided. This procedure reduces the number of false detects and guarantees that only perfect vehicle identification messages are passed on to the central computer system 12 at the airport tower.

Referring now to FIG.1, FIG. 2, FIG. 10 and FIG. 14, a block diagram of the IR receiver 128 is shown in FIG. 14 which comprises and IR sensor 130 connected to an edge light assembly 20_{1-n} shown in FIG. 1, FIG. 2 and FIG. 10, on an airport. In FIG. 14, only the relevant portions of FIG. 2 are shown, but it should be understood that all of the elements of the edge light assembly $20_{1 . n}$ shown in FIG. 2 are considered present in FIG. 14. The IR receiver 128 comprises the IR sensor 130 which receives the coded data stream 121 (FIG. 13) from the transmitter 112. The output of the IR sensor 130 is fed to the microprocessor 44 for processing by an IR message routine 136 for detecting the data message. A vehicle sensor routine 138 in microprocessor 44 processes signals from the vehicle sensor 50 for detecting an aircraft or other vehicles. The IR message routine 136 is implemented with software within the microprocessor 44 as shown in the flow chart of FIG. 15. The vehicle sensor routine 138 is also implemented with software within the microprocessor 44 as shown in the flow chart of FIG. 16. The outputs of the IR message routine 136 and vehicle sensor routine 138 are processed by the microprocessor 44 which sends via the power line modem 54 the identified aircraft or vehicle and their position data over the edge light wiring $21_{1 \text { 1 }}$ communication lines to the central computer system 12 shown in FIG. 1 at the airport terminal or control tower. The IR sensor 130 may be embodied with Model RY5BD01 bodied by the VLSI Neuron ${ }^{(3)}$ Chip, manufactured by Echelon Corporation, of Palo Alto, California.

Referring to FIG. 15, a flow chart of the IR message routine 136 is shown which is a communication protocol continuously performed in the microprocessor 44 of the IR receiver 128. After an IR signal is detected 150 the next action is transmitter acquisition or to acquire timing 152. The microprocessor 44 looks for the proper timing 5 relationship between the received $I R$ pulses. If the correct on/off ratio exists, the microprocessor 44 calculates the baud rate from the received timing and waits to acquire the unique word 156 signifying byte boundary and then checks for the capture of the character count 160 field byte. After the character count is known, the microprocessor 44 then captures each character in the vehicle ID 162 field and stores them away in a buffer. It then captures vehicle position 163 including latitude and longitude data. If the IR coded data stream is disrupted before all the vehicle ID characters are received, the microprocessor 44 aborts this reception try and returns to the acquisition or IR detected 150 state. After all characters have been received, the checksum 164 is calculated. If the checksum matches 166, then the message is validated and the vehicle ID relayed 168 to the central computer system 12. With this scheme the microprocessor 44 is implementing both the physical and a link layer of the OSI protocol by providing an error free channel.

Referring now to FIG. 16, a flow chart is shown of the vehicle sensor routine 138 software running on microprocessor 44. This software routine 138 runs as a continuous loop. An internal timer is continuously checked for a time out condition (timer = zero 170). As soon as the timer expires the analog value from sensor 50 is read (Read Sensor Value 171) by the microprocessor 44 and the timer is reset to the poll time 172 variable downloaded by the central computer system 12. This sensor value is compared against a predetermined deection threshold 173 and downloaded by the central computer system 12. If the sensor value is less than the detection threshold, the microprocessor 44 sets the netwark variable prelim_detect to the FALSE state 174. If the sensor value is greater than the detection threshold the microprocessor 44 sets the network variable prelim_detect to the TRUE state 175 . If a preliminary detection is declared, the program then checks to see what reporting mode 176 is in use. If all detections are required to be sent to the central computer system 12, then this sensor value 180 is sent. If only those readings that are different from the previous reading by a predetermined delta and download by the central computer system 12, then this check is made 177 . If the change is greater than the delta 177, the program checks to see if it should confirm the detection 178 to eliminate any
false alams. If a confirmation is not required, then this sensor value 181 is sent. If in the confirmation mode, then the adjacent sensor's 179 preliminary network variable is checked. If the adjacent sensor has also detected the object, then the current sensor value 182 is sent.

This concludes the description of the preferred embodiment. However, many modifications and alterations concept. Therefore, it is intended that the scope of this invention be limited only by the appended claims.

Claims

1. A vehicle identification system for identifying aircraft and other vehicles on surface pathways including runways and other areas of an airport comprising: means disposed on said aircraft and other vehicles for transmitting identification message data; means disposed in each of a pluradity of light assembly means on said airport for receiving and decoding said message data from said transmitting means; means for providing power to each of said plurality of light assembly means; means for processing said decoded identification message data generated by said receiving and decoding means in each of said plurality of light assembly means; means for providing data communication between each of said light assembly means and said processing means; and said processing means comprises means for providing a graphic display of said airport comprising symbols representing said aircraft and other vehicles, each of said symbols having said identification message data displayed.
2. The vehicle identification system as recited in Claim 1 wherein said transmitting means comprises: means for creating a unique message data which includes aircraft and flight identification; and infrared means coupled to said message creating means for transmitting a coded stream of said message data.
3. The vehicle identification system as recited in Claim $\mathbf{3}$ wherein: said message data further includes position information.
4. The vehicle identification system as recited in Claim 1 wherein: said receiving and decoding means comprises an infrared sensor.
5. The vehicle identification system as recited in Claim 3 wherein: said receiving and decoding means comprises microprocessor means coupled to said infrared sensor for decoding said message data.
6. The vehicle identification system as recited in Claim 1 wherein: said plurality of light assembly means being arranged in two parallel rows along runways and taxiways of said airport.
7. The vehicle identification system as recited in Claim 1 wherein said light assembly means comprises: light means coupled to said lines of said power providing means for lighting said airport. vehicle sensing means for detecting aircraft or other vehicles on said airport;
microprocessor means coupled to said receiving and decoding means, said light means, said vehicle sensing means and said data communication means for decoding said identification message data; and
said data communication means being coupled to said microprocessor means and said lines of said power providing means.
8. The vehicle identification system as recited in Claim 1 wherein:
said symbols representing aircraft and other vehicles comprise icons having a shape indicating type of aircraft or vehicle.
9. The vehicle identification system as recited in Claim 1 wherein:
said processing means determines a location of said symbols on said graphic display of said airport in accordance with data received from said light assembly means.
10. A vehicle identification system for identifying aircraft and other vehides on surface pathways including runways and other areas of an airport comprising:
means disposed on said aircraft and other vehicles for creating a unique message induding aircraft and flight identification;
infrared means coupled to said message creating means for transmitting a coded strearn of said message data;
infrared means disposed in each of a plurality of light assembly means on said airport for receiving said message data from said transmitting means;
microprocessor means coupled to said receiving means for decoding said message data; means for providing power to each of said plurality of light assembly means; means for processing said decoded message data generated by said decoding means in each of said plurality of light assembly means;
means for providing data communication between each of said light assembly means and said processing means; and
said processing means comprises means for providing a graphic display of said airport comprising symbols representing said aircraft and other vehicles, each of said symbols having said identification message data displayed.
11. The vehicle identification system as recited in Claim 10 wherein: said message data further includes position information.
12. The vehicle identification system as recited in Claim 10 wherein: said plurality of light assembly means being arranged in two parallel rows along runways and taxiways of said airport.
13. The vehicle identification system as recited in Claim 10 wherein said light assembly means comprises: light means coupled to said lines of said power providing means for lighting said airport, vehicle sensing means for detecting aircraft or other vehicles on said airport;
said microprocessor means coupled to said decoding means, said light means, said vehicle sensing means and said data communication means further processes a detection signal from said vehicle sensing means; and
said data communication means being coupled to said microprocessor means and said lines of said power providing means.
14. The vehicle identification system as recited in Claim 10 wherein: said symbols representing aircraft and other vehicles comprise icons having a shape indicating type of aircraft or vehicle.
15. The vehicle identification system as recited in Claim 10 wherein: said processing means determines a location of said symbols on said graphic display of said airport in accordance with data received from said light assembly means.
16. A vehicle identification system for surveillance and identification of aircraft and other vehicles on an airport comprising:
a plurality of light circuits on said airport, each of said light circuits comprises a plurality of light assembly means; means for providing power to each of said plurality of light circuits and to each of said light assembly means;
means in each of said light assembly means for sensing ground traffic on said airport; means disposed on said aircraft and other vehicles for transmitting identification message data; means disposed in each of said light assembly means for receiving and decoding said message data from said transmitting means;
means for processing ground traffic data from said sensing means and decoded message data from each of said light assembly means for presentation on a graphic display of said airport, means for providing data communication between each of said light assembly means and said processing means; and
said processing means comprises means for providing such graphic display of said airport comprising symbols representing said ground traffic, each of said symbols having direction, velocity and said identification message data displayed.

EP 0613109 A1

17. The vehicte identification system as recited in Claim 16 wherein: each of said light circuits being located along the edges of taxiways or runways on said airport.
18. The vehicle identification system as recited in Claim 16 wherein: said sensing means comprises infrared detectors.
19. The vehicle identification system as recited in Claim 16 wherein said transmitting means comprises: means for creating unique message data which includes aircraft and flight identification; and infrared means coupled to said message creating means for transmitting a coded stream of said message data.
20. The vehicle identification system as recited in Claim 19 wherein: said message data further comprises position information.
21. The vehicle identification system as recited in Claim 16 wherein: said receiving and decoding means comprises an infrared sensor.
22. The vehicle identification system as recited in Claim 21 wherein: said receiving and decoding means comprises microprocessor means coupled to said infrared sensor for decoding said message data.
23. The vehicle identification system as recited in Claim 16 wherein: said plurality of light assembly means of said light circuits being arranged in two parallel rows along runways and taxiways of said airport.
24. The vehicle identification system as recited in Claim 16 wherein said light assembly means comprises: light means coupled to said lines of said power providing means for lighting said airport, said ground traffic sensing means for detecting aircraft or other vehicles on said airport; microprocessor means coupled to said receiving and decoding means, said light means, said ground traffic sensing means and said data communication means for decoding said identification message data and processing a detection signal from said ground traffic sensing means; and said data communication means being coupled to said microprocessor means and said lines of said power providing means.
25. The vehicle identification system as recited in Claim 24 wherein: said light assembly means further comprises a photocell means coupled to said microprocessor means for detecting the light intensity of said light means.
26. The vehicle identification system as recited in Claim 24 wherein: said light assembly means further comprises a strobe light coupled to said microprocessor means.
27. The vehicle identification system as recited in Claim 16 wherein: said processing means comprises redundant computers for fault tolerance operation.
28. The vehicle identification system as recited in Claim 16 wherein: said symbols representing said ground traffic comprise icons having a shape indicating type of aircraft or vehicle.
29. The vehicle identification system as recited in Claim 16 wherein: said processing means determines a location of said symbols on said graphic display of said airport in accordance with said data receive from said light assembly means.
30. The vehicle identification system as recited in Claim 16 wherein: said processing means determines a future path of said ground traffic based on a ground clearance command, said future path being shown on said graphic display.
31. The vehicle identification system as recited in Claim 16 wherein: said processing means further comprises means for predicting an airport incursion.
32. The vehicle identification system as recited in Claim 16 wherein said power providing means comprises:
constant current power means for providing a separate line to each of said plurality of light circuits; and
network bridge means coupled to said constant current power means for providing a communication channel to said processing means for each line of said constant current power means.
33. A method of providing a vehicie identification system for identifying aircraft and other vehicles on surface pathways including runways and other areas of an airport comprising the steps of:
transmitting identification message data with means disposed on said aircraft and other vehicles; receiving and decoding said message data from said transmitting means with means disposed in each of a plurality of light assembly means on said airport;
providing power to each of said plurality of light assembly means;
processing said decoded identification message data generated by said receiving and decoding means in each of said plurality of light assembly means;
providing data communication on lines of said power providing means between each of said light assembly means and said processing means; and
providing a graphic display of said airport with said processing means comprising symbols representing said aircraft and other vehicles, each of said symbols having said identification message data displayed.
34. The method as recited in Claim 33 wherein said step of transmitting identification message data comprises the steps of creating unique message data which includes aircraft and flight identification; and
transmitting a coded stream of said message data with infrared means coupled to said message creating means.
35. The method as recited in Claim 34 wherein said step of transmitting message data further includes transmitting position information.
36. The method as recited in Claim 33 wherein said step of receiving and decoding said message data includes using an infrared sensor.
37. The method as recited in Claim 33 wherein said step of receiving and decoding said message data further comprises the step of coupling microprocessor means to said infrared sensor for decoding said message data.
38. The method as recited in Claim 33 wherein said step of receiving and decoding said message data with means disposed in said plurality of light assembly means further comprises the step of arranging said plurality of light assembly means in two parallel rows along runways and taxiways of said airport.
39. The method as recited in Claim 33 wherein said step of providing a graphic display comprising symbols representing aircraft and other vehicles further comprises the step of providing icons having a shape indicating type of aircraft or vehicle.
40. The method as recited in Claim 33 wherein said step of providing a graphic display comprises the step of determining a location of said symbols on said graphic display of said airport in accordance with data received from said light assembly means.

EP 0613109 A1

FIG. 4

EP 0613109 A1

FIG. 8

FIG. 3

EP 0613109 A1

FIG. 6

FIG. 7

EP 0613109 A1

EP 0613109 A1

FIG. I2

Sony, Ex. 1002, p. 920

PCT
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(57) Abstract

A system for detecting, identifying and docking aircraft using laser pulses to obtain a profile of an object in the distance. The system initially scans the area in front of the gate until it locates and identifies an object. Once the idenity of the object is known, the system tracks the object. By using the information from the profile, the system can in real time display the type of airplane, the distance from the stopping point and the lateral position of the airplane.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Auseria	C8	Unised Kingedom	MR	Maxritaria
AU	Autralia	GE	Cocres	MW	Malawi
8B	Butuadoe	GN	Guinea	NE	Niger
BE	Belyium	GR	Cinpere	NL.	Nethertands
BF	Burtima Faso	HU	Hungary	No	Norway
B6	Bulgeria	IE	Mrelund	Nz	New Zealand
\$	Benin	π	buly	PL	Polund
樶	Brail	5P	Impan	Pr	Portugal
BY	Belares	KS	Keny	RO	Romanin
CA	Cunada	KC	Kyryuan	$\boldsymbol{R U}$	Ruxativo Foderntion
CF	Cenernl African Republic	$\mathbf{K P}$	Denocrutic People's Republic	SD	Suden
CC	Congo		of Xorea	St	Swoden
CH	Swincertiund	KR	Reprutice of Kores	51	Sloweaia
C1	Coue dilivoirt	K2	Kerakhuten	SK	Slovatia
CM	Cumeroon	4	Lischremattio	SN	Senegat
CN	Chim	LK	Sri Lenke	T10	Chad
CS	Cuechonlovalia	LU	Luxembours	TG	Togo
Cz	Cumeh Republic	LV	Lurvia	TJ	Tajaktistan
DE	Cerramy	MC	Mcamco	TT	Trinidad and Tobago
DK	Dermart	MD	Reputhic of Moldow	UA	Utruine
RS	Spuin	MG	Mrdepucse	US	Uaited Sumes of America
FI	Firumd	ML	Mali	Uz	Unbetiusm
FR	Frume	MN	Mousolia	VN	Viea Matu
GA	Caboo				

AIRCRAFT IDENTIFICATION AND DOCKING GUIDANCE SYSTEMS

BACKGROUND OF THE INVENTION

5 Field Of The Invention

This invention relates to systems for locating, identifying and tracking objects. More particularly, it relates to aircraft location, identification and docking guidance systems and to ground traffic control methods for locating and identifying objects on an airfield and for safely and efficiently docking aircraft at such aiport.

Description Of Related Ar

In recent years there has been a significantly increased amount of passenger, cargo and other aircraft traffic including take offs, landings and other aircraft ground traffic. Also there has been a marked increase in the number of ground support vehicles which are required to off load cargo, provide catering services and on going maintenance and support control and safety in the docking and identification of aircraft on an airfield.

Examplary of prior art systems which have been poposed for detecting the presence of aircraft and other traffic on an airfield are those systems disclosed in U.S. Patent 4,995,102; European Patent No. 188 757; and PCT Published Applications W0 93/13104 and W0 93/15416.

However, none of those systems have been found to be satisfactory for detection of the presence of aircraft on an airfield, particularly, under adverse climatic conditions causing diminished visibility such as encountered under fog, snow or sleet conditions. Furthermore, none of the systems disclosed in the prior references are capable of identifying and verifying the specific configuration of an approaching aircraft. Still further, none of the prior systerns provide adequate techniques for tracking and docking an aircraft at a designated stopping point such as an airport loading gate. Also, none of the prior systems have provided techniques which enable adequate calibration of the instrumentation therein.

Thus, it has been a continuing problem to provide systems which are sufficiently safe and reliable over a wide range of atmospheric conditions to enable detection of objects such as aircraft and other ground traffic on an airfield.

In addition, there has been a long standing need for systems which are not only capable of detecting objects such as aircraft, but which also provide for the effective

SUBSTIUTE SHEET (RULE 28)
identification of the detected object and verification of the identity of such object, for example. a detected aircraft with the necessary degrec of cetainty regardless of prevailing weather conditions and magnitude of ground traffic.

There has also been a long standing, unfulfilled need for systems which are capable of accurately and efficiently tracking and guiding objects such as incorning aircraft to a suitable stopping point such as an airport loading gate. In addition, the provision of accurate and effective calibration techniques for such systems has been a continuing problem requiring resolution.

SUMMARY OF THE INVENTION

In order to overcome the foregoing problems, systems and methods are required which are capable of achieving accurate, safe, efficient and cost effective location of objects such as aircraft on an airfield and for proper identification and verification of the identity of such objects. In addition, systems and methods are required for tracking and docking guidance of objects such as aircraft, particularly, in a real time operating mode. Furthermore, systems and methods are required for calibration of such operating systems.

Accordingly, it is a primary object of the present invention to provide such systems and methods. In this regard, it is a specific object of the present invention to provide docking guidance systems whieh are capable of determining the precise position as well as verifying the identity of aircraft on an airfield. Anotier object of the invention is to provide information to an individual or individuals controlling the docking or parking of aircraft on an airfield via a display unit utilizing communications between the system and a personal computer and other methods for monitoring the overall method operation.

A further object is to provide the safety of digitally precise docking control and, also, to provide for implementation of such control in an extremely cost effect manner.

A still further object is to provide for the display of aircraft docking information for use by a pilot, co-pilot or other personnel docking an aircrat̃ including information concerning the closing rate distance from an appropriate stopping point for the aircraft. Another significant object is to provide for the automatic comparison and determination that the aircraf positioning and incoming direction does not deviate from the appropriate path necessary for the particular type of aircraft being docked and. particularly, to provide visual feedback as to the closing distance in a countdown format from a display, positioned forward of the aircraft which contains the distance for docking. position to left or right of appropriate center line for docking and a check of the aircraft ripe.

SUBSTITUTE SHEET (RULE 26)

Yct another object is to provide systems which not only provide azimuth guidance to either the pilot or the co-pilot, but also provide for scanning of the apron to enable appropriate and safe docking of an aircraft. Another object is to provide systems which are particularly sensitive so that accurate parking positions are achieved within extremely minimal tolerances.

A further object is to provide systems which are extremely flexible and allow for the implementation of new operational parameters such as adding new aircraft types, alternate or secondary parking stop positions and other related information in regard to identifying, guiding and docking aircraft on an airfield.

These and other objects of the invention are accomplished by providing systems and methods for detecting the presence of an object on an airfield employing light pulses such as laser pulses projected, for example, off of mirrors in the direction of an incoming object positioned within a capture zone on the airfield and collecting light pulses reflected off the object which indicates the presence of the object. Likewise, this technique enables the determination of the aircraft's position within the capture zone as well as the detection thereof.

The present invention also provides systems and methods for verifying the identity of the detected object which, for example, enables a determination that the correct type of aircraft is approaching the docking facility and is to be docked therein. Such verification systems and methods involve the projection of light pulses such as laser pulses in angular coordinates onto an object and collecting reflected pulses off of the object in a detection device which enables a comparison of the reflected pulses to be made with a profile corresponding to the shape of a known object in order to determine whether the detected shape corresponds to the known shape.

Furthermore, the present invention provides systems and methods for tracking incoming objects wherein light puises such as laser pulses are projected onto an incoming object and the light reflected from the object is collected and employed in order to assertain the position of the object relative to an imaginary axial line projecting from a predetermined docking point and to detect the distance between the object and the predetermined point for purposes of determining the location of the object.

Thus, the present invention provides for the location or capture of an approaching aircraft and for the identification or recognition of its shape within a designated capture zone or control area which is essential in initiating an aircraft docking procedure.

Thereafter, in accordance with the present invention, a display is provided which enables

SUBSTITUTE SHEET (RULE 26)

docking of the identified aircraft in an appropriate docking arca for ofl loading of passengers, cargo and the like.

The present invention accomplishes these features while eliminating the heretofore standard need for sensors which must be embedded in the apron of the docking areas. This results in a significant reduction not only in installation time and associated costs but, also, reduces maintenance costs thereafter. Furthermore, this invention permits retrofitting of the present systems into existing systems without requiring apron construction and the accompanying interruption in use of the airport docking arcas which has been required with prior devices previously used for docking guidance systems.

In preferred embodiments of the systems of the present invention, a pilot bringing an aircraft into a gate at an airport is provided with a real time display mounted, for example, above the gate which indicates the aircraft's position relative to the point where the pilot must start to brake the plane. Also displayed is the aircraft's lateral position compared to a predetermined line for a plane of its type to follow in order to most expeditiously arrive at the gate.

The software employed in the systems of the present invention preferably comprises four modules which perform the main computational tasks of the system and control the hardware. These modules include one for capture, one for identification, one for tracking and one for calibration of the system.

In a preferred embodiment of this invention, the capture module is employed to direct the devices for projecting light pulses to scan the area in front of a docking gate. Thus, when mirrors are employed to reflect and project pulses such as laser pulses, the capture module continues to direct the laser to scan this area until it detects an object entering the area. Once it detects an object, the capture module computes the distance and the angular position of the object and passes control onto the tracking module.

Once activated, the tracking module follows the incoming aircraft to the gate while providing information about its lateral location and distance relative to the desired stopping point. Using this information, the pilot can correct the course of the plane and brake at the precise point that will result in stopping the aircraft in a desired docking position in alignment with the gate. During the tracking, an identification module first scans the detected object to determine if its profile matches the reference profile of the type of aircraft expected. If the profiles do not match, the system informs the airport tower and a signal is transmitted for stopping the docking function.

Finally, the calibration module calibrates the distance and angular measurements to SUBSTITUTE SHEET (RUIE 26)
ensure that the readings of the detection devices such as a Laser Range Finder accurately correspond to the distance and angle of the aircraft. This module runs periodically during the capture and tracking modules to determine the continucd accuracy of the system.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the invention will become apparent from the following detailed description taken in connection with the accompanying drawings wherein:

Fig 1 is a view illustrating the system as in use at an airport;
Fig 2 is a diagrammatic view illustrating the general componentry of a preferred system in accordance with the present invention;
Fig 3 is a top plan view illustrating the detection area in front of a docking gate which is established for purposes of detection and identification of approaching aircrafi;
Fig 4 is a flow chart illustrating the main routine and the docking mode of the system;
Fig 5 is a flow chart illustrating the calibration mode of the system;
Fig 6 is a view illustrating the components of the calibration mode;
Fig 7 is a flow chart illustrating the capture mode of the system;
Fig 8 is a flow chart illustrating the tracking phase of the system;
Fig 9 is a flow chart illustrating the height measuring phase of the system; and

Fig 10 is a flow chart illustrating the identification phase of the system.
Table I is a preferred embodiment of a Horizontal Reference Profile Table which is employed to establish the identity of an aircraft in the systems of the present invention:

Table II is a preferred embodiment of a Comparison Table which is employed in the systems of the present invention for purposes of effectively and efficiently docking an aircraft;

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference is now made to Figures $1-10$ and Tables I-11. in which like numerals designate like elements throughout the several views. Throughout the following detailed description, numbered stages depicted in the illustrated flow diagrams are generally indi-
cated by element numbers in parenthesis following such references.
Referring to Fig. 1, the systems of the present invention generally designated 10 in the drawings provide for the computerized location of an object. verification of the identity of the object and tracking of the object, the object preferably being an aircraft 12. In operation, once the control tower 14 lands an aircraft 12, it informs the system that a plane is approaching the gate 16 and the type of aircraft (i.e., 747, L-1011, etc.) expected. The system 10 then scans the area in front of the gate 16 until it locates an object that it identifies as an airplane 12. The system 10 then compares the profile of the aircraft 12 with a reference profile for the expected type of aircraft. If the located aircraft does not match the expected profile, the system informs or signals the tower 14 and shuts down.

If the object is the expected aircraft 12 , the system 10 tracks it into the gate 16 by displaying in real time to the pilot the distance remaining to the proper stopping point 29 and the lateral position 31 of the plane 12 . The lateral position 31 of the plane 12 is provided on a display 18 allowing the pilot to correct the position of the plane to approach the gate 16 from the correct angle. Once the airplane 12 is at its stopping point 53 , this fact is shown on the display 18 and the pilot stops the plane. Employing the system 10 of the present invention, it should be noted that once the plane 12 comes to rest, it is accurately aligned with the gate 16 requiring no adjustment of the gate 16 by the ground staff.

Referring to Fig. 2, the system 10 consists of a Laser Range Finder (LRF) 20, two mirrors 21,22 , a display unit 18 , two step motors 24,25 , and a microprocessor 26. Suitable LRF products for use herein are sold by Laser Allanta Corporation añ are capable of emitting laser pulses and receiving the reflections oi those pulses reflected off of distant objects and computing the distance to those objects.

The system 10 is arranged such that there is a connection 28 between the serial port of the LRF 20 and the microprocessor 26. Through this connection, the LRF 20 sends measurement data approximately every $1 / 400$ th of a second to the microprocessor 26 . The hardware components generally designated 23 of the system lio are controlled by the programmed microprocessor 26 . In addition, the microprosess:: 26 feeds data to the display 18. As the interface to the pilot, the display unit 18 is placed above the gate 16 to show the pilot how far the plane is from its stopping point 29. the type of aircraft 30 the system believes is approaching and the lateral location of the flane 31 . Using this display, the pilot can adjust the approach of the plane 12 to the gate 16 to ensure the plane is on the correct angle to reach the gate. If the display 18 is showins the wrong aircraft.type 30 , SUBSTITUTE SHEET (RUIE 26)
the pilot can abort the approach before any damage is done. This double check ensures the safety of the passengers, plane and airport facilities because if the system tries to maneuver a larger 747 as if it was a 737, it likely will cause extensive damage.

In addition to the display 18, the microprocessor 26 processes the data from the 5 LRF 20 and controls the direction of the laser 20 through its connection 32 to the step motors 24,25 . The step motors 24,25 are connected to the mirrors 21,22 and move them in response to instructions from the microprocessor 26 . Thus, by controlling the step motors 24,25 , the microprocessor 26 can change the angle of the mirrors 21,22 and aim the laser pulses from the LRF 20.

The mirrors 21,22 aim the laser by reflecting the laser pulses outward over the tarmac of the airport. In the preferred embodiment, the LRF 20 does not move. The scanning by the laser is done with mirrors. One mirror 22 controls the horizontal angle of the laser while the other mirror 21 controls the vertical angle. By activating the step motors 24,25 , the microprocessor 26 controls the angle of the mirrors and thus the direction of three parts. The farthest section, from about 50 meters out, is the capture zone 50 . In this zone 50 , the system 10 detects the aircraft's nose and makes a rough estimate of lateral and longitudinal position of the aircraft 12 . Inside the capture zone 50 is the identification area 51. In this area, the system 10 checks the profile of the aircrafi 12 against a stored profile. The system 10 shows the lateral position of the aircraft 12 in this region, related to a predetermined line, on the display 18. Finally, nearest to the LRF 20 is the display or tracking area 52 . In the display area 52 , the system 10 display's the lateral and longitudinal position of the aircraft 12 relative to the correct stopping position with its highest degree of accuracy. At the end of the display area 52 is the stopping point 53 . At the stopping point SUBSTITUTE SHEET (RULE 2G)
53. the aircraft will be in the correct position at the gate 16 .

In addition to the hardware and software, the system 10 maintains a database containing reference profiles for any type of aircraft it might encounter. Within this database, the system stores the profile for each aircraft type as a horizontal and vertical profile reflecting the expected echo pattern for that type of aircraft.

Referring to Table 1, the system maintains the horizontal profile in the form of a Table I whose rows 40 are indexed by angular step and whose columns 41 are indexed by distance from the stopping position for that type of aircraft. In addition to the indexed rows, the table contains a row 42 providing the vertical angle to the nose of the plane at each distance from the LRF, a row 44 providing the form factor, k, for the profile and a row 45 providing the number of profile values for each profile distance. The body 43 of the Table I contains expected distances for that type of aircraft at various scanning angles and distances from the stopping point 53.

Theoretically, the 50 angular steps and the 50 distances to the stopping point 53 would require a Table I containing 50×50, or 2500 , entries. However, the Table I will actually contain far fewer entries because the profile will not expect a return from all angles at all distances. It is expected that a typical table will actually contain between 500 and 1000 values. Well known programming techniques provide methods of maintaining a partially full table without using the memory required by a full table.

In addition to the horizontal profile, the system 10 maintains a vertical profile of each type of aircraft. This profile is stored in the same manner as the horizontal profile except its rows are indexed by angular steps in the vertical direction and its column index contains fewer distances from the stopping position than the horizontal profile. The vertical profile requires fewer columns because it is used only for identifying the aircraft 12 and for determining its nose height, which take place at a defined range of distances from the LRF 20 in the identification area 51. Consequently, the vertical profile stores only the expected echoes in that range without wasting data storage space on unneeded values.

The system 10 uses the previously described hardware and database to locate, identify and track aircraft using the following procedures:

Referring to Fig. 4, the software nunning on the microprocessor performs a main routine containing subroutines for the calibration mode 60 , capture mode 62 and docking mode 64. The microprocessor first performs the calibration mode 60, then the capture mode 62 and then the docking mode 64 . Once the aircraft 12 is docked, the program finishes. These modes are described in greater detail as follows:

SUBSTITUE SHㄷET (RULE 26)

Calibration Mode
To ensure system accuracy, the microprocessor 26 is programmed to calibrate itself in accordance with the procedure illustrated in Fig. 5 before capturing an aircraft 12 and at various intervals during tracking. Calibrating the system 10 ensures that the relationship between the step motors 24,25 and the aiming direction is known. The length measuring ability of the LRF 20 is also checked

Referring to Fig. 6, for calibration, the system 10 uses a square plate 66 with a known position. The plate 66 is mounted 6 meters from the LRF 20 and at the same height as the LRF 20. forward. The vertical mirror 22 is then tilted such that the laser beam is directed backwards to a rear or extra mirror 68 which redirects the beam to the calibration plate 66. (100) The microprocessor 26 then uses the step motors 24,25 to move the mirrors 21,22 until it finds the center of the calibration plate 66 . Once it finds the center of the calibration plate 66 , the microprocessor 26 stores the angles ($\alpha_{c p}, \beta_{c p}$) at that point and compares them to stored expected angles. (102) The system 10 also compares the reported distance to the plate 66 center with a stored expected value. (102) If the reported values do not match the stored values, the microprocessor 26 changes the calibration constants, which determine the expected values, until they do. $(104,106)$ However, if any of these values deviate too much from the values stored at installation, an alarm is given. (108)

Capture Mode

Initially, the airport tower 14 notifies the system 10 to expect an incoming airplane 12 and the type of airplane to expect. This signal puts the software into a capture mode 62 as outlined in Fig. 8. In capture mode 62, the microprocessor 26 uses the step motors 24,25 to direct the laser to scan the capture zone 50 herizontally for the plane 12 . This horizontal scan is done at a vertical angle corresponding to the height of the nose of the expected type of aircraft at the midpoint of the capture zone 50 .

To determine the correct height to scan, the microprocessor 26 computes the vertical angle for the laser pulse as:

$$
B_{f}=\arctan \left[(H-h) / l_{f}\right]
$$

where $\mathrm{H}=$ the height of the LRF 20 above the ground, $\mathrm{h}=$ the nose height of the expected aircraft, and $\mathrm{I}_{\mathrm{f}}=$ the distance from the LRF 20 to the middle of the capture zone 50. This equation results in a vertical angle for the mirror 21 that will enable the search to be at the correct height at the middie of the capture zone 50 for the expected airplane 12.

SUBSTITUTE SHEET (RULE2S)

Alternatively, the system 10 can store in the database values for B_{f} for different types of aircraft at a certain distance. However, storing B_{f} limits the flexibility of the system 10 because it can capture an aircraft 12 only at a single distance from the LRF 20

In the capture zone 50 and using this vertical angle, the microprocessor 26 directs the laser to scan horizontally in pulses approximately 0.1 degree apart. The microprocessor 26 scans horizontally by varying α, the horizontal angle from a center line starting from the LRF 20, between $\pm \alpha_{\text {max }}$, a value defined at installation. Typically, $\alpha_{\max }$ is set to 50 which, using 0.1 degree pulses, is equivalent to 5 degrees and results in a 10 degree scan.

The release of the laser pulses results in echoes or reflections from objects in the capture zone 50. The detection device of the LRF 20 captures the reflected pulses, computes the distance to the object from the time between puise transmission and receipt of the echo, and sends the calculated distance value for each echo to the microprocessor 26. The micro processor 26 stores, in separate registers in a data storage device, the total number of echoes or hits in each 1 degree sector of the capture zone 50. (70) Because the pulses are generated in 0.1 degree intervals, up to ten echoes can occur in each sector. The microprocessor 26 stores these hits in variables entitled s_{α} where α varies from I to 10 to reflect each one degree slice of the ten degree capture zone 50.

In addition to storing the number of hits per sector, the microprocessor 26 stores, again in a data storage device, the distance from the LRF 20 to the object for each hit or echo. Storing the distance to each reflection requires a storage medium large enough to store up to ten hits in each 1 degree of the capture zone 50 or up to 100 possible values. Because, in many cases, most of the entries will be empty, well known prograīnming techniques can reduce these storage requirements below having 100 registers always allocated for these values.

Once this data is available for a scan, the microprocessor 26 computes the total number of echoes, S_{T}, in the scan by summing the s_{α} 's. The microprocessor 26 then computes S_{M}, the largest sum of echoes in three adjacent sectors. (72) In other words, S_{M} is the largestsum of $\left(S_{\alpha-1}, S_{\alpha}, S_{\alpha+1}\right)$.

Once it computes S_{M} and S_{T}, the microprocessor 26 determines whether the echoes are from an incoming airplane 12. If S_{M} is not greater than 24, no airplane 12 has been found and the microprocessor 26 returns to the beginning of the capture mode 62. If the largest sum of echoes, S_{M} is greater than 24 (74), a "possible" airplane 12 has been located. If a "possible" airplane 12 has been located, the microprocessor checks if S_{M} / S_{T} is greater than 0.5 (76), or the three adjacent sectors with the largest sum contain at least half SUBSTITUTE SHEET (RULE 26)
of all the echoes received during the scan.
If $\mathrm{S}_{\mathrm{M}} / \mathrm{S}_{\mathrm{T}}$ is greater than 0.5 , the microprocessor 26 calculates the location of the center of the echo. $(78,82)$ The angular location of the center of the echo is calculated as:

$$
\alpha_{1}=\alpha_{v}+\left(S_{\alpha+1}-S_{\alpha-1}\right) /\left(S_{\alpha-1}+S_{\alpha}+S_{\alpha+1}\right)
$$

5
where S_{α} is the S_{α} that gave S_{M} and a_{v} is the angular sector that corresponds is that S_{α}.
The longitudinal position of the center of the echo is calculated as:

$$
I_{1}=(1 / n)_{i=1} \Sigma^{10} I_{a v i}
$$

where the $1_{\text {avi }}$ are the measured values, or distances to the object, for the pulses that returned an echo from the sector α_{v} and where n is the total number of measured values in this sector. $(78,82)$ Because the largest possible number of measured values is ten, n must be less than or equal to ten.

However, if $\mathrm{S}_{\mathrm{M}} / \mathrm{S}_{\mathrm{T}}<0.5$, the echoes may have been caused by snow or other aircraft at close range. If the cause is an aircraft at close range. that aircraft is probably positioned fairly close to the centerline so it is assumed that α_{1} should be zero instead of middle sectors. (80) If the distance distribution is too large, the microprocessor 26 has not found an airplane 12 and it returns to the beginning of the capture mode 62. (81).

After calculating the position of the aircrafi 12, the system 10 switches to docking mode 64.

Docking Mode
The docking mode 64, illustrated in Fig. 4, includes three phases, the tracking phase 84, the height measuring phase 86 and the identification phase 88. In the tracking phase 84 , the system 10 monitors the position of the incoming aircraft 12 and provides the pilot with information about axial location 31 and distance from the stopping point 53 of the plane through the display 18 . The system 10 begins tracking the aircraft 12 by scanning horizontally.

Referring to Fig. 8, during the first scan in tracking phase 84, the microprocessor 26 directs the LRF 20 to send out laser pulses in single angular steps. α, or, preferably, at 0.1 degree intervals between:

$$
\left(\alpha_{t}-\alpha_{p}-10\right) \text { and }\left(\alpha_{t}+\alpha_{p}+10\right)
$$

where α_{t} is determined during the capture mode 62 as the angular position of the echo center and α_{p} is the largest angular position in the current profile column that contains distance values.

After the first scan, α is stepped back and forth with one step per received LRF SUBSTITUTE SHEET (RULEZE)
value between:

$$
\left(\alpha_{s}-\alpha_{p}-10\right) \text { and }\left(\alpha_{s}+\alpha_{p}+10\right)
$$

where α_{s} is the angular position of the azimuth determined during the previous scan.
During the tracking phase 84, the vertical angle, B, is set to the level required for the identified craft 12 at its current distance from the LRF 20 which is obtainer from the reference profile Table 1. The current profile column is the column representing a position less than but closest to l_{t}.

The microprocessor 26 uses the distance from the stopping point 53 to find the vertical angle for the airplane's current distance on the profile Table I. During the first scan, the distance, I_{t}, calculated during the capture mode 62 , determines the appropriate column of the profile Table I and thus the angle to the aircraft 12. For each subsequent scan, the microprocessor 26 uses the B in the column of the profile Table I reflecting the present distance from the stopping point 53. (112)

Using the data from the scans and the data on the horizontal profile Table I, the microprocessor 26 creates a Comparison Table II . Referring to Table II the Comparison Table II is a two dimensional table with the number of the pulse. or angular step number, as the index $91, i$, to the rows. Using this index, the following information, represented as columns of the table, can be accessed for each row: $I_{i} 92$, the measured distance to the object on this angular step, $l_{k i} 93$, the measured value compensated for the skew caused by the displacement (equal to l_{j} minus the quantity s_{m}, the total displacement during the last scan, minus the quantity i times s_{p}, the average displacement during each step in the last scan (i.e.) I_{i} - $\left(\mathrm{s}_{\mathrm{m}}-\mathrm{is} \mathrm{s}_{\mathrm{p}}\right)$), $\mathrm{d}_{\mathrm{i}} 94$, the distance between the generated profile and thë reference. profile (equal to $\mathrm{r}_{\mathfrak{i} \mathfrak{j}}$, the profile value for the corresponding angle at the profile distance j , minus $\left.l_{k i}\right), a_{i} 95$, the distance between the nose of the aircraft and the measuring equipment 25 (equal to $r_{j 50}$, the reference profile value at zero degrees, minus d_{i}), $a_{e} 96$, the estimated nose distance after each step (equal to a_{m}, the nose distance at the end of the last scan, minus the quantity i times s_{p}), a_{d}, the difference between the estimated and measured nose distance (equal to the absolute value of a_{i} minus a_{e}), and Note 97 which indicates the echoes that are likely caused by an aircraft.

During the first scan in the tracking phase 84, the system 10 uses the horizontal profile column representing an aircraft position, j, less than bui closest to the value of I_{t}. For each new scan, the profile column whose value is less than but closest to ($\mathrm{a}_{\mathrm{m}}-\mathrm{s}_{\mathrm{m}}$) is chosen where a_{m} is the last measured distance to the aircraft 12 and s_{m} is the aircraft's displacement during the last scan. Additionally, the values of the profile are shifted
sideways by α_{s} to compensate for the lateral position of the aircraft. (112)
During each scan, the microprocessor 26 also generates a Distance Distribution Table (DDT). This table contains the distribution of a_{i} values as they appear in the Comparison Table II. Thus, the DDT has an entry representing the number of occurrences
5 of each value of a_{i} in the Comparison Table II in 1 meter increments between 10 to 100 meters.

After every scan, the system 10 uses the DDT to calculate the average distance, a_{m}, to the correct stopping point 53. The microprocessor 26 scans the data in the DDT to find the two adjacent entries in the DDT for which the sum of their values is the largest. row containing an entry for a_{i} corresponding to either of the wo DDT rows having the largest sum. (114)

The systern 10 then determines the lateral deviation or offset. (116) The microprocessor 26 first sets:

$$
2 \mathrm{~d}=\alpha_{\max }-\alpha_{\min }
$$

where $\alpha_{\max }$ and $\alpha_{\min }$ are the highest and lowest α values for a continuous flagged block of d_{i} values in the Comparison Table II. Additionally, the microprocessor 26 calculates:

$$
Y_{1}=\Sigma d_{i}
$$

for the upper half of the flagged d_{i} in the block and:

$$
Y 2=\Sigma d_{i}
$$

for the lower half of the block. Using Y_{1} and $Y_{2}, " a " 116$ is calculated as:

$$
a=k x\left(Y_{1}-Y_{2}\right) / d^{2}
$$

where k is given in the reference profile. If " a " exceeds a given value, preferably set to one, it is assumed that there is a lateral deviation approximately equal to "a". The l_{i} column of the Comparison Table II is then shifted "a" steps and the Comparison Table II is recalculated. This process continues until " a " is smaller than an empirically established value, preferably one. The total shift, α_{s}, of the l_{i} column is considered equal to the lateral deviation or offset. (116) If the lateral offset is larger than a predetermined value, preferably set to one, the profile is adjusted sideways before the next scan. $(118,120)$

After the lateral offset is checked, the microprocessor 26, provides the total sideways adjustment of the profile, which corresponds to the lateral position 31 of the aircraft 12 , on the display 18. (122)

The microprocessor 26 next calculates the distance to the nose of the aircraft, a_{m}, as:

SUBSTITUTE SHEET (RU上E 2S)
$a_{m}=\Sigma\left(\right.$ flagged $\left.a_{i}\right) / N$
where N is the total number of flagged a_{i}. From a_{m}, the microprocessor 26 can calculate the distance from the plane 12 to the stopping point 53 by subtracting the distance from the LRF 20 to the stopping point 53 from the distance to the nose of the aircraft. (124) calculates the average displacement during the last scan, s_{m}. The displacement during the last scan is calculated as:
$S_{m}=a_{m-1}-a_{m}$
where a_{m-1} and a_{m} belong to the last two scans. For the first scan in tracking phase $84, S_{m}$ is set to 0 .

The average displacement s_{p} during each step is calculated as:
$S_{p}=S_{m} / P$
where P is the total number of steps for the last scan cycle.
The microprocessor 26 will inform the pilot of the distance to the stopping
Once it calculates of the distance to the stopping point 53. the microprecessor 26 position 53 by displaying it on the display unit 18, 29. By displaying the distance to the stopping position 29, 53 after each scan, the pilot receives constantly updated information in real time about how far the plane 12 is from stopping.

If the aircraft 12 is in the display area 52 , both the lateral 31 and the longitudinal position 29 are provided on the display 18. $(126,128)$ Once the microprocessor 26 displays the position of the aircraft 12 , the tracking phase ends.

Once it completes the tracking phase, the microprocessor 26 verifies that tracking has not been lost by checking that the total number of rows flagged divided by the total number of measured values, or echoes, in the last scan is greater than 0.5. (83) In other words, if more than 50% of the echoes do not correspond to the reference profile, tracking is lost. If tracking is lost and the aircraft 12 is greater than 12 meters from the stopping point, the system 10 returns to the capture mode 62. (85) If tracking is lost and the aircraft 12 is less than or equal to 12 meters from the stopping point 53 . the system 10 turns on the stop sign to inform the pilot that it has lost tracking. $(85,87)$

If tracking is not lost, the microprocessor 26 determines if the nose height has been determined. (130) If the height has not yet been determined. the microprosessor 26 enters the height measuring phase 86 . If the height has already been determined, the microprocessor 26 checks to see if the aircraft has been identified. (132)

In the height measuring phase, illustrated in Fig. 9, the microprocessor 26 determines the nose height by directing the LRF 20 to scan verically. The nose height is SUBSTIUUTE SHEET (RULE 2*)
used by the system to ensure that the horizontal scans are made across the tip of the nose.
To check the nose height, the microprocessor 26 sets β in a predetermined value $B_{\max }$ and then steps it down in 0.1 degree intervals once per received/reflected pulse until it reaches $\beta_{\text {min }}$, another predetermined value. $B_{\text {min }}$ and $\beta_{\text {max }}$ are set during installation and typically are -20 and 30 degrees respectively. After β reaches $\beta_{\min }$ the microprucessor 26 directs the step motors 24.25 up until it reaches $\beta_{\text {max }}$. This vertical scanning is done with α set to α_{5}, the azimuth position of the previous scan.

Using the measured aircraft distance, the microprocessor 26 selects the column in the vertical profile table closest to the measured distance. (140) Using the data from the scan and the data on the vertical profile table, the microprocessor 26 creates a Comparison Table II. Referring to Fig.4, the Comparison Table II is a two dimensional table with the number of the pulse, or angular step number, as an index 91, i. to the rows. Using this index, the following information, represented as columns of the table, can be accessed for each row: $1_{i} 92$, the measured distance to the object on this angular step, $l_{\mathrm{ki}} 93$, the measured value compensated for the skew caused by the displacement (equal to I_{i} minus the quantity S_{m}, the total displacement during the last scan, minus the quantity i times s_{p}, the average displacement during each step in the last scan), $d_{i} 94$. the distance between the generated profile and thereference profile (equal to r_{ij}, the profile value for the corresponding angle at the profile distance j, minus $I_{k i}$), $a_{i} 95$, the distance between the nose of the aircraft and the measuring equipment (equal to $r_{j 50}$, the reference profile value at zero degrees, minus d_{i}), $a_{e} 96$, the estimated nose distance after cach step (equal to a_{m}, the nose distance at the end of the last scan, minus the quantity i times s_{p}). a_{d}, the difference between the estimated and measured nose distance (equal to the absolute value of a_{i} minus a_{e}), and Note 97 which indicates echoes that are likely caused tix an aircraft 12.

During each scan, the microprocessor 26 also generates a Distance Distribution Table (DDT). This table contains the distribution of a_{i} values as they appear in the Comparison Table II. Thus, the DDT has an entry representing the number of occurrences of each value of a_{i} in the Comparison Table II in 1 meter increments between 10 to 100 meters.

After every scan, the system 10 uses the DDT to calculate the average distance, a_{m}, to the correct stopping point 53. The microprocessor 26 scans the data in the DDT to find the two adjacent entries in the DDT for which the sum of their values is the largest. The microprocessor 26 then flags the Note 97 column in the Comparison Table II for each row containing an entry for a_{i} corresponding to either of the no DDT rows having the

largest sum. (142)
Once it completes the calculation of the average distance to the correct stopping point 53, the microprocessor 26 calculates the average displacement during the last scan, s_{m}. The displacement during the last scan is calculated as:
where a_{m-1} and a_{m} belong to the last two scans. For the first scan in tracking phase $84, s_{m}$ is set to 0 . The average displacement s_{p} during each step is calculated as

$$
s_{p}=s_{m} / P
$$

where P is the total number of steps for the last scan cycle. predetermined height of the expected aircraft when empty, to the vertical or height deviation. Consequently, to determine the nose height, the system 10 first determines the vertical or height deviation. (144) Vertical deviation is calculated by setting:

$$
2 \mathrm{~d}=\beta_{\max }-\beta_{\min }
$$

where $\beta_{\max }$ and $\beta_{\min }$ are the highest and lowest β value for a continuous flagged block of d_{i} values in the Comparison Table II. Additionally, the microprocessor 26 calculates:

$$
Y_{i}=\Sigma d_{i}
$$

for the upper half of the flagged d_{i} in the block and:

$$
Y_{2}=\Sigma d_{i}
$$

for the lower half of the block. Using Y_{1} and $Y_{2}, " a$ " is calculated as

$$
a=k \times\left(Y_{1}-Y_{2}\right) / d^{2}
$$

where k is given in the reference profile. If "a"exceeds a given value, preferably one, it is assumed that there is a vertical deviation approximately equal to "a". The 1 ; column is then shifted "a" steps, the Comparison Table II is re-screened and "a" recalculated. This process continues until " a " is smaller than the given value, preferably one. The total shift, β_{s} of the I_{i} column is considered equal to the height deviation. (144) The β_{j} values in the vertical Comparison Table II are then adjusted as $\beta_{\mathrm{j}}+\Delta \beta_{\mathrm{j}}$ where the height deviation $\Delta \beta_{\mathrm{j}}$ is:

$$
\Delta \beta_{j}=\beta_{s} \times\left(a_{m \beta}+a_{s}\right) /\left(a_{j}+a_{s}\right)
$$

and where $a_{m} \beta$ is the valid a_{m} value when β_{s} was calculated. bigger than a predetermined value, preferably one. (146) If the deviation is larger than that value, the microprocessor 26 adjusts the profile vertically corresponding to that offset.
(148) The microprocessor 26 stores the vertical adjustment as the deviation from the nominal nose height. (150) The actual height of the aircraft is the nominal nose height plus
the deviation. Onec it completes the height measuring phase 80. the microprocessor 26 returns to the tracking phase 84.

If the microprocessor 26 has already determined the nose height, it skips the height measuring phase 86 and determines whether the aircraft 12 has been identified. aircraft 12 has reached the stop position. (134) If the stop position is reached, the microprocessor 26 turns on the stop sign and the system 10 has completed the docking mode 64. (136) If the aircraft 12 has not reached the stop position, the micro-processor 26 returns to the tracking phase 84. (134) the profile and the mean distance between the marked echoes and this average distance. (162)

The average distance d_{m} between the measured and corrected profile and the deviation T from this average distance is calculated after verical and horizontal scans as follows:

$$
\begin{aligned}
& d_{m}=\Sigma d_{i} N \\
& T=\Sigma\left|d_{i} \cdot d_{m}\right| N
\end{aligned}
$$

If T is less than a given value, preferably 5 , for both profiles, the aircraft 12 is judged to be of the correct type provided that a sufficient number of echoes are received. (164) Whether a sufficient number of echoes is received is based on:

$\mathrm{N} /$ size >0.75

where N is the number of "accepted" echoes and "size" is the maximum number of values possible. If the aircraft 12 is not of the correct type, the microprocessor turns on the stop sign 136 and suspends the docking mode 64 . Once the microprocessor 26 completes the 5 identification phase 88, it returns to the tracking phase 84.

While the present invention has been described in connection with particular embodiments thereof, it will be understood by those skilled in the art that many changes may be made without departing from the true spirit and scope of the present invention as set forth in the following claims.
\qquad

Table !

Table II
5

WE CLAIM:

1. A system for verifying the shape of a detected object comprising:
means for projecting light pulses in angular coordinates onto an object:
means for collecting light pulses reflected off said object and for determining the
2. The system of claim 1 wherein the light pulses are projected onto a mirror system detected shape of said object; and means for comparing said detected shape with a profile corresponding to the shape of a known object and for determining whether said detected shape corresponds to said known shape.
3. The system of claims 1-2 wherein the profile corresponding to the skape of a known object comprises sets of expected reflected pulses at various distances from the stopping point.
4. The system of claims 1-3 further including means for detecting the presence of an
object within a capture zone, said detection means comprising:
said adjustable mirror system projects said light pulses outwardly in a predeter-
mined plane such that said projected light pulses will reflect off an object
within a capture zone;
means for processing collected light pulses reflected off said object within the capture zone to enable detection of the presence of such object.
5. The system of claim 4 wherein said capture zone comprises an area within said plane of said piojected light pulses, said area being defined as a predetermined angular configuration relative to an axis extending from said mirror systent and at predetermined axial distances from said mirror system, said area being divided into multiple angular sectors defined by rays extending outwardly from said mirror system. 6. The system of claims $4-5$ wherein said capture zone is repetitiously scanned with said light pulses projected in said predetermined plane until an object is detected based on the processing of said collected light pulses reflected off said object.
6. The system of claim 4-6 wherein said object is an airplane having a nose section positioned a predetermined vertical height above a surface of an airfield.
7. The system of claims $4-7$ wherein said adjustable mirror system projects said light pulses at a predetermined angle relative to said surface of said airfield so that said light pulses intersect with said nose section of said airplane.
8. The system of claims 2-8 wherein said adjustable mirror system is operated by SUBSTITUTE SHEFT (RULE26)
step motors under the control of a programmed microprocessor.
9. The system of claims $\mathbf{2 - 9}$ including a microprocessor for adjusting the mirror system so that the projected light pulses scan the capture zone and a data storage device for receiving data concerning the light pulses reflected off an object, said data storage device containing comparative information for comparison with the received data and said microprocessor employing said received data and said comparative information to determine whether an object has entered the capture zone.
10. The system of claim 10 wherein said received data includes the number of pulses reflected off a detected object in each sector of the capture zone and said comparative information includes data for determining the distance between a detected object and said means for collecting the light pulses.
11. The system of claims 9-10 wherein:
the microprocessor totals the number of reflected pulses in each scan of said capture zone;
said microprocessor determines the largest sum of reflected pulses for three adjacent sectors; and
said microprocessor determines that an object has been detected if the largest sum of reflected pulses for three adjacent sectors is at least a predetermined minimum number out of a total number of pulses projected within said three adjacent sectors and the number of reflected pulses in the three sectors with the largest sum is more than half of the total number of reflected pulses in the scan of said capture zone.
12. The system of claims $1-12$ further including means for tracking an incoming object, said tracking means comprising:
means for detecting the position of said incoming object relative to an imaginary axial line projecting from a predetermined point and for detecting the distance between said object and said predetermined point whereby tracking of the location of said object is enabled.
13. The system of claim 13 wherein:

> a comparison table is generated containing information about collected light pulses and said information is compared with a profile table indicating the shape of known objects;
> a distance distribution table is generated recording the distribution of distances from the object to said collection means for each collected light pulse; and SUBSTITUTE SHEET (RULE 26)
an average distance is calculated from the detected position of said object to a desired stopping position for said object.
15. The system of claims 14 wherein:
the average distance to the stopping position is calculated by averaging the distance to said stopping position recorded for the entrics in tite comparison table corresponding to the two adjacent entries in the distance distribution table having the largest sum.
16. The system of claims $13-15$ including a display indicating the distance from the object to a stopping point, the type of object and the location of the object compared to said imaginary axial line.
17. The system of claims $14-16$ wherein the average stopping distance is communicated to a computer on board the aircraft allowing that computer to stop the aircraft when said aircraft reaches said stopping position.
18. The system of claims $1-17$ further including means for directing said projected 15 light pulses onto a calibration element positioned in a known angular direction and at a known distance from said means for directing said projected light for purposes of calibration of said system.
19. The system of claim 18 wherein the means for directing said projected light comprises a second mirror system.
21. The system of claim 20 further comprising:
adjusting the angular parameters if said detected anguiar direction and said known angular direction do not correspond so that the detected angular direction is caused to correspond essentially to the known angular direction.
22. The system of claims 20-21 further comprising:
determining the detected distance of the object from ssid light source based on predetermined distance parameters; comparins said detected distance with

a known distance of said object from said light source to determine whether said detected distance corresponds to said known distance.
23. The system of claims 20-22 further comprising: adjusting the distance parameters if said detected distance and said known distance do not correspond so that the detected distance is caused to correspond essentially to the known distance.
24. The system of claims $18-20$ wherein the angular direction and distance of said calibration means from said means for directing said projected light in a horizontal plane are calibrated while the angular direction and distance of said calibration means from said means for directing said projected light in a vertical plane are held constant.
25. The system of claims $1-24$ wherein said light pulses are laser light pulses.
26. The system of claims l-25 wherein said profile is stored in a memory device.
27. A system for tracking an incoming object comprising:
means for generating light pulses;
means for projecting said pulses outwardly onto an incoming object and for reflecting said light pulses off said object;
means for collecting the light pulses reflected off of said object;
means for detecting the position relative to an imaginary axial line projecting from a predetermined point and for detecting the distance between said object and said predetermined point whereby tracking of the location of said object is enabled.
28. The tracking system of claim 27 wherein the light pulses are laser light pulses.
29. The tracking system of claim 27-28 wherein the light pulses are projected onto a mirror system with means for adjusting the mirror system to project the light pulses outwardly onto an incoming object.
30. The tracking system of claims 27-29 wherein a microprocessor provides the means for monitoring the location of said object.
31. The tracking system of claims 27-30 wherein
a comparison table is generated reflecting information about the laser scan and is compared with a profile table indicating the shape of known objects;
a distance distribution table is generated recording the distribution of distances from the nose of the object to the measuring device for each reflected pulse; and
an average distance to a desired stopping position is calculated.

32. The tracking system of claims 27-31 wherein
the average distance to the stopping position is calculated by averaging the distance to said stopping position recorded for the entrics in the comparison table corresponding to the two adjacent entrics in the distance distribution table having the largest sum.
33. The tracking system of claims 27-32 wherein a display shows the distance from the object to the stopping point, the type of object and the location of the object compared to center.
34. The tracking system of claims 27-33 wherein the average stopping distance is communicated to a computer on board the aircraft allowing that computer to stop the aircraft when said aircraft reaches said stopping position.
35. A method for verifying the shape of a detected object comprising:
projecting light pulses in angular coordinates onto an object;
reflecting said pulses back to a detector and determining the detected shape of the object based on said reflected pulses;
comparing said detected shape with a profile corresponding to the shape of a known object; and
determining whether said detected shape corresponds to said known shape.
36. The method of claim 35 wherein the profile corresponding to the shape of a known object comprises sets of expected reflected pulses at various distances from the stopping point.
37. The method of claim 35-36 wherein a microprocessor is programmed to identify an object.

FIG. 1

FIG. 2

FIG. 3

CALIBRATION MODE
Calibrate position measurement against calibration object.

CAPTURE MODE
Survey docking area and determine approximate position of incoming aircraft.

Stismbite sitet (RILE 26)

FIG. 6

Sony, Ex. 1002, p. 956

10/10

START

Pick from the set of profiles the profile closest to the measured aircraft distance.

Calculate the average distance between the marked echoes and the profile. Calculate the mean distance between the marked echoes and this average distance. 162

	INTERNATIONAL SEARCH REPORT	Intemar A Applieation No PCT/SE 94/00968
C(COALnumDon) DOCUMENTS CONSLDERED TO BE RELEVANT		
Cactery ${ }^{\text {a }}$		Relevant co cium No.
A	DE, A, 4009668 (SIEMENS AG) 2 October 1991 see the whole document	$\begin{aligned} & 7,8,10 \\ & 11,33 \end{aligned}$
A	EP, A, 0035101 (ELTRO GMBH GESELLSCHAFT FUR STRAHLUNGSTECHNIK) 9 September 1981 see the whole document	$\begin{aligned} & 2,4-6,9, \\ & 10 \end{aligned}$
A	database wpi Section EI, Week 9332 Derwent Publications Ltd., London, G8; Class SO2, AN 93-256658 \& SU,A, 1753273 (URALS EXPER MECH WKS) , 7 August 1992 see abstract	2,4-6,9
E	DATABASE WPI Section EI, Week 9514 Derwent Publications Ltd., London, GB; Class TO4, AN 95-105467 \& SE,A, 9301843 (GUSTAVSSON K) , 13 December 1994 see abstract	$\begin{aligned} & 1,4-8 \\ & 35,37 \end{aligned}$

Patent document cited in search report	Publication datc	Pauen mern	$f \text { family }$	Publication dale
DE-A-4301637	11-08-94	NONE		
US-A-4319332	09-03-82	$\begin{aligned} & D E-A- \\ & A U-B- \\ & A U-A- \\ & C H-A- \\ & F R-A, B \\ & G B-A, B \\ & J P-A- \\ & N L-A- \\ & S E-A- \end{aligned}$	$\begin{array}{r} 2818942 \\ 525309 \\ 4659879 \\ 641583 \\ 2424594 \\ 2021893 \\ 54143097 \\ 7902139 \\ 7903699 \end{array}$	$\begin{aligned} & 08-11-79 \\ & 28-10-82 \\ & 01-11-79 \\ & 29-02-84 \\ & 23-11-79 \\ & 05-12-79 \\ & 07-11-79 \\ & 30-10-79 \\ & 29-10-79 \end{aligned}$
DE-A-4009668	02-10-91	NONE		
EP-A-35101	09-09-81	DE-A-	3007893	10-09-81

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria
AU	Australia
BB	Bartados
BE	Belgiuan
BF	Burkina Faso
BG	Bulgaria
BJ	Benin
BR	Brazil
BY	Belarus
CA	Canada
CF	Central African Republic
CG	Congo
CH	Switzertand
CI	Cote d'Ivoire
CM	Cameroon
CN	China
CS	Crechoslovalia
CZ	Cuech Republic
DE	Gernany
DK	Deumaric
ES	Spain
FI	Faland
FR	france
GA	Gabon

CB	United Kingdoma
GE	Georgia
GN	Gninea
GR	Greece
H0	Hinugry
E	Ineland
[T	teaty
JP	Japan
KE	Kenya
KG	Kуreysan
$\mathbf{K P}$	Demseratic People's Republic of Korea
KR	Repurblic of Karea
KX	Karaithstan
LI	Liechtenstein
LK	Sni Lanke
LU	Laxemboura
LV	Larvis
MC	Monaco
MD	Repueblic of Moldova
MG	Medagascar
M.	Mals
MN	Mongolin

MR	Mauritania
MW	Malawi
NE	Niger
NL	Netherlands
NO	Norway
NZ	New Zealand
PL	Poland
PT	Portugal
RO	Romania
RU	Russian Federation
SD	Sudan
SE	Sweden
SI	Slovenia
SK	Slovalaia
SN	Senegal
TD	Chad
TG	Togo
TI	Tajilistan
TT	Trinidad and Tolage
UA	Urraine
US	United States of America
UZ	Uzbelistan
VN	Viet Nam

AIRPORT NOISE MONITORING SYSTEM

This invention relates to airport noise monitoring systems, i.e. noise monitoring systems which are adapted to distinguish aircraft from other noise events. Once a noise event is attributed to an aircraft, the aircraft is 5 identified from other information, which enables the carrier to be fined if the noise level exceeds an acceptable noise level.

Background to the invention
10 Airport noise monitoring systems commonly include a number of noise monitoring terminals distributed in and around the airport. Most current airport noise monitors use the technique of "Short Leq" for the acquisition of data, usually based upon a 62.5 ms long basic integration period.
15 Short Leq allows the system to recognize an individual flight by its time history. Of course, not all noise monitoring terminals have a sufficiently good signal-tonoise ratio and in practice, many noise events are lost amongst other noise sources such as heavy vehicles or
20 industrial plant. One measure of the efficiency of an aircraft noise monitoring system is how well it recovers signals in noisy conditions.

