TiltText: Using Tilt for Text Input to Mobile Phones

Daniel Wigdor, Ravin Balakrishnan
Department of Computer Science
University of Toronto
dwigdor | ravin @dgp.toronto.edu
www.dgp.toronto.edu

ABSTRACT

TiltText, a new technique for entering text into a mobile
phone is described. The standard 12-button text entry
keypad of a mobile phone forces ambiguity when the 26-
letter Roman alphabet is mapped in the traditional manner
onto keys 2-9. The TiltText technique uses the orientation
of the phone to resolve this ambiguity, by tilting the phone
in one of four directions to choose which character on a
particular key to enter. We first discuss implementation
strategies, and then present the results of a controlled
experiment comparing TiltText to MultiTap, the most
common text entry technique. The experiment included 10
participants who each entered a total of 640 phrases of text
chosen from a standard corpus, over a period of about five
hours. The results show that text entry speed including
correction for errors using 7TiltText was 23% faster than
MultiTap by the end of the experiment, despite a higher
error rate for TiltText. TiltText is thus amongst the fastest
known language-independent techniques for entering text
into mobile phones.

Keywords: Text entry, mobile phones, tilt input

INTRODUCTION

Most mobile phones are equipped with a simple 12-button
keypad, which is an inherently poor tool for generating
phrases for a 26-letter alphabet. Using traditional text-entry
techniques, such as MultiTap, an average text message of 7
words requires roughly 70 key presses. Given estimates
(www.gsmworld.com) that in 2003 nearly 500 billion text
messages will be sent worldwide from mobile phones,
entry using current techniques will require approximately
35 trillion key presses worldwide this year. While much
research effort has gone into devising a variety of more
efficient text input techniques [9, 15] which have all shown
various improvements to the status-quo, none has yet
emerged as a new standard. As such, there remains
considerable opportunity for researchers to influence this
area by developing new techniques.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
UIST ’03 Vancouver, BC, Canada

© 2003 ACM 1-58113-636-6/03/0010 $5.00

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalatm

TiltText

We have developed a new text input technique, called
TiltText, which uses the standard 12-button mobile phone
keypad augmented with a low-cost tilt sensor. Similar to
TiltType described by Partridge et al. [10], TiltText uses a
combination of a button press and tilting of the device to
determine the desired letter. Our technique differs from
TiltType in the keypad used and in the sensing algorithms,
which we discuss in detail later in this paper. The standard
phone keypad mapping assigns three or four alphabetic
characters, and one number, to each key. For example, the
2 key also has the characters a, b, and c assigned to it.
TiltText assigns an additional mapping by specifying a tilt
direction for each of the characters on a key, removing any
ambiguity from the button press. The user presses a key
while simultaneously tilting the phone in one of four
directions (left, forward, right, back) to input the desired
character (Figure 1). For example, pressing the 2 key and
tilting to the left inputs the character a, while tilting to the
right inputs the character c. By requiring only a single
keypress and slight tilt to input alphanumeric characters,
the overall speed of text entry can be increased. Further,
unlike some techniques [15] that improve on the status quo,
TiltText is not language dependent, and thus can be used by
experts without visually attending to the display screen.

In this paper we first review related work, then discuss
implementation issues, then present an experiment
comparing the performance of 7TiltText to the most common
existing technique, MultiTap. We conclude by discussing
the characteristics of TiltText compared to other techniques,
including implications for evaluation metrics.

Figure 1. TiltText. The center picture shows the
untilted phone where pressing a key enters its
numeric value. Left picture: left tilt enters first
character on key. Top picture: forward tilt enters
second character. Right picture: right tilt enters third
character. Bottom picture: tilting towards the user
enters fourth character if one exists for that key.

SCEA v. APLIX
IPR2015-00396

APLIX EXHIBIT 2033

ECE
Text Box
 APLIX EXHIBIT 2033
 SCEA v. APLIX
 IPR2015-00396

https://www.docketalarm.com/

RELATED WORK

There are two areas of research that are relevant to our
work: text input techniques for mobile phones, and the use
of tilt transducers in mobile devices.

Text Input Techniques for Mobile Phones

A small number of mobile phones today utilizec QWERTY
style keypads that enable text entry with techniques similar
to typing on a regular keyboard, albeit at a much smaller
physical scale (e.g., Nokia 5510 www.nokia.com). More
recently, hybrid devices that combine phones with PDAs,
such as the Handspring Treo (www.handspring.com) and
PocketPC Phone (www.microsoft.com), utilize pen-based
text input techniques common to PDA’s such as Graffiti.
While these devices are making small inroads into the
mobile phone market, the vast majority of mobile phones
are equipped with the standard keypad (Figure 2) which has
12 keys: 0-9, *, and #.

