
d mod_perl

m

piijj.-,-,'•-_^ '.'•T • -^'".i'"

; •• r-x^^^.;-. :• \i

i/5^ >%;• -/yp^ &;

Modu
Perl and C

O'REILLY Lincoln Stein & Doug MacEachern
1 AT&T - Exhibit 1007

2

Writing Apache Modules
With Perl and C

Lincoln Stein and Doug MacEachem

O’REILLY®

Beijing - Cambridge - Fambam - Kc'iln - Sebastopol - Tokyo

2

3

Writing Apache Modules with Perl and L‘
by Lincoln Stein and Doug MaeEaebem

Copyright (C) 1999 O‘Reilly is Associates, Inc. All rights resen ed.
Printed in the United States of America.

Published by O’Reilly & Associates, loo, 101 Morris Street, Sebastopol, CA 95472.

Editor: Linda Mui

Production Editor: Melanie Wang

Printing History:

March 1999: First Edition.

The association between the image of a white-tailed eagle and the topic of Apache modules
is a trademark ofO’Reilly 8c Associates, Inc. Nutshell Handbook, the Nutshell Handbook logo,
and the O‘Reilly logo are registered trademarks ol“ O‘Reilly & Associates: Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book: and O’Reilly & Associates. Inc.
was aware of a trademark claim, the designations have been printed in caps or initial eaps.

While every precaution has been taken in the preparation ol'this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-1565925674) |2(ll'l-l 1—04]
lLSll

4

r

In this Chapter,-
. Content Handlers as

File Procesmm

. Virtual [JOCHI’nentS

. {edirectfon

. Processing Input

. Apache'sRegriser)!

. {auditing Errors

Elmo/ting Content C0”ten 1‘ Handl61/.S
Handlers

. Method Handlers

This chapter is about writing content handlers for the Apache response phase,

when the contents of the page are actually produced. In this chapter you’ll learn

how to produce dynamic pages from thin air, how to modify real documents on

the fly to produce effects like server—side includes, and how Apache interacts with

the MIME—typing system to select which handler to invoke.

Starting with this chapter we shift to using the Apache Perl API exclusively for

code examples and function prototypes. The Perl AP] covers the majority of what

C programmers need to use the C-language AP]. What’s missing are various menr

01y management functions that are essential to C programmers but irrelevant in

Perl. If you are a C programmer, just have patience and the missingr pieces will be

filled in eventually. In the meantime, follow along with the Perl examples and

enjoy yourself. Maybe you’ll even become a convert.

Content Handlers as Fz'le Processors

Early web servers were designed as engines for transmitting physical files from the

host machine to the browser. Even though Apache does much more, the file—

oriented legacy still remains. Files can be sent to the browser unmodified or

passed through content handlers to transform them in various ways before send—

ing them on to the browser. Even though many of the documents that you pro—

duce with modules have no corresponding physical files, some parts of Apache

still behave as if they did.

When Apache receives a request, the URI is passed through any URI translation

handlers that may be installed (see Chapter 7. Other Request Phases, for informa—

tion on how to roll your own), transforming it into a file path. The monLalz‘as

translation handler (compiled in by default) will first process any Alias, ScriptAZias,

5

86 Chapter 4: Content Handlers

Redirect, or other morLaiz’as directives. If none applies, the brathore default trans—

lator will simply prepend the Documentfeoor directory to the beginning of the URI.

Next, Apache attempts to divide the file path into two parts: a “filename” part

which usually (but not always) corresponds to a physical file on the host’s filesys—

tem, and an “additional path information” part corresponding to additional stuff

that follows the l’ilename. Apache divides the path using a very simple-minded

algorithm. It steps through the path components from left to right until it finds

something that doesn’t correspond to a directory on the host machine. The part of

the path up to and including this component becomes the filename, and every-

thing that’s left over becomes the additional path information.

Consider a site with a document root of /bome/www that has just received a

request for URI /abc/de_//gbi. The way Apache splits the file path into filename and

path information parts depends on what directories it finds in the document root:

Physical Directory | Translated Filename Additional Path Information manic/want; /bmne/wttrw/abc flieflgbz'

/bome/www/crbc /bome/tttttrw/abC/def /gbi

/bome/www/abc/de/' /b(Jirie/tttwttI/ozbc/def/gb2' empty

 /bmne/uttuw/abade/Zeb1' //Jome/ttttuw/ctJJC/def/gla1' empty

Note that the presence of any actual files in the path is irrelevant to this process.

The division between the filename and the path information depends only on

what directories are present.

Once Apache has decided where the file is in the path, it determines what MIME

type it might be. This is again one of the places where you can intervene to alter

the process with a custom type handler. The default type handler (mocL-mime) just

compares the filename’s extension to a table of MIME types. If there’s a match, this

becomes the MIME type. if no match is found, then the MIME type is undefined.

Again, note that this mapping from filename to MIME type occurs even when
there’s no actual file there.

There are two special cases. If the last component of the filename happens to be a

physical directory, then Apache internally assigns it a “magic" MIME type, defined

by the DIR_MAGIC_TYPE constant as btipd/unix-directory This is used by the

directory module to generate automatic directory listings. The second special case

occurs when you have the optional modfimz‘mgmagz’c module installed and the

file actually exists. In this case Apache will peek at the first few bytes of the file’s

contents to determine what type of file it might be. Chapter 7 shows you how to

write your own MIME type checker handlers to implement more sophisticated

MIME type determination schemes.

I

rem

hm”:wt';_u..

6

r
Corlfem Handlers as File Processors 8‘7

After Apache has determined the name and type of the file referenced by the URI,
it decides what to do about it. One way is to use information hard—wired into the
module’s static data structures. The module’s handler_rec table, which we
describe in detail in Chapter it), CAP! Reference Guide, Part I, declares the mod-
ule’s willingness to handle one or more magic MIME types and associates a con—
[ent handler with each one. For example, the moc’chi module associates MIME

my; nmpllcah’on/x—bWad-Cgi with its chbc‘rrrdferO handler subroutine. When
Apache detects that a filename is of type sip/firearmi’iflx-b/rpcl—cgi? it invokes ch
bandlerfi) and passes it information about the file. A module can also declare its

desire to handle an ordinary MIME type. such as video/quicki‘nire. or even a wild—

card type, such as video/"f In this case, all requests for liRIs with matching MIME

types will be passed through the modules content handler unless some other
module registers a more specific type.

NeWer modules use a more flexible method in which content handlers are associ-

ated with files at runtime using explicit names. When this method is used, the

module declares one or more content handler names in its handler_rec array

instead of, or in addition to, MIME types. Some examples of content handler

names you might have seen include CgFSCl‘lpf, sewer—irtfo, sewer-parsed, imapT/i'le,

and pert-script. Handler names can be associated with files using either Adm-1am
dler or SerHandler directives. AddHandler associates a handler with a particular

file extension. For example, a typical configuration file will contain this line to

associate .sbrml files with the server—side include handler:

AddHandler server—parsed .shtml

Now, the server-parsed handler defined by rrrochclude will be calied on to pro—

cess all files ending in “.shtml" regardless of their MIME type.

Seszra’ler is used within <Directory>, <Loccrlz‘on>, and <Files> sections to associ-

ate a particular handler with an entire section of the site's URI space. In the two

examples that follow, the <Location> section attaches the server-parsed method to

all files within the virtual directory /5btml, while the <Files> section attaches i'map—

flle to all files that begin with the prefix “map-":

<Location lshtml>

SetHandler server—parsed
</Location>

<Files map—*>

SetHandler imap—file
</Files>

Surprisingly, the AddHandfer and Selezdlei-' directives are not actually imple—

mented in the Apache core. They are implemented by the standard moaLacn'ons

7

88 Chapter 4: Content Handlersaa______a,______a_______w___—____a_____________a___h______a‘_______a__________fi

module, which is compiled into the server by default. In Chapter 7. We show how
to reimplement mocLact-ions using the Perl API.

You'll probably want to use explicitly named content handlers in your modules
rather than hardcoded MIME types. Explicit handler names make configuration
files cleaner and easier to understand. Plus, you don't have to invent a new magic

MIMF. type every time you add a handler.

Things are slightly different for mocher! users because (we directives are needed
to assign a content handler to a directoiy or file. The reason for this is that the
only real content handler defined by mocherl is its internal pert-script handler.
You use SetHandler to assign peril-scrip! the responsibility for a directory or partial

URI, and then use a Perchmdler directive to tell the peril—script handler which Perl
module to execute. Directories supervised by Perl API content handlers will look

something like this:

<Location lgraph>

SetHandler perl—script

PerlHandler Apache::Graph

</Location>

Don't try to assign pert-script to a file extension using something like AddHandler
perl—seript .pl; this is generally useless because you’d need to set PerlHnn—
dler too. If you’d like to associate a Perl content handler with an extension, you
should use the <Files> directive. Here’s an example:

<Files ~ "\.graph$">

SetHandler perlfiscript

PerlHandler Apache::Graph
</Fi1es>

There is no UnSetHa-ndler directive to undo the effects of SeIchndler. However,

should you ever need to restore a subdirectory’s handler to the default, you can
do it with the directive SetHandler default—handler, as follows:

<Location /graph/tutorial>
SetHandler default—handler

</Location>

Adding a Canned Footer t0 Pages

To show you how content handlers work, we’ll develop a module with the Perl
API that adds a canned footer to all pages in a particular directory. You could use

this, for example, to automatically add copyright information and a link back to
the home page. Later on, we’ll turn this module into a full—featured navigation bar.

Example 4—1 gives the code for Apache-footer, and Figure 4-7] shows a screenshot
of it in action. Since this is our first substantial module, we’ll step through the code

section by section.

8

r

Carrie-11f Handlers as File Processors 89/____—__——__9—

file Edit View Go Bookmarks Options Directory Window

Becki remand Home Edit Retoad toad 1111;11th 0 en Print...l—W i l __l Eel—E
Location. .})ttp://1oca1hostffooterftlemo. html

This page contains a" canned footer

The two lines at the bottom of this page aren’t in the original source. cede, but were
added by Attaches Footer

© 19980'1’rillit;Associates
Last Mod:fied: Wedilprt? 0?.48.04 1998

Figure 4- i. 'Illiefhoier on this page atlas generated attaining/15.5111”)! by Apachej-"ooiei:

package ApachezzFooter;

use strict;

use Apache: :Constants qwizcommon);

use Apache::File i);

The code begins by declaring its package name and loading various Perl modules

that it depends on. The use strict pragma activates Peri checks that prevent us

from using global variables before declaring them, disallows the use of function

calls without the parentheses, and prevents other unsafe practices. The

Apcicbe.-.-Corisiams module defines constants for the various Apache and HTTP

result codes; we bring in only those constants that belong to the Frequently used

.-common set. Apache-:Fr‘le defines methods that are useful for manipulating files.

sub handler {

my $r : shift;

return DECLINED unless $r—>content_type() eq 'text/html‘;

The band/cit) subroutine does all the work of generating the content. it is roughly

divided into three parts. in the first part, it fetches information about the requested

file and decides whether it wants to handle it. in the second part, it creates the

canned footer dynamically from information that it gleans about the file. In the

third part, it rewrites the file to include the footer.