Cirrus Research plc produces a noise monitoring terminal which uses efficient aircraft-recognition algorithms: The algorithms are described in A. D. Wallis \& R. W. Krug, "The Sydney and Brisbane Noise Terminals", Proc. WESTPRAC, pp. 492-499, Nov. 1991 and basically consist of multiple threshold detection with specified event durations.
30 Experience has proven that this complex nine-parameter algorithm will recognise some 99\% of scheduled or military aircraft correctly. In common with all systems, the Cirrus system does have a lower success rate for very quiet aircraft or in areas of high background noise.

With 100 flights per day, the system described above may incorrectly identify one flight per day and thus, before the noise events can be assigned to individual aircraft,
something else must be brought in to reduce this recognition error rate, since at a major airport with over 1000 flights per day, even a 99% success rate is unacceptable.

Each airport has access to flight information - as displayed on the internal information boards - and this is often used as one of the correlation parameters in identification. However, if the airport has significant general aviation or private traffic, this information will be incomplete and significant events such as jet test flights will not be included. Thus, knowing that a noise event has taken place and that there was an incoming or outgoing flight at a similar time is still not adequate to enable the two to be correlated with a sufficient degree of confidence. The flight information data must be tied to a particular noise event with no significant possibility of error.

Summary of the invention
According to the present invention, a true take-off or landing time is attributed to each flight by appropriate sound detectors, and whether the aircraft is taking off or landing is recognised. An airport noise monitoring system according to the present invention comprises a pair of sound detectors to be installed in or on and spaced along a runway and means for monitoring the output of each sound detector so as to recognize an output form from either one of the detectors characteristic of an aircraft flying 0 overhead, checking the output from the other sound detector representing time prior to and subsequent to the event giving rise to the characteristic output form for an output form indicative of the proximity of an aircraft and consequently assigning to the event a flag indicative of the direction of motion of the aircraft and whether it is taking off, flying by or landing. The output form from either of the detectors characteristic of an aircraft flying overhead may be recognized by the nine-parameter algorithm as discussed above.

Having sound detectors placed in or on the runway and recognizing and timing the passage of aircraft provides accurate information as to take-off or landing times, which may then be correlated with noise events detected by 5 monitoring terminals elsewhere with a reasonable degree of certainty. The data from the sound detectors are now used in place of the airport flight time information to give a good event definition and only then is the flight time information added to enable individual flights to be 10 recognised. In effect, the flight time information is required only to indicate the order in which the aircraft take off or land, rather than the exact time.

Preferably, the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the direction of motion of the aircraft is away from the said one sound detector and towards the said other sound detector when the output from the said other sound gate includes an output form indicative of the proximity of an aircraft within a predetermined window of time subsequent to the event. Further, the means for monitoring, checking and assigning is preferably adapted to assign to the event a flag indicating that the aircraft is landing when the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead. When the said output form indicative of the proximity of an aircraft is characteristic of an aircraft flying overhead, the means for monitoring, checking and assigning will preferably assign to the event a flag indicating that the aircraft is flying by. The putput form indicative of the proximity of an aircraft may be any output exceeding a predetermined noise level.

35 Similarly, the means for monitoring, checking and assigning is preferably adapted to assign to the event a flag indicating that the direction of motion of the aircraft is towards the said one sound detector and away from the said other sound detector when the output from the said other
sound gate includes an output form indicative of the proximity of an aircraft within a predetermined window of time prior to the event. Further, the means for monitoring, checking and assigning is preferably adapted to assign to the event a flag indicating that the aircraft is taking off when the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead. Any output from the said other sound detector which has already been taken into account in assigning a flag indicative of the direction of motion of an aircraft giving rise to a previous event will preferably be disregarded by the means for monitoring, checking and assigning.

The present invention also extends to a method of detecting an aircraft comprising monitoring the output of each of a pair of sound detectors installed in or on and spaced along a runway so as to recognize an output form from either one
The means for monitoring the output of each further sound detector and/or the means for monitoring, checking and assigning may comprise one or more suitably programmed microprocessors. overhead, checking the output from the other sound detector representing time prior to and subsequent to the event giving. rise to the characteristic output form for an output form indicative of the proximity of an aircraft and
assigning to an event giving rise to such a characteristic output form a flag indicative of the direction of motion of the aircraft and whether it is taking off, flying by or landing in dependence upon the output from the said other
5 sound detector.

The method may include checking the output from the said other sound detector within a predetermined window of time subsequent to the event and assigning to the event a flag 10 indicating that the direction of motion of the aircraft is away from the said one sound detector and towards the said other sound detector if that output includes an output form indicative of the proximity of an aircraft. In these circumstances, the method preferably includes assigning to 15 the event a flag indicating that the aircraft is landing if the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead. Further, the method preferably includes assigning to the event a flag indicating that the aircraft
20 is flying by if the said output form indicative of the proximity of an aircraft is characteristic of an aircraft flying overhead.

The method may include checking the output from the said other sound detector within a predetermined window of time prior to the event and assigning to the event a flag indicating that the direction of motion of the aircraft is towards the said one sound detector and away from the said other sound detector if that output includes an output form indicative of the proximity of an aircraft. In these circumstances, the method preferably includes assigning to the event a flag indicating that the aircraft is taking off if the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead. Preferably, any output from the said other sound detector which has already been taken into account in assigning a flag indicative of the direction of motion of an aircraft'giving rise to a previous event is disregarded.

The method may further include monitoring the output of each of a plurality of further sound detectors distributed in or around the airport so as to recognize an output form characteristic of an aircraft flying overhead and correlating the events and flags recognized and assigned by monitoring and checking the outputs of the said pair of sound detectors with events giving rise to the characteristic output forms recognized by monitoring the output of each further sound detector.

The monitoring of the output of each further sound detector and/or the monitoring and checking of the output of the said pair of sound detectors and consequent assignment of flags may be accomplished by one or more suitably programed microprocessors.

Brief description of the drawings
The present invention will now be described by way of example with reference to the accompanying drawings in which:

Fig. 1 illustrates a simple sound detector with one pressure transducer;

Fig. 2 illustrates a more complex sound detector with provision for intensity measurement;

Fig. 3 is a schematic illustration of a runway with sound detectors installed;

Fig. 4 is a schematic illustration of the output from the two sound detectors when an aircraft is taking off; and

Fig. 5 is a corresponding illustration when the aircraft is landing.

Detailed description

The simple noise detector 10 illustrated in fig. 1 includes a pressure transducer 12 , which in this example is a microphone. The output from the microphone is passed through a band-pass filter 14 , which removes unwanted
5 frequencies, leaving those which are generated by aircraft engines and provide the highest signal-to-noise ratio. The filtered signal then passes through a squarer 16 and is integrated by an integrator 18 , operating over a 62.5 ms cycle, to provide a series of pulses representing the mean
10 square average sound level during the preceding 62.5 ms . These pulses are digitised and stored in a memory or store 20 to be processed by a CPU 22 as described.

A more complex noise detector 110 is illustrated in fig. 2 ,
15 inclading a pair of microphones 112 , 114. The signals from the microphones are summed at 116 and 118 , with one summation circuit 118 having the output from one microphone 114 inverted by inverter 120, thus outputting the difference between the two microphone signals. The signals
20 pass through respective band-pass filters 122,124 as described above and are then processed by an integrator 126, a pre-processor 128 and a CPU 130 to yield intensity, sound power and directionality information in the usual way. Again, a series of digitised pulses is stored in a
25 memory or store 132 to be processed by a suitably programmed CPU 134.

Fig. 3 illustrates schematically the placement of the sound detectors on a runway. As can be seen, one sound detector
30200 or possibly a pair of sound detectors 200 is placed at one end A of the runway and another sound detector 300 or pair of sound detectors 300 is placed at the other end B. Where a single detector is emplaced at each end of the runway, it is preferred that it be embedded in the runway surface. The separate detectors 200; 300 or pairs of detectors 200; 300 are able by virtue of their spacing along the runway to resolve the position of the aircraft at various times as it flies overhead and therefore determine its direction of flight.

Fig. 4 illustrates diagrammatically a typical output from two sound detectors 200; 300 positioned at points A and B on or in the runway when an aircraft is taking off in the direction $A-B$. As the aircraft taxis into place at one and 5 A of the runway, the associated sound detector 200 detects the increased level of sound. However, the character of the sound detected by this detector 200 is quite different from that attributable to an aircraft passing overhead and accordingly, the sound level is simply stored in memory for
10 future reference. As the aircraft begins its run along the runway, the sound level detected by the detector 200 diminishes with a characteristic slope. Although this slope could be used as a trigger for an attributable event, this is not preferred owing to inherent differences in the
15 take-off patterns of various aircraft and flights and the fact that incoming aircraft could be mistaken for aircraft beginning their take-off. Rather, the characteristically diminishing sound level is again stored for future reference.
20
Once the aircraft has travelled sufficiently far down the runway, it takes off and subsequently passes over the second sound detector 300. The output from this detector 300 will have a form characteristic of an aircraft flying
25 overhead and will be recognised as such by the processing electronics, i.e. the microprocessor. The recognition algorithm is as described above. Once this characteristic form has been recognised, the CPU will refer back to the stored sound levels from the first detector 200 within a predetermined window of time preceding the event at the second detector 300 and in doing so will encounter the high level of sound terminating in a characteristic slope. This will be recognised as indicating the presence of an aircraft at the first detector 200, and perhaps even the
35 fact that it is beginning its take-off. Accordingly, this event will be timed and flagged as a take-off in the direction $A-B$.

9
Fig. 5 illustrates diagramatically a typical output from two sound detectors 200; 300 positioned at points A and B on or in the runway when an aircraft is landing in the direction A-B. As the aircraft passes over the first sound 5 detector 200, the output from this detector 200 will have a form characteristic of an aircraft flying overhead and will be recognised as such by the processing electronics, i.e. the microprocessor. Again, the recognition algorithm is as described above. Once this characteristic form has levels from the second detector 300 within a predetermined window of time preceding the event at the second detector 300 and in doing so will be unable to identify a high level of sound, which has not already been attributed to a the second detector 300. Accordingly, the CPU will wait until the beginning of predetermined window of time and then inspect the output from the second detector.

20 After landing, the aircraft will run or taxi by the second detector 300 , which detects the increased level of sound. The character of the sound detected by this detector 300 is quite different from that attributable to an aircraft passing overhead and accordingly, provided this sound level coincides with the window of time following the event at the first detector 200, this event will be timed and flagged as a landing in the direction $A-B$. In the unlikely event that both detectors show characteristic forms attributable to an aircraft flying overhead within the predetermined window of time from one another, the event will be flagged as a fly-by or abortive landing in the relevant direction.

Once the take-offs and landings are accurately timed and flagged, they may be correlated with high confidence levels with noise events detected by other noise monitoring stations in and around the airport, and the flights in question identified from airport information which is used
to determine the order in which particular flights took off and landed.

CLAIMS

1. An airport noise monitoring system comprising a pair of sound detectors to be installed in or on and spaced along a runway and means for monitoring the output of each sound detector so as to recognize an output form from either one of the detectors characteristic of an aircraft flying overhead, checking the output from the other sound detector representing time prior to and subsequent to the event giving rise to the characteristic output form for an output form indicative of the proximity of an aircraft and consequently assigning to the event a flag indicative of the direction of motion of the aircraft and whether it is taking off, flying by or landing.
2. A noise monitoring system according to claim 1 in which the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the direction of motion of the aircraft is away from the said one sound detector and towards the said other sound detector when the output from the said other sound gate includes an output form indicative of the proximity of an aircraft within a predetermined window of time subsequent to the event.
3. A noise monitoring system according to claim 2 in which the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the aircraft is landing when the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead.
4. A noise monitoring system according to claim 2 or claim 3 in which the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the aircraft is flying by when the said output form indicative of the proximity of an
aircraft is characteristic of an aircraft fiying overhead.
5. A noise monitoring system according to any preceding claim in which the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the direction of motion of the aircraft is towards the said one sound detector and away from the said other sound detector when the output from the said other sound gate includes an output form indicative of the proximity of an aircraft within a predetermined window of time prior to the event.
6. A noise monitoring system according to claim 5 in which the means for monitoring, checking and assigning is adapted to assign to the event a flag indicating that the aircraft is taking off when the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead.
7. A noise monitoring system according to claim 5 or claim 6 in which the means for monitoring, checking and assigning is adapted to disregard any output from the said other sound detector which has already been taken into account in assigning a flag indicative of the direction of motion of an aircraft giving rise to a previous event.
8. A noise monitoring system according to any preceding claim further including a plurality of further sound detectors to be distributed in or around the airport and including means for monitoring the output of each noise detector so as to recognize an output form characteristic of an aircraft flying overhead and for correlating the events and flags recognized and assigned by the means for monitoring, checking and assigning with events giving rise to the characteristic output forms recognized by the means
for monitoring the output of each further sound detector.
9. A noise monitoring system according to any preceding claim in which the means for monitoring the output of each further sound detector comprises one or more suitably programmed microprocessors.
10. A noise monitoring system according to any preceding claim in which the mears for monitoring, checking and assigning comprises one or more suitably programmed microprocessors.
11. A method of detecting an aircraft comprising monitoring the output of each of a pair of sound detectors installed in or on and spaced along a runway so as to recognize an output form from either one of the detectors characteristic of an aircraft flying overhead, checking the output from the other sound detector representing time prior to and subsequent to the event giving rise to the characteristic output form for an output form indicative of the proximity of an aircraft and assigning to an event giving rise to such a characteristic output form a flag indicative of the direction of motion of the aircraft and whether it is taking off, flying by or landing in dependence upon the output from the said other sound detector.
12. A method according to claim 11 including checking the output from the said other sound detector within a predetermined window of time subsequent to the event and assigning to the event a flag indicating that the direction of motion of the aircraft is away from the said one sound detector and towards the said other sound detector if that output includes an output form indicative of the proximity of an aircraft.
13. A method according to claim 12 including assigning to the event a flag indicating that the aircraft is
14
landing if the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead.
14. A method according to claim 12 or claim 13 including assigning to the event a flag indicating that the aircraft is flying by if the said output form indicative of the proximity of an aircraft is characteristic of an aircraft flying overhead.
15. A method according to any one of claims 11-14 including checking the output from the said other sound detector within a predetermined window of time prior to the event and assigning to the event a flag indicating that the direction of motion of the aircraft is towards the said one sound detector and away from the said other sound detector if that output includes an output form indicative of the proximity of an aircraft.
16. A method according to claim 15 including assigning to the event a flag indicating that the aircraft is taking off if the said output form indicative of the proximity of an aircraft is not characteristic of an aircraft flying overhead.
17. A method according to claim 15 or claim 16 in which any output from the said other sound detector which has already been taken into account in assigning a flag indicative of the direction of motion of an aircraft giving rise to a previous event is disregarded.
18. A method according to any one of claims 11-17 further including monitoring the output of each of a pluxality of further sound detectors distributed in or around the airport so as to recognize an output form characteristic of an aircraft flying overhead and correlating the events and flags recognized and
assigned by monitoring and checking the outputs of the said pair of sound detectors with events giving rise to the characteristic output forms recognized by monitoring the output of each further sound detector.
19. A method according to claim 18 in which the monitoring of the output of each further sound detector is accomplished by one or more suitably programmed microprocessors.
20. A method according to any one of claims 10-19 in which the monitoring and checking of the output of the said pair of sound detectors and consequent assignment of flags is accomplished by one or more suitably programmed microprocessors.

SUBSTITUTE SHEET (RULE 26)

[^0]
page 2 of 2

INTERNAT	SEARCH		$\left\lvert\, \begin{array}{ll}\text { intra } & \text { Appliczion No } \\ \text { PCT/GB } & 95 / 00820\end{array}\right.$	
Patent document cited in search report	$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$	Patent family member(s)		$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$
GB-A-2235771	13-03-91	$\begin{aligned} & \text { DE-C- } \\ & \text { FR-A- } \\ & \text { US-A- } \end{aligned}$	$\begin{aligned} & 3101307 \\ & 2712705 \\ & 5047995 \end{aligned}$	$\begin{aligned} & 22-08-91 \\ & 24-05-95 \\ & 10-09-91 \end{aligned}$
US-A-3855571	17-12-74	NONE		
US-A-5189425	23-02-93	US-A-	5075680	24-12-91

PATENT APPLICATION FEE DETERMINATION Subslitule for Form PTO-875		
FOR	NUMBERFILEO	NUMBEREXTRA
BASIC FEE (37 CFR 1. 16(a). (b). or (c))		
SEARCH FEE (37 CFR 1.16(k), (i). or (m))		
EXABINATIONFEE (37 CFFR 1.16(0). (p), © (q))		
TOTAL CLAIMS (37 CFR $1.16(1)$)	10 minus2	
IWOEPENDENT CLAIMS (37 CFR 1.16(h))	2 minus	
APFLICATION SIZE FEE (37 CFR $1.10 \% \mathrm{~s})$	e specification ets of paper, th 250 (\$125 for ditional 50 shee U.S.C. $41(\mathrm{a})(1$	wings exceed 100 ation size ree due ity) for each dion thereof. See 37 CFR $1.16(\mathrm{~s})$
MUL TIPLE OEPENDENT CLAMM PRESETT (37 CFR 1.160))		

* If the difference in columo 1 is less than zeco, enter " 0 " in column 2.

SMALL ENTITY	
RATE ($\$$ I	FEE ($\$ 1$
x	$=$
x	

APPLICATION AS AMENDED-PARTIG

SMALL ENTITY	
RATE ($\$$)	ADOL TIONAL FEE $(\$)$
x	$=$
x	

RATE (\$)	ADDI TIONAL FEE $(\$)$
x	$=$
x	$=$
TOTAL AODLL FEE	

	RATE (\%)	AOOH riolial. FEE (\$)
OR	x -	
OR	\%	
Of,		
OR	TOTAL ADDLFEE	

- If the entry in columo 1 is less than the entr in column 2, write σ^{*} in column 3.
- If the "Highest Number Previously' Paid For" 1 ITHIS SFACE is tess than 20 , enter "20"
.. If the "Highest Number Previously Paid For" Ind THIS SPACE is less than 3 , enter " 3°.
The "Highest Number Previously Paid for (rotal or Independent is the highesl number found in the appropriate box in column 1.
This collection of imformation is required by 37 CFF 1.16 . The information is required to obtain or relain a benefil by the public which is to file (and by the USPTO to process! an application. Conlidentially is govemed by 35 U.S.C. 122 and 37 CFR 1,14 . This collection is estimated to late 12 minutes to complete including yathering, prepaing, and submating the compdeled application form to the USPTO. Time will rary depending upon the individual case, Any corminents On the amount of time you require to complete this fom and/or zyoyesions for reducing this burden, should be sem to the Chief infomation olfice, $4 S$. Paten and

Certificate of Transmission under 37 CFR 1.8

I hereby certify that this correspondence is being facsimile transmitted to the United States Patent and Trademark Office

Typed or printed name of person signing Certificate

Registration Number, if applicable

Telephone Number

Note: Each paper must have its own certificate of transmission, or this certificate must identify each submitted paper.

[^1]If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

STATEMENT UNDER 37 CFR 3．73（b）

Applicant／Patent Owner：Dovild A．Monree
Application No．IPatent No．：10／336，470＿Filed／Issuep Date：January 2，2003
Entitled：Apparatus for Capturing．Converting and Transmitting a Visual Image Signal Vla a Digltal Transmission System

FWiatch＿ins ，a
（Name of Aasignee）
states that it is：
1．\square the assignec of the entire right，titic，and interect；oran assignee of less than the entire right，titie and interest （The extent（by percentage）of its nwnership interest is \％）
in the patent application／patent identified above by vitue of elther：An assignment from the inventor（s）of the patent application／patent identified above．The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad ．or for which a copy thereof is attached．
OR
B．\square A chain of title from the inventor（s），of the patent application／patent identified above，to the current assignee as follows：

1．From：The Telesls Group．Inc．
To：E－Watch，Inc．
The document was recorded in the United States Patent and Trademark Office at Reel 0.18824 Frame 0．514 or for which a copy thorcof $i s$ anached．

2．From：Davld A．Monroe To：The Telesis Grous，Ine．
The document was recorded in the United Statee Patent and Tradomark Offipe at
Reel 016722 Frame 0239 or for which a copy thereof is attached．

3．From：To：
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad ，or for which a copy thereof is attached．Additional documents in the chain of titde are listed on a supplemental sheet．
\square As required by 37 CFR $3.73(b)(1)(i)$ ，the documentary evidence of the chain of title from the original owner to the assignee wes，or concurrently is being，submitted for recordation pursuant to 3 ／CFR 3．11．
［NOTE；A separate copy（l．e．，a true copy of the original assignment document（s））must be submitted to Assignment Division in accordmance with $3 /$ CFR Pant 3，to recoft the assignment in llie iecords of the USFTO．See MrEP

Attorney，Moore Landrey，L，1．P．Customer \＃67589
Title
This colletion of infarmation is tequifed by 37 GFR $3.73(b)$ ．Tha inkennation is required to obiain or retain a benefin by the public which is to fila（and by the USPTO to procerss）an appliestion．Corfjeentlelity is goverred by 95 U．S．C． 122 and 37 CFR 1.11 and 1.14 ．This collection is extimated to take 12 minutes to complete，ineluding gakring，preparing，and submitting the complated application form to the USPTO．Time will vary deponding upori the individuad caste．Afry
 FORMS TO THIS ADDRESS．SEND TO；Commizsiomer for Patente，P．O．BOX 1450，Alexandrla，VA 22\＄13－1450．

Please find below and/or attached an Office communication concerning this application or proceeding.
If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114 , including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 10/02/2006 has been entered.

Response to Arguments

Applicant argues that Ida does not teach that the selected picture is transmitted to remote station. Examiner respectfully disagrees. Ida's invention is directed towards "the video phone for transmitting still or moving pictures between one party [transmitting party] and another party [receiving party]" (col. 3, lines 41-43). Ida further discloses that in the conventional art "one party can not select the photographed area arbitrarily while viewing the photographed picture" (col. 4, lines 64-66). Ida overcomes this deficiency and teaches "one party can select the photographed area while viewing the photographed picture" (col. 5, lines 4-7). Ida discloses that by his invention "both parties are able to talk with each other while viewing each received picture" (col. 4, lines 49-56). Col. 4, lines 43-56 describes how the picture received at receiving terminal 5 (storage) is displayed at display unit 12 at one end and transmitted to the display unit 12 at the other end (figs. 2 and 3) in order for both parties to view the same picture. For the reason stated the examiner maintains his rejection of the claims over the prior arts.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
3. Claims 43-45, 48, 50-52, and 54 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kawazu et al. (Japanese Patent Application JP 06-268582, with an English Abstract, and an English machine translation) in view of Ida et al. (U.S. Patent Number $5,191,601$, cited in the Office action dated $12 / 16 / 05$).

Regarding claim 43, Kawazu discloses a handheld self-contained cellular telephone and integrated image processing system both of which are carried in a common case (see Figs. 2, 5, and 7-12) for both sending and receiving telephonic audio signals and for capturing a visual image and transmitting it to a compatible remote receiving station (see abstract, and paragraphs 0008-0020 of the Detailed Description), the system comprising a housing defining the common case (see Figs. 2, 5, and 7-12), an integral image capture device comprising an electronic camera contained within the housing (lens 5, paragraphs 0039-0045 in the Detailed Description), a display (displays 4, paragraph 0011 in the Example), a processor in the housing for generating an image data signal representing the image framed by the camera (paragraphs 0011-0021), a memory associated with the processor for collecting and storing the image data signal (memory card 17, paragraph 0016-0025 in the Detailed Description), the processor for recalling the image data signal for viewing and transmission (paragraph 0016-0034 in the Detailed Description), a telephonic system in the housing for sending and receiving digitized audio signals and for
sending the image data signal (paragraphs 0015-0016 in the Detailed Description), alphanumeric input keys in the housing for permitting manually input digitized alphanumeric signals to be input to the processor (key group 3, paragraphs 0011, and 0042-0045 in the Detailed Description), the telephonic system further used for sending the digitized alphanumeric signals (paragraphs 0008-0020 of the Detailed Description), a wireless communications device for transmitting any of the digitized signals to a compatible remote receiving station (paragraphs 0008-0020 of the Detailed Description), and a power supply in the housing for powering the system (cell 9, paragraphs 0041-0048 in the Example).

However Kawazu fails to expressly disclose if the display displays an image framed by the camera.

Ida discloses a self-contained telephone and integrated image processing system both of which are carried in a common case (see Fig. 2) for both sending and receiving telephonic audio signals and for capturing a visual image and transmitting it to a compatible remote receiving station (column 3, line 41 -column 4 , line 19), the system comprising a housing defining a common case (video phone body 20 , column 5 , lines $14-66$), an image capture device comprising a electronic camera contained (camera 21, being attached to the video phone unit, as seen in Fig. 2 , a display for displaying an image framed by the camera (image display 12 , column 4 , lines 5 56), a processor (changeover switch 25) in the housing for generating an image data signal representing the image framed by the camera (column 5 , line 36 -column 6 , line 18), a memory associated with the processor for collecting and storing the image data signal (memory section 24 , column 5 , line 36 -column 6 , line 30), the processor for recalling the image data signal for viewing and transmission (column 4, lines 5-56, and column 5, lines 50-column 6, line 30), a
telephonic system in the housing for sending and receiving digitized audio signals and for sending the image data signal (column 3 , line 41-column 4 , line 10), and alphanumeric input keys in the housing for permitting manually input digitized alphanumeric signals to be input to the processor (operating keyboard 13 , column 5 , lines 44-56).

Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having cameras for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1, lines 9 -column 2, line 39 . Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 43.

Regarding claim 44, Kawazu and Ida disclose the system discussed above in claim 43, and Ida further teaches that the display for framing the image to be captured by the image capture device displays the image at the system whereby the image can be viewed and framed prior to capture in the memory (column 4, lines 5-56).

As discussed above, Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having cameras for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system
would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1 , lines 9 -column 2 , line 39. Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 44.

Regarding claim 45, Kawazu and Ida disclose the system discussed above in claim 43, and Ida further teaches that the display is used for viewing alphanumeric messages input at the alphanumeric keys (column 8, lines 1-25).

As discussed above, Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having cameras for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1 , lines 9 -column 2 , line 39. Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 45.

Regarding claim 48, Kawazu and Ida disclose the system discussed above in claim 43, and Kawazu further teaches of a removable memory module in addition to the memory, the removable memory adapted to be removably housed in the housing for storing captured image data signals (memory card 17, paragraph 0016-0025 in the Detailed Description).

Regarding claim 50, Kawazu and Ida disclose the system discussed above in claim 43,
and Ida further teaches that the display is adapted for viewing incoming image data signals (column 4, lines 5-56).

As discussed above, Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having cameras for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1, lines 9 -column 2 , line 39. Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 50 .

Regarding claim 51, Kawazu discloses a handheld cellular telephone having an integrated electronic camera in a common case for both sending and receiving telephonic audio signals and for capturing a visual image (paragraphs 0008-0020 of the Detailed Description), converting the visual image to a digitized image data signal and transmitting digitized image data signal via a cellular telephone network (paragraphs 0008-0045 of the Detailed Description), the cellular telephone comprising a housing defining the common case (see Figs. 2; 5, and 7-12), a cellular telephone in the housing, the cellular telephone further including a transmitter/receiver for transmitting and receiving audio telephone messages over a cellular telephone network (paragraphs 0008-0020 of the Detailed Description), a keypad for entering manually input alphanumeric signals to be transmitted over the cellular telephone network (key group 3,
paragraphs 0011 , and 0042-0045 in the Detailed Description), and a display window for viewing the manually input alphanumeric signals (displays 4, paragraph 0011 in the Example), an integral electronic camera in the housing ((lens 5, paragraphs 0039-0045 in the Detailed Description), the camera for visually framing a visual image to be captured (paragraphs 0039-0045 in the Detailed Description), a processor associated with the electronic camera for capturing and digitizing the framed image in a format for transmission over the cellular telephone network via the cellular telephone (paragraphs 0008-0020 of the Detailed Description), a memory associated with the processor for receiving and storing the digitized framed image (memory card 17, paragraph 0016-0025 in the Detailed Description) and transmitting it over a cellular telephone network (paragraphs 0008-0020 of the Detailed Description), and an integrated power supply for powering both the cellular telephone and the camera (cell 9, paragraphs 0041-0048 in the Example).

However, Kawazu fails to expressly disclose if the framed image is selectively displayed in the display window. Ida discloses a telephone having an integrated electronic camera in a common case for both sending and receiving telephonic audio signals and for capturing a visual image (see Fig. 2), converting the visual image to a digitized image data signal and transmitting digitized image data signal via a telephone network (column 3 , line 41 -column 4 , line 19), the telephone comprising a housing defining the common case (video phone body 20 , column 5 , lines 14-66), a keypad for entering manually input alphanumeric signals to be transmitted over the cellular telephone network (operating keyboard 13, column 5 , lines 44-56), and a display window for viewing the manually input alphanumeric signals (image display 12 , column 4 , lines 5-56), an electronic camera in the housing, the camera for visually framing a visual image to be
captured (camera 21, being attached to the video phone unit, as seen in Fig. 2), a processor associated with the electronic camera for capturing and digitizing the framed image in a format for transmission over the cellular telephone network via the cellular telephone (column 5, line 36 -column 6 , line 18), and a memory associated with the processor for receiving and storing the digitized framed image for selectively displaying it in the display window and transmitting it over the telephone network (column 4, lines 5-56, and column 5 , lines 50 -column 6 , line 30).

Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having camerás for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1 , lines 9 -column 2 , line 39 . Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 51.

Regarding claim 52, Kawazu and Ida disclose the telephone discussed above in claim 51, and Ida further teaches of a display window for viewing the alphanumeric signals within the display window for framing the visual image (column 4, lines 5-56).

As discussed above, Kawazu \& Ida are combinable because they are from the same field of endeavor, being telephones having cameras for transmitting images over a telephone network. At the time of the invention, it would have been obvious to a person of ordinary skill in the art to include a display for displaying an image framed by the camera, as taught by Ida, in the
system of Kawazu. The suggestion/motivation for doing so would have been that Kawazu's system would become more user-friendly with the addition of Ida's teachings, as a user would be able to view images that were taken by the camera, as recognized by Ida in column 1 , lines 9 column 2, line 39. Therefore, it would have been obvious to combine the teachings of Ida with the system of Kawazu to obtain the invention as specified in claim 52.

Regarding claim 54, Kawazu and Ida disclose the telephone discussed above in claim 51, and Kawazu further teaches that of a second memory selectively removable from the housing (memory card 17, paragraph 0016-0025 in the Detailed Description).

Allowable Subject Matter

4. Claims 55, 60, and 62 are allowed.
5. The following is a statement of reasons for the indication of allowable subject matter:

Regarding claim 55, in the examiner's opinion, it would not have been obvious to have the system, as claimed, include the features of having a camera operation control capability through the use of digital/analog circuits for converting digital commands to analog signals for controlling gain, pedestal setup, white clip, lens focus, white balance, lens iris, lens zoom and other functions of the camera from a local input device, a remote device, or as automatic or programmed functions.

Citation of Pertinent Prior Art

6. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure:

Katz (U.S. Patent Number $5,412,708$) discloses a videophone system.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Houshang Safaipour whose telephone number is (571)272-7412. The examiner can normally be reached on Mon.-Fri. from 6:00am to $2: 30 \mathrm{pm}$.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David Moore can be reached on (571)272-7437. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Applicant:	\S			
	DAVID A. MONROE	\S		
		\S		
Filed:	January 3, 2003	\S		
		\S	Art Unit:	2625
Serial No.: $10 / 336,470$	\S			
		\S	Examiner:	Houshang Safaipour
For:	APPARATUS FOR	\S		
	CAPTURING, CONVERTING	\S	Docket No.:	$07-0197$
	AND TRANSMITTING A	\S		
	VISUAL IMAGE SIGNAL VIA	\S		
	A DIGITAL TRANSMISSION	\S		
	SYSTEM	\S		

RESPONSE TO NON-FINAL OFFICE ACTION DATED MARCH 8, 2007

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Dear Sir:

Responsive to the Non-Final Office Action mailed March 8, 2007, please amend the application as indicated below. Pursuant to 37 CFR 1.16, the amendment is believed to place the application in condition for allowance or in better form for appeal. A Request for three month Extension of Time and the Extension Fee (\$1020.00) are attached. Also submitted herewith are a Supplemental Information Disclosure Statement and the fee (\$180.00) under 1.17(p) for consideration of the IDS after the first Office Action was mailed.

Amendments to the Claims begin on page 2 of this paper.
Remarks/Arguments begin on page 59 of this paper.

Amendments

Amendments to Specification:

Delete paragraph [0003] which reads:
Industry has developed and continues to develop and enhance techniques for scanning, compressing, transmitting, receiving, decompressing, viewing and printing documents. This technology, encompassing the full body of facsimile transmission and reception, is currently in widespread use. The current standards, CCITT Group Ill and Group IV, define methods to scan and transmit high quality, bi-level images with a high degree of success and has become commercially acceptable throughout the world. However, gray scale documents are not easily transmitted because the scanners and algorithms are not tailored to the function. Three dimensional objects will not fit into the flat document scanners and cannot be transmitted.

Delete paragraph [0004] which reads:
Examples of systems that have addressed some of these issues are shown in U.S. Patent No. $5,193,012$ which shows a video to facsimile signal converter, and U.S. Patent No. 3,251,937 which discloses a system for transmitting still television pictures over a telephone line.

Delete paragraph [0005] which reads:

Wire photography, and its extension, radio photography, have long been used by the news media. The most common form involves an input device that converts photographs into encoded signals for communication over telecommunications facilities or radio. At the receiving end, reproducing equipment reconverts the encoded image signals by exposing photographic film or other sensitized paper. The term
facsimile is often used with these products.

Delete paragraph [0006] which reads:

Still video equipment has recently become available from vendors such as Kodak, Canon and Sony, and is again primarily used by television and print media, although applications are expanding rapidly in such areas as insurance investigations and real estate transactions. A still video camera captures a full color still video image that can be reproduced using a special video printer that converts the still video image data into hard copy form. For applications requiring communication of the still video image, transmit/receive units are available wherein the image begins and ends as a video image.

Delete paragraph [0007] which reads:

The Photophone from Image Data Corporation is an example of a specialty product that combines a video camera, display and storage facility in a terminal package. One terminal can send a real time or stored still video image to another for display or storage, or printing on special video printers. Again, the signal begins and ends as a video image.

Delete paragraph [0008] which reads:

Another example of a specialty product is peripheral equipment available for personal computers that enables the input/output, storage and processing of still video images in digitized formats. For instance, the Canon PV-540 is a floppy disk drive that uses
conventional still video disks, digitizing and a still video image using a conventional format, and communicates with the computer through a standard communications 110 port.

Delete paragraph [0009] which reads:
U.S. Patent No. 5,193,012 discloses a still-video to facsimile conversion system for converting the still-video image frame into a half-tone facsimile reproduction without having to store an entire intermediated gray scale image frame by repeatedly transmitting the still-video image frame from a still-video source to an input circuit with a virtual facsimile page synchronization module. This system permits image to facsimile conversion by utilizing a half tone conversion technique.

Delete paragraph [0010], which reads:

While the various prior art systems and techniques provide limited solutions to the problem of transmitting visual images via a facsimile transmission system, all fall short of providing a reliable and convenient method and apparatus for readily capturing, storing, transmitting and printing visual images in a practical manner.

Replace paragraph [0011] which reads:

The subject invention is an image capture, compression and transmission system that is specifically designed to permit reliable visual image transmission over land line or wireless communications using commercially available facsimile transmission techniques. The invention incorporates a camera and signal converter into an
integrated unit wherein the converted signal may be transmitted on a real time basis or may be stored in memory for later recall and transmission. The design of the invention permits maximum flexibility, with the camera/converter/telephone or other transmission device being designed in a modular configuration wherein any or all of the devices may exist as integrated or independent units.
with the following paragraph:

The subject invention is Embodiments provide an image capture, compression and transmission system that is specifically designed to permit reliable visual image transmission over land line or wireless communications using commercially available facsimile transmission techniques. The invention ineorporater Embodiments incorporate a camera and signal converter into an integrated unit wherein the converted signal [may] can be transmitted on a real time basis or may be stored in memory for later recall and transmission. The design of the invention permits Embodiments provide maximum flexibility, with the camera/converter/telephone or other transmission device being designed in a modular configuration wherein any or all of the devices [may] can exist as integrated or independent units.

Replace paragraph [0012] which reads:

The preferred embodiment permits capture of a video image using a digital camera, an analog camera, or a video camera such as a camcorder. The captured video image is then converted into still frame digitized format for transmission over any of a variety of transmission systems ranging from Group- III facsimile to computer, or to a like
device at a remote location, in any protocol desired. The invention recognizes that once a signal is digitized, the transmission protocols are virtually endless.
with the following paragraph:

Abstract

The preferred embediment permits Embodiments permit capture of a video image using a digital camera, an analog camera, or a video camera such as a camcorder. The captured video image is then converted into still frame digitized format for transmission over any of a variety of transmission systems ranging from Group- III facsimile to computer, or to a like device at a remote location, in any protocol desired. The invention recegnizes that According to embodiments, once a signal is digitized, the transmission protocols are virtually endless.

Replace paragraph [0013] which reads:

For example, the present invention, permits a still frame visual image to be captured at a remote location and sent immediately, over wireless communication systems, to a remote location such as, by way of example, a computer system wherein the image could be merged directly into newsprint. The image may also be sent to and printed as a hard copy using any Group-III facsimile machine, anywhere in the world. Where desired, the images may be stored in memory for later recall, and may be archived on a portable medium such as a memory card or the like.
with the following paragraph:

For example, the present invention, permits Embodiments permit a still frame visual image to be captured at a remote location and sent immediately, over wireless communication systems, to a remote location such as, by way of example, a computer system wherein the image could be merged directly into newsprint. The image may also be sent to and printed as a hard copy using any Group-III facsimile machine, anywhere in the world. Where desired, the images may be stored in memory for later recall, and may be archived on a portable medium such as a memory card or the like.

Replace paragraph [0014] which reads:

The system of the subject invention is particularly useful for applications where immediate transmission of visual images of scenes, people and objects is desirable and sophisticated equipment is not always available for receiving the information. The system also provides a unique and reliable means for transmitting visual data to and from remote locations, such as, by way of example, law enforcement and emergency vehicles and the like.
with the following paragraph:

The system of the subject invention is particularly Embodiments are useful for applications where immediate transmission of visual images of scenes, people and objects is desirable and sophisticated equipment is not always available for receiving the information. The system alse provides Embodiments also provide a unique and reliable means for transmitting visual data to and from remote locations, such as, by way of example, law enforcement and emergency vehicles and the like.

Replace paragraph [0015] which reads:

In the preferred embodiment of the invention, the system includes a video camera and an integral cellular telephone, wherein the telephone using the standard audio mode or future digital modes, can be used to transmit and receive visual image signals. A desk model is also disclosed and permits connection to a standard land line telephonic system. A mobile console model is disclosed for use in law enforcement vehicles, and the like. Other communication systems are also supported by the subject invention, including hardwired networks, radio and satellite transmissions and the like.
with the following paragraph:

In [the preferred] an embodiment [of the invention, the] a system includes a video camera and an integral cellular telephone, wherein the telephone using the standard audio mode or future digital modes, can be used to transmit and receive visual image signals. An embodiment including a [A] desk model is also disclosed and permits connection to a standard land line telephonic system. An embodiment including a [A] mobile console model is disclosed for use in law enforcement vehicles, and the like. Other communication systems are also supported by [the subject invention] embodiments, including hardwired networks, radio and satellite transmissions and the like.

Replace paragraph [0016] which reads:

A local facsimile machine may be incorporated with the unit and can serve as a printer for providing hard copy of the captured image at the point of capture, as well as being adapted for receiving facsimile transmissions in the standard fashion.
with the following paragraph:
[A] In embodiments, a local facsimile machine [may] can be incorporated with the unit and can serve as a printer for providing hard copy of the captured image at the point of capture, as well as being adapted for receiving facsimile transmissions in the standard fashion.

Replace paragraph [0017] which reads:

The circuitry is disclosed for supporting any of the preferred configurations from a basic real time transmission system via Group-III fax to a comprehensive system supporting both land line and wireless transmission of image, audio and documentary data at both a local and remote station.
with the following paragraph:

Embodiments disclose [The] circuitry [is disclosed] for supporting any [of the preferred] configurations from a basic real time transmission system via Group-III fax to a comprehensive system supporting both land line and wireless transmission of image, audio and documentary data at both a local and remote station.

Replace paragraph [0018] which reads:

The subject invention also permits digitized collection of audio signals through the use of an internal microphone, and external input device, a cellular telephone, land line telephone, wireless radio or other communication system, and digitized audio playback, as well. The playback can be via an internal speaker, out an external out jack to a remote device or via a cellular telephone, land line telephone, wireless radio or other communication system.
with the following paragraph:
[The subject invention also permits] Embodiments permit digitized collection of audio signals through the use of an internal microphone, and external input device, a cellular telephone, land line telephone, wireless radio or other communication system, and digitized audio playback, as well. The playback can be via an internal speaker, out an external out jack to a remote device or via a cellular telephone, land line telephone, wireless radio or other communication system.

Replace paragraph [0019] which reads:

The digitized image and audio capture features permit association of audio with an image, as well as data with the image. Useful data associated with the image includes GPS from either internal or external GPS devices, range information from ranging devices, date and time, and text which may be input from an integrated keyboard or from a remote device.
with the following paragraph:

In embodiments, [The] digitized image and audio capture features permit association of audio with an image, as well as data with the image. Useful data associated with the image includes GPS from either internal or external GPS devices, range information from ranging devices, date and time, and text which may be input from an integrated keyboard or from a remote device.

Replace paragraph [0020] which reads:

It is an important feature of the invention that the system supports storage of images in an interim storage format including raw video, compressed video, interim gray scale format and/or half tone format. The image can also be stored in the selected output mode, such as by way of example, a Group-III facsimile mode. The versatile capability of the system permits transmission of captured data to a standard bi-level facsimile machine such as Group-III, to gray scale facsimile systems or full color facsimile systems, as well as to other remote receiving devices such as, by way of example, personal computers and network servers. The data may be configured in any of a variety of formats and protocols including JPEG, FAX, wireless, emerging imagery formats, FAX and computer data protocols. The invention is adapted to operate in multiple modes, with a unitary capture and send mode or separate capture and store, and send modes.
with the following paragraph:

In embodiments, a [It is an important feature of the invention that the] system supports storage of images in an interim storage format including raw video,
compressed video, interim gray scale format and/or half tone format. In embodiments, the [The] image can also be stored in the selected output mode, such as by way of example, a Group-III facsimile mode. [The] According to embodiments, the versatile capability of [the] a system permits transmission of captured data to a standard bi-level facsimile machine such as Group-III, to gray scale facsimile systems or full color facsimile systems, as well as to other remote receiving devices such as, by way of example, personal computers and network servers. The data [may] can be configured in any of a variety of formats and protocols including JPEG, FAX, wireless, emerging imagery formats, FAX and computer data protocols. [The invention is] Embodiments are adapted to operate in multiple modes, with a unitary capture and send mode or separate capture and store, and send modes.

Replace paragraph [0021] which reads:

In the preferred embodiment, the system is adapted for tagging a collected image, video, audio, and other data such as GPS information, with geospatial information and real time clock and added text. This permits the complete historical data to be transmitted simultaneously with the image signal.
with the following paragraph:
[In the preferred embodiment] In an embodiment, the system is adapted for tagging a collected image, video, audio, and other data such as GPS information, with geospatial information and real time clock and added text. This permits the complete historical data to be transmitted simultaneously with the image signal.

Replace paragraph [0022] which reads:

It is contemplated that the system of the invention would be self-contained with an integral power unit such as a disposable battery, rechargeable battery source or the like.
with the following paragraph:

According to embodiments, [It] it is contemplated that [the] a system [of the invention would] can be self-contained with an integral power unit such as a disposable battery, rechargeable battery source or the like.

Replace paragraph [0023] which reads:

Where desired, the system also includes camera operation control capability through the use of digital/analog circuits for converting digital commands to analog signals for controlling the gain, pedestal, setup, white clip, lens focus, white balance, lens iris, lens zoom and other functions of the camera from a local input device, a remote device or as automatic or programmed functions. The central processor may also be used to control camera shutter rate. Other camera features and parameters which may be controlled in this manner are compressor resolution (such as high, medium, low user settings) corresponding to compression rate parameters, field/frame mode, color or monochrome, image spatial resolution (640×420 pixels, 320×240 pixels, for example), lens and camera adjustments, input selection where multiple cameras or video sources are used and the like.
with the following paragraph:

According to embodiments, where [Where] desired, [the] a system also includes camera operation control capability through the use of digital/analog circuits for converting digital commands to analog signals for controlling the gain, pedestal, setup, white clip, lens focus, white balance, lens iris, lens zoom and other functions of the camera from a local input device, a remote device or as automatic or programmed functions. The central processor [may] can also be used to control camera shutter rate. Other camera features and parameters which [may] can be controlled in this manner are compressor resolution (such as high, medium, low user settings) corresponding to compression rate parameters, field/frame mode, color or monochrome, image spatial resolution (640×420 pixels, 320×240 pixels, for example), lens and camera adjustments, input selection where multiple cameras or video sources are used and the like.

Replace paragraph [0024] which reads:

When an integrated communications device is used, such as by way of example, a cellular telephone, the telephone can be isolated from the rest of the system to permit independent use, and independent power up and power off and other cellular phone functions.
with the following paragraph:

According to embodiments, when [When] an integrated communications device is used, such as by way of example, a cellular telephone, the telephone can be isolated
from the rest of the system to permit independent use, and independent power up and power off and other cellular phone functions.

Replace paragraph [0025] which reads:

In operation, the system permits not only the manual capture, dial (select) and send of images, but may also be fully automated to capture, dial and send, for example, on a timed sequence or in response to a sensor such as a motion sensor, video motion detection, or from a remote trigger device. The remote trigger also may be activated by an incoming telephone signal, for example.
with the following paragraph:

According to embodiments, in [In] operation, [the] a system permits not only the manual capture, dial (select) and send of images, but [may] can also be fully automated to capture, dial and send, for example, on a timed sequence or in response to a sensor such as a motion sensor, video motion detection, or from a remote trigger device. The remote trigger also [may] can be activated by an incoming telephone signal, for example.

Replace paragraph [0026] which reads:

The remote device may also be used for remote loading and downloading of firmware, and for setting of the programmable parameters such as to provide remote
configuration of sampling modes during capture, compression rates, triggering methods and the like.
with the following paragraph:

In embodiments, a [The] remote device [may] can also be used for remote loading and downloading of firmware, and for setting of the programmable parameters such as to provide remote configuration of sampling modes during capture, compression rates, triggering methods and the like.

Replace paragraph [0028] which reads:

Circular sampling techniques are supported by the data capture system of the present invention. This is particularly useful when triggering events are used to initiate transmission of collected image data over the communications system. For example, if a triggering event is motion detected at a motion sensor, it may be useful to look at the images captured for a period of time both prior to and after the actual event. The circuitry of the subject invention permits any circular sampling technique to be utilized depending upon application, such as prior to an after trigger, only after trigger or only before trigger or prior to and after the trigger point. Again, as an example, it may be desirable to look primarily at images captured before a triggering event if the event is a catastrophic event such as an explosion or the like. Other circular sampling techniques may be employed, as well, incorporating multiple cameras, for example, wherein different fields are sampled depending upon the time frame in a sequence of events.
with the following paragraph:

Circular sampling techniques are supported by [the] a data capture system of the present [invention] disclosure. This is particularly useful when triggering events are used to initiate transmission of collected image data over the communications system. For example, if a triggering event is motion detected at a motion sensor, it may be useful to look at the images captured for a period of time both prior to and after the actual event. The circuitry of [the] subject [invention] embodiments permits any circular sampling technique to be utilized depending upon application, such as prior to an after trigger, only after trigger or only before trigger or prior to and after the trigger point. Again, as an example, it [may] can be desirable to look primarily at images captured before a triggering event if the event is a catastrophic event such as an explosion or the like. Other circular sampling techniques [may] can be employed, as well, incorporating multiple cameras, for example, wherein different fields are sampled depending upon the time frame in a sequence of events.

Replace paragraph [0029] which reads:

It is, therefore, an object and feature of the invention to provide an apparatus for capturing, converting and transmitting a visual image via standard facsimile transmissions systems.
with the following paragraph:

It is, therefore, an object and feature of the invention to Embodiments provide an apparatus for capturing, converting and transmitting a visual image via standard
facsimile [transmissions] transmission systems.

Replace paragraph [0030] which reads:

It is another object and feature of the invention to provide an apparatus for compressing the visual image data in order to minimize the capacity requirements of the data capture and storage system.
with the following paragraph:

It is another object and feature of the invention to Embodiments provide an apparatus for compressing the visual image data in order to minimize the capacity requirements of the data capture and storage system.

Replace paragraph [0031] which reads:

It is an additional object and feature of the invention to provide an apparatus for capturing and storing a visual image for later recall and review and/or transmission.
with the following paragraph:

It is an additional object and feature of the invention to Embodiments provide an apparatus for capturing and storing a visual image for later recall and review and/or transmission.

Replace paragraph [0032] which reads:

It is yet another object and feature of the invention to provide an apparatus for storing a captured video image in digital format on a portable storage medium.
with the following paragraph:

It is yet another object and feature of the invention to Embodiments provide an apparatus for storing a captured video image in digital format on a portable storage medium.

Replace paragraph [0033] which reads:

It is an additional object and feature of the invention to provide an apparatus capable of sending and receiving telephonic audio messages, facsimile documents, and captured visual images to and from standard, readily available remote stations.
with the following paragraph:

It is an additional object and feature of the invention to Embodiments provide an apparatus capable of sending and receiving telephonic audio messages, facsimile documents, and captured visual images to and from standard, readily available remote stations.

Replace paragraph [0034] which reads:

It is a further object and feature of the invention to provide the means and method for capturing images prior to, prior to and after, or after a triggering event.
with the following paragraph:

It is a further object and feature of the invention to Embodiments provide the means and method for capturing images prior to, prior to and after, or after a triggering event.

Replace paragraph [0035] which reads:

It is also an object and feature of the invention to provide for triggering events and/or optional viewing or review of the captured images prior to printing or transmission.
with the following paragraph:

It is also an object and feature of the invention to Embodiments provide for triggering events and/or optional viewing or review of the captured images prior to printing or transmission.

Replace paragraph [0036] which reads:

It is another object and feature of the invention to provide an apparatus which may be activated from a remote location for initiating the capture of images by the device.
with the following paragraph:

It is another ebject and feature of the invention to Embodiments provide an apparatus which [may] can be activated from a remote location for initiating the capture of images by the device.

Replace paragraph [0047] which reads:

The image capture and transmission system of the subject invention is suited for capturing one or more single frame analog image or a digital image data signal and transmitting the captured signal via any of a plurality of transmission schemes to a remote receiving station where the image is downloaded in a suitable format for viewing and printing on hard paper copy, a CRT screen image, or other medium. The system is particularly well suited for sending and/or receiving images via a standard Group III facsimile transmission system and permits capture of the image at a remote location using an analog or digital camera. Two generic configurations are shown and described, the first, where each image is transmitted as it is captured, and the second, which permits capture, storage, and selective recall of captured images for transmission. The invention also contemplates a portable storage medium, wherein the captured stored medium may be removed from the capture device and archived for later use. While a system for black and white (gray tones) for Group-III facsimile transmission is described in detail herein, the invention could be readily adapted to transmission of color images utilizing the teachings of the present invention using industry standard color video standards and circuits. Both portable, or hand held, and stationary, or desktop, units are described. The circuitry utilized for both configurations is identical, but stationary configurations do not need a battery.
with the following paragraph:
[The] According to embodiments, an image capture and transmission system [of the subject invention is suited for capturing] captures either one or more single frame analog [image] images or digital [image] images or image data or visual data or visual images, the aforementioned hereinafter being referred to as an "image" or "images", [data signal and transmitting the] and transmits a captured image in a digital signal via any of a plurality of transmission schemes through a transmission interface such as, for example, cellular transmission, radio signal, satellite transmission, hard line telephonic transmission, or other transmission to a remote receiving station where the image is downloaded [in a suitable format] for viewing on a screen or [and] printing on hard paper copy or other medium. [The] According to embodiments, a system is particularly well suited for sending and/or receiving images via a standard Group III facsimile transmission system and permits capture of the image at a remote location using an analog or digital camera. Two generic configurations are shown and described, the first, where each image is transmitted as it is captured, and the second, which permits capture, storage, and selective recall of captured images for transmission. [The invention also contemplates] Embodiments also contemplate a portable storage medium[, wherein] having the captured [stored medium may] images stored thereon and which can be removed from the capture and transmission unit [device] and archived for later use. While a system for black and white (gray tones) for Group-III facsimile transmission is described in detail herein, [the invention could] embodiments can be readily adapted to transmission of color images utilizing the teachings of the present [invention] disclosure using industry standard color video standards and circuits. Both portable, or hand held, image capture and transmission
units and stationary, or desktop, image capture and transmission units are described. The circuitry utilized for both configurations is identical, but stationary configurations do not need a battery.

Replace paragraph [0049] which reads:

Turning now to Fig. 1, the simplest embodiment of the invention incorporates a standard analog or digital camera device 10 for capturing a visual image in the typical fashion. The camera 10 may be operator activated as indicated at 12 , or may be programmed to be activated at selected intervals or in response to certain conditions. For example, a motion detector may be utilized to activate the camera 10 in a surveillance installation. Once activated, the camera 10 captures a visual image in typical fashion through a lens (see lens 192, for example, in Fig. 7A). In the illustrated embodiment, the captured image is then transmitted to a gray scale bit map memory device 16 , from which it is output to a half-tone conversion scheme 18 to be input into a binary bit map 20 for formatting the captured image in a configuration suitable for transmission via a Group-III facsimile system. The signal generated at 22 by the binary bit map 20 is input into a Group-Ill encoding and compression network 24 for generating an output signal at 26 which is introduced into a Group III protocol transmission device 28 . The output at 30 of the transmission device 28 is then transmitted into any standard transmission interface such as, by way of example, hard line telephonic transmission, cellular transmission, radio signal, satellite transmission or other transmission system 32 via a modem or similar device, as needed(as diagrammatically illustrated at 29), to be received via a compatible interface by a remote Group-IIII receiving system 34 . The Group III receiving system 34 is a typical Group-III facsimile system comprising a Group-III receiver 36, decoder and
decompressor 38 and binary bit map 40 , from which a facsimile hard copy such as plain paper copy 42 may be generated.
with the following paragraph:

Turning now to Fig. 1, [the simplest] an embodiment [of the invention] incorporates an image capture device such as a standard analog or digital camera device 10 for capturing a visual image in the typical fashion. The camera 10 [may] can be operator activated as indicated at 12 , or [may] can be programmed to be activated at selected intervals or in response to certain conditions. For example, a motion detector [may] can be utilized to activate the camera 10 in a surveillance installation. Once activated, the camera 10 captures a visual image in typical fashion through a lens (see lens 192, for example, in Fig. 7A). In the illustrated embodiment, the captured image is then transmitted to a gray scale bit map memory device 16 , from which it is output to a half-tone conversion scheme 18 to be input into a binary bit map 20 for formatting the captured image in a configuration suitable for transmission via a Group-III facsimile system. The signal generated at 22 by the binary bit map 20 is input into a Group-Ill encoding and compression network 24 for generating an output signal at 26 which is introduced into a Group III protocol transmission device 28. The output at 30 of the transmission device 28 is then transmitted into any standard transmission interface such as, by way of example, hard line telephonic transmission, cellular transmission, radio signal, satellite transmission or other transmission system 32 via a modem or similar device, as needed (as diagrammatically illustrated at 29), to be received via a compatible interface by a remote Group-IIII receiving system 34. The Group III receiving system 34 is a typical Group-III facsimile system comprising a Group-III receiver 36 , decoder and decompressor 38 and binary bit map 40 , from which a
facsimile hard copy such as plain paper copy 42 [may] can be generated.

Replace paragraph [0050] which reads:

This configuration is particularly well suited where real near time transmission is desired, for example when the system is operator controlled and a "real time" image is desired at a remote location. An example of such a system may be a photo identification confirmation of an apprehended suspect in law enforcement use, or transmission of images of damaged assets for insurance purposes, or transmission of images of construction job site conditions. This configuration is also well suited for use in those applications where a sensor activates the system and real time transmission of the sensed condition is desired. An example of such a system would be a motion activated camera in a surveillance location, where the image is immediately transmitted to a remote monitoring station. Of course, it will be readily understood by those who are skilled in the art that tagging a transmitted image with information such as, by way of example, date, time and location, can be incorporated in the transmitted signal so that a receiving station could monitor a plurality of remote image data capture systems. This is also useful for reviewing a body of previously stored or printed images to determine the time and location of such image.
with the following paragraph:
[This] According to an embodiment, the above-described configuration is particularly well suited where [real] near real time transmission is desired, for example when the system is operator controlled and a "real time" image is desired at a remote location. An example of such a system [may] can be a photo identification confirmation of an
apprehended suspect in law enforcement use, or transmission of images of damaged assets for insurance purposes, or transmission of images of construction job site conditions. This configuration is also well suited for use in those applications where a sensor activates the system and real time transmission of the sensed condition is desired. An example of such a system would be a motion activated camera in a surveillance location, where the image is immediately transmitted to a remote monitoring station. Of course, it will be readily understood by those who are skilled in the art that tagging a transmitted image with information such as, by way of example, date, time and location, can be incorporated in the transmitted signal so that a receiving station could monitor a plurality of remote image data capture systems. This is also useful for reviewing a body of previously stored or printed images to determine the time and location of such image.

Replace paragraph [0051] which reads:

The embodiment of Fig. 2 is similar to Fig. 1, but incorporates a memory and optional operator viewer system. The image is captured by the camera 10 and conditioned by the gray scale bit map 16, as in Fig. 1. In this embodiment, the output 44 of the bit map 16 is input into a standard digital memory device 46 for later recall. This configuration is particularly well suited for applications where near real time transmission of the image either is not required or is not desirable. It will be noted that with the exception of the insertion of the memory device 46 and the optional viewer device 48 , the capture and transmission system of Fig. 2 is identical to that shown and described in Fig. 1. Once the image is captured by the camera 10 and is presented at 44 to the memory device 46 , it is stored for later recall and transmission. The specific type of memory device is optional and may include, for example, an SRAM device, a

DRAM, Flash RAM, hard drive, floppy disk, PCMCIA format removable memory (see, for example, the PCMCIA card 50 in Fig. 7A), writeable optical media or other storage device. The memory may selectively capture images, as indicated by the operator interface/capture interface 52 , or may be programmed to selectively capture periodic images or all images. In the embodiment shown in Fig. 2, an optional viewer device 48 is provided. This permits the operator to recall and view all or selective images before transmission, as indicated by the operator interface/recall interface 54 . This permits the operator to review all images retained in the memory 46 and transmit selective images, as desired, to the Group-Ill transmission system. The remainder of the system of Fig. 2 operates in the same manner as the configuration shown and described in Fig. 1.
with the following paragraph:

The embodiment of Fig. 2 is similar to Fig. 1, but incorporates a memory and optional operator viewer system. The image is captured by the camera 10 and conditioned by the gray scale bit map 16, as in Fig. 1. In this embodiment, the output 44 of the bit map 16 is input into a standard digital memory device 46 for later recall. This configuration is particularly well suited for applications where near real time transmission of the image either is not required or is not desirable. It will be noted that with the exception of the insertion of the memory device 46 and the optional viewer device 48, the capture and transmission system of Fig. 2 is identical to that shown and described in Fig. 1. Once the image is captured by the camera 10 and is presented at 44 to the memory device 46 , [it] the image is stored for later recall and transmission. The specific type of memory device is optional and [may] can include, for example, an SRAM device, a DRAM, Flash RAM, hard drive, floppy disk, PCMCIA format
removable memory (see, for example, the PCMCIA card 50 in Fig. 7A), writeable optical media or other storage device. The memory [may] can selectively capture images, as indicated by the operator interface/capture interface 52 , or [may] can be programmed to selectively capture periodic images or all images. In the embodiment shown in Fig. 2, an optional viewer device 48 is provided[. This] and permits the operator to recall and view all or selective images before transmission, as indicated by the operator interface/recall interface 54. [This] The optional viewer device 48 permits the operator to review all images retained in the memory 46 and transmit selective images, as desired, to the Group-Ill transmission system. The remainder of the system of Fig. 2 operates in the same manner as the configuration shown and described in Fig. 1.

Replace paragraph [0052] which reads:

The configuration of Fig. 3 incorporates all of the features of Figs. I and 2, and additionally, includes an interim data compression and decompression scheme to permit increased utilization of the memory or storage medium 46. As shown in Fig. 3, an interim format compressor 56 is inserted between the gray scale bit map 16 and the memory device 46 . This permits compression and reduction of the data required to store the image, effectively increasing the capacity of the storage device. It is an objective of the storage device to preserve the gray scale quality of the image for viewing at the location of capture. An interim format decompression device 58 is inserted between the output of the memory device 46 and the rest of the system, whether the optional viewer 48 is utilized, or the output is entered directly into the half-tone convertor 18. The interim compression/decompression scheme is particularly useful when all of the image data is to be permanently archived, or when
limited capacity portable media are used, such as, by way of example, floppy disks or a portable PCMCIA card. It will be noted that the remainder of the system shown in Fig. 3 is identical to the system shown and described in Fig. 2.
with the following paragraph:

The configuration of Fig. 3 incorporates all of the features of Figs. I and 2, and additionally, includes an interim data compression and decompression scheme to permit increased utilization of the memory or storage medium 46. As shown in Fig. 3, an interim format compressor 56 is inserted between the gray scale bit map 16 and the memory device 46 . [This] Insertion of the interim format compressor 56 between the gray scale bit map 16 and the memory device 46 permits compression and reduction of the data required to store the image, effectively increasing the capacity of the storage device or storage medium 46. [It is an objective of] Embodiments including the storage device or storage medium 46 can [to] preserve the gray scale quality of the image for viewing at the location of capture. An interim format decompression device 58 is inserted between the output of the memory device or storage medium 46 and the rest of the system, whether the optional viewer 48 is utilized, or the output is entered directly into the half-tone convertor 18 . The interim compression/decompression scheme is particularly useful when all of the image data is to be permanently archived, or when limited capacity portable media are used, such as, by way of example, floppy disks or a portable PCMCIA card. It will be noted that the remainder of the system shown in Fig. 3 is identical to the system shown and described in Fig. 2.