Figure 2. Standard 12-key mobile phone keypad

Entering text from a 26 character alphabet using this
keypad forces a mapping of more than one character per
button of the keypad. A typical mapping has keys 2-9
representing either three or four characters, with space and
punctuation mapped to the other buttons. All text input
techniques that use this standard keypad have to somehow
resolve the ambiguity that arises from this multiplexed
mapping. There are three main techniques for overcoming
this ambiguity: MultiTap, two-key, and linguistic
disambiguation. We now review these techniques briefly,
and refer the reader to Soukoreff and MacKenzie [15] for a
more comprehensive review that is beyond the scope of the
present paper.

MultiTap

MultiTap works by requiring the user to make multiple
presses of each key to indicate which letter on that key is
desired. For example, the letters pgrs traditionally appear
on the 7 key. Pressing that key once yields p, twice g, etc.
A problem arises when the user attempts to enter two
consecutive letters on the same button. For example,
tapping the 2 key three times could result in either ¢ or ab.
To overcome this, MultiTap employs a time-out on the
button presses, typically 1-2 seconds, so that not pressing a
button for the length of the timeout indicates that you are
done entering that letter. Entering ab under this scheme has
the user press the 2 key once for a, wait for the timeout,
then press 2 twice more to enter b. To overcome the time
overhead this incurs, many implementations add a “timeout
kill” button that allows the user to skip the timeout. If we
assume that 0 is the timeout kill button, this makes the
sequence of button presses to enter ab: 2,0,2,2.

DOCKET

_ ARM

MultiTap eliminates any ambiguity, but can be quite slow,
with a keystrokes per character (KSPC) rate of
approximately 2.03 [8].

Two-key Disambiguation

The two-key technique requires the user to press two keys
in quick succession to enter a character. The first keypress
selects the appropriate group of characters, while the
second identifies the position of the desired character
within that group. For example, to enter the character e, the
user presses the 3 key to select the group def, followed by
the 2 key since e is in the second position within the group.
This technique, while quite simple, has failed to gain
popularity for Roman alphabets. It has an obvious KSPC
rate of 2.

Linguistic Disambiguation

There are a number of linguistic disambiguation schemes
that utilize knowledge of the language to aid the text entry
process. One example is 79 (www.tegic.com) that renders
all possible permutations of a sequence of button presses
and looks them up in a dictionary. For example, the key
sequence 5,3,8 could indicate any of 27 possible
renderings (3x3x3 letters on each of those keys). Most of
these renderings have no meaning, and so are rejected.
Looking each of them up in a dictionary tells the system
that only jet is an English word, and so it is the one
rendered. Ambiguity can, however, arise if there is more
than one valid rendering in the language, in which case the
most common is presented. For example, the sequence 6, 6
could indicate either on or no. If the system renders the
wrong word, a “next” key allows the user to cycle through
the other valid permutations. An analysis of this technique
for entering text from an English corpus found a KSPC
close to 1 [8]. Newer linguistic disambiguation techniques
such as LetterWise [9] and WordWise (www.eatoni.com)
also perform similarly well, with subtle advantages over
earlier techniques. While these all have excellent KSPC
rates, the success of linguistic-based systems depends on
the assumption that users tend to enter “English like” words
when sending text messages. As Mackenzie et al. [9] note,
users often use abbreviations, and not complete English
when text messaging. Further, users of text messaging often
communicate in acronyms or combinations of letters and
numbers (e.g., b4 for before). Another problem with
these linguistic techniques is that users have to visually
monitor the screen in order to resolve potential ambiguities,
whereas the MultiTap and two-key techniques can be
operated “eyes-free” by skilled users.

As a result of these limitations of current keypad text input
techniques, the quest for a widely applicable, low KSPC,
text input technique continues.

Using Tilt Sensors in Mobile Devices

Several researchers have recently proposed interesting
interaction techniques that are enabled by incorporating a
low-cost tilt sensor within mobile devices [3-7, 10, 12, 13].
While some of this prior art (e.g., [3-7, 12]) do not concern

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

text entry techniques per se, they do add to the set of
possible interactions that could take advantage of tilt
sensors embedded in mobile devices, thus providing further
justification for the incremental cost of the sensor.