In the first part of the process, the handler retrieves the Apache request object and

stores it in $1: Next it calls the requests contentJypeO method to retrieve its

MIME type. Unless the document is of type text/farm! the handler stops here and

returns a DECLINED result code to the server. This tells Apache to pass the

9

90 Chapter 4: Content Handlers_,._.—_;__————————"—‘————"_“——

document on to any other handlers that have declared their willingness to handle

this type of document. In most cases, this means that the document or image will

be passed through to the browser in the usual way.

my Sfile = $r—>filename;

unless lee Sr—>finfo) {

Sre>log_error(“File does not exist: Sfile");
return NOT_FOUND;

l

unless (er _) i

$r—>log_error("File permissions deny access: Sfile");
return FORBIDDEN;

}

At this point we go ahead and recover the file path, by calling the request object’s

jllenameO method. just because Apache has assigned the document a MIME type

doesn’t mean that it actually exists or, if it exists, that its permissions allow it to be

read by the current process. The next two blocks of code check for these cases.

Using the Perl —e file test, we check whether the file exists. If not, we log an error

to the server log using the request object’s log_error() method and return a result
code of NOT_FOUND. This will cause the server to return a page displaying the

404 “Not Found” error (exactly what’s displayed is under the control of the Error—

Document directive).

There are several ways to perform file status checks in the Perl API. The simplest

way is to recover the file’s pathname using the request object’s filenameO method,

and pass the result to the Perl —e file test:

unless (—e $rw>filename) {

$r—>log_error("File does not exist: Sfile“);
return NOT_FOUND;

}

A more efficient way, however, is to take advantage of the fact that during its path

walking operation Apache already performed a system smtO call to collect filesys-
tem information on the file. The resulting status structure is stored in the request

object and can be retrieved with the object’s flitfoO method. So the more efficient
idiom is to use the test —e $r—>finfo. I

Once finfoO is called, the statO information is stored into the magic Perl file—

handle _ and can be used for subsequent file testing and statO operations, saving

even more CPU time. Using the _ filehandie, we next test that the file is readable

by the current process and return FORBIDDEN if this isn’t the case. This displays a
403 “Forbidden" error.

my $modtime = localtime((stat _)[9]);

10

(. ”lg-fl! [familiar-s as File Processors 9]i0 -

\flU" performing these tests, we get the file modification time by calling SUMO. We
‘ n use the _ filehandle here too, avoiding the overhead of repeating the stalOC” ,

all. The modification time Is passed to the built-in Perl localinneO func—
Systcm C
[ion [0 ‘3‘

my $fh:
unless (th = Apache::File4>new{$file)l {

SrA>log_error("Couldn't open $file for reading: $1”);
return SERVERfiERROR;

invert it into a human—readable string.

}

N this point, we attempt to open the file for reading using Apache-file’s newO
method. For the most part, Apache-file acts just like Perl's 10,-:F1'le object—oriented
[/0 package, returning a filehandle on success or uridef on failure. Since we've
already handled the two failure modes that we know how to deal with, we return
a result code of SERVER_ERROR if the open is unsuccessful. This immediately
uhorts all processing of the document and causes Apache to display a 500 “Inter—

nal Server Error” message.

my Sfooter = <<END;
<hr>

&cOpy; 1998 O‘Rei11y & Associates<fa>

Last Modified: $modtime
END

Having successfully opened the file, we build the footer. The footer in this

example script is entirely static, except for the document modification date that is

computed on the fly.

$r—>send_http_header;

While (<$fh>) {

st(</BODY>)!$footer$lloi;

} continue {

$r->print ($_) .-
}

The last phase is to rewrite the document. First we tell Apache to send the HTTP

header. There’s no need to set the content type first because it already has the

appropriate value. We then loop through the document looking for the closing

</BODY> tag. When we find it, we use a substitution statement to insert the footer

in front of it. The possibly modified line is now sent to the browser using the

request object’s primO method.

return OK;

10

11

92 Chapter 4: Content Handlers

At the end, we return an OK result code to Apache and end the handler subrou-

tine definition. Like any other .pm file, the module itself must end by returning a

true value (usually 1) to signal Perl that it compiled correctly.

If all this checking for the existence and readability of the file before processing

seems a bit pedantic, don’t worry. It’s actually unnecessary for you to do this.

instead of explicitly checking the file, we could have simply returned DECLINED if

the attempt to open the file failed. Apache would then pass the URI to the default

file handler which will perform its own checks and display the appropriate error

messages. Therefore we could have replaced the file tests with the single line:‘

my $fh = Apache::Fi1e->new($file) || return DECLINED;

Doing the tests inside the module this way makes the checks explicit and gives us
a chance to intervene to rescue the situation. For example, we might choose to

search for a text file of the same name and present it instead. The explicit tests

also improve module performance slightly, since the system wastes a small amount

of CPU time when it attempts to open a nonexistent file. If most of the files the

module serves do exist, however, this penalty won’t be significant.

Example 4—]. Adding a Canned Footer to H7144]. Pages

package Apache::Footer;

file: Apache/Footer.pm

use strict;

use Apache::Constants qw(:common);

use Apache::File ();

sub handler {

my $1: = shift;
return DECLINED unless $r—>content_type() eq 'text/html';

my $fi1e = $r—>filename;

unless (—e $r—>finfo) {

$r—>log_error(“File does not exist: Sfile");
return NOI‘_FOUND;

}

unless (-r _) {

$r->log_error(“File permissions deny access: $fi1e");
return FORBIDDEN;

}

my Smodtime = localtime((stat _)[9]);

my $fh;

unless ($fh = Apache::File->new($file)) {

$r—>log_error("Couldn't open $file for reading: $2");
return SERVER_ERROR;

11

lx
lli

l

.*‘.A.lw_nqmp_,rym..wm.~W~M*M*.__,_

12

[groupie 4-1. Adding a Counted li'ooi‘ei' to HTML Pages (continued)

my Sfooter = <<END;

<1'Lf>

&Copy; 1998 http://www.0ra.c0m/“>O'Reilly & Associates

49m>Last Modified: $m0dtime
END

Sr->send_http_header;

while (<$fh>) t

s!{</BODY>il$fOOter$1loii

} continue [

$r->print ($_) :

}

return OK;

}

1;
END _

There are several ways to install and use the Apache-footer content handler. if all

the files that needed footers were gathered in one place in the directory tree, you

would probably want to attach Apache-:Footerto that location:

<Location /footer>

SetHandler per1~script
PerlHandler Apache::Footer

</L0cation>

if the files were scattered about the document tree, it might be more convenient to

map Apache-footer to a unique filename extension, such as footer. To achieve

this, the following directives would suffice:

AddType text/html .footer
(Files ~ "\.footer$“>

SetHandler perl—script

PerlHandler Apache::Footer
</Fi1es>

Note that it's important to associate MIME type text/him! with the new extension;

otherwise, Apache won’t be able to determine its content type during the MIME

type checking phase.

If your server is set up to allow per—directory access control files to include file

information directives, you can place any of these handler directives inside a Jame-

Cess file. This allows you to change handlers without restarting the server. For

example, you could replace the <£ocatiort> section shown earlier with a .biaccess

file in the directory where you want the footer module to be active:

SetHandler perl—script

PerlHandler ApachezzFooter

12

13

94 Chapter 4: Content Handlers

A Server-Side Include System

The obvious limitation of the Apache:.-Footer example is that the footer text is

hardcoded into the code. Changing the footer becomes a nontrivial task, and using

different footers for various parts of the site becomes impractical. A much more

flexible solution is provided by Vivck Khera’s Apaelye:.-szdwicb module. This

module “sandwiches" HTML pages between canned headers and footers that are

determined by runtime configuration directives. The Apache-Sandwich module

also avoids the overhead of parsing the request document; it simply uses the sub—

request mechanism to send the header, body, and footer files in sequence.

We can provide more power than ApacbenSnndwicb by using server-side

includes. Sewer—side includes are small snippets of code embedded within HTML

comments. For example, in the standard server—side includes that are imple-

mented in Apache, you can insert the current time and date into the page with a
comment that looks like this:

Today is <!——#echo var="DATEfiLOCAL"——>.

In this section, we use mocherl to develop our own system of server—side

includes, using, a simple but extensible scheme that lets you add new types of
includes at a moment’s whim. The basic idea is that HTML authors will cr=ate files

that contain comments of this form:

<!--#DIRECTIW PAJU-lMl PARAMZ' PARAM3 PARAM4.. .-->

A directive name consists of any sequence of alphanumeric characters or under—

scores. This is followed by a series of optional parameters, separated by spaces or

commas. Jarameters that contain whitespace must be enclosed in single or dou—

ble quotes in shell command style. Backslash escapes also work in the expected
manner.

The directives themselves are not hardcoded into the module but are instead

dynamically loaded from one or more configuration files created by the site

administrator. This allows the administrator to create a standard menu of includes

that are available to the site’s HTML authors. Each directive is a short Perl subrou—

tine. A simple directive looks like this one:

sub HELLO { “Hello World!“: }

This defines a subroutine named HELLOO that returns the string “Hello World!" A

document can now include the string in its text with a comment formatted like this
one:

I said <l——#HELLO——>

A more complex subroutine will need access to the Apache object and the server-

side include parameters. To accommodate this, the Apache object is passed as the

first function argument, and the server-side include parameters, if any, follow.

13

14

Content Handlers as File Processors 95/__—__f_____._—~___

Here’s a function definition that returns any field from the incoming request's

HTTP header, using the Apache object's beadegmo method:

sub HTTP_HEADER {

my (Sr,$field) = @_:

$r—>header_in($field);

}

With this subroutine definition in place, HTML authors can insert the User—Agent

field into their document using a comment like this one:

You are using the browser <!77 #HTTP_HEADER User—Agent ——>.

Example 4—2 shows an HTML file that uses a few of these includes, and Figure 4—2

shows what the page looks like after processing.

Example 4-2. An: HTML File 7795;! Uses Extended Server-Side li'iclmles

<html> <head> <title>Server—Side Includes<ltitle><lhead>

(body bgcolor=white>
<h1>Server—Side Includes< /h1>

This is some straight text.<p>

This is a "<l—— #HELLO ——>" include.<p>

The file size is <!—— #FSIZE ——>, and it was

last modified on <i—— #MODTIME %x ——><p>

Today is <!—— #DATE “%A, in anno domini<lem> %Y“——>.<p>

The user agent is <i~~fiHTTP_HEADER User—Agent——>.<p>

Oops: <!——#OOPS O——><p>

Here is an included file:

<pre>

<!——#INCLUDE /include.txt 1——>

</pre>

<!——#FOOTER——>

</body> </html>

Implementing this type of server—side include system might seem to be something

of a challenge, but in fact the code is surprisingly compact (Example 4—3). This

module is named Apache-£55], for “extensible server-side includes.”