Replace paragraph [0053] which reads:

Fig. 4 illustrates the use of the image capture and/or retention configured in any of the
optional embodiments of Figs. 1-3 and adapted for use in combination with any of a variety of transmitting and receiving schemes such as, by way of example, the GroupIII system shown in Figs. 1-3, a modem, direct connection to a personal computer, serial or parallel transmission, or any selected transmitting/receiving protocol. This illustration demonstrates the versatility of the system once the image has been captured, converted and conditioned by the image capture device of the subject invention. Specifically, once the image is captured by the camera 10 and conditioned by the gray scale bit map 16, it may be stored and transmitted, or transmitted "real time" via any transmitting and receiving scheme. As shown in Fig. 4 the image capture device includes the memory device 46 and the optional viewer 48 for incorporating maximum capability. However, any of the schemes of Figs. 1-3 would be suitable for producing a transmittable signal. In the embodiment shown, a format select interface switch 60 is positioned to receive the fully conditioned signal on line 59. This would permit either automated or manual selection of the transmitting protocol, including the Group-III facsimile system previously described in connection with Figs. 1-3, as indicated by selecting format select switch 60 position A ; or PC modem protocol as illustrated by the JPEG compressor 62 and protocol generator 64, as indicated by selecting format select switch position B; or the wavelet compressor and PC modem protocol, as illustrated by the wavelet compressor 66 and PC modem protocol generator 68 by selecting switch position C ; or any selected conversion network 65, (if needed) with a compatible compressor 67 (if needed) and compatible protocol generator 75 (if needed), as indicated by switch position D; or a serial protocol scheme 77 , with serial drivers 79 directly to a hardwired personal computer 81 by selecting switch position E. Of course, it will be readily understood by those skilled in the art that one or a plurality of transmitting protocols may be simultaneously selected. Depending on the protocol selected, the signal output is
generated at the selected output module and introduced to a communications interface module 83 via a modem or other device, as needed, for transmission via a transmission system to a compatible receiving station such as the Group-III facsimile device 34 , the personal computer 85 , the video telephone 89 , and/or other server or receiving device 91 for distribution.
with the following paragraph:

Fig. 4 illustrates the use of the image capture and/or retention configured in any of the optional embodiments of Figs. 1-3 and adapted for use in combination with any of a variety of transmitting and receiving schemes such as, by way of example, the GroupIII system shown in Figs. 1-3, a modem, direct connection to a personal computer, serial or parallel transmission, or any selected transmitting/receiving protocol. This illustration demonstrates the versatility of [the] a system according to embodiments once the image has been captured, converted and conditioned by the image capture device of the [subject invention] disclosure. Specifically, once the image is captured by the camera 10 and conditioned by the gray scale bit map 16, it [may] can be stored and transmitted, or transmitted "near real time" via any transmitting and receiving scheme. As shown in Fig. 4 the image capture device includes the memory device 46 and the optional viewer 48 for incorporating maximum capability. However, any of the schemes of Figs. 1-3 would be suitable for producing a transmittable signal. In the embodiment shown, a format select interface switch 60 is positioned to receive the fully conditioned signal on line 59. [This would] The format select interface switch 60 can permit either automated or manual selection of the transmitting protocol, including the Group-III facsimile system previously described in connection with Figs. 1-3, as indicated by selecting format select switch 60 position A; or PC modem
protocol as illustrated by the JPEG compressor 62 and protocol generator 64, as indicated by selecting format select switch position B; or the wavelet compressor and PC modem protocol, as illustrated by the wavelet compressor 66 and PC modem protocol generator 68 by selecting switch position C; or any selected conversion network 65 , (if needed) with a compatible compressor 67 (if needed) and compatible protocol generator 75 (if needed), as indicated by switch position D ; or a serial protocol scheme 77, with serial drivers 79 directly to a hardwired personal computer 81 by selecting switch position E. Of course, it will be readily understood by those skilled in the art that one or a plurality of transmitting protocols [may] can be simultaneously selected. Depending on the protocol selected, the signal output is generated at the selected output module and introduced to a communications interface module 83 via a modem or other device, as needed, for transmission via a transmission system to a compatible receiving station such as the Group-III facsimile device 34 , the personal computer 85 , the video telephone 89 , and/or other server or receiving device 91 for distribution.

Replace paragraph [0054] which reads:

An exemplary circuit supporting the configurations of Figs. 1-4 is shown in Fig. 5. With specific reference to Fig. 5, an analog camera is indicated by the "video in" signal at 70. Typically, the video signal is a composite video/sync signal. The diagram shows all of the signal processing necessary to sync up to an NTSC signal 70 coming out of the analog camera and processed for introduction into an integral RAM memory 71 and/or a portable RAM memory via interface 73. An analog to digital (A/D) converter 74 converts the video portion of the analog signal from the camera and produces the digital signal for output at line 76 . The digital output data on path 76
is introduced into a data multiplexer circuit 81 and into the RAM memory unit(s) 71, 72. In the exemplary embodiment, the portable RAM memory 72 is an image card such as, by way of example, a PCMCIA SRAM card or a PCMCIA Flash RAM card. However, it will be readily understood that any suitable RAM memory configuration can be used within the teachings of the invention. It is desirable to store compressed rather than raw data in card 72 because of space and transmission speed factors.
with the following paragraph:

According to embodiments, an [An] exemplary circuit supporting the configurations of Figs. 1-4 is shown in Fig. 5. With specific reference to Fig. 5, an analog camera is indicated by the "video in" signal at 70. Typically, the video signal is a composite video/sync signal. The diagram shows all of the signal processing necessary to sync up to an NTSC signal 70 coming out of the analog camera and processed for introduction into an integral RAM memory 71 and/or a portable RAM memory via interface 73. An analog to digital (A/D) converter 74 converts the video portion of the analog signal from the camera and produces the digital signal for output at line 76 . The digital output data on path 76 is introduced into a data multiplexer circuit 81 and into the RAM memory unit(s) 71, 72. In the exemplary embodiment, the portable RAM memory 72 is an image card such as, by way of example, a PCMCIA SRAM card or a PCMCIA Flash RAM card. However, it will be readily understood that any suitable RAM memory configuration can be used within the teachings of the [invention] disclosure. In an embodiment, it [It] is desirable to store compressed rather than raw data in portable memory card 72 because of space and transmission speed factors.

Replace paragraph [0056] which reads:

This frame may now be output from the system via any of the available transmitting schemes. In the exemplary embodiment, the processor 86 may be any processor or such as a microprocessor or DSP, with sufficient capability to perform the described functions. The processor bus is indicated at 87 . The circuitry supporting the processor comprises the processor chip 86 and the control store memory (ROM, Flash RAM, PROM, EPROM or the like) 92 for storing the software program executed by the processor. It will be understood that other memory devices could be utilized without departing from the spirit of the invention. For example, a Flash RAM would permit flexibility and replacement of the program for upgrades and enhancements. The user interface commands are generated and interpreted by the software that is being executed by the processor 86 .
with the following paragraph:

This frame [may] can now be output from the system via any of the available transmitting schemes. In the exemplary embodiment, the processor 86 [may] can be any processor or such as a microprocessor or DSP, with sufficient capability to perform the described functions. The processor bus is indicated at 87 . The circuitry supporting the processor comprises the processor chip 86 and the control store memory (ROM, Flash RAM, PROM, EPROM or the like) 92 for storing the software program executed by the processor. It will be understood that other memory devices [could] can be utilized without departing from the [spirit of] the [invention] disclosure. For example, a Flash RAM [would] can permit flexibility and replacement of the program for upgrades and enhancements. The user interface
commands are generated and interpreted by the software that is being executed by the processor 86.

Replace paragraph [0057] which reads:

The display unit 94 is connected through a typical interface 96 , and provides visual user interface at the camera body to give the operator a visual read-out of the status of the collection and transmission of a selected frame. In the exemplary embodiment, the display unit is a two line, multi-character LCD display, but other sizes or technology displays could be readily incorporated, depending, for example, on the amount of graphics desired in the display module. The bank of operator buttons and/or switches 98 are connected to the system through the button interface 100 .
with the following paragraph:

The display unit [94] $\underline{96}$ is connected through a typical interface [96] 94, and provides a visual user interface at the camera body to give the operator a visual read-out of the status of the collection and transmission of a selected frame. In [the] an exemplary embodiment, the display unit is a two line, multi-character LCD display, but other sizes or technology displays could be readily incorporated, depending, for example, on the amount of graphics desired in the display module. The bank of operator buttons and/or switches 98 are connected to the system through the button interface 100.

Replace paragraph [0062] which reads:

The system of the present invention also contemplates wireless transmission over a cellular telephone, radio frequency, satellite transmission or the like. In the exemplary embodiment, the specific configuration for a cellular telephone interface is shown in detail. The amplifiers 122, 124 amplify the input of the modem 104 and are controlled by the FETs 126,128 , respectively. The FETs are controlled by the control register 102 and allow selection of the audio either coming in from the cellular interface 130 or from the telephone line 104 to the modem. This permits the cellular phone to be used for three distinct functions: (1) as an audio telephone, (2) as a transmitting system for transmitting the captured image and related signals via a cellular system, and (3) for receiving incoming transmissions to the processor such as remote control, remote configuration, or images.
with the following paragraph:
[The] \underline{A} system of the present [invention] disclosure also contemplates wireless transmission over a cellular telephone, radio frequency, satellite transmission or the like. In [the] an exemplary embodiment, the specific configuration for a cellular telephone interface is shown in detail. The amplifiers 122, 124 amplify the input of the modem 104 and are controlled by the FETs 126, 128, respectively. The FETs are controlled by the control register 102 and allow selection of the audio either coming in from the cellular interface 130 or from the telephone line 104 to the modem. This permits the cellular phone to be used for three distinct functions: (1) as an audio telephone, (2) as a transmitting system for transmitting the captured image and related signals via a cellular system, and (3) for receiving incoming transmissions to the processor such as remote control, remote configuration, or images.

Replace paragraph [0067] which reads:

Various physical configurations of the invention are shown in Figs.7A \& 7B. Figs. $6 \mathrm{~A}, 6 \mathrm{~B}$ and 6 C are block diagrams for desktop and portable units. Figs. 7A and 7B illustrate the subject invention as incorporated in a standard 35 millimeter type camera housing.
with the following paragraph:

Various physical configurations of [the invention] embodiments are shown in Figs.7A \& 7B. Figs. 6A, 6B and 6C are block diagrams for desktop and portable units. Figs. 7A and 7B illustrate [the subject invention] embodiments as incorporated in a standard 35 millimeter type camera housing.

Replace paragraph [0068] which reads:

A basic desktop system is shown in Fig. 6A, and includes a console unit having a telephone jack 152, an external telephone connection 154 and a video input/camera power jack 156 for connecting the analog camera 10 . A facsimile machine may be also connected at jack 154 to provide local printer capability. The configuration shown in Fig. 6B is a basic portable system, with a battery powered portable module 160 having a self-contained power source 162 . The system may include an integral RAM and/or the removable memory module as indicated by the image card 72. The camera 10 may be an integral feature of the portable module 160 , or may be a detached unit, as desired. In this embodiment, a cellular telephone 164 is provided with a datajack 166 for connecting to the output jack 168 of the module, whereby the image data signal may be transmitted via the cellular telephone to a remote facsimile
machine over standard cellular and telephone company facilities. When incorporating the circuitry of Fig. 5, the cellular phone may be used as both an input and an output device, and incoming data or stored images may be viewed through the viewfinder 170.
with the following paragraph:

A basic desktop system according to embodiments is shown in Fig. 6A, and includes a console unit having a telephone jack 152, an external telephone connection 154 and a video input/camera power jack 156 for connecting the analog camera 10. A facsimile machine [may be also] can also be connected at jack 154 to provide local printer capability. The configuration shown in Fig. 6B is a basic portable system, with a battery powered portable module 160 having a self-contained power source 162 . The system [may] can include an integral RAM and/or the removable memory module as indicated by the image card 72. The camera 10 [may] can be an integral feature of the portable module 160, or [may] can be a detached unit, as desired. In [this] the illustrated embodiment, a cellular telephone 164 is provided with a data jack 166 for connecting to the output jack 168 of the module, whereby the image data signal [may] can be transmitted via the cellular telephone to a remote facsimile machine over standard cellular and telephone company facilities. When incorporating the circuitry of Fig. 5, the cellular phone [may] can be used as both an input and an output device, and incoming data or stored images [may] can be viewed through the viewfinder 170.

Replace paragraph [0070] which reads:

Turning now to Figs. 7A and 7B, the camera body 190 is similar to a standard 35
millimeter camera housing and is adapted to receive a standard lens 192 with a viewfinder 194. The electronics are housed in the casing in the area normally occupied by the film and film advancing implements. The operator interface button keys 98 are housed within the housing and may be positioned on the back plate 196 of the body. Fig. 8. The LCD unit may be positioned to be visible through the viewfinder 194 or may be in a separate back window 198. The memory card 72 is positioned in a slot 200 provided in a sidewall of the camera body. This camera has the appearance of a standard SLR 35 millimeter camera. In addition, where desired, an integral cellular phone can be incorporated in the camera housing and transmission can be sent directly from the camera housing to a remote receiving station. The keypad for the telephone is indicated at 202.
with the following paragraph:
[Turning now to] According to an embodiment illustrated in Figs. 7A and 7B, the camera body 190 is similar to a standard 35 millimeter camera housing and is adapted to receive a standard lens 192 with a viewfinder 194. The electronics are housed in the casing in the area normally occupied by the film and film advancing implements. The operator interface button keys 98 are housed within the housing and [may] can be positioned on the back plate 196 of the body. [Fig. 8.] The LCD unit [may] can be positioned to be visible through the viewfinder 194 or [may] can be in a separate back window 198. The memory card 72 is positioned in a slot 200 provided in a sidewall of the camera body. [This] In the illustrated embodiment, camera body 190 has the appearance of a standard SLR 35 millimeter camera. In addition, where desired, an integral cellular phone can be incorporated in the camera housing and transmission can be sent directly from the camera housing to a remote receiving station. The keypad for the telephone is indicated at 202.

Replace paragraph [0071] which reads:

Fig. 8 is an illustration of an exemplary schematic diagram for the circuit of a system according to the teaching of the invention as specifically taught in the diagram of Fig. 5. Pin numbers, wiring harnesses and components are as shown on the drawing. Fig. 8 , part A , is the system interconnect and shows the central processor board 300 , the video board 302, the power board 304 and the CRT electronic interconnect board 306 . The telephone interface is provided at 307 . Board 308 is the audio connector board. Board 310 is the serial connector board and board 312 is the video connector board. Fig. 8, part B contains the audio logic, with audio $1 / 0$ at 314 . The audio amplifiers are designated 316 and 318. A microphone connector is provided at 320, with preamplifier circuit 322. Audio switches are provided at 324 and 326. Summing circuit 328 provides audio summing. The serial RAM for audio is designated 330. Fig. 8, part C includes the camera module 332 and the camera control digital to analog convertor 334. Amplifier 336 is the video buffer. Module 338 is the camera shutter control resistor.
with the following paragraph:

Fig. 8 is an illustration of an exemplary schematic diagram for the circuit of a system according to [the teaching of the invention] embodiments as specifically taught in the diagram of Fig. 5. Pin numbers, wiring harnesses and components are as shown on the drawing. Fig. 8, part A , is the system interconnect and shows the central processor board 300 , the video board 302, the power board 304 and the CRT electronic interconnect board 306. The telephone interface is provided at 307. Board

308 is the audio connector board. Board 310 is the serial connector board and board 312 is the video connector board. Fig. 8, part B contains the audio logic, with audio I/0 at 314. The audio amplifiers are designated 316 and 318. A microphone connector is provided at 320 , with preamplifier circuit 322. Audio switches are provided at 324 and 326 . Summing circuit 328 provides audio summing. The serial RAM for audio is designated 330. Fig. 8, part C includes the camera module 332 and the camera control digital to analog convertor 334. Amplifier 336 is the video buffer. Module 338 is the camera shutter control resistor.

Replace paragraph [0080] which reads:

The circuitry supports any of the preferred configurations from a basic real time transmission system via Group-III fax to a comprehensive system supporting both land line and wireless transmission of image, audio and documentary data at both a local and remote station.
with the following paragraph:

The circuitry supports any of the [preferred] configurations [from] such as, for example, a basic near real time transmission system via Group-III fax [to] or a comprehensive system supporting both land line and wireless transmission of image, audio and documentary data at both a local and remote station.

Replace paragraph [0081] which reads:

The subject invention also permits digitized collection of audio signals through the
use of an internal microphone, and external input device, a cellular telephone, land line telephone, wireless radio or other communication system, and digitized audio playback, as well. The playback can be via an internal speaker, out an external out jack to a remote device or via a cellular telephone, land line telephone, wireless radio or other communication system.
with the following paragraph:

The subject invention also permits Embodiments permit digitized collection of audio signals through the use of an internal microphone, and external input device, a cellular telephone, land line telephone, wireless radio or other communication system, and digitized audio playback, as well. The playback can be via an internal speaker, out an external out jack to a remote device or via a cellular telephone, land line telephone, wireless radio or other communication system.

Replace paragraph [0083] which reads:

It is an important feature of the invention that the system supports storage of images in an interim storage format including raw video, interim gray scale format and/or half tone format. The image can also be stored in the selected output mode, such as by way of example, a Group III facsimile mode. The versatile capability of the system permits transmission of captured data to a standard bi-level facsimile machine such as Group III, to gray scale facsimile systems or full color facsimile systems, as well as to other remote receiving devices such as, by way of example, personal computers and network servers. The data may be transferred in any of a variety of formats and protocols including JPEG, FAX, emerging imagery formats, wavelets and data
protocols. The invention is adapted to operate in multiple modes, with a unitary capture and send mode or separate capture and store, and send modes. In the preferred embodiment, the system is adapted for tagging a collected image, video, audio, and other data such as a GPS signal, with a real time clock and added text. This permits the complete historical data to be transmitted simultaneously with the image signal.
with the following paragraph:

It is an important feature of the invention that the According to embodiments, a system supports storage of images in an interim storage format including raw video, interim gray scale format and/or half tone format. The image can also be stored in the selected output mode, such as by way of example, a Group III facsimile mode. The versatile capability of the system permits transmission of captured data to a standard bi-level facsimile machine such as Group III, to gray scale facsimile systems or full color facsimile systems, as well as to other remote receiving devices such as, by way of example, personal computers and network servers. The data [may] can be transferred in any of a variety of formats and protocols including JPEG, FAX, emerging imagery formats, wavelets and data protocols. [The invention is] Embodiments are adapted to operate in multiple modes, with a unitary capture and send mode or separate capture and store, and send modes. In [the preferred] an embodiment, the system is adapted for tagging a collected image, video, audio, and other data such as a GPS signal, with a real time clock and added text. This permits [the] complete historical data to be transmitted simultaneously with the image signal.

Replace paragraph [0084] which reads:

It is contemplated that the system of the invention would be self-contained with an integral power unit such as a rechargeable battery source or the like. Therefore, the system is adapted to power up when in use and power down when not activated, preserving power during idle time. The power systems for the video camera, the video input circuits and converters, the modem or other transmission devices and other high drain components may be isolated and only powered when needed. This also permits use of ancillary functions, such as use as a cellular telephone, to proceed without draining the power source by powering idle components. The processor clock rate may also be slowed down during idle mode to further conserve power.
with the following paragraph:

It is contemplated that [the] a system according to embodiments [of the invention would] can be self-contained with an integral power unit such as a rechargeable battery source or the like. Therefore, the system [is] can be adapted to power up when in use and power down when not activated, preserving power during idle time. The power systems for the video camera, the video input circuits and converters, the modem or other transmission devices and other high drain components [may] can be isolated and only powered when needed. This also permits use of ancillary functions, such as use as a cellular telephone, to proceed without draining the power source by powering idle components. The processor clock rate [may] can also be slowed down during idle mode to further conserve power.

Replace paragraph [0085] which reads:

Where desired, the system also includes camera operation control capability through the use of a digital/analog network for converting digital commands to analog signals for controlling the gain, pedestal, setup, white clip, lens focus, and other functions of the camera from a local input device, a remote device or as programmed functions. The central processor may also be used to control camera shutter rather camera features and parameters which may be controlled in this manner are compressor resolution (high, medium, low), field/frame mode, color or monochrome, image spatial resolution ($640 \times 430,320 \times 240$, for example), lens and camera adjustments, input selection where multiple cameras are used and the like.
with the following paragraph:

Where desired, [the] a system according to embodiments also includes camera operation control capability through the use of a digital/analog network for converting digital commands to analog signals for controlling the gain, pedestal, setup, white clip, lens focus, and other functions of the camera from a local input device, a remote device or as programmed functions. The central processor [may] can also be used to control camera shutter. [rather camera] Camera features and parameters which [may] can be controlled in this manner are compressor resolution (high, medium, low), field/frame mode, color or monochrome, image spatial resolution (640x430, 320x240, for example), lens and camera adjustments, input selection where multiple cameras are used and the like.

Replace paragraph [0087] which reads:

In operation, the system permits not only the manual capture, dial (select) and send of
images, but may also be fully automated to capture, dial and send, for example, on a timed sequence or in response to a sensor such as a motion sensor or from a remote trigger device. The remote trigger may be activated by an incoming telephone signal, for example. The remote device may also be use for remote loading and downloading of firmware, and of the programmable devices, as well as to provide remote configuration of sampling modes during both the capture and the send functions.
with the following paragraph:

In operation, [the system] a system according to embodiments permits [not only] the manual capture, dial (select) and send of images, [but may] and can also be fully automated to capture, dial and send, for example, on a timed sequence or in response to a sensor such as a motion sensor or from a remote trigger device. The remote trigger [may] can be activated by an incoming telephone signal, for example. The remote device [may] can also be use for remote loading and downloading of firmware, and of the programmable devices, as well as to provide remote configuration of sampling modes during both the capture and the send functions.

Replace paragraph [0088] which reads:

Circular sampling techniques are supported by the data capture system of the present invention. Fig. 9 is a diagram illustrating exemplary sampling techniques in accordance with the teachings of the invention. As shown in Fig. 9, the time sequence is indicated by the Time Line: t 1 , t 2 .. .tn, with a sample at each time interval, as indicated by $\mathrm{S} 1 \ldots \mathrm{Sn}$. For purposes of illustration, the triggering event occurs at time interval t10. Based on the predetermined programming of the system, images will
start to be collected upon triggering event, as shown at 210 , for a predetermined period prior to and after trigger, as shown at 212 , or immediately preceding the trigger, as shown at 214. This permits "circular image storage" without requiring that all images be collected and stored in order to look at events surrounding a triggering event. The technique is also very useful when multiple overlapping zones are monitored by multiple devices and it is desirable to sequence from device to device without losing any critical images.
with the following paragraph:

Circular sampling techniques are supported by [the] a data capture system according to embodiments [of the present invention]. Fig. 9 is a diagram illustrating exemplary sampling techniques in accordance with the teachings of the [invention] disclosure. As shown in Fig. 9, the time sequence is indicated by the Time Line: t1, t2.. .tn, with a sample at each time interval, as indicated by $\mathrm{S} 1 \ldots \mathrm{Sn}$. For purposes of illustration, the triggering event occurs at time interval t 10 . Based on the predetermined programming of the system, images will start to be collected upon triggering event, as shown at 210 , for a predetermined period prior to and after trigger, as shown at 212 , or immediately preceding the trigger, as shown at 214. This permits "circular image storage" without requiring that all images be collected and stored in order to look at events surrounding a triggering event. [The technique is] Circular sampling techniques are also very useful when multiple overlapping zones are monitored by multiple devices and it is desirable to sequence from device to device without losing any critical images.

Replace paragraph [0089] which reads:

This is particularly useful when triggering events are used to initiate transmission of collected image data over the communications system. For example, if a triggering event is motion detected at a motion sensor, it may be useful to look at the images captured for a period of time both prior to and after the actual event. The circuitry of the subject invention permits any circular sampling technique to be utilized depending upon application, such as prior to an after trigger, only after trigger or only before trigger. Again, as an example, it may desirable to look primarily at images captured before a triggering event if the event is a catastrophic event such as an explosion or the like. Other circular sampling techniques may be employed, as well, incorporating multiple cameras, for example, wherein different fields are sampled depending upon the time frame in a sequence of events.
with the following paragraph:
[This is] Circular sampling techniques are particularly useful when triggering events are used to initiate transmission of collected image data over the communications system. For example, if a triggering event is motion detected at a motion sensor, it may be useful to look at the images captured for a period of time both prior to and after the actual event. The circuitry of [the subject invention] embodiments permits any circular sampling technique to be utilized depending upon application, such as prior to an after trigger, only after trigger or only before trigger. Again, as an example, it [may] can be desirable to look primarily at images captured before a triggering event, if the event is a catastrophic event such as an explosion or the like. Other circular sampling techniques [may] can be employed, as well, incorporating multiple cameras, for example, wherein different fields are sampled depending upon the time frame in a sequence of events.

Replace paragraph [0090] which reads:

Other configurations are contemplated and are within the teachings of the invention. While specific embodiments have been shown and described herein, it will be understood that the invention includes all modifications and enhancements within the scope and spirit of the claims.
with the following paragraph:

Other configurations are contemplated and are within the teachings of the [invention] disclosure. While specific embodiments have been shown and described herein, it will be understood that the invention includes all modifications and enhancements within the scope and spirit of the claims.

Amendments to Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1-42. (Cancelled)

43. (currently amended) A handheld self-contained cellular telephone and integrated image processing system [both of which are carried in a common case] for both sending and receiving telephonic audio signals and for capturing a visual image and transmitting it to a compatible remote receiving station, the system comprising:
[a. A] a manually portable housing [defining the common case];
[b. An] an integral image capture device comprising an electronic camera contained within the portable housing;
[c. A] a display for displaying an image framed by the camera, the display being supported by the housing, the display and the electronic camera being commonly movable in the housing when the housing is moved by hand;
[d. A] a processor in the housing for generating an image data signal representing the image framed by the camera;
[e. A] a memory associated with the processor for collecting and storing the image data signal;
[f. A] a user interface for enabling a user to select the image data signal for viewing and transmission;
[g. A] a telephonic system in the housing for sending and receiving digitized audio signals and for sending the image data signal;
[h. Alphanumeric] alphanumeric input keys in the housing for permitting manually
input digitized alphanumeric signals to be input to the processor, the telephonic system further used for sending the digitized alphanumeric signals;
[i. A] a wireless communications device adapted for transmitting any of the digitized signals to the compatible remote receiving station; and [j. A] a power supply for powering the system.

Abstract

44. (currently amended) The self-contained cellular telephone and integrated image processing system of Claim 43 , wherein the display for framing the image to be captured by the image capture device [displays] is operable to display the image at the system whereby the image can be viewed and framed prior to capture in the memory.

45. (currently amended) The self-contained cellular telephone and integrated image processing system of Claim 43 , wherein the display is [used] operable to display for viewing alphanumeric messages input at the alphanumeric keys.
46. (Cancelled)
47. (Cancelled)
48. (currently amended) The self-contained cellular telephone and integrated image processing system of Claim 43 , further comprising a removable memory module in addition to the memory, said removable memory able to be removably housed in the housing for storing captured image data signals.

49. (Cancelled)

50. (currently amended) The self-contained cellular telephone and integrated image processing system of Claim 43, wherein the display is [used] operable to display for viewing incoming image data signals.
51. (currently amended) A handheld cellular telephone having an integrated electronic camera [in a common case] for both sending and receiving telephonic audio signals and for capturing a visual image, converting the visual image to a digitized image data signal and transmitting digitized image data signal via a cellular telephone network, the cellular telephone comprising:
[a. A] a manually portable housing [defining the common case] supporting the cellular telephone and the integrated electronic camera, the cellular telephone and the integrated electronic camera being movable in common with the housing;
[b. A] a cellular telephone in the housing, the cellular telephone further including a transmitter/receiver for transmitting and receiving audio telephone messages over a cellular telephone network, a keypad for entering manually input alphanumeric signals to be transmitted over the cellular telephone network, and a display window for viewing the manually input alphanumeric signals:
[c. An] an integral electronic camera in the housing, the camera for visually framing a visual image to be captured;
[d. A] a processor associated with the electronic camera for capturing and digitizing the framed image in a format for transmission over the cellular telephone network via the cellular telephone;
[e. A] a memory associated with the processor for receiving and storing the digitized framed image;
[f. A] a user interface for enabling a user to selectively display the digitized framed image in the display window and subsequently transmit [it] the digitized framed image over the cellular telephone network; and
[g.An] an integrated power supply for powering both the cellular telephone and the camera.
52. (currently amended) The handheld cellular telephone of Claim 51, wherein the display window for viewing the alphanumeric signals is within the display window for framing the visual image.

53. (Cancelled)

54. (currently amended) The handheld cellular telephone of Claim 51, further including a second memory selectively removable from the housing.
55. (currently amended) A combination of handheld cellular telephone and electronic camera [in a unitary case] comprising:
[a. A] a housing [defining the case];
[b. A] an electronic camera integral within the housing;
[c. A] a display in the housing for framing the image to be captured by an image capture device and for viewing the image, whereby an operator can view and frame the image prior to capture;
[d. A] a processor for processing the image framed by the camera for generating a digitized framed image as displayed in the display;
[e. A] a memory associated with the processor for receiving and storing the digitized framed image for selectively displaying [it] the digitized framed image in the display window and for selectively transmitting [it] the digitized framed image over a cellular telephone network;
[f. A] a cellular telephone in the housing for accepting and digitizing audio signals to be transmitted and for converting received digitized audio signals into acoustic audio, the cellular telephone further for transmitting and receiving non-audio digital signals including digitized image signals;
[g. Alphanumeric] alphanumeric input keys in the housing for permitting manually input alphanumeric signals to be input into the cellular telephone, the manually input alphanumeric signals being presented in the display;
[h. A] a power supply in the housing for powering the processor, the cellular telephone, the display and the camera;
[i. A] a wireless transmitter/receiver in the housing for transmitting digital signals sent from and receiving digital signals sent to the cellular telephone; and [j. camera operation control capability through the use of] digital/analog circuits for converting digital commands to analog signals for controlling gain, pedestal, setup,
white clip, lens focus, white balance, lens iris, lens zoom and other functions of the camera from a local input device, a remote device or as automatic or programmed functions.

56-59. (Cancelled).
60. (Previously presented) The combination of Claim 55, further comprising a removable memory module [able to be] removably housed in the housing for storing captured image data signals.
61. (Cancelled).
62. (Previously presented) The combination of Claim 55, wherein the display is suitable also for viewing [incoming] image data signals received by the receiver.
63. (new) A combination of handheld wireless telephone and digital camera comprising:
a handheld housing which supports both the wireless telephone and the digital camera, the wireless telephone and electronic camera being commonly movable with the housing;
a display supported in the housing for framing an image to be captured and for viewing the image, whereby an operator can view and frame the image prior to capture;
a processor for processing the image framed by the camera for generating a digitized framed image as displayed in the display;
a memory associated with the processor for receiving and storing the digitized framed image, for selectively displaying in the display window and for selectively transmitting over a wireless telephone network the digitized framed image;
the wireless telephone being selectively operable to accept and digitize audio signals to be transmitted, the wireless telephone being selectively operable to convert received digitized audio signals into acoustic audio, the wireless telephone being selectively operable to transmit and receive non-audio digital signals, the non-audio digital signals including a selected digitized framed image;
a set of input keys supported by the housing to permit alphanumeric signals to be manually input by an operator into the wireless telephone, the alphanumeric signals
being presented in the display for viewing by the operator;
a power supply supported by the housing;
the wireless telephone including a wireless transmitter/receiver for transmitting digital signals sent from and receiving digital signals sent to the wireless telephone; and at least one camera control circuit connected to an input device for controlling at least one of the following functions: gain, pedestal, setup, white clip, lens focus, white balance, lens iris, lens zoom.
64. (new) The combination of claim 63 and further comprising:
a removable memory module removably housed in the housing for storing captured images.
65. (new) The combination of claim 63 and further comprising:
the display also being operable for viewing images received by the receiver.
66. (new) The combination of claim 63 and further comprising:
the housing having a first portion, the housing having a second portion joined to the first portion, at least one of the first portion and the second portion being moveable in relation to the other of the first portion and the second portion, the first portion and the second portion also being commonly movable by hand when fixed in relation to each other.

Remarks

Claims 42-45, 48, 50-52, 54-55, 60, and 62-66 are pending. Applicant acknowledges the Examiner's indication that claims 55, 60 and 62 contain allowable subject matter. Claims 55,60 and 62 have been further amended to further clarify the patentable subject matter set forth therein. Claims 42-45, 48, 50-52 and 54 have also been amended. Claims 63-66 are new. Applicant respectfully requests entry of this Amendment. Applicant also requests consideration of the Supplemental Information Disclosure Statement submitted herewith. Applicant also respectfully requests issuance of a Notice of Allowance for claims 42-45, 48, $50-52,54-55,60$ and 62-65 in view of these Remarks.

New claims 63-66 are entered in order to specify patentable subject of the disclosure. Applicant respectfully submits that no additional fee is required for consideration of the new claims.

The Examiner rejected claims 43-45, 48, 50-52 and 54 under 35 USC §103(a) as being unpatentable over Kawazu JP 06-268582 (Kawazu) in view of Ida US 5,191,601 (Ida). The Examiner asserts that Kawazu teaches each claimed element, but acknowledges that Kawazu does not teach a display which displays an image framed by the camera. The Examiner asserts that Ida teaches, among other elements, a system (i) carried in a common case, (ii) a housing (videophone body 20) which defines the common case, (iii) an image capture device comprising an electronic camera (21) contained in the housing, and (iv) a display for displaying an image framed by the camera (image display 12). The Examiner also explains or asserts that Kawazu and Ida can be combined because both are in same field of endeavor, because both are telephones having a camera for transmitting images over a phone network.

Applicant respectfully traverses the rejections of claims 43-45, 48, 50-52 and 54 under 35 USC §103(a). First, Applicant disagrees with the Examiner’s initial statement under "Response to Arguments" (page 2 of Office Action mailed March 8, 2007) which reads:
"Applicant argues that Ida does not teach that the selected picture is transmitted to remote station."

This statement is not correct. The Examiner has mischaracterized the Applicant's argument.

The Applicant simply does not make the argument characterized by the Examiner.

The Applicant asserts that Ida does not teach that the display displays an image framed by the camera and stored in the memory. As claimed, the present invention provides the ability for the user to selectively transmit and display images from memory. Applicant submits that the Examiner misapprehends Ida. Referring to Fig. 4 and Fig. 5 of Ida, it is clearly shown that Ida teaches transmitting a stored image from memory section 24 , but Ida is shown in the same Fig. 4 and Fig. 5 to clearly lack the ability to display stored images on the device display of the apparatus which collects the image. This is because of the problem addressed by Ida - flickering images which otherwise would be transmitted to the remote receiver when the operator removes the camera 2 from hook 8 . Ida solves this problem by transmitting a picture from memory section 24 to the remote receiver through switch 25 . Switch 25 is not configured to direct a picture from memory section 24 to local display 12. This is clearly shown in both Figs. 4 and 5, and is consistent with the written description of Ida. There is no connection from the memory section 24 to the local display 12.

For this reason, Kawazu and Ida cannot be combined to reject the above referenced claims, which specify that images can be transmitted and displayed from memory. Careful
reconsideration of the Ida reference is again requested in view of these Remarks. The Examiner is requested to please look carefully at Ida's "memory section 24," Figs. 4 and 5 and accompanying text. A "photograph" stored in memory section 24 can only be transmitted to a remote station; it cannot be displayed on the user display 12. Ida teaches "selecting the memorized picture in the internal memory section 24 when the first detecting signal is provided from the hook 23 " of the video camera. (Col. 5, lines 37-39 and surrounding text.) Ida discloses a video conferencing system wherein a "prescribed picture" stored in memory 24 is transmitted only when the local video camera goes "off hook" or when the user presses operating switch 22 on the video camera (Fig. 4). In either case, there is no teaching that the "prescribed picture" stored in memory is selectively displayed by the local user so that he can determine whether to transmit it to the remote station. In fact, Ida does not even disclose any electrical connection which would permit the photograph stored in the memory section 24 to be displayed on the display 12. The stated purpose of transmitting the stored image when the camera goes "off hook" is to send the remote station a pleasing, nonflickering picture when the local user moves his camera, and in that event the local user sees only the non-stored local video or the video received from the remote station - never the image stored in memory section 24. See col. 5, line $67-\operatorname{col} .6$, line 30.

In view of the foregoing, it is submitted that the Ida reference, properly understood, does not disclose selectively displaying or transmitting a framed image that has been stored in memory, as required variously by elements (e) and (f) of claims 43 and 51, as previously presented and as amended. Therefore, the proposed combination of Kawazu and Ida cannot render the claims obvious even if such combination would be proper.

Additionally, and in the alternative, Applicant respectfully asserts that Kawazu cannot be combined with Ida to reject the claims as asserted by the Examiner, because Ida teaches
away from the combination. As acknowledged by the Examiner, Kawazu does not teach displaying an image on the local display. In Ida, all embodiments teach a camera (camera 2) that is movable from the main housing (videophone body 20). Ida is directed to avoiding transmission of flickering images when camera 2 is removed from the hook 8 on videophone body 20. The same is true for each embodiment of Ida. (In the second embodiment of Ida, camera 21 is movable from unit 20 , and in the third embodiment of Ida, camera 32 is movable apart from body 31.) Accordingly, Ida teaches a movable camera which is connected by a cable to a main videophone body for movement relative to the main videophone body. Therefore, one of skill in the art would have no reason or motivation to turn to Ida, because all embodiments of Ida are related to camera which is movable relative to a main body, but the construction specified in the present claims is directed to a camera which is commonly movable with the housing. Thus, Ida cannot be combined with Kawazu to reject these claims. Alternatively, even if combined, Ida would teach a construction wherein the camera is moveable relative to the housing, and such a construction is not specified in the pending claims.

Applicant respectfully submits that, in addition to allowable claims 55, 60 and 62 , claims 43-45, 48, 50-52, and 54, and new claims 63-66, are distinguishable from the cited references and are allowable for the reasons stated above. The requested amendment is believed to place the application in condition for allowance or in better condition for appeal, and its entry is therefore respectfully solicited. If the Examiner has any other matters which pertain to this Application, the Examiner is encouraged to contact the undersigned to resolve these matters by Examiner's Amendment where possible.

Applicant respectfully requests that the Examiner contact the undersigned by phone at (512) 499-8900, in the event that the Examiner desires to discuss any issue pertaining to this application. The Commissioner is hereby authorized to withdraw any underpayment of any fees, or to credit any overpayment, associated with this Application from, or to, Moore Landrey, LLP. Deposit Account No. 01-0477.

Respectfully submitted,
/Jeffrey D. Hunt/
Jeffrey D. Hunt, Reg. 38,189

Date: September 7, 2007
MOORE LANDREY, LLP
1609 Shoal Creek Blvd., Ste. 100
Austin, Texas 78701
Telephone: (512) 499-8900
Facsimile: (512) 320-8906

Frosenks 02027

4.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Compuste it kroskn	
Apyication Nomber	
Fing bste	\% 3 , \%
First Named lnuenter	
Agt linh	- 24.3
Examiner Nams	
	, $\underbrace{2} \mathrm{~S}^{3}$

mames 	Cito:	Gocmumt Surnes:		Sameot	10,
		Shemersmicadizemm	smbabryyy		Figurs AOpss
		${ }^{18} 86525.78182$	02-25-2003	hamon Sata, et 3	
		U8, 1139748	0926-6006	Hmpxary Oni, pt ai	
		ys-			
		3s.			
		0 \%			
		US			
		0 S.			
		us.			
		1 \%			
		U6			
		US.			
		45.			
		38-			
		Us-			
		U8-			
		US-			
		\%			
		25-			
		ve			

Examice: hnises	6	Freerin patam Documem		Namo of Phinntes or Apwiesnt or Chad grouman		$r^{\text {\% }}$
		SP.A.10.759040	06.00.1998	Trestan bont		
		¢P-4E1-10-65058	03.00-1998	Nasamobu Kumaja		

Frox wes

Examine: matisis*	6\% No.	 mumsersh pusinher cty andor sonty where pughanes	\sim^{*}
		Anomymous, "New \& Old: Webready Camers Server, LaN Videe Connects", Securiy Distributhg \& Marketing; Apnl 1098; 23, 5; p. 58	
		Anonymous, "The Eye's Minc: the Erams Gehme Dnome Montong", Serwity: Jan 1998, 35, 6; p. 68	
		ZAUD, छnl "New \& bid Webready Camera Server, AN Vdeo", Securty: Mar 1990; 35,3; \%, 52	
		MESENEPHKK, John, "Renwte Vdeo Sunciliance: Breakthough Comme In LANs, WANs", Secumy Dimmbumg \& Markeing; Mar 2000, 30, 4,023	
		Intemathnal Contrence on Image Anaysis ano Prowasing, nciapes	
		Mankemy, ○ct $2000,30,13, \quad$, 71	
		Anonymous, "Sla Pohce Chiets Cal Meming on puble COTV Law", Becumy, dan 1999: $30,1,3.52$	
		Worbs", Secury, Mas 2000; 37.3. p, 37	
		Anonymous, "School Disbict sets Vodeo Suremanoe Sandard", Secumy; Sun $2000,37,6, p, 43$	
		OOLD, Leasing E, "Wemole Survenance aves tme, money", Secanty Disthumag \& Markany, van 1939; 29, 1, p, 105	

SYRSY

WOW PATEAY UTERATURE DOCGMEEYS			
Examiner initals"	6	 	$\stackrel{T}{2}^{2}$
		Anonymous, "Vides Securty System Altenathe", Community Bamke; Sep 2000; $9,9, p, 52$	
		ZAUUD, Bis, "Conquamy Digital Marbs CCTV hovabons", Secumy, Aor 200; 37,4, p. 43	
		2000, 37, , B. 28	
		 Assesment and Remonse Bysmen", Spree α Naval Wartre Syptems Censer; Techrical Documems 3026; Aug 1998	

NON FATEAY L MEx \& Whe bocmumers			
Examben fonass	se	 	T^{*}

Examis:er
Sigo bre

Frosen asem

Won yererr cryxuruke pocdmens			
Exarminer :nkiass	Sos	 	5^{*}
		 0199, sple Vol. 364;, pp 247-253	
		CABE. Dougha W. "tehork Frobocis hor hobile Robot Systeme", Sple Vo\}, 3210, $p \boldsymbol{1 0 7 \sim 1 1 8}$	
		GAFD, MT MERET, MF, GUREATH GA, HEATHFASTORE YA, HOEREDEN RS. 	

Exarniner
Signabure

Awhery

[^2](19) Japan Patent Office (JP)
(12) Publication of Patent Application
(11) Publication Number of Patent Application: Hei-10-66058
(43) Date of Publication of Application: March 6, 1998
(51) Int. Cl. ${ }^{6}$

H04N 7/18
G06F 17/30
G08B 5/00
H04H 1/00
H04N 7/10
H04N 7/18
G08B 5/00
H04N 1/00
H04N 7/10
G06F 15/40
Identification Number
Intraoffice Reference Number
FI
D
Z
E
370C
Request for Examination: made
Number of Claims: 9 FD (15 pages in total)
(21) Application Number Hei-8-355003
(22) Application Date: December 20, 1996
(31) Priority Number: Hei-8-172930
(32) Priority Date: June 11, 1996
(33) Priority Country: Japan (JP)
(71) Applicant: 595100934

Masanobu Kujirada
Kujirada Bldg., 1F

1

2-1-11, Tokuchikarasin-machi,
Ogura-minami-ku, Kitakyushu-shi, Fukuoka
(72) Inventor:

Masanobu Kujirada
Kujirada Bldg., IF
2-1-11, Tokuchikarasin-machi,
Ogura-minami-ku, Kitakyushu-shi, Fukuoka
(54)[TITLE OF THE INVENTION]

INTERACTIVE GRAPHICS DELIVERY SYSTEM
(57)[ABSTRACT]
[Problem to be solved]
To provide a system for delivering interactive graphics, which can deliver a real circumstance on an arbitrary position through an image in real time to a user.
[Solution]
The present system includes an image input means that is provided at each spot in order to input interactive graphics on many spots that can be disclosed to a public; an image transmission means for transmitting each interactive graphics to be inputted from these respective image input means with a wire or without a wire; an interactive spot data base for recording an identification data in order to identify respective spots each other while relating them to a predetermined key; a key input means for inputting the predetermined key; a retrieving means for retrieving the identification data of an interactive graphics at the corresponding spot from the interactive spot data base on the basis of the key inputted from this key input means; an image receiving means for receiving the corresponding interactive graphics from each image transmission means on the basis of the identification data retrieved by this retrieving means; and a display means for outputting this received interactive graphics.
[Claim(s)]
[Claim 1]
An interactive graphics delivery system, comprising:
an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively;
a map database means for recording respective spots on a map and interactive
graphics identification data in order to identify the respective interactive graphics from each other while relating them with each other;
an image importing means for importing the corresponding interactive graphics from the image input means on line on the basis of the interactive graphics identification data corresponding to a certain spot on the map that is displayed by the map database means; and
a display means for displaying the interactive graphics that is imported by this image importing means in real time.
[Claim 2]
An interactive graphics delivery system, comprising:
an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively;
a map database means for recording respective spots on a map and interactive graphics identification data in order to identify the respective interactive graphics from each other while relating them with each other;
a map data extracting means for extracting map data in order to indicate a map of a predetermined area including a live spot of the corresponding interactive graphics from the map database means, when a certain interactive graphics is displayed, using interactive graphics identification data for identifying that interactive graphics as a key; and
a display means for displaying a map on the basis of the map data that is extracted by this map data extracting means.

[Claim 3]

An interactive graphics delivery system, comprising:
an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively;
an interactive graphics identification database means for recording interactive graphics identification data in order to identify the respective interactive graphics from each other while relating them to retrieving data composed of a character string, a symbol string, a figure, or an image or the like;
a retrieving data input means for inputting the retrieving data composed of the
character string, the symbol string, the figure, or the image or the like;
an interactive graphics identification data selecting means for selecting one or plural interactive graphics identification data that are related with each other from the interactive graphics identification database means on the basis of the retrieving data inputted from this retrieving data input means;
an image importing means for importing the corresponding interactive graphics from the image input means on line on the basis of this selected interactive graphics identification data; and
a display means for displaying the interactive graphics that is imported by this image importing means.
[Claim 4]
The interactive graphics delivery system according to Claims 1,2 , or 3 ,
wherein the image input means picks up images that are seen from the respective live spots toward plural directions, respectively; and
the interactive graphics identification data in order to identify the respective interactive graphics from each other is composed of position data for indicating a position of each live spot where the image input means is installed and directional data for showing a direction in which that image input means shots an image.

[Claim 5]

An interactive graphics delivery system, comprising:
an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively;
an interactive graphics identification data recording means for recording interactive graphics identification data in order to identify the respective interactive graphics from each other;
a present position specifying means for specifying a present position of a user;
an interactive graphics identification data selecting means for selecting the interactive graphics identification data in order to specify the interactive graphics on one or plural live spots that are near the present position of the user;
an image importing means for importing the corresponding interactive graphics on the basis of this selected interactive graphics identification data; and
a display means for displaying the interactive graphics that is imported by this image importing means in real time.
[Claim 6]
The interactive graphics delivery system according to Claim 5,
wherein the image input means picks up images that are seen from the respective live spots toward plural directions, respectively; and
the interactive graphics identification data in order to identify the respective interactive graphics from each other is composed of position data for indicating a position of each live spot where the image input means is installed and directional data for showing a direction in which that image input means shots an image;
the present position specifying means includes a means for specifying the present position of the user and a means for specifying a progress direction of the user; and
the interactive graphics identification data selecting means selects the interactive graphics identification data that is composed of the position data showing a position of a live spot, which is located in a direction of the progressing side of the user from the present position of the user and is near the present position of the user, and the directional data showing the progressing side of the user on the basis of the present position of the user and the progress direction of the user that are specified by the present position specifying means.

[Claim 7]

The interactive graphics delivery system according to any one of Claims 1 to 6 , further comprising:
a marking means for marking a portion that is designated by a user in the interactive graphics displayed by the display means in order to distinguish the portion from other portions.

[Claim 8]

The interactive graphics delivery system according to any one of Claims 1 to 7, further comprising:
a voice input means that is disposed in the vicinity of the image input means, for inputting a voice generated on a live spot where the image input means is disposed or on its periphery in real time; and
a voice output means that is disposed in the vicinity of the display means, for
outputting a voice from the voice input means.
[Claim 9]
The interactive graphics delivery system according to any one of Claims 1 to 8 , further comprising:
an aroma input means that is disposed in the vicinity of the image input means and is composed of an aroma sensor and a means for converting a signal from this aroma sensor into digital data of an aroma, for inputting an aroma on a live spot where the image input means is disposed or on its periphery;
a converting means for converting the aroma data from the aroma input means into fragrance blending data for generating an aroma similar to that aroma; and
an aroma generating means that is disposed in the vicinity of the display means, for generating a desired aroma by blending the fragrance from the fragrance blending data. [0001]
[Detailed Description of the Invention]
[Technical Field to which the Invention Belongs]
The present invention relates to a delivering interactive graphics system, which can deliver a real circumstance in real time of each spot while relating the interactive graphics to a map or the like. In addition, the present invention relates to a system for displaying a map including a spot of the interactive graphics from the interactive graphics. [0002]
[Prior Art]
Conventionally, there has been a system for recording images at respective spots in a recording medium such as a CD-ROM or a hard disk, retrieving them on the basis of retrieving data such as a predetermined key word, and then, displaying them.
[Problems that the Invention is to Solve]
However, these images recorded in the recording medium are "past images" (they are not "fresh images"). Therefore, this involves a problem such that a user only can see "old (not fresh)" images although a real scene is changing day by day depending on season's transition, a weather of a day, and a condition of a construction work of a road and a building. In addition, assuming that the images recorded in the recording medium are just updated, these images do not respond to a user's wish that the user wishes to see a
real condition of the present moment. Further, there is a problem such that it is very expensive to frequently update the image data with respect to the recording medium.
[0004]
The present invention has been made taking the foregoing problems into consideration and an object of which is to provide a delivering interactive graphics system, which can deliver a real circumstance on an arbitrary position through an image in real time to a user. In addition, according to the present invention, another object of the present invention is also to provide a system for displaying a map including a spot of the interactive graphics from the interactive graphics.
[0005]
[Means for Solving the Problems]
(Related Art)
As a related art that is identified by the present inventor, the followings are considered. They are identified by the present inventor when the present application (the application after an internal priority date under Patent Law Section 41) has been filed although it is not clear if they are "the prior arts" of the present invention (if it is publicly-known before a priority date (June 11, 1996)).
(a) According to "Weekly Diamond, additional volume 1996. 8 Internet Super Time Management" issued by Diamond Corporation, the following description is given, namely, "In Internet, there are many cases that a TV camera is fixed and simultaneous reporting of a sight spot is provided. In the future, you will be able to see a real image of world's heritage such as Sphinx and a hill overlooking Himaraya and a sight spot such as the Arc de Triomphe in Paris" (in this document, P.76).
"How about putting a camera on a lobby or an entrance of a hotel, making the camera on-line, and seeing the hotel via a remote controller? A person will see that the hotel is crowded or happen to see his or her acquaintance there on the web. Such on-line camera is increasing on the web." (in this document, P. 82)
As an introduction of a website of Internet, "A History Street http://www.kiis.or/rekishi/
Keiko Hata, You can take a walk in Ise, Asuka, Nara, Kyoto, Osaka, and Kobe that are main scene spots of a history street according to captures and photos (not less than 100) (snip) You can access each item by means of retrieving by area and by age and selection via a mouse (a clickable map) on the map. At present, the information is given only
through the captures and the photos, however, (in the future) we are offering you a moving image and voice information" (in the document, P. 133).
(b) According to an article entitled as "Completely use a magic box and overturn a view of a world" in Nippon Keizai News Paper dated on June 16, 1996, the following is given in the article for introducing Mr. Masaki Fujihata, a computer artist. Namely, "Recently, he is immersed in a project using Internet together with students at Keio University where he is teaching. For example, he is trying to deliver an image of Mt. Fuji at 24 hours real time through a camera put in Shonan Fujisawa Campus. Worldwide access users can change a direction of the camera through their PC at home and can zoom in".
(c) According to "Weekly Diamond" issued on August 31, 1996 by Diamond Corporation, on P. 84, the following is given in the article entitled "Diary of Super Filling, Virtual Tour of Map and Photo (written by Yukio Noguchi). Namely, "there is 'a virtual tour' in Internet. If you click a map appearing on a screen, the photo at this point will appear".
(d) In an advertisement column of Nippon Keizai News Paper dated on September 3, 1996, there is a description entitled "Map Information System with a high operability Sumitomo Denko Systems", and it says, "A digital road map exclusively for Windows 95, 'AtlaMate/Windows 95 edition', which has been developed and sold by Sumitomo Denko Systems (snip). This product allows a still image, a moving image, and a voice to be given on a map as a multimedia function."

In addition, in the specification of "AtlaMate/Windows 95 edition" in this advertisement article, the following description is given. "Abundant Registration Function, It can register a still image such as a photo, a moving image such as a video, and a voice or the like on a map"
(e) According to an article entitled as "Completely Use Internet, Feel nature at home" in Nippon Keizai News Paper dated on September 30, 1996, the following is given. Namely, "in cooperation with NEC, Sakawa-machi in Kochi Prefecture opened 'Sakawa Internet Broadcasting Station' which allows a user to enjoy a natural scenery through Internet by a live broadcast. Setting a camera on a top of Mt. Kokuzo at this town (675 meters above sea level) and freely moving a camera from a PC at home or at office, the user can enjoy a scenery from Cape Asizuri to Cape Muroto. This broadcasting center was opened at Sakawa Jibasangyo center. Transmitting an image from a camera without a wire to a camera control apparatus of Nagano Chominkan, which is a facility established
by a town and is located at a base separated from the camera about 3 km , a still image is delivered on Internet. Freely remotely controlling the camera from a PC, the user can enjoy a panorama about 300 degrees in a horizontal direction and about 60 degrees in a vertical direction in a zoom of the maximum 10 times. An address of the Internet broadcasting center is http://www/meshnet.or.jp/sakawa/. NEC expands the Internet broadcasting center nationwide from May. NEC will open the Internet broadcasting center on Matsumae-cho, Bibae-cho, and Saroma-cho of Hokkaido and they are setting cameras on scene spots and beauty spots more than 100 within 2 to 3 years".

As described above, there are various arts relating to the present invention. However, although any of them relates to the present invention, the present invention further develops these related arts and these related arts do not deny novelty of the present invention.
[0006]
In order to solve the problems of the above-mentioned conventional arts, a delivering interactive graphics system according to the present invention is as follows:
(1) The delivering interactive graphics system according to the present invention comprises an image input means that is provided at each live spot, for inputting interactive graphics on many live spots that can be disclosed to a public in real time, respectively; an interactive graphics identification database means for recording the interactive graphics identification data in order to identify the respective interactive graphics of the respective live spots from each other while relating and matching them to each point on the map of the map database, respectively; a retrieving means for retrieving the corresponding one or plural interactive graphics identification data from the interactive graphics identification database means on the basis of the spot that is designated on the map of the map database; an image importing means for importing the corresponding interactive graphics in real time with a wire or without a wire on the basis of the interactive graphics identification data that is retrieved by this retrieving means (for importing the corresponding interactive graphics according to a method for transmitting it through a network or accessing it by a browsing software for Internet and browsing it or the like); and a display means for outputting an interactive graphics that is imported by this image importing means (a moving image or a still image).
(2) In addition, the present invention may comprise an image input means that is provided
at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively; an interactive graphics identification database means for recording a map database for recording a map and coordinate data for specifying respective spots on the map, the coordinate data in the map database, and the interactive graphics identification data for identifying the respective interactive graphics while relating and matching them each other; a retrieving means for retrieving one or plural spots on the map corresponding to or relating to the live spot of the interactive graphics from the interactive graphics identification database, when a certain interactive graphics is displayed, using interactive graphics identification data for identifying that interactive graphics as a key; a map data extracting means for extracting map data in order to indicate a map of a predetermined area including the spot on the map that is retrieved by this retrieving means; and a display means for outputting a map by means of map data that is extracted by this map data extracting means.
(3) Further, the delivering interactive graphics system according to the present invention comprises an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively; an interactive graphics identification database means for recording interactive graphics identification data in order to identify the respective interactive graphics from each other while relating them with a key composed of a character string, a symbol string, a figure, or an image or the like; a key input means for inputting the key composed of the character string, the symbol string, the figure, or the image or the like; a retrieving means for retrieving the corresponding one or plural interactive graphics identification data from the interactive graphics identification database means on the basis of the key that is inputted from this key input means; an image importing means for importing the corresponding interactive graphics on the basis of the interactive graphics identification data that is retrieved by this retrieving means (including the case of browsing it by a browser for Internet when it is transmitted by a network); and a display means for outputting an interactive graphics (a moving image or a still image) that is imported by this image importing means.
(4) In addition, according to the present invention, the image input means may pick up images in plural directions from one live spot (for example, the case of picking up an image when one camera is pivoted to be located in certain plural directions or the case of
picking up an image at the same time providing plural video cameras in plural directions, respectively), and it is preferable that the interactive graphics identification data for specifying the respective interactive graphics is composed of the position data showing the positions of respective live spots where the image input means is disposed and the directional data showing the direction in which the image input means shots the image.
(5) In addition, the present invention comprises an image input means that is provided at each live spot in order to constantly input interactive graphics on many live spots that can be disclosed to a public in real time, respectively; an interactive graphics identification data recording means for recording interactive graphics identification data (composed of the coordinate data of the latitude data and the longitude data or the like) in order to identify the respective interactive graphics from each other; a present position specifying means (a conventional publicly-known GPS receiver and the like) for specifying a present position of a user; an interactive graphics identification data selecting means for selecting one or plural interactive graphics identification data corresponding or relating to one or plural live spots that are near the present position of the user on the basis of the present position of the user (composed of the coordinate data of the latitude data and the longitude data or the like) that is specified by this present position specifying means; an image importing means (including the case of accessing it and browsing it through a network and the case of transmitting it or the like) for importing the corresponding interactive graphics on line on the basis of this selected interactive graphics identification data; and a display means for displaying an interactive graphics (a moving image or a still image) that is imported by this image importing means in real time.
(6) In addition, according to the present invention, the image input means picks up images that are seen from the respective live spots toward plural directions, respectively, as same as the above-described (4); the interactive graphics identification data in order to identify the respective interactive graphics from each other is composed of position data for indicating a position of each live spot where the image input means is installed and directional data for showing a direction in which that image input means shots an image; the present position specifying means includes a means for specifying the present position of the user and a means for specifying a progress direction of the user; and the interactive graphics identification data selecting means selects the interactive graphics spot identification data in order to specify the interactive graphics (a moving image or a still
image), which is located in a direction of the progressing side of the user from the present position of the user and is near the present position of the user, and copies a direction near the progress direction of the user on the basis of the data showing the present position of the user that is specified by the present position specifying means (the position coordinate data composed of the latitude data and the longitude data or the like) and the data showing the progress direction of the user that are specified by the present position specifying means.
(7) In addition, according to the present invention, it is preferable that a marking means for marking a portion that is designated by a user in the interactive graphics (a moving image or a still image) displayed by the display means in order to distinguish this portion from other portions.
(8) In addition, according to the present invention, it is preferable that the image input means may also comprise a means for inputting a voice that is generated on that spot in real time.
(9) In addition, the present invention may further comprise an aroma input means that is provided in the vicinity of the image input means and is configured by an aroma sensor and a means for converting a signal from this aroma sensor into aroma digital data, for inputting an aroma on the spot where the image input means is disposed or an aroma around the spot; a converting means for converting the aroma data from this aroma input means into fragrance blending data for generating an aroma similar to that aroma; and an aroma generating means that is disposed in the vicinity of the display means, for generating a desired aroma by the fragrance blending data. Further, in this (9), the above-described "converting means for converting the aroma data into the fragrance blending data for generating an aroma similar to that aroma" is directly connected to the aroma input means. This converting means may be connected to the aroma generating means via the computer communication network or may be directly connected to the aroma generating means via the input means and the computer communication network .[0007]
[Mode for Carrying Out the Invention]
First Embodiment:
Next, with reference to Figs. 1 to 4, the first embodiment according to the present invention will be described. In Fig. 1, a reference numeral 1 denotes a personal
computer (PC) used by a user and the personal computer 1 is configured by a control apparatus 2 made of a CPU and a communication modem or the like; a hard disk apparatus 3 in which a computer program and data are recorded, a CD-ROM drive 5 for driving a CD-ROM 4 in which the computer program and the data are recorded; a key board 6 and a mouse 6a for inputting the data; a display 7 for outputting an image; and a speaker 8 for outputting a voice.
[0008]
The control apparatus 2 is connected to a computer for a relay service 11 via a public circuit for a computer communication network 10 such as Internet. To this computer for a relay service 11 , computers (servers) $14,14 a$, and $14 b$ are connected, which serve to control video cameras $12,12 \mathrm{a}$, and 12 b and sound collecting microphones 13, 13a, and 13b, which are disposed on many live spots respectively, for recording the data from these video cameras 12 and sound collecting microphones 13 , and allowing the user to browse the data via a communication network. The image data and the voice data inputted by these many video cameras 12 and microphones 13 or the like can be transmitted to the user via the computers 14 and the computer for a relay service 11 according to need from the user. Further, four video cameras 12 are installed on respective live spots, respectively, and these four video cameras are preferably installed so as to shoot the images in four directions including east, west, south, and north, respectively.
[0009]
In addition, the computer for a relay service 11 is also connected to many other computers for a relay service 12 . For example, the user connected to a certain computer for a relay service 11 can import the inputted data from other computer for a relay service 12 or the like via this computer for a relay service 11 and from the video camera and the microphone via the computer (the server) connected to the computer 11. In this case, as a method for importing an image and a voice, various methods are available such as a method for adding the information from the video camera and the microphone to an electronic mail and a method for importing a website by a browser software for Internet by the user, which website is opened on a computer communication network so as to deliver the input information of the video camera and the microphone (namely, a method for using a website on a computer communication network like a hard disk of a personal computer
at the user side) or the like.
[0010]
According to this first embodiment, in the CD-ROM 4, a map database for recording the map data and the address data for specifying each spot on this map relating them with each other; an interactive graphics database for recording this address data with the image identification data for identifying the interactive graphics of respective live spots (respective places where the video camera 12 and the microphone 13 are installed) relating and corresponding them with each other; a reproduction program for reproducing these map databases; a retrieving program for retrieving the interactive graphics database; and a program for importing the interactive graphics corresponding to the retrieved interactive graphics identification data from this retrieved interactive graphics identification data and displaying it are recorded.
[0011]
It is assumed that a user who lives in Osaka now wishes to see a sunset in the coastline of Shonan beach, in Kanagawa Prefecture that is his or her home town, in summer. In this case, for example, it is assumed that the user reproduces the map database to display the map of a predetermined area including Shonan beach on a screen and then, the user clicks the spot of Shonan beach on this screen by means of the mouse 6 a . Then, on the basis of this input, the control apparatus 2 will retrieve the address data corresponding to the spot on this map from the spot database. After that, on the basis of this retrieved address data, the control apparatus 2 will retrieve the interactive graphics identification data indicating the interactive graphics of the corresponding live spot from the interactive graphics database. Then, on the basis of this retrieved interactive graphics identification data, accessing the computer for a relay service 11 and importing the image data and the voice data from the video camera and the microphone installed on the live spot corresponding to the interactive graphics identification data (the video camera and the microphone installed in a direction corresponding to an image pickup direction when the interactive graphics identification data also specifies the image pickup direction) on line, they are outputted from the display 7 and the speaker 8 in real time. The image and the voice to be outputted in this case are the image and the voice in real time of the present time, so that the user can get feeling and impression as if the user is actually present at this spot. Conventionally, for example, there has been a CD-ROM capable of recording the
image of a beach, for example, Shonan beach, retrieving it from a key word and outputting it, and the images recorded in these CD-ROM are shot by a professional cameraman on the best time (for example, a time when a sunset is most beautiful) from the best angle. On the contrary, the image given in this embodiment may be shot on a rainy day or a cloudy day or on a time when you cannot see the best scenery. However, since this image is "the image at this moment and at this instance (namely, the image that is never seen), the user can feel "realistic sensation" and "impression". In other words, when the user "wishes to see a sunset of Shonan beach now", unless he or she can see not the past recorded image of "sunset on Shonan beach" but the image of "sunset on Shonan beach at this moment", the user cannot get a strong impression. This embodiment can meet this user's wish.
[0012]
Further, the constitution of the embodiment that has been explained with reference to Fig. 1 will be explained again with reference to Fig. 2. Fig. 2 illustrates the constitution of the embodiment functionally and conceptually. In Fig. 2, a reference numeral 32 denotes an interactive graphics input unit constituted of a video camera and a microphone for inputting an interactive graphics and a voice of each spot in real time, which is connected to a computer communication network (a computer communication network) 30. A reference numeral 24 denotes a CD-ROM, in which the map database 26, its reproduction program and its retrieving program; the interactive graphics identification database 25 and its retrieving program; and a program for importing the corresponding interactive graphics from the interactive graphics identification data via the communication network or the like are recorded. In addition, in Fig. 2, a reference numeral 21 denotes a map database reproducing unit for reproducing the map database 26 which is recorded in the CD-ROM 24 ; and a reference numeral 22 denotes a control unit for controlling a display unit 27 and a speaker 28 upon receipt of a signal from this map database reproducing unit 21 and outputting predetermined image and voice. In addition, a reference numeral 23 denotes a retrieving unit for retrieving the identification data of the corresponding interactive graphics from the interactive graphics identification database 25 on the basis of the address data on the spot which is designated by the user (click it by a mouse) on the screen on which the map database is reproduced. Controlling an image importing unit (for example, an apparatus for recording a browser which is a software for
viewing a website of Internet and executing it) 26 and accessing an image input unit 32 via a communication circuit for a computer communication network 30 , the control unit 22 may import the interactive graphics and the voice from the image input unit 32 in real time on line. The control unit 22 may output these interactive graphics and voice that are imported on line by means of the display unit 27 and the speaker 28 in real time while relating them with the reproduced image (the map image) from the map database 26. [0013]