Of particular relevance to our work are two techniques for
text entry that use tilt information. Both of these techniques
focus on very small devices lacking a large number of
buttons, and were not optimized or evaluated for speed of
entry. Unigesture [13] used tilt as an alternative to button
pressing, eliminating the need for buttons for text entry.
Rather than having the user make one of 8 ambiguous
button presses (as is the present case with mobile phones),
Unigesture has the user tilt the device in one of 7 directions
to specify the group, or “zone”, of the character that is
desired. The ambiguity of the tilt is then resolved by using
dictionary-based disambiguation.

TiltType [10] refines Unigesture by adding the combination
of button pressing and tilt for entering unambiguous text.
TiltType was designed to enter text into a small, watch-like
device with 4 buttons. Pressing a button triggered an on-
screen display of the characters that could be entered by
tilting the device in one of eight directions, the appropriate
tilt was then made, and the button released. TiltType has the
same root concept as our TiltText technique, in that tilt is
used to disambiguate button presses.

Our present work builds upon TiltType in several
significant ways. First, neither TiltType nor Unigesture
were designed for use with mobile phone keypads, as we
are proposing with our TiltText technique. We believe that
using the standard mobile phone keypad will significantly
increase the viability of tilting text input as a real, usable,
technique. Second, while TiltType uses eight tilt directions,
we only use a maximum of four tilt directions, reducing the
accuracy demands on the user when tilting. Third, the
algorithm used for detecting tilt in the 7i/tType technique is
one which we dub key tilt, which, as is discussed later in
our paper, is not the most optimal tilt detection mechanism
for speedy text entry. We develop two alternative tilt
detection mechanisms that improve upon key tilt. Finally,
we present the results of a controlled experiment that
provides the first set of usability data with regards to using
tilt for text input.

DESIGN ISSUES

TiltText uses the orientation of the phone along two axes to
disambiguate the meaning of button presses. Tilting the
phone to the left selects the first letter of the key, away
from the body the second, to the right the third, and, if
present, towards the body the fourth (see figure 1). Pressing
a key without tilting results in entering the numeric value of
the key. Space and backspace operations are carried out by
pressing unambiguous single-function buttons (as in
MultiTap).

Supporting both lowercase and uppercase characters would
require a further disambiguation step since a total of seven
characters per key would need to be mapped for keys 2-6

DOCKET

_ ARM

and 8, and nine characters each for the 7 and 9 keys
(Figure 2). Adding case sensitivity could be done by either
requiring the pressing of a “sticky” shift-key, or
considering the magnitude of the tilt as a disambiguator
where greater magnitude tilts result in upper case letters, as
Figure 3 illustrates. The latter technique, however, would
likely make eyes-free entry more difficult.

Figure 3. Uppercase text entry with TiltText. Tilting
beyond a threshold makes the character uppercase.

Techniques for Calculating Tilt

The tilt of the phone is taken as whichever direction has the
greatest tilt relative to an initial “origin” value. After
exploring various options during our development process,
we have found that there are three main ways to determine
the tilt value: key tilt, absolute tilt, and relative tilt.

Key Tilt

With this technique, first seen in the TiltType work, the
amount of tilt is calculated as the difference in the value of
the tilt sensors at key down and key up. This requires the
user to carry out three distinct movements once the button
has been located: push the button, tilt the phone, release the
button. We conducted a pilot experiment comparing a
TiltText implementation that used key tilt, and found that
user performance with this implementation was much
slower than the traditional MultiTap technique. For this
reason, key tilt was not used in our final experiment.

Absolute Tilt

This technique compares the tilt sensor’s value at any given
time to a “fixed” absolute origin. Only two distinct
movements are required to enter a character: tilt the phone,
then press the key. In contrast, key tilt requires that the key
be pressed first, phone tilted, then key released. However,
this approach is also not ideal, since in practice users do not
maintain a constant arm posture. In order for the tilt value
to be meaningful, the fixed origin will have to be reset
every time the user’s gross arm posture changes. Further,
when using TiltText to enter two characters requiring tilt in
opposite directions, more movement is required using this
absolute approach, since the first tilt must be undone, then
the new tilt applied. For example, entering the letters ac

using the 2 key requires an initial tilt of some angle A to

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the left to enter the a. Then, the user has to tilt the same
angle Ain the reverse direction to return to the origin,
before tilting another angle 0 to the right to enter the letter
c. The total amount of movement is 2A + 0, instead of the
smaller A + 6 that one may expect. However, one
advantage of this method over key tilt is that if successive
characters with the same tilt direction are to be entered,
then the user can keep the phone tilted at that direction for
the successive keypresses.