Again, we’ll step through the code one section at a time.

package Apache::ESSI;

use strict;

use Apache::Constants qw(:common);

use Apache::File ();

use Text::ParseWords QW(QUOCEWOId5)I

my (QEMODIFIED, %SUBSTITUTION);

14

15

 96 Chapter 4': Contenl Handlers

7 —J Nets: e: Server-Side Includes - , _;
File Edit mew Go Boollcmam Options Directory voodoo:

Becki iicirunmii Home} Edit] Reloadl Load imagmsl 0_pen...i PrinLZI Er

Location: i—Bitt-ozf/localhostitest.ehtml

Server— Side Includes

This is some straight text.

This is a ”Hello World!" include.

Today is Saturday, in arms domini 199 8.

The user agent is Mazda/3.01 Gala! (X3 1‘; I; Liam 2. 0.33 i585).

Oops: [ffiegiii division :5]; zero at losrfkome/mmu/confiessi.defs (we 45, Cheryl: 24. j

 i
|
ll

1 The file size is 59? bytes, and it was last modified on 04118298

\ Here is minduded file:
I

the quick brown fox jumps over the sleeping dog

© 1998 93:13ti 8: Associates J
Last Modified: Sui Apr £8 0?:50:57 1998

 I 5&3!

Figure 4-2. A pugegeuemted by A}JcielJe:.-ESSI

We start as before by declaring the package name and loading, various Perl library
modules. in atlcliiion [o the modules that we loaded in the Apache-footer exam—

ple, we import the quotewordsO function from the standard Perl Text:.-ParseWords
module. This routine provides command shellelike parsing of strings that coniain

quote marks and backslash escapes. We also define two lexical variables,
%MODIFIED and %SUBSTITUTION, which are global to the package.

Sub handler {

my $r = shift;

$r—>content_type() eq 'text/html' [I return DECLINED;

my $fh : Apache::File—>new($rw>filename) H return DECLINED;
my $Sub = read_definitions($r) | i return SERVER_ERROR;
$ 1: —> send_ht tp_header;

$r—>print: (ssub—> ($r, $fhl):
return OK;

15

16

Content Handlers as File Processors 97

The bandied) subroutine is quite short. As in the Apaches/tower example,

brindle?!) starts by examining the content type of the document being requested

and declines to handle requests for non—H'i'ML documents. The handler recovers

the file's physical path by calling the request object's _/i‘i.’ei'ictiiie() method and

attempts to open it. if the file open fails, the handler again returns an error code of

DECLINED. This avoids Apache-footers tedious checking of the file's existence

and access permissions, at the cost of some efficiency every time a nonexistent file

is requested.

Once the file is opened, we call an internal function named rearLa’cf/lrit'it'orisO.

This function reads the server-side includes configuration file and generates an

anonymous subroutine to do the actual processing of the document. if an error

occurs while processing the configuration file, rectche/i’nitiorisO returns undef

and we return SERVER_ERROR in order to abort the transaction. Otherwise, we

send the HTTP header and invoke the anonymous subroutine to perform the sub—

stitutions on the contents of the file. The result of invoking the subroutine is sent

to the client using the request object‘s primO method, and we return a result code

of OK to indicate that everything went smoothly.

sub read_definitions {

my Sr = shift;

my Sdef : $r~>dir_config('ESSIDefs');
return unless SdeE;

return unless —e (Sdef = $r—>server__root_relative{$def));

Most of the interesting work occurs in read_de/ir1itionsO. The idea here is to read

the server-side include definitions, compile them, and then use them to generate

an anonymous subroutine that does the actual substitutions. In order to avoid

recompiling this subroutine unnecessarily, we cache its code reference in the

package variable %SUBSTITUTION and reuse it if we can.

The recrdfidefim‘tionsO subroutine begins by retrieving the path to the file that

contains the server—side include definitions. This information is contained in a per-

directory configuration variable named ESSIDefs, which is set in the configura—

tion file using the PerlSefi/‘ar directive and retrieved within the handler with the

request object’s dir;cortfig() method (see the end of the example for a representa-

tive configuration file entry). If, for some reason, this variable isn‘t present, we

return tirade/f Like other Apache configuration files, we allow this file to be speci-

fied as either an absolute path or a partial path relative to the server root. We pass

the path to the request object’s semenrooLi/‘elativeO method. This convenient

function prepends the server root to relative paths and leaves absolute paths

alone. \Ve next check that the file exists using the —e file test operator and return

undefif not.

return $SUBSTI‘I’UTION{$def} if $MODIFIED{$def} && $MODIFIED{$def} <= —M ;

16

17

98 Chapter 4’: Content Handlers

Having recovered the name of the definitions file, we next check the cache to see

whether the subroutine definitions are already cached and, if so, whether the file

hasn’t changed since the code was compiled and cached. We use two hashes for

this purpose. The %SUBSTITUTION array holds the compiled cod '* and %MODIFIED

contains the modification date of the definition file the last time it was compiled.

Both hashes are indexed by the definition file’s path, allowing the module to han—

dle the case in which several server—side include definition files are used for differ—

ent parts of the document tree. If the modification time listed in %MODIFIED is less

than or equal to the definition file’s current modification date, we return the
cached subroutine.

my $package = join "::", #_PACKAGE__, $def;

Spackage =~ tr/a—zA—ZDm9_/_/c;

The next two lines are concerned with finding a unique namespace in which to

compile the server—side include functions. Putting the functions in their own

namespace decreases the chance that function side effects will have unwanted

effects elsewhere in the module. We take the easy way out here by using the path

to the definition file to synthesize a package name, which we store in a variable

named $package.
u

eval "package Spaekage; do ‘Sdef' ;
if($@l [

$r—>log_error("Eva1 of $def did not return true: $@“);
return;

}

We then invoke 9225110 to compile the subroutine definitions into the newly cho—

sen namespace. We use the package declaration to set the namespace and do to
load and run the definitions file. We use do here rather than the more common

require because do unconditionally recompiles code files even if they have been

loaded previously. if the em! was unsuccessful, we log an error and return undef

$SUBSTITUTIONisdef} = sub {

do_substitutions($package, @_);
};

$MODIFIED£$def} : —M sdef; # store modification date
return $SUBSTITUPIONi$def} ,-

}

Before we exit readfide/‘initionsO, we create a new anonymous subroutine that

invokes the do_substirzitions() function, store this subroutine in %SUBSTI'I’UTION,

and update %MODIFIED with the modification date of the definitions file. We then

return the code reference to our caller. We interpose a new anonymous subrou-

tine here so that we can add the contents of the Spackage variable to the list of

variables passed to the do_sr.rbstimtions() function.

sub do_substitutions {

my spackage = shift;

17

18

Content Handlers as File Processors 99

my($r, th) = @_;

Make sure that evall) errors aren't trapped,

local SSIG{__WARN__}:

local SSIG t__p1:i3__} ,-

1ocal $/; #slurp th

my $data = <$fh>;

Sdata =~ s/<!——\s*\#(\w+) # start of a function name
\s*(.*?) s optional parameters

\s*——> # end of comment

/Call_sub($package, $1, $r, $2l/X59gi
$data;

}

\‘(Ihen bandlerO invokes the anonymous subroutine, it calls do_szrbsli'iiili'orisO to
do the replacement of the server—side include directives with the output of their
corresponding routines. We start off by localizing the SSIG{__WARN__} and
$SIG{__DIE___} handlers and setting them back to the default Perl COME-:wamO
and CORE-£580 subroutines. This is a paranoid precaution against the use of
CUR-Can), which some moaLperl users load into Apache during the startup phase
in order to produce nicely formatted server error log messages. The subroutine
continues by fetching the lines of the page to be processed and joining them in a

single scalar value named $data.

We then invok ‘ a string substitution function to replace properly formatted com»

ment strings with the results of invoking the corresponding server—side include
function. The substitution uses the 6 flag to treat the replacement part as a Perl

expression to be evaluated and the g flag to perform the search and replace glo-
bally. The search half of the function looks like this:

/<!——\s*\#l\w+)\s*(.*?)\s*—e>/

This detects the server—side include comments while capturing the directive name

in $1 and its optional arguments in $2.

The replacement of the function looks like this:

/eall_sub($package, $1. Sr, $2l/

This just invokes another utility function, calLsubO, Passing it the package name,
the directive name, the request object, and the list of parameters.

sub eall_sub {

my($package, Sname, $r, Sarge) = @_;

my Ssub = \&{join '::‘, $paekage, $name};
$r—>chdi:_file;

my Sres = eval { $5ub—>{$r, quoteword8('[,l'.0.$args)) };
return “[$@]" if $@;
return $res;

}

The calLsabO routine starts off by obtaining a reference to the subroutine using

its fully qualified name. It does this by joining the package name to the subroutine

18

19

100 Chapter 4: Content Ham/tars

name and then using the funky Perl \&{ . . .} syntax to turn this string into a sub-

routine reference. As a convenience to the HTML author, before invoking the sub-

routine we call the request object’s CbCfff;/HQ(:) method. This simply makes the

current directory the same as the requested file, which in this case is the HTML file

containing the server-side includes.

The server-side include function is now invoked, passing it the request object and

the optional arguments. We call quorewm'ds‘O to split up the arguments on com—

mas or whitespace. in order to trap fatal runtime errors that might occur during the
function’s execution, the. call is done inside an eUCltW hloclc If the call function

fails, we return the error message it died with captured within $@. Otherwise, we

return the value of the call function.

At the bottom of Example 4—5 is an example entry for pertcorgf'tor bttpdconf if

you prefer). The idea here is to make Apacbe.:-E55Ytlte content handler for all files
ending with the extension .ebtmi'. We do this with a <Files> configuration section

that contains the appropriate Se/Hm-zdler and Per/Handler directives. We use the

Per'i’SetVar directive to point the module to the server—relative definitions file,

con/7955i. defs.

In addition to the <Files> section, we need to ensure that Apache knows that

.ebrml files are just a special type of HTML file. We use Addepe to tell Apache to

treat .ebrml files as MIME type text/bind.

You could also use <£ocation> or <Direcrory> to assign the Apacbe:.-BSSI content

handler to a section of the document tree, or a different <Files> directive to make

Apache-£55! the content handler for all HTML files.