Next, a screen to be displayed by the display 7 being controlled by the control apparatus 2 shown in Fig. 1 will be described with reference to Fig. 3 and Fig. 4. As shown in Fig. 3, on an upper half part 7a of the display 7, the interactive graphics is displayed and on a lower half part 7 b thereof, the map is displayed. When using this first embodiment, at first, driving the CD-ROM 4 shown in Fig. 1, the user may display a desired map on the lower half part 7 b of the display 7 from the map database. For example, by retrieving the map data from a key word such as a name of a place, the map in the map database recorded in the CD-ROM 4 may be displayed (such an art has been publicly known). Then, according to the present embodiment, for example, as shown in $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g of Fig. 4, points showing each spot are colored in a predetermined color (for example, red) to be displayed on this displayed map. Among respective points of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g of Fig. 4, a, b, c and e of Fig. 4 are corresponding to the video camera 12 and the microphone 13 in Fig. 1. In other words, according to the first embodiment, the video camera 12 in Fig. 1 is configured by four video cameras that are installed on the positions of a, b, c, and d so as to pick up images in different directions, respectively. In addition, the microphone 13 in Fig. 1 is configured by four microphones that are installed so as to collect sounds in different directions, respectively. In other words, explaining the video camera 12 , among four video cameras configuring the video camera 12, the video camera installed on the position a in Fig. 4 picks up an image in West (a left direction) in the figure so as to generate an interactive graphics having the image identification data of "1428A". In addition, the video camera installed on the position b in Fig. 4 picks up an image in South (a lower direction) in the figure so as to generate an interactive graphics having the image identification data of "1428B". In addition, the video camera installed on the position c in Fig. 4 picks up an image in East (a right direction) in the figure so as to generate an interactive graphics having the image
identification data of " 1428 C ". In addition, the video camera installed on the position d in Fig. 4 picks up an image in North (an upper direction) in the figure so as to generate an interactive graphics having the image identification data of "1428D". In addition, among respective points represented by a, b, c, d, e, f, and g of Fig. 4, e, f, and g of Fig. 4 are corresponding to the video camera 12a and the microphone 13a in Fig. 1. In other words, according to the first embodiment, the video camera 12a in Fig. 1 is configured by three video cameras that are installed on the positions of e, f, and g in Fig. 4 so as to pick up images in different directions, respectively. In addition, the microphone 13a in Fig. 1 is configured by three microphones that are installed so as to collect sounds in different directions, respectively. In other words, with respect to the video camera 12a, among three video cameras configuring the video camera 12a, the video camera installed on the position e in Fig. 4 picks up an image in North-West (a left upper direction) in the figure so as to generate an interactive graphics having the image identification data of "1429A". In addition, the video camera installed on the position fin Fig. 4 picks up an image in East-South (a right lower direction) in the figure so as to generate an interactive graphics having the image identification data of "1429B". In addition, the video camera installed on the position g in Fig. 4 picks up an image in East (a right direction) in the figure so as to generate an interactive graphics having the image identification data of "1429C". As described above, according to the embodiment to be explained with reference to Fig. 4, a combination of the address data for identifying each spot on the map (" 1428 " and " 1429 " or the like) and the data ("A" "B" "C" "D" or the like) showing the image pickup direction of each video camera on the same live spot and the interactive graphics identification data for identifying the interactive graphics on each spot ("1428A" and "1429A" or the like) are recorded while relating them with each other. More specifically, according to the example shown in Fig. 4, four interactive graphics identification data indicating four pickup image directions, namely, "1428A", "1428B", "1428C" and "1428D", respectively, are recorded corresponding to one address data " 1428 " on the map (the address data for identifying the area of a center cross point in Fig. 4). In addition, three interactive graphics identification data indicating three pickup image directions, namely, "1429A", "1429B", and "1429C", respectively, are recorded corresponding to one address data " 1429 " on the map (the address data for identifying the area of a left point in Fig. 4). Further, according to the example shown in Fig. 4, the interactive graphics identification
data (for example, "1428A") is configured by a combination of the address data (for example, "1428") on the map and the directional data (for example, "A"), however, according to the present invention, it is not always necessary to use the address data on the map in the interactive graphics identification data as it is. For example, making the address data on the map into the address data (or the coordinate data) configured by equally spacing the entire map, the interactive graphics identification data may be configured by a combination of the identification code (for example, a serial number of the order of setting of the video camera) on a certain spot where the video camera is installed in practice and the directional data. [0014]

According to the example shown in Fig. 4, the identification data of the interactive graphics that is obtained when each video camera 12 and each microphone 13 input an image and a voice, respectively (here, a term of "an interactive graphics" is used as a meaning including both of the image data inputted by the video camera and the voice data inputted by the microphone in principle) is configured by the data indicating the spot and a direction in which the video camera 12 is shooting an image (this direction is identical with a direction in which the microphone 13 tries to collect a sound). In other words, the interactive graphics are identified by each spot and its image pickup direction each other and "the interactive graphics identification data" is configured by the data indicating each spot and the data indicating a direction of image pickup and sound collection. Therefore, even on the same spot, if the direction of shooting an image (a direction such as East, West, South, and North or the like) is different, it becomes a different interactive graphics having different identification data. Explaining this with reference to Fig. 4, a spot having the address data (1428A) represented by "a" in Fig. 4 corresponds to the interactive graphics having the image identification data, namely, (1428A), and the interactive graphics indicating this identification data, namely, (1428A) is an image made by shooting the scenery in an A direction (a left direction in the figure) from the spot of "a" in Fig. 4. In addition, the spot on the map having the address data (1428B) represented by " b " in Fig. 4 corresponds to the interactive graphics having the identification data, namely, (1428B), and the interactive graphics indicating this identification data named as (1428B) is an image made by shooting the scenery in a B direction (a lower direction in the figure) from the spot of "b" in Fig. 3. In addition, the
spot on the map having the address data (1428C) represented by "c" in Fig. 4 corresponds to the interactive graphics having the identification data, namely, (1428C), and the interactive graphics indicating this identification data named as (1428C) is an image made by shooting the scenery in a C direction (a right direction in the figure) from the spot of " c " in Fig. 4. In addition, a spot represented by "d" in Fig. 4 having the address data named as (1428D) corresponds to the interactive graphics having the identification data named as (1428D) one-on-one, and the interactive graphics indicating this identification data named as (1428D) is an image made by shooting the scenery in a D direction (an upper direction in the figure) from the spot of "d" in Fig. 4. Further, in Fig. 4, the spot represented by "e" having the address data (1429A) corresponds to the interactive graphics having the identification data, and the interactive graphics indicating this identification data named as (1429A) is an image made by shooting the scenery in an A direction (a left upper direction in the figure) from the spot of "e" in Fig. 4. In addition, in Fig. 4, the spot represented by " f " having the address data (1429B) corresponds to the interactive graphics having the identification data, and the interactive graphics indicating this identification data named as (1429B) is an image made by shooting the scenery in a B direction (a right lower direction in the figure) from the spot of " f " in Fig. 4. In addition, in Fig. 4, the spot represented by " g " having the address data (1429C) corresponds to the interactive graphics having the identification data, and the interactive graphics indicating this identification data named as (1429C) is an image made by shooting the scenery in a C direction (a right direction in the figure) from the spot of "g" in Fig. 4.
[0015]
As seen from the above description, according to the example shown in Fig. 4, a reference numeral 1428 denotes the address data on the map indicating the area of this cross point (in this example shown in Fig. 4, the area of this cross point is referred to as "a live spot"), and A, B, C, an D indicate a direction of shooting an image (and collecting a sound) from the cross point area (the live spot). Likewise, according to the example in Fig. 4, a reference numeral 1429 denotes the address data on the map indicating the cross point area on the left on the map, and A, B, and C indicate a direction of shooting an image (and collecting sound) from the cross point area. According to the example shown in Fig. 4, the identification data of the interactive graphics is configured by a combination of the address data (" 1428 " and " 1429 " or the like) indicating a position of each live spot
on the map and the data indicating the direction ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D or the like).
[0016]
Accordingly, if the user wishes to visit the place, for example, the area of the cross point indicated by 1428 in Fig. 4 and he or she "wishes to know the condition of this cross point now (crowded or not, what person is walking in what clothes or the like) and in order to know this, wishes to see the interactive graphics", the user may click any spot among a to d on the map shown in Fig. 4 by means of a pointing device such as a mouse. Then, the interactive graphics identification data corresponding to the address data on the map is retrieved by means of the control apparatus 2 (from the interactive graphics database), and on the basis of this retrieved interactive graphics identification data, the corresponding interactive graphics is imported via the computer communication network to be displayed on the upper half part 7 a of the display 7 .
[0017]
In addition, obtaining a road between the place where the user wishes to visit and the place where the user is present now on the map (this has been realized conventionally by a public-known art), the user also may indicate the interactive graphics on the spot on its route by rotation (for example, assuming that a display time of one interactive graphics to be five seconds, a next interactive graphics will be displayed by rotation for each five seconds). In addition, when the user is driving a car, obtaining the present position information on the map from the positioning information received by a GPS receiver and obtained from various sensors (this has been realized conventionally by a public-known art) and obtaining the identification data of the interactive graphics from the spot corresponding to the present position of himself or herself obtained on the map, the user also may import the corresponding interactive graphics through a server on the network on the basis of the identification data (for example, the computer for a relay service 11 shown in Fig. 1) and may display it. Thereby, the user can check if the present position on the map (the present position that is presumed by the GPS receiver or depending on the information from a sensor) is identical with the real present position or not with eyes. In other words, if the interactive graphics displayed on the display 7 is identical with the real scenery obtained when the user sees the outside from the inside of a car on the basis of the interactive graphics identification data that is obtained as described above, it can be said that there is no measurement error and the present position presumed by the GPS is correct.

However, if they are not identical, the presumed present position is not correct. [0018]

Further, the control apparatus 2 may be connected to the computer for a relay service 11 without a wire, the computer for a relay service 11 may be connected to each video camera 12 and each microphone 13 without a wire, and "the map database", "the interactive graphics database", these retrieving programs, and map database reproduction programs may be imported from the server (the computer) on the network such as the computer for a relay service 11 or the like without being read from the CD-ROM 4. Particularly, as described above, in the case of using the personal computer 1 shown in Fig. 1 in a moving car (when the user himself or herself is driving a car, in the case of obtaining the present position information on the map displayed on the screen from the positioning information received by a GPS receiver and obtained from various sensors and displaying this "an interactive graphics on the live spot corresponding to the present position of the user himself or herself and in an image pickup direction corresponding to a progress direction of the user himself or herself' on the display 7 of the personal computer 1), it is necessary to transmit or receive the data between the control apparatus 2 of the personal computer 1 and the computer for a relay service without a wire.

Second Embodiment:
Next, with reference to Fig. 1, the second embodiment according to the present invention will be described. In Fig. 1, a reference numeral 1 denotes a personal computer (PC) used by a user and the personal computer 1 is configured by a control apparatus 2 made of a CPU and a communication modem or the like; a hard disk apparatus 3 in which a computer program and data are recorded, a CD-ROM drive 5 for driving a CD-ROM 4 in which the computer program and the data are recorded; a key board 6 for inputting the data; a display 7 for outputting an image; and a speaker 8 for outputting a voice. The control apparatus 2 is connected to a computer for a relay service 11 via a public circuit 10 . To this computer for a relay service 11 , video cameras 12 and sound collecting microphones 13 are connected via a computer (server) 14. The image data and the voice data inputted by these many video cameras 12 and microphones 13 or the like can be transmitted to the user via the computers 14 and the computer for a relay service 11 according to need from the user. In addition, many video cameras 12 and
sound collecting microphones 13 can be identified each other depending on the identification data. Accordingly, further, the interactive graphics and the voice from respective cameras 12 and respective sound collecting microphones 13 can be identified with each other. In addition, the image data and the voice data inputted from these many video cameras 12 and microphones 13 or the like can be browsed by the user via the computer for a relay service 11 on line (for example, the user can browse these data by using a browser of a software for viewing a website of Internet). In addition, the computer for a relay service 11 is also connected to many other computers for a relay service 12 or the like. For example, the user connected to the computer for a relay service can import the data, which are inputted from the video camera and the microphone connected to other computers for a relay service 12 or the like, from other computers for a relay service 12 or the like via the computer for a relay service 11 .
[0020]
According to the second embodiment, in the CD-ROM 4, an interactive graphics database relating the image identification data for identifying the interactive graphics of respective spots (respective places where the video camera 12 and the microphone 13 are installed) with many key words each other; and a program for retrieving the image identification data from these key words are recorded. The key word recorded in this interactive graphics database may include various things, for example, a name of a place, a category of a place (beach, street comer, harbor town, mountain, intersection, building, restaurant, stage theater, theater, sport facility, baseball field, hot spring, and temple or the like), a category of action (sport, play, cinema, eating, and walk or the like). It is assumed that a user who lives in Osaka now wishes to see a sunset in summer, at Shonan beach, on a coastline, in Kanagawa Prefecture that is his or her home town. In this case, for example, if the user inputs key words such as "Kanagawa Prefecture, Summer, Shonan-beach, Coastline, Sunset" or the like, on the basis of these inputted key words, the control apparatus 2 will retrieve the corresponding interactive graphics identification data from among the interactive graphics identification data recorded in the CD-ROM 4. Then, on the basis of this retrieved interactive graphics identification data, accessing to the computer for a relay service 11 and importing the image data and the voice data from the video camera and the microphone that are installed on the spot corresponding to this identification data in real time, the user can output them from the display 7 and the
speaker 8. The image and the voice to be outputted in this case are the image and the voice in real time of the present time, so that the user can get feeling and impression as if the user is actually present at the spot.
[0021]
In addition, in the same way, according to the second embodiment, if the user inputs key words such as "temple, Kyoto", the control apparatus 2 will retrieve a plurality of image identification data corresponding to these key words and will display them on the display 7 by rotation. In addition, for example, if the user in a long-term hospitalization wishes to visit hot springs of each spot in Kyushu, although he or she cannot visit in practice, if the user inputs key words such as "each place of Kyushu, visit hot springs", retrieving a plurality of image identification data corresponding to these key words and receiving the image corresponding to these identification data in practice, then, the control apparatus 2 will display them on the display 7 by rotation. This allows the user to be capable of getting the impression as same as when he or she visits there in practice although he or she does not visit there. Thus, it can be also said that this second embodiment is a system which can realize "a virtual travel", whereby the user can get the impression as same as when he or she visits there in practice although he or she actually does not visit there.
[0022]
Likewise, if the user wishes to try out the food at various restaurants at a harbor town in Yokohama, inputting key words of "Yokohama, a harbor town, and trying out the food at various restaurants", the control apparatus 2 will retrieve the corresponding plural image identification data on the basis of these key words and will import the data of the interactive graphics from plural respective spots corresponding the these key words (in this case, if the setting the video camera and the microphone in the restaurant is allowed to offer the image to the public, the user can know the status of the inside of the restaurant, for example, a level of congestion of customers and an atmosphere of a restaurant or the like). In addition, in the same way, if the user wishes to visit stage theaters (baseball fields) throughout Japan, inputting key words of "Japan, visiting stage theaters (baseball fields)", the control apparatus 2 will retrieve the corresponding image identification data on the basis of these key words, and then, the control apparatus 2 will output the interactive graphics corresponding to these key words in real time. In this case, if each
stage theater or each baseball field accepts transmission of the content of a play (or the content of a match) only for a predetermined time, the user can watch the content of this play (or the match) as if in place of an index even only for a predetermined time.
[0023]
Third Embodiment:
Next, the third embodiment according to the present invention will be described. The third embodiment is provided with the followings in addition to the constitution of the above-described first embodiment. At first, an aroma input apparatus is provided in the vicinity of the video camera 12 and the microphone 13 . This aroma input apparatus is provided with an aroma sensor and a coding unit for coding a signal from this aroma sensor into digital data. The aroma sensor is configured by the existing plural aroma sensors and all of the aroma amount detection values from respective sensors are provided to the coding unit (an encoder). The coding unit (the encoder) may code the provided aroma amount detection value. This coded aroma data (the digital data) is recorded in a recording apparatus, and then, a remote user can browse and import the data in real time via the computer communication network. Further, it is preferable that a plurality of the aroma sensors is prepared for each kind of aroma so that the information which can reproduce the original aroma of the field site faithfully can be obtained. Next, on the user side is provided a converter for converting the browsed and imported aroma data (the digital data) into fragrance blending data in order to generate the aroma which is similar to the aroma of the field site and an aroma generator, which is disposed in the vicinity of the display 7 (Fig. 1), for blending a fragrance from the fragrance blending data and generating a desired aroma. At first, the above-described "a converter for converting the browsed and imported aroma data (the digital data) into fragrance blending data for generating an aroma similar to the aroma of a field site" will be described below. The converter may convert a pattern of the detection value of each aroma sensor into a pattern of the output value of each fragrance. More specifically, with respect to each of various kinds of aromas, when the user allows the aroma sensor to detect the aroma, the value of the detection value has been searched and recorded in advance. Then, from the data recording a relation between this aroma and the detection value pattern of the aroma sensor and the data recording relation between each aroma and a (component) of fragrance, a pattern of a detection value of each aroma sensor and a pattern of an output value of
plural kinds of fragrances are recorded being related with each other. The converter may convert the pattern of the output value of the (component) of the fragrance (this becomes "the fragrance blending data"). Explanation thereof in more detail is as follows. In the converter, a sensor fragrance amount conversion table in which a relation between the detection value of the aroma sensor when each aroma is detected by the aroma sensor and the output value of each fragrance when this aroma is generated by the aroma generator to be described later has been recorded in advance. Then, the converter may convert the detection value for each aroma sensor into the output value for each fragrance with reference to this sensor fragrance amount conversion table on the basis of the detection value data of the aroma sensor. [0024]

Next, the "aroma generator for generating a desired aroma by blending a fragrance from the fragrance blending data" will be described below. Preparing plural kinds of fragrances in advance, on the basis of the "fragrance blending data" (the above-described fragrance output pattern data, namely, the data indicating how much the aroma component is generated from each fragrance), the aroma generator may generate required kinds of aroma components (the component from the fragrance) by a required amount. As a configuration of the aroma generator, a stationary type for spreading the aroma in the entire space in a certain space and an individual portable type for allowing a person who wears the aroma generator near a user's nose or in a user's nose only to sense the aroma are considered. For example, as the stationary type, the followings are considered. In other words, aligning containers in which fragrances are contained on a bottom of a box and attaching a cover which can arbitrarily adjust an area where a fragrance contacts air to each container, an air blower is installed on the rear side of the box if needed. Then, in accordance with the data of the above-described "fragrance output pattern", a degree of opening and closing of the cover of the container of each corresponding fragrance is adjusted. In addition, with respect to the portable type, the basic configuration may be the same as that of the stationary type, however, downsizing the basic configuration of the stationary type, the portable type can be attached in the vicinity of a nose of the user by a head supporter such as a headpiece type, a head set type, an eyeglass type, and a mask type or the like. Further, according to this third embodiment, the side of the personal computer 1 is provided with the above-described
"converter for converting the coded aroma data which is browsed and imported into the fragrance blending data for generating the aroma similar to the aroma of the field site", however, the present invention is not limited to this. For example, the converter may be disposed on the spot where the video camera 12 and the microphone 13 on the field site are installed and the apparatus may be disposed in the computer (server) for a relay service 11 on the computer network. In addition, the art of "having data, recording, establishing a communication, and reproducing of an aroma" that has been described according o the above-described third embodiment is a prior art disclosed, for example, in Japanese Patent-Application Laid-Open No. 7-55742 or the like.
[0025]
Forth Embodiment:
Figure 5 is a block diagram showing a fourth embodiment of the present
invention. In Fig. 5, a reference numeral 21 denotes a liquid crystal display (LCD). In addition, in Fig. 5, a reference numeral 22 denotes a Grobal Positioning System (GPS) receiver that has been conventionally put on the market, which measures a delay time of an electric wave from an artificial earth satellite and obtains the present position of the user depending on a distance from an orbit. This GPS receiver 22 may include a GPS receiving antenna for receiving a GPS electric wave to be transmitted from the artificial earth satellite and a position identifying unit (configured by a CPU) for identifying the present position from this GPS electric wave as latitude data and longitudinal data. The GPS antenna may receive an electric wave from the GPS satellite, for example, 1.5 GHz and may transmit the signal thereof to the position identifying unit. The position identifying unit may receive electric waves of four or more satellites which can receive the electric wave among the GPS satellites in operation, obtain the present position at a receiving point and calculate the latitude data and the longitude data on the basis of a distance between each satellite and the receiving point which is calculated from the known position of the satellite and the received electric wave. Further, the detailed constitution and the using method of the above-described GPS receiver 2 has been conventionally publicly-known (for example, refer to JP-A-5-45171, JP-A-7-30654, and JP-A-8-94735 or the like), so that the detailed description is herein omitted. In addition, in Fig. 5, a reference numeral 26 denotes a progress direction input unit for measuring the progress direction (East, West, South, and North or the like) when the user is traveling on foot, by a
vehicle, and by a railroad or the like, using an earth magnetism or the like and obtaining the progress direction. According to this forth embodiment, "the present position specifying means" of the user according to the present invention is configured by the GPS receiver 22 and the progress direction input unit 26. In addition, in Fig. 5, a reference numeral 23 denotes a control unit for receiving the coordinate data (the latitude data and the longitude data) as the present position information from the GPS receiver 22 and the data in the progress direction from the progress direction input unit 26 , selecting the corresponding satellite image, and displaying it on the LCD 21. This control unit is configured by a personal computer or the like.
[0026]
In addition, in Fig. 5, a reference numeral 24 denotes a server (computer) for a map database that is connected to the control unit 23 via a public circuit network for a computer communication 20 such as Internet. This server (computer) for a map database 24 may record, for example, a map of all over Japan as a data base while relating it to the position identification data such as coordinate data (the latitude data and the longitude data), a name of a place, a name of a facility, and identification data of the facility (a telephone number of the facility) or the like. This server for a map database 24 is connected to the control unit 23 via the public circuit network 20 on line. Further, it is desirable that this public circuit network 20 may include not only a wire communication network but also a wireless communication network such as a portable telephone network, a personal handy phone system (PHS) network, an automobile telephone network and an artificial earth satellite communication network or the like. [0027]

In addition, in Fig. 5, a reference numeral 25 denotes an interactive graphics input unit that is connected to the public circuit network for a computer communication 20 such as Internet and this interactive graphics input unit 20 is configured by a plurality of digital video cameras disposed on each live spot for inputting the interactive graphics in plural directions on each live spot (the interactive graphics seen in plural directions from respective live spot), respectively, on a steady basis, and a computer for providing an interactive graphics for providing the digital image data from these digital video cameras to a plurality of users who are accessing on line via a computer communication network such as Internet. This computer for providing an interactive graphics may record the
interactive graphics at respective spots as a data base as being related to the position identification data such as the coordinate data (the latitude data and the longitudinal data), a name of a place, a name of a facility, and the identification data of the facility (a telephone number of the facility or the like) and the directional data such as East, West, South, and North or the like. This computer for providing an interactive graphics is connected to the control unit 3 by the communication network 20 on line. Further, it is desired that this communication network 20 may include not only a wire communication network but also a wireless communication network such as a portable telephone network, a personal handy phone system (PHS) network, an automobile telephone network and an artificial earth satellite communication network or the like.
[0028]
The control unit 23 may access to the server for a map database 24 based on an instruction by means of an input apparatus such as the key board 26 or the mouse 27 and the like by the user and may import the data of a map on a predetermined area including a spot (a spot indicated by the input apparatus) desired by the user so as to display this data on the LCD 21. In addition, when the user indicates an arbitrary spot of the displayed map by means of the mouse 27 and directs a display of the interactive graphics of a predetermined area including this spot, the control unit 23 may access to the interactive graphics identification database 25 including the computer for providing an interactive graphics of respective live spots and may import the data of the interactive graphics of the corresponding predetermined area on line so as to display this interactive graphics on the LCD 21 in real time. In addition, when the user desires the display of the corresponding interactive graphics or the map including this live spot by inputting the name of the place, the name of the facility, and the identification data of the facility that the user desires to display, the control unit 23 may access to the interactive graphics identification database 25 or the server for a map database 24 and may import the corresponding interactive graphics and the corresponding map on line so as to display them on the LCD 21. In addition, when the user instructs to display an interactive graphics on the live spot in a direction toward a progress direction from the present point where the user himself or herself is located and located nearest and which is seen in its progress direction, the control unit 23 may receive the user's present position and the progress direction as the coordinate data (the latitude data and the longitudinal data) from the GPS receiver 22 and
the progress direction input unit 26 and the directional date. Then, on the basis of this coordinate data and this directional data, the control unit 23 may access to the interactive graphics identification database 25 of the corresponding respective interactive graphics and may be provided with the corresponding interactive graphics on line so as to display it on the LCD 21. Further, in this case, as a method whereby the control unit 23 receives the corresponding interactive graphics from the image input apparatus 25 , various methods may be available, for example, a method for directly accessing to each of the image input apparatuses 25 of respective places by a browsing software for a conventional Internet and a method for demanding the image input apparatus 25 to transmit the corresponding interactive graphics data as a file attached to an electronic mail and receiving the transmission or the like.
[0029]
In addition, according to this fourth embodiment, in the case that a certain interactive graphics is displayed on the LCD 21, when the user orders to make a predetermined marking only a certain portion in the displayed interactive graphics, for example, only a specific building, a specific bridge, and a specific road, so that this portion can be easily distinguished from other portions, the control unit 23 may include a means (a program) which can mark that portion so as to be highlighted from other portions. As marking in this case, various methods, for example, a method for dying the portion by a different color and coloring it, a method for hatching only this portion, and a method for displaying that portion by a solid line that is thicker than other portion or the like are available.
[0030]
Fifth Embodiment:
Next, Figure 6 is a block diagram showing a fifth embodiment of the present invention. In Fig. 6, since reference numerals 21, 22, 23, 26, and 27 are the same as those in Fig. 4, the explanations thereof are herein omitted. In Fig. 6, a reference numeral 34 denotes a CD-ROM player (a reproducer) that is connected to the control apparatus 23 , and a reference numeral 35 denotes a CD-ROM to be read by the CD-ROM player 34. In the CD-ROM 35, for example, the map database having the map of the entire Japan recorded in connection with the position identification data such as coordinate data (the latitude data and the longitude data), a name of a place, a name of a facility, and
facility identification data or the like is recorded. In addition, in Fig. 6, a reference numeral 31 denotes an image input apparatus that is connected to the computer communication network 30 such as Internet and the image input apparatus 31 is the same as the image input apparatus 25 . The control unit 3 is capable of reading a map of a predetermined area including a position that is desired by the user and displaying it on the LCD 1 by reading the CD-ROM 15 by means of the CD-ROM player 14. In addition, the control unit 3 can import an interactive graphics in a predetermined direction that is desired by the user from a live spot that is desired by the user and can display it on the LCD 21 by accessing an image input apparatus 31 via the computer communication network 30. In addition, when the user commands to "display an interactive graphics on the live spot in a direction toward a progress direction from the present point where the user himself or herself is located and located nearest and which is shot from that spot toward a progress direction of the user himself or herself", the control unit 23 may receive the user's present position as the coordinate data (the latitude data and the longitudinal data) from the GPS receiver 22 and may receive the data in the progress direction of the user from the progress direction input unit 26 . Then, on the basis of this coordinate data and the progress directional data, by accessing the image input apparatus 31 , the control unit 23 may read the data of the interactive graphics at a live spot near the corresponding coordinate data and in a direction near the progress direction of the user on line so as to display this interactive graphics on the LCD 21 in real time.
[0031]
[Advantage of the Invention]
(1) According to the interactive graphics delivery system of the present invention, the user can see the status of the spot at the present time in an interactive graphics, for example, only by designating the desired spot by means of a pointing device (for example, by clicking with a mouse) while watching a map. In addition, the user can display the interactive graphics corresponding to the desired spot continuously by means of the computer without designation by the pointing device each time if the spot identification data of plural spots of which interactive graphics the user desires to display are set to be inputted in series by a computer program. Therefore, here, the user can also experience "a virtual trip" to obtain the same impression as that when the user visits there although he or she does not actually
visit there while watching the map. In addition, for example, the user can compete with others on "a hunt for treasure" game in the world of the computer communication network in the world at the same time. The content of this game is that the users across the globe are searching one treasure while watching the interactive graphics of each spot in the world from the map of the entire world. In addition, by combining the conventional GPS receiver with the invention of Claim 1, the following effects can be obtained. Namely, if the user commands to read out the map of a predetermined area including the present position from the map database on the basis of the present position obtained from the GPS receiver (the coordinate data of the latitude data and the longitude data), display it, and import the interactive graphics of that spot on line by clicking the present position (the coordinate data) indicated on that displayed map or the spot near it, it can be checked if the present position obtained from the GPS receiver is correct or not with no measurement error. In other words, if the displayed interactive graphics coincides with that seen from the present position of the user in fact, it is possible to determine that the present position from the GPS receiver is correct (conventionally, it has been difficult for the user to check if the present position obtained from the GPS receiver is correct or not by himself of herself).
(2) Further, according to the interactive graphics delivery system of the present invention, the user can display the spot on the corresponding map from the identification data of the interactive graphics while seeing the interactive graphics on a certain spot, so that the user can easily know where the place where the user can see the interactive graphics is located (the name of a place or a facility and the like).
(3) Further, according to the interactive graphics delivery system of the present invention, the user can see the interactive graphics of one or plural spots corresponding to that retrieving data in real time on that place by inputting the retrieving data composed of a character string. Particularly, it is possible to offer "a virtual travel" which allows the user to see the actual scene at this moment on remote plural positions in series in real time.
(4) According to the present invention, if the interactive graphics identification data for specifying each interactive graphics is composed of the position data indicating
the position of each live spot where the image input means is installed and the directional data indicating the direction in which that image input means shots the image, it becomes possible to offer a different interactive graphics depending on a direction in which the user sees even from the same spot. Then, it is possible to offer the interactive graphics which can reproduce a "live actual scene" in more detail and in real time.
(5) In addition, according to the present invention, obtaining the present position of the user by means of a present position specifying means such as the GPS receiver, the interactive graphics of the live spot corresponding to this obtained present position is imported to be displayed. Accordingly, the user can use the GPS receiver, for example, in the following manner. Namely, when he or she is moving by a car, obtaining the present position by means of the GPS receiver, the user can see the spot on the map corresponding to that present position on the map of a screen (the system for this has been put into practical use as a map routing and drive guiding system to a destination for a car). In addition, at the same time, the user obtains the present position information from the GPS receiver and accesses to the corresponding image input means via the communication network. Then, the user imports the interactive graphics corresponding to the present position on line and displays it on the screen. Thereby, the user checks if the present position displayed on the map (many systems for displaying the present position of the user to be measured by the GPS receiver using an arrow on the map of the screen has been already put on the market) coincides with the interactive graphics or not while watching the map having the route to the destination listed thereon. Then, if the present position displayed on the map coincides with the interactive graphics, it is possible to check if the present position obtained from the GPS receiver is correct without a measurement error. If they do not coincide with each other, the user can see that the present position obtained from the GPS receiver is wrong. Further, without depending on the invention set forth in Claim 5 described here, by combining the conventional GPS receiver with the invention set forth in Claim 1, it is also possible to obtain the same effect as Claim 5 (as described above). In other words, the user himself or herself can check if the present position obtained from the GPS receiver is correct or not if the user reads out the map of a
predetermined area including the present position from the map database on the basis of the present position obtained from the GPS receiver, display it, and by clicking the spot near the present position indicated on that displayed map, imports the interactive graphics of one or plural spots near the spot clicked by the mouse on line.
(6) In addition, according to the present invention, the image input means picks up the image seen toward plural directions from respective live spots. The live spot identification data for identifying respective live spots from each other is composed of the position data indicating the position of each live spot where the image input means is installed and the directional data indicating the direction in which that image input means shots the image. The present position specifying means includes the means for specifying the present position of the user and the means for specifying the progress direction of the user. The live spot identification data selecting means may indicate the live spot near (nearest) the present position of the user on the basis of the present position of the user that is specified by the present position specifying means (the coordinate data and the like, with latitude data and the longitude data) and the progress direction of the user (East, West, South, and North or the like) and may select the live spot identification data in a direction near (nearest) the progress direction of the user. Therefore, the user traveling by a car or the like can see the interactive graphics corresponding to the present position obtained from the GPS receiver at the same time while seeing the present position of the user himself or herself on the map displayed on the screen (the present position of the user himself or herself obtained from the GPS receiver is displayed by an arrow). Therefore, the user can check if the present position on the map measured by the GPS is actually correct or not by checking the spot on the map with the interactive graphics.

In addition, according to the present invention, by providing a marking means for marking so as to distinguish the portion designated by the user in the interactive graphics displayed by the display means from other portion, only a certain portion (for example, specific building, bridge, road, river, and park or the like) in the interactive graphics (it may be a moving image or a still image), so that it is possible to process the interactive graphics into a formation that is easily seen
depending on the user's object.
(8) In addition, according to the present invention, by including the means for inputting a voice generated on that spot into the image input means in real time, this inputted voice is imported with a wire or without a wire in real time (including the case of browsing it by a browser for Internet and the case of transmitting it by the communication network or the like). Thereby, the user can know not only the interactive graphics (a live image of the actual scene, a moving image or a still image) but also "a live voice of the actual scene".
(9) In addition, according to the present invention, further, by including an aroma input means for inputting aroma of the spot where the image input means is installed or its surrounding aroma, which is configured by an aroma sensor and a means for converting a signal from this aroma sensor into aroma digital data; a means for converting the aroma data from this aroma input means into fragrance blending data for generating an aroma similar to that aroma; and an aroma generating means for generating a desired aroma by blending a fragrance from the fragrance blending data, the user can sense not only the interactive graphics and an real voice but also can sense an actual aroma of the actual scene in real time in a remote place.
[Brief Description of the Drawing(s)]
[FIG. 1]
FIG. 1 is a view showing a configuration of hardware of a first embodiment or a second embodiment according to the present invention.
[FIG. 2]
FIG. 2 is a view showing a conceptual configuration of the first embodiment or the second embodiment according to the present invention.
[FIG. 3]
FIG. 3 is a view showing the constitution of a display of the first embodiment according to the present invention.
[FIG. 4]
FIG. 4 is a view showing an example of a map that is displayed on a display according to the first embodiment in the present invention.
[FIG. 5]

FIG. 5 is a block diagram showing a fourth embodiment according to the present invention.
[FIG. 6]
FIG. 6 is a block diagram showing a fifth embodiment according to the present invention.
[Description of the Reference Numerals and Signs]
1: personal computer (PC)
2: control apparatus
3: hard disk apparatus
4: CD-ROM
5: CD-ROM drive 5
6: key board
7: display
7a: upper half part of display
7 b : lower half part of display
8: speaker
10: public circuit
11: computer for relay service
$12,12 \mathrm{a}, 12 \mathrm{~b}$: video camera
13, 13a, 13b: microphone
21: LCD
22: GPS receiver
23: control unit
24: server for map database (computer)
25: image input apparatus
26: key board
27: mouse
30: computer communication network
31: image input apparatus
34: CD-ROM player
35: CD-ROM
(1) CAMERA, MICROPHONE
(2) SERVER
(3) COMPUTER FOR RELAY SERVICE
(4) CONTROL APPARATUS
(5) CD-ROM DRIVE
(6) DISPLAY
(7) SPEAKER
(8) KEY BOARD
(9) MOUSE
(10) FIG. 1
(11) FIG. 3
(12) IMAGE, MAP
(13) FIG. 4
(14) STATION
(15) TOWN
(1) FIG. 2
(2) IMAGE INPUT UNIT
(3) IMAGE IMPORTING UNIT
(4) CONTROL UNIT
(5) DISPLAY UNIT, SPEAKER
(6) MAP DATABASE REPRODUCING UNIT
(7) RETRIEVING UNIT
(8) MAP DATABASE
(9) LIVE-ACTION IDENTIFICATION DATABASE
(10) FIG. 5
(11) PROGRESS DIRECTION INPUT UNIT
(12) GPS RECEIVER
(13) CONTROL UNIT
(14) LIQUID CRYSTAL DISPLAY
(15) KEY BOARD, MOUSE
(16) PUBLIC CIRCUIT
(17) SERVER FOR MAP DATABASE (COMPUTER)
(18) IMAGE INPUT APPARATUS
(19) FIG. 6
(20) CD-ROM PLAYER
(21) INTERNET
(22) IMAGE INPUT APPARATUS

（54）［発明の名称］実況咉像提供システム

（57）【要約】

 でリアルタイムに提供することができる実況の映像を提供するシステムを提供する。
【解決手段】公衆への開示が可能な多数の地点の実況映像を入力するために各地点に設けられた映像入力手段 と，これらの各映像入力手段から入力される各実況映像 を無線又は有線で送信する映像送信手段と，前記各地点 を互いに識別するための詎別データを，所定のキーと関連付けなから，記録する実沇地点データバースと，前記 の所定のキーを入力するキ一入力手段と，このキース力手段から入力されたも一に基づいて前記実況地点データ ベースから対応する地点の実況映像の識別データを検索 する検索手段と，この柍索手段により検索された識別デ ータに基ついて，対応する実涀映像を前記各映像送信手段から受信する映像受信手段と，この受信された実汾映像を出力する表示手段とからなる。

Sony，Ex．1002，p． 1109

【特許請求の範囲】

【䝼求項1】公衆への继示が可能な多数の実沉地点の実沿映像をそれぞれリアルタイムに常時入力するために各実況地点にそれそれ設けられた映像大力手段と，
地図上の各地点と，前記各実涀映像を互いに識別するた めの実涀映像識别データとを，1iいに対応付けなから，記録する地図データー゙ース手段と，
前記地図データー゙ース手段により表示された地図上のあ る地点に対応する実涀映像裁別データに基ついて，該当 する実況映像を該当の前記映像入力手段からオンライン で取り込む映像取り込み手段と，
この映像取り込み手段により取り込まれだ生哾映像をり アルタイムに表示する表示手段と，からなる，实況昳像提供システム。
［請求項2】公衆への開示が可能な多数の実況地点の呮映像をそれぞれリアルタイムに落時入力するために各実況地点にそれぞれ設けられた映像入力手段と，
地図上の各地点と，前記各実涗映像を互いに識別するた
記録する地図データバース手段と，
ある実況映像を表示している場合に，その実況映像を識別する実況映像撞別データをキーとして，前記地図デー ター゙ース手段から，該当する実況映像の実況地点を令む所定頒域の地図を示すための地図データを抽出する地図 データ抽出手段と，
この地図デー多抽出手段により抽出された地図データに基ついて地図を表示する表示手段と，からなる，実況映像提供システム。
【ul求項3】公衆への開示が可能な多数の实沉地点の実況映像をそれぞれリアルタイムに常時人力するために各実涗地点にそれそれれ設けられた映像入力手段と，
前記各実況映像を互いに識別するための実況映像識別デ
一夕を，文宁列•祀恕列•図形又は映像などから成る検禾データと関連付けながら，記録する実況映像識別デー ター゙ース手段と，
培しての文子字列•记号列•図形又は映像などから成る検索 データを入力する検索データ入力手段と，
この検索データ入力手段から入力された検索データに基 づいて，的記実況映像诚枵データベース手段から，開連 する一つ又は椱数の実況映像載別データを選択する実況映像䜟別データ選択手段と，
この選択された実況映像識別データに基づいて，該当す る䒚況映像をオンラインで取り达む映像取り巡み手段 と，
この映像取り込み手段により取り込まれた実況映像を表示する表示手段と，からなる，渺㫜佒像惿供システム。
【請求項4】請求項1，2又は3におかっ，
前記映像入力手段は，前記各実況地点から複数の方向に向かって见える映像をそれぞれ揠像するものであり，

一夕は，前記映像入力手段か淯けられた各実況地点の位置を示す位崖データと，その映像入力手段が据影する方向を示す方向データと，から構成されている，ことを特微とする実況映像提供システム。
［請求項5】公衆への開示が可能な多数の実沉地点の実呮映像をそれぞれリアルタイムに常時入力するために各実況地点にそれぞれ設けられた映像入力手段と，前記各実況映像を互いに識別するための実況映像堣别げ一タを記録する実沉映像㧴截別データ』録手段と， ユーザーの現在位置を特定する現在位置特定手段と， この現在位置特定手段により特定されたユーザーの現在
 5．前記ユーザーの現在位置の近くにある一つ又は複数 の実況地点の実況映像を特定するための実沇映像識別デ一タな選択する実況映像識別データ選択手段と，
 る実況映像をオンラインで取り込む映像取り込み手段 と， この映像取り込み手段により取り込まれた実況映像をり アルタイムに表示する表示手段と，からなる，実況映像提供システム。
［請求項6】請求項5のシステムにおいて，
前㐾映像入力手段は，前記各夹況地点から被数の方向に向かって見える映像をそれぞれ撮像するものであり，前記各実況映像を互いに識别するための実況映像蔑別デ一夕は，前记映像入力手段か設けられた各実況地点の位置を示す位置データと，その映像入力手段か撮像する方向を示す方向データと，から構成されており，
前ひ玘現在位惪特定手段は，ユーザーの現在位罩を特这す る手段とユーザーの進行方向を特定する手段とを含んで おり，
前記実況映像識別データ選択手段は，前記現在位置特定手段により特定されたユーザーっ）现在位临及びユーザー の進行方向に基づいて，ユーザーの現在位置からユーザ一の進行する則の方向に存在する実況地点であってコー ザーの現在位㣀に近い先況地点の位管を示す位嗢データ と，コーザーの進行方向を示す方向データと，から成る実況咉像識別データを，選択するものである，ことを特徵とする実沉咉像提供システム。
【請求項7】請求項1から6までのいずれかにないい て，さらに，
前記表示手段により表示された実涀映像の中のユーザー か指定した部分に対して，他の部分と区列するためのマ一キングをするためのマーキング手段を備えたことを特微とする実況映像提供システム。

て，さらに，
前記映像入力手段の近傡に備えられ，前記映像入力手段 か没置された実況地点又はその周辺に発生している音声 をリアルタイムに入力する肖出入力手段と，

前記表示手段の近傍に備えられ，前記音声大力手段から の音声か出力される羔声出力手段と，が備えられてい る，実況映像提供システム。
【請求項9】請求項1から8までのいずれかにない て，さらに，
前記映像入力手段の近傍に嶵えられ，包いセンサと，こ の匂いセンサからの信号を匂いのデジタルデータに変換 する手段とから構成され，的映像入力手段の設置された実況地点又はその周辺の匂いを入力するための匂い入力手段と，
この朼い入力手段からの匂いデータを，その匂いに近似 した匂いを発生させるための芳杳剤調合データに変換す る変換手段と，
的記表示手段の近傍に備えられ，的記芳香剤調合データ から芳香剤を調合して所望の匂いを発生させる匂い発生手段と，を含む書沉映像提供システム。
［0001］
［発明の詳細な説明】
【発明の属する技術分野】本発明は，各地点のリアルタ イムの実況映像を地図等に関連させて提供することがで きる，実況映像提供システムに関する。また本発明は，前記実況映像から，その実況映像の地点を含む地図を表示させるシステムに関する。
【0002】
【従来の技術】従来より，各地点の映像をCD－ROM又はハードディスクなどの記録媒体に記録しておき，そ れを所定のキーワード等の検索データに基づいて検索し て表示するシステムが存在している。【0003】
【発明が解决しようとする課題】しかしながら，これら の记錄媒体に記録された映像は，「過去のもの」である （「生のもの」ではない）。そのため，実際の景色など は，季節の移り変わり，その日の天候，道路や建物の工事状況などにより，日々刻々変遷していくものであるの に，ユーザーが見ることができるのは「古い（新鮮でな い）」ものでしかないという問題がある。また，仮にそ の記録媒体に記録された映像が更新直後のものたとして も，「今現在のこの瞬間のリアルタイムの状沉を見た い」というユーザーの希望に応えることはできない。さ らに，記録媒体への映像データの更新を頻繁に行うこと は非常にコストがかかってしまうという問題もある。
【0004】本発明はこのような従来技術の問題点に着目してなされたもので，ユーザーに，任意の地点の実際 の状況を映像でリアルタイムに提供することができる完㑆映像提供システムを提供することを目的とする。ま た，本発明では，逆に，前記良況映像から，その其況映像の地点を含む地図を表示させるシステムを提供するこ とをも目的とする。
【0005】
【課題を解決するための手段】
（関連技術）本発明の「従来技術」に該当するかどうか （本願の「優先日（1996年6月11日）」より解か ら公知の事実であるかどうか）は明らかではないが，本願（特許法 4 1 条の国内優先日主張を伴う後の出願）の出願日の時点で本発明者が認識している「関連技術」と しては，次のょうなものが仔在している。
（イ）ダイヤモンド社発行「週間ダイヤモンド別冊 1 996．8号 インターネット超時間術」では，次のよ うな吔述がある。「インターネットではいま，テレビカ メラを据えて，観光名所を同時中継しているケースが多 くなってきた。自宅の机の上から，スフィンクスの前と か，パリ凱㫌門，ヒマラヤを望む丘なと世界的な文化遺産，観光名所のジャストナウを，やがて眺めることがで きるだろう。」（同書 76頁）
「ホテルかロビーや玄関前にカメラを置いて，そのカメ ラをオンラインにしてリモコンで見るというのはどうで すか。ウェブでそれを見て，「けっこう混んでるな」と か「おつ，あいつかいる」とか。そういうオンラインの カメラというのはウェブ上にも増えつつあるんです。」
（同書 82 頁）
インターネットのホームページの紹介として，「歴史街
道 http：／／www．kiis．or／reki shi／泰 患子さん
歴史街道のメインルートである伊勢，飛鳥，奈良，京都，大阪，神戸を説明文と写真（100枚以上）て散策 することができます。（中略）各項俦へのアクセスは地域別，時代別による検索と地図上でのマウスによる選択 （クリッカブルマップ）があります。現在の情報提供は説明文と亞真のみですが，（今後は）動甶や音声情報も提供していく予定です。」（同書 133頁）
（口）1996年6月16日付け日本経済新聞は，「魔法の箱を駆使 世界の見方覆す」とい見出しの記事で， コンピュータ・アーティスト滕幡正樹氏を紹介する記卉 の中で，次のように述べている。「最近は教鞭をとる慶応大学の学生らとインターネットを使ったプロジェクト に没頭している。例えば湘関藤沢キャンパスに取り付け たカメラが写す富士山の映像を，24時間リアルタイム で発信する試みを始めた。1日干人に上る世界中からの アクセス・ユーザーは，目分のパソコンてカメラの向き を変えたり，ズームインしたりすることもてきる。」
（ハ）ダイヤモンド社により1996年8月31につ発行された「週間ダイヤモンド」の84頁には，「超整理日ル 地図と年真の仮想旅行術（野口悠紀雄）」という記事の中に，次のような記載がある。「インターネット て「ハハーチャル・ツアー」というものがある。画面に出 ている地図をクリックすると，その地点の字賣が現れる というものだ。」
（二）1996年9月3日付け日本経済新聞の広告闌に おいて，「操作性高まる地図情竍システム 住友它エシ ステムズ」という見出しで，次のような記述がある。

「住友電エシステムズがこの度開発，販売したWind ows 9 5 守用デジタル道路地図「AtlaMate／ W1ndows 9 5版」は，…。（中略）同製品はマ ルチメディア機能として，地図上に静止画や動画，音声 の張り付けが可能となっている。」
また，この広告欄の中の「At1aMate／Wind ows 95版」の仕様書の記載の中に，次のような記載 がある。「豊富な登録機能 写真などの静止画，ビデオ などの動两，また咅声などを地図上に登録可能
（ホ）1996年9月30日付け日本経済新聞は，「イ ンターネット活用 自宅で自然を感じて」とい見出しの記事で，次のように述べている。「高知祡佐川町はNE Cと共同で，インターネットで白然の風景を生中継て楽 しめる「さかわインターネット放送局」を開設した。同町の虚空蔵山（標高 675 m ）山頂にカメラを設置し，户宅や職場のパソコンからカメラを目由に動かして，卢摺岬から室戸岬までの眺望を楽しめる。佐川地場産セン ターに開局した。カメラの映像を約 3 km 離れたふもと の町営施設，永野町民館のカメラ制御装置に無線で伝送 し，静止画像をインターネット上に提供する。パソコン からカメラを自由に遠隔操作し，左右約 300 度，上下約60度のパノラマを最大 10 倍のズームで楽しめる。 インターネット放送局のアドレスはhttp：／／ww w／meshnet．or．jp／sakawa／N ECは5月からインターネット放送局を全国展開してい る。北游道の松前町，关䒨町，佐岂茄町で開局し，2～ 3 年以内に 100 ケ所の観光地，景勝地にカメラを設置 する計画。」
以上のように，本発明に関連する技術は，さまざまもの かある。しかし，これらはいすれも，本発明と関連して いるが，本発明はこれらの関連技術をさらに発展させた ものであり，これらの関連技術は本発明の進歩性を否定 するものではない。
【0006】前述のような従来技術の課題を解決するた めの本発明による実況映像提供システムは，次のような ものである。
（1）本発明による実沉映像提供システムは，公衆への開示が可能な多数の実況地点の実況映像をそれぞれリアル タイムに當時入力するために各実況地点に设けられた映像入力手段と，前記各実況地点の実況映像を互いに識別 するための実況映像識別データを，地図データベースの地図上の各地点とそれぞれ関連•対応付けなから，記録
 ベースの地図上で指定された地点に基づいて，前記実況映像識別データベース手段から，対応する一つ又は複数 の方況映像娍別データを検索する検索手段と，この検索手段により娭索された実況映像識別データに基づいて，対応する実況映像をリアルタイムに無線又は有線て取り込む（ネットワークで送倍させること又はインターネッ トリブラウジング・ソフトウェアてアクセスして閱筧す

ることなどの方法により取り込む）映像取り込み手段 と，この映像取り込み手段により取り込まれた奏況映像 （動画又は静止画）を出力する表示手段と，からなるも のである。
（2）また本発明は，公衆への開示が可能な多数の実況地点の定況映像をそれぞれリアルタイムに常時入力するた めに各実況地点に設けられた映像入力手段と，地図とそ の地図上の各地点を特定するための座標データとを記録 する地図データベースと，前記地図データベースの中の座標データと，前記各実況映像を互いに識別するための実況映像識別データとを，互いに関連又は対応付けなが ら，记録する実況映像，職別データバース手段と，ある灾況映像を表示している場合に，その実況映像を五いに識別する実況映像識別データをキーとして，前記実況映像識別データベースから，その実況映像の実況地点に対応又は関連する一つ又は複数の地図上の地点を検索する検索手段と，この検索手段により検索された地図上の地点 を含む所定領域の地図を示す地図データを抽出する地図 データ抽出手段と，この地図データ抽出手段により抽出 された地図データにより地図を出力する表示手段と，か らなるものである。
（3）また，本発明による実況映像提供システムは，公衆 への開示が可能な多数の実況地点の実況映像をそれぞれ リアルタイムに常時入力するために各実呮地点に設けら れた映像入力手段と，前記各実況映像を互いに識別する ための方況映像識列データを，文字列•」号列•図形又 は映像などから成るキーと関連付けながら，記録する実況映像識別データベース手段と，前記の文字列•記号列 －図形又は映像などから成るキーを入力するキ一入力手段と，このキ一入力手段から入力されたキーに基づい て，前記実況映像識別データベース手段から，関連する一つ又は複数の実況映像識別データを検索する検索手段 と，この検索手段により検索された実況映像識別データ に基ついて，対応する実況映像を取り込む（ネットワー クより送信させるとインターネット用ブラウザーにより 1筧する場合なとを含む）映像取り込み手段と，この映像取り込み手段により取り込まれた実況映像（動画又は静止画）を出力する表示手段と，からなるものである。 （4）な打，本発明に扑いて，朔涫映像入力手段は一つの実況地点から複数の方向の映像を撮像するものであり
（例えば，一つのビデオカメラを旋回してある複数の方向に来たときに撮像する場合や，複数のビデオカメラを複数の方向にそれでれ偏え付けて1間時に撮像する場合な と），前記各実況映像を特定するための実況映像識別デ ータは，前記映像入力手段か設けられた各実況地点の位置を示す位置データとその映像入力手段が撮影する方向 を示す方向データとから構成されていることが望まし い。
（5）また本発明は，公衆への晟示が可能な多数の具況地点の兴況映像をそれぞれりアルタイムに学時入力するた

めに各実況地点にそれぞれ設けられた映像入力手段と，狛吅各宂況映像をかいに職別するための実況映像識別デ ータ（緯度データ及び経度データの座標データなどから成る）を記録する実況映像識別データ記録手段と，ユー ザーの現在位置を特定する現在位置特定手段（従来より公知のGPS受信機など）と，この現在位置特定手段に より特定されたコーザーの現在位置（緯度データ及び経度データの座標データなどから成る）に基づいて，その現在位置に近い一つ又は複数の実況地点に対応又は関迚 する一つ又は複数の実況映像識別データを選択する実沉映像識別データ選択手段と，この選択された実況映像識別データに卉づいて，対応する㬰況映像をオンラインで取り込む（ネットワークを介してアクセスして閲筧する場合と送信させる場合などを含む）映像取り込み手段 と，この映像取り込み手段により取り込まれた実況映像 （動画又は静止岒）をリアルタイムに表示する表示手段 と，からなるものである。
（6）また，本発明では，前記映像大力手段は，上記（4）と －川様に，的屺各実況地点から複数の方向に向かって見え る映像をそれぞれ撮像するものであり，前記各実況映像 を互いに識別するための実況映像識別データは，前記映像入力手段が設けられた各実況地点の位置を示す位置デ ータとその映像大力手段が掓影する方向を示す方向デー夕と，から構成されておうり，前記現在位置特定手段は， ユーザーの現在位置を特定する手段とユーザーの進行方向を特足する手段とを含んでおり，唃記実況映像職別デ一各選択手段は，前記現在位置特定手段により特定さた れユーザーの現在位置を示すデータ（緯度データ及び経度データから成る位㯰座樓データなど）及び進行方向を示すデータ（東西南北など）に基づいて，ユーザーの現在位置からコーザーの進行する方向に位置し且つユーザ ーの現在地点に近い位置にある実況地点の実況映像であ ってしかもユーザーの進行方向に近い方向だらす実況映像（動画又は静止画）を特定するための実況映像地点識別データを選択するものである。
（7）また，本発明では，欮記表示手段に表示されだ況映像（動画又は静止画）の中のユーザーが指定した部分 に対して他の部分と区別するためのマーキングをするた めのマーキング手段を備えるのがよい。
（8）また，本発明に打いて，前記映像大力手段は，その地点において発生している音声をリアルタイムに入力す る手段をも備えているのがよい。
（9）また本発明では，さらに，前記映像入力手段の近傍 に備えられ，匂いセンサと，この匂いセンサからの信号 をもいデジタルデータに変換する手段とから構成され，立胦像入力手段の設置された地点又はその周辺の匂いを入力するための匂い入力手段と，この匂い入力手段から の匂いデータを，その匂いに近似したもいを発生させる ための年香剤調合データに変換する変換手段と，的記表示手段の近傍に備えられ，朔記贫秀剤調合データから步

香剤を調合して所望の匂いを発生させる匂い発生手段
と，を含むのかよい。なお，この（9）にないて，前記の「その匂いに近似した旬いを発生させるための芳香剤調合データに変換する変換手段」は，前記匂い入力手段と直接に接続され，この変換手段がコンピュータ通信ネツ トワークを介して前記匂い発生手段に接続されていても よいし，あるいは，前記入力入力手段とコンピュータ通信ネットワークを介して接続され，この変換手段が直接 に前記匂い発生手段に接続されていてもよい。
【0007】
【発明の実施の形態】
穴施形態1，次に，爫1～4を参照して，本発明の実施形態1を説明する。図1において，1はユーザーが使用 するパーソナルコンピュータ（パソコン）で，CPU及 び通信モデム等より成る制御装置2と，コンピュータプ ログラム及びデータが記録されたハードディスク装置3 と，コンピェータプログラム及びデータが記録されたC D－ROM4を駆動するためのCD－R OMドライブ5 と，データ入力するためのキーボード 6 及びマウス 6 a と，画像を出力するためのディスプレイ7と，音声を出力するためのスピーカ8とより，構成されている。
【0008】前記制御装置2は，インターネット等のコ ンピュータネットワーク川公衆回線10を介して，中継 サービス用コンピェータ11に接続されている。この中継サービス用コンピュータ11には，多数の実沉地点に それぞれ設置されたビデオカメラ 1 2，12a，12b及び集音マイク 13 ， 13 a ， 13 b を制御し且つこれ らのビデオカメラ 12 及び集音マイク 13 からのデータ を記録し通信ネットワークを介して閲覧させるためのコ ンピュータ（サーバー）14，14a，14bが，接続 されている。これらの多数のビデオカメラ12及びマイ ク 13 等により入力された映像データ及び音声データ
は，ユーザー側からの要求により，コンピュータ14及 び中継サービス用コンピュータ11を介して，コーザー側に送信できるようになっている。な扮，前記ビデオ力 メラ 1 2 は，各 況地点において，それぞれ 4 偑ずつ没置され，それらの4個のビデオカメラは，それぞれ東西南北の4つの方向の映像を撮像するように，設置されて いることが望ましい。
【0009】また，前記中継用サービスコンピュータ1 1は，他の多数の中継用サービスコンピュータ12など とも接続されており，例えば，ある中継サービス用コン ピュータ11に接続されたコーザーは，この中継サービ ス用コンピュータ11を介して他の中継サービス用コン ピュータ12なとから，それに接続されたコンピュータ （サーバー）を介してビデオカメラ及びマイクから入力 されたデータを取り込めるようになっている。この場合 の映像や音声の取り込みの方法は，そのビデオカメラや マイクからの性報を電子メールに添付させて送信させる方法や，そのビデオカメラ及びマイクの入力性報を提供

するためのホームページがコンピュータ・ネットワータ上に開設されており，このホームページをユーザー側が インターネット用のブラウザー・ソフトウェア（闃覧ソ フト）により取り込みにいく方法（いわぼ，コンピュー タ・ネットワーク上のホームベージをユーザー側のバソ コンのハードディスクのように使川する方法）などの様々な方法が有り得る。
【0010】この実施形態1では，前記CD－ROM4 には，地図データとこの地図上の各地点を特定するため のアドレスデータとを関連させて記録する地図データベ ースと，このアドレスデータと，前記各実況地点（前記 ビデオカメラ 1 2 及びマイク 1 3 が設置された各場所） の夷況映像を嬂別するための映像瀧别データとを，互い に関連付け・対灾付けて記録する実況映像データベース と，これらの前記地図データベースを再生する再生プロ グラムと，眮記官況映像データベースを検索する検索プ ログラムと，この娭索された実況映像識別データからそ れに対応する実況映像を取り込んで表示するためのプロ グラムとが，記録されている。
〔0011］今，例えば大阪に住んでいるユーザーが，「自分の故郷の神奈川県の夏の湘南海岸の海岸線に沈む夕陽の景色を見たい」と考えたとする。その場合，例え ば，ユーザーか地図データベースを再生させて沐南海岸 を含む所定領域の地図を画面表示させ，その画面上で前記の湘南海岸の地点をマウス 6 aでクリックしたとす
る。すると，制御装真2は，この入力に朝ついて，前記地点データベースから，この地図上の地点に対応するア ドレスデータを検索する。そして，この検索されたアド レスデータに萛ついて，前記大況映像データバースか 5，対応する実況地点の実況映像を示す実況映像識別デ一タを検索する。そして，この検索された実況映像識別 データに基づいて，中継サービス用コンピュータ11に アクセスして，前記の完況映像識別データに対応する実況地点に設置されたビデオカメラ及びマイク（且つ，前記実況映像識別データか撮像方向をも特定したものであ るときは，その撮像方向と対応する方向に設置されたビ デオカメラ及びマイク）からの映像データ及び音声デー タをオンラインで取り込んで，ディスプレイ7及びスピ一カ8によりリアルタイムに出力する。このとき出力さ れる映像及び音声は，現時点のリアルタイムの映像及び音声なので，ユーザーはあたかもその現場に実際にいる ような感覚•感動を得ることがてきる。すなわち，従来 からも，例えば相南海宸などの淮岗の映像を記録し，そ れらをキーワードなどで検索して出力できるCD－RO Mなどは存在している。そして，これしらのCD－ROM に唋録された映像は，プロのカメラマンが絶好の日和•時刻（例えば夕陽のきれいな時刻）の絶好の争度から美 しく撮影したものである。これに対して，この実施形態 で提供される映像は，雨天のときも曼りのときもある し，時刻毛絶好の素色が見られる时刻ではないかもしれ