Relative Tilt

This approach calculates the tilt relative to a floating origin
that is set when a tilt gesture begins. The beginning of a
gesture is determined by continuously watching for a
change in orientation or a change in the direction of a
tilting gesture. This approach solves both problems of the
absolute tilt method. Since all tilts are relative to the
beginning of the gesture, there is no absolute origin that
need be reset when changing arm position. Further,
opposite direction tilts do not require double tilting, since
the second tilt’s origin is the end of the first tilt’s gesture.
So, entering the letters ac requires a tilt of some angle A to
the left to enter a, then another tilt of angle 0 to the right to
enter the c, for a total movement of A + 0. Note that, just
like with absolute tilt, when entering only letters, we can
enter successive characters with the same tilt direction
without re-tilting the phone, by looking at the last
significant tilt.

EVALUATION

Goals

We sought to compare the performance of TiltText to other
techniques for text entry into mobile phones. For this first
experiment, we chose as a comparison the most commonly
implemented technique, MultiTap, because it is the
common baseline in almost every other evaluation of text
entry techniques reported to date [9, 14, 15]. As such, while
the present study only directly compares TiltText to
MultiTap, we can indirectly make comparisons of TiltText’s
performance relative to other techniques via the results
reported in the literature.

Apparatus

Hardware

We used a Motorola i195c¢l phone. The phone was equipped
with an Analog Devices ADXL202EB-232 2-axis
accelerometer board to enable tilt sensing, connected to the
phone via a serial cable (with the addition of an external
power line).

An implementation of a relative tilt system would require
regular sampling from the tilt sensor. Unfortunately, our
hardware allowed only a reliable rate of ~10 Hz. Pilot
studies, using a relative tilt implementation of TiltText,
showed that participants’ text entry speed increased to a
point such that our mechanism for determining origins
(repeated sampling of tilt at 10Hz) proved insufficient for
determining tilt accurately. The resulting device-caused
errors in recognition made entering text at higher speeds

DOCKET

_ ARM

frustrating. From these pilot studies, we believe that rates
of 20-50Hz would be required for a robust relative tilt
implementation. As a result, despite the limitations
discussed earlier, we had to implement an absolute tilt
approach, allowing the user to reset the origin at any time
by holding the phone at the desired orientation and pressing
“0”. The additional movement required by this approach,
however, is acceptable for our evaluation purposes because
if we can demonstrate that TiltText performs well despite
this additional movement, then any more robust
implementation using a relative tilt approach can only do
better. In other words, our evaluation is biased against our
new technique.

Because the ADXL board can detect a tilt of only fractions
of a degree, only a very small tilt of the phone is necessary
to disambiguate a button press. The maximum of the tilt in
either axis was taken to be the intended tilt, with a 10%
bias towards forward/back. This bias is included based on
our pilot studies which revealed a tendency to pitch to the
dominant side when tilting forward with the wrist.

Software

The software to read tilts and render text, as well as
conduct the experiment, was written in Java 2 Micro-
Edition (source at www.dgp.toronto.edu/research/tilttext)
using classes from both the Mobile Devices Information
Profile (MIDP 1.0) and proprietary i95cl specific classes.

The experiment was conducted entirely on the mobile
phone rather than simulating a mobile phone keypad on
some other device. All software, including those
implementing the text entry techniques, and data
presentation and collection software used in the experiment
ran on the phone. No connection to an external computing
device beyond the tilt sensor was required. Of the major
techniques for text entry into mobile phones evaluated in
the literature over the last several years, this seems to be the
first to do so on an actual mobile phone keypad / display.
We believe that this helps to more closely represent real
use, and so enhances the external validity of our
experiment.

Our MultiTap implementation used the i95c¢l’s built-in
MultiTap engine, with a 2 second timeout and timeout kill.
We only considered lowercase text entry in this evaluation.
As such, the MultiTap engine was modified slightly to
remove characters from the key mapping that were not on
the face of the button, so that the options available were
only the lower case letters and numeral on the key. This
matches the traditional MultiTap implementation in past
experiments, such as LetterWise [9] .

Participants

Ten participants volunteered for the experiment. They were
recruited from within the university community. There
were 5 men and 5 women of whom 3 were left-handed and
7 right-handed. Participants were pre-screened so that no
one with any experience composing text using either
technique was included. Participants did not receive any
tangible compensation for their participation.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Procedure

Participants entered short phrases of text selected from
among those in MacKenzie’s English phrase dictionary
(www.yorku.ca/mack/phrases2.txt). These phrases were
chosen because they have been used in previous text entry
studies involving MultiTap [9], allowing us to leverage this
previous work. This corpus’ high correlation of frequencies
of letters to English is a benefit, although it does not take
into account abbreviations commonly used in texting.