Example 4—5. An Extensible Sewer-Side Inch-{dc .‘sjtstem

package Apache::ESSI;

it file: Apache/ESSI.pm

use strict;

use Apache::Constant5 qw(:common);

use Apache::Fi1e (l;

use Text::ParseWords qw(quotewords);

my (%MODIFIED, %SUBSTITUTION);

sub handler {

my 5r = shift;

$r—>contentitype() eq 'text/html‘ |l return DECLINED;

my'th = Apache::File—>new($r—>filename) || return DECLINED;

my $sub = read_definitions($r) || return SERVER_ERROR;
$ r—> send_ht tp_header;

Sr—>print($sub—>(Sr, sfhil;
return OK;

19

20

i

Content Handlers as Fz‘le Processors

Example 4—3. An Extensible Sewer-Side Include System (continued)

sub readbdefinitions {

my $r = shift;

my Sdef = $r—>dir_config('ESSIDefs');
return unless Sdef;

return unless ~e ($def = $r—>server_root_relative($def));

return $SUBSTITUTION{$def} if $MODIFIED{$def} && $MODIFIED£$def} <= —M _

my spackage = join “:z", __PACKAGE__, $def;

spackage =~ tr/a—zA-Z0—9_/_/c:

eval "package $package; do 'Sdef'“;

if($@) {

$r—>1og_error("Eval of $def did not return true: $6");
return;

}

$SUBS‘1‘ITUTION($def} = sub {

do_substitutions(Spackage, @_);

};

$MODIFIED£$def} = —M Sdef; # store modification date
return $SUBSTITUTION£$def};

}

sub do_substitutions {

my Spackage = shift;

my($r, $fh) = @_;

Make sure that eval() errors aren't trapped.

local $SIG{__WARN__};

local $SIG{__DIE__};

local $/; #slurp th

my $data = <$fh>;

$data =~ s/<!—-\s*\#(\w+) # start of a function name
\s*(.*?) # optional parameters
\s*—-> # end of comment

/call_sub($package, $1. Sr, $2)/xseg;

$data;

}

sub ca11_sub {

my($package, $name, $r. $argS) = @_:

my $sub = \&{join '::', $package, Sname};
$r->chdir_file;

my $res = eval { $sub~>($r, quotewords('[,]',0,$args)) };
return "[$@]" if $@:
return $res;

20

101

21

102 Chapter 4: Content Handlers

Here are some periconfdirectives to go with Apaebe:.-ESSI:

<Files ~ “\.ehtml$">

SetHandler perl—script

PerlHandler Apache::ESSI
PerlSetVar ESSIDefs conf/essi.defs

</Files>

AddType text/html .ehtml

At this point you’d probably like a complete server-side include definitions file to

go with the module. Example 4-4 gives a short file that defines a core set of func~

tions that you can build on top of. Among the functions defined here are ones for

inserting the size and modification date of the current file, the date, fields from the

browser's HTTP request header, and a function that acts like the C preprocessor

#include macro to insert the contents of a file into the current document. There's

also an include called OOPS which divides the number 10 by the argument you

provide. Pass it an argument of zero to see how runtime errors are handled.

The INCLUDEO function inserts whole files into the current document. It accepts

either a physical pathname or a “virtual" path in URI space. A physical path is only

allowed if it lives in or below the current directmy. This is to avoid exposing sen—

sitive files such as /etc/passwd.

if the $virtual flag is passed, the function translates from URI space to a physi-

cal path name using the loomirpjarf) and filemtmefi) methods:

$file = $r—>lookupfiuri($path)—>filename;

The request object’s lookujLun’O method creates an Apache subrequest for the

specified URI. During the subrequest, Apache does all the processing that it ordi—

narily would on a real incoming request up to, but not including, activating the

content handler. [00/8MP_MT‘£() returns an Apache::5ubReq-ttesr object, which inher~

its all its behavior from the Apache request class. We then call this object’s

filenameO method in order to retrieve its translated physical file name.

Example 4—4. Server—Side Include Function Definitions

Definitions for server—side includes.

This file is require'd, and therefore must end with
a true value.

use Apache::File ll;

use Apache::Util qw(ht_time sizefistring);

insert the string "Hello World!"
sub HELLO {

my $r = shift;
"Hello World!";

21

22

,7
Content Handlers as File Processors 103

[iron-5mg 4-4. server-Side Include FHHCHUH Definitions (corm‘mwd)

fl insert today's date possibly modified by'a strftimet) format

string
sub DATE {

my ($r,$format) = @_;

return scalar(localtime) unless Sformat;

return ht_time(timer $format, O);

insert the modification time of the document, possibly modified

by a strftime{) format string.
sub MODTIME {

my ($r,$format) = @_;

my Smtime : (stat $r->finfo)[9];

return localtime($mtime) unless Sformat;

return ht_time($mtime, $format, 0);

insert the size of the current document
sub FSIZE [

my Sr = shift;

return.sizefistring as $r—>finfo;
}

divide 10 by the argument (used to test runtime error trapping)
sub OOPS { 10/$_[l]; }

insert a canned footer

sub FOOTER {

my Sr = shift;

my $modtime = MODTIME($r);
return <<END;

<hr>

© 1998 O'Reilly & Associates

Last Modified: $modtime
END

}

insert the named field from the incoming request

sub HTTPfiI-EEADER {

my (Sr.$h} = @_;

$r—>header_in($h);

#ensure that path is relative, and does not contain ".."

sub is_be10w_only { $_[0] !~m:{"/I("|/)\.\.(/1$))= }

Insert the contents of a file. If the $virtual flag is set

does a document—root lockup, otherwise treats filename as a

physical path.

sub INCLUDE {

my ($r,$path,$virtua1) = @_;

my Sfile;

22

23

104 Chapter 4: Content Handlers

L‘xcmzple 4-4. server-Side lirchide Function Definitions fermti'mieci)

if($virtual) {

{Sfile = Sr—>lookup_uri($path)—>filename;
}

else {

unless(is_below_only($path)) {

die "Can't include Spath\n";
l»

Sfile = Spath;
}

my th : Apache::Fi1es>new{$file)]| die "Couldn't open Sfile: $!\n“;
local $/;

return <$fh>;

}

1;

If you’re a fan of server—side includes, you should also check out the Apache Eim’J—

per‘l and ePen’ packages. Both packages, along with several others available from

the CPAN, build on mod_perl to create a Perl~like programming language embed-

ded entirely within server—side includes.

Converting Image Formats

Another useful application of Apache content handlers is converting file Formats

on the fly. For example. with a little help from the Aladdin Ghostscript interpreter,

you can dynamically convert Adobe Acrobat (PDF) files into GIF images when

dealing with a browser that doesn’t have the Acrobat plug—in installed.‘

in this section, we show a content handler that converts image files on the fly. it

takes advantage of Kyle Shorter’s Imogen-Magma package, the Perl interface to

John Cristy’s lmageMagick library. Imogen-Magma interconverts a large number of

image formats, including PEG, PNG, TIFF, GIF, MPEG, PPM, and even PostScript.

It can also transform images in various ways, such as cropping, rotating, solarix-

ing, sharpening, sampling. and blurring.

The Apacbe:.-Magick content handler accepts URIs in this form:

fpa th/ to/ image. ext/Fill terl /Fil ter2?arg=val ue&arg= value . . .

" At least in theory, you can divine what MIME types a browser prefers by examining the contents o§ the
AcceptheaderuadiSr—>header_in('Accept').Acconhngto dthlll’pnnocoL dnsshOLHdreuwnti
list ofMIME types that the browser can handle along with a numeric preference score. The CGl.pm mod-
ule even has an acceptt) function that leverages [h is information to choose the best format for a given
document type. Unfortunately, this part of the l-I'I'TP protocol has atrophied, and neither Netscape’s nor
Microsoft’s browsers give enough information in the Accept header to make it useful for content negoti-
anon.

23

24

 Content Handlers as File Processors 105

In its simplest form, the handler can be used to perform image format conversions

on the fly. For example, if the actual file is named bluebird.ng and you request

bluebirdypg, the content handler automatically converts the GIF into a JPEG file

and returns it. You can also pass arguments to the converter in the query string.

For example, to specify a progressive JPEG image (interlace = "Line") with a

quality of 50 percent, you can fetch the file by requesting a URI like this one:

/images/bluebird.jpg?interlace=Line&quality=50

You can also run one or more filters on the image prior to the conversion. For

example, to apply the “Charcoal” filter (which makes the image look like a char-

coal sketch) and then put a decorative border around it (the “Frame" filter), you

can request the image like this:

/images/bluebird.jpg/Charcoal/Frame?quality=75

Any named arguments that need to be passed to the filter can be appended to the

query string, along with the conversion arguments. In the last example, we can

specify a gold-colored frame this way:

limages/bluebird.jpg/Charcoal/Frame?quality=75&color=gold

This API doesn't allow you to direct arguments to specific filters. Fortunately, most

of the filters that you might want to apply together don’t have overlapping argu—

ment names, and filters ignore any arguments that don’t apply to them. The full list

of filters and conversion operations can be found at the PerlMagick web site,

located at http://www.wizardsdupont.com/cristy/wmu/perthml. You’ll find point-

ers to the latest ImageMagick code library there as well.

One warning before you use this Apache module on your system: some of the

operations can be very CPU-intensive, particularly when converting an image with

many colors, such as JPEG, to one that has few colors, such as GIF. You should

also be prepared for Image.-.-Magicle’s memory consumption, which is nothing
short of voracious.

Example 4—5 shows the code for Apacb6:.-Magicle.

package ApachezzMagick;

use strict;

use Apache::Constants qw(:common);

use Image::Magick ();

use Apache::File ();

use File::Basename qw(fileparse);
use DirHandle ();

We begin as usual by bringing in the modules we need. We bring in Apache:.-Con-

stanz‘s, File::Basename for its file path parsing utilities, DirHomdleO for object-

oriented interface to directory reading functions, and the Image:.-Magicle module
itself.

24

25

106 Chapter 4: Content Handlers__——_____fi—_—e——————

my %LegalArguments = map { $_ => 1 }

qw (adjoin background bordercolor colormap colorspace
colors compress density dispose delay dither

display font format iterations interlace

loop magick mattecolor monochrome page pointsize

preview_type quality scene subimage subrange
size tile texture treedepth undercolor);

my %LegalFilters 2 map { $_ => 1 }

qwiAddNoise Blur Border Charcoal Chop

Contrast Crop Colorize Comment CycleColormap

Despeckle Draw Edge Emboss Enhance Equalize Flip Flop

Frame Gamma Implode Label Layer Magnify Map Minify

Modulate Negate Normalize OilPaint Opaque Quantize
Raise ReduceNoise Rotate Sample Scale Segment Shade

Sharpen Shear Solarize Spread Swirl Texture Transparent
Threshold Trim Wave Zoom);

We then define two hashes, one for all the filter and conversion arguments recog-

nized by IiizctgexMagicle and the other for the various filter operations that are
available. These lists were cut and pasted from the [magma/{agate documentation.

We tried to exclude the ones that were not relevant to this module, such as ones

that create multiframe animations, but a few may have slipped through.

sub handler [

my Sr = shift;

get the name of the requested file

my $file = $r—>filename;

If the file exists and there are no transformation arguments

just decline the transaction. It will be handled as usual.
return DECLINED unless $r—>args || $r—>path_info || l—r $r—>finfo;

The handler-O routine begins as usual by fetching the name of the requested file.
We decline to handle the transaction if the file exists, the query string is empty,

and the additional path information is empty as well. This is just the common case

of the browser trying to fetch an unmodified existing file.

my $source;

my ($base, Sdirectory, $extension) - fileparseiSfile, '\.\w+‘);
if (—r $r—>finfo) { # file exists, so it becomes the scurce

$source = $file;
}

else i # Eile doesn't exist, so we search for it
return DECLINED unless —r Sdirectory;

Ssource = findfiimage($r, Sdirectory, $base);

unless ($source) {

$r—>log_error("Couldn't find a replacement for Sfile“);
return NOT_FOUND;

25

26

Content Handler-s as File Processors 107

We now use FilesBaseimme’s filepnrset) function to parse the requested file into

its basename (the filename without the extension), the directory name, and the

extension. We check again whether we can read the file, and if so it becomes the

source for the conversion. Otherwise, we search the directory for another image

file to convert into the format of the requested file. For example, if the URI

requested is blttebi'r‘dypeg and we find a file named bluebirdgt'f,‘ we invoke

hanged/Ingrid: to do the conversion. The search is done by an internal subroutine

named findjmagefl), which we‘ll examine later. If successful, the name of the

source image is stored in Ssource. lf unsuccessful, we log the error with the log;

er‘er function and return a NOT_FOUND result code.