ない。しかし，ユーザーにとっては，「今この時点・こ の瞬間の映像（二度とない映像）である」ということ が，びとつの「臨場感」「感動」を生むことになる。つ まり，「今，湘南海岸に沈む夕陽を見たい」とユーザー が思った場合，過去の記録に過ぎない記録された「湘南湖岸の夕陽」の映像ではなく，「今この瞬問の湘南湤荘 の夕陽」の映像を見られなければ，ユーザーにとっては大きな感動は得られない。この実施形態はこのようなユ ーザーの希望に答えることができるものなのである。【0012】なお，ここで，以上の甾1について説明し た実施形態の構成を囟々を参照してもう一度說明する。 この図をは，実施形態の構成を機能的•概念的に示した ものである。図2において，符洔32は，コンピュータ ネットワーク（コンビュータ通信網）30に接続され，各地の実況映像と音声をリアルタイムに入力するための ビデオカメラ及びマイクから成る奏況映像入力部であ る。また，符号 24 は，前記地図データベース26とそ の再生プログラムとその検索ブログラム，前記実況映像 データベース25とその検索ブログラム，及び㷙記実況映像識別データから通信ネットワークを介して該当する実況映像を取り込むためのプログラムなどが記録された CD－ROMである。また図2において，21は前記C D－ROM24に記録された前北地図データベース26 を再生するための地図データベース再生部，22はこの地図データベース再生部21からの信号を受けて表示部 27 及びスピーカ28を制御して所定の再像及び音声を出力する制御部である。また23は，前記制卸部22か らの信号を受けて，前記地図データベースが再生された画而上でユーザーが指定（マウスでクリック）した地点 のアドレスデータに基づいて，前記実況映像データベー ス25から，対応する実況映像の識別データを検索する検索部である。制御部22は，この娭索部23からの実沿映像の識別データに基ついて，映像取り込み部（例え はインターネットのホームページ閲覧用ソフトウェアで あるブラウザーを記録し実行する装置）26を制御し て，コンピュータネットワーク用通信回線30を介して映像入力部32にアクセスし，そこから，オンライン で，リアルタイムの実況映像及び音声を取り込む。制御部22は，このオンラインで取り込まれた完況映像と皆声を，前記地図データベース26からの再生画像（地図画像）と関連させなから，前記表示部27及びスピーカ 28によりリアルタイムに出力させる。
〔0013］次に，的いこの図1の制御装置2に制卸され ながら，前記ディスプレイ7により表示される画面を，图3及び囯」に基づいて説明する。前記CD－ROM4 に記録された各プログラムにより，ディスプレイ7に
は，龱3に示すように，その上半分7aに実況映像か表示され，その下半分 7 b に地図か表示されるようになっ ている。このた施形態1を使間するときは，コーザー

図データベースから前記ディスプレイ7の下半分7bに希望する地図を表示させる。CD—ROM4に記録され た地図データベースの中のどの部分の地図を表示させる かは，例えば，地名などのキーワードから地図データを検索して表示させればよい（このような技術は従来より公知である）。そして，本揍施形態では，この表示され た地図には，例えば図4のア，イ，ウ，エ，オ，カ，キ に示すように，各地点を示す点が所定の色（例えば赤色）に着色されて表示されている。これらの爫4のア， イ，ウ，エ，オ，カ，キで示す各点の中で，鹵4のア， イ，ウ，及びエは，以 13 に対応している。すなわち，この㬰施形態1では，図1のビデオカメラ 1 2 は，それぞれ互いに異なる方向 を撮像するように図1のア，イ，ウ，及びエの位置に設置された 4 個のビデオカメラにより構成されている。ま た，図1のマイク13は，それぞれ！iいに異なる方向を集音するように設置された 4 個のマイクにより構成され ている。つまり，ビデオカメラ 12 について説明する と，ビデオカメラ 12 を棤成する 4 偑のビデオカメラの中で，以 4 のアの位置に設置されたビデオカメラは，図 の西方向（左方向）に向けて撮像しており，＂1428 A＂の映像識別データを有する実況映像を生成する。ま た，図1のイの位置に設置されたビデオカメラは，図の南方向（下方向）に向けて撮像しており，＂1428 B＂の映像識別データを有する実況映像を生成する。ま た，図1のウの位置に吺置されたビデオカメラは，図の東方向（右方向）に向けて撮像しており，＂1428 C＂の映像識別データを有する実況映像を生成する。ま た，図1のエの位置に没置されたビデオカメラは，図の北方向（上方向）に向けて撮像しており，＂1428 D＂の映像識別データを有する実況映像を生成する。ま た，前記の風4のア，イ，ウ，エ，オ，力，キで示ず各
 ラ 1 2 a及びマイク 1 3 aに対応している。すなわち， この実施形態1では，省1のビデオカメラ 12 a は，そ れぞれ示いに異なる方向を撮像するように界4のオ，
力，及びキの位置に設置された3個のビデオカメラによ り構成されている。また，図1のマイク13aは，それ ぞれいに以異なる方向を集音するように役置された3㑬 のマイクにより構成されている。つまり，ビデオカメラ 12 aについて説明すると，ビデオカメラ 12 a を構成 する 3 個のビデオカメラの中で，䍜1の才の位置に設置 されたビデオカメラは，図の北西方向（左上方向）に向 けて撮像しており，＂1429A＂の映像識別データを有する実況映像を生成する。また，图4の力の位置に設出されたビデオカメラは，図の東献方向（右下方向）に向けて撮像しており，＂1429B＂の映像識別データ を有する実況映像を生成する。また，図生の才の位置に吺做されたビデオカメラは，図の東方向（右方向）に向 けて撮像しており，＂1429C＂の映像裁列データを

有する実況映像を生成する。以上のように，この眚1を参照して説明する実施形態では，地図上の各地点を識別 するためのアドレスデータ（＂1428＂や＂142 9＂など）と同一実況地点での各ビデオカメラの撮像方向を示すデータ（＂A＂＂B＂＂C＂＂D＂など）との組合せと，各地点の実況映像を識別するための奏況映像識別データ（＂1428A＂や＂1429A＂など）と を，互いに対応させて記録している。より詳細に述べる と，この図 4 の例では，地図上の 1 つのアドレスデータ ＂1428＂4 4 中央の交差点の領域を識別するア ドレスデータ）については，＂1428A＂＂1428 B＂＂1428C＂及び＂1428D＂の4つの撮像方向をそれぞれ示す 4 つの完況映像識別データが，対応さ せて記録されている。また，地図上の1つのアドレスデ ータ＂1429＂（図1の図示左側の交差点の領域を識別するアドレスデータ）については，＂1429 A＂
＂1429B＂及び＂1429C＂の3つの撮像方向を示す3つの実況映像識別データか，対応させて記録され ている。なお，この㒺丘の例では，大況映像識別データ （例えば＂1428A＂）を，地図上のアドレスデータ （例えば＂1428＂）と方向データ（例えば＂A＂） との組合せにより構成しているが，本発明では，必ずし も，灾況識別データの中に地図上のケドレスデータをそ のまま使用する必要はない。例えば，地図上のアドレス データは地図全体を均等に割り付けて構成した番地デー タ（又は座䈎データ）とし，具況映像識別データはビデ オカメラが実際に取り付けてある地点の識別コード（例 えば，ビデオカメラの設置順の連続番号）と方向データ との組合せにより構成する，などのようにすることもで きる。
【0014】この図4の例では，前記各ビデオカメラ1 2及びマイク13がそれぞれ映像及び音声を入力して得 られる実況映像（ここでの「泰況映像」という用語は，原則として，ビデオカメラで入力した映像データとマイ クで入力した音声データとの両者を含む意味で使用して いる）の識別データには，その地点を示すデータとその ビデオカメラ 12 か撮影している方向（これはマイク 1 3 か集音しようとする方向と一致している）とから，構成されている。つまり，萁況映像は，各地点とその掫像方向とで互いに識別されており，「実況映像識別デー夕」は，各地点を示すデータと撮影又は集音の方向を示 すデータとから，構成されている。だから，同じ地点で も，㧗影する方向（東西南北などの方向）が違えば㸝の識別データを有する別の実況映像となる。このことを国壬で説明すると，図4の＂ア＂で示すアドレスデータ
（1428A）を们る地点は，（1428A）という映像識別データを有する実況映像と対応しており，この （1428A）という識別データを示す実況映像は，国 4の＂ア＂の地点からAの方向（図面に向かって左の方向）を撮影した映像である。また，畄 4 の＂イ＂で示す

アドレスデータ（1428B）を有する地図上の地点 は，（1428B）という識別データを有する奏洸映像 と対応しており，この（1428B）という識別データ を示す実況映像は，図3の＂イ＂の地点からBの方向 （図面に向かって下の方向）を撮影した映像である。ま た，龱4の＂ウ＂で示すアドレスデータ（1428C） を有する地点は，（1428C）という識別データを有 する実洗映像と対応しており，この（1428C）とい う誐別データを示す実汾映像は，畄」の＂ウ＂の地点か らCの方向（図面に向かって右の方向）を撮影した映像 である。また，（1428D）というアドレスデータを
 ら漓別データを何する実況映像と 1 対 1 に対応してお り，この（1428D）という識別データを示す実況映像は，図1の＂エ＂の地点からDの方向（図面に向かっ て上の方向）を撮影した映像である。さらに，図价にお いて，アドレスデータ（1429A）を有する＂オ＂で示す地点は，（1429A）という識別データを有する実況映像と対応しており，この（1429A）という識別データを示す実況映像は，図4の＂オ＂ 0 地点からA の方向（図面に向かって左上の方向）を撮影した映像で ある。また，网4の（1429B）というアドレスデー タた行する＂カ＂で示す地点は，（1429B）という識別データを有する実況映像と対応しており，この（1 429 B）という識別データを示す実況映像は，図 4 の ＂力＂の地点からBの方向（図面に向かって右下の方向）を撮影した映像である。また，図1の（1429 C）というアドレスデータを有する＂ま＂で示す地点 は，（1429C）という識別データを有する実沉映像 と対応しており，この（1429 C）といら識別データ を示す実況映像は，図4の＂ま＂の地点からCの方向 （図面に向かって右の方向）を撮影した映像である。【0015】以上から分かるように，この込4の例で は，1428は，网自の地図の中央に位置する交差点の領域（この戍4の例では，この交差点の領域を「実況地点」というに葉で呼んでいる）を示す地図上のアドレス データであり，A，B，C，Dはその交差点領域（実況地点）からの撮影（及び集音）の方向を示している。ま た㧫様に，兇4の例では，1429は，㡙4の地図の左端の交差点の領域（実況地点）を示す地図上のアドレス データであり，A，B，Cはその交差点（実況地点）内 の各場所からの撮影（及び集音）の方向を示している。 また，この目1の例では，具況映像の諓别データは，前記地図上の各実況地点の位置を示すアドレスデータ
（＂1428＂，＂1429＂など）と前記方向を示す データ（A，B，C，Dなど）との組合せにより，满成 されている。
〔0016】したがって，ユーザーは，この闵4の地図 を見なから，目分がこれから行きたいと思う場所が例え ば畄101428で示す交点点の領域だとして，「今，

この交差点の状況はどうなっているか（混雑しているの かどうか，どういう人達がどういう服装で通行している のか，なと）知りたい，そのために実況映像を見たい」 と思えば，図4で示す地図上のア～エの地点のいずれか をマウスなどのボインティングデバイスでクリックすれ ばよい。すると，前整制御装置2により，その地図上の アドレスデータに対応する実況映像識別データが検索さ れ（前記実沉映像データベースから），この検索された実況映像識別データに基づいて，晐当する実況映像がコ ンビュータ・ネットワークを介して取り込まれて，ディ スプレイ7の上半分7aに表示される。
【0017】またユーザーは，これから目分が行きたい と思う場所と今白分が居る場所との問の交通経路を地図上で求めて（これは従来から公知の技術て既に実現され ている），その経路上にある地点の実況映像を順番に表示していく（一つの実況映像の表示時間を例えば 5 秒と して， 5 秒毎に次の実況映像を順番に表示していく）こ ともてきる。またユーザーは，自分が自動車を運転して いるとき，GP S 受信機で受信した測位情報や各種のセ ンサにより得た測位情報から現在の位置を地図上で求め （これは従来より公知の技術で既に実現されている）， その地図上で求めた自分の現在位置に対応する地点か 5．前記笑況映像の識別データを求めて，その識別デー タに基づいてネットワーク上のサーバー（例えば図1の中継サービス用コンピュータ11）を通して対応する実況映像を取り込んで表示する，こともできる。これによ り，ユーザーは，地図上の現在位置（G P S 受信機やセ ンサからの情報に基づいて推測した現在位置）と実際の現在位睘とか本当に一致しているのかどうかをい視によ り確認することができる。つまり，上記のようにして求 められた実況映像識別データに基づいてディスプレイ7 に表示された実況映像と自分が自動車の内部から外部を見て得られる友際の景色とが一致していいしば，前記のG PSにより推測した現在位置は計測䛊差がなく正しいと いうことになるか，一致していなければ前記の推測した現在垃置は正しくないということになる。
【0018】なお，前記制御装置2と中継サービス用コ ンピュータ11の接続は無線でもよいこと，前記中継サ ービス用コンピュータと各ビデオカメラ 12 及びマイク 13 との接続も無線でもよいこと，及び，前記「地図デ ータベース」，「実況映像データベース」，これらの検索プログラム，及び地図データベース再生プログラム
は，CD－ROM4から読み取るのではなく，升記中継 サービス用コンピュータ11などのネットワーク上のサ ーバー（コンピュータ）から取り込むようにしてもよ い。特に，上祋のように，図10パソコン1を移動中の自動車内で使用する場合（自分が自動車を運転している とき，GPS受信機で受信した測位情報や各種のセンサ により得た測位情战から現在の位置を画面表示された地図上で求め，この「向分の現在位置に対応する実況地点

の実況映像で且つ自分の進行方向に対応する撮像方向の実況映像」を，パソコン1のディスプレイ7に表示させ る場合）は，前記パソコン 1 の制御装置 2 と前記中継み ービス用コンビュータとの間は無線で送受信する必要が ある。
【0019】実施形態2．次に，本発明の実施形態2を龱により説明する。龱1において，1はユーザーが使用するパーソナルコンピュータ（パソコン）で，C P U及び通信モデム等より成る制御装置2と，コンピュータ プログラム及びデータが記録されたハードディスク装置 3と，コンピュータプログラム及びデータが記録された CD－ROM4を駆動するためのCD－ROMドライブ 5と，データ入力するためのキーボード6と，画像を出力するためのディスプレイ7と，音声を出力するための スピーカ8とより，構成されている。前記制御装置2 は，公衆同線10を介して，中継サービス用コンピュー タ11に接続されている。この中継サービス用コンビュ ータ11には，多数の地点にそれぞすし設置されたビデオ カメラ 1 2 及び集音マイク 1 3 が，コンピュータ（サー バー） 14 を介して，接綕されている。これらの多数の ビデオカメラ 12 及びマイク 13 等により入力された映像データ及び音声データは，ユーザーからの要求によ
り，前記コンピュータ（サーバー）14及び中継サービ ス用コンピュータ11を介して，ユーザ一に送信できる ようになっている。また，爫1の多数のビデオカメラ 1 2及び集音マイク 13 は，識刑データにより互いに儎別 できるようになっている。したがって，また，各ビデオ カメラ12及び集音マイク 1 3 からの実況映像及び音声 は，似に識列できるようになっている。また，これら の多数のビデオカメラ 12 及びマイク 13 等により入力 された映像データ及び音声データは，ユーザーからの要求により，中継サービス用コンビュータ11を介して， ユーザーがオンラインて闆覧できるようになっている
（例えば，インターネット・ホームページ閲覧用ソフト ウェアのブラウザーを使用して，閱覧できるようになっ ている）。また，前記中継月サービスコンビュータ11 は，他の多数の中継用サービスコンビュータ12などと も接続されており，例えば，中継サービス用コンピュー夕に接続されたユーザーは，この中継サービス用コンピ ュータ11を介して他の中継サービス用コンビュータ1 2などから，それに接続されたどデオカメラ及びマイク から入力されたデータを取り迄めるようになっている。
【0020】この正施形態2では，欮記CD－ROM4 には，前記各地点（前記ビデオカメラ 12 及びマイク 1 3か設置された各場所）の実況映像を識別するための映像識別データと多数のキーワードとをらいに間連付けた実沉映像データベースと，これらのキーワードから前記映像識別データを検索するプログラムとが，記録されて いる。この大涀映像データベースに記録されているキー ワードには，地名，場所のジャンル（海等，町角，港

旪，山，交差点，建物，レストラン，劇場，映画館，ス ポーツ施設，野球場，温泉，寺院など），行動のジャン ル（スポーツ，演劇，映画，食事，散歩など），などの様々なものが含まれている。今，例えば大阪に住んでい るユーナ゙ーが，「自分の故郷の神奈川県の夏の湘南海岸 の海岸線に沈む夕陽の景色を見たい」と考えたとする。 その場合，例えば，ユーザーか前記キーボード6により「神奈川県，夏，湘南海岸，海岸線，夕陽」などのキー ワードを入力すると，制御装置2は，これらの入力され たキーワードに基づいて，CD－ROM4に記録された実況映像識別データの中から対応するものを検索する。 そして，この検索された実況映像載斺データに率づい
て，中継サービス用コンピュータ11にアクセスして， その識別データに対応する地点に設置されたビデオカメ ラ及びマイクからの映像データ及び音声データをリアル タイムに取り込んで，ディスプレイ7及びスピーカ8か ら出力することができる。このとき出力される映像及び音声は，現時点のリアルタイムの映像及び音声なので， ユーザーはあたかもその現場に実際にいるような感動を得ることができる。
【0021】また，同様に，この実施形態2では，ユー ザーが例えば「寺院，京都」というキーワードを入力す れば，前記制御装置2がそれに該当する複数の映像識別 データを検索し，それらを順次ディスプレイ7に表示す る。また，例えば長期入院しているユーザーが，実際に は行けないが「九州各地の温成巡りをしてみたい」と思 えば，「九州各地，温泉巡り」などのキーワードを入力 すれば，前記制御装置2が，それに該当する複数の映像職別データを検索し，それらの識別データに対応する実際映像を受信して，順次ディスプレて7に表示する。こ れは，ユーザーにとっては，実際には行っていないのに実際に行っているのと同じ感動を得ることができる。こ のように，この実施形態 2 は，ユーザーにとってあたか も旅行に行っていないの行っているのと同様の感動を得 られる「バーチアル・トラベル（仮想旅行）」を実現で きるシステムであると音える
【0022】また同様に，ユーザーが「横浜の港町を食 べ歩きしたい」と思えば，「横浜，港町，食べ歩き」と いうキーワードを入力すれば，解記㑬御装置2がこれら のキーワードに基づいて対応する複数の映像識別データ を娭索し，これらに対応する複数の前記各地点からの実況映像のデータを取り込んでくれる（この場合，公衆へ 0）映像提供を承•萑したレストランの内部に晾記ビデオカ メラとマイクを設置しておけば，その内部の状況，例え ば客の今の混み具合や店内の雰囲気なども知ることがで きる）。また，河様に，ユーザーが「日本全間の劇場巡 り（野球場巡り）をしてみたい」と思えば，「口本，劇場巡り（野球場巡り）」というキーワードを入力すれ ば，前記㑬御装置2がこれらのキーワードに楽づいて対応する映像識施げータを検索し，それらに対応する笖況

映像をリアルタイムに出力してくれる。この場合，各劇場又は各野球場に，所定時間のみ劇の内容（又は試合内容）の送信を承諾してもらっておけば，ユーザーは所定時間のみではあるが，その劇（又は試合）の内容を言わ ばインデックス代わりに見ることができる。
【0 0 2 3 】 実施形態3．次に，本発明の実施形態3を説明する。この実施形態3では，前記の実施形態1の構成に加えて，次のようなものが備えられている。まず，前記どデオカメラ 1 2 やマイク 1 3 の近倞に備えられた匂い大力装置が備えられている。この匂い入力装置に は，匂いセンサと，この匂いセンサからの信号を匂いの デジタルデータにコード化するコード化部が俯えられて いる。前记伨いセンサは，既仔の複数の匂いセンサから構成され，各センサからの匂い量検出値はすべて前記コ ード化部（エンコーダ）に供給される。コード化部（エ ンコーダ）では，この供給された匂い翬検出伯を符讹 する。この符号化された匂いデータ（デジタルデータ） は，記録装置に記録されると共に，遠隔のユーザーが， コンピュータ道信ネットワーク網を介してリアルタイム に閲覧し取り込めるようになっている。なお，前記の匂 いセンサは，感知できる匂いの種類毎に複数用意してお方 き，できるだけ現場の元の们いを忠実に再現できるだけ の怗報を得られるようにすることが望ましい。次に，ユ ーザー側には，前記の閲覧し取り込んだ匂いデータ（デ シンタルデータ）を，現場の匂いに近似した匂いを発生さ せるための芳香剤媩合データに変換する変換装置と，前記ディスプレイ7（㭡1）の近傍に備えられ，前記芳香剤調合データから芳香剤を調合して所望の匂いを発生さ せる胞い発生装置と，が備えられている。まず，前㫃の「前記闃覧し取り込んだ匂いデータ（デジタルデータ） を，現場の匂いに近似した切いを発生させるための芳香剤調合データに変換する変換装置」を説明する。前記変換装置は，各匂いセンサの検出倹のパターンを各芳香剤 の出力値のパターンに変換する。より具体的には，様々 な種類の匂いのそれぞれについて，その匂いを匂いセン サに検出させると検出値がどのような値をとるかを予め調査•記録しておく。そして，この匂いと匂いセンサの
方香剤（の成分）との閧係を記録したデータとから，各切いセンサの検出値のパターンと複数種類の芳香剤の出力値のパターンとを対応付けて記録しておくようにす
る。前記変換装置は，この対応付けられした情報に基づい て，匂いセンサの検出値のパターンを芳香剤（の成分） の出力値のパターン（これが「芳香剤調合データ」とな る）に変換するものである。このことをより詳細に述べ ると，次のとおりである。向記変換装置には，各㲺いを匂いセンサで検出したときの匂いセンサの検出値と，そ の匂いを後述の匂い発生装置で発生させるときの各芳香剤の出力値との対応関係が記録されたセンサ芦㫘剤量変換テーブルが，予め砋録されている。そして，変換装置

は，前記匂いセンサの検出値データに基づいて，このセ ンサ方香剤量変換デーブルを参照して，各匂いセンサ毎 の検出値を各芳香剤毎の出力値に変換する。
〔0024】次に，前記の「前記芳香剤調合データから芳香剤を調合して所望の匂いを発生させる匂い発生装䍝」を説明する。匂い発生装置は，予め複数種類の芳香剤を用意しておき，前記の「芳香剤調合データ」（前記 の芳香剤出力パターンデータ。各芳香剤からの匂い成分 をとれだけ発生させるかを示すデータ）に基づいて，必要な種類の匂いの成分（芳香剤からの成分）を必要な分量だけ発生させる。匂い発生装置の形態としては，ある －然間中においてその空間全体に匂いを行き渡らせる据置型のものと，ユーザーの后の付近又は鼻の中に装着して装着した人にのみ匂いを感得させる個人携帯型のもの と，か考えられる。例えば，前記の据置型のものとして は，次のようなものが考えられる。すなわち，箱の底に芳香剤の人った容器を並べて，芳香剤と空気とが接する面積を任意に調整できる蓋を各容器に付けて打き，箱の後る侧には，必要に応じて送風機を設ける。そして，前記の「芳香剤出力パターン」のデータに応じて，各芳香剤の成分を所定量ずつ放出できるように，対応する各芳香剤の容器の蓋の開閉具合を調節する。また，前記携帯型のものについては，基本的樠成は据置型のものと同様 でよいが，これを小型化し，これをヘルメット型，ヘッ ドセット型，メガネ型，マスク型などの頭部支持具によ りユーザーの罗の付近に装着できるようにする。なお， この実施形態3では，前記の「前記閲覧し取り达んだ符号化された匂いデータを，現場の匂いに近似したもいを発生させるための芳香剤啁合データに変換する変換装置」をユーザー側のパソコン 1 側に備えるようにしてい るが，本発明ではこれに限られるものではなく，例え ぼ，現場のビデオカメラ 12 やマイク 13 か設置された地点に侮えるようにしてもよいし，コンビュータ・ネッ トワーク上の中継サービス用コンピュータ（サーバー） 11に備えるようにしてもよい。また，以上の実施形態 3て説明した「包いのデータ化，弝録，通信，及び旧
生」の技術は，例えば特開平7－55742号公報など に開示された公知の技術である。
【0025】実施形態4．悐可は本発明の实施形態4を示すブロック図である。図らにおいて，21は液晶ディ スプレイ（LCD）である。また漛5において，22は従来より市販されているGPS（Grobal Pos 1tioning System）受仁機で，人工衛等 からの電波の遅延時間を計測し，軌道からの距離からユ一ザーの現在位置を求めるためのものである。このGP S受信機22は，人工衛嘋から送保されるGPS電波を受信するGPS受信アンテナと，このGPS電波から現在位置を緯度データ及び経度データとして認識する位置
 GPSアンテナは，GPS衛住からの例えば1．5GH
zの電波を受信し，その信号を前記位置認識部に送る。前紀位置認識部では，稼働中のGPS衛嘋のうち受信可能な 4 個以上の衛星の電佊を受信し，既知である衛星の位置と受信電波とから算出した各衛星—受信点間の距離 とを基にして，受信点の現在位置を取得し，緯度データ及び経度データを算出する。なお，以上のG P S 受信機 2の詳細な構成及び使用方法は従来より公知である（例 えば，特開平5－45171号公報，特開平7－306 054 分公報，特開平 $8-94735$ 品公報などを参照）ので，詳細な説明は省略する。また，凶らにおい て，26は進行方向入力部で，ユーザーが徒歩，車両，鉄道などにより移動中のときのその進行方向（東曲南北 など）を地磁気などを利用して計測しその進行方向を求 める進行方向入力部である。この実施形態 4 では，前記 GPS受信機22と進行方向入力部26とにより，本発明によるユーザーの「現在位徝特定手段」を構成してい る。また図らにおいて，23はこのGPS受信機22か らの現在位置情報としての座標データ（緯度データ及び経度データ）と前記進行方向入力部 26 からの進行方向 データを受け取り，該当する衛星画像を選択し，それを前記L C D 21 に表示するための制御部で，パーソナル －コンビュータなとにより構成されている。
〔0026】また，龱各に扑いて，24は，的記制御部 23 とインターネットなどのコンビュータ通信用公衆回線網20を介して接続された地図データベース用サーバ －（コンピュータ）である。この地図川サーバー24 は，例えぼ日本全国の地図を，座標データ（緯度データ及び経度データ），地名，施設名，施設の識別データ （施设の電活香りなど）などの位置識別データと関坿付 けなから，データベースとして記録している。この地図用サーバー 2 4 は，公衆回線網 2 0 により前記制卸部 2 3とオンラインで接続されている。なお，この公衆回線網20は，綵通信網だけでなく，㘯帯電話網，PHS （パーソナル・ハンディホン・システム）網，自動車電話網及び人工衛星通信網などの無線通信網をも含むもの であることが望ましい。
〔0027】また國5に打いて，25は，インターネッ トなとのコンピュータ通信用公衆回線網20に接続され た定況映像入力装置で，各実況地点それぞれ设けられ，各実況地点における複数方向の実況映像（各実況地点か ら複数方向に向かって見える実況映像）をそれぞれりア ルタイムに常時入力する複数のデジタル・ビデオカメラ と，これらのデジタル・ビデオカメラからのデジタル映像データを，インターネットなどのコンビュータ通信網 を介してアクセスして来た複数のユーザーに対してオン ラインで提供するための大況映像提供日コンピュータ と，から構成されている。この実況映像提供用コンピュ ータは，各地点の実況映像を，座標データ（緯度データ及び経度データ），地名，施設名，施設の識別データ （施設の安咶番りなど）などの位蕳識別データ及び東西

南北なとの方向データと関連付けなから，データベース として記録している。この実況映像提供用コンピュータ は，前記通信網20により前記制御部3とオンラインで接続されている。なお，この通信網20は，有線通信網 だけでなく，携帯電話網，PHS（パーソナル・ハンデ ィホン・システム）網，ウ動中電話網及び人工徫星通信網なとの無線通信網をも含むものであることが望まし い。
〔0028】制御部23は，ユーザーのキーボード26又はマウス27などの入力装置による指示により，前記地図用サーバー 2 4 にアクセスして，そこから，ユーザ一が希望する地点（前記入力装鼠で指定した地点）を含 む所审領域の地図のデータをオンラインで取り出して， LCD 21 に表示させる。また，前記制卸部 23 は，ユ ーザーかこの表示された地図の任意の地点をマウス27 で指示しその地点を含む所定領域の実沿映像の表示を指令したとき，前記各実況地点の前記実況映像提供用コン ビュータを含む映像大力装置25にアクセスして，該当 する所定領域の友況映像のデータをオンラインで取り出 して，その実況映像をLCD21にリアルタイムに表示 させる。また，制御部23は，ユーザーが，例えぼ，表示を希望する地点の地名，施設名，施設の識別データな どを入力して該当する無況地点の类況映像又はその宗況地点を含む地図の表示を希望したとき，前記映像入力装置25又は地図用サーバー 2 4 にアクセスして，該当す る実況映像又は地図をオンラインで取り出して，それら をLCD21に表示させる。また，制御部23は，ユー ザーが自分か現在居る現在地点から進行方向に向かう方向で日つ最も近くの場所にある尖況地点の表況映像であ って，その進行方向に向かって見える実况映像を表示せ よと指令したときは，前記G P S 受信機 2 2 及び進行方向入力部26からユーザーの現在位置及び進行方向を座標データ（結度データ及び経度データ）及び方向データ として受け取り，その座標データ及び方向データに基づ いて，該当する前記各実況地点の映像入力装置25にア クセスして，オンラインで該当の実沿映像の提供を受け て，L C D 2 1に表示させる。なお，この場合の，前記制御部23か前記映像入力装置25から該当する実況映像の提供を受ける方法としては，従来のインターネット用のブラウジング・ソフトウェア（閲覧ソフトウェア） などによりこの各地の映像大力装置25にそれぞれ直接 アクセスして取り込む方法と，前記映像入力装置25に対して䠹当する実況映像データを根子メールに添付した ファイルとして送信してもらうように依頼してその送信 により受け取る方法など，様々な方法が有り得る。
【0029】また，この矢施形態4では，前记制御部2 3は，ユーザーか，ある実沿映像が前記LCD21に表示されているとき，その表示された実況映像の中のある部分だけを，例えば特定の建築物や特䞗の橋や特定の道路などの部分だけを，他の部分と見分けやすいように所

定のマーキングをしたいと指令したときは，その部分を他と異なって目立つようにマーキングできる手段（プロ グラム）を含むのがよい。この場合のマーキングは，例 えば，他と異なる色で着色して色別する方法，その部分 のみに網掛け処理を行う方法，その部分を他の部分より も太い実線で表示する方法，などの様々な方法がある。〔0030】実施形態5．次に，以1日は本発明の実施形態5を示すブロック図である。监Gにおいて，符号2 1，22，23，26，27は国1におけると問様なの で説明を省略する。図のにおいて，34は制御部23に接続されたCD－ROMプレーヤ（再生装置），35は このCD－ROMプレーヤ34に吭み取れらるCD－R OMである。このCD－ROM35には，例えば日本匡 の全体の地図を，座標データ（緯度•経度データ），地名，施設名，施設識別データなどの位置識別データと関遇付けて祋銧した地図データベースが記銢されている。
また罒6におろて，31は，インターネットなどのコン ピュータ通信網 30 に接続された映像大力装置で，図 4 の映像入力装置25と問様のものである。自吔制御部3 は，前記CD－ROMプレーヤ14によりCD－ROM 15を読み取ることにより，ユーザーが希望する位置を含む所定頒域の地図を読み取ってL C D 1 に表示させる ことができる。また，的記制御部3は，前記コンピュー夕通信網30を介して映像入力装置31にアクセスする ことにより，ユーザーか希望する実況地点からのユーザ一が希望する所足方向の実活映像を取り込み，LCD 2 1に表示させることができる。また，制御部23は，ユ ーザーが，「自分か現在居る現在地点から進行方向に向 から方向にある地点で日つ現在地点から最も近い実涚地点の実洗映像であって，その地点から自分の進行方向に向かって撮像した実況映像を，表示せよ」と指令したと きは，前記GPS受信機22からユーザーの現在位置を座噤データ（緯度データ及び経度データ）として受け取 り，且つ，前記進行方向入力部 26 からユーザーの進行方向のデータを受け取り，その座標データ及び進行方向 データに其づいて，前記映像入力装置31にアクセスし て，該当の座標データに近い場所にある実況地点のもの で且つユーザーの進行方向に近い方向の実況映像のデー タをオンラインで䞄み取り，その尖沿映像をリアルタイ ムにLCD21に表示させる。
【0031】
【発明の効果】
（1）本発明による其沉映像提供システムによれば，ユー ザーは，地図を見ながら，例えば希望の地点をポインテ ィングデバイスで指定する（例えばマウスでクリックす る）たけで，その地点の今の現時点の状況を＇実況映像で見ることができる。また，ユーザーは，いちいちポイン ティングデバイスで指定しなくても，予めコンピュータ プログラムで実況映像を希国する褌数の地点の地点識別 データを順次入力するようにしておけば，コンビュータ

により次々と希望する地点に対応する実況映像を表示さ せることができる。よって，ここでも，ユーザーは地図 を見ながら，実際には行っていないのに実際に行ってい るのと同じ感動を得られる「バーチァル・トラベル（仮想旅行）」を奏現できるようになる。また，例えば，全世界の地図から全世界の各地の実況映像をみながら，全世界のユーザーが一つの宝を探していくというような， コンピュータ通信ネットワークの世界の中での「宝探
し」ゲームを世界中で耑時に競うことも可能になる。ま た従来より存在しているG P S 受信機と請求項1の発明 とを組み合わせることによって，次のような効果を得る ことかてきる。すなわち，ユーザーがG P S 受信機から の現在位置（緯度データと経度データの座槽データ）に基づいて地図データバースから現在位置を含む所定領域 の地図を読み出して表示し，その表示された地図上に表示された現在位置（座標データ）又はそれと近い地点を ユーザーがマウスでクリックしてその地点の実況映像を オンラインで取り出すように指令すれば，GPS受信機 からの現在位直が計测誤差などがなく正しいものかどう かを確認できる。つまり，表示された実況映像がユーザ一の現在の位置から実際に見えるものと一致していれ ば，GPS受信機からの現在位置は正しいものと判定で きる（従来は，ユーザーは，地図だけでは，GPS受信機による現在位置か正しいかどうかを白分で確かめるこ とが困難だった）。
（2）また，本発明による実況映像提供システムによれ ば，ユーザーは，ある地点の実況映像を見ながら，その実況映像の識別データから，対応する地図上の地点を表示させることができるので，ある良沉映像を見て，その実況映像か見える場所が地図上のどこなのか（どらいら地名•施設名なのかなど）を，容易に知ることができる ようになる。
（3）また本発明による关況映像提供システムによれば， ユーザーは，自分の希望する文字列等により構成される検索データを入力することにより，その検索データに対応する一つ又は複数の地点の忘況映像を，その場でリア ルタイムに見ることが可能になる。特に，遠隔の複数の地点における今この瞬間の実況を映像でリアルタイムに順次見ることができる「バーチャル・トラベル（仮想旅行）」を提供できるようになる。
（4）なお，本発明におろいて，前記各実況映像を特定する ための実況映像識別データを，前記映像入力手段が設け られた各地点を示す位置データとその映像入力手段が掫影した方向を示す方向データとから構成するようにすれ ば，同じ地点ても，見る方向によって異なる実泞映像を提供できるようになり，「生の现場」をより詳細にリア ルタイムに再現できる実況映像を提供できるようにな る。
（5）また本発明では，ユーザーの现在位署をGPS受信
機なとの現在位置特定手段により求め，この求められた

現在位置に対応する実況地点の実況映像をオンラインで取り出して表示するようにしている。したがって，コー ザーは，例えば，次のような使い方が可能になる。例え ば，自分が車両などに乗って移動しているとき，GPS受信機により自分の現在位置を求めて，その現在位置に対応する地図上の地点を地図两䦗上で見る（このための システムは，従来より，自動車用の目的地までのルート の地図探索•運転案内システムとして実用化されてい る）。また，问时に，ユーザーは，GPS受信機からの現在位置を求め，通信ネットワークを介して該当する映像入力手段にアクセスし，現在位置に対応する実況映像 をオンラインで取り出して画面上に表示させて見る。こ れにより，ユーザーは，目的地へのルートを記載した地図を見なから，地図上に表示されている現在位置（G P S 受信機により計測されるユーザーの現在位置が画面の地図上に矢印などで表示されるシステムはウ動車の運転案内システムとして既に多数市販されている）と実況映像とか一致しているかどうかを碓認し，一致していれ ば，GPS受信機からの現在位置が計測䛊痤なく正しい ことを確認できる。また一致していなければ，GP S 受信機からの現在位置か間違っていることが分かる。な お，ここで述べた請求項5の発明によらずとも，従来よ り存在しているGPS受信機と請求項1 1 発明とを組み合わせることによっても，請求項5と同様の効果を得る ことはできる（上述のとおり）。すなわち，ユーザーが GPS受信機からの现在位置に具づいて地図データベー スから現在位置を含む所定領域の地図を読み出して表示 し，その表示された地図の現在位置に近い地点をマウス でクリックし，そのマウスでクリックした地点に近い一 つ又は複数の実況地点の実況映像をオンラインで取り出 すようにすれば，G P S 受信機からの現在位置が正しい かどうかをユーザー自身が確認できる。
（6）また，本発明では，用記映像入力手段は，的記各车況地点から複数の方向に向かって見える映像を撮像する ものであり，前記各実況地点を互いに識別するための実況地点識別データは，前弍映像入力手段が股けられた各実況地点の位置を示す位置データとその映像入力手段が撮影する方向を示す方向データとから構成されており，欮記現在位褱特定手段は，ユーザーの現在位置を特定す る手段とユーザーの進行方向を特定する手段とを含んで $お り, ~$ 前記実況地点識別データ選択手段は，前記現在位置特定手段により特定さたれユーザーの現在位置（緯度 データ及び経度データによる座標データなど）及びユー ザーの進行方向（東西南北など）に基づいて，ユーザー の現在位置に（最も）近い実沉地点を示し且つユーザー
選択するものである。よって，車両などで移動中のユー ザーは，画面に表示された地図上の自分の現在位置（G PS受信機からのト分の現在位嶵が矢印などで表示され

位置に対応する実況映像を見ることができ，地図上の地点と実況映像とを照らし合わせて，G P S により計測さ れた地図上の現在位置が本当に正しいかどうかな確認す ることができる。
（7）また，本発明では，㮍記表示手段に表示された実況映像の中のユーザーが指定した部分に対して他の部分と区別するためのマーキングをするためのマーキング手段 を備えることにより，実況映像（動画でも静止画でもよ い）の中のある部分（例えぼ，特定の建造物，橋，道路，河川，公園など）のみをマーキングできるので，完況映像を自分の目的に応じて見やすい形に加工できるよ うになる。
（8）また，本発明において，前記映像入力手段に，その地点において発生している音声をリアルタイムに入力す る手段をも含ませ，これらの入力された署声をそれぞれ リアルタイムに無線又は有線で取り込む（インターネッ ト用ブラウザーによる䦎覧する場合や通信ネットワーク により送信させる場合などを含む）ことにより，ユーザ一は，実況映像（現場の生の映像。動画又は静止画）だ けでなく，「現場の生の音声」をも併せて知ることが可能になる。
（9）また本発明では，さらに，前記映像大力手段の近傍 に備えられ，匂いセンサと，この匂いセンサからの信号 をもいデジタルデータに変換する手段とから構成され，前映像入力手段の設置された地点又はその周辺の匂いを入力するための匂い入力手段と，この匂い入力手段から の匂いデータを，その匕いに近似した匂いを発生させる ための芳香剤調合データに変換する手段と，前記表示手段の近㒀に備えられ，前記䏒香剤調合データから芳香剤 を調合して所望の匂いを発生させる匂い発生手段と，を含むようにすることにより，ユーザーは，前記の実況映像と重際の音声だけでなく，现場の実際の匂いをも，リ アルタイムに遠隔地において感得することができるよう になる。
【図面け簡単な说明】
【龱1】本発明の実施形態1又は2のハードウェア構成を示す図である。
【図2】本発明の実施形態1又は2の概念的構成を示 す図である。
【図3】本発明の実施形態1のディスプレイの構成を示す図てある。
【図1】本発明の実施形態1におるいてディスプレイに表示される地図の一例を示す図である。【図5】本発明の実施形態 4 を示すブロック図であ る。
【龱〕】本発明の実施形態5を示すブロック図であ る。
【符号の説明】
1 パーソナルコンピュータ（パソコン）
2 制御装真
3 ハードディスク装置
4 CDーROM
5 CD－ROMドライブ5
6 キーボード
7 ディスプレイ
7 a ディスプレイの上半分
7 b ディスプレイの下半分
8 スピーカ
10 公衆回線

[^3]【図1】

【図4】

Sony，Ex．1002，p． 1122

Sony，Ex．1002，p． 1123
[Title of the Invention] CALLING METHOD OF DIAL-UP CONNECTION COMMUNICATION EQUIPMENT AND SUPERVISORY CONTORL SYSTEM USING IT

Abstract

[Abstract] [Problem] To provide a calling method, which may surely call the communication equipment connected to the Internet network by dial-up and perform two-way communication securely in real time. [Means for Resolution] The communication equipment 2 calls the communication equipment 3 through a telephone line 4 to transmit a connection request and its own public key to the communication equipment 3 . On the other hand, the communication equipment 3 transmits its own public key to the communication equipment 2. After that, both of the communication equipment 2,3 once disconnect the telephone line 4 , and call neighboring providers 5,6 to connect the same respectively to the Internet network 7. Both of the communication equipment 2,3 , encipher their own IP addresses in the current connection by the public key of the party to transmit it as an electronic mail to the electronic mail address of the party. Each of the communication equipment 2,3 decodes the received electronic mail by its own privacy key to confirm the IP address of the party. After that, both of the communication equipment 2,3 communicate through the Internet network 7 using the concerned IP address.

[Claims]

[Claim 1] A calling method of dial-up connection communication equipment, which is a method of calling dial-up connection communication equipment connected to a network by dial-up, comprising: a first process in which calling communication equipment transmits a connection request to dial-up connection communication equipment by a communication line provided separately from the network and capable of calling the dial-up connection communication equipment; a second process in which the dial-up connection communication equipment receiving the connection request is connected to the network by dial-up; and a third process in which the calling communication equipment and the dial-up connection communication equipment communicate with each other through the network.
[Claim 2] The calling method of dial-up connection communication equipment according to claim 1 , wherein the third process includes: an encipher process in which the transmitting communication equipment between the calling communication equipment and the dial-up connection communication equipment enciphers and transmits at least part of the data transmitted in the third process; and a decoding process in which the receiving communication equipment decodes the enciphered data.
[Claim 3] The calling method of dial-up connection communication equipment according to claim 2, wherein the first process includes a process in which the calling
communication equipment or the dial-up connection communication equipment informs the party at the other end of a key of cryptograph used in encipher.
[Claim 4] The calling method of dial-up connection communication equipment according to claim 1,2 or 3 , wherein the network is provided with a server for relaying the communication between the calling communication equipment and the dial-up connection communication equipment, and the third process includes: a process in which both of the above communication equipment inform the sever of their own identifications; a process in which both of the above communication equipment inform the server of the identification of the party at the other end to select the communication equipment of the party at the other end; and a process in which the server relays the communication between the selected communication equipment.
[Claim 5] The calling method of dial-up connection communication equipment according to claim 1,2 or 3 , wherein the network is a network which specifies a transmitting destination by an address in the network in transmitting data, and also assigns the dial-up connection communication equipment a temporary address in every connection, and the third process includes: a process in which the dial-up connection communication equipment obtains its own address in the current connection; a process in which the dial-up connection communication equipment informs the calling communication equipment of its own address by an electronic mail; and a process in which the calling communication equipment and the dial-up connection communication equipment specify the party at the other end by mutual addresses to communicate with each other.
[Claim 6] The calling method of dial-up connection communication equipment according to claim $1,2,3,4$ or 5 , wherein after the third process, the calling method further includes a fourth process in which the calling communication equipment directly calls the dial-up connection communication equipment by the communication line to confirm whether or not the dial-up connection communication equipment normally disconnects the line from the communication line.
[Claim 7] A supervisory control system, comprising: a child station having facility equipment; and a parent station for controlling the facility equipment by communication with the child station, wherein the parent station includes: parent station communication means for calling the child station through a ring enable communication line to transmit a connection request, and then communicating with the child station through a network provided separately from the communication line, and the child station includes: child station communication means connected to the network by dialing up it on receiving the connection request through the communication line to communicate with the parent station through the network.
[Detailed Description of the Invention] [0001]
[Technical Field to which the Invention Belongs]
This invention relates to a calling method of dial-up connection communication equipment connected to a network at need such as communication equipment connected to the

Internet network, for example, by dialing up it and a supervisory control system using it. [0002]
[Prior Art]
As one of communication means, public telephone line network has been widely used. In this public telephone line network, prior to the communication, the connection (logical channel) is secured between the calling end and the called end to call the called party. In this type of connection mode communication system, the longer the channel is, the more the establishment of connection becomes difficult. Therefore, the public telephone line network generally adopts the rate system according to the communication distance.
[0003]
On the other hand, as new communication means, the Internet network has been spread rapidly in recent years. In the case of the Internet network, the communication equipment at the transmitting end creates datagrams by separating a data raw by each predetermined size upon transmitting data and transmits the same to the adjacent communication equipment. An address (IP address) in the Internet network of the communication equipment at the receiving end is added to each datagram. In the case of receiving the datagram, the communication equipment transmits the data to the communication equipment closer to the receiving end among the adjacent communication equipment according to the IP address of the transmitting destination (the receiving end). Thus, the transmit data can be sent to the receiving end without establishing the connection. In this type of connectionless mode communication system, both of the communication equipment at the transmitting end and at the receiving end do not grasp the channel between them. Therefore, in the case of the Internet network, frequently the rate system according to the quantity of data (the communication time) is adopted, or a fixed rate system is adopted at intervals of a predetermined period such as every year. Since both of rate systems are not susceptible to the distance between the transmitting end and the receiving end, in the long distance communication, especially in the communication with the foreign countries or the like, there is high possibility of reducing the communication cost by communication using the Internet network.
[0004]
Although the Internet network has been used the electronic mail, etc., for data communication mainly composed of characters heretofore, in recent years, with the improvement in bandwidth of the line, it has been used for two-way communication in real time between the communication equipment as well such as a video conferencing system and the Internet telephone.
[0005]
The methods of connecting the respective communication equipment to the Internet network are classified roughly into the connecting using a leased line and the dial-up connection. In the connection method using the leased line, a dedicated communication line is provided between the communication equipment and an Internet connecting firm (a
provider) to thereby always connect each piece of communication equipment and the Internet network. In this case, since the communication equipment is always connected to the Internet network, an inherent IP address is assigned to the communication equipment. This method is adopted in the large companies and universities, and the users always pay fixed expenses as the maintenance costs for the communication line to the telephone company or the like.
[0006]
On the other hand, the dial-up connection is a method of connecting the communication equipment and the Internet network to each other in the case of requiring the connection to the Internet network. The connection to the Internet network is performed by communicating with the provider using the telephone line and relaying this communication by the provider. The provider assigns a free IP address as an IP address of the communication equipment when the communication equipment is put in the connecting state. Thus, the IP address can be shared among a plurality of pieces of communication equipment. Further, this method may dispense with the dedicated communication line between the respective pieces of the communication equipment. As a result, when the amount of communication is small, the connection can be done more inexpensively as compared with the leased line circuit. Accordingly, the dial-up connecting method is adopted mostly in a small firm and a personal house, which have comparatively smaller amount of communication. In this case, the electronic mail is stored by the provider, so the user verifies the arrival of the electronic mail by confirming a predetermined storage area in the provider at every connection.
[0007]
[Problems that the Invention is to Solve]
However, when the called communication equipment adopts the dial-up connection method, the calling communication equipment cannot determine whether or not the called end is connected to the Internet network beforehand. When the communication equipment at the called end is connected to the Internet network at the time of calling, the calling communication equipment can communicate with the called end, but if not so, both of the communication equipment cannot communicate with each other. Consequently, the connection cannot be made surely, resulting in the problem of insufficient quick responsiveness. This problem is critical in the case of speech communication similar to that on the ordinary telephone, in the case of a video conferencing system, and especially in the case of two-way communication in real time.
[0008]
Although this problem occurs when each communication equipment is connected not only to the Internet network but also to the network at need as in the case of personal computer communication, as described in the following, further problems are caused in the case of dial-up connection to the Internet network.
[0009]
To be concrete, the datagram is transmitted according to the respective 4
communication equipment configuring the Internet network and the IP address of the transmitting destination included in the datagram. Consequently, in communication, the transmitting end has to grasp the IP address of the receiving end. In the dial-up connection method, however, the IP addresses of the respective pieces of communication equipment are not determined until they are connected to the provider. Consequently, the transmitting end cannot grasp the IP address of the receiving end beforehand as in the leased line connection method.
[0010]
In order to solve the above problem, a server having a fixed IP address has been installed heretofore for relaying the communication between the respective pieces of the communication equipment. In this case, the respective pieces of communication equipment start to communicate with the server after connection to the Internet network. When the respective pieces of communication equipment start to communication, the server relays the communication with the equipment at one end to that at the other end. In this case, the datagram transmitted to the IP address of the server is transferred to the communication equipment of the other party, so the respective pieces of communication equipment need not know the IP address of the other party. As a result, the communication can be performed without any obstacle even between the pieces of communication equipment connected to each other by dial-up.
[0011]
In the case of providing the server, however, it is necessary to maintain the server, resulting in newly causing the problem of requiring the maintenance cost. Further encountered is the problem that when the server is busy, even if the relevant communication equipment and the communication equipment of the other party are free, the communication cannot be performed. Further a method of searching for the other party of communication other in the server is not set up, so it is difficult to find a desired other party of communication. For example, at the moment, it is frequent to search for the other party by the following searching method. That is, the respective pieces of communication equipment register its own identifier in the server. The server displays a list of identifiers received, and the respective pieces of communication equipment select a desired other party from the list. According to this method, as the number of connectors increases, the more the time and trouble for searching increases.
[0012]
Further, even if the server is installed, the problem that when the communication equipment of the other party is not connected to the network, communication cannot be started remains unsolved.
[0013]
The invention has been made in the light of the above problems and it is an object of the invention to provide a calling method of communication equipment, which may improve the quick responsiveness of the communication equipment when the called communication
equipment is connected to a network by dial-up.
[0014]
[Means for Solving the Problems]
According to the invention of claim 1, a calling method of dial-up connection communication equipment is a method of calling dial-up connection communication equipment connected to a network by dial-up, and it is characterized in that the method includes the following processes in order to solve the above problems.
[0015]
That is, the method includes: a first process in which calling communication equipment transmits a connection request to dial-up connection communication equipment by a communication line provided separately from the network and capable of calling the dial-up connection communication equipment; a second process in which the dial-up connection communication equipment receiving the connection request is connected to the network by dial-up; and a third process in which the calling communication equipment and the dial-up connection communication equipment communicate with each other through the network.
[0016]
As the above network, cited are connectionless mode network such as the Internet network and personal computer communication, and as the communication line, cited are a telephone line and a harbor radio.
[0017]
Generally the network, which cannot call the other party, is more easily achieved than the communication line, which can call the other party, such as the telephone line. Further, in the case where the communication equipment is connected to the network at need as in the dial-up connection, a channel between the network and the communication equipment and resources on the network such as an address can be shared by the other communication equipment and the other uses. Accordingly, the dialed-up connection communication equipment can be reduced in communication cost as compared with the case of directly communicating using the communication line and the case of connection to the network by a leased line.
[0018]
In the above constitution, before both of the calling communication equipment and the dial-up connection communication equipment communicate through the network, the calling communication equipment transmits a connection request to the dial-up connection communication equipment. Thus, even if the dial-up connection communication equipment is not connected to the network, in communication in the third process, it can be connected to the network. Accordingly, in the dial-up connection communication equipment, which can communicate at a low rate, communication can be surely started in a desired timing to enable real-time communication.
[0019]
According to the invention of claim 2 , the calling method of dial-up connection 6
communication equipment is characterized in that in the constitution of the invention as claimed in claim 1, the third process includes: an encipher process in which the transmitting communication equipment between the calling communication equipment and the dial-up connection communication equipment enciphers and transmits at least part of the data transmitted in the third process; and a decoding process in which the receiving communication equipment decodes the enciphered data.
[0020]
As the method used in encipher, various methods such as a method of using a common key of cryptograph to encipher and decoding and a method of enciphering using a public key and encoding using a privacy key different from the public key may be applied. Both of communication equipment acquire key of cryptograph such as a common key of cryptograph and the public key of the other party by a predetermined method such as communication in the first process or mail prior to the third process.
[0021]
In the case of communication through the network, there is the risk that the transmitted data is wiretapped or altered. Especially in the case of using the Internet network or the like as the network, the communication equipment at the calling end and the communication equipment at the receiving end cannot specify a data transmission channel, so that the degree of risk of communication jamming such as tapping is high.
[0022]
In the above constitution, however, among the communication contents, at least some contents are concealed from a third party other than the calling communication equipment and the dial-up connection communication equipment. As a result, the security to the communication jamming can be improved as compared with the case of transmitting a plaintext as it is without enciphering the communication contents.
[0023]
As the data to be enciphered, cited are the communication contents themselves, and the user names or addresses of both of communication equipment. However, as the amount of data to be enciphered increases, the load of both of the communication equipment increases, so that only part of the data may be enciphered in consideration of the signification of communication. Generally when the user name and address are heard by a third party, the significance of the communication contents is apt to be guessed. Accordingly, in the case of transmitting the user name and address prior to communication such as an image and voice, encryption of these is especially desired. Thus, the security to communication jamming can be improved without much increase in load of both of communication equipment.
[0024]
Further, according to the invention of claim 3, the calling method of dial-up connection communication equipment is characterized in that in the constitution of claim 2 , the first process includes: a process in which the calling communication equipment or the dial-up connection communication equipment informs the party at the other end of a key of
cryptograph used in encipher.
[0025]
In the case of using the public key in encipher, the party at the other end is informed of the public key corresponding to its own privacy key. In the case of enciphering using common key of cryptograph, the key of cryptograph is informed to the party at the other end. [0026]

In the above constitution, the key of cryptograph is informed at every connection request, whereby even when the key of cryptograph is changed from that of the preceding communication, both of communication equipment can transmit and receive the enciphered data smoothly. In addition, both notification of connection request and sending of key of cryptograph are performed in a batch using the communication line. Accordingly, the time and trouble for connecting the communication line can be reduced as compared with the case of individually performing both of the above.
[0027]
Further, in the case of setting the key of cryptograph by mail or the like, the respective pieces of communication equipment have to set the key of cryptograph before use. The key of cryptograph is provided for each of communication equipment, so that especially when the number of parties to communicate increases, the time and trouble for setting increases. On the contrary, in the constitution as described in claim 3 of the invention, the key of cryptograph is informed in every connection, whereby it is not necessary to preset the respective keys of cryptograph, so that the time and trouble for setting can be reduced. [0028]

The key of cryptograph is transmitted to the communication equipment of the party at the other end through the communication line, and the data enciphered by the key of cryptograph is transmitted through the network. Accordingly, when a third party attempts to interfere the communication, wire tapping of two-way communication is needed. As a result, the security to communication jamming can be improved as compared with the case of transmitting the key of cryptograph and data by single communication means.