The desired text phrases were shown to participants on the
screen on the phone. For consistency with past MultiTap
experiments, participants were instructed to enter text only
with the thumb of the hand with which they held the phone,
and not to change hands during the experiment.

Timing began when participants entered the first character
of the phrase, and ended when the phrase was entered
completely and correctly. If an erroneous character was
entered, the phone alerted the user by vibrating, and the
user was required to correct their error. With this
procedure, the end result is error-free in the sense that the
correct phrase is captured. Also, the phrase completion time
incorporates the time taken to correct for errors.

Before beginning each treatment, participants were told to
read and understand the displayed phrase before entering it,
and were given instructions for that treatment as follows:

MultiTap instructions: to enter a character using the
MultiTap technique, first find the key that is labeled with
that character. Press that key repeatedly until the desired
character is reached. Press once for the first character,

twice for the second, three times for the third, and, if

present, four times for the fourth. Once you have found the
correct letter, and are ready for the next one, you simply
repeat the process. If the letter you wish to enter next is on
the same key, you must first either press the “right” arrow
on the phone or wait two seconds for the cursor to advance.

TiltText instructions: The technique works by tilting the
phone in the direction of the letter you wish to enter, then
pressing the key on which it is inscribed. For the first letter,
tilt left. For the second letter, tilt forward. For the third
letter, tilt to the right. For the fourth letter, tilt towards you.
The direction of tilt is measured relative to the “centre” or
“origin” position of the phone. You can reset the origin at
any time by pressing the 0 key.

The experimenter then demonstrated the relevant
technique. To ensure that participants understood how the
technique worked, they were asked to enter a single phrase
that would require tilting in all four directions for TiltText,
or two successive letters on the same key for MultiTap.

Additional instructions were given for both techniques to
describe space and delete keys, as well as to enter an extra
space at the end of the phrase to indicate completion. The
process for error correction was also explained to them.
Participants were also directed to rest as they liked between
phrases, but to continue as quickly as possible once they
had started entering a phrase.

DOCKET

_ ARM

Design

A within-subjects design was used. Participants were
randomly assigned to two groups of 5 participants each.
The first group performed the experiment with the
MultiTap technique first, followed by TiltText, while the
second group did it in the reverse order.

For each technique, participants were asked to complete
two sessions of 8 blocks of trials each. Each block required
the entry of 2 identical practice phrases, followed by 20
different phrases randomly selected from the corpus. The
selection of phrases for each of the 16 blocks were done
before the experiment, and presented in the same order to
each participant. Phrases were selected such that all blocks
had similar average phrase length. The same set of phrases
and blocks were used for both techniques. In other words,
all participants were required to enter identical phrases in
the same order, the only difference being which technique
they used first. Participants were asked to rest for at least 5
minutes between each block, and each session of 8 blocks
each was conducted on separate days. At least 24 hours
passed between sessions for the different techniques to
limit interference. In summary, the design was as follows:

10 participants X
2 techniques (MultiTap and TiltText) X
2 sessions per technique X
8 blocks per session X
20 phrases per block (excluding practice phrases)
= 6400 phrases entered in total.
Results
Data Summary
The data collected from 10 participants took an average of
10.3 minutes per block. A total of 145360 correct
characters of input were entered for the 6400 phrases.

Physical Comfort

Some participants reported that their thumb became sore
while using both techniques. When this was reported, the
participants were encouraged to rest until they felt
comfortable to proceed. No participant reported pain or
discomfort in their wrist or arms.

Text Entry Speed

We use the standard wpm (words-per-minute) measure to
describe text entry speed. This is traditionally calculated as
characters per second * 60 / 5. Because timing in our
experiment started only after entering the first character,
that character should not be included in calculations of
entry speed. Thus, for the purposes of these computations,
the length of a phrase is n-1 characters. Also, to signify
completion, users had to enter an extra space at the end of
each phrase. However, our timing considers the entry of the
last real character of the phrase to be the end time.

The average text entry speed for all blocks were 11.76 wpm
and 10.11 wpm for TiltText and MultiTap respectively.
Overall, TiltText was 16.3% faster than MultiTap.

The means for the first block of trials were 7.42 wpm and
7.53 wpm, for TiltText and MultiTap respectively.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