$r—>send_http_header;

return OK if $r—>header_only;

At this point, we send the i-I'ITP header using sendjatqubeaderO. The next line

represents an optimization that we haven't seen before. It may be that the client

isn’t interested in the content of the image file, but just in its meta—information,

such as its length and MIME type. In this case, the browser sends an HTTP HEAD

request rather than the usual GET. When Apache receives a HEAD request, it sets

beader_ortly() to true. If we see that this has happened, we return from the han-

dler immediately with an OK status code. Although it wouldn’t hurt to send the

document body anyway, respecting the HEAD request results in a slight savings in

processing efficiency and makes the module compliant with the HTTP protocol.

my $q = Image::MagiCkm>new;

my Serr = $q—>Read($source);

Otherwise, it’s time to read the source image into memory. We create a new

Image.-.-Magicle object, store it in a variable mimed $q, and then load the source

image file by calling its RendO method. Any error message returned by Read() is

stored into a variable called Serr.

my %arguments = $r—>args;

Run the filters

for (split '/', $r—>pathfiinf0l {

my Sfilter = ucfirst $_;

next unless $LegalFilters{$filter};

$err 1|: $q—>$filter(%arguments);

Remove invalid arguments before the conversion

for (keys %arguments} {

delete $arguments{$_} unless $LegalArguments{$fi};
}

The next phase of the process is to prepare for the image manipulation. The first

thing we do is tidy up the input parameters. We retrieve the query string

parameters by calling the request object’s argsO method and store them in a hash

named %arguments.

26

27

Chapter 4: Content HandlersI 08

We then call the request object‘s partying/OK) method to retrieve the additional
path information. We split the path info into a series of filter names and canonical-
i'/.e them by capitalizing their initial letters using the Perl built-in operator trcjirst.
Each of the filters is applied in turn, skipping over any that aren’t on the list of fil-
ters that Image.-:ri/Ingicle accepts. We do an OR assignment into $err, so that We
maintain the first nonrnull error message, if any. Having run the files, we remove
from the %argmnents array any arguments that aren’t valid in Image-.vitngic'k’s file
format conversion calls.

Create a temporary file name to use for conversion
myt$tmpnam, $fh} = Apache::File—>tmpfile;

[n'tageafldagick needs to write the image to a temporary file. We call the
Apache-fife Imp/lid) method to create a suitable temporary file name. If success—
ful, tmpfileO returns the name of the temporary file, which we store in the vari—
able $tmpnam, and a filehandle open for writing into the file, which we store in
the variable $fh. The limp/H80 method is specially written to avoid a “race condi-
tion” in which the temporary file name appears to be unused when the module
first checks for it but is created by someone else before it can be opened.

a Write out the modified image

open(STDOUT, ">&=" . fileno($fh));

The next task is to have Imogen-Magma perform the requested conversion and
write it to the temporary file. The safest way to do this would be to pass it the
temporary file‘s already opened filehandle. Unfortunately, Image-:Magicle doesn't
accept filehandles; its WriteO method expects a filename, or the special filename —
to write to standard output. However, we can trick it into writing to the filehandle
by reopening standard output on the filehandle, which we do by passing the file-
handle’s numeric file descriptor to open() using the rarely seen >&= notation. See
the openO entry in the perr’fimc manual page for complete details.

Since STDOUT gets reset before every Perl API transaction, there’s no need to save
and restore its original value.

Sextension =~ s/“\.//:

$err ll: $q->Write('filename‘ => "\U$extension\L:—", %arguments);
if (Serr) {

unlink Stmpnam;

$r—>log_error($err);
return SERVER_ERROR;

}
close $Eh;

We now call [ranges-Magick’s WriteO method with the argument ' filename' =>
EXTENSION: — where EXTENSION is the uppercased extension of the document
that the remote user requested. We also tack on any conversion arguments that

27

28

Come”! Handle-rs as File Processors 109/_______,l——__—_—

weI'C requested. For example, if the remote user requested bluebird. jpg'?

qualityz75~ the call [0 WriteO ends up looking like this:

$q—>Write('filename'=>'JpG:A','quality'=>75);

If any errors occurred during this step or the previous ones, we delete the tempo—

raw” file. log the errors, and return a SERVER_ERROR status code.

At this point the conversion is all done!

reopen for reading

$Eh = Apache::File—>new($tmpnam);
unless (th) {

Sr—>log_error("Couldn't open Stmpnam: 8!");

return SERVER_ERROR;

send the file

$r~>sendufdi$fhi;

clean up and go

unl ink $ tmpnam;
return OK;

}

If the call to Wrz'tet‘) was successful, we need to send the contents of the tempo—

rary file to the waiting browser. We could open the file, read its contents, and

send it off using a series oi’pnirrrO calls, as we've done previously, but in this case

there’s a slightly easier way. After reopening the file with Apache-file’s new()

method, we call the request object’s sendfide method to transmit the contents of

the filehandle in one step. The 599261,;de method accepts all the same filehandle

data types as the Perl built-in l/O Operators. After sending off the file, we clean up

by unlinking the temporary file and returning an OK Status.

We’ll now turn our attention to the find_z'mage() subroutine, which is responsible

for searching the directory for a suitable file to use as the image source if the

requested file can’t be found:

sub find_image {

my ($r, $directory, $base) = @_;

my $dh = DirHandle—>new($directory) or return;

The findJ'n-zagefi) utility subroutine is straightforward. It takes the request object,

the parsed directory name. and the basename of the requested file and attempts to

search this directory for an image file that shares the same basename. The routine

Opens a directory handle with DirI-Imrdle—>new() and iterates over its entries.

my $source;

for my Sentry ($dh—>read) {

my Scandidate = fileparse($entry, ‘\.\w+');

if ($base eq $candidate) {

28

29

I I 0 Chapter 4: Content Handlers

determine whether this is an image file

Ssource = join ", $directory, Sentry:

my ssubr = $r—>lookup_file($source);

last if Ssubr—>Content_type =~ m:“image/:;

undef Ssource;

}

For each entry in the directory listing, we parse out the basename using

filepmseO. If the basename is identical to the one we’re searching for, we call the

request object’s loofah};_fi'18() method to activate an Apache subrequest. lockup_

fi'leO is similar to loo/latp_m~i(), which we saw earlier in the context of server—side
includes, except that it accepts a physical pathname rather than a URI. Because of

this, 10013qu_fl19() will skip the URI translation phase, but it will still cause Apache

to trigger all the various handlers up to, but not including, the content handler.

In this case, we’re using the subrequest for the sole purpose of getting at the

MIME type of the file. If the file is indeed an image of one sort or another, then

we save the request in a lexical variable and exit the loop. Otherwise, we keep

searching.

$dh—>close;

return $source;

}

At the end of the loop, $source will be undefined if no suitable image file was

found, or it will contain the full pathname to the image file if we were successful.

We close the directory handle, and return $source.

Example 4-5. Apache-:Magida Comten's Image Formats on [be Fly

package ApachezzMagick;

file: Apache/Magick.pm

use strict;

use Apache::Constants qw(:common};

use Image::Magick ();

use Apache::File ();

use File::Basename gw(fileparse);

use DirHandle ();

my %LegalArguments = map { $_ => 1]

qw (adjoin background bordercolor colormap colorspace

colors compress density dispose delay dither

display font format iterations interlace

loop magick mattecolor monochrome page pointsize

preview_type quality scene subimage subrange
size tile texture treedepth undercolor);

my %LegalFilters = map { $_ => 1 }

qw(AddNoise Blur Border Charcoal Chop

Contrast Crop Colorize Comment CycleColormap

Despeckle Draw Edge Emboss Enhance Equalize Flip Flop

29

30

7
Content Handlers as File Processors

Example 4-5. Apache-:Magick Converts Image Formats (m the Fly (crmlinued)

Frame Gamma Implode Label Layer Magnify Map Minify
Modulate Negate Normalize OilPaint Opaque Quantize

Raise ReduceNoise Rotate Sample Scale Segment Shade

Sharpen Shear Solarize Spread Swirl Texture Transparent

Threshold Trim Wave Zoom);

sub handler {
my Sr = shift;

get the name of the requested file

my $file = $r—>filename;

If the file exists and there are no transformation arguments

just decline the transaction. It will be handled as usual.

return DECLINED unless Sr—>args II $r—>path_info || l—r Sru>finfo;

my Ssource;

my (Shase, $directory, Sextension) = fileparse($file, '\.\w+');
if (—r $r—>finfo) { # file exists, so it becomes the source

Ssource - $file;

}

else { # file doesn't exist, so we search for it

return DECLINED unless —r $directory;

$source = find_image($r, Sdirectory, Shase);
}

unless ($source) [

$r—>log_error("Couldn't find a replacement for Sfile");
return NOT_FOUND;

$r—>send_httpflheader;

return OK if $r—>header_only;

Read the image

my $q = Image::Magick—>new;

my $err = $q—>Read($source);

Conversion arguments are kept in the query string, and the

image filter operations are kept in the path info

my %arguments = $r—>args;

Run the filters

for (split '/', $r—>path_info) {

my Sfilter = ucfirst $_;

next unless $LegalFilters£Sfilter};

Serr ||= $q—>$filter(%arguments);

Remove invalid arguments before the conversion

for (keys %arguments) {

delete $arguments{$_} unless $LegalArguments{$_};

30

111

31

 112 Chapter 4: Content Handlers

[Lxumpfc 4e 3. Apache-:11rlagick (Sm-wens Image Formals on [be Fifi» {armlmuecfl

Create a temporary file name to use for conversion

my($tmpnam, $fh) = Apache::File—>tmpfile;

Write out the modified image

open(STDOUT, ">&=“ . fileno($fh)):

$extension =~ s/‘\.f/;

$err ||= $q—>Write('filename' => “\U$extension\L:—“, %arguments):
if ($err) {

unlink Stmpnam;

Sr—>log_error($err);

return SERVER_ERROR;

}

Close th;

fi At this point the conversion is all done!

reopen for reading

$fh = Apache::File—>new($tmpnam);
unless (sfh) {

$re>log_error(“Couldn't open $tmpnam: $!“);
return SERVER_ERROR;

send the file

$r—>send_fd($fh):

clean up and go

unlink $tmpnam;
return OK:

sub find_image [

my ($r, $directory, $base) = @_;

my Sdh = DirHandle—>new(Sdirectory) or return;

my $source;

for my Sentry ($dh—>read) {

my Scandidate = fileparse($entry, '\.\w+'};

if (Sbase eq $candidate) {

determine whether this is an image file

Ssource join ", Sdirectory, Sentry;

my Ssubr = $r—>lookup_file($source);

last if ssubr—>content_type =~ m:“image/:;
undef Ssource;

}

$dh—>close;

return $s0urce;
}

1:
END

31

In this chapter:
• Web Programming

Then and Now

• The Apache Project

• The Apache C and
Perl APIs

• Ideas and Success

Stories

Server-Side

Programming
with Apache

Before the World Wide Web appeared, client/server network programming was a
drag. Application developers had to develop the communications protocol, write
the low-level network code to reliably transmit and receive messages, create a user
interface at the client side of the connection, and write a server to listen for incom
ing requests, service them properly, and transmit the results back to the client.
Even simple client/server applications were many thousand lines of code, the
development pace was slow, and programmers worked in C.