On the other hand, according to the invention of claim 4, the calling method of dial-up connection communication equipment is characterized in that in the constitution of the invention as claimed in claim 1,2 or 3 , the network is provided with a server for relaying the communication between the calling communication equipment and the dial-up connection communication equipment, and the third process includes: a process in which both of the above communication equipment inform the sever of their own identifications; a process in which both of the above communication equipment inform the server of the identification of the party at the other end to select the communication equipment of the party at the other end; and a process in which the server relays the communication between the selected communication equipment.
[0030]

As the network, cited is a connectionless mode network such as the Internet network. In this constitution, in enciphering in claim 2 or 3, the identifications of both of communication equipment are cited as especially suitable data.
[0031]
In the above constitution, similarly to claim 1 , even when the dial-up connection communication equipment is not connected to the network, in communication in the third process, it can be connected to the network. Thus, both of communication equipment can surely start the communication in a desired timing through the server provided in the network. Even when the server makes public the identification, the user identification is enciphered and registered to thereby easily conceal the identifications of both of communication equipment from a third party.
[0032]
According to the invention of claim 5, the calling method of dial-up connection communication equipment is characterized in that in the constitution of the invention as described in claim 1, 2 or 3 , the network is a network such as the Internet network, which specifies a transmitting destination by an address in the network in transmitting data, and also assigns the dial-up connection communication equipment a temporary address in every connection, and the third process includes: a process in which the dial-up connection communication equipment obtains its own address in the current connection; a process in which the dial-up connection communication equipment informs the calling communication equipment of its own address by an electronic mail; and a process in which the calling communication equipment and the dial-up connection communication equipment specify the party at the other end by mutual addresses to communicate with each other.
[0033]
In the case of the dial-up connection communication equipment, an address is undetermined until the connection to the network is made. Therefore, according to the conventional method, the calling communication equipment cannot grasp the address of the receiving end so that the dialed connections of communication equipment cannot communicate through the network.
[0034]
On the other hand, as in the constitution of the invention of claim 4, in the case of providing the network with the server for relaying the communication between both of communication equipment, even the dialed-up connections of communication equipment can communicate smoothly. In this case, however, the cost for separately providing the server and the maintenance cost are needed. Further, when the server is busy, there is the risk that both of communication equipment cannot communicate.
[0035]
On the contrary, in the constitution of the invention as described in claim 5, at the point of time the dial-up connection communication equipment determines its own address after connection to the network, it can inform the calling communication equipment of the
address. Thus, both of communication equipment can communicate through the network without providing the server as in the constitution of claim 4. Accordingly, the cost required for communication can be further reduced as compared with the constitution of the invention described in claim 4, and also both of communication equipment can surely communicate regardless of congestion in the server.
[0036]
At the end of communication through the network, the dial-up connection communication equipment disconnects the connection to the network. In this case, when the dial-up connection communication equipment fails in disconnection of the line from the network, the dial-up connection communication equipment continues the connection to the network, so that the communication cost is raised against our desire. Especially, when no user is present in the periphery of the dial-up connection communication equipment such as the case where the dial-up connection communication equipment is a child station of a monitoring control system, failure in line disconnection is hard to grasp. Accordingly, when failure in line disconnection occurs, the period of time the dial-up connection communication equipment is connected to the network against out desire is apt to get longer, resulting in the high risk of increasing wasteful communication cost.
[0037]
On the contrary, according to the invention of claim 6, the calling method of dial-up connection communication equipment is characterized in that in the constitution of the invention described in claim $1,2,3,4$ or 5 , after the third process, the calling method further includes a fourth process in which the calling communication equipment directly calls the dial-up connection communication equipment by the communication line to confirm whether or not the dial-up connection communication equipment normally disconnects the line connection to the communication line.
[0038]
In the above constitution, at the end of communicating with the dial-up connection communication equipment, the calling communication equipment confirms whether the line disconnection is successful or not by ring tone in direct calling. Thus, the calling communication equipment can surely recognize the line disconnection failure of the dial-up connection communication equipment. Accordingly, it is possible to take suitable measure such as the calling communication equipment's again designating the dial-up connection communication equipment to disconnect the line or the calling communication equipment's user leaving for the installation place of the dial-up connection communication equipment to disconnect the line. As a result, the occurrence of wasteful communication cost due to failure in line disconnection can be surely prevented.
[0039]
In the case of the communication line using ring tone different between the period the line is connected and the period the line is disconnected, the dial-up connection communication equipment is set so that call-in is not caused until a predetermined number of
times of ring tone, and in conformation, the calling communication equipment discriminates the ring tone before it reaches the predetermined number of times, thereby confirming the disconnection of the line. In this case, when the calling communication equipment disconnects the line used for direct call before it reaches the predetermined number of times, the communication cost is not needed even when the dial-up connection communication equipment can normally disconnect the line from the network. [0040]

When the calling method of dial-up connection communication equipment related to the invention of claim 1 is used, it is possible to construct a communication system, which may start the communication in a desired timing, and reduce the communication cost. [0041]

In this case, in the supervisory control system, generally, a child station is installed in a place away from a parent station, and the parent station monitors and controls a number of child stations. Therefore, the cost for communication between the parent station and the child stations is liable to increase, and there is a strong demand toward reduction of communication cost. Especially, in the case where the data transmitted to the parent station by the child station is video data such as the case of monitoring the installation place, the amount of data is very large so that when the data is transmitted through a ring enable communication line, high communication cost is needed. On the other hand, in the supervisory control system, delay of designation is directly linked with escalation of an accident so that the child station has to instantaneously respond to designation of the parent station. Therefore, when the child station communicates with the parent station through the network only connected by dial-up connection, the child station cannot respond to the designation of the parent station and there is the risk of escalating the accident. As a result of these, in the monitor and control system, while the quick responsiveness of the child station to the designation of the parent station is kept, reduction of communication cost is strongly demanded [0042]

On the contrary, according to the invention of claim 7, in order to solve the above problem, a supervisory control system includes: a child station having facility equipment; and a parent station for controlling the facility equipment by communication with the child station, and the monitor and control system is characterized in that the parent station includes: parent station communication means for calling the child station through a ring enable communication line to transmit a connection request, and then communicating with the child station through a network provided separately from the communication line, and the child station includes: child station communication means connected to the network by dialing up it on receiving the connection request through the communication line to communicate with the parent station through the network.
[0043]
In the above constitution, the parent station communication means of the parent 11
station calls the child station through a communication line such as a telephone at an arbitrary point of time such as a point of time user's designation is given. On the other hand, the child station communication means of the child station receives a connection request from the parent station and then sets up the connection to the network such as the Internet by dial-up connection. After that, the parent station and the child station transmit and receive the data through the network.
[0044]
In the above constitution, the child station is connected to the network by dial-up connection, which enables communication at a low rate, whereby the communication cost can be remarkably reduced as compared with the case where the child station and the parent station communicate using the communication line only. On the other hand, after the parent station calls the child station using the ring enable communication line, the data is transmitted and received through the network, so that the parent station can start communication with the child station in a desired timing. As a result of these, it is possible to achieve the supervisory control system, which may remarkably reduce the communication cost between the child station and the parent station while the child station can instantaneously respond to the designation of the parent station.
[0045]
[Mode for Carrying Out the Invention]
[First Embodiment] One embodiment of the invention will now be described according to Figs. 1 to 4. A calling method of dial-up connection communication equipment according to the present embodiment is a calling method applied to a communication system in which the calling end and the called end communicate through a telephone line and the Internet network and also at least the called communication equipment is connected to the Internet network by dial-up, and this is a preferable method especially for long-distance communication such as between Japan and the U.S.A. The dial-up connection is a method of connecting the communication equipment, which is not always connected to the network such as the Internet network, to the network when each of communication equipment determines to need connection.
[0046]
In the following, prior to the description of the above calling method and communication equipment for implementing the method, a communication system using the communication equipment will be described. That is, as shown in Fig. 1, a communication system 1 according to the present embodiment includes the above calling method, and the system is provided with communication equipment 2 and 3 which are at the calling end or at the called end, respectively. In the present embodiment, which communication equipment 2 , 3 is at the calling end or at the called end is not especially determined, and both of communication equipment 2 and 3 have the functions of both the calling end and the called end as mentioned later. The communication equipment 2,3 at the called end corresponds to the dial-up connection communication equipment described in the scope of the claims.
[0047]
Both of the communication equipment 2,3 are respectively connected to a telephone line (a communication line) 4. The telephone line 4 is a digital line such as ISDN (Integrated Services Digital Network) or an analog line, and the respective communication equipment 2, 3 can inform a switchboard not shown of the telephone line 4 of the telephone number of the party at the other end by dialing. Thus, the respective communication equipment 2 and 3 can mutually call the party at the other end through the telephone line 4 to directly communicate with each other.
[0048]
The users of the respective communication equipment 2 and 3 join the Internet connection firms (provider) 5 or 6 , and the communication equipment 2,3 can respectively use the Internet network (network) 7 by dial-up connection. Since the communication equipment 2,3 are respectively at the calling end in some case and at the called end in some case, both of providers 5,6 are required to have the same function. In the following, although the provider 5 on the communication equipment 2 side will be described for the sake of convenience, the configuration of the provider 6 is the same.
[0049]
To be concrete, on receiving a connection request from the communication equipment 2 through the telephone line 4 , the provider 5 causes the communication equipment to input ID showing an account (use capability) and a password preset by each ID. At the end of checking the account with the password, the provider 5 assigns a free IP address among its possessed addresses (IP addresses) on the Internet network 7 as a temporary IP address of the communication equipment 2 . Thus, the communication equipment 2 can recognize its own IP address in current connection. As a result, the communication equipment 2 can create a data row (datagram) divided by each predetermined size, transmit the same to the provider 5 , and discriminate the datagram addressed thereto out of the datagram received from the provider 5. The provider 5 transfers the datagram from the communication equipment 2 to the Internet network 7, and transmits the datagram from the Internet network 7 to the communication equipment 2 . Thus, the communication equipment 2 can be connected to the Internet network 7 without any inherent IP address. [0050]

The provider 5 shares the IP address and the connection line with the Internet network 7 among subscribers of dial-up connection. Accordingly, in the provider 5, the connection rate of the dial-up connection is often set to a lower rate as compared with the case where the communication equipment 2 holds an inherent IP address, and is always connected to the Internet network 7 through a leased communication line, that is, the case of leased line connection.
[0051]
The provider 5 is provided with an access point for communicating with the communication equipment 2 through the telephone line 4 . The access point is disposed near
to the communication equipment 2 such as the range of speech communication specified by local exchange code, and the communication equipment 2 can hold down the rate (telephone charge) of the telephone line 4 in communicating with the provider 5.
[0052]
Further, the provider 5 is a main server of the communication equipment 2 as well. To be concrete, the provider 5 previously assigns an electronic mail address to the communication equipment 2 and includes a storage area (a mail box) not shown corresponding thereto. The electronic mail addressed to the communication equipment 2 is delivered to the provider 5 , and the provider 5 receives the electronic mail addressed to the communication equipment 2 and stores it in the corresponding mailbox. The provider 5 is always connected to the Internet network 7, and the IP address is always constant. Accordingly, the electronic mail is surely delivered whether the communication equipment 2 is connected to the Internet network 7 or not and regardless of the IP address in connection. Each of communication equipment 2 can read out an electronic mail addressed to itself from the mailbox in connection by dial-up.
[0053]
At present the Internet network has been spread widely and a number of providers have started to provide service. Most of these providers support dial-up connection and have a function of a mail server. Accordingly, the communication system 1 of the present embodiment can be easily configured by providing the communication equipment 2 and 3 .
[0054]
The following description mainly deals with the case of transmitting both a voice and an image as in a video conference as configuration examples of the communication equipment 2 and 3. In the following, not only the case of transmitting both of a voice and an image but also the real-time transmission of data through the network such as the Internet network 7 by both communication equipment 2 and 3 are known generally as network conference.
[0055]
As to a method of achieving the respective pieces of communication equipment 2 and 3, although various configurations are considered as mentioned later, the description will now deal with the configuration in which the communication equipment $2(3)$ includes: a connector 2a (3a) controlling the connection between the telephone line 4 and the Internet network 7; and a computer 2 b (3b) serving as an input/output device. In this configuration, the calling method of the present embodiment is implemented by the connector 2 a . The communication equipment 2 and 3 are respectively provided with telephone sets $2 \mathrm{c}, 3 \mathrm{c}$ for ordinary speech communication except communication according to the above calling method. Since both of communication equipment 2 and 3 have the same configuration, in the following, for the sake of convenience, only the configuration of the communication equipment 2 will be described in detail.
[0056]
That is, the computer $2 b$ includes an input device not shown such as a video camera
and a microphone, wherein the voice and image of the user side can be transmitted as a digital data row to the connector 2 a . Further, the computer 2 b includes an output device (not shown) such as a monitor and a speaker, wherein the data row received from the communication equipment 3 through the connector 2 a can be informed as an image and a voice to the user.
[0057]
The computer 2 b and the connector 2 a are connected to each other by a previously selected communication method such as RS232C, RS422A, IrDA or LAN, whereby data can be transmitted and received in two-way. As to the communication method between both, it doesn't matter whether wired or wireless, or digital or analog, and also what the communication speed and the communication standard are like if only two-way communication is enabled in real time.
[0058]
On the other hand, the connector 2 a of the present embodiment, as shown in Fig. 2, includes: a flash memory 11 for storing a program for implementing the calling method of the present embodiment and various settings; an interface part 12 communicating with the computer 2 b in the above predetermined communication method; a communicating IC (Integrated Circuit) 13 connected to the telephone line 4 and the telephone set 2 c ; a CPU (Central Processing Unit) 14 for controlling the whole connector 2a; and a RAM (Random Access Memory) 15 serving as a working storage. Further, a status display liquid crystal panel 16 is provided to display the status of the connector 2 a such as the electronic mail address of the communication equipment 3. The respective members 11 to 16 are respectively connected to a bus 17 , and the data is transmitted between the respective members through the bus 17 .
[0059]
The above flash memory 11 is an electrically reloadable non-volatile memory, which stores a program for performing the operation mentioned later and various set points used in the concerned program. To be concrete, as the set points concerning the communication equipment 3 , cited is a telephone number in a direct call. Further, the memory stores a password for identifying the communication equipment 2 by the communication equipment 3 in a direct call. The concerned password is previously transmitted to the communication equipment 3 , and the communication equipment 3 can determine whether or not the password is a call from a regular user by checking. Further, as the set points concerning the provider 5, a telephone number of the provider 5, an account, a password and its own electronic main address are stored. Further, in the present embodiment, in communication through the Internet network 7, the communication equipment 2 and the communication equipment 3 communicate by enciphering at least part of the communication contents using the public key cryptosystem such as RSA code. Accordingly, the flash memory 11 stores a privacy key used in encipher and decoding and a public key as well. Naturally instead of the flash memory 11, non-volatile record means such as ROM (Read-Only Memory), a battery back-up

RAM or a hard disk may be used.
[0060]
The interface part 12 is an interface such as RS232 C interface according to a method of communication between the computer 2 b and the connector 2 a , and the CPU 14 can communicate with the computer 2 b through the interface part 12 .
[0061]
Further, the communicating IC 13 is an IC for MODEM, which may control the line connection/disconnection of the telephone line 4 , and convert a data row processed by the CPU 14 from and to an electric signal transmitted through the telephone line 4. Further, according to the designation of the CPU 14 , the telephone line 4 and the telephone set 2 c can be connected to each other to ring the bell of the telephone set 2 c .
[0062]
On the other hand, the CPU 14 controls the interface part 12 and the communicating IC 13 according to the program of the flash memory 11 . To be concrete, the connector 2 a can be directly communicated with the communication equipment 3 through the telephone line 4 by dialing a desired telephone number or connected to the Internet network 7 through the provider 5. Thus, the connector 2 a can perform direct communication through the telephone line 4 and communication through the Internet network 7 in a predetermined order as mentioned later.
[0063]
The CPU 14 can control the computer 2 b and the telephone set 2 c through the interface part 12 or the communicating IC 13. Thus, the connector 2 a can determine whether or not the computer 2 b designates the connection through the Internet network 7 from the user by keying or the like, and a connecting destination. The connector 2 a connects the telephone line 4 and the telephone set 2 c to each other to perform ordinary speech communication.
[0064]
In the case of direct connection through the telephone line 4 , the CPU 14 can transmit a predetermined message to the communication equipment 3 through the communicating IC 13 , and also identify the message received from the communication equipment 3 . The communication method between the communication equipment 2 and 3 is serial communication according to the standards V32, V32bis, V34, V21 or V22, in which a message can be transmitted and received between them.
[0065]
On the other hand, in the case where the communication equipment 2 and the provider 5 are connected to each other by dial-up, the CPU 14 transmits and receives datagram to and from the provider 5 through the communicating IC 13 . Thus, the connector 2 a can recognize the IP address in current connection and also transmits an electronic mail in a predetermined format. Further, the connector 2 a confirms its own mailbox provided in the provider 5 in a predetermined period to determine whether or not the electronic mail from the communication equipment 3 arrives. When the electronic mail has arrived, the contents of
the electronic mail are confirmed to recognize the IP address of the other party.
[0066]
In addition, in the case of connection through the Internet network 7, the CPU 14 controls the interface part 12 and the communicating IC 13 to relay the communication between the computer 2 b and the Internet network 7. In the case where data is transmitted in a format different from that of datagram transmitted through the Internet network 7 such as a voice data row and an image data row between the computer 2 b and the connector 2 a , the CPU 14 converts both of them mutually. On the other hand, in the case of transmitting the datagram to the computer 2 b , the CPU 14 passes the datagram as it is. Thus, the connector can smoothly relay the communication between the computer 2 b and the Internet network 7 .
[0067]
Further, the CPU 14 can encipher the data transmitted to the communication equipment 3 using the public key of the communication equipment 3 or decode the data received from the communication equipment 3 using its previously stored own privacy key. [0068]

Although the computer 2 b is in charge of input/output in the communication equipment 2 in the above description, the input/output device is not limited to this. As described above, as to the communication method between the input/output device such as the computer 2 b and the connector 2 a , it doesn't matter whether wired or wireless, or digital or analog, and also what the communication speed and the communication standard are like. Accordingly, various input devices such as a telephone set and a video camera can be used. In this case, however, the connector $2 a$ need to convert the datagram transmitted by the Internet network 7 and the data between the telephone set 2 c and the connector 2 a mutually. [0069]

Especially as shown in Fig. 3, in the case of using a telephone set 22 c as an input device of communicating equipment 22 , the telephone set 22 c can be used both in speech communication through the Internet network 7 and ordinary speech communication. Further, it will be sufficient to provide a connector 22a between the telephone set 22 c having the same configuration as the conventional one and the telephone line 4 , the installation can be more facilitated as compared with the case of providing another input device. [0070]

In this case, since the input device is only the telephone set 22 c , it is necessary to discriminate between speed communication through the Internet network 7 and ordinary speed communication. Although a switch or the like is provided on the connector 22a, thereby designating the speech communication through the Internet network 7 , the following method may be adopted to allow the user to discriminate between them using the telephone set 22 c only. That is, the user presses a button for a preset register number of the party at the other end after the operation not used in the ordinary speech communication such as pressing the "\#" button three times on lifting a telephone receiver. The connector 22a recognizes the above button operation according to a voice signal sent from the telephone set 22 c to identify
the occurrence of a connection request and the party at the other end. When speech communication with the other party is enabled through the Internet network 7, the user is notified by ringing a bell of the telephone set 22 c or the like. On the other hand, when an ordinary telephone number is pressed, the connector 22 a determines the ordinary speech communication according to a signal from the telephone set 22 c , and passes the signal intact to the telephone line 4 . Thus, the telephone set 22 c can perform a direct call through the telephone line 4 similarly to the case without the connector 22 a . Thus, as the operation for designating the communication through the Internet network 7, the operation not used ordinarily is assigned by the input device, whereby a connection request through the Internet network 7 and an ordinary communication connection request can be discriminated only by using the same input device as the conventional one.
[0071]
Although the above description deals with the case in which the computer $2 b$ is in charge of input/output, and the connector 2 a is in charge of controlling the connection order to the telephone line 4 or the Internet network 7 or encryption in the communication equipment 2 , the role sharing between both members $2 \mathrm{a}, 2 \mathrm{~b}$ is also not limited to this. For example, the processing of the connector 2 a such as the above connection order control and the encryption may be mostly performed by the computer 2 b . In this case, ordinary MODEM or a terminal adaptor of ISDN may be applied to the connector 2 a .
[0072]
In Fig. 1 and Fig. 3, although the connector $2 a$ (22a), the computer $2 b$ and the telephone set $2 \mathrm{c}(22 \mathrm{c}$) are respectively described as separate members for the sake of convenience of description, naturally they may be integrated. As an example of integration, cited are a domestic television set shown in Fig. 1, in which the connector 2a and the computer 2 b are integrated and a telephone set shown in Fig. 3, in which the connector 22a and the telephone set 22 c are integrated. Further, when a wireless telephone line is used as the telephone set 4 , the above integrated telephone set may be constructed as a cellular phone. When a video camera is adopted as the input/output device and integrated with the connector 2 a , it is possible to achieve the video camera, which may transmit an image and a video through the Internet network 7. In this case, more preferably a wireless telephone line is used so that the video camera is made portable. The selective combination of integration/separation or input/output device, and further wireless or wired telephone line 4 will achieve various configurations of communication equipment 2 .
[0073]
The operation in the case where the communication equipment 2 calls the communication equipment 3 in the communication system 1 shown in Fig. 1 will now be described step by step according to the flowchart shown in Fig. 4.
[0074]
That is, when the user of the communication equipment 2 designates the communication equipment 2 to communicate with the communication equipment 3 by keying
of the computer 2 b , in the step Sla , the communication equipment 2 dials the telephone number of the communication equipment 3 . Thus, the communication equipment 3 is called through the telephone line 4. In the following, the step S1a is abbreviated as S1a simply. Further, the processing conducted by the communication equipment 2 is indicated by adding a final letter (a) such as Sla, and the processing conducted by the communication equipment 3 is indicated by adding a final letter (b) such as S1b to discriminate between them.
[0075]
On the other hand, in the case of ready for communication, the user of the communication equipment 3 designates the communication equipment 3 to turn on "receive wait" by previously pressing a button or the like (S1b). When the "receive wait" is on state, the communication equipment 3 responds to a telephone call (S2b). As a result, the communication equipment 2 and the communication equipment 3 can start direct communication through the telephone line 4 .
[0076]
On detecting the response of the communication equipment 3 , the communication equipment 2 transmits a predetermined message such as " CALL CU-SEEME from user name of the communication equipment 2, PASSWORD: user's electronic mail address of the password communication equipment 2 , public key of the communication equipment 2 " to inform the communication equipment 3 of user name of the communication equipment 2 , password, electronic mail address, and public key of the communication equipment 2 used in communication (S2a). The communication equipment 3 checks the combination of received user name and password with the previously stored combination to determine whether or not the party is a qualified communication party (S3b). When the party is not the qualified communication party, for example, when the user name or password is wrong, or the party at the other end speaks by a voice, the connector 3 a of the communication equipment 3 rings the bell of the telephone set 3 c to connect the telephone line 4 and the telephone set $3 \mathrm{c}(\mathrm{S} 4 \mathrm{~b})$. Thus, the user of the communication equipment 3 can talk with the party at the other end using the telephone set 3 c . In this case, the following processing is not conducted.
[0077]
On the other hand, in the above S3b, when the qualified communication party is verified, the communication equipment 3 transmits a predetermined message such as "OK CU-SEEME from the user name of the communication equipment 3 , user's electronic mail address of the communication equipment 3 and public key of the communication equipment 3 " (S5b), and the communication equipment 2 receives the message (S3a). Thus, the communication equipment 2 can obtain the receipt of its own connection request by the communication equipment 3 , the user name of the communication equipment 3 , electronic mail address and the public key of the communication equipment 3 used in communication. [0078]

After that, the communication equipment 2 and 3 disconnect their connection to the telephone line $4(\mathrm{~S} 4 \mathrm{a}, \mathrm{S} 6 \mathrm{~b})$, and start dialing-up a predetermined provider 5 or 6 ($\mathrm{S} 5 \mathrm{a}, \mathrm{S} 7 \mathrm{~b}$).

In the respective communication equipment 2 and 3 , the connectors $2 \mathrm{a}, 3 \mathrm{a}$ designate the computer 2 b to start network conferencing software previously provided on the computer 2 b such as CU-SEEME developed by Corel University (S6a, S8b).
[0079]
In the above S 5 a and S 7 b , when dial-up connection is successful, the communication equipment 2 and 3 obtain IP address for the current connection only from the respective providers $5,6(\mathrm{~S} 7 \mathrm{a}, \mathrm{S} 9 \mathrm{~b})$. As a result, the respective communication equipment 2 and 3 can transmit the datagram to the Internet network 7.
[0080]
At this point of time, however, the communication equipment 2 and the communication equipment 3 do not grasp the IP address of the party at the other end so that the datagram addressed to the party at the other end cannot be generated. Therefore, although the communication equipment 2 and 3 can communicate with the equipment having the predetermined IP address such as the providers 5, 6 , the communication between both of the communication equipment 2 and 3 cannot be started.
[0081]
Subsequently, the respective communication equipment 2 and 3 encipher their own names and own IP addresses using the public key sent from the party at the other end in the above S2a or S5b. After that, the communication equipment 2 and 3 transmit the cryptogram as an electronic mail to the electronic mail address of the party at the other end (S8a, S10b). Each electronic mail is enciphered by the public key of the party at the other end, so that it cannot be decoded without the privacy key held by the party at the other end.
[0082]
The communication equipment 2 and 3 monitor their own mailboxes provided on the providers 5,6 at a predetermined period such as the intervals of five seconds. When the electronic mail arrives from the party at the other end, the communication equipment 2 and 3 read the electronic mail from the mailbox and perform decoding using their own privacy keys. Thus, the communication equipment 2 and 3 can obtain the name and IP address of the party at the other end (S9a, S11b).
[0083]
Further, on receiving the IP address of the party at the other end, the communication equipment 2 and 3 inform the network conferencing software of the IP address to call the party at the other end. Thus, at the network conferencing software, the communication is started (S10a, S12b).
[0084]
Each datagram includes the IP address of the transmitting end in addition to the IP address of the transmitting destination. Thus, when one communication equipment 2 (3) calls the communication equipment $3(2)$ of the party at the other end, the called network conferencing software can recognize the calling IP address based upon the received datagram. Accordingly, the communication can be started at the point of time one calls. To be concrete,
when the processing of the above S10a starts earlier than the processing of the S 12 b , the communication equipment 3 need not to conduct the above processing S11b. Similarly when the above S 12 b starts earlier, the communication equipment 2 may omit the processing of the S9a. The network conferencing software is created to communicate even when they mutually call at the same time, so that even when each processing S9a, S11b is not omitted, the communication can be started smoothly.
[0085]
Further, at the point of time one communication equipment 2(3) calls the communication equipment $3(2)$ of the party at the other end, the communication can be started, so that during dial-up connection of both communication equipment 2 and 3, even if one of them does not transmit an electronic mail, both communication equipment 2 and 3 can start communication. However, when both communication equipment 2 and 3 transmit electronic mails, the communication can be started the moment the electronic mail of one of them arrives, so that the probability of more early starting the communication can be made higher as compared with the case where only one transmits an electronic mail.
[0086]
During the conference, the voice and image from the computer 2 b are transmitted to the computer 3 b through the connector 2 a , the provider 5 , the Internet network 7 , the provider 6 and the connector 3 a , and the voice and image from the computer 3 b are transmitted in the opposite direction through the above path. Thus, the users of the communication equipment 2 and the communication equipment 3 can communicate by the network conference software (S10a, S12b). At the end of conference, the communication equipment 2 and 3 respectively disconnect dialed connection (S11a, S13b) to end the communication between the communication equipment 2 and 3 .
[0087]
When the user at the receiving end is absent, for example, or when communication through the Internet network 7 is not desired, the connector 3 a is designated to turn off "communication wait" by pressing a predetermined button or the like. In this case, the connector 3a makes the connection to the telephone set 3 c unconditionally without conducting the processing of the S 2 and subsequent steps.
[0088]
In the case of communication through the Internet network 7, it is unknown at the time of sending what the path of datagram transmitted by the communication equipment 2 and 3 is like to reach an address like, and the equipment constituting the Internet network 7 determines the next equipment to pass the datagram on receiving the datagram.
[0089]
Consequently, in the equipment where each datagram passes, the datagram is easily altered and copied, so that communication jamming is easily caused as compared with the case of direct communication through the telephone line 4. Especially in the case of transmitting the user name and IP address still in a plaintext by an electronic mail, the 21
significance of communication can be judged from the user name so that the possibility that the subsequent communication is subjected to jamming as a priority becomes higher. On the other hand, arithmetic processing is essential to encryption and decoding, so that a higher throughput is demanded from the communication equipment 2 and 3 as compared with the case where encryption is not performed.
[0090]
Accordingly, in the present embodiment, in order to achieve compatibility between load in communication and security to jamming, only the contents of the electronic mail are enciphered. However, when further higher security to jamming is required, the communication contents are enciphered also during the communication period of the network communication software to thereby improve the security comparatively easily.
[0091]
Further, since the path for passing each datagram is not determined, it is difficult to assure the arrival time of the datagram. In a certain channel, when the amount of data exceeds the tolerance, there is the risk of losing datagram. In the communication system 1 of the present embodiment, however, in order to transmit the voice data and the image data, the communication equipment 2 and 3 are connected to the Internet network 7 through the communication line having enough communication capacity. When both providers 5, 6 are selected, a provider which connects both providers 5,6 by a line having enough communication capacity is selected. Therefore, when the data amount is much smaller like an electronic mail as compared with the voice data and the image data, there is practically very low degree of risk of delay and loss. If an electronic mail does not arrive within a predetermined time, when the electronic mail is retransmitted, the possibility of delay and loss can be further reduced.
[0092]
Although both communication equipment 2 and 3 exchange electronic mail addresses between them through the telephone line 4 prior to the communication through the Internet network 7 in the present embodiment, this is not restrictive. For example, an electronic mail address of the party at the other end may be previously stored in the flash memory 11 shown in Fig. 2 or the like. The electronic mail address is, however, changed on the convenience of the user in some case. In that case, it takes the time and trouble for the user of the communication equipment 2,3 to inform the party at the other end of a new electronic mail address every time they change the electronic mail address, and for the user of communication equipment 2,3 at the other end to reset the received electronic mail address on the communication equipment 2,3 . On the contrary, in the present embodiment, the electronic mail addresses are mutually informed at every calling, whereby the time and trouble for changing the electronic mail address can be remarkably reduced.
[0093]
[Second Embodiment]
According to the first embodiment, as separate communication means from the 22
telephone line 4, the Internet network 7 is used, and the communication equipment 2 and the communication equipment 3 directly communicate through the Internet network 7. On the contrary, as shown in Fig. 5, a communication system 31 of the present embodiment is the same as the first embodiment in that as a separate communication line from a telephone line 34, the Internet network 37 is used. However, the difference is that communication equipment 32 and communication equipment 33 communicate through a server 38 provided on the Internet network 37 . In the communication system 31 , the respective members of from the communication equipment 32 to the Internet network 37 have the substantially similar functions to those of the communication equipment 2 to the Internet network 7 . Therefore, only the different parts will be described, and the description of the similar parts will be omitted.
[0094]
A server 38 provided in the communication system 31 of the present embodiment is called reflector, which has an inherent IP address and may relay the communication between the communication equipment 32 and 33 communicating with the server 38 . To be concrete, the server 38 is provided with an area for storing combination of an IP address and identification of the current communicating equipment. When each of equipment informs the server 38 of the identification, the server 38 stores the combination of the IP address and identification of the equipment in the above area. Further, the server 38 may transmit a list of identifications from the above area according to equipment's request. Thus, each of equipment can know the identification of the current communication enabled equipment through the server 38. Further, the equipment specifies the identification to the server 38 to select a desired party at the other end of communication.
[0095]
The server 38 stores the IP addresses and identifications of all of equipment on storing the identification of the equipment. Therefore, the server 38 may transmit datagram received from one end to the IP address of the other end when the equipment specifies the party at the end of communication. The server 38 may transfer the datagram received from some equipment to two or more pieces of equipment. In this case, two or more pieces of equipment can communicate with each other.
[0096]
At present, various servers 38 are provided on the Internet network 37 , and among them, some server 38 makes public its IP address to be used by unspecified individuals. Thus, these servers 38 are selected to easily constitute the above communication system 31 . [0097]

In the present embodiment, the hardware configurations of the communication equipment 32 and 33 are the same as those of the communication equipment 2 and 3 as shown in Fig. 1, and the operation varies with a difference in loaded software. Accordingly, in the following, the operation when the communication equipment 32 calls the communication equipment 33 will be described, and the description of the hardware configuration is omitted.
[0098]
As shown in the flowchart of Fig. 6, the calling method of the present embodiment includes steps (S21a to S31a and S21b to S33b) of conducting the same processing as those of step S1a to S11a and S1b to S13b shown in Fig. 4.
[0099]
However, although in specifying the party of communication at the other end, the communication equipment 32 and 33 mutually exchange IP addresses using electronic mails in the first embodiment, according to the present embodiment, the communication equipment 32 and 33 register predetermined identifications in the server 38 and select the identification of the party at the other end to specify the party of communication at the other end. Therefore, instead of the steps of exchanging their own IP addresses as in the steps S8a, S9a and S10b, S11b shown in Fig. 4, the following steps S28a, S29a and S30b, S31b are provided. In the S 22 a and S 25 b , the communication equipment 32 and 33 omit notification of an electronic mail address.
[0100]
That is, at the end of processing in the S 27 a and S 29 b , the communication equipment 32, 33 may transmit datagram including its own IP address to the Internet network 37 through the providers 35,36 . At this point of time, in the S 22 a or S 25 b , the public key and user name transmitted by the party at the other end are obtained.
[0101]
The communication equipment 32 and 33 encipher their user names by the public key. Further, the communication equipment 32,33 inform the server 38 of the enciphered user names as identifications. The server 38 registers the combination of the identifications and IP addresses of the communication equipment 32, 33 (S28a, S30b). The server 38 can obtain the respective IP addresses according to the datagram transmitted when the communication equipment 32 , 33 inform the identifications. [0102]

In the present embodiment, the identifications of the communication equipment 32, 33 are enciphered and registered in the server 38 . Accordingly, although a third party communicating with the server 38 can look at a list of identifications, the user names are unknown. As a result, similarly to the case of enciphering the electronic mail in the first embodiment, also in the present embodiment, the user name can be concealed from a third party.

Subsequently, the communication equipment 32 and 33 cause a request for a list of identifications to the server 38 . Further, the communication equipment 32 and 33 decode the respective identifications in the list using its own privacy key to select the identification in which a match between a previously informed user name and the decoding result occurs. After that, the communication equipment 32 and 33 inform the server 38 of the identification as the party of communication at the other end (S29a, S31b). The server 38 obtains one IP
address from datagram used in notification, and obtains the other IP address from the IP address corresponding to the identification. After that, on receiving datagram from one of both IP addresses, the server 38 transfers the datagram to the other IP address. Thus, the communication equipment 32 and 33 may perform two-way communication even if they do not know the IP addresses mutually. In the present embodiment, similarly to the above first embodiment, during communication using the network conferencing software, the communication equipment 32 and 33 do not encipher the contents of communication to reduce the load in communication. However, the contents of communication are enciphered by the public key of the party at the other end also during the period to further improve the security to communication jamming. [0104]

After the S29a, S31b, substantially similarly to the first embodiment, the communication equipment 32 and 33 perform two-way communication using the network conferencing software and then disconnect dialed connection at the end of a conference, thereby ending the communication. [0105]

In the communication system 31 of the present embodiment, the server 38 relays the communication so that when the communication equipment 32 calls the communication equipment 33 , mutually they do not require the IP address. It will be sufficient that both providers 35,36 are not electronic mail servers of the communication equipment 32 and 33 , and the communication equipment 32 and 33 cannot transmit and receive an electronic mail. Also in this case, the same effect as that of the present embodiment can be obtained. [0106]

The communication equipment 32,33 need to inform the identification to the IP address of the server 38 in the above S28a, S30b. This IP address may be previously stored in the flash memory 11 shown in Fig. 2, or make arrangements for it in the process of communication on the telephone line 34. Before registration in the above S28a, S30b, if a common server 38 is specified between the communication equipment 32 and 33 , it does not matter how the server 38 is specified.
[0107]

[Third Embodiment]

According to the first and second embodiments, as communication means separate from direct communication using the telephone lines 4, 34, the Internet networks 7 and 37 are used. On the contrary, in the present embodiment, as separate communication means, the case of using personal computer communications will be described.
[0108]
As shown in Fig. 7, in a communication system 41 of the present embodiment, the users of communication equipment 42 and 43 enter the personal computer communications, and the communication equipments 42 and 43 telephone neighboring access points 45,46 to be connected to a personal computer communication server 47 by dial-up.

The personal computer communication server 47 communicates with the communication equipment 42 and 43 to provide predetermined services such as database retrieval. Further the personal computer communication server 47 of the present embodiment may relay the communication between both communication equipment 42 and 43 similarly to the server 38 shown in Fig. 5. Thus, two-way communication can be performed between both communication equipment 42 and 43 through the personal computer communication server 47 .
[0110]
The personal computer communication server 47 administers the subscribers by ID or the like, and checks ID and password when the communication equipment 42 and 43 are connected through a telephone line 44 to identify the communication equipment 42 and 43 , respectively, similarly to the provides 5 and 6 as shown in Fig. 11. However, differently from the case of communication through the Internet network 7 as in the communication system 1 shown in Fig. 1, in the communication system 41 shown in Fig. 7, the IDs of both communication equipments 42 and 43 are managed by the personal computer communication server 47. Accordingly, in the communication system 41, the communication party at the other end is specified by the respective IDs. The respective access points 45,46 and the personal computer communication server 47 are connected to each other by leased lines 48 , 48.
[0111]
Currently many the personal computer communication servers 47 are provided. Therefore, one of them is selected and the communication equipment 42,43 are provided to comparatively easily constitute the communication system 41. [0112]

The communication equipment 42 and 43 of the present embodiment are the substantially same hardware components as the communication equipment 2,3 (22) shown in the first embodiment. However, the communication equipment 42 and 43 of the present embodiment transmit and receive data of a format corresponding to the communication mode with the personal computer communication server 47 when they are connected to the personal computer communication server 47. The transmission and receiving of the data of the format may be easily achieved by partially altering the hardware or software of the communication equipment 2 and 3 .
[0113]
In the above configuration, when the communication equipment 42 calls the communication equipment 43, the communication system 41 is operated as shown in Fig. 8. That is, in the steps from $S 41$ a to $S 44 a$ and from $S 41 b$ to $S 46 b$, the communication equipment 42 conducts the same processing as that of Fig. 6 before communication through the personal computer communication server 47 , thereby calling the communication equipment 43 through the telephone line 44 to transmit a connection request. At this time, both communication
equipment 42 and 43 exchange public keys with each other.

Subsequently, in the steps from S 45 a to S 48 a and from S 47 b to S 50 b , similarly to Fig. 6 , both communication equipment 42 and 43 are respectively connected to the personal computer communication server 47 by dial-up to communicate through network conferencing software.
[0115]
In the present embodiment, however, the communication party at the other end is specified by using ID inherent to the communication equipment 42 and 43. Accordingly, the processing in the steps from S27a to S29a and from S29b to S31b is omitted. According to the present embodiment, in the S 47 a and S 49 b , in communication using the network conferencing software, both communication equipment 42 and 43 encipher and transmit the contents of communication using the public key of the party at the other end, which is exchanged with each other through the telephone line 44 . The enciphered communication contents are decoded by its own previously held privacy key. Thus, the communication contents can be concealed from a third party.
[0116]
[Fourth embodiment]
The description of the above first to third embodiments deals with the configuration using the calling method of the dial-up connection communication equipment according to the invention even when communication equipment $2(32,42)$ calls the communication equipment $3(33,43)$, and on the contrary, even when the communication equipment $3(33,43)$ calls the communication equipment $2(32,42)$. However, the calling method of the dial-up connection communication equipment may be used only when the communication equipment at one end calls the other communication equipment.
[0117]
The case of using the calling method of dial-up connection communication equipment according to the invention only when the parent station calls the child station will now be described in detail by taking a monitor camera system (a supervisory control system) as an example. Although the Internet network or personal computer communications may be used as a network as shown in the first to third embodiments, the following description deals with the case of using the Internet network similarly to the first embodiment.

That is, according to the present embodiment, a monitor camera system 51 is used for monitoring an unmanned parking garage, for example, and as shown in Fig. 9, the system includes: a parent station (calling communication equipment) 52 disposed in a head office and a child station (dial-up connection communication equipment) 53 disposed in each parking garage. The child station 53 is provided with a transmitter (child station communicating means) 53a for transmitting a video obtained by a monitor camera $53 \mathrm{~b} \ldots$ to the parent station 52 , and the video obtained by each monitor camera 53 b is sent to a receiver (parent station
communicating means) 52 a of the parent station 52 through the transmitter 53a of the child station 53. At the parent station 52, according to the video, whether the presence/absence of parking without permission is confirmed. Thus, all unmanned parking garages over the country can be monitored by only one head office. Accordingly, it is not necessary to dispatch monitoring staff members to the respective parking garages, so that the labor costs can be reduced. The charge of parking is collected once in a week, for example, by a local contracting staff member.

To be more precise, the transmitter 53a of the child station 53 has the substantially same configuration as the connector 3 a shown in Fig. 1. However, the difference is that in order to control a plurality of monitor cameras 53 b , interfaces of the number corresponding to the number of monitor cameras 53 b are provided. With this point, a function of recognizing a designation from the parent station 52 to select the monitor camera 53 b designated to obtain a video, and designating the monitor camera 53 b to obtain a video is assigned to the transmitter. Since the function can be achieved when the CPU 14 shown in Fig. 2 executes a predetermined program, the transmitter 53a can be achieved by the same hardware as that of the connector 3 a .
[0120]
Further, each monitor camera 53 b is disposed in a position to photograph a number plate of a vehicle parked in each parking space of the parking garage. The resolution of a video obtained by each monitor camera 53 b is set to read the characters of the number plate. Each monitor camera 53 b and the transmitter 53 a are connected by a predetermined communication method as the computer $2 b$ and the connector $2 a$ shown in Fig. 1, whereby the monitor camera 53b can obtain a video according to the designation of the transmitter 53a, and the video data showing the obtained video can be transmitted to the transmitter 53a. [0121]

Further, in the present embodiment, a wireless telephone system is used in part of the telephone line 54 , and the transmitter 53 a is connected to the parent station 52 or the provider 56 through a cellular phone set 53 c . The wireless telephone system may utilize various systems such as a personal handy phone system (hereinafter referred to as PHS) and an automobile telephone system, and the child station 53 is provided with the cellular phone set 53c according to each system. Similarly to the connector 3a shown in Fig. 1, the transmitter 53 a and the telephone line 54 may be directly connected to each other without utilizing the wireless telephone system.
[0122]
Thus, the child station 53 may directly communicate with the parent station 52 through the telephone line 54 similarly to the communication equipment 33 shown in Fig. 1, and it can be connected to the Internet network 57 through the telephone line 54 and the provider 56 by dial-up.

On the other hand, the parent station 52 may communicate with the child station 53 by both the direct connection through the telephone line 54 and the connection through the Internet network 57 similarly to the communication equipment 2 shown in Fig. 1. The parent station 52 of the present embodiment is directly connected to the Internet network 57 by a leased line 58 differently from the communication equipment 2 . Thus, the parent station 52 may call the child station 53 to communicate therewith using the calling method of the dial-up connection communication equipment according to the invention. Since the parent station 52 of the present embodiment is always connected to the Internet network 57 by the leased line 58 , an inherent IP address is assigned to the parent station 52.
[0124]
To be concrete, the parent station 52 of the present embodiment is provided with a receiver 52a instead of the connector 2 a shown in Fig. 1, and provided with a terminal 52 b instead of the computer $2 b$ and the telephone set $2 c$, which informs a video from the monitor camera 53 b to a user and receives user's designation. The receiver 52a and the terminal 52b are connected by a predetermined communication method such as LAN similarly to the connector 2 a and the computer 2 b to perform bi-directional transmission and receiving of the data.
[0125]
The receiver 52a of the present embodiment includes a terminal adapter (TA) function, and it can be connected to an ISDN line through a digital line terminal device (DSU) not shown. The ISDN line is a digital line by which two lines (B channel) are simultaneously used by single subscriber contract. One line is monopolized to be connected to the Internet as a leased line 58 , and the other line is used as the telephone line 54 . The leased line 58 is not limited to this, but various lines such as a cable television line and an optical fiber can be used. When the ISDN line is used, however, both the leased line 58 and the telephone set 54 can be achieved by single subscriber contract, so that the parent station 52 may be achieved comparatively inexpensively.
[0126]
To be concrete, although the receiver 52a has the similar configuration to that of the connector 2a shown in Fig. 2 as shown in Fig. 10, S/T point interface (referred to S/T point I/F for short) 18 connected to the DSU is provided instead of the communicating IC 13 . The S/T point I/F 18 can control setting/disconnection (line connection/disconnection) of a call according to the designation of the CPU 14 , or convert a data row processed by the CPU 14 and an electric signal transmitted on the ISDN line to and from each other. Further the S/T point I/F 18 also may modulate the data row to be processed by the CPU 14 to a voice signal, and then transmit the voice signal on the ISDN line, demodulate the voice signal transmitted from the ISDN line, and convert it to the data row to be processed by the CPU 14. Thus, the receiver 52a can directly communicate with the transmitter 53a of the child station 53 through the telephone line 54 . The communication method between the receiver 52a and the transmitter 53a is serial communication according to predetermined standards such as V32,

V32bis, V34, V21 or V22, which may transmit and receive a message between them. [0127]

Thus, the receiver 52 a may directly call the child station 53 through the telephone line 54 and also communicate with the child station 53 through the leased line 58 and the Internet network 57 . [0128]

If the function as the whole of the parent station 52 is the same, it is possible to freely set the role sharing of the receiver 52 a and the terminal 52 b and whether or not both of them are integrally formed according to use, but the case where the receiver 52 a acts as a server receiving a video from the monitor camera 53b will now be taken as an example and described. In this case, the video from each monitor camera 53 b is stored in the receiver 52 a , and the terminal 52 b designates the receiver 52 a to receive the video and display the video. On the other hand, when the user decides to obtain a video of a place where a certain monitor camera 53 b is disposed, the terminal 52 b discriminates the designation of the user by keying or the like, and informs the receiver 52 a of an obtain request for a video to the monitor camera 53 b . The receiver 52a discriminates the child station 53 corresponding to the monitor camera 53b according to the information from the terminal 52 b , and calls the child station 53 by the calling method of the dial-up connection communication equipment according to the invention. [0129]

The operation of the parent station 52 and the child station 53 in calling the child station 53 will now be described according to the flowchart shown in Fig. 11. Similarly to the flowcharts of the first to third embodiments, the step showing the operation of the calling, that is, parent station 52 is referred by a reference numeral to which a final letter (a) is added such as S61a, and the step showing the operation of the called, that is, child station 53 is referred by a reference numeral to which a final letter (b) is added.
[0130]
That is, at the parent station 52 , the terminal 52 b generates a receive request for obtaining a video from the monitor camera 53b according to the designation of the user and informs it to the receiver 52a (S61a). The receiver 52a retrieves the child station 53 corresponding to the monitor camera 53b according to the receive request to obtain the information for calling the child station 53 such as a telephone number and a password. Further, the receiver 52a telephones to the telephone number using a free line out of two ISDN lines to make a phone call to the transmitter 53a of the child station 53 (S62a). When the transmitter 53a responds to a telephone call (S61b), direction communication is enabled between the receiver 52 a and the transmitter 53 a by the telephone line 54 .
[0131]
Further, in the S63a, when the receiver 52a informs the transmitter 53a of a predetermined password, the transmitter 53a verifies whether or not the received password is a predetermined notified password in the S 62 b , and if it is the notified password, a response
message is transmitted to the receiver 52a.
[0132]
On receiving the response message, the receiver 52a gives a communication parameter (access information) used in connection through the Internet network 57 to the transmitter 53a in the S64a, and after receiving the communication parameter, the transmitter 53a disconnects the line connection with the telephone line 54 (S 63 b). Thus, the direction connection between the receiver 52 a and the transmitter 53 a is disconnected.
[0133]
The communication parameter transmitted in the above S64a includes dial-up information used for dial-up connection of the transmitter 53a such as a telephone number of the nearest provider 56 of the transmitter 53a, an account of the provider 56 and a password. The receiver 52 a may inform each transmitter 53 a of previously associated dial-up information, and for example, the receiver 52a may confirm the position of the transmitter 53a and inform the dial-up information corresponding to the transmitter 53a using the service of the radio communication system for informing both of the calling end and called end of the current position of the terminal.
[0134]
Further, the communication parameter includes the information used in transmitting video data through the Internet network 57 such as a key of cryptograph, the IP address of the receiver 52a, log-in name for ftp (File Transfer Protocol), and a communication start condition. To be more precise, the above key of cryptograph is a key of cryptograph used in enciphering the video data by the transmitter 53a, which is a throwaway type varying with every connection. The communication start condition shows a condition in connecting the transmitter 53a to the receiver 52a through the Internet network 57, and the following conditions are cited. When a first condition is selected, the receiver 52a calls the transmitter 53 a on the telephone line 54 , and the moment the communication is disconnected, the child station 53 starts the communication. When a second condition is selected, the transmitter 53a automatically starts the communication at fixed time intervals or at a specified time. Further, when a third condition is selected, in the case where some abnormality is sensed by a sensor (not shown) connected to the transmitter 53a, the transmitter 53a automatically starts the communication. In addition, when a fourth condition is selected, the transmitter 53a always performs the image processing for the video from each monitor camera 53b, and in the case where a predetermined change appears in the video, it automatically starts the communication. When a fifth condition is selected, in the case where a call is received from an ordinary telephone set (not shown) through the telephone line 54, the transmitter 53a automatically starts the communication after the connection with the telephone set is disconnected.
[0135]
When direct communication between the receiver 52a and the transmitter 53a is disconnected in the above S63b, the transmitter 53a is on standby until the communication
start conditions informed in the above S64a are satisfied (S64b).
[0136]
When the communication conditions are satisfied, the transmitter 53a designates the monitor camera 53b to take a photograph or selects the latest video from the videos transmitted from the monitor camera 53b to obtain the video data from the monitor camera 53 b , and enciphers the same using the key of cryptograph informed in the above S64a. Further, the transmitter 53 a is dialed up and connected to the Internet network 57 through the provider 56 specified in the S 64 a (S 65 b). Thus, an IP address is assigned and the transmitter 53 a is connected to the Internet network 57 . The receiver 52 a is always connected to the Internet network 57 through the leased line 58 .
[0137]
Subsequently, in the S66b, the transmitter 53a causes a request for ftp connection to the receiver 52a through the Internet network 57 (S 66 b). The ftp connection request is caused by transmitting a predetermined command to the IP address of the receiver 52a informed in the above S64a.
[0138]
Further, on receiving the ftp connection request, the receiver 52a transmits a random number to the transmitter 53a on a login name input screen (S65a). Since the IP address of the transmitter 53a is not determined until it is assigned in the above S65b, the receiver 52 a cannot estimate the IP address of the transmitter 53a. However, the datagram, which is transmitted to the receiver 52a when the transmitter 53a causes a request for ftp connection in the above S66b, includes the IP address of the transmitter 53a as an IP address at the transmitting end. Accordingly, the receiver 52a may transmit arbitrary data to the transmitter 53a through the Internet network 57 without any hindrance by transmitting the datagram to the IP address.
[0139]
Further, the transmitter 53a enciphers the received random number using the key of cryptograph informed in the above S64a to generate a password, and transmits the password to the receiver $52 \mathrm{a}(\mathrm{S} 67 \mathrm{~b})$. On the other hand, the receivers 52 a determines whether or not the received password is a password, which corresponds to the login name and is enciphered using the password informed in the above S64a. When it is the password, which corresponds to the login name and is correctly enciphered, the transmitter 53a is acknowledged to be a regular party at the other end (S66a).
[0140]
The acknowledged transmitter 53a transmits the video data enciphered in the above S65b to the receiver 52a by an ftp protocol (S68b). The video data reaches the receiver 52a through the Internet network 57, and the receiver 52a receives the enciphered video data (S67a). Further, at the completion of transmission, the transmitter 53a disconnects the line connection with the provider $56(\mathrm{~S} 69 \mathrm{~b})$. Thus, the communication between the receiver 52 a and the transmitter 53a through the Internet network 57 is completed.

Further, the receiver 52a telephones the transmitter 53a to confirm whether or not the line connection between the transmitter 53a and the provider 56 is normally disconnected according to a ring tone. To be concrete, the transmitter 53a is set so that when a telephone call is received, call-in does not occur until ring tone is sounded predetermined number of times such as once or twice. As a result, when the receiver 52a calls up the transmitter 53a, ring tone is sounded a predetermined number of times. In the ordinary telephone line 54 , the ring tone varies with whether or not the called transmitter 53a is connected to the line. Accordingly, the receiver 52 a may confirm whether or not the line connection between the transmitter 53a and the provider 56 is disconnected according to the ring tone.
[0142]
For example, when an ordinary ring tone indicating that the line is not busy is sounded, the receiver 52a determines that the transmitter 53a is correctly disconnected from the Internet network 57. On the other hand, when a tone "a dah dah" indicating that the line is busy rings, the receiver 52 a determines that the transmitter 53 a is now connected to the Internet network 57. In this case, the receiver 52a transmits a disconnection command or the like to the IP address of the transmitter 53a, which communicated through the Internet network 57 a little while ago, thereby designating line disconnection to the transmitter 53a. In response to the information of the receiver 52 a , the user of the terminal 52 b may leave for the installation place of the monitor camera 53 b to disconnect the line.

In either case, the parent station 52 may grasp the failure in disconnection at the child station 53 to take suitable measures. As a result, the generation of wasteful communication cost due to failure in line disconnection can be surely prevented. When the receiver 52a stops a telephone call before the predetermined number of times, the telephone charges is free. [0144]

In the S69a, the receiver 52a decodes the received video data and transmits the decoded video data to second equipment such as a terminal 52 b shown in Fig. 9 by ftp protocol. Thus, the video data is displayed on the terminal 52 b , and the user of the terminal 52 b may confirm the video of the installation place of the monitor camera 53 b .
[0145]
As a result, even when the child station 53 is dialed up and connected, the parent station 52 may confirm the video from the monitor camera 53 b at an arbitrary point of time, and when any abnormality is found, such as when parking without permission is found, a specified monitor camera 53b may be monitored as a priority. Accordingly, the parking space where parking without permission is found is surrounded by a fence or information to that effect is given to a security company to take measures corresponding to the abnormality. [0146]

As described above, the communication equipment constituting the Internet network 57 receives datagram from the neighboring communication equipment regardless of the IP
address of the transmitting communication equipment. Accordingly, the receiver 52 a may receive the video data from a plurality of transmitters 53a through the Internet network 57 when the throughput of the receiver 52 a and the communication capacity of the leased line 58 are within the limits. Further, the receiver 52a may maintain the connection through the Internet network 57 and the direct connection through the telephone line 54 at the same time. Accordingly, the receiver 52a may dial up to a second transmitter 53a to designate acquisition of a video even while the video data is received through the Internet network 57.
[0147]
The description of the respective steps deals with the case where the video obtained by the monitor camera 53b is transmitted to the receiver 52a through the Internet network 57. When it is difficult to transmit data through the Internet network 57, such as when the provider 56 is congested, the transmitter 53a may dial up the receiver 52a to transmit a video by the direct communication through the telephone line 54 . In this case, access to the Internet network 57 and encryption are not needed, so that the transmitter 53a can transmit a video to the receiver 52a at an earlier time. [0148]

Although the receiver 52a and the transmitter 53a transmit the video data using the ftp protocol in the above respective steps, this is not restrictive. If it is a method of transmitting the data through the Internet network 57, the video data may be transmitted using the other methods such as an electronic mail. According to the ftp protocol, however, it is possible to surely confirm whether or not the data is transmitted by both of the receiver 52a and the transmitter 53a. Therefore, when data transmission fails, it is possible to take suitable measures, such as retransmission of data.
[0149]
Further, although the receiver 52a confirms whether or not the line connection of the transmitter 53a is disconnected according to a ring tone in the above S68a, this is not restrictive. For example, the receiver 52a may dial up to the transmitter 53a to directly communicate with each other, thereby confirming whether or not the line connection is disconnected. In the case of confirming the disconnection of the line according to a ring tone, however, the communication cost is free so that the communication cost can be further reduced as compared with the case of direct communication.
[0150]
An example of cost in managing the monitor camera system 51 will be simply described. In the above monitor camera system 51, since the number plate is confirmed according to the video obtained from the monitor camera 53b, after being compressed, a video with high precision as much as about 500 kilo-byte per sheet is needed. Accordingly, in the case of performing direct communication for the video using ISDN line whose data transmission speed is 64 k bps , it takes about 62 sec to transmit one sheet of video. In this case, when the parent station 52 and the child station 53 are located in Tokyo and Nagoya, respectively, the communication cost is about 40 yen. As a result, supposing that the
frequency of obtaining a video is one time per hour, about 350,400 yen is needed for one year. On calculating the cost in the case of performing direct communication by analog line whose transmission speed is 33.6 kbps under the same conditions, as about 120 sec is needed for one time transmission, the communication cost is about 120 yen per time and about 700,800 yen is needed for one year. In the case of connecting the child station 53 to the Internet network 57 by a leased line, in recent years, about 400,000 yen is needed for using the leased line for one year.
[0151]
On the contrary, in the case of communication through the Internet network 7, when the provider 6 is within the range of speech communication with the child station 53 at the local telephone charge, the time required for one time transmission is within 180 sec , so the communication cost per time is 10 yen and it is about 87,600 yen for one year. Further, when the charge for the provider 6 is about 60,000 yen for one year, the communication cost per year is about 147,600 yen. As a result, in the above monitor camera system 51 , the communication cost per child station 53 can be remarkably reduced by about 560,000 yen (about 79\%) as compared with that in the case of direct communication using an ordinary line, and by about 200,000 yen (about 57%) as compared with that in the case of ISDN. Further, as the precision and number of sheets of video required by the parent station 52 or the communication frequency increases, the communication cost becomes relatively lower in the monitor camera system 51 . On the other hand, as compared with the case where the child station 53 is connected by the leased line, the communication cost per child station 53 can be reduced by about 250,000 yen (about 63%) per year in the monitor camera system 51 . [0152]

The above communication cost is a merely example, so it largely varies with the rate system of the communication line used, and the rate system of the provider 6. As described above, in the respect of equipment required for communication, the communication cost can be easily reduced in the network more than in the communication line. Further, even in the case of communication using the network, the communication cost can be easily reduced in the dial-up connection more than in the connection using the leased line. Thus, the communication cost of the above monitor camera system 51 is often remarkably low as compared with both the case where the child station 53 is connected by the leased line and the case where the parent station 52 and the child station 53 are directly communicated.
[0153]

[Fifth Embodiment]

The description of the fourth embodiment deals with the case where the parent station 52 is always connected to the Internet network 57 by the leased line 58. On the contrary, as shown in Fig. 12, the description of the present embodiment will deal with the case where a parent station 52 is, similarly to the communication equipment 2 shown in Fig. 1, dialed up and connected to the Internet network 57 through a provider 55.
[0154]

The receiver 52a of the present embodiment has the same hardware configuration as that of the fourth embodiment, so that in communicating with a child station 53, one of two ISDN lines is used to achieve dial-up connection to the provider 55. The other components of the monitor camera system 51 such as the child station 53 have the same construction as that of the fourth embodiment. Therefore, the members having the same functions as those of the fourth embodiment are designated by the same reference numerals to omit the description. The operation of the parent station 52 and the child station 53 will now be described in detail according to the flowchart shown in Fig. 13.
[0155]
In the present embodiment, in addition to the steps shown in Fig. 11, both steps S71a and S 72 a are provided. In the S 71 la provided after the S61a, the receiver 52 a is dialed up and connected to the Internet network 57 through the provider 55 when it is not connected to the Internet network 57. Thus, the receiver 52a can obtain its own IP address informed in the subsequent S 64 a .
[0156]
The receiver 52a is connected to the ISDN line. Accordingly, in the above S62a, while the receiver 52 a is still connected to the Internet network 57 , it may call a transmitter 53a using the other line. As a result, the IP address assigned to the receiver 52a in the above S71a is assigned to the receiver 52a after the S64b as well. [0157]

On the other hand, in the S 72 a provided after S 67 a , the receiver 52 a disconnects the line connection from the provider 55. Thus, the receiver 52a is disengaged from the Internet network 57.
[0158]
In the above configuration, the receiver 52 a is dialed up and connected to the Internet network 57. Accordingly, as compared with the fourth embodiment in which the receiver 52 a is connected by the leased line 58 , the communication cost can be further reduced.

In the above configuration, when the second to fifth conditions that the receiver 52 a cannot manage the communication start point are selected among the communication start conditions informed in the above S64a, sometimes the receiver 52 a is not connected to the Internet network 57 in transmitting a video by the transmitter 53a. Accordingly, in the case of selecting these conditions, the transmitter 53a has to call the receiver 52a using the calling method of dial-up connection communication equipment according to the invention. In this case, the receiver 52a and the transmitter 53a inform the party at the other end of its own IP address using an electronic mail or through a server as shown in the first and second embodiments.
[0160]
Although the description of the fourth and fifth embodiments deals with the case where photographing is designated to the monitor camera of the unmanned parking garage to 36
obtain a photographed video as an application example of a monitor camera system, the monitor camera system of the invention is not limited to this, but it may be used in various purposes. For example, when the monitor camera is disposed in buildings and warehouses possessed in various places all over the country, the management firms may monitor the buildings and warehouses from one office as the parent station. Similarly, it may be applied to the purpose for monitoring unmanned shops and unmanned convenience store in a drive-in from a head office. Further, it may be used when a banking agency manages unmanned shop or an electric company manages an unmanned transformer substation or dam at remote places from a head office. Further, when the monitor camera is disposed in a delivery place, the condition of the delivery place can be known at the head office of a device maker, so that the monitor camera can be made useful for remote maintenance for delivered devices. When the unmanned cameras are disposed in volcanoes of various places, the volcanic activities of these may be monitored from the Research Laboratories of the Universities. The monitor cameras are disposed in the first-food shops, restaurants and convenience chain stores and the data obtained by photographing the respective interiors of the stores are transmitted to the head office, whereby various market information pieces such as customer attendance, the number of customers, constitution, age group or seated places by each time zone, can be acquired at the head office. [0161]

In either case, it is not necessary to dispatch a monitoring staff member, so that the labor costs can be reduced. In addition, the monitor data can be transmitted through a network such as the Internet so that the communication cost can be remarkably reduced as compared with the case of using the communication line such as a telephone line. Further, since the monitor camera is called by the communication line, the parent station may designate the monitor camera to acquire a video at a desired point of time. As a result of these, it is possible to achieve the monitor camera system, which may acquire a video at an arbitrary point of time at a little budget.
[0162]
Although the description of the fourth and fifth embodiments deals with the case where a controlled system of the child station 53 is the monitor camera 53b, this is not restrictive. The invention may be applied to the monitor control system in which various pieces of equipment are controlled systems such as the case where the child station 53 transmits the data acquired using various sensors to the parent station 52 , or the case where the child station 53 controls a motor and a pump according to the designation of the parent station 52. However, when the amount of data transmitted is large as in the case where the monitor camera 53b transmits the acquired video, the time required for communication is long so that when the data is transmitted by direct communication using the communication line, the communication cost rises sharply. Therefore, the effect in applying the invention to the monitor camera system 51 especially becomes larger.
[0163]

As shown in the first to fifth embodiments, respectively, the calling method of dial-up connection communication equipment is the calling method applied to the communication system in which the calling communication equipment and called communication equipment are respectively connected to the telephone line, and at least the called communication equipment is dialed up and connected to the network such as the Internet network and personal computer communications through the telephone line, and it is characterized in that before communication through the network, the calling communication equipment transmits a connection request to the called communication equipment using the telephone line. [0164]

Thus, even when the called communication equipment is not connected to the network, in communication through the network, the called communication equipment can be connected to the network. Accordingly, both of communication equipment may surely start the communication in a desired timing. Thus, as compared with the prior art, the quick responsiveness of the called communication equipment can be improved to achieve real-time communication.
[0165]
Further, at least the called communication equipment is dialed up and connected to the network. Therefore, the cost in communication through the network can be remarkably reduced as compared with the case of connection to the network through the leased line and the case of direct communication through the telephone line. Especially, in the case where there is a long way between the places for installing both of communication equipment as in the foreign countries or the like, the cost in the case of direct communication through the telephone line is very high, so the effect of the invention is great.
[0166]
Although the description of the respective embodiments deals with the case where both of communication equipment are dialed up and connected, this is not restrictive. As in the fourth embodiment, for example, when at least the called communication equipment is the dial-up connected communication system, the same effect as those of the first to fifth embodiments can be obtained.
[0167]
Although the calling communication equipment informs a connection request by the telephone line in the above respective embodiments, this is not restrictive. The other communication lines such as a harbor radio may be used. When the equipment can inform a connection request to the called end, the same effect as those of the respective embodiments can be obtained.
[0168]
Although the description of the respective embodiments deals with the case where the calling communication equipment calls one piece of communication equipment, this is not restrictive, but two or more pieces of communication equipment may be called. Similarly to the case of calling one piece of communication equipment, two or more pieces of
communication equipment are called in order by the telephone line, whereby a number of pieces of communication equipment can communicate at the same time on the network. In this case, the user of the calling communication equipment is a convener of a conference. In this case, network conferencing software enabling two or more pieces of communication equipment to communicate at the same time is needed, but generally this type of product has been already used.
[0169]
Although the communication equipment of each embodiment enciphers at least part of data transmitted by the network such as the user name and the communication contents, this is not restrictive. In communication through the network, the data may be transmitted still in the plaintext without enciphering.
[0170]
In the case of transmitting the data still in the plaintext, however, there is the risk that the data transmitted through the network is tapped or altered. Especially, in the case of using the Internet network as the network, the transmitting communication equipment and the receiving communication equipment cannot specify a data transmission channel. Consequently, wiretapping is easy so that the risk of communication jamming is high.
[0171]
On the contrary, in the above respective embodiments, in transmitting the data through the network, at least part of data is enciphered by various keys of cryptograph such as a public key of the party at the other end and a common key of cryptograph. Thus, at least part of the data can be concealed from a third party, which is not a regular communication party, so that the security to communication jamming can be improved.
[0172]
As the data to be enciphered, cited are the communication content itself, and user names and addresses of both communication equipment. As the amount of data to be enciphered increase, the load of both communication equipment increase, so only part of data may be enciphered in consideration of significance of communication. Generally, when the user name and address are heard by a third party, the significance of the communication content is easily estimated. Accordingly, as shown in the first and second embodiments, in the case of transmitting the user name and address prior to the communication of an image and a voice, especially preferably these are enciphered. Thus, the security to communication jamming can be improved without much increase in load of both of communication equipment.
[0173]
As a method in which each communication equipment obtains a key of cryptograph, various methods are considered. The key of cryptograph may be previously informed to the party at the other end by the other communication means such as by mail, and stored in storage means of each communication equipment such as the flash memory 11 shown in Fig. 2. In this case, however, the user of each of communication equipment has to set the key of
cryptograph informed from the party at the other end to each of communication equipment prior to communication. Since the key of cryptograph is provided for every communication equipment, as the communication party at the other end is increased in number, the time and trouble for setting is increased. Further, the key of cryptograph should be changed at need to improve the security to communication jamming. Accordingly, the user of each of communication equipment has to inform a new key of cryptograph to all of the parties at the other end every time its own key of cryptograph is changed. [0174]

On the contrary, according to the above respective embodiments, the key of cryptograph is informed through the communication line at the time of causing a connection request. When the key of cryptograph includes a public key and a privacy key, the public keys are exchanged through the communication line. On the other hand, in the case of using the common public key, it will be sufficient that the communication equipment at one end informs it to the other communication equipment. In this configuration, the key of cryptograph is informed at every connection request, so that even when the key of cryptograph is changed from that in the preceding communication, correction is easy. Accordingly, the key of cryptograph can be easily changed at every connection request, so that the security to communication jamming can be further improved. In addition, both notification of a connection request and sending of a key of cryptograph are performed in a batch using the telephone line. Thus, as compared with the case of individually performing both of them, the time and trouble for connecting the telephone line can be reduced.
[0175]
Further, the key of cryptograph and the enciphered data are transmitted by separate communication means. Accordingly, when a third party attempts to cause communication jamming, it is necessary to tap both of communications, so that the security to communication jamming can be more improved as compared with the case of transmitting the key of cryptograph and the data by single communication means. As the communication line, it is preferable to use the communication line comparatively hard to hear such as the telephone line for preventing wiretapping of the key of cryptograph.
[0176]
In the case where both of communication equipment communicate with each other through a server provided on the network as in the second embodiment, in addition to the above, it is necessary that both of communication equipment register the identifications in the server, and both of communication equipment inform the identification of the party at the other end to the server to select the communication party at the other end.

In this case, the identification registered in the server is open to the public, so that when the user name is registered intact, there is the risk of lowering the security to communication jamming. Further, it takes time and trouble to select a desired identification among the identifications registered in the server. In this case, it will be sufficient that the
above public key is used to encipher the user name and register it in the server. Thus, the user name can be concealed from a third party.
[0178]
In the configuration where the server is provided as in the second embodiment, the cost for separately providing the server and maintenance cost are needed. Further, when the server is congested, there is the risk of disabling both of communication equipment from communicating.
[0179]
On the contrary, the first embodiment provides a method in which both of communication equipment can directly communicate with each other through the network differently from the second embodiment. To be concrete, the method includes a process in which in dial-up connection, the called communication equipment acquires its own address, and transmits it to the calling communication equipment by an electronic mail. Thus, differently from the second embodiment, both of communication equipment can communicate through the network without especially providing a server. As a result, the cost required for communication can be further reduced. Further, both of communication equipment can surely communicate regardless of congestion of the server.
[0180]
When the communication through the network is ended, the dial-up connection communication equipment is disconnected from the network. In this case, when the dial-up connection communication equipment fails in line disconnection from the network, the dial-up connection communication equipment is continuously connected to the network, so that the communication cost rises sharply as undesired. Especially, when a user is absent in the periphery of the dial-up connection communication equipment, for example, when the dial-up connection communication equipment is the child station of the monitor control system, failure in line disconnection is hardly grasped. Consequently, when failure in line disconnection occurs, the period of time the dial-up connection communication equipment is connected to the network as undesired is apt to be long so that there is a large risk of increasing the wasteful communication cost.

On the contrary, as in the fourth and fifth embodiments, the calling communication equipment calls the dial-up connection communication equipment through the communication line after the end of communication through the network to confirm whether or not the dial-up connection is normally disconnected. As a result, the wasteful communication cost due to failure in line disconnection can be reduced.