When the web appeared in the eariy '90s, all that changed. The web provided a
simple but versatile communications protocol standard, a universal network client,
and a set of reliable and well-written network servers. In addition, the early
servers provided developers with a server extension protocol called the Common
Gateway Interface (CGI). Using CGI, a programmer could get a simple client/
server application up and running in 10 lines of code instead of thousands. Instead
of being limited to C or another "systems language," CGI allowed programmers to
use whatever development environment they felt comfortable with, whether that
be the command shell, Peri, Python, REXX, Visual Basic, or a traditional compiled
language. Suddenly client/server programming was transformed from a chore into
a breeze. The number of client/server applications increased 100-fold over a
period of months, and a new breed of software developer, the "web program
mer," appeared.

The face of network application development continues its rapid pace of change.
Open the pages of a web developer's magazine today and you'll be greeted by a
bewildering array of competing technologies. You can develop applications using
server-side include technologies such as PHP or Microsoft's Active Server Pages
(ASP). You can create client-side applications with Java, JavaScript, or Dynamic

32

33

2 Chapter I: Server-Side Programming with Apache

HTML (DI-ITML). You can serve pages directly out of databases with products like

the Oracle web server or Lotus Domino. You can write high-performance server—

side applications using a proprietary server application programming interface

(API). Or you can combine server- and client-side programming with integrated

development environments like Netscape’s LiveWire or NeXT’s WebObjects. CGI

scripting is still around too, but enhancements like FastCGI and ActiveState’s Perl

ISAPI are there to improve script performance.

All these choices can be overwhelming, and it isn’t always clear which develop-

ment system offers the best tradeoff between power, performance, compatibility,

and longevity. This chapter puts a historical perspective on web application devel-

opment and shows you how and where the Apache C and Perl APIs fit into the

picture.

Web Programming Tben and Now

In the beginning was the web server. Specifically, in the very very beginning was

CERN bttpa', a C-language server developed at CERN, the European high—energy

physics lab, by Tim Berners-Lee, Ari Luotonen, and Henrik Frystyk Nielsen around

1991. CERN bttpd was designed to serve static web pages. The server listened to

the network for Uniform Resource Locator (URL) requests using what would even—

tually be called the HTTP/0.9 protocol, translated the URLs into file paths, and

returned the contents of the files to the waiting client. If you wanted to extend the

functionality of the web server—for example, to hook it up to a bibliographic

database of scientific papers—you had to modify the server’s source code and

recompile.

This was neither very flexible nor very easy to do. So early on, CERN bttpd was

enhanced to launch external programs to handle certain URL requests. Special

URLs, recognized with a complex system of pattern matching and string transfor—

mation rules, would invoke a command shell to run an external script or program.

The output of the script would then be redirected to the browser, generating a

web page on the fly. A simple scheme allowed users to pass argument lists to the

script, allowing developers to create keyword search systems and other basic

applications.

Meanwhile, Rob McCool, of the National Center for Supercomputing Applications

at the University of Illinois, was developing another web server to accompany

NCSA’s browser product, Mosaic. NCSA bttpd was smaller than CERN btmd, faster

(or so the common wisdom had it), had a host of nifty features, and was easier

than the CERN software to configure and install. It quickly gained ground on

CERN btma’, particularly in the United States. Like CERN bttpd, the NCSA product

had a facility for generating pages on the fly with external programs but one that

33

34

Web Programming Then and Now 3

differed in detail from CERN bttpd’s. Scripts written to work with NCSA [9th

wouldn’t work with CERN bttpd and vice versa.

The Birth of CGI

Fortunately for the world, the CERN and the NCSA groups did not cling tena-

ciously to “their” standards as certain latter-day software vendors do. Instead, the

two groups got together along with other interested parties and worked out a

common standard called the Common Gateway Interface.

CGI was intended to be the duct tape of the web—a flexible glue that could

quickly and easily bridge between the web protocols and other forms of informa-

tion technology. And it worked. By following a few easy conventions, CGI scripts

can place user-friendly web frontends on top of databases, scientific analysis tools,

order entry systems, and games. They can even provide access to older network

services, such as gopher, whois, or WAIS. As the web changed from an academic

exercise into big business, CGI came along for the ride. Every major server ven-

dor (with a couple of notable exceptions, such as some of the Macintosh server

developers) has incorporated the CGI standard into its product. It comes very

close to the “write once, run everywhere” development environment that applica-

tion developers have been seeking for decades.

But CGI is not the highest-performance environment. The Achilles’ heel of a CGI

script is that every time a web server needs it, the server must set up the CGI envi—

ronment, read the script into memory, and launch the script. The CGI protocol

works well with operating systems that were optimized for fast process startup and

many simultaneous processes, such as Unix dialects, provided that the server

doesn’t become very heavily loaded. However, as load increases, the process cre-

ation bottleneck eventually turns formerly snappy scripts into molasses. On operat—

ing systems that were designed to run lightweight threads and where full pro-

cesses are rather heavyweight, such as Windows NT, CGI scripts are a

performance disaster.

Another fundamental problem with CGI scripts is that they exit as soon as they fin-

ish processing the current request. If the CGI script does some time—consuming

operation during startup, such as establishing a database connection or creating

complex data structures, the overhead of reestablishing the state each time it’s

needed is considerable—and a pain to program around.

Server APIs

An early alternative to the CGI scripting paradigm was the invention of web server

APIs (application programming interfaces), mechanisms that the developer can use

to'extend the functionality of the server itself by linking new modules directly to

34

35

4 Chapter l.‘ Server—Side ngrmriming with Apache

the server executable. For example, to search a database from within a web page,

a developer could write a module that combines calls to web server functions with
calls to a relational database library. Add a dash or two of program logic to trans-

form [11th into SQL, and the web server suddenly becomes a fancy database front-

end. Server APls typically provide extensive access to the innards of the server

itself, allowing developers to customize how it performs the various phases of the
HTTP transaction. Although this might seem like an esoteric feature, it’s quite

poWe rfu l.

The earliest web API that we know of was built into the Plexus web server, writ-

ten by Tony Sanders of 138131. Plexus was a 100 percent pttre Perl server that did
almost eveiything that web servers of the time were expected to do. Written

entirely in Perl Version 4, Plexus alloWed the webmaster to extend the server by
adding new source files to be compiled and run on an as~needed basis.

APIs invented later include NSAPI, the interface for Netscape servers; lSAPl, the

interface used by Microsoft's Internet Information Server and some other Win-
dows—based servers; and of course the Apache web server‘s API, the only one of

the bunch that doesn‘t have a ctlte acronym.

Sewer APIs provide performance and access to the guts of the server's software,

giving them programming powers beyond those of mere mortal (ZGI scripts. Their
drawbacks include a steep learning curve and often a certain amount of risk and

inconvenience, not to mention limited portability. As an example of the risk, a bug

in an API module can crash the whole server. Because of the tight linkage

between the server and its API modules, it’s never as easy to install and debug a

new module as it is to install and debug a new CG! script. On some platforms, you

might have to bring the server down to recompile and link it. On other platforms,

you have to worry about the details of dynamic loading. However, the biggest

problem of server APls is their limited portability. A server module written for one

API is unlikely to work with another vendor’s server without extensive revision.

Server-Side Includes

Another server—side solution uses servervside includes to embed snippets of code

inside HTML comments or special—purpose tags. NCSA Mpg] was the first to imple-

ment server—side includes. More advanced members of this species include

Microsoft’s Active Server Pages, Allaire Cold Fusion, and PHP, all of which turn

HTML into a miniature programming language complete with variables, looping

constructs, and database access methods.

Netscape servers recognize HTML pages that have been enhanced with scraps of
JavaScript code (this is distinct from client-side _]avaScript, which we talk about

later). Embperl, a facility that runs on top of Apache‘s mocherl module, marries

35

36

Web Programming Then and Now 5’______—_________—_—_

H1‘ML to Perl, as does PerlScript, an ActiveState extension for Microsoft Internet

Information Server,‘

The main problem with server-side includes and other HTML extensions is that

they're ml bee. No standards exist for server—side includes, and pages written for

one vendor‘s web server will definitely not run unmodified on another's.

Embedded Interpreters

To avoid some of the problems of proprietary APls and server—side includes, sev—

eral vendors have turned to using embedded high-level interpretive languages in

their servers. Embedded interpreters often come with CGI emulation layers, allows

ing script files to be executed directly by the server without the overhead of invok—

ing separate processes. An embedded interpreter also eliminates the need to make

dramatic changes to the server software itself. In many cases an embedded inter—

preter provides a smooth path for speeding up CGI scripts because little or no

source code modification is necessary.

Examples of embedded interpreters include mochycyDacbe, which embeds a

Python interpreter. When a Python script is requested, the latency between load—

ing the script and running it is dramatically reduced because the interpreter is

already in memory. A similar module exists for the TCL language.

Sun Microsystems‘ “servlet” API prevides a standard way for web servers to run

small programs written in the Java programming language. Depending on the

implementation, a portion of the Java runtime system may be embedded in the

web server or the web server itself may be written in java. Apache‘s servlet sys—

tem uses eowprocesses rather than an embedded interpreter. These implementa-

tions all avoid the overhead of launching a new external process for each request.

Much of this book is about mod_perl, an Apache module that embeds the Perl

interpreter in the server. However, as we shall see, mocherI goes well beyond

providing an emulation layer for CGI scripts to give programmers complete access
to the Apache API.

Script Co-processz‘ng

Another way to avoid the latency of CGI scripts is to keep them loaded and run-

ning all the time as a co-process. When the server needs the script to generate a

page, it sends it a message and waits for the response.

The first system to use eo—processing was the FastCGl protocol, released by Open

Market in 1996. Under this system, the web server runs FastCGl scripts as separate

‘ ActiveState 'l'ool Corp, http:/Ytuww.acn’vesmte.crmr/

36

37

6 Chapter I: Server-Side Programming with Apache

processes just like ordinary CGI scripts. However, once launched, these scripts

don't immediately exit when they finish processing the initial request. Instead, they

go into an infinite loop that awaits new incoming requests, processes them, and

goes back to waiting. Things are arranged so that the FastCGI process's input and

output streams are redirected to the web server and a CGi-like environment is set

up at the beginning of each request.

Existing CGI scripts can b * adapted to use FastCGI by making a few, usually pain—

less, changes to the script source code. Implementations of FastCGI are available

for Apache, as well as Zeus, Netscape, Microsoft IIS, and other servers. However,

FastCGI has so far failed to win wide acceptance in the web development commu-

nity, perhaps because of Open Market’s retreat from the web server market. Fortu-

nately, a group of volunteers have picked up the Apache modfi/‘asrcgi module and

are continuing to support and advance this freeware implementation. You can find

out more about rizodjastcgi at the wwwfasrcgitom website. Commercial imple—

mentations of FastCGI are also available from Fast Engines, Inc.

(wwwfasterrgines.com), which provides the Netscape and Microsoft IIS versions of
FastCGI.

Another co—processing system is an Apache module called modijls‘ew, which you

can find at the project homepage, latgof/javaapacbeorg/ modfijsem allows

Apache to run java servlets using Sun’s servlet API. However, unlike most other

servlet systems, mochsen/ uses something called the “fiery Protocol" to allow the

web server to communicate with Java scripts running as separate processes. You

can also control these servlets via the Apache Perl API using the Apache-:Semlet

module written by [an Kluft.

Client-Side Scripting

An entirely different way to improve the performance of webvbased applications is

to move some or all of the processing from the server side to the client side. It

seems silly to send a fill—out form all the way across the Internet and back again if

all you need to do is validate that the user has filled in the Zip Code field cor—

rectly. This, and the ability to provide more dynamic interfaces, is a big part of the

motivation for client—side scripting.

In client-side systems, the browser is more than an HTML rendering engine for the

web pages you send it. Instead, it is an active participant, executing commands

and even running small programs on your behalf. javaScript, introduced by

Netscape in early 1995, and VBScript, introduced by Microsoft soon afterward,

embed a browser scripting language in HTML documents. When you combine

browser scripting languages with cascading style sheets, document layers, and

other HTML enhancements, you get “Dynamic HTML” (DHTML). The problem

with DHTML is that it’s a compatibility nightmare. The browsers built by Microsoft

37

.-..-c-.a.-...w.n

38

Wei) Program-naming Then and Now 7m

.md Netscape implement different sets of DHTML features, and features vary even

between browser version numbers. Developers must choose which browser to

support. or use mind—bogglingly awkward workarounds to support more than one

[ype of browser. Entire books have been written about DHTML workarounds!

Then there are java applets. java burst onto the web development scene in 1995

with an unprecedented level of publicity and has been going strong ever since. A

full—featured programming language from Sun Mierosystems, Java can be used to

write standalone applications, server-side extensions (“sei'viets,” which we dis

cussed earlier), and client~side “applet” applications. Despite the similarity in

names, Java and _]avaScript share little in common except a similar syntax. Java’s

ability to run both at the server side and the client side makes Java more suitable

for the implementation of complex software dCVClOmem projects than _]avaScript
or \fBScript, and the language is more stable than either of those two.

i‘lowever, although java claims to solve client—side compatibility problems. the

many slight differences in implementation of the java runtime library in different

browsers has given it a reputation for “write once, debug everywhere.“ Also,

because of security concerns, Java applets are very mttch restricted in what they
can do, although this is expected to change once Sun and the vendors introduce a

security model based on unforgeable digital signatures.

iVIicrosoi’t’s ActiveX technology is a repackaging of its COM (Common Object

Model) architecture. ActiveX allows dynamic link libraries to be packed up into
"controls,” shipped across the internet, and run on the user’s computer. Because

ActiveX controls are compiled binaries, and because COM has not been adopted
by other Operating systems, this technology is most suitable for uniform intranet

environments that consist of Microsoft Windows machines running a recent ver—
sion of Internet Explorer.

Integrated Development Environments

Integrated development environments try to give software developers the best of

both client—side and server—side worlds by providing a high—level view of the appli—
cation. In this type of environment, you don’t worry much about the details of

how web pages are displayed. instead, you concentrate on the application logic
and the user interface.

The clevelopment environment turns your program into some mixture of database

access queries, server-side procedures, and client-side scripts. Some popular envi—

ronments of this sort include Netscape’s “Live” development systems (LiveWire for

client—server applications and LiveConnect for database connectivity_),' NeXT’s

* As this book was oinU to ,ress Netsca ")L‘ announced that it was dro in ’ su)on for LiveWirc trans". o , I s Pl .
forming ll from a “Live" product into a “dead” one.

38

39

8 Chapter 1: Server-Side Programming with Apache

object-oriented WebObjects, Allaire's ColdFusion, and the Microsoft FrontPage

publishing system. These systems, although attractive, have the same disadvantage

as embedded HTML languages: once you’ve committed to one of these environ-

ments, there’s no backing out. There’s not the least whiff of compatibility across

different vendors: development systems.

Making the Choice

Your head is probably spinning with all the possibilities. Which tool should you

use for your own application development? The choice depends on your applica-

tion’s requirements and the tradeoffs you’re willing to accept. Table 1—1 gives the

authors’ highly subjective ranking of thedifferent development systems’ pros and
cons.

Table 1-1. comparison of Web Development Solutions

Portability Performance Simplicity Power

CGI ++

FastCGI ++

Server API ++++

Server-side includes ++

DHTML

Client—side Java

++

+++

Embedded interpreter ++++

Integrated system ++++

In this table, the “Portability” column indicates how easy it is to move a web appli—

cation from one server to another in the case of server-side systems, or from one

make of web browser to another in the case of client-side solutions. By “Perfor-

mance,” we mean the interactive speed of the application that the user perceives

more than raw data processing power of the system. “Simplicity” is our gut feeling

for the steepness of the system’s learning curve and how convenient the system is

to develop in once you’re comfortable with it. “Power” is an estimate of the capa—

bilities of the system: how much control it provides over the way the application

behaves and its flexibility to meet creative demands.

If your main concern is present and future portability, your best choice is vanilla

CGI. You can be confident that your CGI scripts will work properly with all

browsers, and that you’ll be able to migrate scripts from one server to another

with a minimum of hardship. CGI scripts are simple to write and offer a fair

amount of flexibility, but their performance is poor.

If you want power and performance at all costs, go with a server API. The applica-

tions that you write will work correctly with all browsers, but you’ll want to think

39

.
T
li

'i

1‘;
I
t
'I.

'l
'ii..

i:

3..
:1!:l

‘l‘i.

2}
1:

i»{1
. 2‘

40

The Apache Project 9

twice before moving your programs to a different server. Chances are that a large

chunk of yOur application will need to be rewritten when you migrate from one
vendor’s API to another’s.

FastCGI offers a marked performance improvement but does require you to make

some minor modifications to CGI script source code in order to use it.

If you need a sophisticated graphical user interface at the browser side, then some

component of your application must be client-side Java or DHTML. Despite its

compatibility problems, DHTML is worth considering, particularly when you are

running an intranet and have complete control over your users’ choice of browsers.

java applets improve the compatibility situation. So long as you don’t try to get too

fancy, there’s a good chance that an applet will run on more than one version of a

single vendor’s browser, and perhaps even on browsers from different vendors.

If you’re looking for ease of programming and a gentle learning curve, you should

consider a server-side include system like PHP or Active Server Pages. You don’t

have to learn the whole language at once. Just start writing HTML and add new

features as you need them. The cost of this simplicity is portability once again.

Pages written for one vendor’s server-side include system won’t work correctly

with a different vendor’s system, although the HTML framework will still display

correctly.

A script interpreter embedded in the web server has much better performance

than a standalone CGI script. In many cases, CGI scripts can be moved to embed—

ded interpreters and back again without source code modifications, allowing for

portability among different servers. To take the most advantage of the features

offered by embedded interpreters, you must usually write server—specific code,

which sacrifices portability and adds a bit of complexity to the application code.

The Apache Project

This book is devoted to developing applications with the Apache web server API,

so we turn our attention now to the short history of the Apache project.

The Apache project began in 1995 when a group of eight volunteers, seeing that

web software was becoming increasingly commercialized, got together to create a

supported open source web server. Apache began as an enhanced version of the

public-domain NCSA server but steadily diverged from the original. Many new fea-

tures have been added to Apache over the years: significant features include the

ability for a single server to host multiple virtual web sites, a smorgasbord of

authentication schemes, and the ability for the server to act as a caching proxy. In

some cases, Apache is way ahead of the commercial vendors in the features wars.

For example, at the time this book was written only the Apache web server had

implemented the HTTP/1.1 Digest Authentication scheme.

40

41

10 Chapter I: Server-Side Programming with Apache

Internally the server has been completely redesigned to use a modular and exten-

sible architecture, turning it into what the authors describe as a “web server tool-

kit.” In fact, there’s very little of the original NCSA bttpa’ source code left within

Apache. The main NCSA legacy is the configuration files, which remain backward—

compatible with NCSA bttpa’.

Apache’s success has been phenomenal. In less than three years, Apache has risen

from relative obscurity to the position of market leader. Netcraft, a British market

research company that monitors the growth and usage of the web, estimates that

Apache servers now run on over 50 percent of the Internet’s web sites, making it

by far the most popular web server in the world. Microsoft, its nearest rival, holds

a mere 22 percent of the market.‘ This is despite the fact that Apache has lacked
some of the conveniences that common wisdom holds to be essential, such as a

graphical user interface for configuration and administration.

Apache has been used as the code base for several commercial server products.

The most successful of these, C2Net’s Stronghold, adds support for secure commu-

nications with Secure Socket Layer (SSL) and a form-based configuration manager.

There is also WebTen by Tenon Intersystems, a Macintosh PowerPC port, and the

Red Hat Secure Server, an inexpensive SSL—supporting server from the makers of
Red Hat Linux.

Another milestone was reached in November of 1997 when the Apache Group

announced its port of Apache to the Windows NT and 95 operating systems

(Win32). A fully multithreaded implementation, the Win32 port supports all the

features of the Unix version and is designed with the same modular architecture as

its brother. Freeware ports to OS/2 and the AmigaOS are also available.

In the summer of 1998, IBM announced its plans to join with the Apache volun-

teers to develop a version of Apache to use as the basis of its secure Internet com-

merce server system, supplanting the servers that it and Lotus Corporation had

previously developed.

Why use Apache? Many web sites run Apache by accident. The server software is

small, free, and well documented and can be downloaded without filling out

pages of licensing agreements. The person responsible for getting his organiza-

tion’s web site up and running downloads and installs Apache just to get his feet

wet, intending to replace Apache with a “real" server at a later date. But that date

never comes. Apache does the job and does it well.

* Impressive as they are, these numbers should be taken with a grain or two of salt. Netcraft's survey
techniques count only web servers connected directly to the Internet. The number of web servers running
intranets is not represented in these counts, which might inflate or deflate Apache’s true market share.

41

42

r

Tthe Apache P-‘Ty’ecr 1 I

[KIOWVCVCY’ there are better reasons for using Apache. Like other successful open
SOL] {Cc products such as Perl, the GNU tools, and the Linux operating system,

Apache has some big advantages over its commercial rivals.