As one example of a communication system to which the calling method of dial-up connection communication equipment according to the invention is applied, the description of the first to third embodiments deal with the Internet telephone system in which a video and a voice are transmitted, and the description of the fourth and fifth embodiments deals with the
supervisory control system such as the monitor camera system. This is, however, not restrictive. The Internet VPN (Virtual Private Network) is constructed and widely applied in the case of transmitting and receiving arbitrary data.
[0183]
By using the calling method of the dial-up connection communication equipment, the communication can be started in a desired timing, and also the communication system, which may reduce the communication cost can be constructed, so that when the quick responsiveness is strongly demanded as in the Internet telephone system and the supervisory control system, especially it is preferable.
[0184]
To be concrete, in the supervisory control system, generally the child station is installed in a place remote from the parent station, and the parent station supervises and control a number of child stations. Consequently, the cost in communication between the parent station and the child stations is apt to increase, so the reduction of the communication cost is strongly demanded. On the other hand, in the supervisory control system, a delay of designation is directly connected with escalation of an accident, so that the child station has to immediately respond to designation of the parent station. Consequently, when the child station communicates with the parent station only through the dialed-up and connected network, the child station cannot respond to the designation of the parent station, resulting in the risk of escalating an accident. As a result of these, in the supervisory control system, it is strongly requested to reduce the communication cost while maintaining the quick responsiveness of the child station to the designation of the parent station. Therefore, when the parent station calls the child station, the application of the calling method of the dial-up connection communication equipment according to the invention is especially effective.
[0185]
[Advantage of the Invention]
According to the invention of claim 1, the calling method of the dial-up connection communication equipment, as described above, includes: a first process in which the calling communication equipment transmits a connection request to the dial-up connection communication equipment by the communication line provided separately from the network and capable of calling the dial-up connection communication equipment; a second process in which the dial-up connection communication equipment receiving the connection request is connected to the network by dial-up; and a third process in which the calling communication equipment and the dial-up connection communication equipment communicate with each other through the network.
[0186]
In the above constitution, even when the dial-up connection communication equipment is not connected to the network, in communication in the third process, the dial-up connection communication equipment can be connected to the network. Therefore, the invention produces the effect of surely starting the communication in a desired timing and
achieving real-time communication in the dial-up connection communication equipment, which may communicate at a low rate. [0187]

According to the invention of claim 2, in the calling method of the dial-up connection communication equipment, as described above, in the constitution of the invention described in claim 1, the third process includes: an encipher process in which the transmitting communication equipment between the calling communication equipment and the dial-up connection communication equipment enciphers and transmits at least part of the data transmitted in the third process; and a decoding process in which the receiving communication equipment decodes the enciphered data.

In the above constitution, at least part of the communication content is concealed from a third party other than the calling communication equipment and the dial-up connection communication equipment by encryption. As a result, the invention produces the effect of improving the security to communication jamming as compared with the case of transmitting the communication content still in a plaintext without enciphering.
[0189]
According to the invention of claim 3, in the calling method of the dial-up connection communication equipment, in the constitution of the invention described in claim 2 , the first process includes: a process in which the calling communication equipment or the dial-up connection communication equipment informs the party at the other end of a key of cryptograph used in encipher. [0190]

In the above constitution, both notification of a connection request and sending of a key of cryptograph are performed in a batch. Thus, the invention produces the effect of transmitting the key of cryptograph at every connection without any increase in time and trouble for connecting the communication line, and reducing the time and trouble when the key of cryptograph is changed. [0191]

Further, the key of cryptograph and the enciphered data are transmitted by separate communication means. As a result, the effect of further improving the security to communication jamming such as wiretapping and alteration of data is also produced.

According to the invention of claim 4, in the calling method of the dial-up connection communication equipment, as described above, in the constitution of the invention described in claim 1, 2 or 3, the third process includes: a process in which both of the above communication equipment inform the sever of their own identifications; a process in which both of the above communication equipment inform the server of the identification of the party at the other end to select the communication equipment of the party at the other end; and a process in which the server relays the communication between the selected communication
equipment.
[0193]
Therefore, the invention produces the effect that both of communication equipment may surely start the communication in a desired timing through the server provided on the network to achieve real-time communication.
[0194]
According to the invention of claim 5, in the calling method of the dial-up connection communication equipment, as described above, in the constitution of the invention described in claim 1, 2 or 3, the third process includes: a process in which the dial-up connection communication equipment obtains its own address in the current connection; a process in which the dial-up connection communication equipment informs the calling communication equipment of its own address by an electronic mail; and a process in which the calling communication equipment and the dial-up connection communication equipment specify the party at the other end by mutual addresses to communicate with each other.
[0195]
Therefore, both of communication equipment may communicate through the network without especially providing the server as in the constitution of claim 4. As a result, in addition to the effect of the invention described in claim 4, the invention produces the effect of further reducing the cost required for communication and surely performing communication regardless of congestion of the server.
[0196]
According to the invention of claim 6, as described above, in the constitution of the invention described in claim $1,2,3,4$ or 5 , the calling method of the dial-up connection communication equipment further includes: a fourth process in which the calling communication equipment directly calls the dial-up connection communication equipment by the communication line to confirm whether or not the dial-up connection communication equipment normally disconnects the line from the communication line, after the third process. [0197]

Therefore, the invention produces the effect that the calling communication equipment can surely recognize failure in line disconnection of the dial-up connection communication equipment to surely prevent the generation of wasteful communication cost due to failure in line disconnection.
[0198]
According to the invention of claim 7, the supervisory control system is, as described above, configured so that the parent station includes: the parent station communication means for calling the child station through a ring enable communication line to transmit a connection request, and then communicating with the child station through a network provided separately from the communication line, and the child station includes: the child station communication means connected to the network by dialing up it on receiving the connection request through the communication line to communicate with the parent station through the network.

In the above constitution, after the parent station communication means calls the child station using a ring enable communication line, the child station communication means is connected to the network by dial-up connection which enables communication at a low rate to transmit and receive the data through the network. As a result, the invention produces the effect of achieving the supervisory control system, which may remarkably reduce the communication cost between the child station and the parent station, while the child station can immediately respond to the designation of the parent station.
[Brief Description of the Drawings]
[Fig. 1] Fig. 1 is a block diagram showing the configuration of the principal part of the whole communication system according to one embodiment of the invention.
[Fig. 2] Fig. 2 is a block diagram showing the configuration of the principal part of a connector provided on the calling and called communication equipment of the above communication system.
[Fig. 3] Fig. 3 is a block diagram showing the connecting relationship of communication equipment according to one embodiment of the invention.
[Fig. 4] Fig. 4 is a flowchart showing the operation of both of calling and called communication equipment in calling in the above communication system.
[Fig. 5] Fig. 5 is a block diagram showing the configuration of principal part of the whole communication system according to another embodiment of the invention.
[Fig. 6] Fig. 6 is a flowchart showing the operation of both the calling end and the called end in calling in the above communication system.
[Fig. 7] Fig. 7 is a block diagram showing the configuration of the principal part of the whole communication system according to still another embodiment of the invention.
[Fig. 8] Fig. 8 is a flowchart showing the operation of both the calling end and the called end in calling in the communication system.
[Fig. 9] Fig. 9 is a block diagram showing the configuration of the principal part of a supervisory control system according to still another embodiment of the invention.
[Fig. 10] Fig. 10 is a block diagram showing the configuration of the principal part of a receiver in the above supervisory control system.
[Fig. 11]Fig. 11 is a flowchart showing the operation when the parent station calls the child station in the above supervisory control system.
[Fig. 12] Fig. 12 is a block diagram showing the configuration of the principal part of a supervisory control system according to still another embodiment.
[Fig. 13] Fig. 13 is a flowchart showing the operation when the parent station calls the child station in the supervisory control system.
[Description of the Reference Numerals and Signs]
$2,22,32,42$: communication equipment
3, 33, 43: communication equipment (dial-up connection communication equipment)
$4,34,44,54$: telephone line (communication line)
7, 37, 57: Internet network (network)
38: server
48, 58: line (network)
52: parent station (communication equipment)
52a: receiver (parent station communication means)
53: child station (dial-up connection communication equipment)
53a: transmitter (child station communication means)

FIG. 1:
U.S.A

JAPAN
2a: CONNECTOR
3a: CONNECTOR
4: TELEPHONE LINE
5, 6: PROVIDER
7: INTERNET NETWORK

FIG. 2:
TO TELEPHONE SET
TO COMPUTER
4: TELEPHONE LINE
11: FLASH MEMORY
12: INTERFACE PART
13: COMMUNICATING IC
16: STATUS DISPLAY LIQUID CRYSTAL PANEL

FIG. 3:
4: TELEPHONE LINE
22a: CONNECTOR

FIG. 4:

- PROCESSING OF COMMUNICATION EQUIPMENT 2

START
S1a: CALL THE COMMUNICATION EQUIPMENT 3 ON THE PHONE.
S2a: TRANSMIT PASSWORD, ELECTRONIC MAIL ADDRESS AND PUBLIC KEY OF COMMUNICATION EQUIPMENT 2.
S3a: RECEIVE MESSAGE OF THE PARTY AT THE OTHER END.
S4a: DISCONNECT THE PHONE.
S5a: DIAL-UP CONNECTION
S6a: START NETWORK CONFERENCING SOFTWARE.
S7a: ACQUIRE ITS OWN IP ADDRESS.
S8a: TRANSMIT ELECTRONIC MAIL IN WHICH ITS OWN IP ADDRESS IS ENCIPHERED.
S9a: DECODE IP ADDRESS OF THE PARTY AT THE OTHER END.
S10a: NETWORK CONFERENCE
S11a: DISCONNECT DIAL-UP CONNECTION.
END

- PROCESSING OF COMMUNICATION EQUIPMENT 3

Slb: RECEIVE WAIT, ON
S2b: RESPONSE ON THE PHONE.
S3b: THE PARTY AT THE OTHER END IS VERIFIED?
S4b: CONNECT THE TELEPHONE SET.
S5b: TRANSMIT A CONNECT ENABLE MESSAGE, AND PUBLIC KEY AND ELECTRONIC MAIL ADDRESS OF COMMUNICATION EQUIPMENT 3.
S6b: DISCONNECT THE PHONE.
S7b: DIAL-UP CONNECTION
S8b: START NETWORK CONFERENCING SOFTWARE.
S9b:
ACQUIRE ITS OWN IP ADDRESS.
S10b: TRANSMIT ELECTRONIC MAIL IN WHICH ITS OWN IP ADDRESS IS ENCIPHERED.
S11b: DECODE IP ADDRESS OF THE PARTY AT THE OTHER END.
S12b: NETWORK CONFERENCE
S13b: DISCONNECT DIAL-UP CONNECTION.

FIG. 5:
U.S.A.

JAPAN
32a: CONNECTOR
33a: CONNECTOR
34: TELEPHONE LINE
35, 36: PROVIDER
37: INTERNET NETWORK
38: SERVER

FIG. 6:

- PROCESSING OF COMMUNICATION EQUIPMENT 32

START
S21a: CALL THE COMMUNICATION EQUIPMENT 33 ON THE PHONE.
S22a: TRANSMIT PASSWORD AND PUBLIC KEY OF COMMUNICATION EQUIPMENT
32.

S23a: RECEIVE MESSAGE OF THE PARTY AT THE OTHER END.
S24a: DISCONNECT THE PHONE.
S25a: DIAL-UP CONNECTION
S26a: START NETWORK CONFERENCING SOFTWARE.
S27a: ACQUIRE ITS OWN IP ADDRESS.
S28a: ENCIPHER ITS OWN IDENTIFICATION AND REGISTER IT IN SERVER.

S29a: SELECT THE IDENTIFICATION OF THE PARTY AT THE OTHER END.
S30a: NETWORK CONFERENCE
S31a: DISCONNECT DIAL-UP CONNECTION.
END

- PROCESSING OF COMMUNICATION EQUIPMENT 33

S21b: RECEIVE WAIT, ON
S22b: RESPONSE ON THE PHONE.
S23b: THE PARTY AT THE OTHER END IS VERIFIED?
S24b: CONNECT THE TELEPHONE SET.
S25b: TRANSMIT A CONNECT ENABLE MESSAGE, AND PUBLIC KEY OF COMMUNICATION EQUIPMENT 33.
S26b: DISCONNECT THE PHONE.
S27b: DIAL-UP CONNECTION
S28b: START NETWORK CONFERENCING SOFTWARE.
S29b: ACQUIRE ITS OWN IP ADDRESS.
S30b: ENCIPHER ITS OWN IDENTIFICATION AND REGISTER IT IN SERVER.
S31b: SELECT THE IDENTIFICATION OF THE PARTY AT THE OTHER END.
S32b: NETWORK CONFERENCE
S33b: DISCONNECT DIAL-UP CONNECTION.

FIG. 7:
U.S.A

JAPAN
42a, 43a: CONNECTOR
44: TELEPHONE LINE
45, 46: ACCESS POINT
47: PERSONAL COMPUTER COMMUNICATIONS SERVER

FIG. 8:

- PROCESSING OF COMMUNICATION EQUIPMENT 42

START
S41a: CALL THE COMMUNICATION EQUIPMENT 43 ON THE PHONE.
S22a: TRANSMIT PASSWORD AND PUBLIC KEY OF COMMUNICATION EQUIPMENT
42.

S43a: RECEIVE MESSAGE OF THE PARTY AT THE OTHER END.
S44a: DISCONNECT THE PHONE.
S45a: DIAL-UP CONNECTION
S46a: START NETWORK CONFERENCING SOFTWARE.
S47a: ENCIPHER THE COMMUNICATION CONTENT BY NETWORK
CONFERENCING SOFTWARE AND COMMUNICATE.S48a: DISCONNECT DIAL-UP CONNECTION.
END

- PROCESSING OF COMMUNICATION EQUIPMENT 43
S41b: RECEIVE WAIT, ON
S42b: RESPONSE ON THE PHONE.
S43b: THE PARTY AT THE OTHER END IS VERIFIED?
S44b: CONNECT THE TELEPHONE SET.
S45b: TRANSMIT A CONNECT ENABLE MESSAGE, AND PUBLIC KEY OF
COMMUNICATION EQUIPMENT 43.
S46b: DISCONNECT THE PHONE.
S47b: DIAL-UP CONNECTION
S48b: START NETWORK CONFERENCING SOFTWARE.
S49b: ENCIPHER THE COMMUNICATION CONTENT BY NETWORKCONFERENCING SOFTWARE AND COMMUNICATE.
S50b: DISCONNECT DIAL-UP CONNECTION.
FIG. 9:
52a: RECEIVER
53a: TRANSMITTER
54: TELEPHONE LINE
56: PROVIDER
57: INTERNET NETWORK
FIG. 10:
TO ISDN LINE THROUGH DSU.
TO COMPUTER.
11: FLASH MEMORY
12: INTERFACE PART
13: S/T POINT I/F
16: STATUS DISPLAY LIQUID CRYSTAL PANEL
FIG. 11:
- PROCESSING OF PARENT STATION
START
S61a: CAUSE A RECEIVE REQUEST.
S62a: CALL TRANSMITTER ON THE PHONE.
S63a: INFORM PASSWORD.
S64a: INFORM COMMUNICATION PARAMETER.

S65a: TRANSMIT RANDOM NUMBER TO TRANSMITTER ON LOGIN NAME INPUT SCREEN.

S66a: ACKNOWLEDGE TRANSMITTER BY PASSWORD.
S67a: RECEIVE ENCIPHERED VIDEO DATA.
S68a: CALL TRANSMITTER ON THE PHONE, AND CONFIRM LINE DISCONNECTION ACCORDING TO RING TONE.
S69a: DECODE VIDEO DATA.
END
-PROCESSING OF CHILD STATION
S61b: RESPONSE ON THE PHONE.
S62b: VERIFY PASSWORD, AND TRANSMIT RESPONSE MESSAGE.
S63b: RECEIVE COMMUNICATION PARAMETER AND DISCONNECT THE PHONE.
S64b: WAIT FOR COMMUNICATION START CONDITION.
S65b: ACQUIRE A VIDEO, ENCIPHER AND DIAL-UP CONNECTION.
S66b: ftp CONNECTION REQUEST TO RECEIVER.
S67b: TRANSMIT PASSWORD CREATED BY ENCIPHERING RANDOM NUMBER TO RECEIVER.
S68b: TRANSMIT ENCIPHERED VIDEO DATA.
S69b: DISCONNECT DIAL-UP CONNECTION.
END

FIG. 12:
52a: RECEIVER
53, 53a: TRANSMITTER
54: TELEPHONE LINE
55, 56: PROVIDER
57: INTERNET NETWORK

FIG. 13:

- PROCESSING OF PARENT STATION

START
S61a: CAUSE A RECEIVE REQUEST.
S71a: DIAL-UP CONNECTION
S62a: CALL TRANSMITTER ON THE PHONE.
S63a: INFORM PASSWORD.
S64a: INFORM COMMUNICATION PARAMETER.
S65a: TRANSMIT RANDOM NUMBER TO TRANSMITTER ON LOGIN NAME INPUT SCREEN.
S66a: ACKNOWLEDGE TRANSMITTER BY PASSWORD.
S67a: RECEIVE ENCIPHERED VIDEO DATA.
72a: DISCONNECT DIAL-UP CONNECTION.
S68a: CALL TRANSMITTER ON THE PHONE, AND CONFIRM LINEDISCONNECTION ACCORDING TO RING TONE.S69a: DECODE VIDEO DATA.
END
-PROCESSING OF CHILD STATION
S61b: RESPONSE ON THE PHONE.
S62b: VERIFY PASSWORD, AND TRANSMIT RESPONSE MESSAGE.
S63b: RECEIVE COMMUNICATION PARAMETER AND DISCONNECT THE PHONE.
S64b: WAIT FOR COMMUNICATION START CONDITION.
S65b: ACQUIRE A VIDEO, ENCIPHER AND DIAL-UP CONNECTION.
S66b: ftp CONNECTION REQUEST TO RECEIVER.
S67b: TRANSMIT PASSWORD CREATED BY ENCIPHERING RANDOM NUMBER TO
RECEIVER.
S68b: TRANSMIT ENCIPHERED VIDEO DATA.
S69b: DISCONNECT DIAL-UP CONNECTION.
END

（51）Int． $\mathrm{Cl}^{\text {．}}{ }^{6}$		蛓別記号	F I					
H04M	11／00	303		H0 4 M	11／00		303	
H04L	9／08				1／66	A		
	9／32				3／42	T		
	12／02			H04Q	9／00		311 W	
	12／54			H04L	9／00		601 F	
			審査請求	未請求 請	項の数 7	OL	（全30頁）	最終頁に続く

（54）【発明の名称】ダイアルアップ接統尲信機器の呼び出し方法，および，それを用いた監視制䇢システム
（57）【要約】
【果題】インターネット継ヘダイアルアップ接続する通信機器を確実に呼び出し，安全にリアルタイム双方向通信できる呼び出し方法を提供する。
【解决手段】 通信機器2は，電話回線4を介して通信機器3を呼び出し，接続要求と自らの公開鍵とを通信機器3へ伝える。一方，通信機器3は，自らの公開鍵を通信機器2へ送出する。その後，両通信機器2•3は，電話回線 4 を一度切断し，近隣のプロバイダ5•6を呼び出して，インターネット網7にそれぞれ接続する。両通信機器2•3は，現接続時に扑ける自らのIPアドレス を相手の公開鍵で暗号化し，電子メールとして，相手の電子メールアドレスへ送信する。各通信機器2•3は，受信した電子メールを自らの秘密鍵で復号して，相手の IPアドレスを確憙する。その後，両通信機器2•3 は，当該IPアドレスを用いて，インターネット網7で通侓する。

【特許請求の範囲】
【請求項1】ネットワークヘダイアルアップ接続される ダイアルアップ接続通信機器の呼び出し方法であって，上記ネットワークとは別に設けられ，上記ダイアルアッ プ接続通信機器を呼び出し可能な通信回線によって，発呼側の通伝機器がダイアルアップ接䋁通仁機器へ接䋁需求を伝える第1工程と，
接続要求を受けたダイアルアップ接続通信機器が，上記 ネットワークヘダイアルアップ接続する第2工程と，
上記ネットワークを介して，発呼側の通信機器とダイア ルアップ接続通信機器とが通信する第3工程とを含んで いることを特徴とするダイアルアップ接続通信機器の呼 び出し方法。
【請求項 2】上記第3工程は，上記発呼側の通信機器する よびダイアルアッブ接続通信機器のうちで送信側の通信機器が，当咷第3工程にて送出するデータの少なくとも一部を暗号化して送出する暗号工程と，
受信側の通信機器が，暗号化されたデータを復号する復
 ダイアルアップ接続通信機器か呼び出し方法。
【請求項3】上記第1工程は，発呼側の通信機器あるい はダイアルアップ接続通信機器が，暗号化の際に使用さ れる暗号鍵を相手に通知する工程を令んでいることを特徴とする請求項2記載のダイアルアップ接続通信機器の呼び出し方法。
【晴求項4】上記ネットワークには，発呼側の通信機器 とダイアルアップ接続通信機器との間の通信を中継する サーバか設けられており，
上的筜3工程は，上吔両通值機器が，白らを示す登錄名 を上記サーバへそれぞれ通知する工程と，
上記両通信機器が，相手の登録名を上記サーバへ通知し て，相手の通信機器を選択する工程と，
上記サーバか選択された通信機器間の通信を中継する工程とを含んでいることを特徴とする請求項1，2または 3 記載のダイアルアップ接続通信機器の呼び出し方法。
【唯求項5】上元ネットワークは，データを伝送する
際，当該ネットワークにおけるアドレスによって送信先 を特定すると共に，
ダイアルアップ接紌通作機兴に対して，接続毎に踇時の アドレスを割り当てるネットワークであり，上記第3工程は，ダイアルアップ接続通信機器が，現接続における自らのアドレスを取得する工程と，沓子メールによって，ダイアルアップ接続通信機器が，発呼側の通信機器へ自ら0アアドレスを通知する工程と，発呼側の通信機器およびダイアルアップ接続通信機器 か，化しのアドレスにより相手を特定して通信する工程 とを含んでいることを特徴とする請求項1，2 または3記載のダイアルアップ接続通信機器の㭔び出し方法。
【掛求項6】さらに，上記第3工程の後で，上記発呼側 の通信機器かダイアルケップ接続通行機器を上䟚通信回

線にて直接呼び出して，当該ダイアルアップ接続通信機器か当該通信回線との同線接続を正常に切断したか否か を確認する第4工程を含んでいることを特徴とする請求項1，2，3，4または5記㦳のダイアルアップ接嗵信機器の呼び出し方法。
【請求項7】設俯機器を有する子局と，当咳子局との通信によって上記設備㙨器を制御する親局とを備えた監視制御システムに扑いて，
上記親局は，呼び出し可能な通信回線を介して上記子局 を呼び出し，接続要求を伝えた後で，上記通信闸線とは別に設けられたネットワーク経由で上記子局と通信する親名通信手段を備え，
上記子局は，上記通信回線を介して，上記接続要求を受 け取った後で，上記ネットワークにダイアルアップ接続 して，当該ネットワーク経由で上記親局と通信する子局聥信手段を偌えていることを生徵とする管視制御システ ム。
【発明の詳細な説明】
〔0001】
【発明の属する技術分野】本発明は，例えば，ダイアル アップ接続によって，インターネット網に接続する通信機器など，必要なときにネットワークに接続されるダイ アルアップ接続通信機器の呼び出し方法，および，それ を用いた監視制御システムに関するものである。

【0002】

【従来の技術】通信手段の1つとして，公衆電話回線網 は，従来より広く用いられている。この公衆電話回線網 では，通信に先立って，ネットワーク側が発呼側と被呼側との間でコネクション（論理的な通信パス）を確保し て，被呼側を呼び出す。このようなコネクション型の通信システムでは，通信路か悵い程，コネクションの確立 が困難になる。したがって，公衆電話回線網は，一般 に，通信距離に応じた料金体系を採井している。
【0003】一方，近年では，新たな通信手段として， インターネット網が急速に普及しつつある。インターネ ット継の場合，送㣂側の通仁機器は，データを送信する際に，データ列を所定の大きさ毎に区切ってデータグラ ムを作成し，近隣の通信機器へ送出する。各データグラ ムには，受信側の通信機器のインターネット網におうける アドレス（1 Pアドレス）か付加されている。データグ ラムを受け取った場合，送信先（受信側）の1 Pアドレ スに基づいて，通信機器は，近隣の通信機器のうち，受信側に近い方の通信機器へデータを送出する。これによ り，コネクションを確立しなくても，送信側のデータは受信側へ届けられる。このようなコネクションレス型の通信システムでは，送何側およよび受低側の通佰機兴は， いずれも両者間の通信バスを把握していない。したがっ て，インターネット綱の場合は，データ量（通信時間） に応じた料金体系，あるいは，1年解など，所运の期開毎に一定の料金体系を採用していることが多い。両料金

体系は，送信側と受信側との距離に影響を受けないの で，特に，海外との通信など，長距離の通信では，イン ターネット網を利用して通信することによって，通信費用を削減できる可能性が高い。
〔0004］上記インターネット網は，従来は，電子メ ールなど，文字主体のデータ通信に使用されていたが，近年では，回線の帯域幅の向上に伴って，ビデオ会議シ ステムやインターネット電話など，通信機器間でのリア ルタイム双方问通信にも利間されている。
【0005】ところで，上記インターネット網に各通信機器を接続する方法は，専用線による接続と，ダイアル アップ接続との 2 つに大別できる。専用線による接続方法は，通侣機器と，インターネット接続業者（プロバイ ダ）との間に，専用の通信線を用意して，各通信機器と インターネット網とを常時接続する方法である。この場合，インターネット網に常時接䋁されているため，通信機器には固有のIPアドレスが割り当てられる。この方法は，大きな会社や大学などで採用されており，使用者 は，通常，通信線の維持費用として，要哈会社などに一定の費用を支払っている。
【0006】一方，ダイアルアップ接続は，インターネ ット網に接続したいときに，通信機器とインターネット網とを接続する方法である。インターネット網への接続 は，電話回線などを利用して，プロバイダと通信し，こ の通信をプロバイダか中継することによって行われるる。 プロバイダは，通仁機器が接続されたとき，当該通信機器の1Pアドレスとして，空いているIPアドレスを割 り当てる。これにより，複数の通信機器間で1Pアドレ スを共用できる。また，この方法では，各通信機器との間に專用の通信回線も不要である。この結果，通信量が少ない場合には，専用線回線に比べて安価に利用でき る。したがって，ダイアルアップ接続方法は，小さな会社や偹人宅なと，通信量が比較的少ない場合に採月打され ることが多い。この場合，電子メールは，プロバイダが蓄積しておろり，使用者は，接続毎にプロバイダ内の所定 の仁憶領域を確認するなどして，龟子メールの到着を確認する。

【0007】

【発明か澥决しようとする誎䞟】しかしなから，被呼側 ○通信機器がダイアルアップ接続方法を採用していた場合，発呼側の通信機器は，被呼側がインターネット網に接続されているか否かを事前に判定できない。もし，発呼時において，被呼側の通信機器がインターネット網に接続されていましば，発呼側の通信機器は，被呼側と通信 できるか，そうでない場合には，両通信機器は，通信て きない。したかって，確突に接続されるとは限らず，即応性に欠けるという問題点を有している。この問題は，通常の電話と同様に通話しようとしている場合や，ビデ オ会㬢システムの場合など，特に，リアルタイムで双方間通伺しようとしている場合には致命的となる。

【0008】なお，この問題は，インターネット網に限 らず，パソコン通信の場合など，各通信機器が必要に応 じてネットワークに接続する場合であれば発生するが，以下に示すように，インターネット網へダイアルアップ接続する場合には，さらなる問題点が発生する。
〔0009】具体的には，インターネット網を構成する各通信機器，データグラムに含まれている送信先のI P アドレスに基づいて，当該データグラムを伝送する。し たがって，通信するにあたって，送信側は，受信側のI Pケドレスを把握している必要がある。ところが，ダイ アルアップ接続方法では，各通信機器のIPアドレス は，それぞれのプロバイダと接䋁するまで決定されな い。したがって，送信側は，亓間線接絖方法のように，受信側のIPアドレスを予め把握しておくことができな い。
〔0010】そこで，従来は，この問題を解决するため に，各通信機器間の通信を中継するために，固定のIP アドレスを持つサーバを設置している。この場合，各通信機器は，インターネット網に接続した後，上記サーバ と通信を開始する。各通信機器が通信を開始すると，サ一バは，一方との通信を他方へ中継する。この場合，サ一バのIPアドレスへ送出したデータグラムが相手の通 1．譏器へ転送されるので，各通信機器は，杖㐿のIPア ドレスを知る必要かない。この結果，ダイアルアップ接続している通信機器間であっても，何ら支障なく通信で きる。
〔0011】ところが，サーバを設けた場合には，サー バを維持する必要があり，維持費用がかかるという問題 か新たに発生する。また，サーバが混んでいた場合に は，自通信機器と相手の通信機器とか空いていても通信 できないという問題も派生する。さらに，サーバ内で通信相手を探す方法が確立されておらず，所望の通信相手 を胃つけることが困難である。例えば，現時点では，以下のような探索方法によって，相手を探すことが多い。 すなわち，各通信機器は，サーバへ自らの名称を登録す る。サーバは，受け取った名称のリストを表示し，各通信機器は，そのリスト内から所望の相手を選択する。こ の方法では，接続者数が増えるに従って，探索時の手間 か增大する。
【0012】また，サーバを設置したとしても，相手の通信機器かネットワークに接続されていなければ，通信 を開始できないという問題点は，依然として解決されて いない。
【0013】本発明は，上記の問題点を鑑みてなされた ものであり，その目的は，被呼側の通信機器がネットワ ークにダイアルアッブ接統されている場合に，当該通信機器の即応性を向上できる通信機器の呼び出し方法を提供することにある。
【0014】

イアルアッブ接続通信機器の呼び出し方法は，ネットワ ークヘダイアルアップ接続されるダイアルアッフ接続通信機器の呼び出し方法ですって，上記課題を解决するた めに，以下の各工程を含んでいることを特徴としてい る。
【0015】すなわち，上記ネットワークとは別に設け られ，上記多イアルアップ接続通信機器を呼で出し可能 な通信回線によって，発呼側の通信機器がダイアルアッ プ接続通信機器へ接続要求を伝える第1工程と，接絡要求を受けたダイアルアップ接続通信機器が，上記ネット ワークへダイアルアッブ接続する第2工程と，上記ネッ トワークを介して，発呼側の通仁機器とダイアルアップ接続通信機器とが通信する第3工程とを令んている。
【0016】なお，上記ネットワークとしては，例え ば，インターネット網など，コネクションレス型のネツ トワークや，パソコン通信などが挙げられ，上記通信回線としては，例えば，電話回線や船舶無線などが挙げら れる。
【0 0 1 7 】一般に，相手を呼び出せないネットワーク は，電話回線など，相手を呼で出し可能な通信回線なと に比べて実現が容易である。また，ダイアルアッブ接続 のように，通信機器が必要に応じてネットワークに接続 する場合には，ネットワークと通仁機器との通仁路と，例えば，アドレスなど，ネットワーク上の資源とを他の通信機器や他の用途と共用できる。したがって，ダイア ルアップ接続されてた通信機器は，上紀通信回線を用して直接通信する場合，おうよび，ネットワークと専用線にて接続される場合に比べて，通信費用の低減が可能であ る。
〔0018】上記構成では，発呼側の通信機器とダイア ルアップ接続通信機器との兩通信機器が，ネットワーク を介して通信する前に，発呼側の通信機器は，ダイアル アップ接続通依機器へ接続要求を伝える。これにより， ダイアルアップ接続通信機器がネットワークに接続され ていない場合であっても，上記第3工程における通信時 には，ネットワークへ接続させることができる。それゅ え，安い料金て通信可能なダイアルアップ接続通信機器 において，所望のタイミングて確実に通信を開始でき， リアルタイム通信が可能になる。
〔0019］また，請求項20）発明に係るダアアルアッ プ接続通信機器の呼び出し方法は，請求項1記載の発明 の構成において，上記第3工程は，上記発呼側の通信機器むよびダイアルアップ接続通仯機器のうちで送仁，側の通信機器が，当該第3工程にて送出するデータの少なく とも一部を暗号化して送出する暗号工程と，受信側の通体機器が，暗り，化されたデータを後りする復将工程とを含んでいることを特徴としている。
【0020】なお，暗号化する際に使用する方法は，暗
 を脂いて暲に化し，公開鋌とは別の秘密鍵を用いて復号

する方法なと，種々の方法を適用できる。また，両通信機器は，第3工程に先立って，例えば，上記第1工程で の通信，あるいは，郵送など，所定の方法により，共通 の暗号鍵や相手の公開鍵なとの暗号鍵を取得している。
【0021】ネットワークを介して通信する場合，伝送 されるデータは，盗聴あるいは改ざんされる痁れがあ る。特に，ネットワークとして，インターネット網など を使用する場台には，発信側およで受信測の通信機器が データの伝送路を指定できないため，盗聴など，通信の妨害の危険性は大きい。
〔0022】ところが，上記構成ては，通信内容のう ち，少なくとも一部は，暗りう化によって，発呼側の通信機器およびダイアルアップ接続通信機器以外の第三者か ら隠蔽されている。この結果，通信内容を暗号化せず，平文のまま伝送する場合に比べて，通信妨害に対する安全性を向上できる。
〔0023】なお，暗号化するデータは，例えば，通信内容そのもの，両通信機器の使用者名あるいはアドレス などが挙げられる。ただし，暗号化するデータ量が增大 するに従って，両通信機器の負担か増大するので，通信 の重要度を考慮して，一部のデータのみを暗号化しても よい。一般に，使用者名やアドレスなどが第三者に傽聴 されると，通信内容の重要性を推測されやすい。したが って，画像や音声などの通信に先立って，使用者名やア ドレスなとを送信する場合には，これらを暗号化するこ とか特に望まれる。これにより，両通信機器の值担を余 り増加させることなく，通信妨害に対する安全性を向上 てきる。
【0024】さらに，迵求項3の発明に係るダイアルア ップ接続通信機器の呼び出し方法は，請求項2記載の発明の構成において，上記第 1 工程は，発呼側の通信機器 あるいはダイアルアップ接続通信機器が，暗号化の際に使川される暗号鍵を相手に通知する工程を今んでいるこ とを特徴としている。
【0025】なお，暗号化の際に公開鍵を使用する場合，相手には，自らの秘密鍵に対応した公㳊鍵が通知さ れる。また，共通の暗号鍵を用いて暗号化する場合，当該暗号鍵か相手に通知される。
【0026】上記構成ては，接絖要求毎に暗号鍵を通知 するので，前回通信したときと暗号鍵を変更した場合で あっても，何ら支障なく，両通信機器は，暗号化したデ ータを送受できる。加えて，通信回線を用いて，接続要求の通知と暗っ鍵の送付との双方を一括して行ってい る。したがって，両者た個別に行う場合に比べて，通信回線を接続する手間を削減できる。
〔0027】さらに，例えば，郵送などによって，暗！！䋖を設定する場合，各通信機器は，使用前に暗号鍵を設定する必要がある。暗号鍵は，それぞれの通信機器毎に川意されるので，特に，近信相手の数が増加すると，設

発明の構成では，接続毎に暗号鍵を通知しておら，各暗 ！鍵を予め設定する必要がないので，设定時の手間を削减できる。
【0028】また，暗号鍵は，通信回線を介して，相手 の通信機器へ伝送され，当該暗号鍵にて暗号化されたデ ータは，ネットワークを介して伝送される。したがっ
て，第三者が通信の妨害を試みる場合，双方の通信を傍受する必要かある。この結果，単一の通信手段にて，暗 ！鍵とデータとを送信する場合に比べて，通信妨皆に対 する安全性を向上できる。
【0029】一方，請求項4の発明に係るダイアルアッ プ接続通信機器の呼で出し方法は，清求項1，2または
発呼側の通信機器とダイアルアップ接続通信機器との間 の通信を中継するサーバが設けられており，上記第3工程は，上吔両通信機器が，自らを示す発鈌名を上記サー バへそれぞれ通知する工程と，上記両通信機器が，相手 の登録名を上記サーバへ通知して，相手の通信機器を選択する工程と，上衍サーバが䢙択された通信機器間の通信を中継する工程とを含んでいることを特徴としてい る。
【0030】なお，上記ネットワークとしては，例え ば，インターネット網など，コネタションレス型のネッ トワークか挙げられる。また，この構成では，上記請求項2あるいは3で暗号化する際，特に適したデータとし て，両通信機器の登録名が挙げられる。
【0031】上記構成では，請求項1と同様に，ダイア ルアップ接続通信機器がネットワークに接続されていな い場合であっても，上記第3工程における通信時には， ネットワークへ接続させることがてきる。これにより，両通信機器は，ネットワークに設けられたサーバを介し て，所望のタイミングで確実に通信を開始できる。な お，サーバが発録名を公開する場合であっても，使用者名を暗号化して登録することによって，両通信機器の使用者名を第三者から容易に隠蔽できる。
【0032】また，謂求項5の発明に係るダイアルアッ プ接続通信機器の呼び出し方法は，請求項1，2または 3 記載の発明の構成に抽いて，上記ネットワークは，例 えば，インターネット網など，データを伝送する際，当該ネットワークにおけるアドレスによって送信先を特定 すると共に，ダイアルアップ接続通信機器に対して，接続毎に臨時のアドレスを割り当てるネットワークであ り，上n第3工程は，ダイアルアップ接統通仁機器が，現接続における自らのアドレスを取得する工程と，電子 メールによって，ダイアルアップ接続通信機器が，発呼側の通機㝶へ向らのアドレスを通知する工程と，発呼側の通信機器技よびダイアルアップ接続通信機器が，互 いのアドレスにより相手な特定して通信する工程とを含 んでいることを特徵としている。
【0033】ところで，ダイアルアップ接続通侃機器の

場合には，ネットワークと接続するまでアドレスが未定 てある。したがって，従来の方法では，発信側の通信機器が受信側のアドレスを把握できず，ダイアルアップ接続された通信機器同士は，ネットワークを介して通信で きない。
【0034】一方，請求項4仁戴の発明の棈成のよう に，両通信機器間の通信を中継するサーバをネットワー クに設ける場合には，ダイアルアップ接続された通信機器問士てあっても，何ら支障なく通信できる。ところ が，この場合には，サーバを別に設ける費用や維持費な とが必要となる。また，サーバが混み合っている場合に は，両䦽仁機器間で通信できなくなる寝れがある。【0035】これに対して，清求項5记㦲の発明の構成 では，ダイアルアップ接続通信機器は，ネットワークに接続した後，自らのアドレスか確定した時点で，発呼側 の通信機器へ当該アドレスを通知できる。これにより，請求項40構成のように，サーバを設けることなく，両通信機器は，ネットワークを介して通信できる。したか って，請求項4記載の発明の構成に比べて，通信に㤟す る費用をさらに削減できると共に，サーバの混雑に関わ らず，両通信機器は，確実に通信できる。
【0036】ところで，ネットワークを介する通信か終了すると，ダイアルアップ接続通信機器は，ネットワー タとの接続を切断する。ここで，ダイアルアップ接続通信機器がネットワークとの回線切断に失敗すると，当該 ダイアルアップ接続通信機㗊は，ネットワークに接続さ れ続けるので，通信費用が不所望に高騰する。特に，例 えば，ダイアルアップ接続通信機器が監視制御システム の子局である場合など，ダイアルアップ接続通信機器の周囲に使用者かいない場合には，回線切断に失敗したこ とを把握しにくい。したがって，回線切断に失敗した場合，当該ダイアルアッブ接続通信機器が不所望にネット ワークに接䋁される期昭が辰くなりがちであり，無駄な通信費用が増大する盧れが大きい。
【0037】これに対して，請求項6の発明に係るダイ アルアップ接続通信機器の呼び出し方法は，非求項1， 2，3，4 または5 5 記載の発明の構成におろいて，さら に，上記第3工程の後で，上記発呼側の通信機器がダイ アルアップ接続通信機器を上記通信し線にて占接呼で出 して，当該ダイアルアッグ接続通信機器が当該通信回線 との回線接続を正常に切断したか否かを確認する第4I程を含んでいることを特徴としている。
【0038】上吔構成において，発呼側の通仁機器は， ダイアルアップ接続通信機器との通信が終了すると，例 えぼ，直接呼じ出した際の呼出し音などによって，回線切断の成否を碓認する。これにより，発呼側の通佰機器 は，ダイアルアップ接続通信機器の回線切断失敗を確実 に認識できる。したがって，例えば，発呼側の通信機器 がダイアルアップ接続通に機器へ｜「線切断を再度指示し たり，発呼側の通仁機器の使用占がダイアルアッブ接続

通信機器の設置場所へ赴いて回線を切断するなど，適切
敗に起因する無䭾な通信費用の発生を確実に防止でき る。
〔0039】なお，回線が接続をれしている期間と，回線 が切断されている期開とて異なった呼出し产を用いる通信回線の場合は，所定回数の呼出し音があるまで着呼し ないように，ダイアルアップ接続通信機器を設定すると共に，碓認詩において，発呼側の通信機器か呼出し产を当潆所定回数までに識別することによって，回線の切断 を確䛱できる。この場合，発呼側の通信機器が上記所定 は数までに甶接呼で出しに使用した匝線を切断すれば， ダイアルアップ接新通信機器がネットワーケとの所線を正常に切断できた場合であっても通信賈用は不要であ る。
〔0040］ところで，䘵項1の烷明に係るダイアル アップ接統通信機器の呼び出し方法を用いると，所望の タイミングで通信の開始が可能で，かつ，通信㶳用を削減できる通信システムを構築できる。
〔0041］ここで，監視制御システムでは，一般に，子局が，親局から離れた場所に設置をれでたり，かつ，親局か数多くの子局を監視制御する。したがって，親局 と子局とが通信する際の蛽归は，增大しがちであり，通信費用の削減が強く要求されている。特に，設置場所を監視する場合など，子局か瀙局へ送出するデータカ渶像 データの場合，データ量か極めて多いので，呼で出し可能な通信回線を介して当該データを伝送すると，高し通信費用が必要になる。一方，監視制御システムでは，指示の運れが真故の拡大に南結するので，子小は，親辿の指示に即座に応答しなけれればならない。したがって，ダ イアルアップ接続により接続されるネットワークのみを介して，子局が親局と通信する場合，子局が親局の指示 に即応できず，中故を拉大させる盧れがあるる。これらの結果，監視制御システムでほ，親局の指示に対する子局 の即応性を保ったまま，通信質用を削減することか強く求められている。
〔0042】これに対して，請求項7の発明に係る監視制御システムは，上記課題を解决するために，設俑機器 を有する子局と，当核子局との通信によって上記設俌機器を制卸する親局とを備えた監視制御システムにおい て，上記親局は，呼び出し可能な通信回線を介して上記子局を呼で出し，接続要求を伝えた後で，上記通信回線 とは䞄に役けられたネットワーク経由で上えていかと通信 する親局通信手段を備兑，上記子局は，上記通信回線を介して，上記接続要求を受け取った後で，上記ネットワ一クにダイアルアップ接絤して，当辝ネットワーク経由 で上記親局と通信する子局通信手段を備えていることを特徴としている。

は，列えば，使間萑の指示があった時点などの任总の時

点で，電話なとの通信回線を介して子局を呼び出す。—方，子小の子局通信手段は，親局からの接続要求を受け取った後，ダイアルアップ接続によって，例えば，イン ターネットなどのネットワークとの接続を確立する。そ の後，親局と，子局とは，ネットワークを介してデータ を送受する。
〔0044】上記搆成では，子局が，安い料金で通信可能なダイアルアップ接続によって，ネットワークと接続 されているので，通信回線のみを用いて，子局が親易と汿信する場合に比べて，通信書用を大幅に削減できる。一方，呼び出し可能な通信回線を用いて，親局が子局を呼で出した後，ネットワークを介して，データの㬊受信 が行われるのて，親はは，所望のタイミングで子届との通信を開始できる。これらの結果，親局の指示に対し て，子局か即応可能でありなから，子局と親局との間の通信费用を大幅に削減可能な監視制御システムを実現で きる。
【0045】
［発明の実施の形態】
（第1の実施形態 本発明の一実施形態について図1な い龱4に基づいて說明すると以下の通りである。本実施形態に係るダイアルアップ接䊺通信機器の呼び出し方法は，発乎側と被乎側とが軗話回綵㧍よびインターネッ ト綱を介して通信でき，かつ，少なくとも被㭔側の通信機器かインターネット綱へダイアルアッブ接続されてい る近信システムに適用される呼び出し方法であって，例 えば，日本とアメリカとなど，長距離で通信する際に特 に好適な方法である。なお，ダイアルアッフ接続とは，通得幾器がインターネット綝などのネットワークと沙時接続されておらす，各通信機器か必要と判断したとき に，ネットワークと接続する方法である。
【0046】以下では，上記呼で出し方法，および，こ れを実施する通信機器について说明する前に，当詨通信機器か使用される通信システムについて説明する。すな わち，図1に示すように，本実施形態に係る通信システ ム1 は，上記呼で出し方法を賏碏し，発㭔側あるいは被呼側となる通信機器2おるよび3を備えている。本実施形態では，各通信機器2•3のいすれか発呼側になるかか被呼側になるかは，特に決められてわらすす，両通信機器2 －3は，後述するように，発呼側および被呼側双方の機能を有している。なお，被呼側となる通信機器 $2 \cdot 3$ が，特阡請求の範囲に記載のダイアルアッブ接続通信機器に对応する。
〔0047】上記両通信機器2•3は，それぞれて電話回線（通信回線）4に接続されている。上記電話回線 4
は，例えば，I S DN（Integrated Services Dıgital Network）なとのデジタル回線，あるいはアナログ回線 なとであり，各通信機器2•3は，例えば，ダイアルを がすなどして，図示しない宙舕回線4の交换機へ相手先 の归話番枵を通知できる。これにより，各通偪機器2•

3 は，電話回線 4 を介して，互いに相手を呼び出し，直接通信できる。
【0048】また，各通信機器2•30）使用者は，イン ターネット接続業者（ブロバイダ）5あるいは6に加入 しており，通信機器2•3は，ダイアルアップ接続によ って，インターネット網（ネットワータ）7をそれぞれ使用できる。各通信機器2•3は，発呼側になる場合と被呼側になる場合とがあるので，両プロバイダ5•6に は，问じ機能が要求される。以下では，説明の便穴上，通信機器2側のプロバイダ5について説明するが，プロ バイダ6の構成も同様である。
【0049】貝体的には，プロバイダ5は，宙話川線4 を介して通信機器2から接䋁要求を受けた場合，アカウ ント（使用資格）を示すIDと，各ID毎に予め設定さ れたパスワードとを入力させる。アカウントとパスワー ドとの照合か終わると，プロバイダちは，向らが保有し ているインターネット網7上におけるアドレス（I P ア ドレス）のうち空いているIPアドレスを，当詨通信機器2の馧時のIPアドレスとして割り当てる。これによ り，通信機器2は，現接続時における自らのIPアドレ スを認識できる。この結果，通信機器2は，所定の大き さ毎に区切られたデータ列（データグラム）を作成して プロバイダ5へ送出したり，プロバイダ5から受け取っ たデータグラムのうち，自分宛のデータグラムを識別で きる。プロバイダ5は，通信機器2からのデータグラム をインターネット綳7へ転送し，インターネット網7か らのデータグラムを通信機器 2 へ送出する。これによ り，通信機器 2 は，固有のIPアドレスを持たなくても インターネット網7へ接続できる。
【0050】グロバイダ5は，ダイアルアップ接続によ る加入者の間で，IPアドレスやインターネット網7と の接続回線などを共有している。したがって，プロバイ ダ5において，ダイアルアッグ接続の接続料金は，通信機器2か固有のIPアドレスを保持し，専用の通信回線 を介してインターネット網7と常時接続している場合， すなわち，専用问線接綕の場合に比べて安く設定されて いることか多い。
10051】また，プロバイダ5は，電話回線 4 を介し て迫仁機器 2 と通信するために，アクセスポイントを備 えている。アクセスポイントは，例えば，市内局番て通話できる範囲内など，通信機器2の近隣に配されてお り，通信機器 2 は，プロバイダ 5 と通信する際，電話回線4の使用料（通話料）を安く抑えることができる。
【0052】さらに，プロバイダ5 は，通信機器2のメ ールサーバでもある。具体的には，プロバイダ5は，通体機器2に，菅子メールアドレスを予め制り当ててお り，これに対応した図示しない記憶領域（メールボック ス）を備えている。通信機器2宛の電子メールは，プロ バイダ5へ䦿送され，プロバイダ5は，通隹機器2宛の它子メールを受け取って，対応するメールボックスに笛

積する。プロバイダ5は，インターネット網7に常時接続されており，そのI Pアドレスは，常に一定である。 したがって，通信機器2がインターネット網7に接続さ れているか否か，および，接続時のIPアドレスに関わ らず，電子メールは確実に配送される。各通信機器2 は，ダイアルアップ接続した際に，白分宛の電子メール を上記メールボックスから読み出すことができる。【0053】現在，インターネット網は，広く普及しつ つあり，多くのプロバイダがサービスを開始している。 これらのプロバイダの多くは，ダイアルアップ接続をサ ポートしておら，メールサーバの機能を備えている。し たがって，通信機器2および3を設けることによって，本主施形態に係る通信システム1を容勿に構成できる。〔0054】続いて，各通信機器2•3の構成例とし て，例えば，ビデオ会議などのように音声と画像との双方を伝送する場合を中心に说明する。なお，以下では，音声と画像との双方を伝送する場合に限らず，両通信機器2•3が，インターネット網7などのネットワークを介して，リアルタイムにデータを伝送することをネット ワーク会議と総称する。
【0055】また，各通信機器2•3の実現方法として
は，後述するように種々の構成が考えられるが，ここで
は，通信機器2（3）が，它咶回線 4 およびインターネ
ット網7との接続を制御する接続器2a（3a）と，入
出力装置となるコンピュータ2b（3b）とを備えてい
る構成について说时する。この構成では，本夹施形態に係る呼び出し方法は，接続器2 a が実施している。ま た，各通信機器2•3には，上記呼び出し方法による通信以外の通常通話用に，電話器 $2 \mathrm{c} \cdot 3 \mathrm{c}$ がそれぞれ，$殳$ けられている。なお，両通信機器2•3は，同様の構成 を有しているので，以下では，説明の便官上，通信機器 2の構成についてのみ詳細に説明する。
【0056】すなわち，コンピュータ2bは，例えば， ビデオカメラやマイクなと，図示しない入力装置を備え ており，使用者側の音声や画像などをデジタルのデータ列として接続器2aへ伝送できる。また，コンピュータ 2 bは，モニタやスピーカーなどの出力装置（図示せ ず）を備えており，接続器2aを介し，通信機器3から受け取ったデータ列を画像や音声として使間者に通知で きる。
【0057】コンピュータ2bと接続器2aとの間は，
例えば，RS 232 C やRS422A，IrDA，ある いは，L A Nなど，予め逪択された通信方法によって接続されておら，双方向にデータを送受できる。な打，両者間の通信方法は，リアルタイムに双方向通信か可能で あれば，有線／無線，あるいは，デジタル／アナログ，通信速度や通信規格を問わない。
〔0058】一方，本実施形態に係る接続器2 aは，以 2に示すように，本矢施形態に係る呼び出し方法を卡施 するブログラムや各種設定などを記悦するF1ashメ

モり11と，上記所定の通信方法でコンピュータ2bと通信するインターフェース部 12 と，電話回線 4 および電話器2 c と接続されている通信用IC（Integrated Circuit）13と，接続器2a全体を制卸するCPU （Central Processing Unit）14と，作業用の記憶領域 となるRAM（Random Access Memory）15とを㳚え ている。さらに，例えば，通信機器30電子メールアド レスなど，接続器2 aの状態を表示するために，状態表示液罪パネル16が股けられている。各部材11ないし 16は，それぞれバス17に接続されており，各部材間 のデータは，バス17を介して伝送される。
【0059】上記F1ashメモり11は，電気的に壱換え可能な不揮発性のメモリであって，後述する哑作を行ラプログラムと，当該プログラムにて使用する各種設定値とか格納されている。具体的には，通信機器3に関 する設定値としては，占接呼び出す際の電話番りなどが挙げられる。さらに，直接呼び出す際に，通信機器3が通信機器2を識別するためのパスワードも格納されてい る。当該パスワードは，予め通仁機器3にも伝えられて おら，通信機器3は，このパスワードを照合することに よって，正規の使用者からの呼び出しか否かを判定でき る。また，プロバイダ5に関する設定値として，プロバ イダ5の少話番号，アカウント，パスワード，および白分の電子メールアドレスが格納されている。さらに，本実施形態では，インターネット網7を介して通信する際，通信機器2と通信機器3とは，例えば，R S A 符号 なとの公開鍵暗号方式を用いて，通信内容の少なくとも 1部を暗号化して通信する。したがって，F 1 a shメ モり11は，暗宁化および復号化の際に使用する秘密鍵 および公開鍵も記憶している。なお，当然ながら，F1 ashメモリ11に代えて，ROM（Read－Only Memor y）やバッテリバックアップされたRAM，あるいな， ハードディスクなど，不捙兴性を有する記錄手段を用い てもよい。
【0060】また，インターフェース部12は，例え ば，R S 2 3 2 Cインターフェースなど，コンビュータ 2 b と接続器2aとの通信方法に応じたインターフェー スであり，CPU14は，当該インターフェース部12 を介して，コンピュータ2bと通信できる。
【0061】さらに，上記通信用IC13は，例えば， モデム用のICなどであって，電話回線4の回線接続切断を制御したり，C P U 1 4 が処理するデータ列と電咶踩4を伝送される電気份りとを柑！に変換したりて きる。また，CPU14の指示に応じて，電話回線 4 と電話器 2 c とを接続して，電話器 2 c のベルを鳴らすこ ともできる。
【0062】一方，CPU14は，F1ashメモリ1 1のプログラムに従って，インターフェース部12およ び通備朋 I C 1 3 を制御する。！！体的には，接続器2a は，所望の管咶番号をダイアルして，電辞川線4を介し

て，通信機器 3 と直接通信したり，プロバイダ5を介し て，インターネット網7に接続したりできる。これによ り，接続器2aは，後述するように，電話回線 4 を介し た直接通信と，インターネット網7を介した通信とを所定の順番で行うことができる。
【0063】また，CPU14は，インターフェース部 12 あるいは通信用IC13を介して，コンピュータ2 bや電話器 2 c を制御できる。これにより，接続器2a は，コンビュータ2bが，例えば，キー入力などによっ て，使用者からインターネット網7を介した接続を指示 されたか否か，および，接続先なとを判定できる。ま
た，接綕器2aは，電話回線4と老話器2cとを接続し て，通認通話を行うことができる。
〔0064】電話回線4を介して直接接続されている場合，CPU14は，通信用IC13を介して，通信機器 3へ所定のメッセージを送出すると共に，通信機器3か ら受信したメッセージを識別できる。通信機器2•3間 の通信方法は，例えば，V32，V32bis，V3 4，V 2 1，あるいはV 2 2 などの規格に応じたシリア ル通信であり，両者間でメッセージを送受できる。
【0065】一方，通信機器2とプロバイダ5とかダイ アルアッブ接続されている場合，CPU14は，通信用 IC13を介して，プロバイダ5とデータグラムを送受 する。これにより，接続器2 aは，現接続時のIPアド レスを認識すると共に，所定の形式の電子メールを送出 できる。さらに，接続器2aは，プロバイダ5に吺けら れた自分のメールボックスを所定の周期で確認して，通信機器3からの電子メールが到着しているか否かを判定 する。輩子メールが到若していた場合は，湝子メールの内容を確認して，相手の1Pアドレスを認識できる。
【0066】加えて，インターネット網7を介して接続 している場合，CPU14は，インターフェース部12 および通信用IC13を制御して，コンピュータ2bと インターネット網 7 との間の通信を中継する。なお，コ ンピュータ2bと接続器2aとの間に抽いて，例えば，肯皆データ列や画像データ列そのものなど，インターネ ット網7にて伝送されるデータグラムと異なる形式でデ一タか伝送されている場合，CPU14が両者を相互変換する。一方，コンビュータ2bとの聞てデータグラム が伝送される場合は，CPU14は，当該データグラム をそのまま通過させる。これにより，接続器 2 a a，コ ンピュータ2bとインターネット網7との間で，何ら支隡なく通信を中継できる。
【0067】また，CPU14は，通信機器30公開鍵 を用いて，通信機器 3 へ送出するデータを暗号化した り，予め記憶されている向らの秘密鍵を用いて，通仁機器3から受け取ったデータを復号したりできる。
【0068】なお，上記の説明では，通信機器2におい て，コンピュータ2bが入出力を扣当しているが，入出力装置は，これに限るものではない。上述したように，

コンピュータ2bなどの入出力装置と接続器2aとの間 のデータの伝送方法は，無線／有線，アナログ／デジタ ル，あるいは通信速度や通信規格などを問うない。した がって，電話器やビデオカメラなど，種々の入力装置を使用できる。ただし，この場合には，接続器2 aは，イ ンターネット網7で伝送されるデータグラムと，乱話器 $2 \mathrm{c} お よ ひ ゙$ 接続器 2 a間のデータとを，相互に変換する必要がある。
【0069】特に，関3に示すように，通信機器22の入力装置として，電話器 22 c を使用する場合には，イ ンターネット網 7 を介した通話と通常の通話との双方で電話器2 2 c を使Hできる。また，従来と間様の構成の龟咶器 22 c と，電話回線 4 との問に，接続器 22 aを接続するたけでよいので，他の入力装置を設ける場合に比でて設置か容易になる。
【0070】この場合は，人力装㯰が電話器22coみみ なので，インターネット網7を介した通話と，通常の通話とを区別する必要がある。これは，接続器22aにス イッチなどを設けて，インターネット網 7 を介した通話 を指示してもよいが，例えば，以下に示す方法を用いる ことによって，使用者は，電話器 22 c のみを用いて両者を区別できる。すなわち，使用者は，受話器を取った後，＂\＃＂ボタンを3同押すなど，通常の通話では使用 しない操作たした後，予め設定された相手の登録番号の ボタンを押す。接続器2 2 a は，電話器 22 c から送ら れてくる音声信号によって，これらのボタン操作を認識 し，接続要求の発生と，相手先とを識別する。そして， インターネット網7を介して，相手と通話が可能になる と，例えば，電話器22cのベルを鳴らすなどして，使用者に通知する。一方，通常の電話番号が押されると，接続器22aは，電話器22cからの信号によって，通常の通話と判定し，電話回線4へ当該信号をそのまま通過させる。これにより，電話器22cは，接続临22a がない場合と同様に，電話回線 4 を介して直接通話でき る。このように，インターネット網 7 を介した通信を指示する操作として，入力装置で，通常使用しない操作を割り当てることによって，従来と同様の入力装置のみを用いて，インターネット網7を介した接続要求と，通常 の通信接綕要求と区別できる。
〔0071】また，上記の説明では，通信機器2におい て，コンビュータ 2 b が入出力を担当し，例えば，電話回線 4 あるいはインターネット網 7 と接続する順番の制御や，暗号化などを接続器2 aが担当しているが，両却材2a•2bの役割分担も，これに限るものではない。例えば，上記接続の順番制御や暗号化など，接続器2 a の処理の殆とを，コンピュータ2bが行ってもよい。こ の場合は，接続器2aは，通常のモデムやISDNのタ ーミナルアダプタなどを流用できる。
〔0072】なお，兴1および冈3では，说明の便宿上，接続器2a（22a），コンピュータ2b，および

電話器2c（22c）をそれぞれ別の部材として記載し ているが，当然なから一体化してもよい。一体化の例と しては，図1に示す接続器2aとコンピュータ2bとが一体となった家庭用テレビ，あるいは，図3に示す接続器22 aと電話器 22 cとを一体に形成した電話器など が挙ぼられる。さらに，電話回線 4 として，無線の電話回線を使用すると，上記一体型の電話器を携帯電話とし て構成することもできる。また，人出力装置としてビデ オカメラを採井し，接紐器2aと一体化すると，インタ一ネット網 7 を介して，画像や音声などを送出できるビ デオカメラか実現できる。この場合，無線電話回線を使用すると，携慍できるので，さらに好適である。一体／別体，あるいは，人出力装置，さらには，鍳話回線 4 が無線か有線かなどを組み合わせると，通信機器2は，種々の構成が考えられる。
【0073】次に，図1に示す通信システム1に打 て，通信機器 2 が通信機器 3 を呼び出す場合の動作を，図 4 に示すフローチャートに基づき，各ステップ毎に説明すると以下の通りである。
【0074】すなわち，通信機器2の使用者が，例え ば，コンピュータ2bのキース力などによって，通信機器3との通信を通信機器2へ指示すると，ステップS 1 aにおいて，通信機器2は，通信機器3の電話番号をダ イアルする。これにより，通信機器3は，電話回線4を介して呼び出される。なお，以下では，ステップ S 1a を単にS 1 aのように略称する。また，通信機器2が行 う処理には，S 1 a のように末尾に a を示し，通信機器 3が行う処理には，S 1 b のように末尾にbを付加し て，両者を区斺する。
【0075】一方，通信してもよい場合，通信機器3の使用者は，例えば，予めボタンを押すなどして，受信ウ エイトのオンを通信機器3へ指示している（S 1 b）。通信機器3は，受信ウェイトがオンの場合，電話の呼び出しに応答する（S 2 b）。この結果，通信機器2と通信機器3とは，電話回線4を介して直接通信を開始でき る。
【0076】通信機器2は，通信機器3の応答を検出す ると，例えば，＂CALL CU—SEEME fro m 通信機器 2 の使川者名 PASSWORD：パスワ ード通信機器2の使用者の電子メールアドレス 通信機器2の公開鍵＂なと，所定のメッセージを送出して，通信機器2の使用者名，パスワード，電子メールアドレ ス，および通蔀時に使用宅る通信機器2の公開鍵を通信機器3に通知する（S 2 a）。通信機器3は，受け取っ た使用者名とパスワードとの組み合わせを予め記憶して いる絸み合わせと照合して，正規の通信朴手か否かを判定する（S 3 b）。使用者名やパスワードが槑っている場合や，相手が音声によって通話している場合など，正規の道信相手では無い場合，通仁機器3の接続器3a は，毛話器 3 c のベルを鳴らして，電話巨線 4 と電話器

3 c とを接続する（S 4 b）。これにより，通信機器3 の使用名は，電話器 3 c を川いて相手と話すことができ る。この場合は，以降の処理は行われない。【0077】一方，上記S 3 bにおいて，正規の通信相手であることが確認できると，通信機器3は，例え ば，＂OK CU—SEEME from 通信機器3 の使用者名 通信機器3の使用者の電子メールアドレス
通信機器3の公開鍵＂など，所定のメッセージを送出 し（S5b），通信機器2は，当該メッセージを受け取 る（S 3 a）。これにより，通信機器2は，自らの接続要求を通信機器3が受け取ったこと，通信機器3の使用者名，菴子メールアドレス，および，通信時に使用する通信機器3の公開鍵を取得できる。
〔0078】その後，通信機器2および3は，それぞれ電話回線 4 との接続を切り（S 4a•S6b），所定の プロバイダ5あるいは6ヘダイアルアップ接続を開始す る（S 5a•S 7 b）。また，各通信機器2•3におい て，接続器 $2 \mathrm{a} \cdot 3 \mathrm{a}$ は，コンビュータ 2 b へ指示し
て，例えば，コーレル大学が開発したCU—S E E M E など，コンピュータ2bに予め用意されているネットワ一ク会議ソフトを起動させる（S6a•S8b）。
【0079】上記S 5aおよびS 7 bにおいて，ダイア ルアップ接続に成功すると，各通信機器2•3は，それ ぞれのプロバイダ5•6から，現接続限りのIPアドレ スを取得する（S 7 a•S9b）。この結果，各通信機器2•3は，インターネット網7ヘデータグラムを送出 できるようになる。
【0080】たたし，現時点ては，通信機器2および通隹機器3は，相手のI Pアドレスを把握してするらず，相手宛のデータグラムを生成できない。したがって，各通信機器2•3は，プロバイダ5•6など，所定のIPア ドレスを有する機器とは通信できるが，両通信機器2• 3 間の通信を開始できない。
【0081】続いて，各通信機器2•3は，上記 52 a あるいはS 5 bにて相手から送られてきた公開鍵を用い て，内らの名前と白らの1Pアドレスとを暗方化する。 その後，各通信機器2•3は，当該暗号文を電子メール として，相手先の電子メールアドレスへ送出する（S 8 a•S 1 0 b）。各電子メールは，相手先の公班鍵て暗号化されており，相手が保持している秘密鍵を用いない と復号できない。
【0082】また，各通信機器2•3は，例えば，5秒間隔など，所定の間期で，プロバイダ5•6に设けられ た自分のメールボックスを監視している。相手からの電子メールか到着すると，各通信機器 2 • 3 は，上記メー ルボックスから当該電子メールを読み出して，1＇らの秘密鍵を用いて暗号を解読する。これにより，各通信機器 2•3は，相手の名前とIPアドレスとを取得できる （S9a•S11b）。
【0083】さらに，各通仁機器2•3は，相手のIP

アドレスを取得すると，ネットワーク会議ソフトへ当該 I Pアドレスを通知し，相手を呼び出す。これにより， ネットワーク会議ソフトにて通信が開始される（S 1 0 a•S12b）。
【0084】ところで，各データグラムには，送信先の I Pアドレスの他にも，送信側のIPアドレスが含まれ ている。これにより，一方の通信機器2（3）が相手の通信機器3（2）を呼び出した場合，被呼側の上記ネッ トワーク会義ソフトは，受信したデータグラムに罢づい て，発呼側のIPアドレスを認識できる。したがって，一方か呼び出した時点で通信を開始できる。具体的に は，上抒S 10aの処理がS 1 2 bの処理よりも乌くく開始された場合には，通信機器 3 は，上記 $S 11$ bを行う必要がない。同様に，上記S 1 2 bの方が早い場合に
は，通信機器 2 は，上記 S 9aの処理を省略できる。な
お，上埒ネットワーク会議ソフトは，双方が間時に呼び出した場合でも通信できるように作成されているので，上記各処理S 9a•S11bを省略しない場合であって も，何ら支障なく通信を開始できる。
【0085】さらに，一方の通信機器2（3）が相手の通信機器3（2）を呼び出した時点で，通信を開始でき るので，両方の通信機器2•3がダイアルアップ接続し ている場合には，いずれか一方は，電子メールを発信し なくても，兩通信機器2•3は，通信を開始できる。た だし，両通信機器2•3か電子メールを発信した場合 は，いすれか一方の電子メールが到着した时点で通信を開始できるので，一方のみが電子メールを発信する場合 に比べて，通信開始をより早く開始できる確率が高くな る。
【0086】会議中は，コンピュータ2bからの音声お よび画像は，接続器2a，プロバイダ5，インターネッ ト網7，プロバイダ6，および接続器 3 a を介して，コ ンピュータ3bへ送られており，コンピュータ3bから の音声および画像は，上記経路を逆方向に送られてい る。これにより，通信機器 2 と通信機器 3 との使用者 は，ネットワーク会議ソフトにより通信できる（S 1 0 a•S 1 2 b）。会議が終了すると，各通信機器2•3 は，それぞれダイアルアップ接続を切断し（S 1 1 a• S 1 3 b），通信機器2•3問の通信か終了する。
【0087】また，例えば，受信側の使用者が不在の場合や，インターネット網7を介した通信を受けたくない場合には，例えば，所定のボタンを押すなどして，接続器3aへ通信ウェイトのオフを指示している。この場合 は，接続器 3 a は，上記 S 2 以降の処理を行わず，電話器3cへ無条件に接続する。
【0088】ところで，インターネット網7を介して通信する場合，各通信機器2•3が送出したデータグラム は，送出時点において，どのような経路を通って宛て先 に到逢するか不明であり，インターネット網7を構成す る機器は，データグラムを受け取った時点で，次にデー

タグラムが通過する機器を決定する。
【0 0 8 9 】したがって，各データグラムが通過した機器において，データグラムの改変や複写などか容易であ り，電話回線 4 を介して直接通信する場合に比べて通信 を妨害しやすい。特に，使用者名とIPアドレスとを電子メールにて平文のまま送出した場合は，使用名名から通信の重要性を判断しやすいため，以後の通信が重点的 に妨害される可能性が高くなる。一方，暗号処理や復号処理は，演筫処理が不可欠であるので，暗号化しない場合と比較すると，各通信機器2•3には，高い処理能力 か要求される。
【0090】したがって，本実施形態では，通信時の負担と，妨酮に対する安全性とを両立するために，電子メ一ルの内容のみを暗号化している。ただし，妨害に対し て，さらに高い安全性か要求される場合には，ネットワ ーク通信ソフトの通信扣間も通信内容を暗号化すること によって，比較的容易に安全性を向上できる。
【0091】また，各データグラムか通過する経路が決 まっていないため，データグラムの到着時刻の保証が困難である。また，ある通信路におふし，データ量が許容範囲を越えると，データグラムが失われる盧れがある。
ただし，本実施形態に係る通信システム1では，音声デ ータや仙像データを伝送するために，各通信機器2•3 は，インターネット網 7 と十分な通信容量を有する通信回線を介して接続している。また，両ブロバイダ5•6 を選択する際，両プロバイダ5•6問が十分な通信容量 を有する回線で接続されているようなプロバイダを選択 している。したがって，電子メールのように，音声デー タや面像データに比べてデータ昂が板めて少ない場合に は，遅延や損失の危険性は，実用上十分低い值になって いる。なお，所定の時間内に電子メールか到着しない場合に電子メールを再送すれば，遅延や損失の可能性をさ らに低減できる。
【0092】なお，本実施形態では，両通信機器2•3 は，インターネット網7での通信に先立って，電話回線 4にて旦いの電子メールアドレスを交換しているが，こ れに限るものではない。例えば，兇2に示すF1ash メモり11 なとに相手の電子メールアドレスを予め記憶 して打いてもよい。ただし，霍子メールアドレスは，使用者の都合によって，変更する場合がある。この場合，各通信機器2•3の使用者は，電子メールアドレスを変更する度に，相手に新しい電子メールアドレスを通知す ると共に，相手の通侣機器2•3の使用者は，受け取つ た電子メールアドレスを，それぞれの通信機器2•3へ設定しなおす手間か生じる。これに対して，本実施形態 では，発呼低に，！！いの電子メールアドレスを通知して いるので，電子メールアドレス変更時の手間を大幅に削減できる。
【0093】【第2の建施形態〕上記第1の其施形態 は，咠話回線 4 とは別の通仁手段として，インターネッ

ト網7を使用し，通信機器 2 と通信機器 3 とがインター ネット網 7 により白接通信するものである。これに対し て，図ちに示すように，本実施形態に係る通信システム 31 は，電話回線 34 とは別の通信回線として，インタ ーネット網37を使用する点では，第1の実施形態と同様である。ただし，通信機器 32 と通信機器 33 とが， インターネット網37上に設けられたサーバ38を介し て通信する点か異なっている。なお，通信システム31 では，通信機興32ないしインターネット絧37の各部材は，匋1に示す通信機器2ないしインターネット網7 と略同様の機能を有している。したがって，異なってい る部分のみ說明し，淋様の部分の説明は省略する。〔0094】本完施形態に係る通信システム31に設け られたサーバ38は，リフレクタなどと呼ばれており，固有のIPアドレスを有し，サーバ38と通信している通信機器32•33間の通信を中継できる。其体的に
は，サーバ38には，現在通信している機器のIPアド レスと登録名との組み合わせを格納する領域か蔎けられ ている。各機器がサーバ38へ登録名を通知すると，サ一バ38は，当該機器のIPアドレスと登録名との組み合わせを上記頒域に格納する。また，サーバ 3 8 は，各機器の要求に応じて，上記領域から登録名のリストを送出できる。これにより，各機器は，サーバ38を介し て，現在通信可能な機器の登録名を知ることができる。 さらに，機器は，サーバ38へ登録名を指定して，所望 の通信相手を選択できる。
【0095】サーバ38は，機器の登録名を格納した時点で，全機器のI Pアドレスと登録名と記憶している。 したかって，サーバ38は，機器が通信相手を指定した場合，一方から受け取ったデータグラムを他方のIPア ドレスへ送出できる。なお，サーバ38は，ある機器か ら受け取ったデータグラムを複数の機器へと転送でき る。この埸合は，䘽数の機器間での通信が可能になる。【0096】現在，インターネット網37上には，種々 のサーバ38か設けられており，その中には，不特定多数の機器で使用できるように，I Pアドレスを公開して いるサーバ38も存在している。したがって，これらの サーバ38を選択することによって，上記通信システム 31 を容易に構成できる。
【0097】本実施形態では，各通信機器32•33日 ハードウェア構成は，図1に示す通信機器2•3と同様 てあり，搭載されているソフトウェアの相違によって，動作が異なっている。したがって，以降では，通信機器 32 か通信機器 3 3を呼び出す際の動作について說明 し，ハードウェア構成については説明を省略する。
【0098】図らのフローチャートに示すように，本良施形態に係る轷で出し方法は，以4に示すステップS 1 aないしS 1 1 a およびS 1 bないしS 1 3 bと同様の処玾を行うステップ（S 2 1 a ないしS 3 1 a ，および S21bないしS33b）を嗵えている。

【0099】ただし，第1の実施形態において各通信機器32•33か通信相手を特主する際に，龟子メールを用いて，互いのIPアドレスを交換していたのに対し て，本実施形態では，各通信機器32•33は，サーバ 38 へ所定の登録名を登録し，相手の登録名を選択し て，通信相手を特定している。したがって，込毛に示ず S 8 a•S 9 a，およびS 10 b•S 11 bのように，自らのIPアドレスを互いに交換するステップに代え て，以下に示す各ステップ，S28a•S29a，およ びS 30 b •S 31 b か設けられている。また， S 22 a およびS 25 bにおいて，各通信機器 32 • 3 3 は，是子メールアドレスの通知を省略している。
〔0100】すなわち，S 2 7 a およびS 2 9 b の処理 を終了した時点において，各通信機器 $32 \cdot 33$ は，そ れぞれのプロバイダ $35 \cdot 36$ を介して，インターネッ ト網37へ，目らのIPアドレスを含むデータグラムを送出できる。また，この時点では，S 2 2 aあるいはS 25 b で相手が送出した公開鍵および使用者名を取得し ている。
〔0101】各通信機器32•33は，それぞれの使用者名を上記公開鍵によって暗号化する。さらに，各通信機器32•33は，暗号化された使用者名を登録名とし て，サーバ 38 へ通知する。サーバ 38 は，各通信機器 32•33の登録名とIPアドレスとの組み合わせを登録する（S28a•S30b）。サーバ38は，各通信機器32•33が登録名の通知时に送出したデータグラ ムなどに基づいて，それぞれのIPアドレスを取得でき る。
〔0102】本実施形態では，各通信機器32•33の登録名は，暗号化されてサーバ38に登録されている。
したがって，サーバ38と通信している第三者は，登録名のリストを見ることができるけれど，使用者名を知る ことができない。この結果，第1の厉施形態にて電子メ ールを暗号化した場合と同様に，本実施形態において も，使用者名を第三者から隠蔽できる。
〔0103】次に，各通信機器 3 2 • 3 3 は，サーバ3 8 へ登録名のリストを要求する。さらに，各通信機器3 $2 \cdot 33$ は，リスト中の各登録名を，自分の秘密鍵を用 いて後先して，予め通知されている使川者名と後紊絬米 とが一致する登録名を選択する。その後，各通信機器3 2•33は，通信相手として，当該登録名をサーバ38 へ通知する（S 2 9a•S 31 b ）。サーバ 38 は，通知の際に使川されるデータグラムなどから一方の1Pア ドレスを取得し，登録名に対応するIPアドレスから他方のIPアドレスを取得する。その後，サーバ38は，上ぃ両I Pアドレスの一方からデータグラムを受け取る と，他方の1Pアドレスヘデータグラムを転送する。こ れにより，各通信機器 32 • 33 は，互いのIPアドレ スを知らなくても，「いいに双方向に通信できる。本央施形態ては，上述の第1の見施形態と同㥞に，ネットワー

ク会議ソフトによる通信中，各通信機器 $32 \cdot 33$ は，通信内容を暗号化せず，通信時の保担を低減している。 しかしながら，相手の公開鍵を用いて，当該期間中も通信内容を暗号化することによって，通信妨害に対する安全性をさらに向上できる。
【0104】S29a•S31b以降は，第1の実施形態と略同様に，雨通信機器 32 • 33 は，ネットワーク会議ソフトを用いて双方向通信した後，会議の終了と共 にダイアルアップ接続を切断して，通信が終了する。
〔0105】本実施形態に係る通信システム31では， サーバ38が通信を中継しているので，通信機器32が通信機器33を呼び出す際，延いのIPアドレスを必要 としない。したがって，両プロバイダ35•36は，そ れぞれの通信機器32•33の電子メールサーバでなく てもよく，通信機器 $32 \cdot 33$ は，電子メールを送受で きなくてもよい。この場合でも，本実施形態と同様の効果が得られる。
【0106】各通信機器32•33は，上記 S 2 8 a• S30bにおいて，サーバ38の1Pアドレスへ発録名 を通知する必要がある。このIPアドレスは，例えば，図こに示すF1ashメモリ11などに予め記憶してい てもよいし，電話回線34での通信中に打合せてもよ い。上記S 28 a •S 30 bでの登録前に，通信機器3 2•33間で，共通のサーバ38が指定されていれば， サーバ38の指定方法は問わない。
【0107】【第3の実施形態〕上記第1および第2の実施形態は，電話回線4•34による直接通信とは別の通信手段として，インターネット網7•37を使用して いる。これに対して，本実施形態では，別の通信手段と して，パソコン通信を利用する場合について説明する。
【0108】㘢7に示すように，本実施形態に係る通信 システム41において，各通信機器42•43の使用者 は，パソコン通信に加入しており，通萿機器 $42 \cdot 43$ は，近隣のアクセスポイント45•46まで電話し，パ ソコン通信サーバ 47 にダイアルアッブ接続できる。
【0109】パソコン通信サーバ 47 は，通信機器 12 －43と通信して，例えば，データベース検索など，所定のサービスを提供している。さらに，本実施形態に係 るパソコン通信サーバ 47 は，近方に示すサーバ 38 と同様に，両通信機器 42 •43間の通信を中継できる。 これにより，両通信機器 42 •43間は，パソコン通信 サーバ 47 を介して，双方向に通信できる。
【0110】パソコン通信サーバ 4 7 は，国に示すプ ロバイダ5•6と同様に，加大者を1Dなどによって管理しており，各通信機器 42 • 43 が電話回線 44 を介 して接続した場合に，I Dおよびパスワードを照合し
て，それぞれの通信機器 4 2－4 3 を識別する。ただ し，爫1に示す通信システム1のように，インターネッ ト網7を介して通信する場合とは異なり，龱7に示す通角システム41では，雨通信機器42•4301Dが，

いずれもパソコン通信サーバ47により管理されてい る。したがって，当趽通信システム41では，それぞれ のI Dによって通信相手を特定する。なお，各アクセス ポイント45•46とパソコン通信サーバ47との間 は，専用の回線 48 •48で互いに接続されている。【0111】現在，上記パソコン通信サーバ 47 は，数多く設けられている。したがって，その中の一つを選択 し，通信機器 $42 \cdot 43$ を設けることによって，比較的容易に通侣システム41を構成できる。
【0112】本実施形態に係る通信機器 42 －43は，第1の実施形態に示す通信機器2•3（22）と略同様 のハードウェア構成である。ただし，本㬰施形態に係る通仁機器 $42 \cdot 43$ は，パソコン通信サーバ 47 に接続 されている場合，当該パソコン通信サーバ 4 7 との通信方式に応じた形式のデータを送受する。なお，当該形式 のデータの送受は，通信機器2•30ハードウェアある いはソフトウェアを一部変更するだけで容易に実現でき る。
〔01113】上吔構成において，通信機器 4 2 が通信機器 4 3 を呼び出す際，通信システム 41 は，図8に示す ように動作する。すなわち，S41aないしS44a， および，S41bないしS 46bにおろいて，通信機器 4 2は，パソコン通信サーバ 47 を介して通信する前に，図6と同様の処理を行い，電話回線 44 を介して通信機器43を呼び出して接続要求を伝える。この際，両通信機器 42 －43は，互いの公則鍵を交換する。
【0114】続いて，S 4 5 aないしS 4 8 a，およよび S47bないしS50bに抽いて，図6と同様に，両通 1；機器 $42 \cdot 43$ は，それぞれて゚ソコン通信サーバ 47 ヘダイアルアップ接続して，ネットワーク会議ソフトを介して通信する。
【0115】ただし，本実施形態では，各通信機器 42 －43に固有のIDを用いて通信相手を指定する。した かって，以占に示すS $27 \mathrm{a} ~ \mathrm{~S} 29 \mathrm{a}$ ，および，S 2 9b～S 31 bの処理は，省かれている。また，本実施形態では，S 17 a およよびS 49bにおひて，ネットワ ーク会議ソフトで通信する際，両通信機器 42 •43 は，電話回線 44 を介して，予め交換した相手の公開鍵 を用いて，通伝内容をそれぞれ暗号化して送出する。ま た，暗号化された通信内容は，予め保持している自らの秘密鍵を用いて復号する。これにより，通信内容を第三者から隠蔽できる。
【0116］［第1の置施形態〕上u己第1ないし第3の実施形態では，通信機器2（32•42）が通信機器3 （33•43）を呼び出すときであっても，これとは逆 に，通仁機器 3 （ 3 3•43）が通仿機器2（32•4
2）な呼び出すときであっても，本発明に係るダイアル アップ接続通信機器の呼じ出し方法か使用される構成に ついて涚明している。しかしなから，本発明に係るダイ アルアップ接続通隹：機器の呼び出し方法は，一方の通信

機器が虺方の通信機器を呼び出すときのみに使用しても よい。
〔0117］以下では，監視カメラシステム（監視制御 システム）を例にして，親局側が子局側を呼び出す際の みに，本発明に係るダイアルアップ接続通信機器の呼び出し方法を使用する場合について咩細に哾时する。な
お，ネットワークとしては，第1ないし第3の実施形態 に示すように，インターネット網やパソコン通信などを利用できるが，以下では，第1の実施形態と闰樣に，イ ンターネット網を用いた場合を例にして説明する。
【0118】すなわち，本実施形態に係る監視カメラシ ステム51は，例えば，無人駐車場の臨視などに用いら れるものであって，図のに示すように，本社に配された親局（発呼側の通信機器）52と，各駐車場に配された子局（ダイアルフップ接続通信機器）53とを備えてい る。当該子局 53 には，監視カメラ53b・が取得した映像を親局 52 へ送出する送信装置（子局通信手段）5 3aか設けられており，各監視カメラ53bか取得した映像は，子局53の送信装算53aを介して，親局52 の受信装置（親局通信手段）5 2 a へ送られる。親局5 2では，当該映像に基づいて，無断駐車の有無が確認さ れる。これにより，本社1か所のみで，全国の無人駐車場を監視できる。したがって，各駐車場に監視のための人材を派遣する必要かなく，人件費を削減できる。な お，料金回収は，例えば，週1回，地元の契約社員など によって回収される。
〔0119】より詳細には，上記子局 5 3 の送信装置5 3 a は，図1に示す接続器3aと略同様の構成である。 ただし，䙅数の監視カメラ 53 b を制御するために，監視カメラ 5 3 b の数に応じた数のインターフェースを備 えている点が異なっている。また，これに伴って，親局 52 からの指示を認識して，映像の取得が指示された監視カメラ53bを選択し，当該覧視カメラ53bに映像 の取得を指示する機能が付されている。たたし，当該機能は，例えば，風2に示すCPU14か所定のプログラ ムを実行することによって灾現できるため，上吔接絖蔈 3aと同様のハードウェアによって，送信装置53aを実現できる。
〔0120】また，上記各監視カメラ53bは，駐本場 の各駐車スベースに駐車した車両のナンバープレートを撮影可能な位置に配されている。また，各監視カメラ5 3 b か取得可能な映像の解像度は，ナンバープレートの文子を鄪み取り可能な程度に没定されている。各䜿視力 メラ53bおよび上記送信装置53aは，例えば，図1 に示すコンピュータ2bおよび接続器2aのように，所定の通信方法によって接続されており，臨視カメラ53 bは，送信装置53aの指示に応じて映像を取得できる と共に，取得した映像を示す映像データを送信装置53 aへ送出できる。
【0121】さらに，本㻢形態ては，電話吅線540

一部に無線電話システムが使用されており，送信装置5 3aは，携带電話器 53 c を介して，親局 52 あるいは プロバイダ56と接続される。無線電話システムは，例 えば，バーソナル・ハンディホン・システム（以下で は，PHSと称する）や自動車電話システムなど，種々 のシステムが利間可能であり，子局53には，各システ ムに応じた携帯電話器 53 c が設けられる。なお，図 1 に示す接続器 3 a と同様に，無線電話システムを利用せ ずに，送信装置53aと龟舕回線54とを直接接䋁して もよい。
【0122】これにより，子局53は，図1に示す通信機器3 3 と间様に，電話回線54を介して親広52と自接通信できると共に，電話回線54およプロバイダ56 を介して，インターネット網57ヘダイアルアップ接続 できる。
〔0123］一方，上記親局52は，四1に示す通信機器2と同栐に，電話回線54を介する直接接続と，イン ターネット網57を介する接続との双方によって，子局 53 と通信可能である。ただし，本㬰施形態に係る親局 52は，上記通信機器 2 とは異なり，専用線 5 8 にて， インターネット網 57 と直接接続されている。これによ
り，親局 52 は，本発明に係るダイアルアップ接続通信機器の呼じ出し方法を用いて，子局53を呼じ出して通信できる。なお，本実施形態に係る親局52が専用線5 8にてインターネット網 57 に常時接続されているの で，親尉 5 2には，固有のIPアドレスが割り当てられ ている。
【0124】具体的には，本実施形態に係る親局52
設けられており，コンピュータ2b•電話器2cに代え て，監視カメラ 53 b からの映像を使用者に報知すると共に，使用者の指示を受け取る端末52bか設けられて
続器2aおおよびコンピュータ2bと同様に，例えば，L ANなと，所定の通信方法によって接続されており，双方向にデータを送受できる。
【0125】本実施形態に係る受信装置52aは，ター ミナルアダプタ（T A）機能を具備するものであって，図示しないデジタル川線終端装置（DSU）を介して， ISDN回線と接続可能に構成されている。I S D N回線は，単一の加入者契約で，2つの回線（Bチャネル） を同時使用可能なディジタル回線であり，一方の回線 が，慗川線58としてインターネットに接続するために専有されており，他方が電話回線54として使用され る。なお，専用線 58 は，これに限らず，ケーブルテレ ビ以線や，光ファイバなど，秝々の川線を使肳できる。 ただし，I S DN回線を使用すると，単一の加入者契約 によって，専用線58と電話回線54との双方を実現で きるので，比挍的安価に親局 52 を実現できる。【0126】貝体的には，罒10に示すように，受依

置52aは，図2に示す接続器2aと類似した構成であ るが，通信用IC13に代えて，上記D S Uに接続され る S / T 点インターフェース（ S / T 点 I / F と略称す る） 18 が設けられている。当該 S / T 点I／F18 は，CPU14の指示に基づいて，呼の設定／切断（回線接続／切断）を制御したり，CPU14が処理するデ一タ列と，ISDN回線上を伝送される電気信号とを相互に変換できる。また，S／T 点I／F 1 8 は，CPU
 SDN回線上に送出し，ISDN回線から送られてきた音声信号を復調して，CPU14が処理するデータ列に変換することもできる。これにより，受信装置52a は，子禺530送信装置53aと電話回線54を介して直接通信できる。受信装置52aと送信装置53aとの間の通信方法は，例えば，V32，V32bis，V3 1，V21，あるいはV22など，所定の規格に応じた シリアル通信であり，両者間でメッセージを送受でき る。
〔0127】これにより，受仁装置52aは，電話回線 54 を介して子局53を直接呼び出しできると共に，専用線58およよびインターネット網 57 を介して，子局 5 3と通信できる。
【0128】な採，親局52全体としての機能が同じで あれば，用途に応じて，受信装置52aと端末52bと の役割分担や，両者か一体に形成されているか否かなど をけ由に設守できるが，以下では，受信装置52aが監視カメラ 5 3 b からの映像を受け取るサーバとして働く場合を例にして説明する。この場合は，各監視カメラ5 3 bからの映像は，受信装置52aに蓄積され，端末5 2bは，受信装置52aに指示して，これらの映像を受 け取り，当該映像を表示する。一方，使用者が，ある監視カメラ53bか配置されている場所の映像を取得した いと判断した場合，端末 52 bは，例えぼ，キー入力な どによって，使用者の指示を識別し，当該監視カメラ5 3 bに対する映像の取得要求があったことを受信猿置5 2 aへ道知する。受信装置52aは，端末52bからの通知に基ついて，監視カメラ53bに対応する子局53 を識別し，本発明に係るダイアルアップ接続通信機器の呼び出し方法を川いて当荄子局 53 を呼び出す。
【0129】以下では，子局53を垀び出す際における親局52および子局53の動作について，図11に示す フローチャートに基づき説明する。なお，上記第1ない し第3の実施形態に係るフローチャートといか様に，発呼側，すなわち，親局520動作を示すステップは，例え ば，S61aなど，未尾に＂a＂を付した符号にて参照 し，被㭔側，すなわち，子局53の動作を示すステップ は，末尾に＂b＂を付した符号にて参照する。
【0130】すなわち，親局 5 2に打いて，端末 52 b は，例えば，使川者の指示などに応じて，監視カメラ5 3 b からの映像を取得したいことを示す受信要求を生成

し，受信装置52aに通知する（S61a）。受信装置 52 a は，当該受信要求に基づいて，当該監視カメラ5 3 bに対応する子局53を検索して，例えば，電話番号 や暗証番号など，当該子局 53 を呼び出すための情報を取得する。さらに，受信装置 52 aは，2つのI S DN以線のうちの空いている吅線を咑いて，上記電話番なった電話をかけ，子局53の送信装置53aを電話呼び出し する（S62a）。送信装置53aか電話呼で出しに応答すると（S61b），受信装置52aと送信装罟53 aとの間で，電話回線54を介する直接通信が可能にな る。
【0131】さらに，S 6 3 aにおいて，受侣装置5 2 aが送信装㯰53aに予め定められた暗証番号を通知す ると，S 6 2 bにおいて，送信装置5 3 aは，受け取っ た暗証番号が予め定められた正規の暗証番号であるか否 かを認征し，正規の暗証番号の場合，受信装置52aへ応答メッセージを送出する。
【0132】応答メッセージを受け取ると，受信装置5 2aは，S64aにて，インターネット網57を介して接続する際に用いられる通信パラメータ（アクセス情報）を，送信装置53aに連絡し，送信装置53aは，当詨通信パラメータを受け取った後，電話回線54との们線接続を切断する（S63b）。これにより，受信装置52 a と送信装置53aとの間の直接接続は切断され る。
【0133】上祀S64aにて送出される通信パラメー夕は，例えば，送信装置53aの最寄りのプロバイダ5 6の電話番号と，並びに，プロバイダ56のアカウント およびバスワードなど，送信装置53aがダイアルアッ プ接続する際に使用するダイアルアップ情報を含んでい る。なお，受信装置52aは，各送信装置53aに予め対応付けられたダイアルアップ情報を通知してもよい
し，例えば，無線通信シスデムが発呼側と被呼側との双方に端末の現在位置を通知するサービスなどを用いて，受信装置52aが送信装置53aの位置を確認し，送信装置53aに応じたダイアルアップ怗報を通知してもよ い。
【0134】さらに，上記通信パラメータには，例え ば，晴号鍵と，受信装置52aのIPアドレスと，ft p（File Transfer Protocol）用のログイン名と，通信開始の条件となど，インターネット網57を介して，映像データを伝送する際に用いられる情報が含まれてい
像データを暗号化する際に使用する暗号鍵であり，各接続毎に異なる使い捨てのものか使用される。また，通信開始の条件は，インターネット網57を介して，送位装置53aが受信装置52aヘインターネット網57を介 して接続する際の条件を示すものであり，例えば，以下 に示す条件が挙げられる。第1の条件が選抧された場合，受信装置52aが送盾装置53aを象話問線54に

て呼び出し，直接通信が切断された後，子局 53 は，即座に通信を開始する。また，第2の条件が選択された場合，送信装直53aは，一定の時間間隔や指定した時間 にて，自動的に通信を開始する。さらに，第3の条件が選択されると，送信装置 53 a は，送信装置 53 aに接綕されたセンサ（図示せず）にて，何か異澏を班知した場合に，自動的に通信を開始する。加えて，第4の条件 か選択されると，送信装置53aは，各監視カメラ53 っからの映像を营時画像処理し，映像に所定の変化が現 れた場合に，自動的に通信を開始する。また，第5の条件か選択されると，送信装置53aは，図示しない通常 の電話器（図示せず）から安䑙回線54を介して呼び出 しを受けた場合，当該声話器との接䋁が切断された後 で，自動的に通信を開始する。
〔0135］上記 S 6 3 bにて，受信装置5 2 a と送信装置53aとの間の直接通信が切断されると，送信装真 53 a は，上記S64aにて通知された通信の開始条件 か満たされるまで待機する（S 6 4 b）。
〔0136】通信条件が満たされると，送仁装置53a は，例えば，監視カメラ 5 3 bに写真を撮影するように指示したり，あるいは，監視カメラ53bから送られて いる映像のらち，最近の映像を選択するなどして，監視 カメラ53bからの映像データを取得し，上記S 64 a にて通知された暗号鍵を用いて暗号化する。さらに，送信装置53aは，上記S 6 4 aにて指示されたプロバイ ダ56を介して，インターネット紌57ヘダイアルアッ プ接続する（S65b）。これにより，IPアドレスが割り当てられ，送信装置53aは，インターネット網5 7に接続される。なお，受信装置52aは，専用線58 を介してインターネット網57へ常時接続されている。
〔0137】続いて，S 6 6 bにて，送信装置53a
は，インターネット網57を介して受信装置52aへf tp 接綕を要求する（S66b）。なお，ftp接続要求は，例えば，上記S 64aにて通知された受信装置5 2aのIPアドレスへ所定のコマンドを送出するなどし て要求される。
【0138】また，受信装置52aは，ftp接続要求 を受けると，ログイン名入力画面にて，乱数を送信装置 53 aに送信する（S65a）。なお，送信装置53a のIPアドレスは，上記S 65bにて割り当てられるま で決定していないので，受信装置52 aは，送信装置5 3aのIPアドレスを予め予測することができない。し かしなから，上妃 S 6 6 bにて，送信装置53aがft p 接続を要求する際に受信装置52aへ送出したデータ グラムには，送信元の1 Pアドレスとして，送信装置5 3aの11アアドレスか令まれている。したがって，当咳 IPアドレスヘデータグラムを送信することによって，受信装置52aは，何ら支障なく，インターネット網5 7を介して送俇装置53aへ任意のデータを送信でき る。

【0139】さらに，送信装置53aは，上記S64a にて通知された瞕号鍵を月いて，受け取った乱数を暗は，」化して，パスワードを生成し，受信装置52aへ当該パ スワードを送出する（S 6 7 b）。一方，受信装置5 2 aは，受け取ったパスワードが，ログイン名に対応し， かつ，上記S64aにて通知したパスワードを用いて暗号化されたパスワードであるか否かを判定する。そし て，ログイン名に対応して正しく暗号化されたバスワー ドであった場合，送信装置53aが正規の相手であると承認する（S66a）。
〔0140】承認された送信装置53aは，上記 S 6 5 bにて暗号化した映像データをftpプロトコルにて受信装置52aへ送信する（S68b）。当該映像データ は，インターネット網57を介して，受信装置52aへ到達し，受信装置52aは，暗号化された映像データを受け取る（S67a）。さらに，送伝が完了すると，送信装置53aは，プロバイダ56との回線接続を切断す る（S69b）。これにより，受信装置52aと送信装置53aとの間のインターネット網57を経由した通信 は完了する。
【0141】さらに，受信装置52aは，送信装置53 aへ電話をかけて，呼出し音に基づいて，送信装置53 aとプロバイダ56との間の蔑線接続が，正常に切断さ れているか否かを確認する（S68a）。具体的には，送信装置53aは，電話呼出しを受けた場合，例えば， $1 ~ 2$ 回など，所定の问数の呼出し音がなるまで，着呼 しないように設定されている。この結果，受信装置52 a か送信装置53aへ電話をかけた場合，所定数回の呼出し产が䐴らされる。通常の電話山線54では，被呼似 となる送信装置53aが回線接続しているか否かによっ て呼出し音が異なる。したがって，受信装置52aは，呼出し音によって，送信装置53aとプロバイダ56と の回線接続が切断されているか否かを確認できる。
【0142】例えば，話し中ではないことを示す通常の呼出し音か鴻った場合，受信装置52aは，送信装置5 3aがインターネット網57への接綕を正しく切断でき たと判断する。一方，話し中を示すツーツーという音が鳴った場合，受信装置52aは，送信装置53aがイン ターネット網 57 へ接続中であると判断する。この場合，受信装置52aは，例えば，先程まで通信していた送信装置53aのIPアドレスヘ，インターネット網5 7 経由で切断コマンドを送出するなどして，送信装置5 3 aへ川線切断を指示できる。また，受伯装置52aの通知に応えて，端末 52 bo使用者が，監視カメラ 53 bの設置場所へ赴いて回線接続を切断するなどしてもよ い。

【0143】いずれの場合であっても，親局52側は，子局 53 における回線切断の失敗を把握して，適切な処篗を冓じることができる。この紣宩，以線切断の失敗に起因する無駄な通仁蕒川お発生を確慁に防止できる。な

お，上記所定の回数までに，受信装置52aが電話呼出 しを中止すれば，通詁料金は無料である。

【0144】また，S 6 9 a において，受信装置5 2 a は，受け取った映像データを復号し，f t p プロトコル にて，例えば，図9に示す端末 52 bなどの他の機器 へ，後り」された映像データを送出する。これにより，映像データは，端末 52 bに表示され，端末 52 bの使用者は，監視カメラ53bの設置場所の映像を確認でき る。
〔0145】この結果，子局53がダイアルアップ接続 されている場合であっても，親局52は，任意の時点 で，裖視カメラ53bからの映像を確認できると共に，例えば，無断駐車を発見したときなど，何らかの異常が あったとき，特定の監視カメラ53bを重点的に監視で きる。したがって，無断駐車されている駐車スペースを柵などで井ったり，警備会社に連絡するなど，異常に応 じた処理を講じることができる。

【0146】ところで，上述したように，インターネッ ト網57を構成する通信機器は，送信元の通信機器の1 Pアドレスに拘わらず，近隣の通信機器からデータグラ ムを受け取っている。したがって，受信装置52aは，受信装置52aの処理能力および専用線58の通信容量 の範肼内てあれば，複数の送信装置53aからの映像デ一タをインターネット網57経由で受け取ることができ る。さらに，受信装置52aは，インターネット網57経由の接䋁と，電話回線54を介した直接接続とを同時 に維持できる。したがって，受信装置52aは，インタ ーネット網57経由で映像データを受け取っている間で あっても，他の送信装置53aを電話呼出しして，映像 の取得を指示できる。
【0147】なお，上記各ステップでは，監視カメラ5 3 bか取得した映像をインターネット網57経由で受信装置52 aへ送出する場合について説明している。ただ し，例えば，プロバイダ56か混雑している場合など， インターネット網57経由のデータ伝送か灘しい場合，送信装置53aは，受信装置52aを電話呼出しして，電話回線54を介した直接通信によって映像を伝送する こともできる。この場合は，インターネット網57への アクセスや暗！化を必要としないため，送信装置53a は，より速い時点で，受信装置52aに映像を伝送でき る。
【0148】また，上記各ステップにおいて，受信装置 5 2 aおよび送信装置5 3 aは，f t p ブロトコルを川 いて，映像データを伝送しているが，これに限るもので はない。インターネット網57経由でデータを伝送でき る方法であれば，例えば，溥子メールなど，他の方法を用いて映像データを伝送できる。たたし，f t p プロト コルでは，受信装置52aおよび送信装置53aの双方 て，データを伝送できたか否かを確実に確認できる。し たがって，データ伝送に失敗した場合にデータを陣送す

るなど，適切な処置を講ずることができる。
【0149】さらに，上記S68aでは，受信装置52 aは，呼出し音によって，送信装置53aの回線接続が切断されているか否かを磪恐しているが，これに限るも のではない。例えば，受信装置52aが送信装置53a
 が切断されているか否かを確認してもよい。ただし，呼出し音によって回線接続の切断を確認した場合，通信費用がかからないので，倞接通信する場合に比べて，通信費用をさらに削減できる。
〔0150】ここで，上記監視カメラシステム51を運営する際の賃用の一例について，閭単に暆する。上記監視カメラシステム51では，覧視カメラ53bから得 られた映像に基づいてナンバープレートを確認するの で，例えば，圧縮後で，1枚あたり約 500 kbyte程度の高精度な映像が必要である。したがって，データ の伝送速度が 64 kbps －I SDN回線を用いて，当該映像を直接通信する場合，1枚の映像の伝送には，約 62 秒程度必要とする。ここで，親可 52 と子用 53 と か東京と名古屋とに配されている場合には，通信費用が 40 円程度となる。この結果，映像の取得頻度を 1 時間 に1回程度とすると，1年間で，約350，400円程度必要となる。間様の条件で，伝送速度が 33.6 kb psのアナログ回線にて直接通信する場合の費用を算出 すると，1回の伝送に，120秒程度で必要であること から，通信䙽用は，1们あたり，120円程度，1年 で，約 700，800円程度が必要となる。また，子局 53 が専用線にてインターネット網 57 へ接続する場合，最近では，年間 40 万円程度の雭用綵利川料が必要 となる。
〔0151】これに対して，インターネット網7経由で あれば，ブロバイダ6が子局 53 と市内通話料金で通話可能な範㺫内にあれば，1月の伝送に要する時問が 18 0 秒以内であることから，1回あたりの通信費用は，1 0円となり，1年で，約87，600円程度となる。さ らに，プロバイダ 60 利肘料金を 1 年あたり 60,00 0 円程度とすると，1年あたりの通信費用は，147， 600 以程度となる。この結果，上記監視カメラシステ ム51におろて，1 か所の子局53あたりの通仁弗閴用 は，通常回線にて直接通信する場合に比べて，約56万円程度（約 79% ），I S DNの場合に比べても，約2 0 万円（約 57% ）程度と大幅に削減できる。さらに，親川52で必要とする映像の精度や枚数，あるいは通信頻度か増えるに伴って，監視カメラシステム510通信費用の方か，より割安となる。また，子局53か専用線接続する場合と比胶すると，上記臨視カメラシステム5 1に所の子局 53 あたりの通信費用は，年間で約25万円（約63\％）程度削減できる。
【0152】なお，上述の通行得用は，あくまで一例で あり，使肘する通们时線の料金体系や，プロバイダ6の

料金体系なとによって大きく異なる。ただし，上述した ように，通信に要する設備などの面から，通信网線より もネットワークの方が通信費用を削減しやすい。さら に，ネットワークにて通信する場合でも，専用線による接続よりも，ダイアルアップ接続の方が通信費用を削減 しやすい。したがって，上記監視カメラシステム51の通信費用は，子局53が専用線接続する場合，扔よび，親局52と子局53とか直接通信する場合のいずれと比 べても，大幅に廉価であることか多い。
【0153】【第50実施形態〕上記第4の実施形態で は，親局 52 か専用線58によってインターネット網 5 7に常時接続されている場合について説明している。こ れに対して，図12に示すように，本左施形態では，親局 52 が，図1に示す通信機器2と同様に，プロバイダ 55を介してインターネット網57ヘダイアルアップ接絖する場合について说时する。
【0154】なお，本実施形態に係る受信装置52a は，第40実施形態と同じハードウェア構成であり，子局53と通信する際，2本の1 S DN回線のらちの一方 を用いて，プロバイダ55 へダイアルアップ接続する。 また，子局 53 なと，監視カメラシステム51の残余の構成は，第4の実施形態の構成と同様である。したがっ て，第4の実施形態とい心機能を付する部材には，间じ参照番号を付して説明を省略し，以下では，親局 52 お よび子局 53 の動作について，兇13に示すフローチャ ートに基づき詳細に説明する。
【0155】すなわち，本実施形態では，図11に示す各ステップに加えて，S 71 a およびS 72 aの両ステ ップが設けられている。S61aの後に設けられたS7 1aにおいて，受信装置52aは，インターネット網5 7 と接続されていない場合，プロバイダ55を介して， インターネット網57にダイアルアップ接続する。これ により，受信装置52aは，続くS64aにて通知する自らのIPアドレスを得ることができる。
〔0156】なお，受信装置52aは，ISDN回線に接続されている。したがって，上述のS62aにする て，受信装置52aは，一方の回線にて，インターネッ ト網57との接続を保ったまま，他方の回線を用いて送信装置53aを呼び出すことかできる。この結果，上記 S71aにて受信装置52aに割り当てられたIPアド レスは，S64b以降も受信装置52aに割り当てられ ている。
【0157】一方，S67aの後に設けられたS 7 2 a において，受信装置52aは，プロバイダ55との回線接続を切断する。これにより，受信装置52aは，イン ターネット紌57から切り離される。
〔0158】上記構成では，受信装置52 aがインター ネット網57ヘダイアルアップ接続している。したがっ て，受信装道52aが慗朋線58にて接続される第4の率施形態に比べて，さらに，通信垷用を削圽できる。

【0159】なお，上記樽成では，上述のS64aにて通知した通信開始条件のうち，受信装置52aが通信開始時点を管理できない第2ないし第50条件を選択する と，送信装置53aが映像を送信しようとしたときに受信装置52aがインターネット網57 接続されていな い場合がある。したがって，これらの条件を逥択する場合，送信装置53aは，本発明に係るダイアルアップ接続通信機器の呼び出し方法を用いて，受信装置 52 a を呼び出す必要がある。この場合，受信装置5 2 aおよび送信莒置53aは，第1ないし第2の実施形態に示すよ うに，電子メールを利用したり，サーバを経由するなど して，白らのI Pアドレスを相手に通知する。〔0160】ところで，上記第4および第5の定施形態 では，監視カメラシステムの適用例として，無人䭼車場 の監視カメラに撮影を指示し，撮影した映像を取得する場合を例にして説明したが，本発明に係る監視カメラシ ステムは，これに限らず，種々の用途に使用できる。例 えば，全国のあちこちに保有するビルや倉庫に監視カメ ラを配買すれば，管理会社は，親出となる1か所の事務所から，ビルや倉庫を監視できる。同様に，ドライブイ この無人店舗や無人のコンビニを，本社から監視する用途にも適用できる。また，金融機関が無人店舖を管理し たり，電力会社が，這邹地の無人変安所やダムなどを本社から管理したりする際にも使用できる。さらに，装置 の納入場所に監視カメラを配すれば，装置メーカの本社 にて，納入場所か状態を知ることができるので，納入し た装置をリモートメンテナンスする際に役立てることが できる。あるいは，各地の炏山に無人カメラを配置すれ ば，大学の研究所から，これらの火山活動を監視するこ ともできる。また，ファーストフード，レストラン，コ ンビニチェーンなどに監視カメラを配し，各店哺内部を撮影したデータを本社へ送信することによって，時間带
所など，種々のマーケット情報を本社にて収集できる。〔0161】いすれの場合であっても，監視するための人材を派遣する必要がないので，人件費を削減できる。加えて，監視したデータは，インターネットなどのネッ トワークを介して伝送されるので，電話回線なとの通信妇線を使肘する場合に比べて通信頶用を大帕に削晠でき る。さらに，通信回線にて監視カメラを呼で出すので，親局は，所望の時点において，監視カメラに映像の取得 を指示できる。これらの結果，任意の時点の映像を取得可能な㙏視カメラシステムを少ない予算で尘現できる。【01621 また，上記第4およよび第5の実施形態で は，子局 53 の制御对象か濫視カメラ 53 bである場合 を例にして说明しているが，これに限るものではない。例えば，子局 53 か，各種センサなどを用いて取得した データを親局 52 へ送出する場合や，親局 52 の指示に其がいて，子局53が，モータやポングなどを制御する場合など，和々の機器を制卸对象とする䇠視制畋システ

ムに本発明を適用できる。ただし，監視カメラ53bが取得した映像を伝送する場合のように，伝送されるデー夕量か多い場合は，通信に要する時間が長いので，通信回線による直接通信にて当診データを送出すると，通信費用か高腾する。したがって，監視カメラシステム51 に本発明を適用した場合の効果は特に大きくなる。
〔01631 上記第1ないし第5の各実施形態に示すよ うに，ダイアルアップ接続通信機器の呼で出し方法は，発乎側抽よび被㭔側の通信機器が，それそれれ電話回線に接続をれていると共に，少なくとも被呼側の通信機器 が，当該電話回線を介して，インターネット綱やパソコ こ通信などのネットワークにダイアルアップ接続される通信システムに適用される呼で出し方法であり，ネット ワークを介して通信する前に，電話回線を用いて，発呼側の通信機器が被両偩の通信機器へ接続要求を伝えるこ とを特徴としている。
【0164］これにより，被呼側の通信機器がネットワ ークに接続されていない場合であっても，ネットワーク を介して逆信する際には，被呼側の道信機器をネットワ ークへ接続させることができる。したがって，両通信機器は，所望のタイミングでて雃実に通信を開始できる。こ れにより，従来に比でて，被呼側の通信機器の即忘性を向上でき，リアルタイム通信が可能となる。
【0165】また，少なくとも被呼側の通信機器し，多 イアルアップ接続によってネットワークに接続されててい る。したがって，ネットワークを介して通信する際の費用は，専用線を介してネットワークに接続する場合や，電話回線を介して直接通信する場合に比べて，大幅に低減できる。特に，海外など，両通信機器を設置している場所か蜼れている場合には，電話回線を介して直接通信 する場合の費用は，哂めて高いので効果が大きい。
101661 なお，上記各実施形態では，両通信機器が それぞれダイアルアップ接続する場合について説明した が，これに限るものではない。例えば，第4の実施形態 に示すように，少なくとも被呼側の通信機器がダイアル アップ接続する通信システムであれば，第1ないし第5 の各実施形態と同様の効果が得られる。
【0167】また，上記各実施形態では，発呼側の通信機器が完話回線を用いて接続要求を通知しているが，こ れに限るものてはない。例えば，船舶無線など，他の通信回線を用いてもよい。被乎側に接続要求を通知できる ものであれば，各実施形態と同様の矨果が得られる。
信機器か 1 台の通信機器を呼で出す場合について説明し ているが，これに限らず，複数の通信機器を呼で出して もよい。 1 台の通隹譏器を呼で出す場合と問様に，衫数 の通信機器を順番に電話回線で乎で出すことによって，多数の通信機器がネットワーク上で同時に通信できる。 この場合，気呼側の通们機器の使用学が会活の招集呂と なる。なお，この場合，䘽数の通婂機器が河時に通信可

能なネットワーク会議ソフトが必要となるが，このよう な製品は，既に一般的に使用されている。
【0169】ところで，上記各実施形態に係る通信機器 は，使用者名や通信内容など，ネットワークで伝送する データの少なくとも一部を暗号化しているが，これに限 るものではない。ネットワークで通信する際，特に暗号 を施さず，平文のままデータを送出してもよい。
【0170】たたし，平文のままデータを送出する場合，ネットワークを伝送されるデータは，盗聴あるいは改ざんされる㲊れがある。特に，ネットワークとして， インターネット綱などを使用する場合には，発信側およ び受信側の通信機器がデータの伝送路を指定できない。 したがって，盗聴などが容易で，通信を妨害される危険性が高い。
【0171】これに対して，上記各実施形態では，ネッ トワークでデータを送信する際，例えば，相手の公開鍵 や共通の暗号鍵など，種々の暗号鍵によって，データの少なくとも一部を暗号化している。これにより，正規の通信相手ではない第三栄から，データの少なくとも一部 を隠蔽できるので，通信妨害に対する安全性を向上てき る。
【0172】なお，暗号化するデータは，例えば，通信内容そのもの，雨通仁機器の使川者名あるいはアドレス などか挙げられる。ただし，暗号化するデータ量か増大 するに従って，両通信機器の負担が増大するので，通信 の重要度を券慮して，一部のデータのみを暗号化しても よい。一般に，使用者名やアドレスなどが第三者に傽聴 されると，通信内容の重要性を推測されやすい。したが って，第 1 および第 2 の実施形態に示すように，似像や音声などの通信に先立って，使用者名やっだレスなとを送信する場合には，これらを暗号化することが特に望ま れる。これにより，両通信機器の負担を余り增加させる ことなく，通使妨穴に対する安全性を向上できる。
【0173】各通信機器か暗号鍵を取得する方法は，種々の方法か考えられる。例えば，諥送など，他の通信手段によって，予め相手に通知し，例えば，比2に示す F lashメモり11 など，各通信機器の記憶手段へ格納 しておいてもよい。たたし，この場合，各通信機器の使用旨は，通信に先立って，相手から通知された暗宔鍵 を，それぞれの通信機器へ設定する必要がある。暗号鍵 は，各通信機器毎に用意されるので，通信相手が増加す るに従って，設定時の手間も増大する。さらに，暗号鍵 は，通行妨客に対する安全性を向上させるために，必要 に応じて変更しなければならない。したがって，各通信機器の使用者は，自らの暗号鍵を変更する度に，全ての通你相手に対して，新たな暗号鍵を通知する必叓があ る。
〔0174】これに対して，上記各実施形態では，接続要求時に通仁间綡にて，暗，鍵を通知している。なお，

通信回線にて，互いの公開鍵を交換する。また，共通の暗号鍵を䏳いる場合には，一方の通信機器が他方に通知 すればよい。この構成では，接続要求毎に暗号鍵を通知 するので，前回通信したときと暗号踺を変更した場合で あっても訂正が容易である。したがって，接続要求毎に暗と鍵を容易に変更でき，通信妨害に対する安全性をさ らに向上できる。加えて，電話回線を用いて，接続要求 の通知と暗号鍵の送付との双方を一括して行っている。 したがって，両者を個別に行う場合に比べて，電話回線 を接続する手間を削隇できる。
【0175】さらに，暗号鍵と暗号化されたデータと は，互いに異なる通信手段によって位送される。したが って，第三者が通信の妨害を試みる場合，双方の通信を傍受する必要があり，単一の通信手段にて，暗号鍵とデ一タとを送信する場合に比べて，通信妨害に対する安全性を向上できる。なお，通信网線としては，暗号鍵の盗聴を防止するために電話回線など，比較的傍受しにくい通信回線を使用することか望まれる。
【0176】ところで，第2の実施形態に示すように，両通信機器がネットワークに設けられたサーバを介して通信する場合には，上記構成に加えて，両通信機器がサ一バに登録名を登録し，両通信機器が相手の登録名をサ一バへ通知して，通信相手を選択する必要がある。〔0177】この場合，サーバに登録された登録名は，公開されているので，使用者名をそのまま登録すると，通仁妨茟に対する安全性を低下させる盧れがある。ま た，サーバに登録されている登録名のうち，所望の登録名を選択する際に手間がかかる。この場合には，上記公開鍵を用いて使用者名を暗号化して，サーバに登銃すれ ばよい。これにより，使用者名を第三者から隠蔽でき る。
〔0178】ところで，第2の実施形態に示すように， サーバを設ける構成では，サーバを別に設ける顀川や維持費などが必要となる。また，サーバが混み合っている場合には，両通信機器間で通信できなくなる盧れがあ る。
【0179】これに対して，第1の実施形態では，上記第2の実施形態とは異なり，両通信機器が互いにネット ワークを介して占接通信できる方法を提供している。！！体的には，ダイアルアップ接続した際，被呼側の通信機器か自らのアドレスを取得し，電子メールにて発呼側の通信機器へ送信する工程か設けられている。これによ り，第2の㬰施形態とは異なり，特にサーバを股けるこ となく，両通信機器は，ネットワークを介して通信でき る。この結果，通信に要する費用をさらに削減できる。 また，サーバの潅雑に閉わらず，両通信機器は，確夆に通信できる。
【0180】ところで，ネットワークを介する通信が終了すると，ダイアルアッブ接統通仁機器は，ネットワー クとの接統を切断する。ここて，ダイアルアップ接緿通

信機器がネットワークとの回線切断に失敗すると，当該 ダイアルアップ接続通信機器は，ネットワークに接続さ れ続けるので，通信費用が不所望に高䐟する。特に，例 えば，ダイアルアップ接続通信機器が監視制御システム の子局である場合など，ダイアルアップ接続通信機器の周囲に使用者かいない場合には，回線切断に失收したこ とを把握しにくい。したがって，回線切断に失敗した場合，当該ダイアルアッブ接続通信機器が不所望にネット ワークに接続される期間が長くなりがちであり，無駄な通信費用が増大する盧れが大きい。
【0181】これに対して，第4および第5の実施形態 に示すように，上记発呼側の通信機兴は，ネットワーク経由の通信が終了した後で，通信门線を介して，ダイア ルアップ接続通信機器を呼で出し，正常にダイヤルアッ フ接続か沏断されたことを確認している。この結果，回線切断の失敗に起因する無駄な通信費月を削減できる。
【0182】ところで，本発明に係るダイアルアッブ接続通信機器の㭔び出し方法を適用する通信システムの一例として，上記第1ないし第3の実施形態では，映像や音声なとを伝送するインターネット電話システムについ て説明し，第 4 および第 5 の実施形態では，監視カメラ システムなとの監視制御システムについて說明している が，これに限るものではない。インターネットVPN （Virtual Private Network）を構築して，任意のデー タを送受する場合に広く適用できる。
【0183】たたし，当該ダイアルアップ接続通信機器 の㭔び出し方法を用いることによって，所望のタイミン グで通信の開始が可能で，かつ，通信費用の削減できる通信システムを横築できるので，例えば，インターネッ ト電話システムや監視制卸システムなとのように，即応性が強く要求される場合に，特に好適である。
【0184】具体的には，監視制御システムでは，一般 に，子局が，親屈から離れた場所に没置されており，か つ，親局が数多くの子局を監視制御する。したがって，親局と子局とが通信する際の費用は，増大しからであ り，通信費肘の削减が強く要求されている。一方，臨視制御システムでは，指示の遅れが事故の拡大に直結する ので，子局は，親局の指示に即座に応答しなければなら ない。したがって，ダイアルアップ接続により接続され るネットワークのみを介して，子局か親局と通信する場合，子局が親局の指示に即応できず，事故を拡大させる盧れがある。これらの結果，監視制御システムでは，親出の指示に対する子局の即応性を保ったまま，逆仯鼡用 を削減することが強く求められている。したがって，親局か子局を呼び出す際に，本発明に係るダイアルアップ接続通倲機偳の呼び出し方法を適用した場合，特に効果的である。
【0185］
【発明の効東】㳻求項 1 の㥕明に係る通信ダイアルアッ ブ接䋁通作機器の呼び出し方法は，以上のように，ネッ

トワークとは別に設けられ，上記ダイアルアップ接続通信機器を呼び出し可能な通信同線によって，発呼側の通信機器がダイアルアップ接続通信機器へ接続要求を伝え る第 1 工程と，接続要求を受けたダイアルアップ接続通信機器が，上記ネットワークヘダイアルアップ接続する第2工程と，上記ネットワークを介して，発呼側の通信機器とダイアルアップ接続通信機器とが通信する第3工程とを含んでいる構成である。
【0186】上記横成では，ダイアルアップ接続通信幾器がネットワークに接続されていない場合であっても，上記第3工程に弤ける通信時には，当該ダイアルアップ接続逆信機器をネットワークへ接続させることができ る。それゆえ，安い料金で通信可能なダイアルアップ接続通信機器において，所望のタイミングで確実に通信を開始でき，リアルタイムに通信できるという効果を奏す る。
【0187】請求項2の発明に係るダイアルアップ接続通信機器の呼で出し方法は，以上のように，請求項 1 記載の発明の構成において，上記第3工程は，上記発呼側 の通信機器およびダイアルアップ接続通信機器のうちで送信側の通信機器が，当該第3工程にて送出するデータ の少なくとも一部を暗号化して送出する暗号工程と，受信側の通信機器が，暗号化されたデータを復少する後寝工程とを含んでいる構成である。
【0188】上記構成では，通信内容のらち，少なくと も一部は，暗号化によって，発呼側の通信機器ねよびダ イアルアップ接続通信機器以外の第三者から隠蔽されて いる。この結果，通信内容を暗号化さず，平文のまま伝送する場合に比べて，通信妨吉に対する安全性を向上で きるという効果を奏する。
【0189】請求項3の発明に係るダイアルアップ接続通信機器の呼で出し方法は，請求項2記載の発明の構成 において，上記第 1 工程は，発呼側の通信機器あるいは ダイアルアップ接続通信機器が，暗号化の際に使用され る暗号鍵を相手に通知する工程を含んでいる構成であ る。
【0190】上記構成では，接続要求の通知と暗号鍵の送付との双方を一括して行っている。これにより，通信間綄の接続する手間を堛加させることなく，暗号鍵を接続毎に伝送でき，暗号鍵を変更した場合の手間を削減で きるという効果を奏する。
【0191】さらに，暗号鍵と暗号化されたデータと
は，ノんに異なる通信手段によって伝送される。この結果，盗聴やデータの改ざんなと，通信妨害に対する安全性をさらに向上できるという効果を併せて奏する。
【0192】脙項4の発明に係るダイアルアップ接続通信機器の呼び出し方法は，以上のように，請求項1， 2または3記載の発明の構成において，上記第3工程 は，上両通信機器が，逆仁を中継するサーバへ白らを示す発録名をそれぞれ道知する工程と，上北両通仁機器

が，相手の登録名を上記サーバへ通知して，相手の通信機器を選択する工程と，上記サーバが選択された通信機器間の通信を中継する工程とを含んでいる構成である。【0193】それゆえ，両通信機器は，ネットワークに設けられたサーバを介して，所望のタイミングで確実に通信を開始でき，リアルタイムに通信できるという効果 を奏する。
【0194】請求項5の発明に係るダイアルアップ接続通信機喜の呼び出し方法は，以上のように，請求項1， 2または3記載の発明の構成において，上記第3工程 は，ダイアルアップ接続通信機器が，現接続における自 らのアドレスを取得する工程と，電子メールによって， ダイアルアップ接統通信機器が，発呼側の通信機器へ白 らのアドレスを通知する工程と，発呼側の通信機器およ びダイアルアップ接続通信機器が，互いのアドレスによ り相手を特走して通信する工程とを含んでいる構成であ る。
【0195】それ即え，請求項4の構成のように，特に サーバを設けることなく，両通信機器は，ネットワーク を介して通信できる。この結果，請求項4記載の発明O）効果に加えて，通信に要する費用をさらに削減できると共に，サーバの混雑に関わらず，確実に通信できるとい ら効果を奏する。
【0196】請求項6の発明に係るダイアルアップ接続通信機器の呼び出し方法は，以上のように，請求項1， 2，3，4または5記載の発明の構成において，さら に，上記第3 工程の後で，上記発呼側の通信機器がダイ アルアップ接続通信機器を上記通信回線にて直接呼び出 して，当竺ダイアルアップ接続通唐機器が当酸通信回線 との回線接続を正常に切断したか否かを碓認する第4工程を含んでいる構成である。
【0197】それじぁ，発呼側の通信機器は，ダイアル アップ接絖通信機器の回線切断失敗を確実に認識でき，回線切断の失敗に起因する無駄な通信費用の発生を確実 に防止できるという効果を奏する。
【0198】請求項7の発明に係る監視制御システム
は，以上のように，親局は，呼で出し可能な通信回線を介して上記子局を呼び出し，接続要求を伝えた後で，上 い己通偪回線とは別に設けられたネットワーク経由で上觖子局と通信する親局通信手段を備え，上記子局は，上記通信回線を介して，上記接続要求を受け取った後で，上記ネットワークにダイアルアッブ接続して，当該ネット ワーク経由で上記親勻と迪信する子有逆份手段を偏えて いる構成である。
【0199】上記構成におろいて，親局通信手段が呼び出 し可能な近信川線を月いて子局を呼で出した後，子局通信手段は，安価に通信が可能なダイアルアップ接続にて ネットワークに接続し，当該ネットワークを介して，デ ータを送受する。この結果，親局の指示に対して，子局 が即応可能でありなから，子局と親訶との問の通何費用

を大幅に削減可能な監視制御システムを実現できるとい
ら効果を奏する。
【図面の羬単な説明】
【国1】本発明の一実施形態を示すものであり，通信シ ステム全体の要部構成を示すブロック図である。
【図2】上込通信システムの発呼側および被呼側の通信
機器に設けられた接続器の要部構成を示すブロック図で ある。
【図3】上記通信機器の一変形例を示すものであり，通信機器の接続関係を示すブロック図である。
【込 】】記通信システムにおいて，呼び出し時におけ る発呼側引よよび被㭔側双方の通信機器の動作を示すフロ ーチャートである。
【図5】本発明の他の実施形態を示すものであり，通信 システム全体の要部構成を示すブロック図である。
【図6】上記通信システムにおいて，呼び出し時におけ る発呼側および被呼側双方の動作を示すフローチャート である。
【図7】本発明のさらに他の実施形態を示すものであ
り，通信システム全体の要部構成を示すブロック図であ る。
【図8】上記通信システムにおるいて，呼び出し时におかけ る発呼側およよび被呼側双方の動作を示すフローチャート である。
【図り】本発明のさらに他の実施形態を示すものであ
り，監視制御システムの要部構成を示すブロック図であ る。
【國10】上記監視制御システムに打いて，受信装置の要部構成を示すブロック図である。
【⿴囗㐅11】上記監視制御システムに打て，親局か子局 を呼び出す際の動作を示すフローチャートである。
【図12】本発明のさらに他の実施形態を示すものであ り，監視制御システムの要部構成を示すブロック図であ る。
【龱13】上記監視制御システムにおいて，親局が子局 を呼び出す際の動作を示すフローチャートである。【符号の摬明】
$2 \cdot 22 \cdot 32 \cdot 42$ 通信機器
$3 \cdot 33 \cdot 43$ 通信機器（ダイアルアップ接
続通信機器）
4•34•44•54 電話回線（通信回線）
7•37•57 インターネット綱（ネットワ
－ク）
38 サーバ
48－58 回線（ネットワーク）
52 親局（通信機器）
52 a 受作装置（親山通信手段）
53 子局（ダイアルアップ接続
通信機器）
53 a 送比装置（子小通信手段）

【囟2】

図5】

【図6】

Sony，Ex．1002，p． 1199

【図7】

【図）

【図10】

[^0]: Farm PCT/ASA210 (recond shet) (1uly 1992)

[^1]: This collection of information is required by 37 CFR 1.8. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CK 1,11 and 1.14 , This collection is esumated to take 1.8 minutes to complete including gathering. preparing, and submitiong the completed application form co the USPTO. Time will vary depending upon the individual case. Any comments on he amount of die you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U. S. Patent and Trademsix Office. U.S. Department of Commerce. P.O. Box 1450. Alexandria. VA 22311-1450. DO NOT SEND FEES OR CCMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313.1450.

[^2]:

[^3]: 11 中継サービス用コンビュータ
 12，12a，12b ビデオカメラ
 13．13a，13bマイク
 21 LCD． 22 GPS受信機． 23 制御
 部． 24 地図データベース用サーバー（コンピュー
 タ）． 25 映像入力装置． 26 キーボード． 2
 7 マウス． 30 コンピュータ通信綱．31映像
 入力装置． 34 CD －ROMプレーヤ． 35 CD －ROM