[r ’5 first and efli‘ctem
The Apache web server core consists of 25,000 lines of highly tuned C code. it

uses many tricks to eke every last drop of performance out of the HTTP prottr

co] and, as a result, rtrns faster and consumes less system resources than many

commercial servers. Its modular architecture allows you to build a server that

contains just the Functionality that you need and no more.

It ’5 portable

Apache runs on all Unix variants, including the popular freeware Linux Operat—

ing system. It also runs on Microsoft Windows systems (95, 98, and NT), 08/2,

and even the bs2000 mainframe architecture.

It’s well supported

Apache is supported by a cast of thousands. Beyond the core Apache Group

developers, who respond to bug reports and answer technical questions via

email, Apache is supported by a community of webmasters with hundreds of

thousands of hours of aggregate experience behind them. Questions posted to

the Usenet newsgroup comp.z'njosystems.wwwseruers.tmix are usually

answered within hours. If you need a higher level of support, you can pur-

chase Stronghold or another commercial version of Apache and get all the

benefits of the freeware product, plus trained professional help.

It won ’3 go (Hurry

In the software world, a vendor’s size or stock market performance is no guar—

antee of its staying power. Companies that look invincible one year become

losers the next. in 1988, who would have thought the Digital Equipment

whale would be gobbled up by the Compaq minnow just 10 years later? Good

community software proiects don't go away. Because the source code is avails

able to all, someone is always there to pick up the torch when a member of

the core developer group leaves.

It ’5 Stable and reliable

All software contains bugs. When a commercial server contains a bug there's

an irresistible institutional temptation for the vendor to cover tip the problem

or offer misleading reassurances to the public. With Apache, the entire develi

opment process is open to the public. The source code is all there for you to

review, and you can even eavesdrop on the development process by subscrib—

ing to the developer’s mailing list. As a result, bugs don’t remain hidden for

long, and they are usually fixed rapidly once uncovered. if you get really des—

perate, you can dig into the source code and fix the problem yourself. (If you

do so, please send the fix back to the community!)

42

43

Chapter 1:.S‘erver-Sz'de Programming with Apache___________________________.___———————————

It’s gotfeatures to burn
Because of its modular architecture and many contributors, Apache has more

features than any other web server on the market. Some of its features you

may never use. Others, such as its powerful URL rewriting facility, are peer—

less and powerful.

It ’5 extensible

Apache is open and extensible. If it doesn’t already have a feature you want,

you can write your own server module to implement it. In the unlikely event
that the server AP] doesn’t support what you want to do, you can dig into the

source code for the server core itself. The entire system is open to your

inspection; there are no black boxes or precompiled libraries for you to work
around.

It’s easy to administer

Apache is configured with plain—text configuration files and controlled with a
simple command—line tool. This sounds like a deficiency when compared to
the fancy graphical user interfaces supplied with commercial servers, but it
does have some advantages. You can save old copies of the configuration files
or even commit them to a source code control system, allowing you to keep

track of all the configuration changes you’ve made and to return to an older

version if something breaks. You can easily copy the configuration files from
one host machine to another, effectively cloning the server. Lastly, the ability to

control the server from the command line lets you administer the server from

anywhere that you can telnet from—you don’t even need web connectivity.

This being said, Apache does provide simple web-based interfaces for view-

ing the current configuration and server status. A number of people are work-
ing on administrative GUIs, and there is already a web interface for remotely
managing web user accounts (the user_manage tool available at bttp://
stein.csbl.org/~lstein/user_manage). '

It makes you part ofa community

When you install an Apache server you become part of a large Virtual commu—
nity of Apache webmasters, authors, and developers. You will never feel that
the software is something whose use has been grudgingly granted to you by a

corporate entity. Instead, the Apache server is owned by its community. By
using the Apache server, you automatically own a bit of it too and are contrib—
uting, if even in only a small way, to its continued health and development.
Welcome to the club!

Tbe Apache C and Perl APIS

The Apache module API gives you access to nearly all of the server's internal pro-

cessing. You can inspect what it’s doing at each step of the HTTP transaction cycle

43

44

The Apache C and Perl AP15 13M

and intervene at any of the steps to customize the server’s behavior. You can
arrange for the server to take custom actions at startup and exit time, add your
own directives to its configuration files, customize the process of translating URLs
into file names, create custOm authentication and authorization systems, and even

tap into the server’s logging system. This is all done via modules—self—contained
pieces of code that can either be linked directly into the server executable, or
loaded on demand as a dynamic shared object (DSO).

The Apache module APT was intended for C programmers. To write a traditional
compiled module, you prepare one or more C source files with a text editor, comv
pile them into object files, and either link them into the server binary or move
them into a special directory for 13805. If the module is implemented as a DSO,

you’ll also need to edit the server configuration file so that the module gets loaded
at the appropriate time. You’ll then launch the server and begin the testing and

debugging process.

This sounds like a drag, and it is. It’s even more of a drag because you have to

worry about details of memory management and configuration file processing that
are tangential to the task at hand. A mistake in any one of these areas can crash
the server.

For this reason, the Apache server C API has generally been used only for substan-

tial modules which need high performance, tiny modules that execute very fre—

quently, or anything that needs access to server internals. For small to medium
applications, one-offs, and other quick hacks, developers have used CGI scripts,
FastCGI, or some other development system.

Things changed in 1996 when Doug MacEachern introduced modqperl, a com-

plete Perl interpreter wrapped within an Apache module. This module makes
almost the entire Apache AP] available to Perl programmers as objects and method

calls. The parts that it doesn’t export are C—specific routines that Perl programmers

don’t need to worry about. Anything that you can do with the C APT you can do

with mod4391'! with less fuss and bother. You don’t have to restart the server to

add a new m0d_perl module, and a buggy module is less likely to crash the
server.

We have found that for the vast majority of applications mod_perl is all you need.

For those cases when you need the raw processing power or the small memory

footprint that a compiled module gives you, the C and Perl forms of the API are
close enough so that you can prototype the application in mod_perl first and port

it to C later. You may well be surprised to find that the “prototype" is all you really
need!

This book uses mod_per1 to teach you the Apache API. This keeps the examples

short and easy to understand, and shows you the essentials without bogging down

44

45

I 4 Chapter I: Server-Side Progran-zmz’ng with Apache

in detail. Toward the end of the book we show you how to port Apache modules

written in Perl into C to get the memory and execution efficiency of a compiled

language.

Ideas and Success Stories

To give you an impression of the power and versatility of the Apache API, here

are some examples of what people have done with it. Some of the modules

described here have been incorporated into Apache and are now part of the stan—

dard distribution. Others are third-party modules that have been developed to

solve particular mission—critical tasks.

A movie database

The Internet Movie Database (http://www.r'n-zdb.com/) uses mod_perl to make

queries against a vast database of film and television movies. The system

rewrites URLs on the fly in order to present pages in the language of the user’s

choice and to quickly retrieve the results of previously cached searches. in

1998, the site won the coveted Webby award for design and service.

No more URL spelling errors

URLs are hard things to type, and many HTML links are broken because of a

single typo in a long URL. The most frequent errors are problems with capitali—

zation, since many HTML authors grew up in a case—insensitive MS—DOS/Win—

(lows world before entering the case—sensitive web.

moaLspeling {sic}, part of the standard Apache distribution, is a C—language

module that catches and fixes typographical errors on the fly. If no immediate

match to a requested URL is found, it checks for capitalization variations and a

variety of character insertions, omissions, substitutions, and transpositions, try—

ing to find a matching valid document on the site. If one is found, it gener—

ates a redirect request, transparently forwarding the browser to the correct

resource. Otherwise, it presents the user with a menu of closest guesses to
choose from.

An ore—campus housing renewal system.

At Texas A&M University, students have to indicate each academic year

whether they plan to continue living in campus-provided housing. For the

19974998 academic year, the university decided to move the process from its

current error—prone manual system to a web—based solution. The system was

initially implemented using ActiveWare‘s Pei-[Script to drive a set of Microsoft

Internet Information Server Active Server Pages, but with less than two weeks

to go before deployment it was clear that the system would be too slow to

handle the load. The system was hurriedly rewritten to use mod_perl on top of

45

7

46

Ideas and Success Stories 15W

the NT version of Apache, resulting in a measured 60—fold increase in perfor—
mance. The system went online in the nick of time and functioned without a
hitch, sewing 400,000 documents generated on the fly to 10,000 people over

the course of the four—day registration period.

Scripting languages embedded in HTML

The PHP system (bttpflwwwplapnew is a powerful scripting language that
processes programs embedded within HTML documents. The language pro-
vides support for persistent connections to ODBC and Unix databases, on-the—
fly graphics, and LDAP searches. The language is implemented both as a CGI ,
script that can run on top of any server and as a high-performance C—language
module for Apache.

The ePerl (him-flwwwengelscball.com/sw/eperV) and Embperl (btlp://
perlapacbecrg/embperl/J systems are like PHP, but use mod_perl to embed
snippets of Perl code directly inside HTML pages. They can do anything that
Perl can do, including opening network connections to other Internet ser-

vices, accessing databases, and generating dynamic documents based on user

input.

An advertising banner server

No web application needs higher performance than banner ad servers, which
are pummeled by millions of requests per day. One banner ad vendor, whose
conventional CGI-based system was topping out at 1.5 banners per second,

moved its system to mod_perl and experienced a greater than 10-fold perfor-
mance boost. The vendor is now serving 10 million banners a week from a

single host.

a.

i

.

A dynamic map server

The wunustadiplandienstde site uses the mod_perl API with the ImageMag—

ick graphics library to create dynamic searchable tourist maps for Berlin and
other German cities. The system is fast and responsive, despite the computa-

tionally intensive nature of its job and its frequently heavy load.

A commodities trading system

Lind-Waldock 8: Co. (http://wmu.lind—waldocle.c0m/), the world’s largest dis-

count commodities trading firm, uses mod_perl running under the Stronghold

version of Apache to generate live and delayed quotes, dynamic charts, and
late-breaking news, as well as a frontend to their online order entry system.

The system is tightly integrated with the company’s relational database system
for customer authentication and transaction processing.

Brian Fitzpatrick, a member of the consulting team that designed and imple—
mented the system, was pleasantly surprised at how smooth the process was:

“mod_perl allowed us to work the web server and code around our design—
not the other way around.”

46

._..‘.,_.

47

I 6 Chapter I: Server-Side Programming with Apache
A document management system if

The Advanced Computer Communications company maintains more than 1500 "
documents in various formats scattered among multiple NFS—mounted file sys-
tems in its internal network. Their document management system periodically
indexes the scattered documents by document name, creation date, and con—

tent, then uses the mod_perl interface to the Apache API to allow users to
search and retrieve documents of interest to them. The system automatically

performs document format conversion. Some are sent to the browser for
download, others are precompressed with PKZIP to reduce transmission time,
and still others are converted into formats that can be displayed directly in the

browser window.

These applications represent only a few of the possible uses for the Apache mod-
ule API. What you can do with it is limited only by your imagination. The rest of
this book shows you how to turn your ideas into reality.

47

